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Abstract

The information theoretic capacity of frequency-hop spread-spectrum
multiple-access communication is considered. In order to account for in-
dependent encoding and decoding and private (to the sender and receiver)
hopping patterns an interference channel model is adopted with K sender-
receiver pairs with the i-th receiver only interested in the message trans-
mitted by the i-th sender. Both synchronous and asynchronous hopping
patterns are investigated. Although the channel exhibits memory in the
latter case, we are able to compute the capacity region. The asymptotic
normalized sum capacity is also computed.
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I. Introduction

In this paper we consider the multiple-access capability of frequency-hop
spread-spectrum communication systems from an information theoretic view-
point. This capability is calculated by modelling the communication system
from the modulator input to the demodulator output as an interference channel
and determining the capacity region of this channel. We examine synchronous
and asynchronous hopping patterns and consider the cases of side information
at the receiver and no side information at the receiver.

.There have been several recent studies of multiple-access performance of
spread-spectrum communication systems [1,3]. These have concerned themselves
with the probability of error of packets or codewords over such multiple-access
channels using specific codes, typically Reed-Solomon codes. For the (much
harder to analyze) unslotted channel they have used bounding techniques to ap-
proximate the packet or codeword error probability [4]. In this paper we address
the issue of performance with the best possible codes. Here we examine only the
slotted channel with both synchronous and asynchronous hopping each with and
without side information and determine the capacity region.

We do not allow cooperation between users either at the encoder or at the
decoder. This makes the interference channel model more appropriate to our
situation rather than the multiple-access channels. Using this model we are able
to calculate the capacity region in each of the cases mentioned z;.bove. We then

focus our attention on the largest possible total rate that can be achieved by all



users.

II. Channel Models

The model for multiple-access frequency-hop spread-spectrum communica-
tion consists of K source-receiver pairs with the ¢-th source desiring to commu-
nicate only with its corresponding receiver over a common channel (See Fig. 1).
There are K separate encoder devices: one for each source. The i-th encoder
has as its input only the messages from the i-th source and produces a symbol
z() € X (the common input alphabet). This symbol is transmitted by mod-
ulating and frequency-hopping the desired symbol. The i-th receiver examines
its assigned hopping pattern demodulates the received waveform and produces
the output symbol y¥) € Y (the common output alphabet). Decoding is done
independently at the i-th receiver. The i-th source may transmit one of |2"% |
messages and this is then encoded by the i-th encoder, modulated using one of
M signals, and then frequency hopped by the i-th frequency hopper to one of ¢
frequency slots. The hopping patterns are modelled by independent sequences
equiprobable over the g slots. Thus each component of each of the K input vec-
tors of length n is chosen from the common alphabet {1,2,..., M}. We assume [
channel symbols are transmitted per hop and this in incorporated into the chan-
nel alphabet size M. We assume that the channel is slotted and thus the number
of transmissions during a slot is constant.

The hopping patterns we consider are modelled by independent sequences,



one for each sender-receiver pair, equiprobable over the ¢ slots. In the case of
synchronous hopping this makes the channel hits (i.e. the event of more than one
user transmitting over the same frequency slot) independent. However, in the
case of asynchronous hopping patterns, knowledge about past hits by a particular
user a.ﬁ'ectsv this user’s knowledge about the distribﬁtion of the frequency slots
used by the K — 1 other users and so the sequence of hits for any particular
user exhibits memory. Moreover, it turns out that this sequence is not even
Markovian [5|. In this paper we demonstrate that this sequence is a function of
an underlying Markov chain which enables us to treat the marginal channels in
the asynchronous case as finite state channels thereby allowing us to compute
the capacity regions of the K-user channel with asynchronous hopping in both
the case with side information at the receiver (knowledge about whether each
received symbol was hit or not) and the case with no side information at the
receiver. We consider only the noise arising from interference due to other users
and do not include any other background noise in our analysis (although it would
not be difficalt to do so).
Case A: Synchronous Hopping-Side Information Available

We first examine the case of synchronous hopping patterns and thus consider
a memoryless channel model (since the symbol hits are independent in this case).
The side information referred to is the awareness of each of the K decoders about
whether ‘or not there was a hit on the corresponding transmission. The symbols

hit are erased. This model is shown in Fig. 2(a). It is easy to see that



€a = P{erasure} =1— (1 - p)¥~! (1)

where p = 1/q.
Case B: Synchronous Hopping-No Side Information Available

Here again synchronous hopping is considered but in this case the decoders
do not receive any information about hits on each symbol. Thus the hits remain

undetected and cause a symbol error with probability e, (see Fig. 2(b))

en/(M — 1)=P{error} = (1 — (1 - p)" )eo/(M - 1). (2)

Note that in our model we do not distinguish between the case of two users
colliding or more than two users colliding.
Case C: Asynchronous Hopping-Side Information Available

We now address the situation where the hopping is asynchronous and the
receivers have side information which enables the demodulator and decoder to
determine which symbols have been hit. It is assumed that all symbols that have
been hit are erased. We need to introduce some notation which we do with the aid
of Fig. 3. Each user employs a hopping pattern with frequencies chosen uniformly
from the set {1,...,¢} and independently of the frequencies chosen by the other
users. We denote the random hopping pattern for user ¢ as {F;;, j = 0,1,...}.
(All capital letters will denote random quantities (variables or vectors), and
the corresponding lower-case letters will denote particular realizations of these

random quantities). Observe that 2 channel symbols of user ¢ overlap with the



j-th channel symbol of user 1. We define the frequency possibly interfering with
the transmission by user one in the j-th hop on the right (see Fig. 3) as F;;
and (Fy;,..., Fx;) as F;. Now suppose all K users are transmitting packets and
receiver 1 (which desires to receive user 1’s messages) locks onto user 1’s hopping
pattern. We assume that user 1 transmits using freqhencies Fj,Fajy., Frj. We
denote by Hj, y = 1,...,n, n binary random variables such that H; = 1 if the j-th
symbol transmitted by user 1 is hit (i.e. if at least one of the other K — 1 users
uses the same frequency during the slot corresponding to the jth channel symbol)
and H; = 0 otherwise. We note that H; = 1 if and only if Fy; € F;_; U F;. We

also will need the binary random variables Hf, Hf, j = 1,2,...,n defined as

follows
1 F ;e F'_l
L — 'J J
Hf =
0 otherwise,
HF - 1 Fl,j € ﬁ'j

2
0 otherwise.

Finally, let S,-j be the number of frequency slots out of time slots 1,1 +1,...,7
of user 1 that have been hit.

Note that in the model we have just described theset {F;;; t =1,2,..., K, j =
0,1,...,n} is an independent identically distributed (i.i.d.) set of random vari-
ables with each F;; being uniformly distributed on the set 1,2,...,q and conse-

quently {ﬁ’,, J =0,1,..,n} is an i.i.d. sequence. Also H; = 1 if and only if

Hf=1or H? =1and S/ = H; +... + H;. Now we can state our key lemma.
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Lemma 1: The sequence (H}, HF) is a Markov chain.

Proof: See Appendix A.
Note: In the sequence (..H[ ,,H},,Hf,HF,..), H depends on H, but is
independent of Hf ;, and HF. The reason why H; is not a Markov chain (for

K > 2) is that knowledge of H;_y, H,_,... affects our posteriori distribution of

Fi,k=j—1,5—2,.. and thereby HF, thus making
P(H;|H;-1,H;-3,...) # P(H;|H;-;).

Since H; = (H f‘ or H ,R) we recognize that the sequence of symbol hits is really
a function of the underlying stationary Markov chain (H f’, H JR) with four states
viz. (Hf, HF) = (0,0),(0,1),(1,0), or (1,1). For the sake of brevity we use U}i)
to denote the state of the component channel between the i-th sender and the
corresponding receiver during the j-th symbol transmission i.e. U }i) = (H f, H JR)
for the i-th component channel.

This Markov chain is shown in Fig. 4 and the transition probabilities are
calculated in Appendix B. In the K-user situation each of the K component
channels (between the i-th sender and the corresponding receiver) is thus a finite
state channel. Corresponding to state a=(0,0) we have a noiseless channel and
corresponding to states b=(0,1), ¢=(1,0) or d=(1,1) (i.e. a hit on the current
symbol) we have a channel which puts out an erasure symbol.

Case D: Asynchronous Hopping - No Side Information Available

Finally we address the case where the hopping is asynchronous and the de-

coders receive no information about whether a symbol is hit or not. Hits are
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thus undetected and cause errors with probability e;. The component channel
in this case may be modelled as an M-ary input M-ary output channel where
the output letters ¥; associated with the input X; are given by Y; = X; & H;R;
where H; is the random variable (defined earlier) which is 1 if the j-th sym-
bol was hit and is 0 otherwise and R; is a random variable independent of the
input and independent of H; with a distribution on {0,1,..., M — 1} such that
P(Rj=0)=1-eyand P(R; =1) = ¢ /(M —1) forl =1,2,....M — 1. Finally

the addition & is modulo M addition.
III. Capacity Regions

We observe that in both the synchronous cases our models are a simple case
of a K-user discrete memoryless interference channel, i.e. a channel characterized
by a probability density p(y(),...,yt®)|z(V), ..., z\X)) with the i-th sendef trying
to communicate with the i-th receiver through independent encoders and de-
coders. The capacity region for such channel is not known in general but various
inner and outer bounds have been developed for it [6]. Our channels fall into
a simple class known as separated channels for which the marginal probabilities

p(y¥)|zM, ..., (%)) do not depend on z) j + ¢, i.e.

Py, ..., 1)) = p(y®|z)).

Since the capacity region depends only upon the marginal probabilities p(y("]z(!, ...

we see from the converse to the coding theorem for the two user channel that the

maximum rate of reliable transmission for the ith sender-receiver pair cannot be
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more that maxg, I(X;;Y;) where X; and Y; are related by the conditional proba-
bility distribution p(y(‘)]m(‘)). This rate can be actually achieved by maximizing

each @, individually and hence we see that the capacity region is
0< R <G (3)

where C; = maxg, I(X;;Y;).

In the asynchronous case we similarly see that
Pz, .., 20, . 2B ) @ )y = p(yV |z, u®)

where the u()’s are the states of the underlying Markov chain corresponding to
the 1-th sender-receiver pair. Thus again from the converse to the coding theorem
for the single user channel [9] the maximum rate of reliable information trans-
mission cannot be more than the capacity of this finite state two user channel.
Since we can actually achieve this rate by suitable choice of input probabilities
(in fact, by i.i.d. inputs) we see that the capacity region of this communication
system is

0<R<C, 1<i<K (4)

where C; is the capacity of the finite state channel corresponding to the ith
sender-receiver pair.
We now calculate the interference capacities for the models described above.

Case A: (Synchronous Hopping, Side Information Availa(ble)

R, <Ci=(1—-€4)log, M, 1=1,..,. K (5)



where ¢ is fixed. The sum of the rates of the individual users, R,um = f:l R;,

is maximized by

. -1
= waoy)
for which the sum rate is
K -1
-1 e
Raum S Caum é Ct' = lOg M.
.Z; In(1-p)1—-p

For large ¢ the optimum number of users approaches g, i.e.

and
. T'C
ql_l*rg . = ¢ log, M. (7)

Case B: (Synchronous Hopping, No Side Information Available)

R; < C; =log; M — hy(ep), i=1,..,K (8)
and
Roum < Coum = K(logy M — hay(es)) (9)
where
ha(z) £ —zlogps(z/(M — 1)) — (1 — z) logy, (1 — 7). (10)






H(Y"|uo) < n(hae(l — p(yl =2zl = k))

0 _

j

with equality achieved by equally inputs where hps(z) is given in (10) and p(y

?lxg-‘) =k)=1-(1- %)2(’("1) and k and ¢ are arbitrary. Denoting p(yJ(-") =?|:c§.") =
k) as ec, we have
H(Y"| X", u9) = n|—e¢c logps ec — (1 — €c) logas (1 — €¢)].
Now it is easy to verify that
Ci=(1-¢c)logpy (M —1).
Hence
R<C={1-[1-(1- -;)Z(K"l)]}logz M, i=1,..K (12)

is the capacity region of the K-user channel in this case. Asymptotically as the
number of frequency slots, ¢, approaches infinity with K = Ag, (A some constant)

we get
1
(1= (1= (1= 20 o 1= (1 - ) = 7B, (13
Hence, asymptotically C; = ¢~ * log, M. Optimizing
Jim Crum/q = Jim ZC’.-/q = e P log, M

over A gives \* = 0.5 and lim, o, 3; C;/q = 0.5¢"! log, M.
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Case D: (Asynchronous Hopping, No Side Information Available)
In this case with asynchronous hopping and no side information available we

calculate the capacity C; of the :** component channel using, as in Case C,

C; = lim max min Io(X™ ¥V luo).
n—oooqu(,n) ug n

Again since the channel is indecomposable C; is independent of the initial state

of the Markov chain and may be written as

C; = lim max
n—00 Qn(zn) n

for any initial state ug. Now

Io(X™ Y ug) = H(Y"|uo) = H(Y™| X, u0)

= H(Y"uo) — H(V"|uo)

where V,, is a 1 if an error occurred on the n-th symbol and is 0 otherwise. Hence

Ci = lim max Lo (X7 ¥ 7o)
n=+00 Qn,(z") n

= log M — Hy(V) (13)

since H(Y"|ug) < nlog M with equality for equally likely outputs which are
achieved by equally likely inputs and since lim,_.o = H(V"|uo) is independent
of uo and is equal to HQ(V), i. e. the entropy of the stationary random (non-
Markovian) process {V;} which is a function of the Markov chain, {(H?, H}, R;)}.

Computing the entropy of a function of a Markov process has been con-
sidered by Blackwell [11]. While a closed form expression for the capacity is

not available in our case, tight upper and lower bounds are available [12]. Let
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W; = (HF, HE, R;) be the state of a Markov chain and V; the function of the
state given by V; = 1 if Hf = H = 1 and R; # 0 and V; = 0 otherwise. Then

the entropy H, (V') of V; is bounded as follows.
H(anv —lyVn-—2a neey VlaWO) S HOO(V) S H(VnIVn—l)Vn—Z‘,---’Vl)'

Furthermore these bounds converge expontially fast in n to Hye (V). From [12]
it can be seen that the difference between the upper and lower bounds above is

less than Dp™~! where

Nploge
D= ____D'_L,
N1 ming 5 My 5

N, and Np are the minimum and maximum number of states colasped repectively
by the function of the Markov chain (in our case Ny = M — 1, Np = 3M + 1),
m, ; is the transition probabliity of the Markov chain W and

N, 1My kM n

0<p=1— min < 1.

Lhkmn My imyom

In our model this convergence is especially rapid since for most parameters of
interest the Markovian dependence of W; on W;_, is very "weak”, i.e. the tran-
sition probabilities are almost independent of the previous state. If fact our
numerical results show that the upper and lower bound are essentially identical
for n = 2, even for moderate values of q. (For ¢ = 50 the upper and lower bounds
agree out to more than 8 significant digits). In Appendix C we show a sample
calculation of the entropy used in the upper and lower bounds.

If we let ¢ — oo with K = Ag(A constant) we see that the stationary dis-

tribution of the Markov chain {U;} tends to the the conditional distribution
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P(U,‘]U;_l) with P(U] = 00) = 1-—6‘2'\,P(U]‘ = 01) = P(UJ - 10) = C—A(I—C-'\)
and P(U; = 11) = (1 — e™*)%. Thus for large ¢ (and K = Agq) the U; become
independent. Thus for the case of errors occurring with probability (M —1)/M

given a hit occurs, asymptotically as K and ¢ become large with K/q — A

Caum
q

= Mlog M — hp(e™?)). (14)

Now it is easy to see that the asymptotic normalized capacity of this asynchronous
case is exactly half of the synchronous normalized capacity when optimized over

A.

IV. Numerical Results and Conclusions

In Fig. 5 we show the sum capacity for the case of synchronous hopping with
g = 50 and M = 2 while in Fig. 6 we show the sum capacity for the case of
asynchronous hopping with ¢ = 50 and M = 2. When there is no side information
the errors are assumed to occur with probability 1/2. A careful examination of
the numerical results show that ¢ need not be very large for the asymptotic
results to give a very accurate approximation to the capacity of these channels.
Also the asymptotic value for thg optimum number of simultaneous users is a
good approximation for the actual value for finite ¢q. For the asynchronous case
without side information the upper and lower bounds were virtually identical for
the case of ¢ = 50. The tightness of the bounds is due to the fact that for even
reasonable values of g the sequence of errors in the channel is esse‘ntially an i.i.d.

process.
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In this paper we have determined the multiple-access capability of frequency-
hopped spread-spectrum for four different models. The interference is either
modeled as causing errors with a given probability when two users hopped to
the same frequency at the same time or as causing erasures. The key result was
identifying the underlying Markov chain (Hf,H[) or (Hf,Hf, R;). Using the
Markovian properties of the underlying process allows one to recursively compute
the error probabilities of block codes for these channels (see [8]) and for channels

with combinations of errors and erasures.
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APPENDIX A

Lemma 1: (H!, H) is a Markov chain.
Proof:
P(HE, HF | HE ) HE G Hf o B Hi 5 H g, )

P(Hf',H}‘,H JHR | HE, HE, HEG HE,,...)
- P(HE,,HE, HE 2,H )

ol

(say)-

We write A as follows.

~

A = P(Fy; € Fjy,Fuj€f Fy Fij-1 €8y Fj0, Frja el Fiy..)

where el ise if Hf = landq_flfHL=0and631861fHR=land¢1fHR—O

Now

A > P(Fl,Je Fy- 1,F1,J€ Fj, Fy ;- 1€ Fj_q, Fy4- 1 €5 Fioyye o | Frjor = fu- 1)
fri-1

P(Fij-1= fi1-1)

. . i 1
= Y P(F€; Fij, P e? F;, frj-1 €° Fiza, frja el Fiy.. )E

fl,y ]

= Z PF]_,JE F, I,FIJ 3 J,flJ le] lF 1)
f1i-1

~ 1
P(fu5o1 €5y Fioa P € Fry )7

using the independence of F ;, F1 ;—1, Fyj -2, ﬁ',-, ﬁ'j_l, I7’j_2, ... in the last equality.
Now from the fact the F;; for each user ¢ is a random variable uniformly dis-

tributed over the set {1,...q} and F;; and F; are independent and identically
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distributed for ¢ # k we see that P(Fy; EJI.‘ ﬁ}_l,Fl,,- Ef ﬁ'j,f],'j—]_ Ef.l 13'_,-_1) is

functionally independent of f; ;-;. Thus

P(Fl.f Gf’ F}‘—hFla’ Ef ﬁj, fl,j—l E,L-'_l ﬁ}_l)
1 N
Z _P(fl,j'l Ef—l ‘F]"'Z’Fl,j—2 Ef_g F}‘_3 .. )
S1j-1

= P(Fy; €] Fjr, Fu € F, frj-1 €81 Fio)
] ] 2

P(F’-..‘f"l Ef—l Fj—-2a Fl,j-—2 ef_g ﬁj-3 . .).

Simil'a.rly it can be seen that
B=P(fi-1 €8, F)P(Fuj1 €5y Fj-2, F152 €/ Fj-s..)

and so

P(Fyj €k, F;_y,Fi; €} F, fi i1 €8, F;y)
P(fii-1 €}, Fi-1)
= P(H},H}|H!,).

4
B

Clearly P(HF,HF | HE,, HR ) will also be equal to P(Hf,H} | HY,). Thus

the Lemma follows.
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APPENDIX B

In this appendix we calculate the stationary probability distribution and transi-
tion probabilities for the Markov chain shown in Fig. 5. We will show how to
calculate the stationary probability for one particular state. The calculations for

the other states are similar and so we just state the result.

P{Fl'j ¢ ﬁ'j—lvFl,J' ¢ ﬁ;}

= S P{fi; ¢ Fi-1, fr; ¢ Fi|F1j = fii}P{F; = 15}

P{H} =0,H} =0}

]

fr.j
1 ) .
= =Y P{fi; & Fi-1|F1; = f;}P{f1j & Fs|F1; = fi;}
Sy
1 lik-1 lik-1
= -S(1-= 1-=
p %3( q) ( q)
1
— (1 Lyax-n,
( q)

Similarly

L _amR_ 11— (1. Wk-114 _ (1 _ Lk
P{H; =0,H; =1} = (1 q) [1-(1 q) s

PHF = 1,H =0} = (1= 91 - (1= 9

PBE =1 HF =1} =[1- (1 - D)*"

The transition probabilities of the Markov chain are easily determined once

q(i,k) = P{HF = {,HF, = k} is determined. Let « = (1 — 1)¥! and
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»
fl

(1 - 2)%=%. Then

Il

¢(0,0) P{H} =0,H} =0}
1 - -
= 7 Y. P{fij¢ Fio1, frjo1 ¢ Fioa)

Srjfri-t

= g;[qa +4q(¢ - 1)8]

1 1
- Ea"('(l""]')ﬂ,

1 - -
q(l,l) = P{HJL = I,HJ»R;I - 1} - -—2 Z P{f]_’j & Ej—l,fl,j—-l € Fj-l}

Srifii-1

_ %[q(l —a)+q(g —1){2(1 — a) — (1 = B)}]

1 1
= J1-a)+(1-)20-a)-1-a)

Due to symmetry it is easy to see that ¢(0,1) = ¢(1,0) and thus

q(0,1) = ¢(1,0) = (1-¢(0,0) - ¢(1,1))/2

1
= (1=le-48).

We now turn to the calculation of the transition probabilities for the Markov

chain.

P{HE=1,HE =m,H} | =n}
P{HER, K =n} '

P{Hf =l,H} =m|H}, =n} =

For the case l = 0, m = 1, n = 0 the numerator in the above expression can be

written as

1 . . -
P{Hf =1, H=m, H} | =n} = pes Y. P{f1j¢ Fi-1, frj-1 € F-1}P{fH,; € Fi}.
Sfr.5:.01.5-1 '
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Since the last term does not depend on f;; this term can be taken out of the

summation we have

P{H{ =0,H} =1,H}* =0} = P{H}=0,H,=1}P{HF =0}.

J

It is easy to see that these operations also hold for any value I, m,n so we have

in general that
P{H} =1,H =m,H} =n} = P{H}=1,HF, =m}P{H} =n}.
Thug

p(l,min) £ P{H] =1,H} =m|H}, =n}
P{H! =1,HE | = n} P{HF = m}
P{Hf-l = n}
q(l,n)p(m)
p(n)

where p(k) = P{HJ} = k}. Letting a = (0,0), b = (0,1), ¢ = (1,0) and d = (1,1)
and p;; = P(Hf,Hf) = i|(H[,,H,) = l), the transition probabilities, are

given as

Paa = Pac = P(O, 0|O) = %a + (1 - _‘];)ﬂ’
1 1 l—-«a
Pra = pe = p(0,1j0) = [Ea +(1- E)ﬂ]( —)
Pea = Peye = p(l,O'O) = (1 - %)(a - ,3),
1 l1-«a
Pd,a = Pd,e =P(1,1|0) = (1_3)(a—ﬂ)( e )’ %
Pos = Paa =p(0,01) = (1= )(a—B)(;=2),
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APPENDIX C

In this Appendix we give a few sample calculations for the joint distributions
of the random variable V;, a function of the Markov chain W; = (HJ.L,HJR, R;).
That this is a Markov chain is an easy consequence of the fact that (H J-L, H JR) is
a Markov chain and is independent of {R,;} which is an i.i.d. process.

First let U; = (Hf, H) with a = (0,0), b = (0,1), ¢ = (1,0), and d = (1, 1).
The upper bound to the entropy of V; is determined from the joint distribution
of V;. We will do a sample calculation of the joint distribution for one particluar
argument for n = 2 and n = 3 and list the results for other arguments. The
distributions of V; will be calculated in terms of the distributions of the Markov
chain U; and the joint distribution of the process {R;}. Since R; is an i.i.d.
process the joint distribution is easy to calculate. The joint distribution of U; is
easily calculated since it is a Markov chain.

The first order distribution of V; is calculated as follows.

]

P(Vo=0).= P(Hy =0 or Ry =0) P(H, =0) + P(Hy = 1)P(R, = 0)

= P(Us =a)+ P(Uy € B)P(R, = 0),

P(Vo=1)=P(Ho=1,Ry=1) = P(Hy=1)P(Ro=1)

= P(U, € B)P(R, =1).
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The second order distribution is calculated as follows

P(V; =0,V =0) P(H =0o0r Ry =0,Hy=0o0r Ry =0)
= P(H,=0,Hy=0o0r Ry =0)
+P(Hy=1,R; =0,Hy =0 or Ry =0)
= P(H,=0,Hy=0)+ P(H,=0,H,=1,R, = 0)
+P(Hy=1,R; =0,Hy=0) + P(Hy =1,R; = 0,H, = 1, Ry = 0)
= P(H, =0,H,=0)+ P(H, =0,H, = 1)P(R, =0)
+P(H, =1,Hy=0)P(Ry =0) + P(H, = 1,Hy = 1)P(R, = 0, R, = 0)
= P(Uy=a,Uy=a)+ P(U,=a,U € B)P(R; =0)

+P(U1 € B,U, =a)P(R1 =0) +P(U1 € B,Uy € B)P(Rl =0,Ry = 0).

Later we determine the joint distribution of (U;, Up) that will allow us to complete
the calculation. The remaining components of the distribution are calculated in

a similar fashion and so we just state the results.

P(Vl = O,VQ = 1)

P(Hl =001'R1=0,H0=1,R0=1)
= P(U,=a,Uy € B)P(R, = 1) + P(U, € B,U, € B)P(R, = 0)P(Ro = 1)

P(Vi=1,V, =0)

P(H1=1,R1=1,H0=001'R0=0)
- P(U]GB,U():a)P(Rl:1)+P(U1€B,UQ€B)P(R1‘—‘l)P(Ro:O)
P(V1=1,V0=1) = I—P(Vl=1,VQ=0)-P(VI=0,V0=1)'—P(V1=0,Vo=—‘0).
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For n = 3 the joint distribution is calculated using the same method as for n = 2.

We obtain

PV =0,V =0,V =0) = P(Hy=0o0r Ry =0,H;=00r R, =0,Hy =0 or Ry =0)
= P(U;=a,U; =4a,U; = a)
+P(U; = a,U, € B,Uy = a)P(R, = 0)
+P(U; =a,U, = a,U; € B)P(R; = 0)
+P(U; = a,U, € B,U; € B)P(R, =0,Ry = 0)
+P(Uy € B,U, = a,Us = a) P(R; = 0)
+P(U; € B,U, € B,Uy =a)P(R, =0,R, =0)
+P(U; € B,Uy =a,U; € B)P(R; = 0,R = 0)

+P(Uz € B,U1 € B,Uo € B)P(Rg '—"O,Rl =0,R0 =0),

P(V;=1,¥,=0,Vp=0) = P(H;=1,Ry;=1,H,=0o0r R, =0, Hy =0 or R, =0)
= P(Us€ B,Uy =a,Uy =a)P(R; =1)
+P(Us € B,U; € B,U = a)P(R; = 1, R, = 0)
+P(Uz € B,U; = a,Uy € B)P(Ry = 1, R = 0)

+P(Us € B,U, € B,Uy € B)P(Ry = 1,R, = 0, Ry = 0),

P(V2=0,V1=I,VQ=O) = P(Hg=OOTR2 =0,H1=1,R1=1,H0=001'R0=0)
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- P(Uz =a,U1 € B,Uo =G)P(R1 = 1)
+P(U; = a,U; € B,U, € B)P(R, = 1, Ry = 0)
+P(U2 EB,U]_ GB,U():CI)P(Rz =0,R1 = 1)

+P(Uz€B,U1 EB,UQEB)P(Rg =0,R1 =1,R0=0),

P(V2= l,Vl =1,V0=0)

P(Hg = I,Rz = 1,H1 = I,Rl = I,Ho =0 or Ro=0)
= P(Uz € B,Uy € B,Uy = G)P(Rz =1,R; = 1)

+P(U2 € B,Ul € B,Uo € B)P(Rz = 1,R1 = l,Ro =0),

P(V;=0,V;=0,Vo=1) = P(H;=0o0r R, =0,H;=00r Ry =0,Hy=1,R = 1)
= P(Uy=a,U; =a,Uy € B)P(Ry = 1)
+P(U; = a,U, € B,Uy € B)P(R, = 0, Ry = 1)
+P(U, € B,U; = a,Uy € B)P(Ry = 0, Ry = 1)

+P(U, € B,U, € B,Uy € B)P(R; =0, R, =0, Ry = 1),

P(szl,V1=0,Vo=1) = P(H2=I,Rz=1,H1=OOTR1=0,HQ=1,R0‘—'1)
= P(UzeB,U1=d,U0€B)P(R2=l,Rozl)

+P(U, € B,U, € B,Uy € B)P(R; = 1,R, =0,R, = 1),
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P(VZ = OaVl =19V0 = 1)

P(V; =1V, =1,Vo = 1)

P(H;»:OOT R2=0,H1=1,R1= 1,H0=1,Ro=1)

P(U2=G,U1€B,U06B)P(R1 = 1,R0=0)

+P(Ug € B,U1 € B,Uo € B)P(Rz =0,R1 = 1,R0= 1),

P(Hg = I,Rz = 1,H1 = 1,R1 = l,Ho = 1,R0 = 1)

P(Uz € B,U; € B,Uy EB)P(R: =1,k =1Ry =O).

Now since U; is a Markov chain [10]

P(U; = a,Uy = a,Uy = a)
P(U; = a,U; = a,Us € B)
P(U, = a,U, € B,U; = a)
P(U; = a,U, € B,Uy € B)
P(U; € B,U;, = a,U, = a)
P(U; € B,U, = a,U, € B)
P(U, € B,U, € B,U, = a)

P(U, € B,U, € B,U, € B)

I

P(Ug = a|U1 = G)P(Ul = aon = a)P(Uo = a)
P(U, = a|U, = o) P(U, = a|U, € B)P(U, € B)

Z P(U; = allU; =4)P(U, = U = a) P(Us = a)
1€B

>_ P(Uz = a|U, = 7)P(Uy = 4|Us € B)P(U; € B)
1€B

P(Uz € B'Ul == a)P(Ul = GIUQ = G)P(Uo = a.)

P(U, € B|U; = a) P(U; = a|U, € B)P(U, € B)

Z P(U: € BlUl = ’7)P(Ul = ’leo = a)P(Uo = a)
1€8B

Z P(Ug € B|U1 = ’1)P(Ul = ’7|U0 € B)P(Uo € B)
1€B

The transition probabilities above are calculated in terms of the transition prob-

abilities of the Markov chain U; which are determined in Appendix B.

PU; =a|lU;; =a) = Poa
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Channel models for synchronous frequency
hopped spread-spectrum communications system

(a) with side information, (b) without
side information.
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Timing diagram for frequency-hopped multiple-access
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