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ABSTRACT

This thesis investigates the use of parallel decoding schemes to mitigate the
effects of partial band Gaussian jamming for spread spectrum, M-ary orthogonal,
frequency-hopped communication systems which use concatenated error-correcting codes.
The motivation for the parallel decoding technique is an ability to capitalize on the
powerful error and erasure correction capability and bounded distance decoding
characteristics of Reed-Solomon codes which are used exclusive for the outer codes.

General results are presented for the bit error rate of systems which use multiple
inner decoders one of which is a complete (hard decisions) decoder and one or more of
which are incomplete decoders (i.e., errors and erasures). The system bit error
propbability as a function of the per information bit energy-to-jammer noise power ratio
and the percentage of hopping bandwidth which is jammed is derived

Specific results for five inmer decoding algorithms based on the use of L-diversity
repetition codes on M-ary alphabets are given. Two of the decoding schemes use a derived
side information quality bit using a ratio thresholding technique defined by Viterbi.
Another decoding scheme is based on knowledge of perfect side information. Two decoding
algorithms which use no side information are evaluated.

The use of arbitrary binary linear block codes for the inner encoder is considered.
We derive general results for evaluating the parallel decoding system performance using
such codes with either binary or M-ary channel signalling. Specific results for four inner
encoding schemes, two based on shortened Hamming codes and two based on BCH codes are

given.
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CHAPTER 1

INTRODUCTION AND MODELS

The concept of using spread spectrum frequency hopping techniques to achieve
anti-jamming capability is very simple: start with a narrowband information signal
and move the rf carrier frequency over a very wide bandwidth, in discrete steps, in a
very difficult to predict pattern. Initially the jammer’s options appear to be limited
to two undesirable alternatives: either spread limited power over the full bandwidth
of transmission or attempt to follow the changing frequency pattern. However, the
design of jamming/anti-jamming systems is like a chess game; each new strategy
begets a counter strategy. In this case the counter strategy is partial band jamming.
Again a simple concept, with partial band jamming the jammer places power only in
a percentage of the transmission bandwidth. The new objective is not to deny all

communications, but to create a significant error rate so that the communications is
of little or no value.

One concentration of present day research in frequency hopping spread spec-
trum anti-jamming systems is on the use of error correcting codes to counter the
effects of partial band jamming. The objective of this countermeasure is to introduce
redundancy so that the receiver may make decisions on the basis of transmissions

over multiple frequency bins. Without coding it is well known that an intelligent

(e.g., worst case partial band) jammer can cause the bit error probability to be an



inverse linear function of the received signal-to-noise ratio as opposed to an exponen-

tially decreasing function for broadband noise. This can cause a"degradation in per-
formance of 30-40 dB .

The obvious countermeasure against partial band jamming is the use of error
correcting coding techniques. By introducing redundancy in the transmitted signals
the receiver may base data decisions on the results of multiple transmissions. Conse-
quently, the jammer may be forced to spread its power to corrupt a greater portion
of the transmissions. As the jammer is forced to a broadband jamming strategy the

communicator regains an exponentially improving bit error probability.

Coding techniques for spread spectrum frequency hopped communications are
discussed extensively in the literature. The three volume Spread Spectrum Communi-
cations series [14] summarizes many of the significant results [see in particular
Chapter 2 of Volume II]. Researchers recognized early that coding techniques which
yielded good performance in additive white Gaussian noise (AWGN) were not directly
applicable to partial band jamming. However, if perfect side information is available
which identifies whether a received signal is jammed or not, decoding techniques for

AWGN can be modified to give good performance in partial band jamming.

For example, with a system using L -diversity repetition codes the communicator
can achieve perforrmance that with worst case partial band jamming is within 3dB of
the performance in equivalent broadband noise with no jamming. However, the
repetition code rate (1/L) necessary to achieve this performance may become very
small (e.g., L =20 with 32-ary FSK at P, = 10°%). If the communicator knew the
percentage of the total hopping bandwidth which would be jammed, the communica-

tion strategy (i.e, diversity and modulation) could be improved. However, if the



jammer anticipates this approach and alters the jamming strategy the results could
be disastrous for the communication. For example, with 16-ary FSK; P, = 107°, and
75% of the hopping bandwidth jammed, a conservative design would require 11.11dB
received signal-to-noise ratio; an optimized design requires 9.23dB. However, in the
later case the jammer could reapportion the jamming power so that 42.56dB would

be required [14, Section 2.3.2.2].

A technique which provides robust performance against partial band jamming
involves parallel decoding of the received signal by decoders which are individually
sensitive to extremes of the percentage of bandwidth which is jammed. In [12] Purs-
ley and Stark investigate parallel decoding techniques for systems using concatenated
codes in the channel encoder. Their results demonstrate that good performance is
achievable in a partial band jamming environment independent of the percentage of

bandwidth jammed when perfect side information is available.

The weakness of analysis such as described above is the assumption of perfect
side information. In most practical situations perfect side information cannot be gen-
erated. The reliability of techniques which produce side information estimates should
be included in the analysis of side information dependent systems. Moreover, the
reliability should include the susceptibility of the estimator to being spoofed by the
jammer.

In this thesis we continue the investigation of the use parallel decoding tech-
niques to mitigate the effect of partial band jamming. Except for one case, used for
comparison purposes, perfect side information is not assumed. Our results show that
parallel decoding without side information does provide a robust technique for

countering a partial band jammer independent of the percentage of bandwidth



jammed. Below we describe in detail the parallel decoder, system models, and
assumptions used in the analysis.

In Figure 1.1 we present a general parallel decoding system block diagram show-
ing major processing blocks between the information source and the user output. We
will assume that the alphabet of interest to the source and user is the binary alpha-
bet. The source is modelled as being binary and equiprobable. One performance
parameter of primary interest will be the probability that an information bit is

received in error.

The channel encoder for the system uses two error correcting channel encoders
connected in tandem. Such a configuration is called concatenated coding and is
widely discussed in the literature (see e.g., [4, Section 8.1] or [10, Section 11.1}). The
first encoder, called the outer encoder, will be exclusively an (Ng,K,) Reed-Solomon
encoder. The Reed-Solomon encoder operates on Ko blocks of k bits, each such
block is called a symbol. For each input of K, symbols the encoder produces an out-
put of Ny symbols called a codeword. In general, for Reed-Solomon codes IV, is an
element of the set {2"—1,2" 2% 1}

In practice, concatenated coding systems have also used Reed-Solomon codes
almost exclusively for the outer codes. One of the primary reasons for this fact is
that Reed-Solomon codes are the easiest to implement of a class of codes called max-
imum distance separable codes. Codes which belong to this class are very efficient in
use of redundancy and allow for wide ranges of block lengths and symbol sizes.
[10,376] Additional details on maximum distance separable codes are given in

Chapter 2.
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The second channel encoder, called the inner encoder, is an (V},K;) linear block
code. For this thesis we consider two types of inner error correct.ing codes. First, we
consider cases when the inner code is an L-diversity repetition code on the same sym-
bol alphabet used by the Reed-Solomon decoder. That is, with K; = 1 and Ny =1L,
for each k bit symbol input to the inner encoder the output is that same symbol
repeated [ times. Second, we consider the inner encoder to be a binary linear block
code where we restrict the input block length, K, to be equal to the Reed-Solomon
code symbol size, ie., k bits.

The transmitter accepts the output of the inner encoder and produces an M-ary
frequency shift keyed spread spectrum frequency hopped signal. Both binary and
M-ary (M >2) signalling are considered. The frequency hopped signal is formed as
follows. First a conventional M-ary frequency shift keyed signal is generated either
at base band frequencies or at a suitable intermediate frequency (IF). Secondly, the
signal is heterodyned up to a carrier frequency which is one of a set of possible fre-
quency selected by a suitable algorithm. The carrier frequency is varied at a fixed
rate which may range from multiple frequency changes (hops) per symbol to one fre-
quency being used for multiple symbols. The later case, called slow frequency hop-

ping, will be used throughout this thesis.

We note that the use of L-diversity inner codes with one hop per symbol is
equivalent to merely hopping L times for each symbol output from the outer encoder.
The frequency selection algorithm is often derived from a simple operation on either a
linear maximum length recursive sequence or a ciphered bit stream. In either case,
the objective is to produce a pseudorandom hopping pattern, that is, a pattern which

appears to be random. We will assume that the hopping pattern may be modelled as



an independent, identically distributed random sequence of frequencies and that the
receiver successfully synchronizes to this sequence. With this assﬁmption, the results

of this thesis are independent of the frequency selection algorithm.

As stated above, with partial band jamming the jammer places his power in
only part of the spread spectrum frequency hopped bandwidth. We define p as the
fraction of the hopped bandwidth which is jammed, 0 < p < 1. Then with the
assumption of a random hopping pattern over the spread bandwidth, the received
signal is jammed with probability p and not jammed with probability 1-p. We will
concentrate on the effects of the jammer and for the analysis described in this thesis

we ignore the contribution of thermal noise.

It is assumed that the jammer has power S; which may be distributed at will
uniformly across any portion of the spread spectrum frequency hopping bandwidth,
Wsg. We let N, be the noise power spectral density at the receiver when the jammer
distributes power S, uniformly across the full hopped spectrum, N, = §;/ Ws;s.
When the jamming power is uniformly distributed over a fraction p of the hopped
bandwidth, the received noise spectral density is S;/pWss = N;/p for those
transmissions which hop into the jammed band. In this thesis we assume the jam-
mer is a Gaussian noise process with spectral density N,/ p over a bandwidth pWj;.
Furthermore, whenever the transmitted signal hops in the spectrum all possible M-
ary FSK signals lie either entirely within or external to the jammed portion of the
spread spectrum bandwidth.

To illustrate the nature of the calculations, consider an example using binary
signalling with no error corrective coding. The non-coherent receiver for a channel

with Gaussian noise spectral density /N, achieves a bit error rate P, of:
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e

where E, is the received energy per bit. To compute the receiver performance in the

partial band Gaussian noise channel where thermal noise is ignored, we first note

that:
P (bit error) = P|(bit error | not jammed) P (not jammed) (12)
+ P(bit error | jammed) P (jammed) -
Without background noise, P( bit error | not jammed ) =0 and since
P(jammed) = p we have,
b= Lt 13)

The jammer wishes to choose a strategy (i.e., p) which maximizes P,. It is well
known (14, Volume II, page 77| that the value of p which maximizes P, is given by
Pmax = 2N, /Ey if Ey/N; > 3dB and ppax = 1 otherwise. The corresponding values
of P, are given by:

-1

e
E > 3dB
7N y/ Ny 2
P, (max) = (1.4)
—;- e B Gtherwise

The effect of an optimum partial band jamming strategy is illustrated by a simple
numerical example. Suppose the communicators objective is to achieve a bit error
rate of P, = 10™. With uniform jamming over the entire frequency hopped spec-
trum (i.e, p=1) a received signal energy-to-jammer noise density ratio of
E,/N; = 12.31 dB is required. However, if the jammer maximizes the jamming
strategy an E, /N, of 35.66 dB is required to achieve the same performance. For the
above example py 4y is .00054. That is, the jammer needs only to cause errors on a

small percentage of the frequency hops to degrade the bit error rate to greater than
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goal the jammer must cause only two or more bit errors for 10000 bits transmitted

(even less on an average over many transmissions).

We note that although the general connotation of a jammer refers to a hostile
third party, the analysis presented herein is equally applicable to the “friendly’’ jam-
mer. The same channel model of interference in a fraction of the hopping bandwidth
results with multiple-access frequency hopping systems. When two or more users hop

to the same frequency that particular hop is in essence jammed.

The transmitted signal and jamming energy is first processed by the frequency
dehopper which has been assumed to be synchronized with the hopping pattern. In
addition, the dehopper commonly contains band-pass filters which reject any received
energy which is not at the current hop frequency. Hence, the input to the non-
coherent M-ary FSK symbol detector is an M-ary FSK signal which is noise {ree with
probability 1 - p and contains noise of spectral density NV;/p with probability p.
The symbol detector output is the result of processing the input signal through paral-
lel filters matched to the M possible outputs of the M-ary FSK generator. In Figure
A.1 of Appendix A we show a block diagram of a typical non-coherent M -ary FSK

symbol detector.

We define the coding channel as that portion of the system model which lies
between the output of the inner encoder and the input to the parallel decoder. The
inputs to the coding channel are the symbols of the inner decoder which are elements
of an M-ary alphabet (M > 2). For each input symbol of the output of the decod-
ing channel is vector of M independent random variables (E~0, o E ) as

described above. Assume symbol k£ € {0,1, ..., M-1}is transmitted. Conditioned
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on the event that the transmission is not jammed Ej =0if j 5 k and E, = 4E .
On the other hand, given that the transmission is jammed, standard calculations
(e.g., (6, Volume I, Section 4.7} or [11, Section 4.3.2)) yield the following probability

distributions on the matched filter outputs.

o he
P 4ESNJ . IC
BN, 77 ]
Pz (o) = e (1.5)
P . 4B N, . Ny I (p\/z-) j = k
4E51Vj 0 IVJ

where [ is the 0" _order modified Bessel function; the first distribution is exponential
and the second is non-central chi-square with two degrees of freedom. The coding
channel is memoryless and successive transmissions are received with distributions
given by (1.5).

The M outputs of the symbol detector are the inputs to the parallel decoding
system. This system consists of two or more concatenated decoders that is, an inner
decoder followed by an outer decoder operating in parallel. In Figures 2.1, 2.2, and
2.3 we show the three parallel decoder configurations which are considered in this
thesis. In all cases the outer decoder is an (N, ,K,) Reed-Solomon decoder. Reed-
Solomon codes are chosen because of their powerful error and erasure correction capa-
bility. We assume a bounded distance decoder for the Reed-Solomon code which

corrects ¢ errors and e erasures provided 2t + ¢ < Ng - Ko + L.

The uniqueness of the parallel decoding approaches analyzed herein lies pri-
marily in the design of the inner decoders. These inner decoders consist of one com-
plete decoder and one or more incomplete decoders. A complete decoder is one which

is restricted to making a hard decision estimate of the transmitted codeword. On the
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other hand, the incomplete decoder may indicate an inability to make a clear choice
which results in a output referred to as an erasure. The incompléte decoder outputs
are either the correct symbol, and erroneous symbol or an erasure. In the most gen-
eral case, the J-ary parallel decoder of Figure 2.3 contains J - 1 incomplete inner
decoders which have a successively more restrictive algorithms allowing for erasure
outputs. Finally, the J* inner decoder is a complete decoder which does not allow
for an erasure output.

The general decoding concept is as follows, the N, symbols corresponding to a
transmitted inner code codeword are assembled and input to each of the inner
decoders. Each inner decoder output is one symbol (possibly an erasure) of a Reed-
Solomon codeword. The N, symbols which comprise a Reed-Solomon codeword are
then assembled for each of the Reed-Solomon decoders. Each Reed-Solomon decoder
is implemented as a bounded distance decoder which is also an incomplete decoder.
Each of these decoders may output a correct symbol, an erroneous symbol, or indi-
cate a failure to make a clear choice. We require the parallel decoding system to out-
put hard decision estimates of the source information. Hence, we do not allow for
erasures. In the events that all Reed-Solomon decoders fail we choose to output the
information portion of the Reed-Solomon decoder codeword at the output of the com-
plete decoder (this codeword cannot contain erasures). We initially approached this
research with the assumption that a Reed-Solomon decoder with bounded distance
decoding will fail with probability one rather than output an erroneous symbol. We
have since evaluated the merit of this assumption. The analysis is described in

Chapter 2 and numerical results are given in Chapter 5.
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We consider six designs for the parallel inner decoding system. We analyze one
case where perfect side information of the jamming state is availabie and the inner
decoder erasure criterion is obvious. We consider two algorithms based on a thres-
holding technique introduced by Viterbi [18,19] which develops a binary qualitative
estimate of the signal environment by using a ratio test on the outputs of the non-
coherent M-ary FSK symbol detector. In the remaining cases, the inner decoder eras-

ure decisions are derived without reference to perfect or derived sider information.

The different decoding schemes will be evaluated on the basis of their abil?cy to
achieve a 107* bit error probability as a function of the received energy per informa-
tion bit-to-jammer noise ratio £/N versus the percentage of bandwidth jammed p.
In Chapter 2 we develop the general model for parallel decoding of concatenated
coded spread spectrum frequency-hopping communication systems. We derive gen-
eral formulas for the symbol and bit error rates for three parallel decoder
configurations: one, two, and multiple Reed-Solomon decoders. We initially rely on
the assumption that bounded distance decoding by the Reed-Solomon decoders will
with high probability yield decoder failures rather than error. Subsequently we
evaluate and substantiate the assumption. Finally, we evaluate the relationship of

bit errors as function of symbol errors.

In Chapter 3 we concentrate on the case when the inner encoder is an M-ary
repetition code. We start by evaluating the case when perfect side information is
available. The Viterbi ratio-thresholding technique is introduced with developmental
details left to Appendix A. We define two erasure algorithms based on quality esti-
mates provided by ratio test and derive necessary quantities to evaluate their perfor-

mance with parallel decoding. Finally, we describe techniques called ‘‘repetition
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thresholding” and “tie thresholding” and again derive the quantities necessary for
decoder evaluation.

Next, in Chapter 4, we consider the effects of using binary linear block codes for
the inner code. In this case the erasure criterion is a trade-off between the error-
detection and error-correction capabilities of the inner code. Among the codes
evaluated are a shortened Hamming codes and a BCH code. Where conditions allow,
we consider both binary and M -ary signalling schemes. In some case, by appropriate
partitioning of the inner code standard array we can meet the criterion established in
Chapter 2 for the M-ary parallel decoder. All quantities necessary to evaluate perfor-
mances of the different decoder configurations are derived.

In Chapter 5 we describe procedures used to normalize the results of decoder
performances to allow fair comparison of different configurations and algorithms.
Curves of typical best and worst case parallel decoder performances are presented
and compared. In addition, we compare our results with those for soft decisions and

perfect side information given in [12].



CHAPTER 2

PARALLEL DECODING TECHNIQUES

2.1 Introduction

In this chapter we introduce three models for parallel decoding of concatenated
coded spread spectrum frequency-hopped communications. The models are presented
in order of increasing complexity which corresponds to their evolvement in the
research. In general, each model has one or more incomplete decoders for processing
the inner code. In all cases the outer code is assumed to be a Reed-Solomon code.
The function of the incomplete inner decoder is to capitalize on the powerful error
and erasure correction capability and bounded distance decoding characteristics of
the Reed-Solomon decoder. We make no assumptions regarding the particular type
of code used for the inner coder nor the algorithms this decoder uses to generate out-
put symbols or erasures. We leave analysis for specific inner codes and erasure algo-
rithms to Chapters 3 and 4.

Figures 2.1, 2.2, and 2.3 illustrate the three parallel decoder models to be
analyzed. The 2-ary parallel decoder of Figure 2.2 will be bseen to be a special case of
the J-ary decoder shown in Figure 2.3. However, for the sake of clarity we will

present the analysis for the systems in order of increasing complexity.

14
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[n general, the inputs to the inner decoders are the same for each system. These
inputs are the result of processing the M-tuple of values E;, ¢ = 0,1,..., M -1
which are the outputs of M energy detectors matched to the orthogonal M-ary signal
set; system synchronization and successful dehopping are assumed. In the most gen-
eral case, the receiver produces a pair of outputs (y,q) for each M-ary detection.
The first element,

y€{0,1,...,M-1}
is a hard decision estimate of the transmitted symbol corresponding to
E . = max{E;}. The second element, ¢, is an optional quality bit which may be
used to convey side information. In Chapter 3 we will consider a case where ¢
represents perfect side information and another case where ¢ is a binary soft decision

metric which gives a quality measure of the symbol estimate.

The inputs to each inner decoder is a Vj-tuple of pairs

{(vj0;); 7=1,... , N}
Each incomplete decoder outputs either a codeword estimate or an erasure for each
N;-tuple input. On the other hand, the complete decoder makes a hard decision esti-
mate (no erasures) of the transmitted symbol. Assuming an (Ng,K,) Reed-Solomon

outer code, N, outputs of each inner decoder are input to the respective Reed-

Solomon decoders to praduce K information symbols.

The Reed-Solomon decoders used are bounded distance decoders (10, pages 92-
94]. A bounded distance decoder is normally an incomplete decoder which is designed
to indicate a decoding failure rather than attempt to exceed its error/erasure correc-
tion capability. That is, for each codeword a decoding sphere is defined, the boun-

dary of which is dictated by the codes error/erasure correction capability. In general,
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the union of all decoding spheres does not cover all possible input Vg-tuples. In con-
trast, for maximum-likelihood decoding the decoding spheres are'creéted by decoding
each possible received Ng-tuple to the codeword which is most probable given that
Ng-tuple was received.

Hence, with bounded distance decoding, when a received Ny-tuple does not lie
within a defined coding sphere a decoder failure occurs. When one of the Reed-
Solomon decoders fail, the parallel decoder output defers to the next Reed-Solomon
decoder output. A primary concern in evaluating the parallel decoder performance is
the probability that a Reed-Solomon decoder will produce an erroneous output rather
than fail.

The parallel decoder capitalizes on the fact that Reed-Solomon codes are max-
imum distance separable (MDS for short) codes {7, page 317]. That is, the minimum
distance for the code

dpign = No- Ky + 1 (2.1)
is the maximum possible for the given code dimensions. For MDS codes with
bounded distance decoding, the probability of incorrect decoding becomes very small
especially for larger values of Ny - K. Initially, we will assume that the probability
of incorrect decoding is zero and later we will revisit this assumption to evaluate its
merit.

In Sections 2.2, 2.3, and 2.4 we derive the general performance parameters neces-
sary to determine the output symbol error rate for the parallel decoders shown
respectively in Figures 2.1, 2.2, and 2.3. In Section 2.5 we derive the bit error rates
from each of these decoders as a function of the symbol error rates. Finally, in Sec-

tion 2.6, we consider the assumption that the Reed-Solomon decoders with bounded
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distance decoding will fail rather than incorrectly decode.
2.2 Single Reed-Solomon Decoder

The parallel decoder shown in Figure 2.1 was the first configuration considered.
[n this section we will derive equations for the symbol error probability of the parallel

decoder as a function of the symbol erasure and error rates out of the inner decoders.

With reference to Figure 2.1, we have defined y, as the output of the incom-
plete decoder and y, as the output of the complete decoder. We now define the fol-
lowing six events which partition the joint space of output events for the inner
decoders.

E, = The event that y, is an error and y, is an error.

Ey= The event that y, is an erasure and ¥ is an error.
E; = The event that y, is correct and ¥ is an error.
E,=  The event that y, is an error and ¥ is correct.

Es = The event that y, is an erasure and Y, is correct.
Eg = The event that y, is correct and ¥, is correct.

Also define the following events and quantities:

E,, = The event that corresponding to reception of the first symbol of a

outer code codeword, the pair (y,y.) have the states specified by

event £,,n =1,2,...,6.
S, = The number of symbols in the last V4 - 1 symbols in the outer code

codeword which satisfy £,, n = 1,2, ...,6.
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Fs =  The event that the first symbol out of the parallel decoding system is
in error.

Fy = The event that the first bit out of the parallel decoding system is in
error.

P = Pr{ A symbol output pair (y,y.) satisfies event £E,}
n =1,2, , 6

A compact form for recalling the six events £, ..., Ey is given in Table L.1.
These events, the related probabilities p,, ..., ps, and the related quantities
Sy, .. .,Sg will be referred to throughout the remainder of the thesis. We also note
that due to the memoryless characteristics of the coding channel defined in Chapter

1, P(E,)) = P(E,)n =1, ...,8.

Incomplete Inner Decoder Output

Error Erasure Correct
Error El Ez Ea
Complete Inner
Decoder Output  Correct E, E; Eq

Table 2.1. Joint Output Events of the Inner Decoders

We have assumed slow frequency hopping with one symbol per hop. The proba-
bility that a transmission is jammed is p for each symbol independently from
symbol-to-symbol. Hence, the inputs (ﬁj,qj) to the inner decoders are independent

and it follows that the symbol statistics out of the inner decoder are independent

from symbol-to-symbol.
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The first output symbol of the parallel decoding system is in error only if the
Reed-Solomon decoder fails and the first output symbol of the complete decoder is in

error. We can write:

Py = P(Fs)= 3. P(Fs|Es)P(E,y) (2.

nx=l

| 83
(3%
—

The outer code is an (Vg,K,) Reed-Solomon code with minimum distance given by
(2.1). With our assumption on bounded distance decoding, the Reed-Solomon
decoder will fail only when the number of erasures and twice the number of errors

exceed Vg - K, within a received codeword. Thus, given E|, the decoder will fail

whenever:
201+ S, +8,)+(Sg+85) > Ng-K, (2.3)
Similarly, given £, and E,, the conditions for Reed-Solomon decoder failure are

respectively:

2(S, + 5,) +(L+ S+ 85) > No- K, (2.4)

20S) + Sy +(S2+ 55) > No - K (2.5)
The expressions for the conditional probabilities P(Fs|E,;) are similar and

take on the general form:
Nyl Ng=l=i  Ny-l-i=j Ng-l-i-j-k
P(FS IEnl) = E Z Z 2 P:’,j,k,l (2‘6)
i=0

j=0 k=0 i=l(n)
for n = 1,2,3 and where:
[{n) = max ,E),r(NO—KO—i—-j-k—;—n —2)/2]]

P ixi = P(S,=l, Sy=k, S,=j, §s=t)

Ng-l-i-j-k-l

I

ZVO—l ) .
. pi 2% pi ps (Pa+ps)
t,7,k,1
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We have evaluated this parallel decoder configuration for two inner decoder
algorithms. In both cases the algorithms were based on use of Mn-ar)vf repetition inner
codes with derived side information via an energy threshold test. The results were
published in [2| and will be presented in detail in Chapters 3 and 5 of this thesis.
Our investigation continued by adding a second Reed-Solomon decoder at the output

of the complete decoder. The analysis for this parallel decoder configuration is given

in the next section.
2.3 Two Reed-Solomon Decoders

In Figure 2.2 we show the second parallel decoder configuration to be analyzed.
With an additional Reed-Solomon decoder on the output of the complete decoder, we
must now have failure of two levels of outer decoders before the output defaults to

the complete inner decoder.

The events and quantities defined in Section 2.2 as well as (2.2) are applicable

for analysis of the parallel decoder with two Reed-Solomon outer decoders. However,
the analysis must be modified to account for the conditions under which both outer

decoders fail. Given E;, both outer decoders will fail when

©
“
L

2(1+51+S4)+(S2+55)>1V0—K0 (

A
1o
=3
o

=

2(1 +51+Sg""53) > ZVO—KO

Similarly, given £, and Ey; the conditions for joint failure of the outer decoders are
respectively:

2(51'7'54)““(1‘5'52‘*‘55) >1V0—K0 (283)

21 + S, + S, + §3) > Nog- Ky (2.8b)

2S, = §,) + (52— Ss5) > No- Ky (2.9a)
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oL+ S, + Sy + Sg) > Ny - K (2.9b)

E,,) are simi-

As before, the expressions for the conditional probabilities P(F

lar. In this case they take on the form:

Piikim (2.10)

1M
it
SM:

a

ISR

3

P(Fs|E)= ¥ %
i=0 ;=0
for n = 1,2,3 and where:
I = Ng-1-[(Ng-Ky)/2]
J=Nyg-1-7
K=Ny-1-1-j
L-—-min{NO-l—i—j-k‘,No—l—[_(No-Ko)/2_|+j+k]
M=Ny-1-j-k-I
k, = max [o, [(13(Ny - o)/ 2) - 2i =25 - Ny~ 1 +n>/3-l]
I, = max [o,No-KO-zi-J'-2k+n_2]
my = max [0, [(No - Ko)/ 2] 7 - &]

Pi,j,k,l,m == P(Slzk,52=j,53=m,54=i,55=1)

No-1 k iomoi 1 Nylei=j-k-li-m
= \ijkim ) P1PIPTP:PsPs

Since the limits on the summations are relatively complex, we will illustrate
their derivation for the case n = 2. In this case, (2.8a) and (2.8b) are applicable;
equivalent conditions are given by:

2S5, +S)+(Sy+55) 2 N-K (2.11a)
Sl+52+53 2 L(lVO-KO)/L)J (211b)

Combining these two equations we arrive at,
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5'3+552LB(.“JO-—KO)/‘.BJ—351-25»_,—‘254 (2.12)
Note that if iV = 32, Kg =8, 5, = S = §3 =0 then '
53 i 55 Z 36
which is impossible. We account for such events by noting that the right side of

(2.12) is upper bounded by Ng - 1. Thus,

512% LMJ_QS._,_Q.S\-NO—I (2.13)

2
With §,,5, and S, as parameters 2.11a yields
Sg > Ny-Ky-25,-55-254 (2.14)
Similarly, 2.11b yields
Sy > [(Ng-Ko)/2]-S1- 52 (2.15)
Now, to allow (2.11b) to be valid we must have
Sy+ 85 < No-1-[(No-Ko)/2] (2.16)
Equations (2.12) through (2.16) result in the limits established for (2.10) when
n = 2.

The two Reed-Solomon decoder parallel decoder configuration has been
evaluated for both algorithms used in the single decoder configuration. In addition,
three other algorithms using repetition codes are evaluated in Chapter 3; linear block
code algorithms are analyzed in Chapter 4; results and comparisons are presented in
Chapter 5. A subset of these analyses and results were published in 3].

2.4 Multiple Reed-Solomon Decoders

The final configuration for parallel decoding to be considered is the extension to

arbitrary multiple decoders as shown in Figure 2.3. This configuration was
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motivated by the observation that the erasure criterion for a number of the inner
decoders evaluated could be strengthened or weakened by varying a Ehreshold param-
eter or standard array partition. Our objective was to obtain an optimal envelope
performance curve. In this section we will present the analysis of the multiple paral-
lel decoder leading to expressions for output symbol error rate. Specific inner decod-
ing schemes and their performance with multiple parallel decoders will be discussed in
Chapters 3.

In general, for the J-ary parallel decoder shown in Figure 2.3 the vector of
inputs to the Reed-Solomon decoders (y,ys, - - -,y ;) may have 2(37"!) combina-
tions of errors and erasures. To constrain the magnitude of the analysis we have
adopted a set of hierarchical rules for the inner decoders. These rules are not seen as
a serious impediment. Almost all of the inner coding schemes we analyzed, particu-
larly the linear block codes, conformed naturally to the hierarchy. The rules are as
follows:

Let @€ {1,2,...,J} and assume symbol m is transmitted. Also let ¢ denote

a symbol error, ? denote an erasure, and ¢ denote a correct symbol. Then,

(1) ify,=7?theny; =2forj < a
(2) ify,=n*mtheny, € {n,?}forj <a

(3) if y, = m then y~j=m for j > a
and y; € {m,?} forj < a

At the beginning of Section 2.2 we defined a set of 6 events which partitioned
the joint space of output events for the two inner decoders. For the J-ary parallel
decoder with the defined hierarchy we will require 2J events £, . .., £, to obtain

a similar partition. The event £; i € {1, ...,2J} corresponds to the case when the
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vector of inputs to the Reed-Solomon decoders has the following state:

e J 21 i=1,...,J
;j =< ? otherwise
c j 221+l i =J+1,...,2J

The events and quantities £,,, S,, Fs, F,, and p, defined in Section 2.2 are still
applicable except that the index n now ranges from 1 to 2J. Equation (2.2) becomes:

2/
= P(Fs) = % P(Es|E,JP(En) (2.17)

n=1

P

Following previous lines of reasoning, the first symbol out of the J-ary parallel
decoder will be in error only if all / Reed-Solomon decoders fail and the first symbol
out of the complete decoder is in error. Given that the first symbol of an outer code
codeword satisfies event £, (i.e., given event E,;), there is a set of J equations
{Cy,...,C;} which describe the conditions necessary for all Reed-Solomon decoders
to fail. Each equation will take on one of two forms denoted i)y ¢;; and ¢;, as shown
in (2.18a) and (2.18b).

b 2

lei 2(1+ 2 Sk)'f‘ Z Sk > N-K (218&)
k=1 k==j+1
J 2J-5
Cj-zl 2 Z Sk + Z Sk -1> L‘V - K (218b)
k=1 k=j+1

Now, given event E

where: fj > nthen k =1
if 7 < n then k =2

Using these equations we can give a general expression for the conditional error pro-

bability P(Fg | £,,) as a function of the parameter n.
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U;_ U: UZJ—l
P(Fs|E,) = Y by > P{S,Sa - -, Sas} (2.19)
Sy=Ly =i, Spra=Las,y ’
where:
/-1
Ny -1 2-1 4 No-1- 5 S
P{S,,Sy ..., S} =\ g S IT ri* ) P2y 7
1r - 0¥2a/-l fe=1
i-1
Ul‘zlvo—‘].—zsk lzl, ,Qj—l
k=1
0 1< J
Vo-K, -}
max{O,l 2 0-25,‘] i=J
2 —
Ly = n 2/-n-1
maX[O,IVO"K‘O'-l’2 Z S], - E Sk] J<l§2.f~n
k=1 k=n+1
n 2J-n-1
max{O,No-KO—Q Z S]e - E Sk] T >2.[—-71
k=1 k=n+l

We note that the J-ary parallel decoder for J = 2 is not equivalent to the two
Reed-Solomon decoder configuration given in Section 2.3. This is due to the fact that
events £, (Incomplete inner decoder = errors, complete inner decoder = correct) and
E, (Incomplete inner decoder = correct, complete inner decoder = error) of Sec-
tion 2.3 do not conform to the hierarchical rules established above. For most of the
inner codes evaluated in Chapter 3 and 4, events £; and £, occur with zero probabil-

ity and the J=2 reduction is equivalent.

Having evaluated the symbol error rates for the three parallel decoder

configurations, we now turn our attention to the relationship of bit error rates to
symbol error rates.
2.5 Bit Error Rate Analysis

When the inner encoder is an L-diversity repetition code on the alphabet of the

Reed-Solomon decoders, the relationship of the bit error rate to the symbol error rate
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is given by:

M 99
P(Fy) = 20MT) P(Fs) (2.20)

The proof of this relationship is dependent upon the decoding algorithm. In this sec-

tion we will sketch the general proof and derive a sufficient condition for 2.20 to hold

true.

We will give the derivation for the parallel decoder conﬁguratibn of Figure 2.2
and then indicate the slight modifications necessary for the configuration of Figure
2.1. Without loss of generality we assume symbol 0 was transmitted and define the

following events:

A, = event the first output symbol of the parallel decoder equals symbol 1,

{540

D, = event the Reed-Solomon decoder in the incomplete decoder cha.nnel
fails

D, = event the Reed-Solomon decoder in the complete decoder channel fails

Yij = event v1=17:7=0,...,M (M corresponding to erasure)

Yy = eventf/'z:j;j:l,...,z\/l-i

The first output symbol is ¢, : 3 0 iff both decoders fail and ¥, = 1. Thus,
P4)=PD, N DN Ya)
0

M
= 2-: P(Dy D2 Yy N Yei)P(Yy; N Vi)

Consider first the terms P(D; N D,| Yy; N Yy ). If Yyg occurs (i.e., j=0) then

D, N D, occurs only if the next IV - 1 receptions yield:
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2(# of errors) + (# of erasures) > N - K

in incomplete decoder channel

2(# of errors) + (# of erasures) > N - K - 2

in complete decoder channel
Since the channel is symmetric and memoryless in all cases, this joint event is

independent of the choice of i. A similar argument holds true for all other values of
I

Assume for a moment that we can also show that P(Y,; NYy)is also
independent of the choice of i 7 0 for all values of j. Then it would follow that

P(A;) is independent of choice of :. That is:

P(A;) = P(Fs)/ (M-1)

then,
M-1
P(F,) =3 P(Fy|4)P(4;)
. i=1
) M-1
= [P(Fs)/ (M-1)] & P(Fy|4i)
i=1
but
0 if first bit of symbol i is “0”
P(Fy | Ai) =Y 1 if first bit of symbol i is “1”
Therefore,
M
P, = P(F,) = ———P
b (Fy) 3(M-1) s

If we consider the single Reed-Solomon decoder parallel decoder of Figure 2.1,
the same result follows by eliminating event D, and the second of the two conditions
for decoder failure. Showing P(Y); N Yy) is independent of i # 0 for all choices of
j will be left to Chapter 3 as each decoding algorithm is analyzed. Except for rare

cases of perfect codes, the relationship of {2.20) will not be met for arbitrary linear
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block codes. The relationship of bit and symbol error rates for this latter case will be

derived in Chapter 4.
2.8 Decoder Error Analysis

Throughout the developments of the previous sections we have assumed that
there is zero probability that the Reed-Solomon decoders will output an incorrect
symbol rather than fail. In this section we derive a bound of the probability that the
Reed-Solomon decoders incorrectly decode rather than default. In Chapter 5 we
present numerical results for each parallel decoder configuration and evaluate the
merit of our earlier assumptions. We will concentrate on the two Reed-Solomon
decoder configuration and discuss how the results may be extended to arbitrary mul-
tiple decoders.

In Figure 2.4 we show the nine joint events which may result at the outputs of
the Reed-Solomon decoders of Figure 2.2. This analysis assumed that the significant
majority (all!) of the probability is concentrated in the four joint events labeled Y.
We would like to demonstrate that the total probability of the remaining events is
very small. Letting DE be the event that the resultant output of the Reed-Solomon
decoders is an erroneous symbol (recall, we default to the complete decoder output if

both decoders fail). Then an upper bound for P(DE) is given by
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Incomplete Inner Decoder/

R-S Decoder
Cérrect Error Fail
Correct Y N Y
Complete Inner :
Decoder/R-S Error N N N
Decoder
Fail Y N Y

Figure 2.4 Joint Events at R-S Decoder Outputs

P(DE) < P(DE,) + P(DE,) (2.22)
where
DE, = event the R-S decoder in the incomplete decoder channel errs.
DE, = event the R-S decoder in the complete decoder channel errs

[Note: for the single R -5 decoder configuration we have P(DE) = P(DE )]

P(DE,) is a function of the probabilities of correct and error events at the
Reed-Solomon decoder input. This probability has been derived in [10, Section 7.3]
and will be described herein since the procedure must be extended to account for
erasure events which contribute to P(DE)).

Since the Reed-Solomon codes are linear and since the effective channel at the
input to the decoder is M-ary symmetric, we may assume, without loss of generality,
that the all zero codeword was transmitted. Event DE, will occur only if the error

pattern which occurs lies within a radius d ., sphere of a nonzero codeword. Hence,

we can write



where P(DE,,h) is the probability the decoder errs to a weight A codeword.
If welet A;,1 =0, 1,...,Ngbe the weight distribution of the Reed-Solomon

code we can write

¢ mun{k+e,N) p k ook
poEat) =4 5 N (5 ) e
=0 k=h-1 M-1
where
Np (k) = the number of weight k error patterns at distance s from a code-
word of weight A.
P = probability of a symbol error at the input to the Reed-Solomon
decoder.
9 = 1"‘?,
dmin -1 . e

t = |———— ], the error correcting capability of the Reed-Solomon code.

To determine V,,(h) it is best to view the transmitted and received (No-tuples and
the target codeword as five fields of symbol vectors as illustrated in Figure 2.5. (For

example, ¢, and ¢, are equal, nonzero vectors of m Reed-Solomon code symbols.)

transmitted Vytuple 0 0 0 0 0
received Ny-tuple 1 e, %0 €450 0 €350 0
target codeword © o ey=e, a7 ey c35%0 0 0
field size (symbols) : m ] v r No-m-j-v-r

(note: notation applies to each symbol of the vector, e.g., ¢, F#0 = ey; 70
i=12,...,m)

Figure 2.5 Fields of Symbol Vectors, ;N Erasures
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Using combinatorial analysis and careful manipulation of terms, the following

expression for [V, ,(h) results {10, (7.16)[:

k-h +1
Ly
_ h No-h k-h+s-2r r(2.25
Nio(h) = b)) ( h—-s—+r, h—k+r) ( r ) (M=-2)*" (M-1) ( )
r=max{0,k-h}

Finally, the weight distributions of Reed-Solomon codes are well known. For exam-
ple, (10, (6.5)] gives:

h

d I

A, = ( ‘\,f" ) (M-1)

P h-1 »

5y (A7) (i

=0

Equations (2.23) through (2.26) may be combined to evaluate P(DE,).
The derivation of P(DE,) is similar. However, we must now account for eras-

ures which may also occur at the input to the Reed-Solomon decoder. We begin by

noting that each erasure reduces by one the radius of the decoding sphere around

each codeword. Hence the error correction capability of the Reed-Solomon code when

z erasures occur is ¢ - [—;] Thus, we can modify (2.23) and (2.24) to account for

erasures as follows:

where
Ni,(h,z) = the number of weight k error patterns at distance s
from a codeword of weight A when z erasures occur.
P, = probability of a symbol erasure at the input to the Reed-

Solomon decoder.
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g = l-p. -7
The relationship between transmitted and received Ng-tuples and the target

weight A codeword must now be viewed as seven fields of symbol vectors as shown in

Figure 2.6.
transmitted Nytuple 0 0 0 0 0 0 0
received Ny-tuple i e, 70 €550 ? 0 3540 ? 0
target codeword . cy==e, c.%ey 3 0 0 0
field size (symbols) : m J T v r z-z

(note: notation applies to each symbol of the vector, e.g., ? —=>> 1 erased symbols)

Figure 2.8 Fields of Symbol Vectors, z Erasures

For specific values of m,j,z,v, and r the number of different error vectors

which result in the relationships shown in Figure 2.6 is

Ni o (hyz,m gz, v,r) = ( § ) ( Noh ) (M-2)/ (M-1)’ (2.29)

m,j,z r,2-I
where the terms (M-2)’ and (M-1)" result from the fact that each symbol of vectors

e, and e; respectively may be chosen in (M-2) and (M-1) ways. The following rela-

tionships exist between the parameters of (2.29) and Figure 2.6.

k=m+j—+r (2.30a)
h=m+j+v+z (2.30b)
s =] *+v (2.30c)

Solving these equations in terms of h,k,s,r, and z we arrive at
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m=nh-~-r-s +r (2.31a)
j=k-h -z +s-2r ' (2.31b)
Thus, we can rewrite (2.29) as follows
h 1V0—h - 1-2r r
Nealhoz,r,z) = ( h—z—s+r,h—z—k+r,r) ( r ) (M'2)k BrET (M) (2.32)

The range of permissible r values depends on A,k and z. If A~z (codeword
weight minus the erased nonzero codeword positions) is greater than or equal to &
(ertor vector weight), then all nonzero error vector positions may align with nonzero
codeword positions and r > 0 is allowable. Otherwise, at least k - (h-z) non zero

error vector positions must align with zero codeword positions. Hence,

r > max{0,k-h+z} = r; (2.33)

Since j > 0, using (2.30c) we see that r is upper bounded by

r < Lk‘h;—z +5_|—_-_-r2 (2.34)

b
Using the convention that Y, = 0if a < b we conclude,

a

z 2
Nk.s(hiz) = 3 X Nk,,(h,z,r,z) (2.35)

=0 r=r;

2

Hence, P(DE,) may be evaluated using (2.26), (2.27), (2.28), (2.32), (2.33), (2.34)
and (2.35). In Chapter 5 we present numerical results for P(DE), P(DE,), and

P(DE,) for each of the parallel inner decoders described in Chapters 3 and 4 which

follow.



CHAPTER 3

PARALLEL DECODING / DIVERSITY INNER CODES

3.1 Introduction

In this chapter we evaluate the performance of the parallel decoding schemes
described in Chapter 2 when the inner encoder is an L -diversity repetition code on
the same alphabet as the Reed-Solomon code. This is the first of two general classes
of inner codes to be used for evaluating the performance of the parallel decoding sys-
tems. In Chapter 4 we will consider using binary linear block codes for the inner
encoder.

In general, the different decoding schemes are distinguishable by the algorithm
used to declare erasures in the incomplete inner decoders. The first two inner decoder
erasure algorithms to be analyzed, Sections 3.2 and 3.3, use a derived side informa-
tion measure of the symbol estimate (a quality bit) which is obtained from a ratio
threshold test as described by Viterbi [18,19]. For each of these algorithms we derive
the quantities specified in Chapter 2 which are necessary to evaluate the decoder
symbol error rates. The aknalyses is completed for the decode;' configurations of Fig-
ures 2.1 and 2.2.

Subsequently, we concentrate our attention on the two Reed-Solomon decoder

configuration of Figure 2.2 since this decoder will in general provide better perfor-

36
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mance with only a marginal increase in complexity. To provide a baseline for com-
paring numerical results, we also derive the performance with a hard decision channel
which has perfect side information, Section 3.4. Finally, we introduce two techniques
which declare erasures based on a histogram of the L received symbols, Sections 3.5
and 3.6.

In general, the input to each of the two inner decoders is an L-tuple of pairs

{(y;,9,); 7=1,...,L}

The incomplete decoder output, ¥ 1, is either a symbol estimate or an erasure for each
L-tuple input. On the other hand, the complete decoder makes a hard decision esti-
mate (no erasures), o, of the symbol transmitted. The hard decision estimate will
be 2 maximum likelihood estimate on either the L-tuple input or a subset thereof.
Our objective is to derive expressions for the quantities necessary to evaluate (2.2)
and (2.6) or (2.2) and (2.10).

The first two algorithms to be analyzed base the erasure criterion on the results
of a ratio threshold test defined by Viterbi [18,19]. Reference Figures 1.1 and A.l
(Appendix A). The symbol detector outputs EwE,, .. ., E . are the results of
processing the received signal through M filters matched to the possible outputs of
the M-ary FSK generator. The receiver decides symbol k was transmitted if

E, = 0<m<a)& {E~'J} The Viterbi ratio threshold test assigns a quality bit, ¢, to
<jSM-1 .

the decision as follows:

0 F,> max {051}

T 0<j<U-1

1 otherwise

where § > 1 is a real variable.
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The ratio threshold test is used to assign a quality bit {¢; , 7 =1, ... ,L} to
each of the L symbol estimates. Joint statistics for symbol-qﬁality bit pairs are
derived in Appendix A. The analyses which follow in Sections 3.2 and 3.3 are both

dependent on the value of § chosen for the ratio threshold test.

3.2 Viterbi Thresholding, Algorithm A

The first algorithm based on ratio threshold testing will be referred to as algo-
rithm A. The A incomplete decoder will output an erasure if either or both of the
following two conditions occur:

[: No symbol of the set {y; ; j =1,...,L} occurs more than | L/ 2]}

times (L assumed odd)

II: The sum of the corresponding L quality bits satisfies:

L
¢ >0 (3.1)

i=1
where 6, € {[L/2],...,L} is a threshold.
Otherwise, the A incomplete decoder output is that symbol which occurred the
majority of the time. The A complete decoder ignores the quality bits and makes a

maximum likelihood decision based on the L symbol estimates {y] L, J=1,...,L}

Algorithm A / One Reed-Solomon Decoder

Initially we will consider the single Reed-Solomon decoder in the parallel decoder
configuration of Section 2.2 and Figure 2.1. Before evaluating the symbol error pro-
bability for this configuration we can simplify the general analysis given in Section
2.2. Since the incomplete decoder for algorithm A will be correct only in the event
[L/ 2] or more correct symbols are received with quality bit ¢ = 0, the complete

decoder will be correct whenever the incomplete decoder is correct. Thus, event E,
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(incomplete inner decoder == error, complete inner decoder = correct) cannot occur
with algorithm 4. By the same reasoning, the incomplete decoder will be in error
only in the event at least [ L/ 2] identical erroneous symbols are received each with

quality bit ¢ = 0. The complete decoder will err whenever the incomplete decoder

errs, thus, event E, (incomplete inner decoder = correct, complete inner decoder =
error) can not occur. Consequently,

E, = Event that the incomplete decoder errors.
Eq = Event that the incomplete decoder is correct.

Using these facts, we can rewrite (2.2) and (2.6) as:

P(Fs) = P(Fs|Ey)P(Fyy) + P(Es | Eyy)P(Ey) (3.2)
where
Ny-1 No-1-v . . N ~l-i-j
P(Fs|E,) = % ) pi(l-p\-ps)" Ps’ (3.3)
i=0 j=max{0,|{Vg-Ky-i+n-2)/ 2}
forn = 1,2.

Thus, we only need to evaluate the probabilities p, = P(E;), p: = P(Ey)
and pg to complete the analyses for algorithm A. To evaluate these terms we need
to consider the discrete channel which produces the inputs to the inner decoders.
Without loss of generality, we will assume symbol 0 has been transmitted. In Figure
3.1 we illustrate the discrete channel where the outputs are reduced to the four

events of interest. The transition probabilities are labelled consistent with the nota-

tion of Appendix A.
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FC(G)

OI q=0

o, q"l
(M~1)F_ (8)

(M'l)AFE(e) not 0, gq=0

not ¢, q:l

Figure 3.1 Discrete Channel of Input to Inner Decoders

The incomplete inner decoder processes received symbols/quality bits in blocks
of L pairs. If we let { be the number of correct symbols received with ¢ = 0,  be
the number of incorrect symbols received with ¢ = 0, and k be the number of

correct symbol received with ¢ = 1, then the probability the incomplete decoder pro-

duces a correct symbol output is given by

pe=P{i +k>[L/2]+1, i +j>L -6}
(3.4)

L-I L-"—j L 1 . .
DR (,- 'k)Féi(M-1>FavAF:z(M—l)AFE}L-‘-J-k
i=0 j=T1 k=T2 11

where:
T1=max [0, L -4, - i
T2 =max [0, | L/2}+1-1]
and where the dependency of ps, F., Fz, AF,, and AFg on § is suppressed.
Similarly, the probability that the incomplete decoder produces an erroneous

symbol output is given by:
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(3.5)

L Le-i L-i~j L o ‘ ' o
po=M-1)Y ¥ ¥ ( ik ) FLIF, ~(M-2)Fg | AFEAF, +(M~2)AFgF7 ™
1=0 j=T1 k=T2 v

where T'1 and T2 are the same as in (3.4).

The remaining term to be evaluated is p,. This term is the probability of the
joint event (£,) that the complete decoder errs and the incomplete decoder erases for
a received L-tuple. Let £, be the event that no symbol of (91 i 1 =1,...,L)

occurs more than | L/ 2| times. We can write:

Py = P(Eq) = P(E; M E4) + P(E2 N EJ) (3.6)
When no symbol occurs more than | L/ 2] times the incomplete decoder will output
an erasure independent of the quality bits. Hence, the first term of 3.6 is equivalently
the probability that the complete decoder errors and no received symbol occurs more
than | L/ 2] time. This probability can be expressed using the enumeration procedure

described in Appendix B and is given by:

LL/ 2] L n, L-n, C
PE:NE)= £ Term) y) [F0]"[Fz] (3.7
n, =0 Y
where
n, = the number of correct symbol received
Y= (mum,, ...,m,)

= a generic configuration of the L -n, incorrect
symbols such that :
m2my 22 my >0
my+mg+--+m,=L-n,
my 2 n,

(example: L == 5, M == 4, the symbol set = {a,b,c,d}, if a is sent and n, = 2, the

configuration (2,1) accounts for the received L-tuples aabbc, aabbd, aaccd. aabec,
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2abdd and aacdd, the configuration (1,1,1) accounts for the received L-tuple aabcd)

letting:
n, == the number of terms in the largest grouping of equal terms in ¥
ny = the number of terms in the next largest grouping of equal terms in Y
n; = number of terms in the smallest grouping of equal terms in ¥
note: R+ Na+" """+ nNg=a

(example: (3,2) hasn, = 1, ny = 1, 8 = 2; (1,1,1) has n; = 3, § = 1) Finally, if we

define NV, as the number of terms in Y equal to n, and let

1 if N, =0
f(N,) =

N,/ (N, +1) if ¥, 50

then,

(M—l)(tM—?) c (1\4—&) (3.8)

n1!n2! A nﬂ’

Gl( Yi"’c) = r(N-e)
the term (%,) in (3.7) is a shorthand notation for the multinomial coefficient

( mym, L ‘m, ) In Appendix B we give example evaluations of (3.7) and (3.8) for

= 3,5, and 7.

The second term of (3.6) is the probability of the event that the incomplete
decoder erases, the compléte decoder errs, and one symbol occurs more than | L/ 2]
times. We further partition this probability by the M events that symbol ;,
7 =0,...,M-1 occurs more than | L/ 2] times. If the correct symbol is received
more than | L/ 2] times than the complete decoder does not error. Due to the channel

symmetry, the remaining M - 1 events produce equivalent probabilities and erasure
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depends solely on the sum of the quality bits exceeding the threshold #,. Hence,

L L-i L-i-j L , : k
P(E,E)= M-y, & ¥ ( ik > FiaF] [AFC +(M—2)AFE}
=0 j=T3 k=T+4 i (3 9)

L-i-j-k

[F’c HM-2)F; ]

where:
Ty =max{0,[L/2]+1-¢
T, = maxi{0,8, - j]

Wich thresholds 8 and 4, we can now evaluate the symbol error rate for the sin-
gle Reed-Solomon decoder parallel decoding system. To show that the bit error rate
is given by (2.20), we must show that P(Y;; N Y,,) is independent of the choice of
i€{1,2, ...,M -1} for all choices of j € {0,1,...,M} as developed in Section
2.5. Recall Y, is the event y, =j; j =0,...,M~-1, M (M corresponding to
erasure) and Y,; is the event ve=7;5=1,...,M-1. M

When the incomplete decoder is correct the complete decoder will also be correct
as argued earlier in this section. Hence, for j = 0 we have P(Y,; N Y,) = 0 for
any choice of 1. Similarly, if the incomplete decoder errs with output symbol ¢ # 0,
that symbol must have occurred [ L/ 2] or more times and the complete decode will

also output symbol 1. Thus,

01 ]
P(Y; N Yzi)={1 zij

for any 7 € (1,2, ..., M~1) and for any choice of ¢ 3 0.

For ;7 = M (corresponding to an erasure), we first note that:

PlYiyy N Yu)=P(YwuNYuNE)+=P(Yiu N YN £ (3.10)
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where £, is defined for Equation 3.6 above. If no symbol occurs more than | L/ 2}

time then

P(the complete decoder outputs symbol ¢ 7 0)

= P(symbol i occurs most frequently)

+ 1L P(symbols i and j tie for most frequent occurrence)

(3.11)

+ = P(symbols i,7 and k tie for most frequent occurrence)

“lb—‘ ]

+ -
Each of these terms can be written as a multinomial expression on events that occur
with equal probabilities. Clearly the terms are independent of the choice of :.

Finally, if one symbol occurs more than [ L/ 2] times the complete decoder will
output that symbol. The probability a particular symbol occurs more than L L/ 2]
times and is erased by the incomplete decoder is given by 1/(M-1) times the right
hand side of (3.9). This result is independent of the choice of ¢ 3% 0 and the broof is
complete.

These results complete the analysis necessary to evaluate symbol and bit error
rates for the decoder of Figure 2.1 using Viterbi thresholding and algorithm A. We

now consider the two Reed-Solomon decoder configuration of Figure 2.2 and Section
2.3.
Algorithm A / Two Reed-Solomon Decoders

To evaluate (2.2) and (2.10) we first note that events E; and E will not occur
by the same rationale used earlier in this section. Hence, we again need to evaluate

(3.2). For two Reed-Solomon decoder, (2.10) reduces to
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Nytei Ng-leimj o Nylicik
P(Fs|Ea)= ¥ ¥ ¥ plrreses’ (3.12)

=0 J=3 k=1,
where:

n =12
51 = max(0,| (No-Ko)/ 2]]
39 == maX{O,IVO—KNO‘K_{_gj+,,_g}

The probabilities p,, p,, and pg are given respectively by (3.3), (3.6), and (3.4).
The remaining probability, p;, is obtained simply by

Ps=1-p -p2-Ps (3.13)

The relationship of bit and symbol error rates is again given by (2.20). The proof
given earlier in this section for the single Reed-Solomon decoder system is applicable

to the two Reed-Solomon decoder configuration. In both systems the inner decoders

are the same; what changes is the manner by which their outputs are processed.

3.3 Viterbi Thresholding, Algorithm B

The second algorithm, B, based on the Viterbi thresholding procedure uses a
two step incomplete decoder. First, each symbol having a bad quality bit, ¢ =1, is

replaced by an erasure. Secondly, the decoder operates on the expanded alphabet
{0,1, . .., M~1, erasure } the output is:
1. Any symbol, including erasure, which occurs more than | L/ 2] times.
2. An erasure if no symbol occurs more than | L/ 2] times.

The B complete decoder considers only those symbol estimates of
{(9;,4;); 7 =1,...,L} which have ¢; = 0. A maximum likelihood decision is
made on this reduced set of estimates. If all symbols have g; == 1, an arbitrary sym-

bol is output, say for example, the first symbol received, y,. We now describe the
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analysis to evaluate sy rmbol and bit error rates for the single Reed-Solomon decoder

system using algorithm B.
Algorithm B / One R-_ eed-Solomon Decoder

The simplification==s made for algorithm A also hold for B. That is, events E
(incomplete inner decod «e=r = error, complete inner decoder = correct) and £, (incom-
plete inner decoder = = <orrect, complete inner decoder = error) each have probability
zero and the symbol era—or probability is given by (3.2) and (3.3). Hence, we need to

derive expressions for p g , po, and ps.

The incomplete de==coder will produce an erroneous symbol output only if that

symbol is received more=  than | L/ 2] times with quality bit ¢ = 0. Thus,

AW"].
P = P( U {event symbol i received > | L/ 2] times with ¢ = 0

t ==1

given ‘0’ transmitted )

=M -L )P (symbol 1 received > | L/ 2]times with ¢ = 0
given ‘0’ transmitted )
With symbol O transmi  +tted, the probability any other symbol is received with quality

bit ¢ = 0is Fg(f). He= mce, suppressing § we have

L
pp = (M-1) zL] ( ,.)F,g (1-Fg)t (3.14)
i=L/2f1

Similarly, the incormpl -eete decoder produces the correct symbol output only if the

correct symbol occurs r—more than | L/ 2] times with ¢ = 0. Thus,

L L , A .
= 3 ( i ) FiL-F) (3.15)
i=| L] 2p1
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To evaluate p, we begin by partitioning the event of interest using the event
that no symbol of {&1 i 7 =1,...,L} occurs with quality bi't q = 0 more than
LL/ 2] times. We obtain

pr=P(Ey (\ Fi) + P(Es (\ FJ) (3.16)
The second term of (3.16) is zero since the complete decoder will not erase if any sym-
bol occurs with ¢ = 0 more than | L/ 2] times. Thus, p, is equivalently the probabil-
ity that the complete decoder errs and no symbol occurs with ¢ = 0 more than
L L/ 2] times.

Since the complete decoder considers only those symbols which have ¢ = 0, we
need to evaluate p, as the number of non-deleted symbols ranges from 0 to L. When
all symbols are deleted the complete decoder makes a random selection which is
equally likely to be any of the M possible symbols. Hence, the probability of decoder
error is this case is (M - 1)F2/M where

Fy = Fx(8) = AF,(8) + (M-1)AFg(9) (3.17)
is the probability a symbol is received with ¢ = 1 on any transmission. The remain-

ing terms of p, are expressed using the enumeration procedure as in (3.7)
M-tpp gn ™ LY o pionpia
pr=——Fx+ ) Y Gy(Y,n.) F.'Fg “Fx~ (3.18)
M =1 n, =0 Y Y

where:

| = number of terms received with quality bit ¢ = 0

G,(Y,n,) is the same as in (3.8) and Y is as defined below (3.7) with additional

constraints:
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In Appendix B we give sample evaluations of (3.18) for L = 3,5.

To show that the bit and symbol error rates are related by P, = P, M/2(M-1)
(2.20) we must prove that P(Y; N Y,) is independent of the choice of
i €{1,2,...,M-1} for all choices of j € {0,1,...,M}. For algorithm B, the
complete decoder will output the same symbol as the incomplete decoder whenever

the incomplete decoder does not erase. Hence,

P(Y].Oﬂ YZi)EO for all ¢
0 i;
P(Yy; N Y2i)={1 i=j for j €{1,2,...,M-1}

For j = M we proceed as we did in Section 3.2.

P(Yi N Ya) =PV N Y N F)+P(Yy O Yu N Fi) (319)
where F, is defined for (3.13) above. The second term of (3.19) is zero since Yy will
not occur if any symbol occurs with ¢ = 0 more than | L/ 2] times. Finally, if no
symbol occurs more than | L/2] times with ¢ = 0 the complete decoder makes a
maximum likelihood choice on the symbols which have ¢ = 0. If all symbol have
¢ = 1 then an arbitrary symbol is chosen. In all other cases an equation of the form
of (3.11) applies. As before, each term of (3.11) is a multinomial expression on events
which occur with equal probabilities. Hence, (3.19) and P(Y,; M Y.) are indepen-
dent of the choiceof ¢ for all values of ;.

Algorithm B / Two Reed-Solomon Decoders

The analysis for algorithm B used in the two Reed-Solomon decoder

configuration may be drawn from the results of the single Reed-Solomon decoder
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system. Using (3.12), (3.13), (3.14), (3.15) and (3.18) we may evaluate the symbol
error rate. The proof that P, = PsM/ 2(M~1) given earlier in this section remains

valid and therefore, we can also evaluate bit error probabilities.
3.4 Hard Decisions, Perfect Side Information

To provide a baseline for comparing numerical results, we derive the perfor-
mance of the two Reed-Solomon decoder configuration of Figure 2.2 for case of hard
decisions and perfect side information. With perfect side information the quality bit,
q, is unity when the transmission was jammed and zero otherwise. The incomplete
decoder will output the correct symbol in the event any one or more of the L
received symbols is not jammed. If all symbols are jammed the incomplete decoder
outputs an erasure. The incomplete decoder never errors. The complete decoder
functions similarly except that it produces a maximum likelihood estimate in the

event all symbols are jammed.

Referring to Section 2.3 and (2.10), events E; (both inner decoders err), E3
(incomplete inner decoder == error, complete inner decoder = correct) and E, (incom-
plete inner decoder = correct, complete inner decoder = error) occur with probabil-

ity zero. Simplifying (2.10) and substituting into (2.2) we obtain:

Ny-1 No-1-j Ng-1 L Neieing
Ps = p, )Y 3 ij ) Pipbpe’ (3.20)
i=|(Ng=Ko)/ 2] j=max{0,Ny-Ko-i] ’

To facilitate the analysis we define the following events:
E,, = event the incomplete decoder erases

E,, = event the incomplete decoder errs
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E, = event the incomplete decoder is correct
E;, = event the complete decoder errs
E;. = event the complete decoder is correct.

Recall that p, is the probability that the incomplete decoder erases and the complete

decoder errors. Thus,

Po = P(E[z ﬂ ECa)
= P(ECc |E[2)P(E[z)

With perfect information about the jammer state, Ej occurs only when all L
transmissions are jammed. Thus,

P(E) = ¢ (3.21)
The term P(E¢, | Ej;) is the symbol error probability of an M-ary repetition code on

an M-ary symmetric channel with symbol error probability, p, given by

_Bs - PEs
pmpe M Z g-13;‘ (t{) 7 (3.22)
ji=2 ¢

Caleulation of P(E¢, | E;) has been investigated in [16, Appendix A] and is general-
ized in Appendix B.

We can now calculate ps in terms of the above events

Ps = P(E[z ﬂ ECC)
— P, | E)P(Es) (823
=1 - P(Eg, | Es)|P(ER)

Thus, ps and pg = 1-p,—ps may be calculated using (4.31), (3.23) and the results in
Appendix B.
To show P(Y,; NY,) is independent of ie(l,...,M-1) for al

jE€(0,1,..., M) is simple for the case of hard decisions with perfect side
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information. First we note that P(Y; N Y,) =0for j % M.

When all L symbols are jammed, the maximum likelihood decoder must select
the output in an environment in which all symbols are received over an M-ary sym-

metric channel. Thus P(Y,y N Y,,;) is independent of :.

Hence, symbol error probabilities are given by (3.20); bit error probabilities are
related by (2.20); and the analysis is complete for the case of hard decisions with per-

fect side information.
3.5 Repetition Thresholding

In this section we introduce and analyze the first of two algorithms for generat-
ing erasures in the incomplete decoder without use of side information. The inputs
to the incomplete decoder are the L symbol estimates {y] i 73 =1,...,L} The
first algorithm, repetition threshold decoding, is defined as follows: Set a threshold T
such that 2 < T < L. The incomplete decoder output an erasure if no symbol
occurs T or more times. Otherwise, the decoder output a maximum likelihood esti-
mate. For example, suppose L = 5 and (0,0,1,1,2) is received. If T = 3 the decoder
output an erasure; if T = 2 the decoder makes an arbitrary choice between symbols

0 and 1. The complete decoder is a maximum likelihood decoder.

We will derive the performance parameters for repetition thresholding used in
the parallel decoder configuration with two Reed-Solomon decoders. The analysis
will be divided into two case T > [L/2]and T < [L/2}

Case 1: T > [L/2]
When T > [L/2]the incomplete decoder erases if no symbol occurs more than

| L/ 2] times. If the incomplete decoder does not erase, both inner decoders will out-

put the same symbol. Hence, events E; (incomplete inner decoder = error, complete
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inner decoder = correct) and £, (incomplete inner decoder == correct, complete inner
decoder = error) will not occur and (2.6) reduces to the form given by (3.12). Thus,
to complete the analysis of symbol error probability we need to evaluate py, p2, Ps

and pg and use (3.2) and (3.12).

Using the notation defined in Section 3.4, we have

pr = P(E, N Ec.)

(3.24a)
= P(Ele) (Since E[c - EC«)
pr= P(Er N Ec.) (3.24b)
= P(E[z ﬂ ECl)
= P(E,)-P(E; N Ec.) (3.24c)
= P(E;) - P2
pg=1-p1-p2-"ps (3.24d)

To calculate these terms we need to know the probability of symbol error, p, for
non-coherent reception of MFSK signalling with the only noise contribution being
partial-band Gaussian interference of a fraction p of the bandwidth with power

pN;/ 2. If the received signal energy is Es, p is given by (3.22).

With T > [L/2], the incomplete decoder will output any symbol which occurs

T or more time. Letting ¢§ = 1 - p we have

L » L-y
P(Er) = ; ( ) [Mp_ - ] (3.252)
_ Lo(L » M-2) e ,
P(E,)=(M-1) '§T ( i ) [‘M 1 ] (¢ + [1—\/7_-_1 ]P]L (3.25b)
P(E,)=1-P(E) - P(Ep) (3.25¢)

The last term to be evaluated, p., is best determined using the enumeration tech-
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nique of Appendix B.

seurm () o5 o
Y i

where all terms are as defined for (3.7) and (3.8) except that Y is further constrained
by the condition n, < m; < T. See Appendix B for sample evaluations of p, for

L = 3,5 and 7 and for various values of T.
Case: T < [L/2]
When T < [L/2], all of the events £, through E; defined in Section 2.2 are

possible. Equations (2.2) and (2.10) specify the parallel decoder symbol error proba-

bility. We require expressions for each of the following terms:

Py = P(Ele ﬂ ECe) (3'273')
p2 = P(E, ( Ec.) (3.27b)
= P(Elc ﬂ ECc)
= P(E¢,) - P(Ec. N EL)
= P(E¢.) - P(Ece N [Ere N Erz)) (3.27¢)
=P(E0e) P(E[c ﬂEC’e)"P(E[z ﬂECe)
= P{E¢,) - p1 -
ps = P(E, N Ec.)
= P(Efa) - P(Ep, N Eé.) (3.27d)
= P(E,) - P(E, N [Ec.)
= P(Ele) - D
ps = P(Ep N Ec.)
= P(Elz) (E[z ﬂ EC:) (3 Z‘e)
= P(Elz) - P2
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ps=1- El P o (3.271)
The set of (3.27a)-(3.27e) require computation of five terms: py, pg, P(Ec.),
P(E;) and P(Ep). For the analysis which follows we will assume that ties are
decided randomly among the competing signals and decisions made by the two inner

decoders are independent.
With the probability of receiving a symbol in error, p, given by (3.22) and with

q = 1 - p, we begin by partitioning p;.

PL=Pia + P1s

where,
P1s = p (an error symbol occurs at least [ L/ 2] times)
p1s = p (no symbol occurs [ L/ 2] or more times, atb least one symbol occurs
T or more times, both inner decoders error)
Now,

i ‘ L-¢
Pre = (M- 1) jm (£) (25 ) {u( M=2 ), } (3.28)

and

P = Ufj ; GoY,n,) ( @)q’“ ( Mp_l )L‘n= (3.29)

n, =0

where (3.29) is an enumeration formula similar to that specified by (3.7) and (3.8)

except that we require:

ncsmlr Tﬁmu m'a<rL/2]

and r(NVe) is replaced by:
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{ N, =0 or )
! o
n. < m;, [V, # 0
.30
r(Ny,n) = ( N, )2 (3.30)
N,+1 ne=miy N0

Next, p, is the probability no symbol occurs T or more times and the complete

decoder errors. We have

T-1

P = Z

n

Y G\(Yn,) ( @) " ( Tv'{EIT )L-n: (3.31)

VD 4

which, except for the upper limit on the first summation, is identical to (3.26).

To calculate the probability that the incomplete decoder errors, we start by par-

titioning the event space.

P(E[e) = Pea T Peb

where

Pea = P1a {given by (328)]

P = P(no symbol occurs [ L/ 2] or more times , at
least one symbol occurs T or more times , the

complete decoder errors)

- LLZ/ZJ Y Gi(Yn,) ( %) 7 ( S )L-M

n=0 Y
where Gg(Y,n,,T) is the same as specified by (3.8) except we require n, < m; and
T < my.

The probability the incomplete decoder erases is the probability no symbol
occurs T or more times which is given by:
1

T-
P(Elz) = Z—.

¢

0 ) Gy(Y,n.) ( ?) ™ ( Sy )L_n: (3.33)

where G4(Y,n,) is equivalent to (3.8) with the new condition that r(V,) = L.
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Finally, the probability the complete decoder errors, P(E ), ig the probability
of error for a L -diversity repetition code. This probability is derived in Appendix B
where sample evaluations are also given for each of the enumeration formulas of this
section. We have now provided éxpressions for each of the probabilities p;
i = 1,...,6 necessary to evaluate the symbol error probability for repetition thres-

hold decoding for all values of T > 2.

We next consider the bit error probability for this decoder and wish to prove it
is given by (2.20). We must show that P(Y,; N Y3 ) is independent of the choice of
i % 0 for all values of j where symbol zero is assumed transmitted. As we did for
the decoder performance analysis, we consider the two cases T > [L/2] and
T <[L/2].

When T > [L/2} any time the incomplete decoder output is a symbel, not an
erasure, then that symbol occurred at least [ L/ 2] times and the complete decoder

will output the same symbol. Thus,

(0 j#
P(Yunn.-)={1‘]’-i,-

where j € {0,1, ..., M~1} and i # 0. For j = M, P(Y,; N Yy) is the probabil-
ity the complete decoder outputs symbol i ¥ 0 when no symbol occurs T or more
times. This probability is given by (3.11). We again argue that these events are all
multinomial expressions on events that occur with equal probabilities. In fact, we
could easily write an enumeration formula for P(Y;y N Yy). Hence, for
T > [L/2](2.20) is valid.

The proof is not as simple or as intuitive for T < [L/2] We need to consider

four cases: j =0, j=1¢, 15 j5 M, and j =M where for each case
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i€ {12, ..., M-1}. For j =0, P(Y,; NYy) is the probability the incomplete

decoder is correct and the complete decoder errs with symbol ¢ output.

P(Yio N Yu)=P{ny =N, > T, incomplete decoder outputs

symbol zero , complete decoder outputs ¢}

L-n,
_ Lf;é” 5 Hy(Z,meom) (A ) (55 )

n.

(3.34)

T
where:
n; = the number of symbols ¢ received
n, = the number of correct symbols received
Z =(m,my ..., m,)
= a generic configuration of the L-2n,
remaining symbols such that
nchLZm‘zZ“'Zma

m, +~my+ -+ L-2n,

( ZL ) = number of ways of receiving n, of symbol 0,
n; of symbol ¢,m of symbol s;,m, of

symbol s, - =+ ; $y,95 "+ 7= 01

letting,

Ne = number of terms of Z which equal n;

ny, ...,n;be as defined for (3.8)

1 )2 (M-2)(M=3) - - - (M-a-1)

Hy(Z,n,n;) = ( N =2

nylngl o - ny!
See Appendix B for development of similar enumeration formulas.

When j =i, P(Y; M Y) is the probability that both decoders error with

the same output symbol. Hence,
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(3.36
P(Yy; " Yo)=P{n, > T, both inner decoders output symbol 1} )
L min{L~ng,n| P L-n,
— : ~ L n,
N n.;T n,z-io % H'-’(Zrncyn[) ( Zrnc ) ? ( M-1 )
= R
where all terms are as defined for (3.34) and (3.35) except:
Ne = number of terms of Z | J {n.} which equal n;
2
T UM-M=3) - v
Ho(Z o iny) = ( 1 ) (M -2)(M=3) (M-a-1) (3.37)

lveﬂ“]. nl!n2! vt Tl/}!

When i % j 5% M, P(Y,; N Yy) is the probability both decoders error with
different output symbols.
P(Y,; N Y)=P{n=n;>T, complete decoder outputs symbol 7 ,

incomplete decoder outputs symbol j}

min(L-2ny,n,] Len.
uzm 2, ’;Hs(z,n,,nc)( Y,nl:.,n[ ) .~ ( _w% )

=T n, =0

I

where all terms are as defined for (3.36) and (3.37) except:

n; = the number of symbols j received

(3.39)

1 )2 (M-3)(M=4) - - - (M-a-2)

HalZ o) = (

nl!nzl tr nd!
Finally, for j = M the analysis for T > [L/2]is valid. Since none of the
derived expressions depend on symbol i being chosen, we have shown that bit and

symbol error probabilities are related by (2.20). The analysis for repetition threshold

decoding is complete. We now consider another technique called tie thresholding.

3.8 Tie Thresholding

The last of the algorithms we will consider for parallel decoder with L -diversity
inner codes is called tie thresholding. With tie thresholding the incomplete decoder
output is an erasure symbol whenever there is a tie between symbols which occur

most often in a received vector. Otherwise, one symbol must occur more frequently
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than another symbol and the incomplete decoder will output that symboi. The com-

plete decoders provides a maximum likelihood. decision.

Referring to the general development in Chapter 2, with tie thresholding events
E; and E, cannot occur. The only way one inner inner decoder could err while the
other is correct is to have a tie between symbols. However, a tie will produce an
erasure in the incomplete decoder. Thus, we can use the form of P(F;) given by
(3.2) and (3.12). In the remainder of this section we will present equations for py, p2,
ps, and pg necessary to evaluate P(F;) and then prove that symbol and bit error
probabilities are related by P, = Ps.M/ 2(M-1).

Event £, is the probability that the output of both inner decoders is an errone-
ous symbol. The probability of £, p,, is equivalently the probability one error sym-
bol occurs more frequently than any other symbol. Since we have an M-ary sym-
metric, memoryless channel we can write

M-1
p, = P(E,)= ¥ P(E, ) symbol ¢ occurs most often)

F==1

= (M - 1)P(E, M symbol 1 occurs most often)
where, without loss of generality, we have assumed symbol 0 was transmitted. Con-
tinuing we write

P1L=Pia T Pus

where

P1e = (M-1)P(E N symbol 1 occurs > [ L/ 2] times) (3.40a)

= (M-1)P(E£ symbol 1 occurs < [ L/ 2] times
p1y = ( JP(Ey N [ 1 (3.40b)

but still most frequently)

Now,
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; . L-."
(DGR -2 e

where p is given by (3.22) and ¢ = 1 - p. Next,

L
Pia :(j/[-—]_) Z
7

i={L,

3

1
—

pis = (M -1)

)3

8 sorm (A ) ()7 e

2 n.=0

where L > 5 and all terms are as defined for (3.8) except we require m; < 1. We
note that for divesity L =3, p,, = 0.
The probability that the incomplete decoder erases and the complete decoder

errors, po, is given by

p2 = Pr{two or more symbols tie and the

complete decoder errors}

= e (B) ()

n.=0 Y

(3.43)

where:

n. = the number of correct symbols received

e < my,if n, < m then m; = m,
and all other terms are as defined for (3.8). Sample calculations of the enumeration
formulas (3.42) and (3.43) are given in Appendix B.

The probability that the incomplete decoder erases and the complete decoder

errs, ps, is the probability the correct symbol and one or more incorrect symbols tie

for most frequent occurrence and the complete decoder choses the correct symbol.

3 Gi¥ine) ( f,) ™ ( - )L (3.44)

where, with the change n; = m,, G,q is equivalent to (3.8). Finally, noting that
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ps = 1 - p, - ps - ps, our remaining task is to prove the symbol and bit error pro-
babilities are related by P, = P; M/ 2{M-1).

With reference to Section 2.5, we need to show that P(Y;; N Y, ) is indepen-
dent of ¢ € {1, ..., M-1} for all choices of j € {0, ..., M-1}. We begin by not-
ing that whenever the incomplete decoder outputs a symbol other than an erasure,
that symbol occurred more often than any other symbol and will also be the output

of the complete decoder. Thus,

0J t
P(Yy (O Ya) ={1 ; . ,'

where j € {0,1,...,M-1} and i % 0. For j = M, P(Y,; N Y,,) is the probabil-
ity that two or more symbols tie and the complete decoder outputs symbol 1 £ 0. If

we modify (3.43) to require that:

m, == number of times symbol ¢ occurs
then we have an expression for P{Y ) N Y,;). Clearly this expression is indepen-

dent of the choice of ¢ and we have completed the proof.



CHAPTER 4

PARALLEL DECODING/LINEAR BLOCK INNER CODES

4.1 Introduction

In the previous chapter, we considered various inner code decoding schemes
based on L-diversity repetition inner codes. We now turn our attention to a more
general class of inner codes and consider binary linear block codes. Two system
implementations will be considered with the binary linear block inner coders. First,
the case when binary FSK signalling is used will be evaluated. Next, we will consider
the case when M-ary signalling is used where herein M will be restricted to the
alphabet size of the outer Reed-Solomon code. The analysis may be easily extended

for other values of M.

The linear block codes to be analyzed have dimensions (.V;,K;) where K; is
equal to the binar;' symbol size of the Reed-Solomon code. For example, a
(Vg=32,K,=16) Reed-Solomon outer code will have a (V;,K;=5) binary linear
block inner code. In the complete inner decoder, the linear block codes will be used

in an error correction only mode with standard syndrome decoding procedures.

For the incomplete inner decoders, will evaluate use of linear block inner codes
for error detection only and for combined error detection/error correction. In the

case of error detection only, the incomplete decoder output is an erasure whenever an

62
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error is detected. For combined error detection/error correction, the erasure criteria
for the incomplete inner decoders will be obtained by parcitioning the standard array
for the code. If a received vector results in a zero syndrome, the data portion of the
codeword (one symbol) will be input to the Reed-Solomon decoder. Otherwise,
depending on where the received vector lies in the standard array, either error correc-
tion will be attempted by adding the appropriate coset leader to the received vector
or an erasure will be declared. For larger minimum distance codes, we will be able to

define a greater variety of partitions on the standard array.

Throughout the analysis we assume a slow frequency hopping system so that
each inner code codeword is transmitted on the same hop. With this assumption, the
symbol statistics into the outer decoders are independent and identically distributed.
Our objective is to compute the bit error probability for the parallel decoding system
as a function of the percentage of hopping bandwidth jammed and the received,signal
energy to jammer noise ratio.

In Section 2 of this chapter we present a general analysis of the parallel decod-
ing algorithms using linear block inner codes. In Secﬁions 3 and 4 respectively we
describe the system analysis for cases of binary and 2K'-ary signalling. The chapter
concludes with a description of the codes used to evaluate the parallel decoder perfor-

mance.
4.2 General Development

The analysis of Chapter 2 will be used in deriving the performance of the paral-
lel decoder using binary linear block inner codes. We will use only inner decoders
with an input block length equal to the outer encoder symbol size. Thus, each inner

code codeword contains a single outer code symbol plus parity bits. To determine
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symbol statistics at the inputs to the outer decoders, we need only determine the pro-

babilities of inner decoder error and erasure.

For the two Reed-Solomon decoder parallel decoder of Section 2.3 and Figure
2.2, (2.2) and (2.10) described the probability of a symbol error out of the parallel
decoder system. The complete decoder will perform error-correction standard syn-
drome decoding. The incomplete decoder will be used either to only detect (i.e.,
erase) errors or to both detect and correct errors. Figures 4.1, 4.2 and 4.3 illustrate
the general partitioning of the standard arrays for each inner decoder configuration
where the all zero codeword is assumed to be transmitted. The top line of each figure
is the codeword set and the leftmost element of this line is the all zero vector. The
leftmost column is the set of coset leaders. The labelings error, erasure, and correct
indicate the condition of the decoder output in the event the received vector lies in

that portion of the standard array.

With reference to Figures 4.1 and 4.2 we can simplify (2.10) by showing that in
either case events £, and E cannot occur and thus p; = py = 0. Hence, (2.10)
reduces to the simpler form of (3.12) and we need to determine the probabilities py,

P2 P35 and pg to evaluate the parallel decoder performance.

The event £ 5 is the event that the incomplete decoder produces a correct output
when the corresponding output from the complete decoder is an error. If the incom-
plete decoder is used for error detection only, it will produce a correct output only
when the correct codeword is received. Hence, the complete decoder will also yield
the correct output. Similarly, if the incomplete decoder is used for both detection
and correction, it will produce a correct output only if the correct codeword is

received or if a detectable error pattern occurred. In either case, the complete
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decoder will output the correct symbol.

E, is the event that the incomplete decoder errs and the complete decoder is
correct. For either decoder configuration, the complete decoder is correct only if the
correct codeword is received or if a detectable error pattern occurred. If the correct
codeword is received the incomplete decoder is correct. If a correctable error pattern
occurs, the error detection only decoder will erase and the detection/correction
decoder will either erase or correct. In neither case is an error by the incomplete
decoder possible.

Where possible, we will evaluate the parallel decoder performance with binary
linear block inner codes and two types of channel signalling. In all cases we will con-
sider the performance with binary FSK signalling and noncoherent detection. When
the ratio V;/K; is an integer, we will also evaluate performance with ‘ZK'-ary FSK
signalling and noncoherent detection.

If we use slow frequency hopping so that all of the bits or symbols of an i'nner

code codeword are transmitted on a given hop, we have in general.

p(E;) = (1-p) p(E; | not jammed ) + p p(E; | jammed ) (4.1)
where { = 1,...,6. With the assumption of no background noise, p(E;| not
jammed ) is unity if { = 6 and zero otherwise. Thus, we have

pi=ppiiy t=1L12,...,5 (1.2a)

ps=1-p+ppss (4.2b)
where p;, s shorthand notation for the conditional probability of the event E;
given the signal was jammed, : =1, ..., 6.

In the next two sections. we consider evaluation of p, ; when respectively
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binary and ‘ZK’~ary signalling is used. We also derive the parallel decoder bit error

probabilities for each of these cases.
4.3 Case: Binary Signalling

Each of the probabilities p;|; we wish to compute are the probabilities of joint
events on the incomplete and complete inner decoders assuming the received signal
was jammed. Without loss of generality, we may assume the all zero codeword was
transmitted. In this case the probabilities of the joint events of interest are
equivalently the probabilities that the received vector lies in the intersection of the
standard arrays for the appropriate incomplete and complete inner decoders as shown
in Figures 4.1, 4.2, and 4.3. With this approach we easily see that p; = p, =10
since the correct and error events of the complete decoder have null intersections with

the error events of either incomplete decoder.
4.3.1 Incomplete Decoder Used For Error Detection Only

Considering first the subcase when the incomplete decoder is used only for error
detecbion,.psu is the probability that both inner decoders produce the correct out-
put. Visualizing the intersection of the standard arrays of Figures 4.1 and 4.3, we see
that both decoders will be correct only when the all zero error pattern occurs.

Let r be the probability of a received bit error given the channel is jammed and
s be the probability a bit is received correctly given the channel is jammed (2=1-r).

Then,

r= % e vE TN (4.3)

where £, is the received energy per bit. Thus, the probability that the all zero vec-

tor is received is given by
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I.V
pgry = § ! (4.4)

The probability that both decoders will error, event E, is the probability that
the received vector is a non-zero codeword. Let the set {4, ,7 =10, ..., NV} be the
weight enumerators of the inner code where A, is the number of codewords of Ham-
ming weight ¢. Then,

N

pléf == Z ,4" Ti 3

==}

N (4.3]

The incomplete decoder erases and the complete decoder is correct, event £
only if the received N-tuple is a coset leader other than the all zero vector. Similar

to the code weight enumerators we define the coset leader weight enumerator

(L; ,i =0,1,...,N;} such that L; is the number of coset leaders of weight 1.
I
Hence,
Ny i
g Ny
psjs= 3, Lyt s’ (4.6)

y==1

Finally, we note
P2is =P -P1|s ~ Psis - Psis (4.7)

4.3.2 Incomplete Decoder Used For Detection and Correction

The analysis proceeds similarly for the subcase when the incomplete decoder is
used for both error detection and correction. Figure 4.2 depicts the incomplete
decoder actions for given received vectors. By visualizing the intersections of Figures
4.2 and 4.3 we can characterize the quantities required to evaluate p,., for
i = 1,2,5,6.

Both decoders are correct only if the incomplete decoder is correct. That is. the

received vector must be a coset leader in the correctable event portion of the
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standard array for the incomplete decoder. Define {L,, , ¢ = 0,1, ...,.,} as the
weight enumerators of the coset leaders which result in erasure events for the incom-

plete decoder. Then it follows that
R/
pojs =Y (Li = La)r's (4.7)

Similarly, ps|, is the probability of the event that the incomplete decoder erases
and the complete decoder is correct given the channel is jammed. Referring to the
standard arrays, we see that this is equivalently the probability that the received vec-
tor is a coset leader in the erasure portion of the standard array for the incomplete
decoder. Hence,

A .
psiy =S Ly $M (4.8)
i=1

The probability that both decoders err given the channel was jammed, p,,, is
equivalently the probability that the received vector is either a non-zero codeword or
lies in the error portion of the standard array for the incomplete decoder excluding
the coset leaders. This result is not obtained as easily as the previous results. We
start by making an assumption that incomplete decoder error correction will be lim-
ited to the codes error correction capability given by

t=[(dma - 1)/2] (4.9)
For example, a two bit error correcting code (¢ — 2) will be used either to correct all
one bit errors and detect other errors or to correct all one and all two bit errors and
detect any other errors as allowed. The general result will be motivated by first con-

sidering one and two bit error correction.
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If the incomplete decoder corrects all single bit errors then the coset leaders
include all possible vectors containing a single “1” and N; -1 zeros. Hence, in the

standard array column below a codeword of weight W there will be

W vectors of weight W -1
N; - W vectors of weight W + 1

Hence, if {A;,i=1,...,N;} are the weight enumerators of the code then
{Cy;,i=1,..., N} is the joint weight enumerator of all V;-tuples in cosets hav-

ing weight one coset leaders where

Cy = (V; —i+1)A;, + (i+1)A; (4.10)
(note: AN,+1=O)- Or equivalently, if we let A(z) be the weight enumerator polyno-
mial for the code,
N

Alz) = ¥ A7 (4.11)

i=0
then the joint weight enumerator polynomial for the cosets having weight one coset
leaders is

NI

C]_(Z) == Z A"{izi-l -+ (N,—i)z“'l]

g=1 5
. | (4.12)

If r is the probability of a bit error at the input to the inner decoders and
s =1 - r, then the probability a received vector is in a coset having a weight one
coset leader is
Ny

)Y Ch‘""s

=1

Nt (4.13a)
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N; . » ‘
=Y ,Axiz}"“L\ﬂNF'+1 + (N/«i)r‘*ls'v'_'-l} : (4.13b)
1 =0

where we assume T > 1. To exclude the weight one coset leaders in (4.13b) the

summation is started at ¢ == 1.

If a code has ¢t > 2 (dp, > 5, then it can correct at least all one and two bit
error patterns. The coset leaders include all .V;-tuples with one and two 1’s. Consid-
ering cosets with weight two coset leaders, in a column below a codeword of weight

W there will be,

( ;V) vectors of weight W -2

N, -W
( &V) ( : 11 ) vectors of weight W

N;-W .
( 2 ) vectors of weight W + 2
where we define ( Z) =0 if 6 > a. Letting Co{z) be the joint weight enumerator

polynomial of ail cosets having weight two coset leaders we have,

e =T [(§) e+ (D) ()= (") =] g

Thus, the pattern becomes clear. If a code has a ¢ bit error correcting capabil-
ity, the joint weight enumerator polynomial of all cosets having weight ¢;
1 < t' < ¢, coset leaders is given by,

Col)= T 4, % (o) () s (4.15)

i=0 =0
The probability a received vector lies in a coset having a coset leader of weight t' or

less is given by,
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Moov o N ( i )(N[—i) ke | Np-ie2k-j l
Z Z Z 4, ]'_.k k r 5 . (4.15)

=0 j=1 k=0
As before, we can exclude the coset leaders by starting the outer summation at
i = 1.
We are now prepared to give a general result for py, ;.

&  Np-i Mowod ] Np-v ok Np—i-2k+j
prs=Y ArsTT =3 Y Y4 (j—/c)( k )”‘*'k-’s '
1= i=1 j=1 k=0 -
(4.17)

NI Iy i . [V-. ] , N ¥
t -t PPy  Np-i-2k+
=¥ 3 B (h) () st

=l j=0 k=0
where we have assumed that the incomplete decoder corrects all error patterns of

weight t' or less. Hence, using (4.7) we have completed the analysis for the subcase

when the incomplete decoder is used to both detect and correct errors.
Considerations for the Multiple Parallel Decoder

The linear block inner codes may be used in the multiple parallel decoder
configuration described in Section 2.4. For example, consider an inner code with
d_. = 35. One way of designing a 4-ary parallel decoder is to have incomplete
decoder #1 detect errors only, incomplete decoder #2 correct one bit errors and

detect all others, incomplete decoder %3 correct two bit errors and detect all others,

and the complete decoder attempt all corrections (See Figure 2.3).

We first note that the hierarchical rules set forth in Chapter 2 are met. If any
decoder erases, all decoders above it in the hierarchy will also erase. If any decoder is
correct then all decoders below it in the hierarchy will be correct and all decoders

above it in the hierarchy will either be correct or erase.

Evaluation of the eight event probabilities p;, ..., ps proceeds in the same

manner as for the 2-ary parallel decoder of this section. We consider the four
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standard arrays for the inner decoders and evaluate the probabilities of the appropri-
ate intersections. The coset joint weight enumerator polynomial k4.16) is a very use-
ful tool for finding the probabilities of many of the intersections of interest. In
Chapter 5 we will discuss the conditions under which we would expect to use the

multiple parallel decoder configuration.
Bit Error Probability Analysis

We have calculated the quantities necessary to evaluate P(Fg) of (2.2) and
(3.12). In effect we should redefine P(Fs) as the probability of incorrect decoding by
the complete decoder following failure of the Reed-Solomon decoders. The complete
decoder processes the input N;-tuple using the standard syndrome decoding pro-
cedure of adding the appropriate coset leader to the received vector. In general, the
bit error probability does not conform to the relationship of {2.20) as did the repeti-
tion codes.

In [4,Sec.1.3] and [10,Sec.7.2| there are procedures for determining the post-
decoding bit error probability for linear block codes. Below we present an equivalent
development which allowed calculation of P(F,) based on quantities that are easy to
generate simultaneously with computer computation of code and code coset/coset
leader weight distributions.

We begin by noting that

P(F,) = P(F, | F5)P(Fs) (4.18)
where P(Fs) is given by (2.2), 3.12, and earlier developments in this section.
Without loss of generality we assume that all zero codeword was transmitted. With

reference to Figure 4.3, when a received vector lies in row j, column k (j,k 7 1) of

the standard array, the syndrome will point to the coset leader of the head at row ;
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and the codeword of the head of column k will be selected by the decoder. The infor-
mation bit portion of that codeword will be output and may co\ntain up to K, bit
errors.
If we define N(w,j) as the number of V;-tuples in the standard array having
Hamming weight w and which result in j information bits in error. Then,
K N

P(Fy|Fs)=Y ¥ 7’[ N{w,j)ro s (4.19)

i=1 w=1
When the code size is not so large as to prohibit computation of N(w,j), this tech-
nique provides an easy method to evaluate P(F, |Fg). Otherwise, the references
cited give a combinatoric technique for exact calculation and bounds which are tight
under most circumstances.
In Section 4.5 we describe the binary block codes to evaluate the parallel
decoder performance. We also provide a brief description of the algorithm used to
determine weight distributions and N(w,j). In Appendix C we give the resulting

weight statistics for the codes evaluated.

4.4 Case 2K'—ary Signalling

When the ratio (V;/K;) = 3 is an integer we have the option of transmitting
the binary codewords as 3 ‘.’.K’-ary symbols rather than N, bits. Use of ‘.’.K"ary FSK
with frequency hopping systems increases the instantaneous bandwidth per hop that
a jammer must cover. We would expect that higher values of p would be required by
the jammer to insure the same decrease in performance when compared to binary
FSK signalling.

The analysis of the parallel decoder performance when we use 2K'-ary signalling

proceeds in the same manner as for binary signalling in Section 4.3. We will see that
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many of the formulas are applicable with a minor modification. Again reference is
made to the standard arrays of Figures 4.1, 4.2, and 4.3, except now we must think
of each element as a 3-tuple of symbols from an alphabet of size 2% The argument
of Section 4.3 that p; = p, = 0 is still valid. Thus, the objective of the remainder
of this section is to derive expressions for py, ps, ps, pg and P(Fy | Fs). We continue

to assume, without loss of generality, that the zero codeword is transmitted.
4.4.1 Incomplete Decoder Used For Error Detection Only
If the incomplete decoder is used for error detection only, both decoders will
produce the correct output only if the all zero vector (3 zero symbols) is the error
pattern. Thus,
Pg s = ¢’ (4.20)
where ¢ = 1 - p and p is the probability a symbol is received in error given the sig-

nal is received from a jammed portion of the partial-baﬁd jammed channel. With

. X .
non-coherent processing of the 2" '-ary orthogonal signals.

0E, u ] PE,
p=e V3 __(-131’“ (M) (4.21)
j=2 :

Both decoders will err, event E,, only if the received vector is a non-zero code-
word. Let {A,,i=0,1,...,3} be the 2K’-ary weight enumerators of the inner code

where the weight of a g-tuple of ZK’-ary symbols is merely the number of non-zero

symbols. Hence, the probability the error pattern is a non-zero codeword is given by

a v .
=Y Al =) & 22
Pijs 3 Al ( M-1 ) q (4.22)

ya=x]
oK .
In the same manner we define the coset leader 2" '-ary weight enumerators

{LY,¢t =0,1,...,0} such that L] is the number of coset leaders of 2K'~ary weight
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{. By the same argument as in Section 4.3 we have
3 p s
psjs = % Li ( Y ) ¢ (4.23)

Using (4.7) the analysis for this subcase is complete.

4.4.2 Incomplete Decoder Used For Detection and Correction
By defining {L! ,i =1,...,3} as the ‘ZK'-a.ry weight enumerators of the

cosets which result in erasure events for the incomplete decoder, we can apply the

arguments of Section 4.3 to extend (4.4) and (4.6).

3 §
_ L. - L'. p B¢ 9
prJ iz=:O( bl ez) ( M-1 ) q (4-94)
B d |
I ' p B-i
psjy = 3 L ( Y ) q (4.25)

=1
Unfortunately, there is no extension of (4.17) to yield p,), for 2K’-ary signal-

ling. Since we are using binary block inner codes, an error correction capability of

one bit does not equate to a one symbol error correcting capability. We note that
(4.17) could be modified for 2K’-ary block codes.

Consequently we need to evaluate p;:; by brute force. We start by recalling
the pyj; is the probability that both decoders error given that the channel was
jammed. As before, this is equivalently the probability that the received vector is
either a non-zero codeword or lies in the error correction portion of the standard
array for the incomplete decoder excluding the cvoset leaders. We define
{Cli,i=1,...,0} as the joint 2K’-ary weight enumerators of all cosets minus

coset leaders which have binary weight j coset leaders. If the inner code is a ¢ bit

error correcting code then we define coset QK'-ary weight enumerators for 1 < 7 < ¢.
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If the incomplete inner code is used to correct ¢’ or less binary errors,

1 <t < ¢, then py, , is given by,

( e )‘ o (4.26)

) ¢
Prjs = 3, [Af + 3 Ck
=1 =1
Using (4.7), we complete the derivation of terms necessary to evaluate P(Fs) when
27 ary signalling is used with binary block inner codes and incomplete inner decoder

-

detects and corrects errors.

Bit Error Probability Analysis

The arguments of Section 4.3 for analyzing the bit error probability for binary
signalling apply equally to the case of ZK'-ary signalling. The relationship of P(F})
to P(F3) is given by (4.18). We have just completed the analysis of P(Fs) above.
We extend (4.19) to the 2K’-ary signalling case as follows. We let V' (w,j‘) be the

number of G-tuples of 2K'-ary symbols in the standard array which have 2K’-ary

weight w and result in decoding to a vector which has j information bits in error.

Then,

=

a . w ‘
PF|Fs)=% % L V(w, )l ) & (4.27)
2o K (M—l )

We determine V' {w,j) as well as all the 2K’-ary weight enumerators of this sec-
tion via a computer algorithm which simultaneously computes the corresponding
values for the binary signalling case. We briefly describe the algorithm in Section 4.5

and give the weight enumerators for codes evaluated in Appendix C.
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4.5 Codes Used for Analysis

In this section we describe the linear block codes used as inner codes for analysis
of the parallel decoder performance. For the analysis using L -diversity repetition
codes as inner codes we used (32,K,) Reed-Solomon codes and L = 3,5,7. We will
continue the use of (32,K;) Reed-Solomon outer codes and thus, will use (N;,5) linear
block codes to allow matching of outer code symbol size to inner code information
block size.

The four codes used in the analysis are Code [: (9,5,dp;n = 3) code which is a
shortened (15,11) Hamming Code; Code I (10,5,d; = 4) code which is Code I
extended; Code III: (13,5,d ;; = 3) code which is a shortened (15,7) BCH code; and
Code IV: (15,3,d ;, = 7) BCH code. All four codes are evaluated using binary sig-
nalling. Code II with 3 = 2 and code [V with 3 =3 are also -evaluated when 21
ary signalling (M =32) is used. The results are discussed and compared in Chapter 5.

In the remainder of this section we describe each of the four codes listed above.

We conclude by briefly describing the software algorithm used to generate the binary

and ‘ZK’-ary weight enumerators defined in Sections 4.3 and 4.4.
Code It (9,5,dpn = 3)
To obtain code I we began with a (15,11) Hamming code which has parity check

matrix.

H =

SO O
COr—O
O~ OO0
~ O QO
OO =
OO
O et pt s
— O O re
—
OO
- OO
—— O
-0 O
[ ™ B ]
— e et

In general, shortening of a code is accomplished by setting a number of information

bits to zero. The resulting codewords are a subspace of the original code and hence,
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the shortened code will have minimum distance at least as great as the original code.
The codeword bits set to zero need not be transmitted. Thus, both dimensions of the

original code are reduced in the shortened code [7, Section 1.9 and 10, Section 4.3.4).

For the Hamming code given above, we can equivalently eliminate columns from
the parity check matrix to achieve the desired shortening. Thus, to obtain K; =5
we choose to delete 6 columns and arrive at the parity check matrix for code I shown

below:

H[=

OO r—
QOO
QO OO
O OO
OO
O O
—_O 0 -
QO - O
—— OO0

—

N

o

x

The code and coset weight enumerators for code I are given in Appendix C.
Code II: (10,5, dp;n = 4)

In general, a binary (V,K,d ;) code which has an odd d_, may be extended to
an (N+1,K,dp;,+1) code by appending an additional parity check to each codeword
which is the sum of all other codeword components [1,57]. Thus, we can extend code
I by this procedure to obtain a (10,5,d;;=4) code which will be named code . The

parity check matrix for code II is shown below.

1000011111
0100011100

Hy= /0010010010 (4.29)
0001001011
0000100101

Since (N;/K;) = 2 = ( an integer, code Il may be used with either binary or
2K'-ary signalling. Both binary and 2K’-ary code and coset weight enumerators are

given for code II in Appendix C.
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Code III: (13,5,d,,;, = 5)
We obtained code III, a (13,5d,,, = 3) code by shortening 2 (15,7) BCH code.
We began with the generator polynomial for the {15,7) code (10, Table 4.7]

gz =1+t + 28+ 27+ 28 (4.30)
We shortened the code by setting to zero the two high order information bits when a
systematic implementation of the code is used.

That is, if

u{z) = by + bz + - = b oT + by, 1T (4.31)
is the polynomial of information symbols, then the systematic form of the code has

codewords given by

c(z) = 2" u(z)|mod g(z) + z“’"’"u@) (4.32)
- Thus, by setting by,_, = bg,, = 0 we obtain a simple shortening of the code. The
code could be simply decoded by inserting two zeros at the receiver and using stan-
dard BCH decoding procedures. See Appendix C for code and coset weight enumera-
tors.
Code IV: (15,5dpin = 7)

The final code used to evaluate the parallel decoder is the (15,5d 4, = 7) BCH
code which has generator polynomial {10, Table 4.7

g(:)=1+z+z2+z4+zs+za+:m (4.33)

We used the systematic implementation given by (4.32) for cases of both binary and

2K'-ary signalling. The weight enumerators for both cases are given in Appendix C.

Generation of Code/Coset Weight Enumerators
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Evaluation of the parallel decoding system with binary linear block codes using

. . . . ' K, .
the analysis of this chapters requires knowledge of binary and 2 .ary weight

enumerators for codes, coset leaders, and cosets as well as a matrix of bit errors
which result from given weight error vectors. Below we give a brief description of the

computer algorithm used to generate this data, results are given in Appendix C.

Step I:  Create'a 1 X oV _ array of bits which may be addressed or masked as

needed. This array corresponds to the 2™ _ 1 non-zero N;-tuples which occupy the
standard array. The address of each bit is its decimal position in the array. Set all
bits to zero, call this the check-off array

Step II: Read in a (ZK’ - 1) X N; array of bits where each row is a codeword. As
each codeword is read in perform the following tasks:

(1) Determine binary and 2K’-ary weights and add to code weight enumerator
tallies.

(2) Convert the N;-tuple to a decimal number and change zero to one in the
corresponding bit of the check-off array.

(3) Determine the number of bit errors associated with the codeword (assum-
ing a zero codeword sent) and store in an array indexed to the codeword
array.

Step II: Let ¢ be as given in (4.9), in succession generate all binary weight
1,2, ...,t Nj-tuples. As each N;-tuple (i.e., a coset leader) is formed do the follow-
ing:

(1) Determine binary and ZK’-ary weights and add to coset leader weight

enumerator tallies. -
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(2) Perform step II(2).
(3) In sequence add the coset leader bit-by-bit to each codeword performing
the following on the sum vector.
(a) Step II(2).
(b) Determine binary and 251 ary weights and
(i) Add to joint coset leader enumerator tallies

(i) Using the bit error index of the codeword increment the

N{w,j) and V' (w,]) tallies

Note: At this point we have accounted for weights and bit errors associated
with all codewords and a priori known coset leaders. The remaining zero bits of
the check-off array are the V;-tuples with which the standard array must be

completed. Of course, we want minimum weight coset leaders.

Step IV:  Search the check-off array for zero bits. If that position’s binary
equivalent is a binary weight ¢ + 1 Nj-tuple then performs steps 1I(1), 11(2), IIK(3)
for that vector. Continue to search the check-off array for binary weight ¢t — 1 V-
tuples each time repeating steps III(1), I11(2), [1(3) when a vector is found. When the

search is complete go to step V.

Step V: Repeat step IV for binary weight ¢ + 2, then ¢ + 3, etc. N;-tuples. When
a pass is made through the check-off array and all bits are one, the algorithm is com-

plete.



CHAPTER 5

COMPUTER ANALYSES AND PERFORMANCE CURVES

5.1 Introduction

In this chapter we present the results of computer evaluation of the performance
of the parallel decoding schemes described and analyzed in the previous chapters.
Reed-Solomon codes are used exclusively for the outer codes; the decoders are distin-
guishable by the techniques used in the inner decoders. We initially consider each of
the decoding schemes individually and present results for various values of thresholds
and coding parameters. Subsequently, we compare performance across the different

inner decoding schemes.

Our assumptions remain those which are described in the earlier chapters.
Transmission is accomplished using an M-ary (M > 2) orthogonal signal set, slow
frequency-hopping, and noncoherent processing of received signals. The receiver is
synchronized to the hopping pattern; each symbol is received with energy E£; in a
noise environment which consists solely of partial band jamming of power density
pN;/pin a fraction p of the hopping bandwidth. The primary performance measure
is the decoded bit error probability which is analyzed as a function of the energy per

information bit-to-jammer noise ratio E£,/.N; versus the percentage of jammed

bandwidth p.

83
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In Section 5.2 we describe the methods used to calculate the per ’informa.tion bit
related performance statistics as a function of received symbolk energy to jammer
noise power ratios. We also describe the technique for normalizing the coding rates
to allow proper comparison of the different decoding techniques. In Sections 5.3 and
5.4 we present the results of the computer analyses and draw conclusions regarding

the relative merits of the parallel decoding techniques.
5.2 Normalizing Rates and SNRs

The parallel decoding systems described in this paper use concatenated error-
correcting codes where the outer code is an (Ny,K,) Reed-Solomon code and the
inner code has dimensions (N;,K;). The computer analyses used to evaluate decoder
performance evaluated the received symbol signal-to-jammer noise ratio necessary to
achieve a specified bit error rate for given values of p, the percentage of bandwidth
jammed. The energy per information bit-to-jammer noise ratio is calculated from the

received symbol signal-to-jammer noise ratio, Es /N, as follows.

Ey Es X received symbols ] [ N outer code symbols ] [ 1 information symbol

TVT IV; 1 outer code symbol K, information symbols log, M information bits

where X is a quantity dependent on the selected inner code. For the case of L-ary
repetition codes, X = Ny == L. When binary block inner codes are used with M-ary
signalling by the scheme described in Section 4.4, X = 3 = N;/K;. Finally, when
binary block codes are used with binary signalling as described in Section 4.3, E5 is
equivalently the received energy per transmitted bit and X = 1V; received bits per
outer code symbol. Hence, we arrive at the following two forms for relating received

signal-to-noise ratio to information signal-to-noise ratio per bit.
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.Ej. = Ei 1 (M -ary signalling) (5.1)
1V'j ZVJ R[ RO 1Og21\/[
E E
A L (binary signalling) (5.2)

Ny TN, BB
where R; = K;/N; and Ry = Ky /Ny are respectively the code rates for the inner

and outer codes and for (5.2) we used the fact that K; = log,M.

In the next two sections we present performance curves and discuss the analyses
of the various decoding algorithms. We will initially be concerned with individual
decoder performance as a function of threshold values and a code parameters.
Secondly, we will compare the relative performance of the decoding systems. Since
the various coding schemes transmit different numbers of symbols (or bits) per infor-

mation symbol, we must be careful to make a fair comparison.

Pursley and Stark [12] provide a proper basis for comparing the performance of
two different coded systems. They suggest that the following parameters be held
constant in any comparison: energy per information bit Fy, RF bandwidth, informa-

tion bit rate, and total interference power.

Our analysis has been predicated on maintaining total interference power
through the definition of the partial band jamming environment. The jammer power
was defined as N,/ p where the percentage of bandwidth jammed is p. Thus, the

total interference power for any jamming environment is p(N;/ p) == V.

To yield a fair comparison restraining all of the parameters suggested by Purs-
ley and Stark, we should compare systems which have the same overall information
rate, R, in bits per dimension. Given the inner and outer code dimensions described
above, we can make a simple extension of the results in [12] to arrive at the following

expression of information rate in bits per dimension for the parallel decoding systems
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described in this paper:

RiRylogyM
- D

(5.3)
where D is the dimensionality of the transmitted orthogonal signal set and R is the
code rate of the inner code in outer code symbols per transmitted symbol.
R} = 1/NV, for binary signalling and K;/.V; for M-ary signalling. We note that the

definition of R} is necessary to deal with the special blocking of inner code input
block length to match the outer code symbol size.
5.3 Results of Cornputer Analyses

In this section we discuss the results of computer analyses of the performance of
the parallel decoding schemes which are defined in Chapters 3 and 4. As described
above, the primary performance measure of interest is the ratio of the average
received energy per information bit to jammer noise power required to obtain a given
bit error rate for a specified percentage of frequency hopping bandwidth jammed. All
of the analyses were performed based on achieving a bit error probability of 107
The values of P, and corresponding E,/N; were calculated for all values of p 2 p”
where p* is that value of p for which 107 bit error probability is achieved with
(Ey/Ny) =1 (i.e, 0dB).

To allow easy reference, all performance curves are grouped together in Section
5.4 at the end of this chapter. Labeling of the curves follows the following conven-
tions detailed in Figure 5.1. Particular par#meters, such as threshold values, and

identification of special cases are indicated with the graph labeling.

Before discussing the performance of the individual decoders, some general com-

ments on the desired performance are in order. We have defined p" as that value of
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p for which the decoder achieves the desired bit error rate with a received £,/.V, of
0dB. It will be seen that the slope of the performance curves épproach 90° in the
vicinity of p”, hence, for p < p” the specified bit error rate is achieved independent
of the jammer power. Similarly, we let VR * be the maximum value of E, /N, over
0 < p £ 1 which will guarantee the required bit error rate in partial band Gaussian
noise. For any encoder, the optimum performance is provided by the decoder which

provides the largest value of p* and the smallest value of ENR *.

In Figures 3.2 through 5.5 we show the performance curves for Algorithm A
using Viterbi thresholding. The decoder for this algorithm was described and
analyzed in Section 3.2. We note that for both the single and double Reed-Solomon
decoder configurations, the uniformly optimum performance occurs when the ratio
threshold is set at # = 1.0. However, this is the case when neither the ratio thres-
holding or the incomplete decoder thresholding is used. The optimum performance
for the double Reed-Solomon decoder is superior to the single Reed-Solomon decoder
for L =35 (Figure 5.4, curves a and ¢) and L =7 (Figure 5.5, curves a and b) and
equivalent for L =3 (Figure 5.3, curve a).

When @ is set at other than 1.0, the optimum performance for the double Reed-
Solomon decoder occurs for §, = L. For this case the incomplete decoder does not
use the quality bit and the ratio threshold test is unnecessary. For L =7, (Figure 3.3,
curve a) the performance varied by less than .1dB for all values of 4. Different thres-
hold settings resulted in variations in performance for the single Reed-Solomon

decoder configuration, but, in all cases the p = 1.0 curve was equal or superior.

The evaluation of the parallel decoder using algorithm B with Viterbi threshold-

ing (Section 3.3), is illustrated in Figures 5.6 through 5.10. In Figures 5.6 and 5.7 we
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Decoder B:

Decoder C:
Decoder D:

Decoder E:
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Viterbi Thresholding, Algorithm A
A, = Case: one Reed-Solomon decoder configuration

A, = Case: two Reed-Solomon decoder configuration

Viterbi Thresholding, Algorithm B
B, = Case: one Reed-Solomon decoder configuration

B, = Case: two Reed-Solomon decoder configuration

Repetition Thresholding
Tie Thresholding

Hard Decisions/Perfect Side Information

Decoder I{c): (9,5) Shortened Hamming, Binary Signalling; Correct ¢ bit

errors, ¢ =0,1

Decoder IIb(c):  (10,5) Code (Extension of I), Binary Signalling; Correct ¢ bit

errors, ¢ =0,1

Decoder Im(c): (10,5) Code (Extension of I}, M-ary Signalling; Correct ¢ bit

errors, ¢ =0,1

Decoder HI(c¢): (13,5) Shortened BCH Code, Binary Signalling; Correct ¢ bit

errors, ¢ =0,1,2

Decoder IVb(e): (15,3) BCH Code, Binary Signalling; Correct ¢ bit errors,

¢=0,1,2,3

Decoder IVm(c): (15,5) BCH Code, M-ary Signalling; Correct ¢ bit errors,

Notes:

c=0,1,2,3

(1) Unless otherwise indicated, all curves are for a (32,16) Reed-Solomon outer code.

(2) All results except for A, and B, are for the parallel decoder configuration with
two Reed-Solomon decoders. '

(3) Other parameters are indicated with the graph labeling.

Figure 5.1 Labeling of Performance Curves
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show the performance curves for L =53, L =7 and respectively the double and single
Reed-Solomon decoder systems. The single Reed-Solomon decoder .system has uni-
formly optimum performance for § = 1.0. However, for the double Reed-Solomon
decoder configuration, we see that optimum ENR® is provided by the § = 1.0
decoder, and the optimum p° occurs with § = 2.0.

The curves for L =3 and L ==T are similar and are not presented. Rather, in
the somewhat busy graphs of Figures 5.8 and 5.9 we show minimum and maximum
performance curves for each decoder configuration and diversity length. We note
that in both cases the value of p” increases as L increases. The values of ENR*
should be compared only for the same value of L since the system code rates are not
equivalent. Finally, in Figure 5.10 we show that the maximum and minimum perfor-
mance of the double Reed-Solomon decoder configuration are superior to the same
curves for the single Reed-Solomon decoder system for L =35. Again, these results are
typical of the L =3 and L =7 performance curves,

At this point in the research we decided to concentrate the investigation on
parallel decoding systems which use two or more Reed-Solomon decoders. Unless
stated otherwise, all results and discussions which follow are relative to the two
Reed-Solomon decoder configuration.

In Figures 5.11, 5.13, and 5.15 we plot the performance curves respectively for
the [ ==3, L =3, and L =T hard decision, perfect side information decoders and the
repetition threshold decoders. In each case the perfect side information decoder has
the optimum p* and the T =2 (and T =13 for L =T7) repetition threshold decoder has
the best ENVR *. Amongst the repetition threshold decoders, the T =2 threshold set-

ting provides uniformly optimum performance.
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In Figures 5.12, 5.14. and 3.16 we show the effect of the Reed-Solomon code rate
on the performance of the perfect side information and repecitionrthreshold decoders.
For L =3, 5, and 7 respectively, each graph plots the optimum curve for the ratio
threshold and perfect side information decoders for (32,8), (32,16), and (32,24) Reed-
Solomon outer codes. The general observation is that p* and ENR * both increase as

code rate decreases.

In Figure 5.17 we give a different perspective on the parallel decoder perfor-
mance by plotting the relationship of the input symbol error probability to the out-
put bit error probability. The curves of Figure 5.17 are the best and worse cases for
the repetition threshold decoder when the diversity is 3, 5, and 7. The separation
between the best and worst case curves decreases as L increases. We postulate that

for large L the effect of the threshold setting will become negligible.

The last of the proposed decoders for the L-diversity repetition inner codes uses
the tie thresholding algorithm described in Section 3.6. In Figure 5.18 we plot the
performance of the parallel decoder using tie thresholding for L =3, 5, and 7 as well
as the curves for the respective perfect side information. The tie threshold decoder
yields nearly identical performance at 10~* bit error rate as the optimum repetition
threshold decoder. For L =3, the two decoders perform identically. At L =35, the tie
threshold decoder curve lies below the optimum repetition threshold decoder by less
than .05dB. At L=7 the difference increases to about 0.545. The difference would
be barely noticeable if plotted on a curve such as Figure 5.18. However, we note in
Figure 5.19 that as the required output bit error probability decreases the advantage

of the tie threshold decoder becomes more significant.
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In Tables 5.1 and 5.2 we chart values of p* and ENR* for various parallel
decoder configurations using linear diversity inner codes. Once aéain, the superiority
of the 8 == 1.0 threshold setting is evident for the ratio threshold based decoding
algorithms. Similarly the T = 2 threshold setting is superior in both p’ and ENR”
for the ratio threshold decoding algorithm. Decoder F is a soft decisions perfect side
information decoder with linear diversity inner codes. These results were provided by
Stark and the analysis for such decoding schemes is described in [12]. We note that
the p* value is equal to the case for hard decisions with perfect side information,
decoder E while the ENR* values are approximately 2dB lower for soft decisions.
These observations are consistent for different Reed-Solomon code rates and bit error

rates.

We now consider the performance curves for the case of binary linear block
inner codes as described in Chapter 4. In Figures 5.20 through 5.23 we present
results when the decoders are used with binary channel signalling and in Figures 5.21
and 5.22 we plot results when M-ary signalling is used. Each incomplete decoder
may be used in either error detection only mode or in combined error detection/error
correction mode. We indicate the number of bit errors corrected by each incomplete
decoder in parentheses following the decoder identiﬁer, e.g., [I{(0). Decoders II and IV
allow for both binary and M-ary channel signalling and the labeling is annotated by

b or an m (e.g., IIb (1) ) to identify the decoder application.

In Figure 5.20 we plot performance curves for the case when the inner code is a
(9,5) shortened Hamming code and the outer code is a (32,8), (32,16), or (32,24
Reed-Solomon code and binary channel signalling is used. In each case, the inner

decoder used in error detection only mode is uniformly superior to the single bit error
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Decoder L 9 8, o’ ENR *(dB)
A, 310 - 345 8.00
3 20 3 324 8.27
5 1.0 -- 391 9.63
5 20 3 376 12.37
7 10 - 419 10.77
7 20 7 419 10.77
A, 3 10 - .345 8.00
3 20 3 .324 8.26
5 1.0 -- 438 9.38
5 2. 5 .436 9.18
7 1.0 -- .522 9.82
7 2.0 7 .522 9.84
B, 310 345 7.99
3 20 .346 11.07
5 1.0 .389 9.64
3 2.0 394 12.69
7 1.0 419 10.77
7 2.0 .426 13.79
B, 310 449 6.90
3 20 422 10.08
5 1.0 435 9.18
5 2.0 .068 10.95
7 1.0 .523 9.81
7 2.0 .637 11.69

Table 5.1 Values of * and ENR " for Decoders A and B with (32,16)R -5 Code

and P, = 107%.
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Decoder L T p°  ENR‘(dB)
c 3 2 324 8.26
3 .222 9.87

5 2 .495 8.63

3 .435 9.18

5 413 9.40

T2 337 9.49

3 .339 9.49

7 .521 9.83

D 3 324 8.22
5 492 8.66

7 569 9.39

E 3 623 8.84
5 752 9.30

7 816 9.83

F 3 620 6.80
5 750 7.36

7 820 7.82

Table 5.2 Values of p” and ENR’ for Decoders C,D,E and F with (32,16)R -S

Code and P, = 107*.

correction mode. As the minimum distance of the outer decoder increases so does the
p’ value for the decoder. However, the (32,16) decoder has the optimum ENR *
value. Moreover, for large values of p, the (32,24) code performs best at lower values
of ENR. However, this comparison is not perfectly fair since the £/NR values are on
a per information bit basis and the code rates for the decoders are not equal. We

make comparisons of this type later in this section.

Analogous observations may be made for the case when the inner code is a

(10,5) Hamming code and binary signalling is used. Performance curves for decoders



94

using this inner code and the same outer codes listed above are plotted in Figure
5.21. Again the error detection only mode is superior but not ﬁniformly so for the
case of a (32,8) R—S outer code. The same relative relationships of performance
curves versus outer code minimum distance exists for all the decoder values, hence,

we will consider only (32,16) Reed-Solomon outer codes for the next two decoders.

[n Figure 5.22 we show the results for the case when the inner code is a (13,3)
BCH code having minimum distance 5. We plot curves for the cases when the
incomplete decoder is used for error detection only {III(0)], single bit error correction
[II(1)] and two bit error correction [III(2)]. Although not uniformly superior, the
error detection only mode provides the best p* and all EVR values are within .2548
of the best curve. Similarly, the performance for the (15,3), d,, = 7 BCH inner
code shown in Figure 5.23 has nearly optimal performance from the error detection
only mode. These results are evidence of the Reed-Solomon decoder robustness in

correcting up to twice as many erasures as errors.

We can make the same comparative conclusions for the parallel decoder perfor-
mance when M -ary channel signalling is used. Performance curves for the (10,3)

shortened Hamming and (15,5) BCH code with M-ary signalling are given respec-

tively in Figures 524 and 5.25. We see the same relative performance observed for
the binary signalling case except that the received signal-to-noise ratios are between
one and two dB lower.

In Table 5.3 we chart values of p” and ENR” for the parallel decoders using
binary linear block inner codes. The given values illustrate the numerical magnitudes

of the performance differences discussed above.
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In (5.3) we define the parallel decoder information rate in terms of transmitted
bits per signalling dimension. We now consider comparison of t:hé different decoding
algorithms for systems which have nearly equal information rates. First, in Figure
5.26 we compare the systems which use binary channel signalling. Parings of: (9,5)
inner and (32,14) outer codes; (10,5) inner and (32,16) outer codes; (13,5) inner and
(32,20) outer codes; and (15,5) inner and (32,24) outer codes give information rates
respectively of .121, .125, .120, and .125. The decoder using three bit error correcting
with the (15,3) inner code has excellent performance despite having the lowest o’
value. The simple error detection only, (9,5) inner code system has the best p’ but

requires as much a 3dB more received signal-to-noise ratio at high values of p.

Decoder p° ENR *(dB)

0) .277 10.52
(1) .15¢  .10.54
Ib(0) .292 10.45
b(1) .195 10.66
Im(0) .291 7
Im(1) .281 8.97
III(O) 303 12.20
m(1) .278 11.92
m(2) .190 12.26
[Vb(0) .309 10.25
IVb(1) .300 10.19
IVb(2) .256 10.19
IVb(3) .162 11.05
IVm(0) .306 9.44
IVm(1) .306 9.41
Ivm(2) 275 9.89
IVm(3) .160 10.10

Table 5.3 Values of p* and ENR® for Decoders I, II, IIl and IV with (32,16)R -S
Code and P, = 107
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Similarly, we compare the performance of the codes using M-ary channel signal-
ling in Figures 5.27 and 5.28. In this case all codes have information rates which are
either .015 or .016 bits per dimension. Surprisingly, the simple L =T tie thresholding
and L =3, T=2 repetition threshold decoders with L-diversity inner codes provide

nearly optimum performance. The (10,5) shortened Hamming code seems to yield the
best ENR* — p* compromise.

We conclude this section by analyzing the assumption that the parallel Reed-
Solomon decoders will fail rather than output an erroneous symbol. In Section 2.6
we derive a bound on the probability of joint Reed-Solomon decoder error, PDE,
which is the sum of the probabilities that each of the individual decoders error. To
evaluate (2.23) and (2.27) we require knowledge of the symbol error and erasure
statistics at the input to each of the Reed-Solomon decoders. These values may be
easily determined using the joint prob;bilities P1, - - -, Pg which were derived to cal-

culate bit decoder error probabilities. We note that for the incomplete decoder chan-

-

nel:

P(error) = p, + p4
P (erasure) = py + ps

P(correct) = p3 + pg

and for the complete decoder channel:

Pferror) == py + pa + P3
P(correct) = py + ps + Ps

In Tables 5.4 and 5.5 we give results of the analysis of the bound on joint

decoder error probability. We note that in many cases the Reed-Solomon decoder in



97

Decoder L 4 4, T p PDE, PDE, PDE
A, 3 1.0 2 345 318E-31 .165E-08 .165E-08
3 1.0 2 730 .487E-32 .720E-10 .720E-10
3 2.0 2 329 .334E-18 .116E-08 .116E-08
5 1.0 2 .436 440E-43 .847E-11 847E-11
5 1.0 2 890  440E-43  .842E-11  .842E-11
5 2.0 5 436 .675E-29 .909E-11 909E-11
7 1.0 2 522 .655E-55 .195E-11 195E-11
7 1.0 2 1.000 .651E-53 .200E-11 .200E-11
7 2.0 4 .522 .380E-47 .195E-11 .195E-11
B, 3 1.0 449 .192E-15 .233E-11  .233E-1l
3 1.0 .880  .193E-15 .240E-11  .240E-11
3 20 421  .219E-40 .408E-11  .408E-11
3 2.0 .760 .584E-33 .323E-11 323E-11
5 1.0 434 .643E-29  .789E-11  .789E-11
5 1.0 870 .670E-29  .889E-11  .889E-11
5 2.0 .568  .000E+00 .l170E-11  .170E-11
7 1.0 .523 .560E-41 192E-11 192E-11
7 1.0 1.000 .559E-41 .195E-11 195E-11
7 20 .657 .000E+00 .165E-11  .1653E-11
(o 3 2 324 .630E-17 .105E-08 .105E-08
3 2 .650 .638E-17 .106E-08 .106E-08
3 3 221 .239E-49 .175E-11 175E-11
5 2 495 .148E-10  .381E-09 .396E-09
5 2 1.000 .148E-10 .381E-09 .396E-09
5 5 413 .000E+00 .165E-11 .165E-11
7 2 .558 .265E-08 .305E-10 .269E-08
7 2 1.000 279E-08 322E-10 .282E-08
7 7 521 .000E+00 .166E-11 .166E-11
D 3 324 573E-33  172E-19 172E-19
3 .630 .798E-38 .452E-25 .452E-25
3 1.000 .194E-41 .285E-29 .285E-29
5 .492 .598E-26 .243E-20 .243E-20
3 1.000 219E-36 .140E-31 .140E-31
7 570 315E-24 292E-21 .293E-21
7 1.000 .183E-36 .863E-34 .864E-34
E 3 .623  .000E+00 .681E-18 .681E-18
3 - .830 .000E+00 .202E-34 .202E-34
3 1.000 .000E+00 .198E-37 .198E-37
5 750 .000E+00  .628E-18 .628E-18
5 1.000 .000E+00 .361E-38 .361E-38
5 .840 .000E+00  .146E-27 .146E-27
5 816 .000E+00 .809E-18 .809E-18
7 1.000 .000E+00 .143E-38 .143E-38

Table 5.4 Reed-Solomon Decoder Error Probabilities for L-Diversity Inner Codes
With (32,16) R -S Outer Code.
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Decoder p PDE, - PDE, PDE

1(0) 27700 .122E-14  .504E-07  .304E-07
51000  .133E-18  .333E-07  .335E-07
1.00000 .836E-24 .T19E-07 .T19E-07

I(1) 15400 .337TE-07 .558E-09  .563E-07
31000 .366E-06 .605E-08  .572E-06
1.00000 .147E-04 .145E-06 .149E-04

I1b(0) 29200  .143E-17  .714E-07  .T14E-07
52000 .210E-21  .176E-06 .176E-06
1.00000 .141E-30 .787E-06  .7T87E-06

111(0) 30300 .150E-26  .894E-07  .894E-07
48000  .7T39E-33  .143E-07  .143E-07
1.00000 .335E-47  .534E-07  .554E-07

11(2) .19000  .297E-08 .328E-08  .626E-08
.36000 .105E-07  .134E-07  .240E-07
1.00000 .521E-07 .764E-07  .129E-06

IVb(0) 31000 .204E-32  .103E-06  .103E-06
52000 .171E-37  .253E-06  .253E-06
1.00000 .000E+00 .978E-06  .978E-06

IVB(3) .16200 .307E-07  .877E-09  .316E-07
33000 .114E-05 .398E-07  .118E-05
1.00000 .337E-05  .114E-05  .4501-05

IIm(0) 29100 .151E-17 .708E-07 .T08E-07
50000 .133E-17  .602E-06  .602E-06
1.00000 .134E-30  .136E-05  .136E-05

IIm(1) 28100 .641E-16 .369E-07  .569E-07
.38000 .409E-11  .209E-06  .209E-06
1.00000 .918E-13  .134E-05  .134E-05

[Vm(0)  .30600 .199E-32  .974E-07  .974E-07
47000  .104E-33  .524E-06  .524E-06
1.00000 .000E+00 .139E-05 .139E-05

[Vm(3)  .16000 .350E-07 .802E-09  .358E-07
30000 .278E-05 .676E-07  .284E-05
1.00000 .402E-05 .140E-05 .542E-05

Table 5.5 Reed-Solomon Decoder Error Probabilities for Binary Linear Block Inner

Codes With (32,16) R-S Outer Code.
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the errors and erasures incomplete decoder channel has significantly lower probability
of producing and erroneous output. Hence, in these cases performance would be
improved by choosing that decoders output in the event the outer decoders produce
different symbols. The worst case is for the (9,5) shortened Hamming inner code with
single bit error correction which we have already noted is uniformly outperformed by
the same decoder with error detection only. Our assumption of negligible Reed-

Solomon decoder error probability is vindicated by these results.

We did not perform a computer analysis of the multiple parallel Reed-Solomon
decoder configuration. Most of the decoders had a single configuration which was
uniformly superior or nearly so. In such situations we could not justify the added
complexity of the multiple decoder. In general, the multiple parallel decoder would
give at least the performance of the lower envelope of the double parailel decoder
cu'rves. We justify this argument by illustration for the case of three parallel

decoders. The probability of joint Reed-Solomon decoder error is given by

P(DE) = P(DE, (| DE, | DE»)
< P(DE, N DEy)
< P(DE, (| DE,)

Hence, since the same symbol error and erasure statistics will exist at the inputs to
the Reed-Solomon decoders as do for the double parallel decoders, the multiple paral-

lel decoder system will select the optimum channel output or default to the complete

inner decoder.
5.4 Performance Curves

For easy reference we have grouped all of the parallel decoder performance
curves at the end of the chapter. Figure 5.1 gives a quick summary of the notation

used to identify the different decoding algorithms.
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P,=107, (32,16)R -S, Decoder A,, L=3:(a
,=2and §>1.1,8,=3; (c) =15, §,=2; (d)
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Figure 5.3

P,=107*, (32,16)R -5, Decoders A, and A, L=3: (
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Figure 5.4 P,=107 (32,16)R -5, Decoders A, and A,, L=3: (a) A, 6=1.0;
(b) 4,, =20, §,=5; (c) Ay, 0=1.0; (d) Ay, §=2.0, 8, =14 (e} 4},
§=20, 8, =3; A, 6=2.0, §, =5



103

E
by 81

Figure 5.5 P,=10"" (32,16)R -5, Decoders A, and A, L=T: (a) A,, all 4,
all 6,5 (b) Ay, =1.0; (¢) Ay, §=1.5, §,=4: (d) A, §=2.0, §, =4
(e) Ay, 0=2.0, 8, =T
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P,=107, (32.16)R -S. Decoder B, L =5: (a) §=1.0: (b) §=1.25:

Figure 5.8
(c) 9=1.5; (d) 8=1.75: (e) §=2.0
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Figure 5.7 Pb =10—4, (32,16)R —S, Decoder Bl? L=T: (a) 01.0; (b) 91‘25; (C) 91‘5;
(d) 8755 (e) 92
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Figure 5.8

P, =107}, (32.16)R-S, Decoders By (a) L=3. §=1.0:

9==2.0: (¢} L ==5. 8=1.0; (d) L =53, §=2.0; (e} L
L=T, §=2.0
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Figure 5.9 P,=10"" (32.16)R-S, Decoder B;: (a) L =3, §=1.0:
§=2.0; (¢) L =35, 8=1.0; (d) L =5, 0=2.0; (e} L =T, §=2.0
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Fi n-
igure 5.10 P,=10"*, (32.16)R-S, Decoders B, and B, L=5: (a) By, =1.0:
(b) By, 6=1.0; (c) By, 6=2.0; (d) By, 8=2.0 B
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Figure 5.11 P, =107 (32.16)R -5, Decoders C and E, L =3: (a} C, T =2 (b)
E;(c) C, T=3
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Figure 5.13 P, =107 (32.16)R

-5, Decoders C and £, L =5: {a) C, T=4 or
5 (b) C, T=13;(c) C, T=2

=2;(d) £
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Figure 5.14 P, =107 Decoders C and £, L =3, T=2: (a) C, (32,24)R -S;
C, (32.16)R-S: (¢) C, (32, i ;
(32,16)R-S; (f) £, (32,8)R-S
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Figure 5.15 P,=10"* (32,16)R-S, Decoders C and £, L =T: (a) C, T=4,5.6
or 7;(b) C, T=3o0r 3; (c) £
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Figure 5.18 P,=107", Decoders C' and £, L =7, T=2:(a) C, (32.24)R-S; (b)
C, (32,16)R-S; (c) C, (32.8)R-5; ( ) E, (3224)R-5; (e} £,

(32,16)R -5; (f) E, (32.8)R-S
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Figure 5.18 P,=10"* (32,16)R-S, Decoders D and E: (a)

L=5;(c) D, L=T:(d) E, L=3; () £, L=5; ()
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Figure 5.19 (

and D, L=5;(¢) C, L
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Figure 5.20 P,=10"%, Decoder I (a)I(1), (32,24)R -S; (b) I{0) (32,24)R -S;
(¢) (1), (32,16)R-S; (d)1(0), (32,16)R-S; (eI 2 ;
(1) 10), (32,8)R -S
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Figure 5.21 P, =10, Decoder IIb: (2) IIb(1), (32,24)R-S; (b) IIb(0),
(32.24)R-S;  (c) IIb(1), (32,16)R-S; (d) [Ib(0), (32.16)R-S:
(e) ITb(1), (32,8)R-S; (f) IIb(0), (32,8)R -S
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Figure 5.22 P,=10"
,=107%, (32,16)R -S, Decoder III: (a) II(2); (b) I(1); (c) II(0)
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Figure 5.23 P,=10"%, (32,16)R-S, Decoder [Vb: (a) IVb(3); (b) IVb(2);
(¢) IVB(1); (d) IVb(0)
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Figure 5.24 P,=10"*, Decoder IIm: (a)IIm(1) (32,24)R-S; (b) [Im(0)
(32,24)R-S; (c) UIm(1), (32,16)R-S; (d) [Im(0), (32.16)R-S;
(e) Im(1), (32,08)R -S; (f) IIm(0), (32,08)R -S
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Figure 5.25 P,=10"% (32,16)R-S, Decoder [Vm: (a) IVm(0); (b) IVm(1)
(¢} IVm(2); (d) [Vm(3)
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Figure 5.28 Comparison of Schemes with Binary Signalling and Approximately
Equal Codes Rates R (in bits per dimension), P,=107% (a) [VDb(3),
(32,24)R -S, R=.125; (b) IVb(1), (32,24)R-S, R =.125; (¢) [11(2),
(32,20)R -S, R =.120; (d) III(0), (32,20)R-S, R =.120; (e) [Ib(0),
(32,16)R -S, R =.125; (f) I(0), (32,14)R-S, R =.121
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Figure 5.27 Comparison of Schemes with M-ary Signalling and Approximately

Equal Codes Rates R (in bits per dimension), P,=10": (a) C,
L =3, T=2, (32,10)R-S, R=.016; (b) A, and B, L =3, 6=1.0,
(32,16)R-S, R=.016; (c) D, L =T, (32,22)R-S, R =.015; (d) B.,
L=5, 6=2.0, (32,16)R-S, R=.016; (e)Im(0), (32,6)R-S,
R=.015 (f)E, L=3, (32,10)R-S, R=016 and L =5,
(32,22)R-S, R=.015



E
—® gy BT

126

Figure 5.28

Comparison of Schemes with M-ary Signalling and Approximately
Equal Codes Rates R (in bits per dimension), P, =10"%
(a) IVm(3), (32,10)R-S, R=.016; (b)IVm(0), (32,10)R-5,
R =.016; (¢) C, L=7, T=2, (32,22)R-S, R=.015; (d) C, L=5, .
T =2, (32,16)R-S, R=.016; (e) £, L =5, (32,16)R-S, R =.016;
() E, L=3, (32,10)0R-S, R=.016 and L=5, (3222)R-S,
R =.015



CHAPTER 6

SUMMARY AND CONCLUSIONS

In this thesis we have investigated the use of parallel decoding schemes to miti-
gate the effects of partial band Ga;ussian jamming for spread spectrum, M-ary
orthogonal, frequency hopped communication systems which use concatenated coded
error-correcting codes. The uniqueness of the parallel decoding technique and the
concentration of our presentation has been on the design and analysis of the inner
decoding system. We have presented a general analysis which may be used as a basis
for evaluation of any decoding schemes which preserve symbol to symbol indepen-
dence at the output of the inner decoder. We have also established the validity of
the parallel decoding scheme via an analysis of the joint error rate of the Reed-

Solomon outer decoders.

In Chapters 3 and 4 we have defined and derived performance statistics for
seven decoding schemes which encompass use of L-diversity and general binary linear
block inner codes. The results of computer analysis for many variations of inner
codes are presented in Chapter 5. We have seen that performance gains are realizable
with some very simple schemes (e.g., tie thresholding) while other very complex
decoding algorithms (e.g., Algorithm A based on Viterbi ratio thresholding) yielded
no appreciable improvements. The most significant performance was exhibited by

the systems which used BCH inner codes.
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This paper represents the culmination of only a segment of the research on
parallel decoding algorithms. We have postulated additional problems for continua-
tion of the research. Herein we have considered only a two state, partial band, Gaus-
sian jammer in a thermal noise free environment. Addition of background noise is

easily accommodated in the analysis and would likely result in commensurate

. . - * . * . . .
increases in £.VR * and decreases in p° as a function of the noise power density.

The optimal partial band Gaussian strategy against the parallel decoded system
may involve a multi-state jammer with two or more nonzero power levels in segments
of the band. Another constraint to be relaxed is the Gaussian assumption leading to
consideration of fading and jamming together. A Rician fading channel model com-
plicates the analysis by introducing symbol to symbol correlations which must be
accounted for in the calculations leading to joint statistics at the outputs of both

inner and outer decoders.

Our analysis considers numerous codes, with perfect side information, with
derived side information, and with no side information. We concentrated on the use
of binary linear block codes where the blocking of information bits was equal to the
outer code symbol size and resulted in a single information symbol being transmitted
per codeword. This constraint might be relaxed to allow multiple outer code symbols
to be transmitted per inner code codeword. Finally, the analysis could be expanded

to consider other than binary codes for the inner encoder.



APPENDIX A

DERIVATION OF RATIO THRESHOLDING RESULTS

A.1 Introduction

We present a ratio-thresholding technique as developed by Viterbi [18,19]. With
this technique we produce a single bit quality measure of the symbol estimate in an
M-ary FSK communication system. Although the procedure could be equally well
applied to any M-ary estimation which compares signal amplitudes or powers, we
will concentrate on non-coherent reception of FSK signals.

The results given in this Appendix are due to Viterbi and are presented for the
purpose of completeness. On the other hand, the derivations were not provided in
18] or [19] and may be of interest to the reader. In some cases the derivations were

not readily obvious to the author.
A.2 Ratio - Thresholding

The generic receiver for non-coherent reception of M-ary FSK signals is given in
Figure A.1. We assume that the receiver is synchronized to the frequency hopping
pattern and that during any hop interval the frequency separations of the M candi-
date signals are integer multiples of (275)™!. - Equivalently, the M candidate signals

are orthogonal where T'; is the information symbol time.
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Figure A.1 Non-Coherent M-ary FSK Receiver
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We will concentrate on the effects of the jammer and hence will assume the only
channel noise is that due to the jammer. Furthermore, the jammer is modeled as a
partial band jammer which jams a fraction p of the hopping bandwidth with uniform
power density .V;/p. The received signal is either totally within or external to the

jammed bandwidth.

Assuming symbol £ is transmitted and that the signal lies within a jammed por-
tion of the bandwidth, standard calculations (e.g., 6,VolI, Sec.4.T! and 11,

Sec.4.3.2!) yield the following probability distributions on the matched filter outputs.

- B
P 4E¢N, .
e k
1EsN, 77
Pg,(a) = o i ff_s_ (A.l)
£ e sV, Ny (____p\/a—) =k
4E31\JJ 0 1Vj

Iy is the 0 -order modified Bessel function; the first distribution is exponential and

the second is non-central chi-square with two degrees of freedom.

The receiver décides symbol k is transmitted if

Ev= A {£;} (A.2)

The Viterbi ratio threshold test assigns a quality bit, ¢, to the decision as follows:

0 E, > 9F .
£ e 8} (A.3)

7 =11 otherwise

where § > 1 is a real variable. Simply stated, the quality bit is zero if the ratio of
the largest filter output to the second largest flter output is greater than the thres-

hold 6.
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With orthogonal, equal energy signalling the receiver statistics are independent
of the transmitted symbol. Thus, without loss of generality we will assume symbol 0
was transmitted. The resulting discrete channel model is shown in figure A.2 where

the transition probabilities are labeled consistent with [19]. We now derive expres-

sions for F,(8), Fg(8), AF.() and AFg(8).

Fc(e)

(M~1)F_ (6)

(M'l)AFE(G) not 0, q=0
not 0, g=1

Figure A.2 Ratio-Threshold Discrete Channel

F.(8) =P{Ey>06E; j=2,...,M-1|0sent}
= P{E,> 91’7]» j=2,...,M|0sent, not jammed}P {not jammed | O sent}

I

+~ P{E,> 951» j=2,...,M|0 sent, jammed}P {jammed | 0 sent}
=(1-p)+pP{Ey > 95,- J=2,...,U~-1|0 sent, jammed}
o0 = = (A4)
= 0 = Ey = .
= (1 - p) +pf P{EIST, e ,E'w_ls—e— | E4,0 sent, jammed}pz (a)da
0

([ Pz (B)d3M™ Pg (a)da

=(1-p)+»p

o— 8
S i

Where we have used: jamming is independent of the transmitted symbol;
without jamming the symbol is received error free; with orthogonal signalling the

error events are independent and identically distributed. The distribution of Pfl(ﬁ)
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is given by A.la and thus,

paj g
o B M-l
[1 L, BN ‘

pkal

M-1 M -1 -
=1+ ( . )(-1)*5 4Es N
k=1

Comparing with A.4 and noting pg () is given by A.16 we need to evaluate

pkal pa »Eq

T sy, TRE N, TN, /=
Letting,
¢ = —F [f_“‘_‘_f]
4E 5N, 9
_ P[]
N, Y9+ k
»Es %0
I= oy e 7 4 [ et nevedada

The integrand is recognized as the general form for a non-central Chi-square distribu-

tion with two degrees of freedom. Thus, the integral is unity and A.4 becomes

M-1 xw -1 -—(——-) ’
F.8)=1+p % ( . ) (-t Voo (A.6)
k=1

Fz(8) is the probability an erroneous symbol is received with quality bit 0.
With equal energy, orthogonal signalling this probability is the same for all M -1

incorrect symbols. Hence, we will evaluate the probability of receiving symbol 1

‘with g = 0.
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Fe(8) = P{E\>0E; j =02, ...,M-1]0 sent}
=p P{ELZé)E]- j =02,...,M-1]|0sent, jammed}
I . ~ ~
. Ey 5 _E ~ E, .
= PfP{EOS—é‘l‘szS—H—I, . zEM-ls‘el | £',,0 sent, jammed}PEL‘:)d"
0
x

Where we have used the same reasoning as led to equation A.4. The second

inner integral is the same form as A.3 and absorbing the “1” in the summation we

have:

2 M-2

8 M2 [ M -2 - 4‘:;‘7/‘5
[Pg(1)dv =Y L ) pFe T
0

k=0

Now, using [11,Equation 1.1.121} and {13,Appendix Al

2E5p /9
[IPE Aldf] =1- \/ '/ 2/275/N, ’
- f:’_” _raf8 m
- N, 1By N, 1 /@ l Jol-2 @
¢ ¢ mgl[?'ES 9 ‘M[I\J’J 9 }

Combining all the terms we arrive at an integral much like I above except that the

integral is put in the form of a non-central Chi-square distribution with Zm —1
degrees of freedom. Again the integral is unity and we are left with

E”’r k0

M-2 M-2 > -~ H 9 ] 1 m
— _ 1 k vy Llrk+d
g ggo ( k S l+k-8 ,,21 1+k+6
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Since (1—k+8) > 1, the inner sum is a geometric progression and is easily reduced.

Finally, changing the range of summation we arrive at:

va [ M -1 _Esprk-i1
Fel0) = 37 2( )(-1)*"——" b MR (A

Equations (A.6) and (A.7) are similar to [19, Equations 3.9 and 3.10!. Formulas
for AF.(8) and AFg(6) are not derived in the references; however, we offer the

derivations which follow. Again assuming symbol 0 was transmitted let
A, = event £, > fj for all j € {1, ..., M-1} given O sent

A, =  event there exists at least one value of y € {1, ..., M~1} such that

E, < 957, given O sent

then,
AF (0) = P{A, M Ag}
= P{4,}-P{A, N AL}
but,
A§ = event EOZOEj forall y € {1,...,M~-1} given O sent
hence,

Ay A = Az

AF,(0) = P{4,} - P{A3}

(A.3)
= Fc(l) - Fc(o)
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Similarly, if we let
B, = event El > ENJ forall j € {0,2,3,...,M -1} given 0 sent

B, = event there exist at least one value of y € {0,2,3, ..., M -1} such

that E~1 < 95,- given O sent

by the same argument as above

AFg(8) = Pr{B, N B,}
= Fg(1) - Fg(9)
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APPENDIX B

ENUMERATION TECHNIQUE AND FORMULAS

B.1 Introduction

For analysis of the parallel decoding configurations with L -diversity inner codes,
we use one of two models for the discrete channel between the output of the inner
encoders and the inputs to the inner decoders. The first model is the M input, 2M
output channel which results from using the ratio threshold technique described in
Appendix A. Figure A.2 illustrates the transition probabilities for this channel where
symbol 0 is assumed transmitted and where the M~1 error events of each type (good
and bad quality bits) are lumped together. The channel has symmetry in that the
four event types and transition probabilities of figure A.2 are identical regardless of

which symbol is transmitted.

The second channel of interest is the conventional W input, M output M-ary
symmetric channel illustrated in Figure B.1 where symbol 0 is assumed transmirtted.
We use the transition probabilities p/ (M -1) and ¢ = 1-p throughout this thesis.

To evaluate the performance of the parallel decoders with L-diversity inner
encoders, we will often be concerned with calculation of the probability that specific
combinations of outputs occur. For example, with L = 5 we might ask what the
probability is that we receive symbol 0 twice and no other symbol more than twice

assuming symbol 0 was transmitted 3 times.
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0
p/(M-1)
2
p/ (M~1)
M~1

Figure B.1 M-ary Symmetric Channel

To start with we know that any single event which has two symbols 0 and
three symbols not 0 being received has probability
] p 3

q‘( Y ) (B.1)

Hence, we merely need to enumerate (or count) the number of events which satisfy

the desired condition and multiply this number by (B.1). In this appendix we present

a general approach for evaluating probabilities of events like given in the example

above. We also give a compact form for expressing probabilities of this type which

we call enumeration formulas or equations. We will describe the technique by exam-

ple, deriving the probability of error for an L-diversity code on an M-ary symmetric

channel. We conclude the appendix by giving sample evaluations of ten enumeration

formulas used in Chapter 3.
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B.2 Probability of Error for L-diversity Codes

The probability of error for an L-diversity code on an M-ary alphabet used
over an M-ary symmetric is evaluated, for example, in [16,Appendix A] for
L =34,...,7. However, we know of no published algorithm, suitable for com-
puter automation, which will derive a solution for arbitrary L. The enumeration
procedure described herein provides such an algorithm.

We begin by considering specific events to help motivate the general solution.
Let L =3 and consider the case when 3 correct symbols are received. The probability

of receiving 3 correct symbols and any two specific incorrect symbols

2 2
) e () = o0 (52
(3 T\ M LRV
The two incorrect symbols may be the same (M-1) ways and may be different

(M-1)(M-2) ways. Thus, the total probability of receiving 3 correct and two

incorrect symbols is

(M-1) = (M-1)(M-2)10¢ ( S )2 = 10¢°p° (B.2)
as in [16]. Equation (B.2) is also the probability of receiving 3 correct symbols and
correctly decoding.

Now, consider the probability of receiving two correct symbols and correctly
decoding. The probability of receiving 2 correct symbols and three specific incorrect

symbols is

()i ) =0 ()

We cannot count the case when all three incorrect symbols are the same since then

the decoder will make an error. We can select two of (M~1) incorrect symbols to fill
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the three error positions by using one of the symbols twice. To count the ways this

may be done proceed as follows: (1) select the two incorrect symbols in (‘wq_l)

ways; (2) choose one of the two symbols to use twice in two ways; (3) choose 2 of the

3 error position tolocate the identical incorrect symbols in ( g ) ways. Finally, note
that in each case the decoder will have to choose between the two incorrect symbols
and the two correct symbols. With probability 1/2 the correct symbol will be

chosen. Hence, the total probability for this event is

(M) (3) Logt (2 )3=Isﬁ a%° (B.3a)

Finally, we can choose three distinct incorrect symbols and fill the three error posi-

tions in (M-1)(M-2)(M-3) ways. The total probability of this event is

3 .
(M-t M-2)(M-3)10¢* ( el ) = 10% %9’ (B.3b)

The sum of (B.3a)and (B.3b) is the probability two correct symbols are received and
decoded correctly which also matches [16!.

We can now consider the general case for evaluating the probability of correct
decoding for L -diversity codes on M-ary symmetric channels. The probability of
error will be one minus this quantity. If one or more correct symbols are received

and if n, is the number of correct symbols received, we write

P (correct) = nél l: X}’: G(Y,n.) ( glf) ] ™ ( —;[E_—l )L»n: B4

where the role of the bracketed quantity is to enumerate all events which contribute

to the desired probability.
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Welet ¥ = (m,m,, ..., m,) where m; > m, > -+ - > m_ > 0 be a generic
configuration of received symbols not constrained by an external sum. For example,

in (B.4) there are L —n_ positions to be filled by m, of symbol A, m, of symbol B, etec.

a
Here the symbols are different and Y. m; = L - n,. For the case of calculating the
=1

probability of correct decoding the L-diversity codes we also introduce the constraint

n, > m, otherwise a correct decision couldn’t be made.

We next define the values n, . .., ny as follows

n, = the number of terms in the largest grouping of equal terms in Y.

ny = the number of terms in the next largest grouping of equal terms in Y.

ng the number of terms in the smallest grouping of equal terms in Y.
Wenoten, +n, +--~n;=a

To illustrate, we will repeat an example given in Chapter 3. Let L =35,

M =4, the symbol set {a,b,c,d}. If a is sent, the configuration ¥ = (2,1)
accounts for the received L-tuples aabbc, aabdbd, aaccd, aabcc, aabdd, and aacdd
(without respect to order). In this example a =2, ny =1, n, =1, 3 =2. The

configuration Y = (1,1,1) accounts for the L-tuple aabcd (without respect to order).

In thiscasea =3, n, = 3,3 = 1.

The term ( l}',) in (B.4) is a shorthand notation for the multinomial coefficient:
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mymgm, S 2 (B.5)
mylmal - - - m,l![L -3 my ]!

=1

This term provides the number of ways of choosing m;, m,, ..., m, and n_ posi-

tions in the received L-tuple. There are ( Mo:l ) ways to choose the a symbols to

fill these positions and

( ) )
Ny ng "Ny

ways to assign each group of a symbols to the generic configuration.

Finally, we need to account for random choices made by the decoder in case of
ties. Define IV, as the number of terms in ¥ which equal n,. Then the probability
the correct symbol is chosen is given by 1/(/NV,+1). We note, if N, = 0 this proba-
bility is unity.

Thus, putting all these terms together we arrive at:

(=) (o )

i

G(Y,n,)

I

=( 1 )(M-l)(M_z)---(M_a)
N

L -,‘I"]. nlfne_)! c n.j!
For a final example, consider L = 7 and n, = 3. We know

L-n,
)= ()

for all terms, hence, we will calculate the bracketed quantity of (B.4). There are four

possible generic configuration which meet the constraints set above
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M—1)(1V[—2)(.&L3)(M—4)( 7 )

_ |
G{Y,3) = " 1,1,1,1

= 35(M-1)(M-2)(M=-3)(M-4)

(2) Y2 = (21111)

a=3,n =2, n,=1, =2, N, =0

DV VL3N M 7
G(Yy3) = (M’”(M‘;R(;Y A ( 2,1,1 )

= 210(M-1)(M-2)(M-3)

o 7\
G(Y,3) = (M—I;(!Mn) ( 2’2)

= 105(M-1)(M-2)

Combining (1)-(4), the full term for n, = 3 is

- ‘{3_51)3 [s(M-z) + 6(M-2)(M-3) + (M-2)(M-3)(M-4) ]

which also agrees with [16].

3
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B.3 Sample Evaluations of Enumeration Formulas

This section provides evaluations of ten of the enumeration formulas of Chapter

3 for sample values of L and appropriate thresholds. To allow more compact presen-

tation of the formulas define

for example, m;3 = (M-1)(M-2)(M-3)

Equation (3.7) {let q; = F.(1), py = Fg(1)]

PE, N Ey) = 2mypqipi + myapt

=3
P(E, N Ey) = 15my,q{p7 + (4m14+30m13*‘15m12)41?f

+ (mys+10m+15mya)py

P(E, N Ey) = T0m59:p)
+ (105m,,+420m 3—210m ,)q 7P
+ (6m15—;-105m13+595m14+525m13—70mlz)qlpf

+ (my7+21m g+140m5+315m ) ~1T5m wet

Equation (3.18) [ F,, Fg, F, defined in section 3.3

(1) L =3
pp= Ml p3 g FoF? = 3mFRF,

1

+ 3mchFEF,+m13Fg

(B.9a)

(B.9b)

(B.9¢)

(B.10a)
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M-1 5 .
pr = A Fp = 0’"11FEFz4 - lo(mlemlz)Fzngzs
+10m F, FEF +(10m 3+30m ,) FSF }

+ (20m ,+30m ) Fo FEF 2

. (B.10b)
+ (13m 3 +16m ) Fo F2F, ~ 15m FEFEF,
- (m15-1—10m12+15m13)F55~
-+ (4m14+30m13+15m12)FcF£ -+ 15m12FC2F§
Equation (3.26) [let ¢3 = ¢, p3 = -W—PI, p( ) = unit step function|
[ —
(1) L =3
pr=1[my +3mu(T-3)] pj (B.11a)
< [2mp+3myu(T-3) | qap3
(2) L =5
Py = mys+10m s+15m 3+ 10(m z+m)u( T~4) + 5mpu( T-5p3 (B.11b)
+ [4m  +30m 3~ 15m 4+20m ou( T-4) + 5mu(T-5) | ¢34 '
+ (18mp+10my u(T-4) | q5p3
3) L =1
Do = [ m17-:-21m15+140m15‘—315m14+175m13
-+ (35m“+105m13+35m12)y( T‘s)
- (21m 3 +21m (T ~6) = Tmou(T-7)] ps 4
+ (21myy 12)u(T-6) 124(T-7) ] p3 (B.11¢)

+ [6m 14+ 105m jg—455m |, ~525m 3+T0m

+ (35my+105m 3)u( T -3) + 42m,u( T-6)+Tm ,u(T-7) | q3p
+ [105m ,+420m |3 +210m ,,=150m ou( T-5) = 21m u(T-6) | ¢fp3
+ 170myy = 35m,u(T-5) | ¢ip3



148

Equation (3.29) {use q4,p5 as defined abovel

(1) L=5T=2
p1s = (10my+15m 3)p5 + (30m 3 +15m 5)qaps

+ 3.75myaq3p3

(2) L=17T=3

Pry = (35m 5+210m  =175myy)ps + (210m 3+210m 5)p

~ (140m 1, =420m ;3 =T0m 3)p395 = 35my5p3q3

(3) L=7T=2

Pis = (21m g+140m s =315m ,+175m 3)p4

105m 5 +445m 1 +525m 3 +70m 15)q3P 3

+(
+ (52.5m,+350m 3+210m ,)qps + 35m2q3ps

Equation (3.31) [use q3,p3 |

I

2

(1) L =5T

5 . 4
P = mysp3 T 4m4q3P3

2) L =1,T =3
Pa = (m17-¢‘—f.’).m15-’-105m15—:-105m14)p37
— (6mg=105m5—~313m 1, +105m3)q3p 3

+ (105m ,—210m 13)q5ps

I

(3) L=1,T

7T . 3
mysp3 + 6mygqsp;

2

P2

Equation (3.3.2) [use ¢3,p3 |

(1) L =5 T=2
P = [ equation (B.12a) | + 3.753m,97p3

(0) L=1,T=3
p.s = | equation (B.12b) | = 5’:5'71124331’3.4

q 3S

(B.12¢)

(B.13a)

(B.13b)

(B.13c)

(B.14a)

(B.14b)
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(3) L=7T=2
p.s = | equation (B.12¢c) | ~ 35m ,q3p

59 3 -7 iy 3
+(52.53m ~70m3)q5p3

Equation (3.3.3) [use ¢3,p3 |

() L=5T=2
P(E;) = equation (B.13a) | — m ,q;p;

(2) L=7T=3
P(E;) = | equation (B.13b) | = msq:p7

L

— (2].m15+105m“—-105m13)‘13’2p35

() L=1,T=2
P(E.) = | equation (B.13c) | + m 5950

Equation (3.4.2) luse ¢4,p4 |

L =3

Py =0
L =5

Piv = 10mp3 + 30m3q5p5
L =1

Piy = (21m g+210m 5—1260m ,,+630m 3)p ]

— (105m 1g+35m ,,~105m 3)q3p

+ (210m 3 +210m 5)q5p3

Equation (3.43) [use ¢3,p3 |

L =3

P2 =2mysq3p; + myp3i

(B.14c)

(B.13b)

(B.15¢)

(B.162)

(B.16b)

(B.16¢)
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L =3

2= 13myq5p3 + (15my+4m,)qsp5

-

A~}

+ (Limyz+my5)p3

L\,
I

-
{

pr= TOmyy3ps + (105m  +210m 3)¢dp3

=1

~ (70m,+105m 3 ~315m |, +~6m 5)q;3p 3

+ (70m 3 =105m,,)105m 5+ m =rs

Equation (3.44) [use q3,p3 |

L =3
2
Ps = Mmpqip3
L =5
. 4 - 23
Ps = M apy + 13maqip3
L =17

ps = mygps + (105m,+105m 3)q5p3

. 4
+ 70m yqap;

(B.17b)

(B.17¢)

(B.18a)

(B.18b)

(B.18¢)
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APPENDIX C

CODE AND COSET WEIGHT DISTRIBUTIONS

In this appendix we give binary and M-ary weight enumerators or equivalently

weight distributions for Codes I, II, III, and IV as defined in Chapter 4.

In the tables that follow the weight distributions start at weight 1 in the left-
most column and increment by ! each position from left to right. For example, con-
sider the code weight distribution for the (9,5) code. There are no vectors of weight
one or two, 7 vectors of weight three, 9 of weight four, etec. Note that the tables do
not account for the weight zero vector which must lie in both the code and coset

weight distributions.

For binary weights, with reference to Section 4.3, the “Code Weight Distribu-
tion” corresponds to A; enumerator values, the “Coset Leader Weight Distribution”
corresponds to L, enumerator values, “Weight Distribution of Cosets’’ corresponds to
C;; enumerator values exclding the coset leaders, and the “Weight vs Bit Error

7

Matrix” corresponds to the values N(w,j).

For M-ary weight distributions the correspondences are the same except refer-

ences are to the primed values 4/, L}, C';, and N'(w,j) of Section 4.4.
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WEIGHT DISTRIBUTIONS FOR (9,5) CODE

BINARY WEIGHTS -~ CODE I

WEIGHT DISTRIBUTION OF COSETS

WGT=1 0] 21 36 72 81
WGT=2 4] 9 41 45 39
WGT=3 ¢ 0 0 0 0
p ERR 1 ¥
#ERRS=1 0 15 24 30
#ERRS=2 0 8 32 41
£ERRS=3 0 6 24 42
fERRS=4 0 1 4 13
#ERRS=5 0 0] 0 0

52
32
29

2

O WOy

PO = O

o O

HFOOOOo



CODE WEIGHT DISTRIBUTION
0 0 0 16 0 12 0
COSET LEADER WEIGHT DISTRIBUTION
10 15 6 0 0 0 0
W I
WGT=1 0 0 64 0 168 0
WGT=2 0 30 0 194 0 198
WGT=3 0 0 50 0 84 0
WGT=4 0 0 0 0 0 0
#ERRS=1 0 15 35 50 45
$ERRS=2 0 14 63 95 86
#ERRS=3 0 0 11 48 81
#ERRS=4 0 1 5 17 40
#ERRS=5 0 0 Q 0 0

151

WEIGHT DISTRIBUTIONS FOR (10,5)

BINARY WEIGHTS - CODE IIb

M-ARY WEIGHTS

CODE WEIGHT DISTRIBUTION
1 30
c 7 49T DT T T
26 5
WEIGHT DISTRIBUTIQON OF COSETS
BWGT=1 12 298
BWGT=2 18 447
BWGT=3 5 181
BWGT=4 0 )
YEIG v 1
#ERRS=1 10 146
2ERRS=2 10 301
2ERRS=3 4 307
$ERRS=4 12 145

FERRS=5

0

32

(M=5)

CODE
0
0
72 0
0 42
48 0
0 0
15 0 0
50 11 1
92 63 20
43 35 14
5 11 10
- CODE IIm

OO0

nmouvmoo

QOO

HOOOO
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WEIGHT DISTRIBUTIONS
BINARY WEIGHTS

CODE WEIGHT DISTRIBUTION
0 0 8 10 4
COSET LEADER WEIGHT DISTRIBUTION
13 78 134 30 0 0 0
WEIGHT DISTRIBUTION OF COSETS
WGT=1 0 40 60 92
WGT=2 80 150 404 504
YIGT=3 72 423 611 Sl0
WGT=4 0 72 204 200
W v bt
2ERRS=1 0 0 47 212 336 328
#ERRS=2 0 0 43 229 445 621
#ERRS=3 0 0 52 192 388 518
£ERRS=4 0 0 10 52 116 209
#ERRS=5 o 0 0 0 2 40

FOR (13,5) CODE

- CODE III
3 4 2
0 0 0
94 60 35
536 420 204
882 668 404
200 136 68
216 119 22
562 410 182
586 420 263
304 269 1289
48 62 49

16
90
138
40

0
58
107
86
35

10
29
29
10

OO

WuLumo o

OO O

OO OoOOo
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WEIGHT DISTRIBUTIONS FOR (15,5) CODE
BINARY WEIGHTS - CODE IVb

s v

15 105 455 420 28 0 0 6 O O 0 0O 0 0 O
WEIGHT DISTR
WGT=1 0 0 0 0 0 105 120 120 105 0 0 0 015
WGT=2 0 0 0 0 315 420 840 840 420 315 0 0 105 O
WGT=3 0 0 0 525 840 2520 2940 2940 2520 840 525 455 0 0
WGT=4 0 0 0 420 1680 1680 2520 2520 1680 1680 840 0 0 O
WGT=5 0 0 0 0 140 280 0 0 280 168 0 0 0 O
VEIGHT VS BIT ERROR MATRIX
#ERRS=1 0 0 0 161 641 961 1083 1062 696 362 154 0 0
$ERRS=2 0 0 0 322 1122 1796 2166 2124 1552 850 308 0 0
BERRS=3 0 0 0 308 850 1552 2124 2166 1796 1122 322 0 0
$ERRS=4 0 0 0 154 362 696 1062 1083 961 641 161 0 0
BERRS=5 0 0 0 O 0 0 0 0 0 28 420 455 105

M-ARY WEIGHTS (M=5) - CODE IVm
YEIGHT
0 0 31

-

BWGT=1 0 15 450
BWGT=2 0 180 3075
BWGT=3 6 993 13106
BWGT=4 6 1027 11987
BWGT= 0 69 799
: \ D N
#ERRS=1 3 549 4564
2ERRS=2 3 591 9637
#ERRS=3 0 639 9572
#ERRS=4 6 485 4625
#ERRS=5 0 0 1024

HOOoOOoo
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