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PERFORMANCE ANALYSIS OF FREQUENCY-HOPPED
SPREAD-SPECTRUM COMMMUNICATION SYSTEMS
WITH WORST-CASE JAMMING INTERFERENCE

by

Sang Kyu Park

Chairman: Wayne E. Stark

This thesis focuses on the analysis of frequency-hopped spread-spectrum com-
munication systems in the presence of worst-case jamming interference. Multi-level
' quantization is employed to improve the performance at the receiver in both
coherent and noncoherent systems over hard decision systems. The channel capacity

is the performance measure.

The worst-case jamming strategies (from the communicator’s perspective) are
discussed with various types of qoise in cohereht/ noncoherent systems. For coherent
systems, the types of jamming noise considered are tone jamming, phase mismatched
tone jamming and partial-band Gaussian jamming. In noncoherent systems, one-
dimensional tone jamming and partial-band Gaussian jamming are considered. For
both coherent and noncoherent systems two, three or four level quantization detec-
tors are used. The jamming strategies we consider allow the jammer to pulse

between several power values subject to an average power constraint.

It is found that four level tone jamming makes the performance significantly

worse than two level tone jamming, whereas with Gaussian jamming, four level



jamming does not significantly degrade the channel capacity compared with two

level jamming.
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CHAPTER I

INTRODUCTION

1.1. Spread-Spectrum Communication Systems

In many communication systems it is desired to transmit and receive signals
over channels with interference from other sources. There are several types of
interference in communication channels. One of them is unavoidable noise, which is
called background noise. Other examples of interference include jamming and
multi-user interference. A commonly used way to mitigate interference is through
the use of spread-spectrum which produces a signal with a bandwidth much wider
than the message bandwidth [DIX76], [COO83|, [SCH82|, [UTL78|, [VIT79b]. The
most widely used spread-spectrum methods are direct sequence and frequency hop-
ping [PIC82]. In direct sequence systems each user has his own code sequence and
occupies the full channel bandwidth at all times during the transmission [PUR77].
In frequency hopped systems the carrier frequency of the signal hops among a set of
frequencies during transmission according to a specified hopping pattern. Errors may
occur when a signal is hopped to a certain frequency that is occupied by another sig-

nal (i.e. interference source) [CO083],|GERS81b],[PIC82).

Spread spectrum systems have been used to ‘(a) provide low probability of

intercept, (b) combat multipath problems, (c) provide anti-jam capability and (d)



provide multiple access capability. These systems have been mainly used in military
communications for several decades because of the extreme difficulty in detecting the
presence of the signal and to jam the signal. In commercial communications spread-
spectrum allows multiple access capability. In a spread-spectrum multiple access
system, each user is assigned a particular quasi-orthogonal code sequence which is
modulated on the carrier along with the digital data. Unlike traditional frequency
and time division multiple access for multi-user communication, spread spectrum
multiple access technique (SSMA) does not require precise time or frequency coordi-

nation between the transmitters in the system.

In certain communication systems (especially military communication systems),
the channel contains hostile interference, that is, a source of interference whose goal
is to make the performance as bad as possible. We call this kind of interfererice
intentional jamming. Under this situation it is very difficult to maintain reliable
communications. Spread-spectrum systems have been used for many years when

there is intentional jamming.

1.2. Background

Over the last ten years there has been significant research into the design of
frequency-hopp_e_d» systems that achieve reliable communication in the presence of
jamming. It was recognized early that spread-spectrum alone is not sufficient to
overcome a jamming threat. While a communication system employing frequency-
hopped spread-spectrum, for example, forces a jammer to use large bandwidths, a
simple two-level partial-band jammer (see Fig. 1.2.1) which places all his power in a
fraction of the overall bandwidth instead of spreading the same power over a larger

bandwidth, can cause a degradation (compared to additive white Gaussian noise) on






In this thesis we examine the performance of a frequency-hopped spread-
spectrum system subject to intentional jamming. The performance measure con-
sidered is the channel capacity. We do not assume any side informance is available.
We allow the jammer to pulse between two, three and four levels with a fixed aver-
age power. The perspective taken in this thesis will be that of the communicator.
The communicator is interested in providing reliable communication at the largest
possible rate. A worst case strategy is a jamming strategy that minimizes the rate
below which reliable communication is possible. We find that for a partial-band
Gaussian jammer (to be described) two-level jamming, three- and four-level jamming
have nearly the same performance. For a tone jammer with random phase (also
described later) we find that the jammer can cause a nonnegligible degradation if he

uses more than two levels. Similar results hold for a tone jammer with perfect phase

information.

The remainder of this chapter is organized ‘a.s follows. Section 1.3 describes the
frequency-hopped séread-spectrum communication systems to be considered. Two-
types of modulation/demodulation are considered, namely, coherent PSK and non-
coherent FSK. Each of these is described in the next section. Section 1.4 describes
the types of jamming signals we will consider. In section 1.5 we will introduce the
performance measure to be used. We will élso describe some of the difficulties in

evaluating the performance. Finally in section 1.6 we will outline the remainder of

the thesis.

1.3. Frequency-Hopped Spread-Spectrum

In this section we describe the communications system to be analyzed in this

thesis. This will include the modulation, demodulation and frequency-hopped



spread-spectrum. The system block diagram is shown in Fig. 1.3.1. We first assume
that there are one of two symbols to be transmitted. Each symbol is equally likely.
While this last assumption may be restrictive (i.e. channel capacity could be
achieved by a non-uniform probability distribution), in practice it is very difficult to
take advantage of any possible gain by using symbols that are not equally likely.
Two different modulation schemes are considered, Phase Shift-Keying (PSK) and

Frequency Shift-Keying (FSK).

Binary Phase Shift-Keying

Let 5(t) be a random process representing the input to the modulator with

()= 3 X, Pr(t-nT) (1.3.1)

n =-00

where X, is the data symbol input to the modulator during [nT, (n+1)T), Pr(t) is

a unit pulse function (i.e. Py(t)=1 for 0<t < T and zero elsewhere) and T is the

s'(t r'(t

b(t) s(t) (1) (t) r(t) Output
Freque F n

—pt Modulator Lo equency L4 Channel A— requency .pp{ Demodulator |[—p»

Hopper Dehopper

Figure 1.3.1. Frequency-hopped spread-spectrum system block diagram.




duration of each data bit. As mentioned above we will assume that {X,}72 __isa
sequence of independent and identically distributed (i.i.d.) random variables equally

likely to be +1 or -1. The PSK signal then is
s(t) = /2P, b(t) cos 2xf,¢ (1.3.2)

where P, is the power of the signal and f, is the carrier frequency. The energy of

each channel symbol transmitted will be denoted by E. and is given by E. =P, T.

Binary Frequency Shift-Keying

In frequency shift-keying we start with the same data signal as input to the

modulator. The output of the modulator however is the signal
s(t) = /2P, cos [2x(f +b(t)AS )t +ui(t)] (1.3.3)

where Af is one half the spacing between the FSK tones and #(¢) is a phase signal
introduced by the modulator. We will assume that Af is chosen so that tones of
duration T at the frequencies f_+Af are orthogonal and that the phase signal ¢(¢)

is constant on every interval of the form IT <t <(/+1)T for some integer [.

Frequency-Hopping

As mentioned before we will consider frequency-hopped spread-spectrum sig-
nals. We will assume there are ¢ frequency slots. We will now describe the fre-

quency hopped signal for PSK and FSK.

For PSK the input to the f‘requency-hopper is the modulated output signal

given by {1.3.2). The output of the frequency-hopper is the signal

s'(¢) = V2P, b(t) cos [2n(f,+f,(t))t] (1.3.4)



The frequency hopping waveform, f,(t), is given by

s}

Hty= Y [aPr(t-nT})) (1.3.5)

n=-00

where {f,}2 _, is the frequency hopping pattern, and T} is the hop duration. In
this thesis we will only consider one symbol per hop so that Ty=T. For the
analysis in this thesis we will assume that f, is equally likely to be any one of g fre-
quencies {f,f, ***,f,}. We model the sequence {f,; ~co<<n <oco} as a sequence
of ii.d. random variables uniformly distributed over the ¢ frequencies. Usually ¢

will be very large (on the order of 100 or 1000 or more).

For FSK the output of the frequency-hopper is a signal of the form

3! (£) = /2P, cos [2n(f,+b(£)AS +fa(t))t+4(t)] (1.3.6)

where ¢(¢) is a random phase term introduced by the frequency-hopper. As with
the random phase term introduced by the FSK modulator ¢(¢) is assumed to be con-

stant on intervals of the form [nT}, (n+1)T}).

The received signal r’ (¢) for PSK is given by
rl(t)=s'(t)+5'(¢) (1.3.7)

where j'(t) is the jamming signal. We will assume throughout that the receiver is
able to coherently demodulate the signal. We also assume that perfect symbol syn-
chronization is achieved. Finally we assume there is no background noise. In chapter
four we will describe how background noise can be incorporated. We will consider
an ideal frequency-dehopper which is synchronized to the hopping signal. The out-

put of the frequency-dehopper is a signal of the form



r(t) = s(t)+75(¢) (1.3.8)

where j(t) is the output of the frequency-dehopper due to the jamming signal. We
will describe the signal j(¢) and j'(¢) in the next section. Thus the frequency-
hopper and frequency-dehopper combination appears transparent to the modulated

signal. However the ja.mm.ing signal is affected by the frequency-dehopper.

For FSK we will assume the received signal is of the form
r!(t) = /2P, cos 2n(f . +b(t)Af +f4(t))t+B(t)] + 7' (¢) (1.3.9)

where ®(t) is a random phase introduced by the channel. We will assume that &(¢)
is constant on intervals of the form [nT, (n+1)T) and is uniformly distributed on

the interval [0, 2x). The effect of the dehopper then is to produce a signal of the

form
()= V2P, cos [2(f,+b(t)AF)E+U(¢)) + 7 (t) (1.3.10)

where again W(¢) is a random phase term having the same statistics as ®(¢t). Again
the frequency-hopper and frequency-dehopper combination appears transparent to
the modulated signal (except for an additional phase term). The next section

describes the models we use for the jamming signal.

1.4. Jamming Signal Model

The jammer is assumed to know the location of the ¢ frequency slots being
used by the transmitter but not the particular hopping pattern. The jamming sig-

nal j'(t) at the receiver will be modeled as a weighted sum of noise signals :

P =3 Zi(t) (¢) VT cos 2nft (L4.1)

i=1



where 5(t) V2 cos 2xf;t is the noise signal in the i-th frequency slot and Z(t)
determines the amplitude of jamming signal in the i~th frequency slot. We assume
Z;(t) is a pulse train with each pulse of duration T':

o0

Zi(t)= ¥ Z;Pr(t-IT) (1.4.2)

l=-00

where Z;, represents the amplitude of the jamming signal in frequency slot ¢ in the
interval [IT <t<(l+1)T). For a Gaussian type noise, _;(t) is a Gaussian process
with two-sided power spectral density N;/2 over a bandwidth W/gq Hz centered at
f.- Here W is the total spread bandwidth of the transmitted signal so that W/q is

the bandwidth of each frequency slot. Another type of noise of interest is tone jam-

ming. For coherent PSK we assume 3(t) is of the form
7(t) = V2N;/T b;(t) cos (27 f, t+4(t)) (1.4.3)

where &S(t) is a random phase introduced by the jammer, N,/T is the noise power,
T is signal duration. Also in (1.4.3) b,(t) is a random signal given by

o0

bi(t)= XV, Pr(t-nT) (1.4.4)

n=-00

where V, is\;ﬁ;&ally likely to be +1 or -1. In (1.4.3) we assume that qS(t) is constant
on intervals of t;he form [nT, (n+1)T) and is uniformly distributed on the interval
[0, 2r). If the phase in (1.4.3) is mismatched to the phaser of the demodulating sig-
nal at the receiver, then the output of the demodulator has a random phased signal.
If there is no phase difference between jammer signal and demodulating signal then
the output of the demodulator due to the jammer will be a constant. For non-
coherent FSK we consider a one-dimensional form and a two-dimensional form of

~

J(t), that is, for one-dimensional jamming ](t) is given by
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3(t) = V2N;]T cos [2n(f,+b;(t)Af )t+i(t)] (1.4.5)

where Af is the FSK frequency spacing in (1.3.3) and v:b(t) is a uniformly distri-
buted random phase introduced by the jammer. For two-dimensional jamming j(¢)

is given by
;(t)z\/N_,/T cos [27r(fc+Af)t+;b(t)]+cos [27r(fc—Af)t+17)zt)]} (1.4.6)

where J(t) is another random phase. The output of the frequency-dehopper due to
the jamming signal is of the form
i(t) =2Z;, j(¢), IT<t<(I+1)T, -c0<l<o (1.4.7)

where ¢ i3 such that f,(¢t)=f;, IT <t<(I+1)T. The model we use for the jammer

allows Z; ; to be a sequence of i.i.d. random variables with average power
E [z,-,, ] =1 (1.4.8)

where E(X) is the expected value of X.

For a two level jammer the distribution for Z;, is given by [HOU75], [MCES1]

Pr{z;,=0}=1-p

Pr{Z ,=V1]/p}=p, 0<p<1 (1.4.9)

where p is a constant. For a three level jammer the distribution for Z;; is given by

Pr{Z; ;=0}=1-p,-p,
Pr{Z =J }=p,, 0<p<1 (1.4.10)
PriZi=VJ;}=py, 0<p<1

2

where p; and p, are constants, and ¥, Jipp=1. For a four level jammer the distri-
k=1

bution for Z;; is given by
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Pr{Z; ;=0}=1-p~py-p3

P"{-Zi,1=\/71-}=1’1 , 0<p <1

P’{Zu:\/jz_}‘—"l’z ) 0<p,<1

P"{Z«'J:'\/X}‘—“Ps ) 0<p3<1
3

where py, p, and p, are constants, and Y}, Jip,=1.
) k=1

(1.4.11)

1.5. Performance Measure

The demodulators we consider will map the received waveform in the interval
(T, (I+1)T) into a finite number of outputs. The output of the demodulator is the
input to the decoder. Because of our assumption regarding Z;(¢) the resulting chan-
nel will be memoryless with a finite number of inputs and outputs. Let us denote
the channel input alphabet by A ={+1,-1} and the channel output alphabet by
B={p, 8, 8k} In our model K is 2, 3 or 4. Let Z be a generic random vari-
able with distribution identical to Z,-",. Let the transition probability of the channel
for Z=z be denoted by p(y|z,z) for y € B, a:A € A. Let the distribution of z be
denoted by P(z). The jammer chooses the distribution for Z subject to E[Z%=J.

With the jammer distributing the power level the channel transition probabilities are

I~ 8

. p(y|z,2) dP(z). (1.5.1)

plylz) =

3

One measure of performance that we are interested is the capacity of the channel
when the decoder knows only the conditional transition probabilities p(y | z,2), but
not P(z). This is known as a compound channel. Since the input and output alpha-

bets are finite the capacity of the compound channel is given by [CSI81]

C = in I(X;Y
max min /{X;¥) (1.5.2)



12

where I{X;Y) is the mutual information between input X and output Y, the max-
imization is over all possible distributions on X and the minimization is over all pos-
sible distributions on the random variable Z. All channels considered are such that
for every distribution P on the power of the jammer, the optimum input distribu-
tion on X is the uniform distribution. We will denote the mutual information with
a uniform input distribution by C(P,\) where P is the jamming strategy and X is

the signal-to-noise ratio. With this definition (1.5.2) becomes

C == min C(P ).
min C(P ) (1.5.3)

A code for a compound channel is a pair of mappings: f: I1—>A" and

g: B* —II1 where M ={0,1, - -+, M-1} is the message set. The rate of a code

lngM

b e—

information bits/channel symbol.

The significance of the channel capacity C is given by a coding theorem for a
compound channel [CSI81]. That theorem is the following : there exist codes of rate
r with arbitrarily small error probability provided the code rate r is less than the

channel capacity C, no matter which strategy P(z) the jammer chooses.

In this thesis we are interested in determining the minimum energy needed for
each information bit in order for reliable (arbitrarily small error probability) com-
munication to be possible. Naturally this is a function of the rate of the code used.

If we use codes of rate r then the relation between the symbol energy and the infor-

mation bit energy, E,, is given by
E, = E,/r (1.5.4)

The capacity is a function of the symbol signal-to-noise ratio, )\-A—Ec /N;. Reliable



13

communication is possible provided the code rate satisfies

r<C(\) (1.5.5)
or equivalently
Ey _cYr
—_— 1.5.6
NJ - r ( )

where C7Y(r) is the inverse function of C(X\). The right hand side of (1.5.6) is the
minimum bit signal-to-noise ratio necessary for reliable communication. Throughout
this thesis we display figures showing the minimum bit signal-to-noise ratio needed

to obtain the optimum code rate.

Another measure of performance of interest is the channel cutoff rate. This is

defined as

Ry = max min [—logz Y [E p(z) Ve(y =) r ] (1.5.7)

The cutoff rate R, is considered as a practical limit to the set of rates for which reli-
able communication is possible [WOZ65]. As with channel capacity the maximum
cutoff rate is obtained by a uniform distribution on the input X for most systems.
We do not compute the cutoff rate of the system in this thesis. Many of the conclu-
sions drawn based on the channel capacity will also hold with the cutoff rate. Our
main focus is to determine the structure of the distribution of jamming levels Z
which is optimal from the jammer’s point of view (worst-case from the
communicator’s perspective). While it would be of interest to consider all distribu-
tion on 7 with E[Z 2]='J , we will only consider distribution concentrated on two,

three and four levels.
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For the numerical calculation of the channel capacity we have used VMCON!
which is a nonlinear optimization package, developed at the Argonne National
Laboratory, that can be used to solve constrained or unconstrained nonlinear pro-
gramming problems. When we compared the numerical results using VMCON with
that using brute force method, we found VMCON worked fine when the number of
variables to be optimized is small. However, as the number of variables increases
(i.e. four jammer levels) we could not compare the accuracy of VMCON with brute
force methods because for brute force methéd the computing time increases exponen-
tially as the number of variables of the jammer increases. However the numerical
results obtained using VMCON for higher level jamming seemed to be reasonable.
The results obtained using VMCON is an upper bound on the channel capacity or
the signal-to-noise ratio computed using VMCON is a lower bound on signal-to-noise
ratio. This is true since VMCON produces a feasible jamming strategy but there .is

no guarantee this is the optimal strategy.

1.8. Outline of the Thesis

Chapter 2 discusses worst-case jamming strategies when the communicator
employs the coherent BPSK modulation scheme. The types of jamming noise are
tone jamming, phase mismatched tone jamming and partial-band Gaussian jam-
ming. The channel capacity under phase mismatched tone jamming is shown to be
much better than that under tone jamming, and compare the above three jamming

noise types.

'WMCON is authored by R. L. Crane, K. E. Hillstrom, and M. Minkoff
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Chapter 3 considers noncoherent BFSK. The jamming noise type considered is
one-dimensional tone jamming and partial-band Gaussian jamming. The number of
jammer levels are two, three and four. We show that higher level tone jamming
degrades the performance significantly compared to lower level tone jamming. How-
ever for Gaussian jamming the performance of two, three and four level jamming is

nearly the same.

Chapter 4 lists conclusions and suggests some future research topics.



CHAPTER II

CHANNELS WITH WORST-CASE JAMMING AND

COHERENT DEMODULATION

2.1. Introduction

In this chapter we analyze a frequency-hopped spread-épectrum system with
jamming. We will assume a binary signaling scheme, for which the modulation pro-
cess corresponds to changing the phase of the carrier between one of two possible
values corresponding to binary symbols +1 and -1. We assume the receiver is per-

fectly synchronized to the transmitter.

We investigate the performance of several different channels with different jam-
ming strategies, namely, two level jamming, three level jamming and four level jam-
ming. The limitation to the jammer is the average power. For a hard decision chan-
nel the worst-case (from the communicator’s perspective) average-power-limited
Gaussian jammer is known to pulse between two values, one of them being zero.
Thus an on-off jammer is the worst possible jammer. The proof of this statement is
in Appendix A. In [VIT82] Viterbi introduced a ratio threshold technique for miti- |
gating interference in a spread-spectrum communication system with noncoherent
demodulation. This technique used an additional channel output, called a quality

bit, to improve the performance over a hard decision receiver. The quality bit is

16
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obtained by quantizing the output of the matched filter into four levels. In this
thesis we analyze systems with two, three or four level quantization detectors with

two, three or four levels of jamming.

In section 2.2 the channel models and assumptions that we will make for this
chapter are described. Section 2.3 introduces the channels with hard and soft deci-
sion detectors under two, three and four level tone jamming interference. The chan-
nel models we define allow for the jammer’s signal to match one of two
communicator’s signals, i.e. there is no phase difference between jammer’s signal and
communicator’s signal. In section 2.4, we show the performance of the system with
random phase tone jamming. Unlike section 2.2, with random phase tone jamming
there is uniformly distributed random phase term in the received signal. Both hard
and soft decision detectors are considered. In section 2.5, we consider Gaussian jam-
ming interference with mean 0 and variance depending upon the jammer’s power
distribution. Finally .'m section 2.6 we compare the performances of the three dif-

ferent worst-case jamming strategies introduced in sections 2.3, 2.4, and 2.5.

2.2. Channel Models

In this section we describe the channel models and assumptions that we will
make in our analysis. The key assumption that we make is that there is a finite
number of inputs (two) and a finite number of outputs of the channel (two, three or
four). We model the jamming strategies as distributing the power level of a certain
type of noise. The noise types discussed in this chapter are tone jamming, random

phase tone jamming and Gaussian jamming.



18

Tone Jamming

We first discuss tone and random phase tone jamming signal. In this type of
jamming the output of the correlation receiver in Fig. 2.2.1 due to the jamming sig-

nal given by (1.4.6) is given by

T
I={ Zy3j(t) V2/E.T cos (2xf t+y) dt (2.2.1)
0

Zio Vo V2N, /T /2/E.T cos (27 f t+1) cos (foct-l-q;&) dt

St

= Z.’,o \/NJ/Ec VO cos ¢

where ¢=1,b-<;> is a random phase and Z;; is a random variable with average power 1
given by (1.4.7). In deriving (2.2.1) we have assumed the frequency-hopped signal is

in the t~th slot during 0<t < T.

-~

For tone jamming with perfect phase information (¢y=¢) we let N=V, in
(2.2.1) and let Z=2;4\/N;/E, . The additive noise random variable | given by

(2.2.1) then is of the form

I=7ZN | (2.2.2)
with

ENY =1 (2.2.3)
and

E[2% = E(Z%] N,/E,

i (2.2.4)

where A\=F, /N;.
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For random phase tone jamming in (2.2.1) we let N=cos ¢ and let

Z=2Z;4/N;/E. . The random variable I is then of the form

I=2ZN (2.2.5)

with
E[NY=1/2 (2.2.6)

and
E[Z% = 1/ \. (2.2.7)

Gaussian Jamming
For Gaussian type of jamming, j(t) in (1.4.1) is a Gaussian process with power

spectral density N,/ 2 centered at f, over bandwidth W . The noise random vari-

able [ is then given by

I

I

T
fZ,-‘o V2/E. T cos2nf t 5(t) dt
0

T
= Z;02/E.T f J(t) cos 2xf ¢t dt (2.2.8)
0

T N
= ZigV2/E.T /N,T/4| V4/N,T [ j(t) cos 2rfyt dt
0

T
In  (228) we let N=\4/N,T [ j(t)cos2rf,tdt  and let
0

Z=2;5/2/E.T \/N;T/4 . The noise random variable I is then of the form
I=2ZN (2.2.9)

where NV is Gaussian random variable with mean 0 and variance 1, and Z is a ran-

dom variable with average power E[Z%=1/2X\. For calculating | discussed above
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we have assumed that f. T is integer.

The jamming strategies consist of all distributions on Z with an average power
E[Zz] In a frequency-hopped spread-spectrum system the distribution on Z

corresponds to the distribution of the power levels in different frequency slots.

As mentioned in chapter 1 we are considering a channel with a finite number of
inputs and a finite number of outputs. Denote the channel input alphabet by
A={+1,-1} and the channel output alphabet by B={8, 8, * Ak}, Where
K==2, 3, or 4. For two level quantization 8;=+1 and §,=-1. For three level quant-
ization g;=+1, B,=? and f;=-1. For four level quantization F;=+1,good,
Bs=+1,bad, #3=-1,bad and B,=-1,good. Let the transition probability of the chan-
nel for Z=z be denoted by p{y |z,z) for y € B, z € A. Let the distribution of Z
be denoted by P(z). With the jammer distributing the power, the channel transi-
tion probabilities are '

oo

plylz)= [ »(y|z,2) dP(2) . (2.2.10)

z2==0

The performance measure that we are interested in finding is the capacity of the
channel, as described in chapter 1, when the decoder knows only the conditional
transition probabilities p(y | z,z), but not P(z). Our main focus is to determine the
structure of the distribution Z which is optimal from the jammer’s point of view

(worst-case from the communicator’s perspective).

Now we discuss three different channel models mentioned earlier. The input to
the channel will be binary and the output will be binary (hard decisions), ternary or
quarternary. The three types of interference considered in section 2.3, 2.4 and 2.5

are: (1) Tone jamming (no phase error), (2) Tone jamming with uniformly
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distributed phase error, and (3) Gaussian jamming. In each case we consider jam-
ming strategies which concentrate the total jamming power on one of two, three or

four levels to degrade the performance.

The channel model is shown in Fig. 2.2.1. Since we are considering a memory-
less compound channel with finite input and output, we need only calculate the
transition probabilities for the channel. To this end consider input signals and out-
put signals in the interval [0, T'). The input to the channel is the random variable

X, and the output of the correlation receiver is the random variable
R=X,+1 (2.2.11)

where [=ZN is noise random variable discussed in chapter 1.

The quantized output, Y, is

Input X s(t) () R Output Y

T
— PSK L—»4 ~ Channel [ ¥ %R —>
Moduiator °

cos (2xf . t+y)

Figure 2.2.1. Channel model for coherent system.
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Y = Xo+1
@ (XatT) (2.2.12)
= Qy(Xo+NZ)
where @ is a L level quantizer,
Pr (X0=1)=PT (on"l):l/z- (2.2-13)

In (2.2.12) N is a symmetric (Pr{N<n} = Pr{N>-n}) random variable depend-
ing upon the type of jammer. N is a constant, the cosine of a uniformly distributed

phase, or a Gaussian random variable. The two level quantizer is given by

1 R>0
Qa(R) z{—l R <0. (2.2.14)

With this quantization the channel is a binary symmetric channel with crossover
probability p=Pr{R >0| Xy==-1}. The capacity of the channel is then

C = 1-Hyp) (2.2.15)

where Hy(z)=-zlogsz—(1-z)logy(1-z) is the binary entropy function. The three

level quantizer is given by

1 R>0
Qi(R)=( ? -6<R <4 : (2.2.16)
-1 R<L-4

where 0<0<1. The transition probabilities for the resulting channel will be denoted

as follows:

De z=]1, y=1 or z=-1, y=-1
plylz)={m z=1, y=7? or z=-1, y=7? (2.2.17)
pe=1-p,-ps z=1, y=-1or z=-1, y=1.

The resulting capacity is given by
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C = p,logop, +p.logsp.~(ps+p. )logy(pe +p. )+P, +P. - (2.2.18)

The four level quantizer is given by

’

1,good R >4
l,bad O<R <4
— ! - 2.2.19
QudR)=1_1, bad -8<R <0 ( )
-1, good R <-6

where 0<§<1. The transition probabilities induced from the four level quantizer

will be denoted as follows:

ps =1, y==1, good
gy r=1l, y=1, bad

= 2.2.20
plylz) = p. z=1, y=-1, bad ( )
py z=1, y=-1, good.
The transition probabilities for z=-1 can be obtained by noting that

Pr(Y=y | Xy=-1)=Pr(Y=-y | Xy=1). The channel capacity for four level quant-
ization is given by

C = p,logyp, +pylogepy +p.logyp. +p4logepy+1

(2.2.21)
~(Ps+Pp4)logy(p,+p4)-(ps +p. ogy(py +p. ).

The goals of this thesis then are to minimize the capacity over all distributions on Z
concentrated on two, three and four values. The capacity depends on the distribu-
tion of Z through the transition probabilities. Because of the nonlinear nature of C

our minimization is done mainly using 2 nonlinear programming package.
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2.3. Tone Jamming

In tone jamming, since we assume that there is no phase term in (2.2.1), ran-
dom variable I is given by I = Z N where N = V, (ie. +1 or -1) and
=127, \/mc_ N has power E[N%=1 and Z has the distribution P(z) with the
average power 1/\. The jamming strategies are then distributions on Z such that

E{Z%=1/\.

2.3.1. Two Level Jamming

Three different quantizers under two level jamming environment are con-
sidered. For a hard decision quantizer the worst-case jamming strategy is to concen-
trate Z on two or fewer power levelsi one just large enough to overcome the signal
and the other zero. It is easy to see that a jammer using any two power levels, one
of which is greater than 1, can be replaced with a jammer with power levels 0 and 1
without sécriﬁcing performance or average power. Thus the optimal jamming stra-

tegy for hard decision receiver is to concentrate his power on at most two levels.

Two level jamming, two level quantization

With two level quantization the conditional transitional probabilities are given

Pr(Y=1| X=-1,Z) =Pr(Y=-1 | X=1,2)
= Pr{1+NZ <0} (2.3.1.1)
=1/2 u(Z~1)
where u(z) is one if >0 and is zero otherwise. The worst-case distribution the

jammer employs is then
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the capacity as a function of the channel signal-to-noise ratio.

Two level jamming, three level quantization

For two level jamming and three level quantization the optimum jamming stra-
tegies can also be easily determined. To proceed we consider several ranges of the
signal-to-noise ratio. For each range we determine the optimum jamming strategy
and the resulting channel capacity. We start by considering small values of \, where

X is the channel symbol signal-to-noise ratio.

For A<1/(1+8)? the jammer has enough power so that the strategy Z=1-+4
(with probability one) is a feasible strategy (E[Z%<1/\). For this strategy, the
resulting channel is a binary symmetric channel with error probability 1/2 (/V is

equally likely to be +1 or -1). The resulting capacity is zero.

For 1/(1+6)><X\<1/(1-6)? the jammer no longer has enough power to cause

an error with probability one half. The possible jamming strategies are

6 wp. 6)°
M wp. 1/ N1+6) (2.3.1.6)
0 wp. 1-1/\(1+6)*
or
-0 2.
z ={1 wp- 1 (2.3.1.7)
0 w.p. 0.

The first strategy results in a binary symmetric channel with crossover probability
1/(2X(1+6)?) and thus the capacity is 1-H,(1/(2\(1+6)%). The second strategy
results in a binary symmetric erasure channel with transition probability one half.
The capacity for the second strategy is one half. The capacity in this region is then

the minimum of the two capacities
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Legend
0=0.1
L 9=03_
_9=05
=07
0=0.9 !

Figure 2.3.1.1. Channel capacity vs. channel symbol signal-to-noise ratio in two
level tone jamming and three level quantization system with §=0.1, 0.3, 0.5,
0.7 and 0.9.
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0
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Code Rate r

Figure 2.3.1.2. E, /N, needed for reliable communication at code rate r in two
level tone jamming and hard decision system.
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C=min(1/ 2, 1-Hy(1/ 2\(1+6)?)). (2.3.1.8)

It is easy to see that for p >0.11, 1-H,(p)<1/2 so that if 1/ 2\(1+6)*<0.11 the

capacity will be 1/2. Thus for 1/ (1+6)*<X <1/ (1-8)? the capacity is given by

1-Hy(1/ 2X(1+6)") 1/ (1+0)2 <X <4.545/ (1+0)° (23.19)
L Y2 4.545/ (1+0)2 <2< 1/ (1-6)%.
For A>1/(1-6)? the two feasible jamming strategies are
2
_ 1+4 w.p. 1/ X\(1+6) (2.3.1.10)
0 w.p. 1-1/2(1+6)®
or
2
7 — 1-6 w.p. 1/ X\(1-8) . (2.3.1.11)
0 w.p. 1-1/ \(1-9)®

The resulting two capacities are C=1-H,(1/2\(14+6)?) and C=1-1/2)\(1-0)*

respectively. Thus in general the overall channel capacity is given by

0 0N 1/ (146)? (2.3.1.12)
1-H,(1/ 2\(1+6)%) 1/ (1+8)2 <\ < 4.545/ (1+6)?
= y2 4.545/ (1+0)2<\ <1/ (1-)?
min(1-1/ 2X(1-6)%, 1-Hy(1/ 2X(1+6)%))  \>1/(1-6)%

Notice for §<0.36, 4.545/ (1+6)* > 1/(1-6)° so that the third region in (2.3.1.12) is
empty. For §>0.36 this region is nonempty and the capacity is a constant indepen-
dent of X in this region. Notice also that as a function of \ the capacity is not a
concave function. This is due to our restriction of not letting the transmitter use a
distribution on the power subject to an average power constraint other than con-
stant power for all channel symbols. If the transmitter could pulse (as the jammer

does) between various power levels, the capacity as a function of A\ would be a con-
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cave function. Figure 2.3.1.3 shows the minimum bit signal-to-noise ratio necessary
for reliable communication as a function of code rate given 4 = 0.1, 0.3, 0.5, 0.7 and
0.9. Fig. 2.3.1.4 shows the minimum bit signal-to-noise ratio needed to obtain code
rate when the optimal 8 is chosen. In Fig. 2.3.1.3 we see that for large 6, a very

small jammer power can cause an erasure.

Two level jamming, four level quantization

For four level quantization the channel capacity can be calculated in a similar
fashion. First if the jammer has enough power so that Z=1+6 with probability one
is a feasible strategy then this is the optimal strategy and the capacity is zero. This
will be the case when A<1/(1+46)%. To determine the optimal strategies in other
cases we note that for the channel considered the channel capacity is one if
Py=py==0 or p,=p,; =0 (see (2.2.21)). Thus since the jammer can only choose one
of py, p., py to be nonzero the capacity will be less than one only if the jammer can

make p; >0. This is possible by using the following strategy:

_ {1+0 w.p. 1/ \(1+6)? (2.3.1.13)

0 w.p. 1-1/X\(1+6)%

The resulting capacity is that of a binary symmetric channel with crossover proba-

bility 1/ 2X\(1+6)%

C = 1-H,(1/ 2X(1+6)%). (2.3.1.14)
Thus the capacity is given by
c 0 A<1/(1+9)° 23.1.15)
T\-Hy(1/20(1+8)Y)  A>1/(1+6)% (23.1.

Notice that the capacity is at least as large as the capacity of three level
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Figure 2.3.1.4. E;, /N; needed for reliable communication at code rate r in two
level tone jamming and three level quantization system with optimal 4.
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Figure 2.3.1.5. £, /N, needed for reliable communication at code rate r in two
level tone jamming and four level quantization system with §=0.1, 0.3, 0.3, 0.7

and 0.9.
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Figure 2.3.1.6. E\,/N; needed for reliable communication at code rate r in two
level tone jamming and four level quantization system with optimal 4.
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quantization. Fig. 2.3.1.5 shows the minimum bit signal-to-noise ratio needed to
obtain code rate for § = 0.1, 0.3, 0.5, 0.7 and 0.9. From the communicator’s view
point, he must have # as large as possible in order to obtain optimum performance.
For example, in Fig. 2.3.1.5, at rate 1/2, the system with §=0.9 is about 4.5dB
better than that with §==0.1. Fig. 2.3.1.6 shows the performance of the system with

optimal 6.

2.3.2. Three Level Jamming

In this section we will discuss the three level jamming strategy. Three and four
level quantization detectors are considered for analysis. The optimal strategy for the
jammer is to concentrate Z on three or fewer power levels: one zero and the others

(one or two) just large enough to overcome the signals.

Three level jamming, three level quantization

With three level quantization the optimal distribution of Z is concentrated at

three points, namely zero, 1-8 and 1+4.

For A<1/(1+4)? the jammer has enough power so that Z=1+8 with probabil-
ity one. This strategy makes the channel capacity zero. For A>1/ (1+6)? the distri-

bution of Z is given by

P1 z=1-0
Pr{Z=z} ={p, z=1+0 (2.3.2.1)
1-py-p; #=0

where p;, and p, are probabilities being jammed corresponding to 1- and 1446

respectively. The transition probabilities p,, p, and p,. are as follows :



Pa = 1-0.5(p1+py)
py = 0.5p, (2.3.2.2)
p. = 0.5p,
The channel capacity is given by
C = Pa lngpa +p. lOg2p¢:'(pa. +p. )logZ(Pa +p. )+pa +pe- (23'23)

Optimum p, and p, are computed numerically. In Fig. 2.3.2.1 the numerical results
are given. For small 8 (e.g. 9#0.1) the worst-case p; is zero and p,=1. In Fig.
2.3.2.2 we show the minimum E}, /N, needed to obtain code rate r given # = 0.1,
0.3, 0.5, 0.7 and 0.9, and Fig. 2.3.2.3 shows the best performance of the system with
three level jamming and three level quantization. For §=0.5, at rate 1/ 4 three level
jamming strategy requires 2.4dB larger information bit signal-to-noise ratio than
compared to two level jamming and three level qugntization. However, at rate 3/ 4,
the performance of these two systems is almost same. When the optimal 6 is chosen,
at rate 1/4, the performance degradation compared to two level jamming strategy is

about 3.9 dB. However as the code rate increases, the degradation becomes almost

zero.

Three level jamming, four level quantization

With four level quantization and three level jamming the distribution of Z is
concentrated on three levels. These values are in the set {0, 1-4, 1, 1+6}. Wem
assume z;==0 is one of the levels. Let p,(z), py(z), p.(z) and py(z) be transition
probabilities conditioned on Z=2z. Let p, be the probability of Z=z, and let p, be
the probability of Z=2z,. Then the transition probabilities conditioned on Z=z are

given by
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Figure 2.3.2.1. Optimal probabilities p;, and p, in three level tone jamming and
three level quantization system with §==0.1, 0.5, and 0.9.
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Figure 2.3.2.2. £, /N, needed for reliable communication at code rate r in three

level tone jamming and three level quantization system with §=0.1, 0.3, 0.5,
0.7 and 0.9.
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Figure 2.3.2.4. E; /N; needed for reliable communication at code rate r in three
level tone jamming and four level quantization system with §=0.1, 0.3, 0.5, 0.7
and 0.9.
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Figure 2.3.2.5. E}, /N; needed for reliable communication at code rate r in three
level tone jamming and four level quantization system with optimal 6.



(1) If z € [1-6, 1)

(2)If z € [1, 1+6)

(3) If z € {1+6, co)

Pa

Dy

P

P4

The channel capacity is given by
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C = p,logyp, -+pylogep, +p.logap, +p4logepy+1
~(ps +pa)loga(p. +p4 )Py +p. ogo Py +Pc )-

(2.3.2.4)

(2.3.2.5)

(2.3.2.6)

(2.3.2.7)

(2.3.2.8)

The numerical results for this system are shown in Fig. 2.3.2.4 for different values of
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9 . For small 6, the worst-case jamming strategy is z,=1 and z,==1+4. However,

for large )\, as 9 increases the optimum jamming strategy is zy=1-8 and z,=1.

At rate less than 1/2, the performance of three level jamming is the same as
two level jamming for all 8. At rate 3/ 4, three level jamming degrades the perfor-
mance by about 1 dB and about 4 dB for #=0.7 and 0.9 compared to two-level
jamming. This implies that for large 4, 2 small amount of jammer power is suffi-
cient for the communicator to choose the bad channel state. We show the minimum
E, /N, needed to obtain code rate r with several thresholds in Fig. 2.3.2.4. The per-

formance with the optimal threshold under three level jamming is shown in Fig.

2.3.2.5.

2.3.3. Four Level Jamming

In this section we discuss four level jamming and four level quantization. The,

distribution of Z is concentrated at four points, that is, zero, 1-6, 1 and 1+8.

For N<1/(1+0)%, Pr{Z=12} is given by

Pr{Z=z} = {(1) ;:erxs : (2.3.3.1)
and the resulting capacity is zero. For A\>1/(1+9)% Pr{Z==z} is given by
Py z=z,=1-0
Pr{Z=1} = Z: :::+ ) (2.3.3.2)
1-p1~po—p3 2=0.

The transition probabilities p,, py, p. and p; are then given by
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Figure 2.3.3.1. E}, /N, needed for reliable communication at code rate r in four

level tone jamming and four level quantization system with §=0.1, 0.3, 0.5, 0.7
and 0.9.
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Figure 2.3.3.2. E, /N; needed for reliable communication at code rate r in four
level tone jamming and four level quantization system with optimal 6.
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P, = 1-0.5(py+py+p3)

= 0.5

P o (2.3.3.3)
p. = 0.5p2

pa = 0.5p3.

The channel capacity is given by (2.3.2.8). The numerical results are shown in Fig.
2.3.3.1 for several value of §. For small § the optimal strategy of the jammer is the
same as two or three level jamming strategy. In Fig. 2.3.3.2. we show the perfor-

mance of this system with the optimal threshold 4.

2.4. Tone Jamming with Random Phase

In this section we consider a uniformly distributed random phase in the
jammed slot of a frequency band being used by the communicator. For this case the
noise random variable / is defined in (2.2.5). The jamming strategies are then to dis-

tribute Z subject to average power 1/ X given in (2.2.7).

In the following subsections 2.4.1, 2.4.2 and 2.4.3 we consider two, three and

four level jamming strategies as discussed in the previous section 2.3.

2.4.1. Two Level Jamming

We first consider two, three and four level quantization at the receiver for two

level jamming.

Two level jamming, two level quantization

For a hard decision (two level quantization) the two or fewer values on which
the jammer concentrate Z are zero and a value greater than or equal to 1. Before
we compute the nonzero value of the jammer power we determine the transition pro-

babilities of the channel.



47

The crossover transition probability given Z==z is same as (2.3.1.1) replacing Z

by Z cos ¢, and is given by

Pr(Y=1 | X=-1,Z) = Pr(Y=-1 | X=1,Z)

(2.4.1.1)
= Pr(1+Z cos $<0).

The crossover probability p is given by
1 -
p =p—cos— (2.4.1.2)

where p, is the probability being jammed with power z; and py==1-p, is the proba-

bility not being jammed.

Since the channel capacity C is a decreasing function of the crossover probabil-
ity p, maximizing p produces the minimum of C. The average power constraint of

the jammer is
E [22 ]: 2 py=1/\. (2.4.1.3)
Thus p can be written as
p = pl}r cos'l\/;;—)\—. (2.4.1.4)

The worst-case distribution is then given by

1 z=v1/X\
—l — 2.4.1.5
Pr{Z=z} = {0 otherwise ( )
for A\<7y and
Yo/ X Z=\/1/ Yo
—s ) = 2.4.1.6
Pr{Z==z} —-{1_%/>\ 2=0 ( )

for X>~g, where v; is the solution of
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Figure 2.4.1.1. E}, /N, needed for reliable communication at code rate r in two
level random phase tone jamming and two level quantization system.
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-1 1 Yo
- = / . = 0. 2.4.1.7
cos \/70 2 1-1s ( )

The value of 7, is 0.63. The resulting channel capacity is then

A<
. = (2.4.1.8)
1-Hy(v/ X)) X>70-

Fig. 2.4.1.1 shows the signal-to-noise ratio needed for reliable communication for two
level tone jamming and hard decision system. Comparing with Fig. 2.3.1.2 we see

that at rate one half the penalty on the jammer for not knowing the phase is 5.8

dB.

Two level jamming, three level quantization

With three level quantization the distribution of Z is given by

2=

Pr{Z=:z} ={

JR (2.4.1.9)

where z, is greater than or equal to 1-8, p, is 1/z X\ and py==1-p;. Since it is diffi-
cult to compute the optimal distribution of the jammer analytically, it has been
done numerically. The conditional transition probabilities p,(z), py(z) and p.(z) are
calculated depending upon the value of z.

(1) If z is less than 1-0 then p,(z)==1.

(2) If z € [1-0, 1+90) then

PG(Z) = —1- cos'l_e;l
T z
. Pb(z) == l cos"ll—_e (2.4.1.10)
T ¥4
pc(z) =0

(3) If z € [1+4, co) then
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Figure 2.4.1.2. E, /N; needed for reliable communication at code rate r in two

level random phase tone jamming and three level quantization system with
§=0.1, 0.3, 0.5, 0.7 and 0.9.
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Figure 2.4.1.3. E} /N, needed for reliable communication at code rate r in two
level random phase tone jamming and three level quantization system with op-

timal 4.



polz) = 2 cost &L

™ z
py(2z) = ;l-r[cos'l—l—;—o—cos“l—!—-zto- (2.4.1.11)
pe(2) = 7 cost 122

™ z

Ps = Pa(2)p1+Po
Py = py(2)p (2.4.1.12)

Fig. 2.4.1.2 shows the necessary signal-to-noise ratio for various 4. Fig. 2.4.1.3 shows
the performance with optimal 4. For small X\, the jammer has enough power so that
z2>1+60 with proability one. However, as f increases the performance becomes better
for small N. Hence, from the communicator’s point of view when X\ is small the
optimum # is close to 1. However, for large 8 and large A\, small jamming power is
sufficient to to cause an erasure. Fig. 2.4.1.2 shows that for a rate less than half,

large 6 is optimum while for rates greater than one half, §~0.5 is optimum.

Two level jamming, four level quantization

With four level quantization the optimal distribution of Z is given by (2.4.1.9).
The jamming level z must be greater than 1+, otherwise the capacity is 1. To
evaluate the performance of two level random phased tone jamming and four level
quantization system we must consider four cases.
(1) If z is less than 1-8 then p,(z)=1.

(2) If z € {1-6, 1) then



(3) If z € [1, 1+6) then

(4) If z € {1+8, o0) then

The transition probabilities are given by

The capacity is given by (2.2.21).

1 bl
Pc(z) - ﬂ_c z
_ 1l
py(z) = —cos™ — (2.4.1.13)
pc(z) =0
pa(z) = 0.
p.(z) = Leost BL
T z
1 -1 1= al
Z}) = — jcos —— —~CO0s —
Pelz) w[ z z] (2.4.1.14)
= L ostl
p.(z) = 7rcos; -
Pd(z) = 0.
p.(z) = —l—cos"l—g—:l
g
=1 [cos'll_—-cos -1 ]
T -4
(2.4.1.15)
— l o0s~! 1 —cos! 1+0
T -4
— _]; _1 1+9
T Z
Ps = Pa(2)p1tpo
= Z
Py ps(2)ey (2.4.1.16)
P = pc(z)pl
P = pa(2)py

In Fig. 2.4.1.4 and 2.4.1.5 we show C7(r)/r for

various @ and the optimal 8, respectively. We can see that the behavior of this sys-

tem is similar to the system with two level tone jamming and four level
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Figure 2.4.1.4. E, /N, needed for reliable communication at code rate r in two
level random phase tone jamming and four level quantization system with

§=0.1, 0.3, 0.5, 0.7 and 0.9.
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Figure 2.4.1.5. E; /N, needed for reliable communication at code rate r in two
level random phase tone jamming and four level quantization system with op-
timal 4.
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quantization.

2.4.2. Three Level Jamming

For three level jamming we will consider three and four level quantization at
the receiver. The optimal jamming strategies are to distribute the power with at
most three different levels, and each level must greater than the communicator’s

level.

Three level jamming, three level quantization

With three level quantization the jammer level Z has at most three values, that
is, zero, z;, (greater than or equal to 1-8) and z,, (greater than or equal to 1+8).

The distribution of Z is then given by

o E=L
Pr{iZ=z} ={py z=2z, (2.4.2.1)
po  2z=0

where p; and p, are probabilities corresponding to z; and z,, respectively, and

po==1-p,—py. The resulting transition probabilities p,, p, and p, are then given by

pa = potoy= cos Ly Leget &1
T Zy ) 29
Py = ptcost I ip L [608'1—1—'2 ~cos 11 (2.4.2.2)
T zy ™ Zy 22
1 1 1+8
p. = pp—co8 —
T 22

The optimal p;, p, and the corresponding jammer levels z,, z, are shown in Fig.
2.4.2.1 and 2.4.2.2, respectively. For small 4 (e.g. §==0.1) and small X\, the optimal

jamming distribution is concentrated on a single value z,>1+4. For §=0.5, p,
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Figure 2.4.2.1. Optimal probabilities p; and p, in three level random phase tone
jamming and three level quantization system with §=0.1, 0.5 and 0.9.
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log(z,)

Figure 2.4.2.2. Optimal strength z; and z, in three level random phase tone
jamming and three level quantization system with §=0.1, 0.5 and 0.9.



59

Ey/N,(dB)

0
_5 e T
‘-10 ¥ ] ¥ H
0 0.2 0.4 0.6 0.8 1
Code Rate r

Legend
0=0.1
=03

_0=05

_ =07
8=0.9

Figure 2.4.2.3. E, /N, needed for reliable communication at code rate r in three
level random phase tone jamming and three level quantization system with
§=0.1, 0.3, 0.5, 0.7 and 0.9.
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increases in the range of 4.5 dB <\<3.5 dB. The numerical results are shown in
Fig. 2.4.2.3 and Fig. 2.4.2.4 for fixed § and the optimum @ respectively. Compared
to the two level jamming, three level jamming degrades performance at rate one half
(e.g. at 0=0.5, r=1/2, 0.8 dB loss and at §=0.9, r=1/2, 6.3 dB loss). For small §
the optimal distribution of Z for three level jamming is concentrated on two levels.
This is because with a small increase in jamming power the jammer can cause an
error. In other words, little additional power is needed to cause an error as opposed
to an erasure. As discussed in previous section 2.4.1, with three level quantization,

for large #, the jammer can easily force the capacity to be close to one half with

small power.

Three level jamming, four level quantization

With four level quantization Z is distributed at three values: one zero and the
other two values z;2>1-8 and z,>1. Let p;, p; be probabilities corresponding to z;
and z,, respectively, and py=1-p;~p;. The conditional transition probabilities are
then given by the following based on the value of Z.

(1) If z € [1-6, 1) then

palz) = Leost &L
T F4
= 1 gt 1t
po(z) = —cos™ — (2.4.2.3)
pc(2) =0
pa(z) =10

(2) If z € [1, 1+4) then
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Figure 2.4.2.5. E,/N; needed for reliable communication at code rate r in three
level random phase tone jamming and four level quantization system with
§=0.1, 0.3, 0.5, 0.7 and 0.9.
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Figure 2.4.2.6. E, /N, needed for reliable communication at code rate r in three

level random phase tone jamming and four level quantization system with op-
timal 6.
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1 e ol
Pa(z) - T cos z
1 -1 1-8 a1l
= — |eos™ —— ~cos
P (2) w[ z 2] (2.4.2.4)
_ 1ol
pc(‘z) - wCOS z
pa(z) =0
(3)If 2 € [1+46, 0o) then
= L8t
() = L
_1[ 1___1]
T z
(2.4.2.5)
_];[ g1 ]. —cos~! 1+48 ]
T z
pifz) = =

Z

The expression (2.3.2.7) is used to compute the channel transition probabilities and
the channel capacity is given by (2.3.2.8). In Fig. 2.4.2.5 it is shown that three level
jamming degrades the performance for large § (e.g. §=0.7, r=0.6, 0.8 dB difference)
compared to two level jamming. In this system, for small 4, the jamming strategy is
two level jamming strategy (i.e. p, or p,=>0). However, for large \ as § increases,
three level jamming degrades the performance compared to two level jamming. Fig-
ure 2.4.2.6 shows the minimum bit signal-to-noise ratio needed for reliable communi-

cation at code rate r when the optimal 4 is chosen.

2.4.3. Four Level Jamming

The distribution of Z for the system with four level quantization concentrated

on at most four points. is given by
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,

L =
Pz 2=z
—_) = 2.4.3.1
Pr{Z=z}=\, ,_,. ( )
po  2=0

\
where z; € [1-6, 1), z, € [1, 1+8) and z3 € [1+6, 00), and py, p, and p3 are probabili-
ties being jammed corresponding to jammer values z,, z, and z3, respectively, and

po==1-p;~py—p3. The transition probabilities based on z,, z, and z; are given by

1

Do = p[,-+-p1—1- cos'léz—l- +pg— cos'li—-—l- +p3—l ccvss‘l—g:l
g 2y T zy ™ 23

Py = pl—l— cost 120 —é—pz—l [cos'l—l-—a —cos i L ]+p3—1» [cos‘lﬁ —cost L ]

T 2y m 29 Z9 v 23 23

(2.4.3.2)

P = p2_1 COS-I—]-—' +p3_!_ [COSnl—l—- —COS_llﬂ ]

m 22 4 23 23

1 -1 1+8
Py = p3—cos —

T Z3

It is very hard to obtain the optimal distribution of Z analytically. We have com-
puted the optimal distribution numerically. As done in the previous two sections
2.4.1 and 2.4.2, for small § the worst-case jamming strategy is concentrated on two
levels. For large #, the jammer’s strategy is to use three different power levels in
some range of A\. The numerical results of channel capacity are shown in Fig. 2.4.3.1
and Fig. 2.4.3.2. Unlike the tone jamming with perfect knowledge of signal phase, a
four level jamming strategy with unknown phase does not degrade the performance
significantly compared to a three level jamming strategy with unknown phase, even
though ¢ is large. For example, for r <1/2 and §=0.9 tl.;1e performance of four level
jamming is the same as three level jamming. However, for r=0.8 and #=0.9 the

degradation is about 0.5 dB.
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Figure 2.4.3.1. E, /N, needed for reliable communication at code rate r in four

level random phase tone jamming and four level quantization system with
§=0.1, 0.3, 0.5, 0.7 and 0.9.
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Figure 2.4.3.2. E,/N; needed for reliable communication at code rate r in four

level random phase tone jamming and four level quantization system with op-
timal 4. '
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2.5. Partial-Band Gaussian Jamming

In this section we study the performance of the system in the presence of Gaus-
sian jamming noise. This type of noise was defined in (2.2.9). The jamming stra-

tegies are to distribute Z subject to an average power constraint

E[Z¥=1/2\. (2.5.1)

Many recent papers [CRE83|[MCES81|[HOU75| have been concerned with the
worst-case partial band two level jamming. In our model we consider the multi-level

jamming (two, three and four) and multi-level quantization.

In section 2.5.1 the channel capacity is calculated with two, three and four level
quantization at the receiver under a two level partial band jammed environment. In
section 2.5.2 and 2.5.3 we repeat the calculation for the case of three and four level

jamming respectively.

2.5.1. Two Level Jamming

For two-level jamming strategies, the noise spectrum is flat over a fraction p of

the spread signal band, where 0<p<1, and is zero elsewhere.

Two level jamming, Two level quantization

For a hard decision receiver, McEliece and Stark [MCE81] showed that the
crossover probability (average error probability) of the binary symmetric channel is

given by

= Pr{y=1| z=-1} = Pr{y=-1 | z=1}

= (2.5.1.1)
=pQ[ N,
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Figure 2.5.1.1. Ey /N, needed for reliable communication at code rate r in two
level Gaussian jamming and a hard decision system.
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where Q(z et"/24¢. The optimum p, denoted by p", minimizing the chan-

nel capacity C in (2.3.1.5) is

A<
) = ! =70 (2.5.1.2)
Yo/ N A>T

where 7y==0.709 and \=E_/N,;. The channel capacity is then given by

I‘Hz(Q(\/é_k)) A<

v (2.5.1.3)
1-Hy(%Q(v/2%)/ X)  2>o-

C =

The numerical result of this system is shown in Fig. 2.5.1.1. Notice in this case the
optimum code rate (to minimize £,/N; necessary for reliable communication) is

zero.

Two level jamming, three level quantization

With three level quantization the transition probabilities p,, py and p. are

given by
pa = Q((6-1)/ 7 }pr0
b = [Q((1-0/ e }-o((1+0)/ 5) ] o (2.5.1.4)
p. = Q[(1+9)/ o )p

where 0% = N;/2E.p = 1/ 2p\ and py=1-p.

It is interesting to determine the optimum p is for sufficiently small signal-to-
noise ratio. Let the symbol signal-to-noise ratio be A. Since the channel capacity is

a function of p, and p, , we rewrite those two transition probabilities as
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Figure 2.5.1.2. E}, /N, needed for reliable communication at code rate r in two

level Gaussian jamming and three level quantization system with 6==0.1, 0.3,
0.5, 0.7 and 0.9.
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Figure 2.5.1.3. E; /N, needed for reliable communication at code rate r in two
level Gaussian jamming and three level quantization system with optimal 6.
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p. = 1-Q((1-6)V2%0)p
P = Q((1+9)\/W]P .

(2.5.1.5)

Before we perform the optimization of the channel capacity, we notice the following

facts :

(1) For fixed X, §, consider p, and p. as a function of p. Then p <p, for all

0<p<1.
(2) p, is a convex U function of p with minimum at
1 if A</ (1-8)

Pmin v
(1-6)*x

it A>v/(1-0)?

where ~ is the solution of

o5 v =

and is 0.709. Also p, is a concave N function of p with maximum at

1 if A</ (1+6)°

pmu 7 . 2
TN if A\>~/(1+6)°.

For fixed threshold 8, the minimum of C is obtained by the solution of

3 9
9 cpn=2L2 4+ p_o
dp dp dp
where
2 2
A =log,—2= B=log,—%
pd +pC pﬂ +pc

(2.5.1.6)

(2.5.1.7)

(2.5.1.8)

(2.5.1.9)

(2.5.1.10)

By fact (1), p. <p,, so A <0 and B >0. Moreover, if py), is the solution of (2.5.1.9),
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then pmuSpajkgpmm, where p;, and p,, are defined in fact (2). Thus, given a
fixed 6, for all X<0.709/ (1+6)%, the partial derivative of C(8,p,\) with respect to p
is less than zero for all 0<p<1. Therefore the worst case partial band jamming

strategy for a small X is full band jamming, i.e. p=1.

Since it is difficult to obtain the closed form for the optimum p for all X, it is
computed numerically. The resulting channel capacities are shown in Fig. 2.5.1.2
and Fig. 2.5.1.3. It is easy to see that for large # and high rate, the optimal strategy
of the jammer makes high signal power necessary. This is because the variance of
Gaussian density is an inverse function of A, and for large § the jammer makes the

communicator choose the erasure region with small power.

Two level jamming, four level quantization

With four level quantization it is also hard to obtain an analytical expression
for the optimum p. Hence it is computed numerically. The channel transition proba-

bilities are given by

pa = Q[(6-1)/ 7 )pro

sz[Q 19/0 (1/0]],0

(2.5.1.11)
p. = [Q 1/ a']— (1+8)/ cr]]
pa = Q[(1+0)/ o)p

where 0% is the same as that in (2.5.1.4). Fig. 2.5.1.4 and Fig. 2.5.1.5 show that the
system performance at a high rate and large 4 is much better than that with three
level quantization. This is because that for large @ the erasure region becomes large

as the variance of the received signal, o7 increases.
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Figure 2.5.1.4. £}, /N, needed for reliable communication at code rate r in two

level Gaussian jamming and four level quantization system with #=0.1, 0.3,
0.5, 0.7 and 0.9.
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Figure 2.5.1.5. E, /N, needed for reliable communication at code rate r in two
level Gaussian jamming and four level quantization system with optimal 4.
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2.5.2. Three Level Jamming

In a three level jamming strategy, the jammer has at most three different
power density levels over some fraction of transmitted signal bandwidth, that is,
zero, Njya,/ 2 and N;a,/ 2 corresponding to the bandwidth fraction being jammed

Po, Py and p,, respectively. The constraints to the jammer are (1) py+p;+pp=1 and

2
(2) ¥ a;p;=1. The optimal values for the jammer noise levels and fractions being

1=1

jammed are obtained numerically.

Three level jamming, Three level quantization

With three level quantization the expression for transition probabilities are
given by

P = pu+ 3 Q(0-1/ . ),

1==1

Py = 52: [Q((l-@)/ 0;]’@((1'*'9)/ 0’.’)][’; (2.5.2.1)

=1

I

P,

) g1+ 2. )p

t==1
where 0f=N,qa,/ 2E,, i=1, 2.

The numerical results are shown in Fig. 2.5.2.1 and Fig. 2.5.2.2 with fixed and
optimal # respectively. As discussed in the previous sections, for large 8, only a
small amount of jamming power is needed to cause an erasure. Hence for large ),
the performance becomes worse as § increases. It is very hard to obtain the optimal
a; and p; analytically, but it is interesting to compare this system with two level
Gaussian jammed system. In tone jamming the density is larger near the large (posi-

tive and negative values) than in the center or mean. In Gaussian jamming the
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Figure 2.5.2.1. E, /N, needed for reliable communication at code rate r in three

level Gaussian jamming and three level quantization system with §==0.1, 0.3,
0.5, 0.7 and 0.9.
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Figure 2.5.2.2. E, /N, needed for reliable communication at code rate r in three
level Gaussian jamming and three level quantization system with optimal 4.
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density is highly concentrated around the mean. Thus the performance of three level

jamming is almost same as that of two level jamming, especially for small 4.

Three level jamming, four level quantization

With four level quantization the transition probabilities become

b = o+ X Q-1 7)o

2

£ [e(oecyofa))e

£ [o(v/a (et o

II

Dy
(2.5.2.2)

H

P

Py = éQ((lJ—B/a )P, .

Fig. 2.5.2.3 and Fig. 2.5.2.4 show the performance for fixed § and the optimal 8
respectively. For large @ this system is considerable better than three level quantiza-
tion. For example, at rate 0.6, 6=0.9, the receiver with four level quantization has
about 6 dB gain. Three level jamming (for the optimal #) does not degrade perfor-

mance significantly compared with two level jamming.

2.5.3. Four Level Jamming

The optimal distribution of the jammer power is concentrated at most four
values, and the corresponding power density levels are zero, Nya,/ 2, N;a,/2 and
Nyajz/ 2, and the bandwidth fractions associated with the power density levels are
Pgs P1y Pp and pg, respectively. The jammer has an average power constraint and the

optimal values for the jammer’s parameters are calculated numerically.

The transition probabilities for the channel with four level quantization are

given by
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Figure 2.5.2.3. E, /N, needed for reliable communication at code rate r in three
level Gaussian jamming and four level quantization system with §=0.1, 0.3,
0.5, 0.7 and 0.9.
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Figure 2.5.2.4. E, /N, needed for reliable communication at code rate r in three
level Gaussian jamming and four level quantization system with optimal 4.
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Figure 2.5.3.1. E; /N, needed for reliable communication at code rate r in four
level Gaussian jamming and four level quantization system with §=0.1, 0.3,
0.5, 0.7 and 0.9.
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Figure 2.5.3.2. E,/N; needed for reliable communication at code rate r in four
level Gaussian jamming and four level quantization system with optimal 4.
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pe = pre $ Q((0-1)/ . o

g=]

py = i [Q((l—e)/ Ui)‘Q[l/ Ui]]ﬂi
- (2.5.3.1)
pe = 3 [Q1/ o o[+ o) | o

g=1

I

Pq

[
I e

Q[(1+9)/ gy )Pi

g=1

where 0?=N,«;/ 2E,, i=1, 2, 3.

The numerical results of are shown in Fig. 2.5.3.1 and Fig. 2.5.3.2 for fixed ¢
and the optimal @ respectively. From the results we see that four level jamming

does not degrade the performance significantly compared to two level jamming.

2.8. Discussion

In the previous sections 2.3, 2.4 and 2.5 we calculated the various capacities

using different quantization schemes against several different jamming strategies.

For tone jamming and random phase tone jamming multilevel level jamming
degrades the performance significantly compared to Gaussian jamming even though
the receiver chooses the optimal threshold. In Gaussian jamming channel, since the
noise density is concentrated around the mean of the received signal, multilevel ja.m.:\\
ming strategies do not degrade the system performance significantly compared to
two level jamming. However with tone jamming significant degradation occurs
when comparing multileve_l jamming strategies to two level jamming strategies. We

show the minimum required E, /N, at rate 1/2 against several jammer noise type

when the optimal 6 is used in table 2.6.1.
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| Level || Tone | Random Phase Tone | Gaussian |
J2Q2 9.6 3.8 1.8
J2Q3 || 7.0 -0.5 0.9
J2Q4 || 3.6 -0.6 0.6
J3Q3 || 7.2 2.05 0.9
J3Q4 || 5.0 1.2 0.6
J4Q4 || 6.2 1.35 0.6
Table 2.6.1. E,/N;(dB) necessary for reliable communication at rate 1/2 in

coherent system. (J2Q2 is two level jamming and hard decision,
J2Q3 is two level jamming and three level quantization, J2Q4 is
two level jamming and four level quantization, J3@Q3 is three level
jamming and three level quantization, J3@4 is three level jamming
and four level quantization and J4Q4 is four level jamming and

four level quantization).

In the next chapter 3 we discuss the noncoherent communication system with

BFSK demodulation scheme.




CHAPTER I

CHANNELS WITH WORST-CASE JAMMING AND

NONCOHERENT DEMODULATION

3.1. Introduction

In this chapter we consider worst-case jamming strategies for frequency-hopped
spread-spectrum systems with binary frequency shift keying. Frequency-shift keying
corresponds to changing the carrier frequency depending upon whether the input
symbol is a +1 or a -1. The two modulated signals are orthogonal and thus the sig-

nal set dimensionality is two. The receiver is a noncoherent matched filter receiver

(see Fig. 3.2.1).

As done in chapter 2, we consider different channels with two, three or four
level jamming interference. The jammer has an average power constraint. For a
hard decision channel the worst-case jamming strategy is to pulse between two
values, one of them being zero [STA82a|. The ratio threshold technique introduced
by Viterbi [VIT82] is used for three and four level quantization detector. In this
technique the ratio of the outputs of the two noncoherent matched filters is quan-
tized into a finite number of values. Throughout this chapter we analyze several dif-

ferent systems with two, three or four level quantization detector with one-

dimensional or two-dimensional jamming.

87
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In section 3.2 we explain the channel models and assumptions that we will
make for this chapter. In section 3.3 we discuss the performance of the system in
the presence of a jammer which places power in at most one of the two dimensions
used by the transmitter. An error or erasure can occur only when jamming signal is
in the opposite dimension of the transmitted signal. In section 3.4 we consider
partial-band Gaussian noise jamming with an average power constraint. Finally in

section 3.5 we compare the various systems considered in sections 3.3 and 3.4.

3.2. Channel Models

As discussed in chapter 2, we assume that there is a finite number of inputs
(two) and a finite number of outputs of the channels (two, three or four). The
jammer’s strategies are to distribute the power level of a certain type of noise sub-
ject to an average power constraint. The types of noise to be discussed from the

next section, are one-dimensional tone jamming and partial-band Gaussian jamming.

We use the same input and output alphabets introduced in section 2.2, i.e.
input alphabet A ={+1,-1} and output alphabet B={8,8, * * - Bk}, where K=2,
3 and 4 depending upon the number of quantization levels.

2
The receiver model with noncoherent demodulation is shown in Fig. 3.2.1. Let

the signal transmitted, s;(¢t), be

se(t) = 4/ -2-?,1 cos (2nfet+y), k=1,2 (3.2.1)

where E, is the channel symbol energy, T is the signal duration, fj is carrier fre-
quency corresponding to the input binary bit (Le. fi=f,+Af and f,=f.-Of in

(1.3.3.)) and ¥ is uniformly distributed signal phase. The received signal r(t) in
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Fig. 3.2.1 contains the additive jamming signal and the transmitted signal. The
jamming signal depends upon the noise type (i.e. tone jamming and Gaussian jam-
ming). The output of the demodulator can be represented by a random vector

R=(R,,R,). Each component of the random vector R is given by
Rl=ul+ul, k=12 (3.2.2)

where u2, u,} are in-phase component and quadrature-phase component of the
received signal respectively. The output of the square law combining receiver due to

the jamming noise signal given by (1.4.6) can be represented by the random vector

I=’(11,12) where

Ik2=nci+n,i y k:—.l, 2 (323)
and

T A —

ng = [ V2/E. T cos (2xfyt) j(t) dt (3.2.4a)
0
T e ————————

ng = [ V2/E. T sin (2nf,t) j(¢) dt . (3.2.4b)
0

In (3.2.4) the noise signal j(¢) depends on the jamming signal type.

One-Dimensional Tone Jamming

For one-dimensional tone jamming the noise signal j{t)=2;, ;(t) given by
(1.4.7), where J(t) is given by (1.4.5). The random vector I=([,/,) in our model has
one of two forms: either I=(Z,0) or I=(0,Z) where Z=Z,-’o/\/$\_depending on if
Vo=+1 or -1. As in the previous chapter 7, is the amplitude of the jamming sig-
nal in frequency slot i. We allow the jammer to optimize the distribution of Z;,

subject to an average power constraint E[Z,-?o}=1, or equivalently optimize the
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distribution of Z subject to E[Z%=1/\.

Gaussian Jamming
For Gaussian jamming the noise signal j(¢) is Z; 5(t) where j(¢) is Gaussian
random process with power spectral density N;/2 centered at f.. In (3.2.4) ny and

n,, k=1, 2 have the same form given by

Nk = Z N,

3.2.5
Ny = Z N, ( )

where N, and N, are independent Gaussian random variables with mean 0 and vari-
ance 1, and Z is random variable with average power E[Z%=1/2)\. The jamming

strategies are then to distribute Z with an average power 1/ 2X.

The channel transition probabilities are then given by

plylz) = f ply|z,z) dP(z) (3.2.6)

where p(y | z,2z) is a conditional transition probability given Z=2z, z€A and y€B
and P(z) is the distribution function of Z. For each noise type of jammer men-
tioned earlier in this section, the jammer has two, three or four levels subject to an

average power constraint.

The channel output Y in Fig. 3.2.1 is then given by
Y = @, (R{,R]) (3.2.7)

where @, is a two dimensional L level quantizer. Since the channel is symmetric we

may assume +1 was sent for analysis. For a hard decision receiver the decision rule

is given by
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Figure 3.2.1. Receiver model for noncoherent system.
1 RI<SR? (3.25)
2 p2y __ — - 9.
QiRy\Ry) = .1 RI>RZ.
The three level quantizer considered is given by
R{<R}/8
QyR{R;)={7? R}/O<R{<R{ (3.2.9)
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and the four level quantizer considered is given by

(1,g00d RZ<RE/06
1,bad RZ/O<RF<R}
QRERE) = -1,bad  REI<RI<R}4
~1,good REI>RE.

(3.2.10)

In (3.2.9) and (3.2.10) we assume 0 is between one and infinity. Fig. 3.2.2 shows the
signal spaces and the decision regions for three and four level quantization receivers.

The transition probabilities for the channel then can be written, for two level quant-

ization, as
R22 ‘-‘R l2
R} ? R}
P
Rzz a—l R 2
h s !
Pe
>
2
R, R}
(a) Three level quantization (b) Four level quantization

Figure 3.2.2 Decision regions in three and four level quantization receiver.

-
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1-p z==1, y=1
p(y]z) ={p z=1, y=-1. (3.2.11)

For three level quantization the transition probabilities are

e z=1,y=1
plylz)=q.py z=1,y=? (3.2.12)
pe z=l,y=-L

For four level quantization the transition probabilities are

(

p. z=1, y=1, good

py =1, y=I1, bad

ply|z) = (3.2.13)
p. z=1, y=-1, bad

pqg z=1, y=-1, good.

The transition probabilities depend upon the jammer power distribution and the

type of the noise.

3.3. One-Dimensional Tone Jamming

The jammer signal is added to the transmitted signal over the channel and this
perturbing signal appears only in one dimension, that is, the jamming noise has the

form : I = (Z,0) or (0,Z) with probability one half each where Z is the random

variable with an average power
E[Z¥ =1/ (3.3.1)

The jammer strategies are to distribute Z subject to an average power constraint

1/ \.
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3.3.1. Two Level Jamming

In this section we consider three different detectors, one hard decision detector
(i.e. two level quantization) and two soft decision detectors (i.e. three level and four

level quantizations).

For a hard decision channel the worst-case jamming strategy is to concentrate
Z on two or fewer power levels: one just large enough to overcome the signal and
the other zero. Assume the jammer has three levels, z,, z, and 0, and z;=1 with
some probability greater than zero. If 0<z,<1 then the capacity does not depend
on z,. If z,>1 then the capacity is the same as if z;==1. Thus two level jamming is

the worst-case jamming strategy.

Two level jamming, two level quantization

With a hard decision detector (two level quantization) the crossover probability

of the channel is given by
== 0.5[)1 (3'3'1'1)

where p, is the probability being jammed. The worst-case distribution of Z the

jammer employs is then

1 z=V1/X
N 3.3.1.2
Pr{Z=z} = {0 otherwise ( )
for A<1 and
/X z=1
Pr {Z=z} = {1_1/ 2 2 =0 (3‘3'1'3)

for A>1. We can rewrite the crossover probability of the channel, p, shown in
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(3.3.1.1), as
0.5 A <1
— = 3.3.1.4
P = {0.5/ X A>L ( )
The channel capacity is then given by
0 sl 3.3.1.5
C=1-Hip)=\1g,05/)) xr>1 (3:3.1.5)

where H,(z)=-zlog,z-(1-z)logy(1-z). The minimum bit signal-to-noise ratio

needed to obtain the channel capacity as a code rate r is shown in Fig. 3.3.1.1.

Two level jamming, three level quantization

With three level quantization the jammer concentrates his power on two values,
that is, zero and a value greater than or equal to 1/ V8. As done in chapter 2, we

determine the optimum strategy and the resulting capacity.

For A<1/ 6 the jammer has enough power so that Z =19 with probability one.
For this strategy the crossover probability of the resulting binary symmetric channel

is one half, and the resulting channel capacity is zero.

For 1/9<X<4 the jammer no longer has enough power to cause an error with

probability one half. The jamming strategies in this region are

7 = VO w1/ (3.3.1.6)
0 w.p. 1-1/X\8
or
==f/¢i wp. 1 (3.3.1.7)
0 w.p. 0.

The first strategy yields capacity 1-H,(1/2)\0) and the second strategy yields
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Figure 3.3.1.1 E, /N, needed for reliable communication at code rate r in one-
dimensional two level tone jamming and hard decision system.
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capacity one half. Therefore the capacity in this region is is the minimum of the

two capacities:
C = min(1/ 2, 1-Hy(1/ 2X09)). (3.3.1.8)

If 1/ 2X\0<0.11 the capacity is 1/2. Thus for 1/ §<X\ <8 the capacity is given by

1-Hy(1/2X0)  1/6<2<4.545/9 (3.3.19)
€=\ 12 4.545/ 9 <X <4.
For A># the feasible jamming strategies are
Z = VI wp 1/ (3.3.1.10)
0 w.p. 1-1/ X\
_fyve w0/ (3.3.1.11)
=0 w.p. 1-8/\.

The resulting capacities are C=1-H,(1/2X0) and C=1-0/ 2\ respectively. Thus
the overall channel capacity is given by

r

0 0<2<1/9
1-Hy(1/ 28
o | 2(1/ 2X9) 1/0<x<4.545/ 4 (33.1.12)
1/2 4.545/ <\<9
min(1-8/ 2\, 1-H,(1/ 2X8)) A>0.
\

Notice for §<2.13, 4.545/ 6>8 so that the third region in (3.3.1.12) is empty. For

#>>2.13 this region is nonempty and the capacity is a constant independent of X.

In Fig. 3.3.1.2 we show the minimum bit signal-to-noise ratio needed for reli-
able communication at a code rate # for thresholds § = 1.5, 2, 3, 5 and 10. For
small \ large § makes the performance better. The bit signal-to-noise ratio vs. code

rate minimized over § is shown in Fig. 3.3.1.3. As 8 approaches infinity the optimal
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Figure 3.3.1.2. £,/N; needed for reliable communication at code rate r in one-
dimensional two level tone jamming and three level quantization system with
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Code Rate r
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Figure 3.3.1.3. E,/N; needed for reliable communication at code rate r in one-
dimensional two level tone jamming and three level quantization system with
optimal 4.
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Figure 3.3.1.4. E, /N, needed for reliable communication at code rate r in one-

dimensional two level tone jamming and four level quantization system with
§==1.5, 2, 3, 5 and 10.
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channel capacity can not be less than one half regardless of the jammer power.

Two level jamming, four level quantization

With four level quantization and two level jamming the optimal jamming stra-

tegy is given by

7 2{\/9_ w.p. 1/ N0 (3.3.1.13)

0 w.p. 1-1/\6.

The resulting capacity is then given by

0 NS1/6 3.3.1.14)
C =\1-Hy1/2)8) >>1/0. (3.:3.1.

In Fig. 3.3.1.4 we show the minimum bit signal-to-noise ratio needed to obtain code
rate given ratio threshold == 1.5, 2, 3, 5 and 10. As # increases, the performance
becomes better. Notice that the channel capacity is close to one as § approaches

infinity regardless of the jamming power.

3.3.2. Three Level Jamming

In this section we discuss a system with three level and four level quantization

under one-dimensional three level jamming environment.

The optimal strategy for the jammer is to concentrate Z on three or fewer
power levels : one zero and the others (one or two) just large enough to overcome the

signals considered for detection at the receiver.

Three level jamming, Three level quantization

With three level quantization the optimal distribution of Z is concentrated at

three points, namely zero, 1/ V8 and V4.
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Figure 3.3.2.1. E, /N, needed for reliable communication at code rate r in one-
dimensional three level tone jamming and three level quantization system with

6=1.5, 2, 3, 5 and 10.
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optimal 6. :
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For some \ and 8, the worst-case distribution the jammer employs is the same

as (3.3.1.6) for x<1/ 48 and

P1 2=z
PT{Z=Z} = P2 Z2=2Z9 (3.3.2.1)
1-py-py 2=0

for A\>1/ 0, where z;=1/ v and z2=\/¢9—, and the transition probabilities p,, p, and

p. are as follows :

py = 0.5p, (3.3.2.2)
pc = 0.5p2
The channel capacity is given by
C = pylogaps +p.logap.—(ps +pc)l0go(Pa +P: )+Pa P - (3.3.2.3)

The minimum bit signal-to-noise ratios vs code rates are shown in Fig. 3.3.2.1 with
several fixed 9, and the performance of the system with the optimal 6 is shown in
Fig.3.3.2.2. With the optimal 8, the capacity can not be less than one half indepen-

dent of the average jammer power.

Three level jamming, four level quantization

With four level quantization the distribution of Z is concentrated at three
points, that is, zero, z,>1/ V08, z,>1, where Pr{Z=2z}=p, and Pr{Z=z,}=p,.
There are three possible situations depending upon z; and z, for analysis :

(1) If 2, € [1/ V8, 1) and z, € [1, V) then
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dimensional three level tone jamming and four level quantization system with

= 1.5, 2, 3, 5 and 10.
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Figure 3.3.2.4. E; /N, needed for reliable communication at code rate r in one-
dimensional three level tone jamming and four level quantization system with

optimal 4.



Pa(21) = 0.5 p,(z5) = 0.5
ps(z1) =05 py(ze) =0
p'?(‘zl) =0 pc(ZZ) = 0.5
pa(z)) =0 pa(zs) = 0.
(2) If 2, € [1/ V8, 1) and z2, € [\/9‘, oo) then
Po(21) =05 p,(z5) = 0.5
po(2z)) = 0.5  py(2) =0
Pe(z) =10 p.(z9) =0
Pa(z)) =0 pi(zs) = 0.5.
(3) If 2y € [1, ‘/9—) and z, € [\/9—, oo) then
pﬂ(zl) = 0.5 pa(ZZ) = 0.5
pp(z1) =0 po(z2) = 0
pc(21)=05 pc(zz)::O
pa(z)) =0 palzy) = 0.5.

Ps = Zpa(zi)p€+90
Py = pr(zi)Pi
Pe = Y p.(%)p;

pa = Y, palz)pi

The channel capacity is then given by

C = p,logyp, +pylogsps+p.logap, +pylogopy +1
~(ps+pa)logy{p, +p4)~(py +p. )loga(py +p. ).

(3.3.2.4)

(3.3.2.5)

(3.3.2.6)

(3.3.2.7)

(3.3.2.8)

Fig. 3.3.2.3 shows the minimum bit signal-to-noise ratio needed for reliable commun-

ication at code rate r with various 4. Fig. 3.3.2.4 also shows the minimum bit
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Figure 3.3.3.1. Ey /N, needed for reliable communication at code rate r in one-

dimensional four level tone jamming and four level quantization system with
6= 1.5, 2, 3, 5 and 10.
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optimal 6.
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3.4. Partial-Band Gaussian Jamming

In this section we study the performance of a noncoherent communication sys-
tem in the presence of Gaussian jamming noise. For this type of jamming, each com-
ponent in (3.2.4) is given by /=ZN where N is a Gaussian random variable with
mean 0 and variance 1, and Z is a random variable with average power 1/2X\. The

jamming strategies are then to distribute Z subject to an average power 1/ 2\.

The worst-case partial band jamming strategies have been discussed in many
papers [HOU75,VIT75] when a hard decision receiver is used. In our model we con-
sider multi-level Gaussian jamming and multi-level quantization. We find that in the
Gaussian jamming channel more than two level jamming strategy does not signifi-
cantly degrade the performance (over two level jamming) because the jammer’s

power density is highly concentrated around the mean which is zero.

In section 3.4.1 the channel capacity is calculated with two, three and four level
quantization at the receiver under two level Gaussian jamming environment. In sec-
tion 3.4.2 and 3.4.3 we repeat the calculation for the case of three and four level
jamming.

™~

\

3.4.1. Two Level Jamming

In two level Gaussian jamming environment, p, 0<p<1, denotes the fraction of
the spread signal band is jammed. The jammer has a power density N,/ 2p with

probability p and zero power density with probability 1-p.

Two level jamming, two level quantization

For a hard decision receiver, Viterbi [VIT75] showed that the crossover proba-

bility of the binary symmetric channel is given by
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Figure 3.4.1.1. E, /N, needed for reliable communication at code rate r in two
level Gaussian jamming and a hard decision system.
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Figure 3.4.1.2. E; /N, needed for reliable communication at code rate r in two
level Gaussian jamming and three level quantization system with 8=1.5, 2, 3, 5

and 10.
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Figure 3.4.1.4. E,/N; needed for reliable communication at code rate r in two

level Gaussian jamming and four level quantization system with 8==1.5, 2, 3, 5
and 10.
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for X sufficiently small [CHAS85], that is, if A<\ then p =1, where Ag is the solu-
tion of the partial derivative of the channel capacity with respect to p being equal to
zero evaluated at p=1. However it is very hard to obtain the closed form for
optimum p for all X\. This has been computed numerically and the resulting channel
capacity is given by (3.3.2.3). The relations of the bit signal-to-noise ratio and code

rate are shown in Fig. 3.4.1.2 and Fig. 3.4.1.3.

Two level jamming, four level quantization

With the four level quantization we split the erasure symbol into two different
channel output symbols, namely +1, bad channel state and -1, bad channel state.
For this system the channel transition probabilities defined in (3.2.13) corresponding

to the decision rule in (3.2.10) are given by

p, = 1_}% oL/ 20%(1+6) ]p_*_p;
py = %é et/ 20M(1+6) _ _;‘_8—1/401 ]p

\ (3.4.1.5)
Py = 1_:’:0. o0/ 20%(1+6)

Since it is hard to obtain the closed form for optimum p for all X\, the perfor-
mance has been calculated numerically and is shown in Fig. 3.4.1.4 and Fig. 3.4.1.5

with fixed ¢ and the optimal 6§ respectively.

3.4.2. Three Level Jamming

In three level jamming the jammer has at most three power density levels over

some fraction of the signal bandwidth, that is, zero, N;a;/2 and N;a,/2
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corresponding to the bandwidth fraction being jammed pg, p; and p,, respectively.

Three level jamming, three level quantization

With three level quantization the transition probabilities defined in (3.2.12) of

the symmetric channel corresponding to the decision rule in (3.2.9) are given by

2 E
@  -1/20¥1+6)
= - ——— .
Pa Po ‘.gl [ 1+4 € ]pl

2
0 -1/20}1+6) 1 -8/ 20}(1+6)
—_ 7 = i 3.4.2.1
Py E‘I[ 146 ° 5° ]p (3-4.2.1)
2
1 -8/ 20H1+0
Pe =Y [-58 /6(+)]P;‘
i=1

where 0’=N,a;/2E,, i=12. In Fig 3.4.2.1 we show the minimum E,/N, to
obtain the code rate r with several . In Gaussian jamming channel the perfor-
mance degradation is not large, even though the number of jammer levels increase.

This is because the Gaussian density is highly concentrated around the mean.

Three level jamming, four level quantization

With four level quantization the transition probabilities defined in (3.2.13)

corresponding to the decision rule in (3.2.10) are given by

2
8 -1/ 20}1+6)
Pa Po i§=:1 [ 140 € ]pa

: -1/ 202 -1/ 45t
=3 0_, 1/2&,(1+9)__;e 1/ 40! ]p‘_

=i | 1+0
. ¢ (3.4.2.2)
- 2 .
P, = Z l e 1/40,_1 6-0/2a3(1+9) ] i
f==1 2 g

9

1 -8/2031+6
Pd=2 - € /U(+)]P.‘
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three level Gaussian jamming and three level quantization system with §=1.5,
2, 3, 5 and 10.
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where 0’=N,a;/2E,, i=1,2. As seen in the Gaussian channel the performance is

almost same as the two level jamming and resulting performance is shown in Fig.

3.4.2.3 and Fig. 3.4.2.4.

3.4.3. Four Level Jamming

The optimal distribution of the jammer power is concentrated at most four
points, that is, the power density levels are denoted by zero, N,/ 2, Nya,/ 2 and
N;ay/ 2, and the bandwidth fractions corresponding to the spectral densities are py,
Py Py and pg, respectively. The jammer has an average power constraint. The
optimal distribution of the jammer power is computed numerically. The resulting
performance of the four level jamming is nearly the same as that of the three level
jamming.

The transition probabilities defined in (3.2.13) for the channel with four level

quantization rule given by (3.2.10) are given by

3
0 -1/20}1+6)
= pp+ 2: 1—-—— ¢ .
Pa Po Pt [ 1+6 € ]ps

3 ( -1/ 207 1/ 40!
pp =3 8 . 1/20,(1+o)__1_c 1/ 40! ]P.‘

=1 | 1+¢ 2
L (3.4.3.1)
- 2 2
P, = Z _1 e 1/40,__1 e-o/za,(u-a) .
=1 L 2 g

3 {
1 -8/2%1+0
P4=Z ‘53 /d(+)]9i
=1

\

where 0?=N;o;/2E,, i=1,2,3. In Fig. 3.4.3.1 and Fig. 3.4.3.2 we show the
minimum E, /N; needed to obtain the code rate r with fixed § and the optimal 4,

respectively.
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Figure 3.4.3.1. E,/N; needed for reliable communication at code rate r in four

level Gaussian jamming and four level quantization system with 6=1.5, 2, 3, 5
and 10.
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3.5. Discussion

In section 3.3 and 3.4 we discussed the performance of the system with dif-

ferent quantization levels against several jamming strategies.

In one dimensional tone jamming if the communicator chooses the optimal
ratio threshold 4 then the jammer can not make the capacity less than one half even
though the jammer increases the power. Higher level jamming makes the perfor-
mance worse than lower level jamming. In Gaussian jamming, however, higher level

jamming strategies do not degrade the performance significantly.

We show the minimum required information bit signal-to-noise ratio at rate

1/2 against several jammer noise type when the optimal 4 is used in Table 3.5.1.

| Level || One-dim Tone | Gaussian
J2Q2 9.6 8.25
J2Q3 6.0 7.45
12Q4 00 7.27
J3Q3 6.7 7.45
J3Q4 4.5 7.27
J4Q4 5.4 7.2

\

\

A\,

Table 3.5.1.  E,/N;(dB) necessary for reliable communication at rate 1/2 in non-
coherent system. (J2Q@Q2 is two level jamming and hard decision,
J2Q3 is two level jamming and three level quantization, J2Q4 is
two level jamming and four level quantization, J3Q3 is three level
jamming and three level quantization, J3@4 is three level jamming
and four level quantization and J4Q4 is four level jamming and
four level quantization).



CHAPTER IV

CONCLUSIONS

In this thesis we have analyzed frequency-hopped spread-spectrum systems with
two, three and four level quantization in the presence of worst-case jamming. In
coherent systems, we have considered tone jamming, phase mismatched tone jam-
ming and partial-band Gaussian jamming as the noise type of the jammer. In non-
coherent systems, the jammer noise types considered were one-dimensional tone jam-
ming and partial-band Gaussian jamming. For both coherent and noncoherent sys-
tem, two, three and four level quantization were employed at the receiver. As a
jamming strategy, we considered two, three and four different power levels subject
to an average power constraint. Unlike tone jamming, the performance of multi-
level (more than two level) Gaussian jamming is very close to two level Gaussian
jamming. In noncoherent systems with one-dimensional tone jamming and optimum
ratio-threshold the capacity can not be less than one half independent of the
jammer’s power. We have determined the minimum bit signal-to-noise ratio under
the worst-case jamming environment when L level quantizers are used for L =2, 3

and 4.

One interesting extension is to employ cutoff rate as the performance measure.

Cutoff rate is considered as a practical limit of code rate. It will be interesting to

128
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compare channel capacity and cutoff rate in the presence of worst-case jamming and
to find the worst-case jamming strategy. Another interesting problem is to consider
the performance of specific error correction codes with worst-case (multi-level) jam-
ming. The error correction codes of interest are repetition codes, convolutional codes
and Reed-Solomon codes. The analysis with additive background noise would also be
interesting. The results in this thesis can be used to obtain a bound in this case by
considering another system with a jammer with average power being the sum of the
background noise power and the original jammer power and no background noise.
This is a bound since the feasible strategies for the jammer with in the later system

include those strategies in the former system.
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APPENDIX A

WORST-CASE DISTRIBUTION FOR PARTIAL-BAND JAMMING

In this appendix we prove that two levels is optimum for binary PSK based on

the exact bit error probability.

Let Z be a nonnegative random variable with mean N; and distribution Pz(z).
If Z==z represents the jammer having noise level z then the average error probabil-

ity p, is

P = E{Q[ 2‘? ] } (A.1)

where £, is the received energy of the transmitted signal and

Q(z)zf L .- #/24t. Define the function fi(z) by

QW2E./z) >0
fl(z)=={ 0 0. (A.2)
This function is shown in Fig. A.1.
We will show that f(z) has a single point of inflection:
f1(t) = VE./ 4m e Z/7 7302
F1(z) = VE, [ ax & B/ 50 [ L ] (A3)

Since ¢ %/*;5/2 g always nonnegative the only point of inflection occurs at

z=2E,/3. For 2<2E,/3, f,(z) is a convex function while for z>2E_/3, f(z) is

a concave function. Define the functin f,(z) by
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7 Q(V27) #E. 0<z<Ee/ % (44
ne f(2) 2>E. /%
where -, is the solution of
— Vi
279) - *=0. A5
Q(\/ '70) \/:1—7? ¢ ( )

The value of vy is 0.709. This function is shown in Fig. A.1. From the above we

have
f2)<holz) 220 (A8)
with equality if z>E,/v,. From (A.1) we have
pe = E[f1(2)]SE[fo2)] (A7)

with equality if z>FE,/ v, or if the distribution of Z is concentrated at the two
points z=0 and z=E, /v, Now since f,(z) is a concave function by Jensen’s ine-

quality we have

Pe SE(foAZ)SfAE(Z)|=1 oNy)- (A.8)

Equality can be achieved in (A.8) if z is concentrated on two points or less. Notice

that

)

N
w0 Q(Van) 2= E/Ni2w
foNy) =) ° (4.9)

Q[\/2Ec/NJ‘ E./N;<7.
{

Thus we have shown that two levels is a worst-case distribution for binary PSK

with error probability as the performance measure.
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Figure A.1. The functions f () and f,(t)
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