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CHAPTER 1

Introduction

1.1 Background

The problem of weak signal detection in the presence of multipaths is an im-
portant problem in both radar and sonar. The problem of resolving signals in both
time-delay and doppler has received wide attention in the past. However, much of
the progress is due to Woodward who applied the radar ambiguity function as a
tool for analyzing radar ambiguity. The narrowband ambiguity function allows the
interpretation of multiple targets with significant radial velocities. The ambiguity

function is basically a time-doppler autocorrelation function given by

x(fa,7) = /m(t)m*(t — T)ej%f"‘tdt , (1.1)

where m(t) is a narrowband radar waveform. The ambiguity function may be thought
of as the output of the matched filter which is tuned in time delay and doppler to
the received signal. The filter responses that are large but far away from the desired
target parameters are known as the ambiguities of the target. These ambiguities
are undesirable since other targets may appear at these locations. In other words,
ambiguities from one target may interfere with the detection of other targets. An

ideal ambiguity function would be a single spike at the origin of the range-doppler



plane and zero everywhere else. However, the fundamental properties of the am-
biguity function prohibits this type of idealized behavior. Specifically, Woodward
showed that the volume of the | x(f4, 7) |* function is a constant! regardless of the
type of the transmitted waveform. Under this constraint, previous works in this area
have concentrated on reducing ambiguities at critical regions of the range-doppler
plane. Which regions are considered critical usually depends on the signal path and
clutter environment. Usually a thorough and bounded description of the signal path
and clutter environments is required for unique selection of appropriate waveforms
[35],[36], [37],[39]. In the development of a radar theory, many attempts have been
made to determine an optimum signal waveform only to find that a waveform suitable
for one application have severe deficiencies for others. It is found that, in general,
an optimum radar waveform for signal resolution cannot exist. Radar signal design
for signal resolution consists of matching the waveform to the characteristics of the
propagating medium, and a signal can be optimum only in the sense that the best
match is achieved.

The problem of weak signal detection in the presence of other signals may be
subdivided into two categories; signal detection under uniform clutter and signal
detection under self-clutter. Uniform clutter usually implies that the clutter-causing
scatterers are so dense that they cannot be resolved within a resolution cell. A
typical example is the interference from raindrops or sea waves. In contrast, the
term self-clutter is used to describe the presence of sidelobes in a pulse compression
radar/sonar which cause mutual interference among desirable path arrivals.

There has been considerable effort in optimizing performance in uniform clutter.

In many situations it is adequate to assume that the scatterers are randomly located,

I x(fa,m) P dfadr = Lfor [|m(t) |2 dt = 1.




independent, and so dense that they are unresolvable. This becomes a problem of
signal detection in colored, gaussian noise. The general solution to this problem is to
place a “pre-whitening” filter ahead of a basic matched filter. Both Urkowitz[48] and
Rihaczek[34] have studied appropriate filters for signal detection in uniform clutter.

Urkowitz utilized a clutter rejection filter of the form

B aM*(f)e—jzwfr
T = TTMT

ae—j?ﬂ'fT

where k | M(f) |* is the power spectral density of the uniform clutter, and a, k are

constants. Rihaczek suggested that the usual match filter of the form
H.(f) = aM™(f)e 7?7 (1.3)

is superior to the clutter rejection filter under most practical situations. Others
have concentrated their efforts in uniform clutter rejection by signal design [27],
[1], [28], [36]. However, as pointed out earlier, the optimum signal exists only for
a particular clutter enviroment. When there is known to be a significant “doppler
shift” in the clutter (i.e. non-uniform clutter), the best known method is the MTI
(Moving Target Indicator) processor which is the most widely used class of radar
processors for detecting moving targets in a background of clutter [40], [29], [24],
[14]. The simplest MTI processor uses a single delay-line canceler to subtract two
successive periods of the reception. Therefore, signals from stationary sources would
cancel, while those from moving sources produce fluctuating signals. It has been
shown that MTI processors are useful in the case of narrowband clutter.

Although the problem of uniform clutter is an important issue, this entire dis-

sertation will be devoted to the problem of self-clutter. Unlike the uniform clutter,



self-clutter assumes only a few path arrivals within the reception. Another impor-
tant distinction between self-clutter and uniform clutter is that self-clutter assumes
that the time-delay and doppler of the interfering path can be determined from the
range-doppler plane whereas the individual scatterers of the uniform clutter are un-
resolvable. In the case when all path arrivals have approximately the same strengths,
the individual paths are all resolvable, and self-clutter does not pose a problem. On
the other hand, if the reception consists of both strong and weak paths, the sidelobes
of the strong path may interfere with the detection of the weaker path.

Short pulses are transmitted in many radar systems. These pulsed radar sys-
tems which are commonly known as pulse doppler radar are utilized to extract the
doppler frequency shift and time-delay associated with moving targets in both forms
of clutter. In the case of low pulse repetition frequency and very short pulse duration
(i.e. very large gaps between successive pulses), self-clutter does not pose a prob-
lem. This is due to the fact that the ambiguities (i.e. the 2-D sidelobes) associated
with these short pulses do not occupy a significant region within a receiver surface;
hence, multipaths with different time-delays and dopplers do not interfere with one
another. However, in the case of uniform clutter, the application of MTI processors
to remove the uniform clutter results in significant blind-spots for low pulse repe-
tition frequencies [40]. These blind-spots reject any moving targets whose doppler
frequency happens to be the same as multiples of the pulse repetition frequency.
Therefore, for radar systems utilizing pulse doppler radar, the majority of past re-
search was devoted to the problem of detecting moving targets under uniform clutter
and not self-clutter. Previous efforts in removing self-clutter are focused primarily
in the area of signal design. To the best of the author’s knowledge, no previous

references on self-clutter rejection are available once the type of radar/sonar signal



for transmission has been decided.

In ocean acoustic tomography, the problem of self-clutter cannot be ignored be-
cause the signal is transmitted continously. Under continous transmission of signal
(e.g. m-sequence signaling), the ambiguities associated with a single path occupies
the entire receiver surface; hence, the mutual interference among multipaths is sig-
nificant and cannot be ignored if weak paths are to be detected. In this dissertation,
two new approaches to eliminate self-clutter are proposed and analyzed. These com-
putationally efficient methods have the advantage that self-clutter can be entirely

removed for most radar and sonar signals.

1.2 Ambiguity, Resolution and Floor Level Under Self-
Clutter

Under self-clutter, there are three aspects of the receiver output that need to be
considered. Suppose the diagram in figure (1) is the response due to a single-path
reception.

The true travel time and doppler are determined by the location of the major
peak. In figure (1.1), the travel time of this signal is 7 = 175 and the true doppler
bin is 4 = 5. One aspect of importance is the “resolution” which is measured by the
size of the major lobe of this true peak. The problem of “resolution” is a subject of
the uncertainty principle. A second aspect of importance is the large “false peaks”
or “ambiguities” associated with the signal (i.e. the two other large peaks in figure
(1.1)). Due to these “ambiguities”, the receiver output A(y,7) have come to be
known as the “ambiguity function” of the signal. A third aspect, the proposed
research, is the general “floor level” filling the diagram and under the peaks. The

general “floor level” can be better understood by observing the magnitude of the
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receiver output plotted in figure (1.2). The only difference between figures (1.1) and
(1.2) is that figure (1.1) is the magnitude-squared response while figure (1.2) is the
magnitude response. There are really two components that make up the “floor level”;
the noise floor and the signal floor (i.e. the interference). In some cases, the signal
floor is much higher than the noise floor. Under this circumstance, other signals (i.e.
weak signals) with relatively high signal-to-noise ratio but low signal-to-interference
ratio (SIR) cannot be detected at the output of the receiver. The purpose of this
research is to somehow reduce the signal floor to the level of the noise floor so that

weak signals may be detected.
1.3 Overview

Chapter II discusses some of the fundamentals of resolution in a radar/sonar
system. In general, resolution is a measure of the width of the main lobe of a signal.
And two pulses that are separated by this width are said to be resolvable. Chapter II
begins with a discussion on single parameter resolution. For narrowband waveforms,
it is shown that the resolution in travel time is inversely proportional to an equivalent
bandwidth while the resolution in doppler is inversely proportional to an equivalent
time duration. When the two parameters are jointly considered, the limit on the
combined resolution is often associated with the “uncertainty principle” in quantum
mechanics. Contrary to popular belief, the “uncertainty principle” does not play
an important role in the combined resolution of radar/sonar systems. Instead the
limit of the 2-D resolution is better understood through‘ Woodward’s narrowband
ambiguity function. As mentioned previously, the volume of Woodward’s ambiguity
function is a constant. Therefore, a waveform designed to improve the 2-D resolution

will exhibit higher “floor level” and increased ambiguity.



The difference between narrowband and broadband ambiguity functions is the
main focus of chapter IIl. In order to analyze their differences, the true time-delay
is approximated by a linear, time-varying model. This model assumes that the re-
ceived signal is not only shifted in time by a constant delay but scaled in time by
a doppler factor (i.e. compression). Essentially, the difference between narrowband
and broadband ambiguity function lies in the way the baseband portion of the re-
ception is treated. In the case of a narrowband transmission, it is assumed that
the time-scaling of the baseband waveform is negligible so that the received signal
is simply “doppler-shifted”. In the case of a broadband transmission, the received
signal consists of both a doppler shift and a time-scale of the baseband waveform.
As a result the broadband receiver differs from the narrowband receiver. Chapter II1
discusses two types of receivers for narrowband and broadband processing: (1) Pro-
cessing using transmission time scaling (PUTTS) and (2) processing using receiver
time scaling (PURTS) [6]. If the signal is transmitted in one-period bursts, PUTTS
utilizes the speed of FFT to implement the crosscorrelation. This may be imple-
mented under narrowband and broadband receptions. However, when signals are
transmitted continuously, the coherent averaging required for higher signal-to-noise
ratio prohibits the use of PUTTS. Instead, the broadband receiver is implemented
using PURTS. The advantage of PURTS is that the matched-filter is fixed since the
received signal is rescaled in time prior to crosscorrelation. Additionally, PURTS may
be implemented with either linear or cyclic crosscorrelation. Chapter III concludes
with a discussion on the existence of a shift-invariant property for both narrowband
and broadband receivers.

In Chapter IV, a new method for weak signal detection is presented. The Shift-

Invariant Method for Strong Path Cancellation (SIMSPC) has the advantage that the
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strong paths can be removed with very few computations due to the shift-invariance
nature of a modified, broadband ambiguity surface. Since a strong path can be easily
identified at the output of the receiver, a reference ambiguity surface having the same
doppler and time-delay as the strong path may be subtracted from the output of the
receiver to eliminate this strong path. This is based on the fact that the reference
ambiguity surface exhibits all the properties associated with the strong path (i.e. the
same ambiguities and floor level as the strong path). If the broadband ambiguity
surface were truly shift-invariant, only one reference ambiguity surface would be
required for memory storage. This is the basic principle behind the efficiency of the
SIMSPC.

In order to obtain a shift-invariant broadband ambiguity surface, both the doppler
and time-delay must be shift-invariant. In the doppler domain, the invariance is ac-
complished by an apt choice of variables. The doppler factor is moved to an exponent.
Since the doppler factor is moved to an exponent, the time scaling and rescaling is
merely a shift in the doppler plane. Unlike the doppler parameter, shift-invariance
in time-delay cannot be accomplished with a simple choice of variables. Fortunately,
with the exception of a constant phase shift, the output of a sliding processing re-
ceiver will be shift-invariant in time. In other words, the envelope of the broadband
ambiguity surface is shift-invariant in time. The sliding processing receiver is sim-
ply a receiver that utilizes linear crosscorrelation. Although the storage requirement
for the sliding processing receiver is at a minimun, the number of computations re-
quired for the linear crosscorrelation may be large. Alternately, a block processing
receiver with efficient cyclic correlator may be utilized. Due to the nature of the
cylic crosscorrelation, even the envelope of the broadband ambiguity surface cannot

be shift-invariant in time. It is shown that the demodulate surface is shift-invariant



11

in both doppler and time-delay. Therefore, the SIMSPC under block processing is
achieved by combining the speed of cyclic crosscorrelation along with the storage
efficiency of the demodulate surface. Finally, the performance of the SIMSPC is
evaluated through several simulations.

In chapter V, another new approach to strong signal cancellation operates to pre-
vent the formation of the floor level from the strong paths. It implements the strong
path cancellation through a preprocessing stage known as the Hyperslice Cancella-
tion by Coordinate Zeroing (HCCO) preprocessing. This simple yet effective means
for strong path cancellation has the advantage that removing the strong paths at a
single doppler channel is equivalent to removing the entire floor level of associated
with the strong paths. The basic principle behind HCCO preprocessing is as follows.

In “normal” processing, the reception is filtered, sampled and complex demod-
ulated as if the paths had zero doppler. For pulse compressed signals such as m-
sequences, if the strong path has zero doppler as its true doppler channel, the output
of the strong path at zero doppler will be compressed into a very narrow pulse. Most
of its energy is concentrated within this narrow pulse. Meanwhile, if a weak path
were present in the reception but with a different true doppler, the energy of the weak
path would be “uniformly” distributed across the entire period of the zero-doppler
output. Therefore, the zero doppler output would consists of a narrow pulse due to
the strong path and a “uniformly” distributed floor level due to the weak path. At
this point, the strong path and the weak path are well separated in time. The idea
is to remove the strong path contribution by replacing the narrow pulse with zeroes
before processing for the full ambiguity surface. Hence, there would be no floor level
due to the strong path. This is a subtract before full analysis concept as opposed to

the subtract after full analysis concept described in chapter IV. Chapter V concludes
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with the performance analysis of this method with m-sequences.

In previous chapters, the main focus is on the improvement of the signal-to-
interference ratio (SIR) using path canceling techniques. The interference considered
here is the signal floor associated with the strong paths. It is assumed that the SNR
is much larger than the SIR. If this were not the case, no strong path canceling
technique will be able to uncover a hidden weak path. Although the noise floor may
be much lower than the signal floor, noise peaks may be present within the ambiguity
surface which may be falsely identified as a path reception. The magnitude of these
noise peaks and their effect on the detectability of the weak paths is the subject of
chapter VI

Chapter VI begins with a discussion on the noise peak of a single doppler channel.
Two methods for calculating the probability of false alarm (Pr) are described. The
first method approximates Pr by the distribution of the noise peak. It is assumed
that the probability of false alarm Pg is equivalent to the probability that a single
noise peak exceeds a threshold. This is a good approximation in the case of a high
threshold. In the single doppler case, the noise-only reception may be modeled as an
i.i.d. random sequence; hence, the Pr may be approximated by the distribution of the
noise peak. It is shown that the extreme value distribution is a good approximation
to the distribution of the noise peak. In the second approach, Pr is modeled as a
problem in level crossing. In the problem of level crossing, Pr is determined by the
frequency at which a noise peak crosses a specified threshold. It is assumed that the
crossing rate of the noise peak is so small that the noise peaks exceeding the threshold
can be considered independent. Therefore, the crossing rate may be described by
the Poisson distribution. Using Rice’s formula for the crossing rate, the Pr may be

readily calculated. It is shown that both methods lead to similar result at small Pr
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( or at high threshold ); however, the first method provides a more accurate measure
of Pr when it is extended to the entire ambiguity surface.

The second part of chapter VI discusses the noise peak for the entire ambiguity
function. Unlike the i.i.d. assumption in the single doppler channel, every doppler
channel in the ambiguity surface is a linear function of the single doppler channel.
Under this circumstance, the problem is to characterize the noise peak for the ambi-
guity surface in relation to the noise peak of the single doppler. This would provide a
simple generalization of P from a single doppler channel to the entire ambiguity sur-
face. It is shown that the extreme value distribution is a valid approximation for the
distribution of the noise peak even for correlated sequences. Chapter VI concludes
with a discussion on the detectability of weak paths through the signal-to-noise peak
ratio.

Chapter VII summarizes the study conducted in this dissertation and highlights

some of the possibilities for future research.



CHAPTER II

Resolution and Ambiguity

Although detection, parameter estimation, resolution and ambiguity are all parts
of the same measurement process in a reception, these terms have very different
meaning. Detection refers to the possibility of recognizing a path arrival in the
presence of noise, while parameter estimation refers to the precision of estimating a
certain parameter in the presence of noise. On the other hand, resolution and am-
biguity describes the possible interference from other signals. Although high signal-
to-noise ratio ensures good detection performance and high measurement precision,
it 1s merely a prerequisite for resolution and ambiguity.

To illustrate the differences between resolution and ambiguity, consider the re-
ception of two pulses. If the two pulses do not merge, then the two arrivals can
be easily distinguished and hence, the two arrivals are said to be resolved. If one
arrival is weaker than the other and the arrivals overlap to some degree, they may
or may not be resolvable. This is the problem of signal resolution. In most cases,
the receiver’s response to a pulse is never concentrated in a single pulse. There are
usually sidelobes or tails associated with the pulse reception. If one arrival is much
stronger than the other, the sidelobes or tails of the stronger arrival may mask the

main peak of the weaker arrival. Alternatively, the sidelobes may be falsely iden-

14
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tified as a weak arrival. This is the problem of ambiguity. As illustrated above,
it is difficult to define resolution and ambiguity quantitatively even in the simplest
situation. Basically, resolution is a measure of the width of the main lobe of a signal
whereas ambiguity is a measure of tails and sidelobes due to a single arrival. In the
case of moving targets, both travel time resolution and doppler resolution must be
considered. These two types of resolutions are discussed separately in sections (2.1)
and (2.2).

Whenever doppler and travel time resolution are jointly discussed, the “uncer-
tainty principle” in quantum physics is sometimes used to describe the condition
that doppler and travel time resolution may not be simultaneously improved with-
out bound. The applicability of such a constraint in sonar/radar will be discussed
in section (2.3). In the case of doppler and travel time measurement, the appropri-
ate tool for the description of resolution and ambiguity is Woodward’s narrowband

ambiguity function.

2.1 Travel Time (Range) Resolution

Suppose the received signal differs from the transmitted signal m(t) only in am-
plitude and time-delay. The received signal is simply a delayed version of the trans-
mitted signal written as [a m(t — Tp)]. In bistatic sonar, this corresponds to fixed
transducer and receiver. For a matched filter receiver, the output of the receiver is

proportional to

ofr) = / “ m(t — To)m* (¢t — 7)dt. (2.1)

00
With no loss in generality we may assume that Ty = 0 so that the maximum value of
| c(7) | occurs at 7 = 0. If | ¢(7) | is equal to | ¢(0) | for some 7 # 0 then two received

signals differing by this delay are completely indistinguishable, and if | ¢(7) | is close
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to but not equal to | ¢(0) | for some 7 then the signals are somewhat distinguishable.
This problem of near-indistinguishable receptions at different delays is known as the
travel time or range resolution of the signal.

In order to quantify the range resolution of a given signal, the range resolution
constant A7, sometimes called the “nominal time uncertainty”, as defined by Wood-
ward [49]

s JZ le(r) | dr

FAN == 22(0) . (2.2)

Due to the additive property of power, the square of the envelope is chosen rather
than the envelope itself. The denominator in (2.2) is simply a normalizing factor.

Since ¢(7) is the autocorrelation of m(t), its spectrum is

and so ¢(7) can be expressed as the inverse Fourier transform

o(r) = [ 1 M) [ Ids ; (2.4)

00

hence, the denominator of (2.2) is
o) = [[T 1M P (25)

From Parseval’s energy theorem, the numerator of (2.2) becomes

[t rar = [Tiem Py

—00 -

= [T 1M1 (26)

and the range resolution may be expressed as

ar IS M)
[z 1 M) 2 df]

(2.7)
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An effective bandwidth W, may be defined as

o [ MO 1]

Ve S MG T 29

The form of this effective bandwidth is first proposed by Zakai[50] and has the general

form given by
1/27 2%
© IM(f)1*d
P o (S22, | M(F) |* df) | 9)

o 1/v
(22, | M(f) |¥ df)
The effective bandwidth in (2.8) corresponds to the general definition in (2.9) with

v = 4. The above definition for the effective bandwidth is reasonable. Suppose the
energy spectrum | M(f) |? is a rectangle with width b and height a, then the effective

bandwidth defined above would be

W, = = b, (2.10)

which is intuitively satisfying. With this definition of effective bandwidth the range

resolution constant is given by

AT = (2.11)

W, '
Therefore, range resolution is inversely proportional to the effective bandwidth of
¢(r). If small range resolution constant is desired, one must utilize signals with

broad bandwidth.

2.2 Doppler Resolution

When the transmitter and the receiver are in relative motion, the received signal

will be frequency shifted or “doppler shifted”!. In order to discriminate between two

In general, the received signal is actually frequency scaled or doppler scaled; however, due to
the narrowband assumption of this section, the received signal can be viewed as a frequency shifted
signal.
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signals having the same travel time but with different doppler, a frequency correlation

function g¢(fs) is defined as

a(f) & /°° m(t)m*(t)e= 92t di | (2.12)

where f; denotes the doppler shift associated with the motion for a linear doppler
model. This correlation function is essentially the output of the matched filter eval-
uated at 7 = 0. Using the Parseval’s theorem the frequency correlation function can
be written as

ofa) = [ MM = f2) df - (213)
Similar to the travel time case, a doppler resolution constant A f; can be defined as

the effective width of | g(f4) |* by

J2% L 9(fa) 17 dfa
g%(0)
t

e

Afa

o0 4
|72 | mi(2) |2 dt]
The effective duration 7, is given by
2
o m(t) |* dt
T, 2 [ | m(t)| ] (2.15)

S Im(t) [*dt

which is obtained from the general form of effective duration proposed by Zakai[50]:

- ) \1/27 522
o | (522 I m(t) 2 df)
T, = — 7 : (2.16)
(422 1 mi(t) | df)
Using the effective duration in (2.15),
Afy = = 2.17

e

The doppler resolution i1s analogous to the travel time resolution in that the doppler

resolution constant is inversely proportional to the effective duration of the signal.
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If fine doppler resolution is desired, one must utilize signals with long duration in
time.

It is worthwhile to point out that the definitions of travel-time resolution and
doppler resolution were arbitrarily but thoughtfully chosen. They were selected be-
cause of their ease in quantifying widths of multi-humped as well as single-humped
curves, and they provide a qualitative measure of the signal resolution. In principle,
no matter how small the interval between two pulses is made, the resulting response
differs from that of a single pulse and, consequently, it is possible, in principle, to
distinguish whether one or two signals are present. However, this is only true in the
absense of any random disturbance. In other words, the definition for the resolutions

are meaningful only when noise and other interference are considered.
2.3 Uncertainty Principle

Whenever time and frequency (doppler) are jointly discussed, the uncertainty
principle in quantum mechanics is often used to justify a certain limitation of the
measurement of time and frequency variables. According to the Heisenberg un-
certainty principle, an increase in the measurement accuracy of a particle can be
achieved only at the expense of decreasing the measurement accuracy of its momen-
tum, and vice versa. Specifically, the measurement accuracies of these two quantities

have the following relationship:
> (2.18)

where 6, 6,, are the measurement accuracies of position and momentum respectively,
and h = 6.625 £ 1073 joule-sec is the Planck’s constant. There is a similar property
in sonar/radar theory, but the interpretation for the uncertainty principle in quantum

mechanics is quite different from that of the sonar/radar theory. In terms of time
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and frequency, the uncertainty relationship in sonar/radar is the principle that the
product of signal duration and its bandwidth cannot be arbitrarily decreased and

that this product is always greater than a given constant:
6t-6f >, (2.19)

where u is approximately one. The actual value of x4 will depend on the definition
of signal duration and signal bandwidth along with different pulse forms.

For the class of definition proposed by Zakai[50] in (2.9), and (2.16),

1 1
T,-F, > 1 for —+-2>1, (2.20)
§ov
and
1 1
T,-F, >0 for —4—-<1. (2.21)
77

As mentioned previously, effective duration and effective bandwidth can be de-
fined in many ways. Aside from the definition given in sections (2.1) and (2.2), a well-
known definition first proposed by Gabor [16] and later discussed by Woodward[49],

Rihaczek[33], and Vakman[12] has the form

H e

(61)? /_ T m() P dt (2.22)

LIRS (2.23)

D>

(6)*

Assuming the origins of time and frequency are placed such that

/°°t|m(t)|2dt = 0

M = o,
the time-frequency product, derived in the above references, has the condition that

§t-8f > = (2.24)

B
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Other forms of the uncertainty relationship for signals can be found in Vakman[12],
and Helstrom[21].

Although the equations for the uncertainty principle in sonar/radar appears to
have the same form as the uncertainty principle in quantum mechanics, the two prin-
ciples have entirely different meanings. The expression in (2.18) is a probabilistic
interpretation of the phenomena in the atomic scale, and it reflects the fundamen-
tal uncertainty in measuring the position and momentum simultaneously. However,
the uncertainty principle in radar/sonar is not a relationship between measurement
errors. As pointed out by Skolnik[40]: “The use of the word ‘uncertainty’ is a mis-
nomer, for there is nothing uncertain about the ‘uncertainty relation’... It states the
well-known mathematical fact that a narrow waveform yields a wide spectrum and a
wide waveform yields a narrow spectrum and both the time waveform and frequency
spectrum cannot be made arbitrarily small simultaneously.” .In fact, the previous
analysis of travel time resolution showed that sharp travel time resolution does not
require a short pulse-like waveform, but a waveform with broad spectrum. Similarly,
sharp doppler resolution does not require a narrowband waveform, but a waveform
with long duration in time. These inverse relationships (i.e. travel time resolution
increases with increasing bandwidth) are also pointed out by Woodward[49] for the
effective duration and effective bandwidth defined in (2.22), (2.23).

Although there do not exist waveforms with very short durations in time and
narrowband in frequency, there is no incompatibility between waveforms having both
long durations in time and broadband in frequency. Therefore it might be assumed
from the definition of travel time resolution constant T, in (2.11) and the definition of
doppler resolution constant W, in (2.14) that both the travel time and the doppler

resolution can be simultaneously improved without bound. One must be careful.
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First of all, both the travel time resolution and the doppler resolution are derived
assuming one unknown parameter. They do not express the resolution in the case
when both parameters are unknown. For the case when both variables are unknown,
the estimate of these variables are determined from a 2-D plane of size T,W,. The
true peak is located within this 2-D plane and the size of its major lobe is T_lw”:
Therefore, increasing the time-bandwidth product reduces the size of the major lobe
of the true peak. However, the uncertainty principle fails to describe the possibility
of additional pulses within this 2-D plane away from the true peak. In other words,
there may be ambiguities associated with a signal having a narrow major lobe. In
order to describe the possible ambiguities associated with a given signal when both

trave] time and doppler are unknowns, one must make use of Woodward’s ambiguity

function described next.

2.4 Combined Travel Time and Doppler Ambiguity

When both the travel time and doppler are unknowns, one must use a correlation
function in two variables (f4, 7). Consider a modulated narrowband waveform given

by its complex analytic form
vi(t) = m(t)ed*fet | (2.25)

where m(t) is a real or complex baseband waveform and f, is the carrier frequency.

When this waveform is first delayed and then doppler-shifted, the waveform becomes
va(t) = m(t — 1)l 2o fa)(t=7) (2.26)

In (2.26), a narrowband waveform is assumed; the difference between narrowband
and broadband waveforms will be made clear in chapter I11. In order to have small

delay and doppler ambiguities, and small delay and doppler resolutions, waveforms
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differ in delay and/or doppler shift must be distinguishable at the receiver. In other
words, a desirable signal waveform must have the property of being as different as
possible from delayed and doppler shifted versions of itself. A convenient measure
of the “distance” between these waveforms is to consider the squared departure of

vy () from vq(t) given by
A@::/|muyquvﬁ. (2.27)

The distance A?, = 0 when 7 = 0 and f; = 0. In order to minimize ambiguities
and resolutions, A}, must be maximized when 7 # 0 and f; # 0. Expanding (2.27)

and using (2.25), (2.26) and the identity
Hor = v [ = |[or [P+ o2 [P =2 [ orve ], (2.28)
A}, may be expressed as

Az = 2/|m@)ﬁﬂ-—2ﬁg/muwar-ﬂﬁ

2/ [va(2) > dt — 2Re{ej2’r(f°_f")f/m(t)m*(t — 1)l et dt} (2.29)

Therefore, maximizing the squared departure in (2.27) is equivalent to minimizing
the second term of (2.29). Specifically, the narrowband ambiguity function. (i.e.
Woodward’s ambiguity function) given by

O

xn(T, fa) = / m(t)m*(t — 7)e’?" e dt (2.30)

is to be kept small for 7 3 0 and f; # 0. The value of xn(f4,7) for all values of 7
and fy is known as the narrowband ambiguity surface of the signal m(t).

A note of terminology is in order. The complex envelope, xn(f4,7), is frequently
referred to as the matched-filter response, while the magnitude of the complex en-

velope, | xn(fs,7) | is sometimes called the uncertainty function. And it is the
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squared envelope, | xn(fz,7) |?, that is often referred to as the ambiguity function
[38]. However, any of these three forms may appear in the literature under the des-
ignation of ambiguity function. In this dissertation, the term ambiguity function is
used synonymously with the matched-filter response in delay and doppler without
being consistent as to which of the three forms is addressed. When necessary, the
particular form of the ambiguity function will be specified.

A valuable constraint of the narrowband ambiguity function is obtained by con-

sidering the volume of the magnitude-squared ambiguity function

= [ [ 1wt ) P arda (2:31)
Expanding (2.31) yields
Vy = /°° /°° | xn(r, fa) |7 drdfs (2.32)
- / / / / m*(ty — 7)ym*(ts)m(ty — 1)
e~itmlal=t) gy gt drdf, (2.33)
- / / / m*(t, — 7)m* (t2)m(ts — )
[ /: e daltz—t1) dfd] dtydtydr | (2.34)

The inner integral of (2.34) is simply the Fourier transform of e’/ which results

in the delta funtion 6(t; — t;). Therefore, evaluating the remaining integrals for

o= [ Imi) P [/_Z|m(t_r);2dr]dt

= [[Limor of

= x%(0,0) = E? (2.35)

where E,, is the total baseband signal energy.
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If the volume Vy is equal to the peak value | x(0,0) |?, the normalized volume
is equal to unity. The ramification of this property is that the magnitude of the
ambiguity surface cannot be reduced in some 7 - f; area without increasing it else-
where. If one designs a signal having really small ambiguities in a certain region of
the ambiguity surface, then this signal must have significant volume elsewhere in the
ambiguity surface in order to satisfy the unity property of the narrowband ambigu-
ity. Furthermore, signals with sharp resolution must have non-zero “false peaks” or
a “floor” in the ambiguity surface. Therefore, travel time and doppler resolutions
can only be improved at the expense of increasing ambiguities. This property rules
out the possibility of an ambiguity surface with only a spike at the origin and zero
elsewhere.

The above analysis assumes continuous time processing. However, in practical
systems, discrete-time processing is utilized. In particular, the discrete, periodic form

of the narrowband ambiguity may be written as

Pa-1 _
xnn, 0] = Y mllmT[l; — nle’®eh | (2.36)

11=0

where integer arguments are modulo F,,

mln] = m(nt,) (2.37)

0, = orfat,, (2.38)

and t; = 1/m, f, is the sampling interval. The appropriate volume in this case is

» Pl
Vivg = /_ > | xnin, 84 * dé,

n=0

Py—1FPp~1Pp~1

- /_ Y Y milm [l — nlm[lLlml — n]

n=0 [1=0 [;=0
. e—jgdllz—llldgd
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Pn-1FP,~1F,-1

Vivg = 2 > > mllm™ [l — n]m™[l]m(l; — n]

n=0 {1=0 l,=0

. /7r e—jed[l2—ll]d0d

= St ¢ [S fmit = ]

11=0
= xi[0,0] = E2 . (2.39)
Again, the total volume of the discrete ambiguity surface is a constant. The integra-
tion in (2.39) from —= to 7 spans the principal or unaliased frequency domain. If
one 1s interested in evaluating the ambiguity function for large frequency shifts, the
sampling rate must be high enough so that aliasing will not occur.

Examples of the narrowband ambiguity surfaces can be found in many references
such as (3], [13], [40], and [49]. Although (2.35) is the most well-known property of
the narrowband ambiguity function, additional properties may be found in [33], [41],
[42], and [43].

The connection between the ambiguity function and time-frequency distribution
functions has been recognized since 1953 [10]. Specfically, the ambiguity function
and the Wigner distribution are related through a double Fourier transform (i.e.
the ambiguity function is the characteristic function of the Wigner distribution).
Although the relationship between the two functions are clear, not all properties of
the ambiguity function have been shown to have an obvious interpretation in terms of
time-frequency distribution. For example, while the ambiguity function is generally
complex, the Wigner distribution is real but not always positive. A detailed analysis
of their differences may be found in [45].

Both the travel-time resolution and the doppler resolution are calculated under

the assumption that only one variable is unknown. The attempt to define a time-
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doppler resolution using the time-bandwidth product of section 2.4 is a gross approx-
imation at best. The ambiguity function is calculated from the assumption that both
variables are unknown, and the constraint on the volume of the ambiguity function
replaces the looser concept that the time-bandwidth product must be greater than
unity. Although travel-time resolution and doppler resolution may depend on many
factors and interpreted in many different ways, the narrowband ambiguity function
can be considered as dependent on only the signal form and interpreted in only a
single way. With the narrowband ambiguity function in (2.30), it is possible to de-
termine the extent of the ambiguity and resolution for any narrowband waveform.
With modern computers it is not difficult to calculate the ambiguity function for a
specific waveform; however, in general it is not possible to synthesize a waveform
with a given ambiguity function. The question remains as to whether or not it is
possible to obtain any arbitrary ambiguity function.

Recall that the objective of this research is to reduce the travel time-doppler
“floor level” to the level of the noise. Although the ambiguity function differs from
one signal to another, the significance of the “floor level” may be illustrated using
the following example. This example uses the time-bandwidth product to describe
the major peak? while the volume constraint of the ambiguity function describes the
“floor level” associated with the signal. Suppose T, and W, are the effective duration
and effective bandwidth associated with a given signal. If the signal energy is E2

(i.e. E* =V, ), and the major peak of the signal® on the ambiguity surface has a

2 Assuming the major peak is located at zero-doppler and at a time-delay of 7,, the travel-time
resolution i1s an accurate description the major peak at zero doppler and the doppler resolution
i1s an accurate description of the major peak at a constant time-delay of 7,. If the major peak is
cone-shaped, the time-bandwidth product is a good approximation of the resolution of the major
peak.

3In general, the volume occupied by the peak(s) is insignificant as compared to the volume
occupied by the entire “floor level”.
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peak level of E2 and volume —Tl: : —ﬁl,: - 1.0, then the average “floor level” denoted by

E?,.. is given by

E? 1
E2 — EZ - m
floor < m TeWe) TeWe
E2
T.W,.

Q

(2.40)

Under this condition, it is often said that “the floor level 1s T.W, below the peak
value of the ambiguity surface”. Furthermore, any weak signal with peak energy less
than 7%%/: cannot be detected at the output of the receiver. Under this circumstance,

the average “floor level” must be reduced in order to detect weak signals®.

“The above calculation for the average “floor level” is only true in the case of narrowband
signaling. However, the “floor level” of broadband signals is usually well approximated by the
“floor level” of the same signal under narrowband assumption.



CHAPTER III

Narrowband VS. Broadband

In chapter II, the doppler resolution and Woodward’s ambiguity function were
evaluated under the assumption that narrowband waveforms were transmitted. In
radar, the narrowband assumption is usually acceptable since the speed of targets
is a very small fraction of the speed of light. However, for the case of sonar, the
narrowband assumption may not hold true due to the much slower speed of sound.
The difference between narrowband and broadband waveforms will be analyzed in
this chapter. Specifically, the broadband ambiguity function will be developed, which
may be viewed as a generalized form of Woodward’s narrowband ambiguity function.

Due to the added complexity of the broadband ambiguity function, broadband
receivers will, generally, require many more computations than narrowband receivers.
In addition to the increased complexity of broadband receivers, the basic form of

broadband receivers do not offer the shift-invariant property of narrowband receivers.
3.1 Travel-Time Approximation

The basic difference between the narrowband and the broadband assumption
1s that the doppler scaled narrowband signal is modeled as a frequency shift of

the original signal while the doppler scaled broadband signal is modeled as a time

29
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compression or expansion of the original signal. To gain a better understanding of
this difference a doppler scaled and time delayed version of the transmitted signal is
described. Consider a transmission modeled as the analytic signal a m(t)e??™fe!_ and

the signal reception written as
r(t) = m(t—r(t))e?? =) (3.1)

The transmitter to receiver delay 7(t) is generally a function of time for moving
targets. In (3.1), 7(t) is the delay of a signal received at time t. For moving targets,
the delay depends on the target position at the instant of signal reflection. In the
case of monostatic radar, the signal reflection occurs at time t — 7(¢)/2 for a signal
received at time t. Since target range R is also a function of time, the relationship

between delay and target range is given by

7(t) = %R (t_Z_(Q.Q) : (3.2)

where c is the nominal velocity of the propagation. However, for the case of bistatic

radar, the reflection occurs at time ¢t — 7(t). Correspondingly,

[#

The question is how rﬁuch this delay varies over the non-zero duration of m(t). If the
variation is negligible, the target may be assumed stationary so that the delay can
be treated as a constant. On the other hand, for signals with very long duration and
high-speed targets, 7(t) may be a very complicated function of time. Fortunately,
under most situations, the delay and target range is a smooth funtion of time within
the coherent signal processing time. Therefore, the delay can be expanded into a

Taylor’s series with the higher order terms dropped. Specifically, if 7(¢) is analytic
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at t,, the Taylor series expansion for 7(¢) about %, is

(t—1t.,)F . (3.4)

With higher ordered terms dropped, the linear doppler model for 7(t) is given by

T(t) = 7(t,) + T (t—15) (3.5)
where
_ dr(t)
Tty = at lt=t, - (3.6)

In general, the physical meanings of 7(t,) and 7(t,) are difficult to describe. But for
a special case of linear, single path reception, the parameters 7(t,) and 7;, do have
some physical meaning. Consider the case of an isovelocity medium for a moving
transmitter with constant radial velocity v; and a moving receiver with constant
radial velocity v,. If the path of signal propagation between the transmitter and the
receiver is assumed to be a line of sight, the range between the transmitter and the

receiver can be written as
R(t) = R(to) — (my—v)(t — 1) . (3.7)

where ¢, is any selected time. Differentiating the delay 7(¢) in (3.3) with respect to

t?
fo = SR~ %)
_ Rt,) [1 +R(to)]‘l
~ R(Zo) (3.8)

(t)) = (3.9)

7;(to) = . (3.10)
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Therefore, the linear doppler factor is determined by the ratio of the relative velocity
of the target to the nominal speed of the propagation. In general, however, there is
no simpler way to describe the parameters 7(¢,) and 7(¢,) other than the travel time

and its first derivative at time {,.

3.2 Narrowband VS. Broadband Ambiguity Function

Using the travel time approximation of section (3.1), the received signal becomes

r(t) = am(t—1(t,) — 7, (t — t,))e/ 2 Folt=T(t)=Teo(t=to))

= am((1 =7t — 7(to) + T to)e?? e~ Tro)te=i2nfolrlte)=Teote) (3 717

where a is the attenuation constant. In the narrowband case, it is assumed that
the target motion does not distort the complex envelope m(t). The doppler factor
affects only the carrier and only the constant delay term is retained for the complex

envelope. Specifically, narrowband waveforms assumes
m((1 — 7))t — 7(to) + T.te) &= m(t—1(1,)) . (3.12)

Whether or not the narrowband approximation is a legitimate assumption depends
on the similarity between m((1 — 7,)t — 7(t,) + 7t.t,) and m(t — 7(¢,)). To gain
a better understanting of the extent of this approximation, consider the case of a
constant-carrier pulse reception followed by match filtering. The effect of the target
motion will be to change the phase of the signal so that the received signal will not be
matched to the filter. In a doppler-shifted, narrowband reception, if the total phase
shift of the received signal is 7 over the duration of a period (i.e. 27 f,(1~7,)T, = =;
where T, is the period), a filter matched to the zero-doppler signal will have its output
reduced by 2/7. This corresponds to a drop of 4dB. For a broadband reception, if the

received signal is first demodulated, then match-filtered, the peak of the resultant
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complex envelope will drop by approximately 4dB for a phase shift of 7 ( %) where B
is the bandwidth of the complex envelope. This is due to the fact that the complex
envelope 1s less motion-sensitive than the carrier by the factor (}%) Therefore, a
phase shift of A, in the carrier has the same affect as a phase shift of AHO({—;-) in

the complex envelope. If the change in range over the signal duration T is AR, then

the phase change is
A0 = 2r(AR/N) . (3.13)

Using the linear range model in (3.7),

AR = R(HT

= (v, —v)T (3.14)

Therefore the condition under which the effects of target motion can be neglected

for the complex envelope is

fo
— N
A < 5 (3.15)
or
27 fo
('Ut - ’UT)TT < WE . (316)
which results in
1
TE .
< 2% (3.17)

The inequality in (3.17) implies that the time-bandwidth product must be less than
reciprocal of the doppler factor 7;, for the narrowband assumption to hold. Al-
ternatively, the inequality in (3.17) also implies that the amount of doppler time-
compression within the time of observation must be less than the reciprocal of the
bandwidth in order for the signal to be considered narrowband. This condition can

be found in various papers as a general rule of thumb for the narrowband assumption
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[46], [33], [2], [23]. When (3.17) is satisfied, the time scaling of the baseband signal

m(t) may be ignored so that the received signal may be written as
r(t) = am(t—r1(t,))e2 (1Tt g=2mfo(r(te) =Froto) (3.18)

which represents a frequency shift of f,7;, (i.e. “doppler shift”). Therefore, the

narrowband ambiguity function given by Woodward has the form

o0

xw(r(to) ) = [ mtyme(t = 7(t.)e o otd (3.19)

S

The narrowband criterion above is a mathematical description of the differences
between narrowband and broadband signals. The mathematical description of broad-
band signals takes into account the time-bandwidth product of the transmitted signal
as well as the doppler-scale incurred. It does not depend on the frequency at which
the signal is modulated since the process of demodulation at the receiver would shift
the modulated signal back to DC. However, from the standpoint of physical mod-
eling of signal propagation, the terms broadband and narrowband take on different
meanings. From the physical perspective, whether a signal is considered broadband
or narrowband usually depends on the bandwidth of the signal in relation to the
center frequency (i.e. frequency of modulation). A common measure of this relation-
ship is known as the Q of the modulated signal which is simply the ratio between
the center frequency and the bandwidth of the modulated signal. The higher the Q
the narrower the pulse in the frequency domain. There are no set rule as to how
high a Q must be before the modulated signal can be considered narrowband, but a
conservative rule of thumb is to assume the modulated signal to be broadband if the
signal spans an octave or more (i.e. @ > 1.5).

In underwater acoustics, the attenuation coefficient and the time-delay vary with

frequency due to absorption. A complete model of the reception would take into
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account this dispersive effect of the medium. However, since the Q utilized in un-
derwater acoustics is relatively high (e.g. f, = 250 Hz, Q = 4 ), the transmitted
signal may be considered narrowband in the physical sense. Therefore, the effect of
this dispersion is minimal and the attenuation coeflicient and the time-delay may
be assumed constant over the signal frequencies. This does not imply that the sig-
nal reception can be modeled as narrowband using the mathematical description.
In fact, for continuous transmission of sonar signals, the condition in (3.17) is not
satisfied. This is primarily due to the relatively low sound speed of the acoustic
medium. Under these circumstances, the broadband model of the received signal in
(3.11) must be utilized. In future discussions, the term broadband will be used solely
in the context of the mathematical description.

At first, it would seem that the proper form of the broadband ambiguity function
would involve the use of the first two terms of the Taylor series expansion in both
the carrier and the complex envelope. This approximation suggests that the doppler
effect merely compresses or stretches the time scale of the signal. In reality, the
doppler effect causes a change in the signal amplitude as well. From the property
of the Fourier Transform, if a signal is frequency scaled from S(f) to S (1—_'%0) then
the corresponding signal in the time domain is (1 — 7, )s((1 — 7,)t). Therefore, the
doppler effect changes the amplitude of the signal by an amount proportional to

(1 —17,). Correspondingly, the broadband ambiguity function can be derived as [17],

[31], [44]

o0

xB(r(to), i) = (1= 7) [ m@m (L= 7, )t = 7(t) + fo,to) > 70tdt . (3.20)

-0

If the doppler factor in (3.20) is neglected, the narrowband ambiguity function in
(3.19) is obtained.

For a 30 knot ship in water, (1 — 7,) = 0.99; a negligible amplitude change.
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Unlike the narrowband ambiguity function, the volume of the broadband ambiguity
function is not a constant. In fact, Purdy and Cooper [31] showed that the volume
of the broadband ambiguity function will be infinite for any signal with a continuous

spectrum that is not zero at zero frequency.

3.3 Narrowband Receivers with PUTTS

In section 2.4, the narrowband ambiguity function described the ambiguities for
7 # 0 and f; # 0. This ambiguity function is useful from the signal designer’s
perspective. Once a particular signal waveform is chosen, the objective of a receiver
is to estimate the doppler and time delay associated with the received signal. One
approach to the design of an appropriate receiver is to utilize the ambiguity function
as the basis for construction. The narrowband receiver is implemented with process-
ing using transmission time scaling (PUTTS)!. With PUTTS, the crosscorrelation
in the matched-filter may be efficiently computed using the FFT. For M, doppler
channels of interest, My frequency shifted versions of the reference signal are stored
in memory. The demodulated samples of the reception is crosscorrelated with each of
the reference signals, and the outputs, collectively, form the narrowband ambiguity
surface. The steps for PUTTS are detailed below.

Let r[n] 0 < n < N; — 1 represent samples of a one-period reception at a
sampling rate of r; = m,f.. The demodulated samples are obtained by multiplying

the sampled reception by a complex rotator and is given by
j2rnfc/rs

z[n] = rnle

= rlnje?mm/m (3.21)

In order to utilize the efficiency of FFT, z[n| is padded with N, zeroes (N, > N,)

! For narrowband processing, the time scaling reduces to a simple frequency shift.
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such that N; + N, is a power of 2. Let Z[k] represent the DFT of the zero-padded
z[n] through FFT. The next step is to form the M, reference signals for the M,

doppler channels of interest. In discrete time, the reference signals are

maln] = m (1) ert-stre

7 ’ 7
Xrnin S a S Car

= m[n]eﬂ"n(l-a')/m, for (322)

where o is the search variable for doppler. In (3.22), it is assumed that o are
evaluated at discrete intervals. The total number of doppler channels M, 1s detailed
in Appendix C. Again, my[n] is padded with N; zeros. Then, M,[k], the DFT of
mgs[n] through FFT, is stored in memory. The output of the crosscorrelation for the

o'* doppler channel is given by
yoln] = IDFT{Z[k]MZ[k]} (3.23)

where IDFT is the inverse discrete Fourier Transform computed through FFT. The

narrowband receiver with PUTTS is block diagrammed in figure (3.1).

3.4 Broadband Receivers

3.4.1 Broadband Receivers With PUTTS

In the case of a broadband signal reception, the signal will be doppler-shifted
and time-scaled. The extent of this time-scale would depend on the magnitude
of the doppler factor 7;,. If T, represent the nominal period at 0-doppler, a one-
period reception at the " doppler channel corresponds to the period (1 —a')T,. For
PUTTS, a one-period processing would require a minimum of (1—«a/,;,, )Ny 0-doppler

2

samples *. This is to ensure that a full period of the signal is recorded regardless

2a! ;. corresponds to the minimum compression or maximum expansion of signals among all

doppler channels of interest. (i.e. 1 —al,;, > 1—ao foralla’)
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matched filter
matched to 0O oy

matched filter
matched to O, o,

demodulate z(t)
filter

(et

matched filter
matched to Oy Ya,h(nt)

Figure 3.1: The narrowband receiver with PUTTS. The crosscorrelation in the
matched filtering is implemented using FFT. The outputs y,,(t) to ya,,(t)
combines to form the narrowband ambiguity surface.
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of the signal’s doppler-scaling. Let z[n] represent the (1 — «,;, ) N1 demodulated
samples of the 0-doppler reception. As in the case of narrowband processing, z[n]
must be padded with enough zeros such that the total number of samples is a power
of 2. Unlike the narrowband case, the reference signal under broadband modeling

must be scaled in time and shifted in frequency. The samples of the ot* reference

signal 1s
ma/[n] = m <n—(1—_—a—)-) ei2mn(1=a’) fe/7s for 0<n< l_(l — al)NlJ . (3.24)
Ts

Similarly, m,s[n] must be padded with enough zeros such that it has the same number
of samples as the padded z[n]. The rest of the procedure is the same as in the
narrowband case. The crosscorrelation is obtained by the inverse DFT of the product
between M,.[k] and Z[k].

In the general case of K-period transmission, the demodulated samples z[n] must
contain all K periods of the reception prior to zero-padding. Similarly, the reference
signal must also span K periods prior to zero-padding. In other words, if K periods
are transmitted, K periods must be processed.

One of the main drawback of PUTTS is that the crosscorrelation must be a linear
crosscorrelation. This is due to the fact that zero-padding removes the periodicity of
the processed signal. If cyclic crosscorrelation is desired, the demodulated samples
cannot be zero-padded; hence, FFT cannot be utilized®>. Under this circumstance, a
different method for broadband processing is proposed which utilizes one reference
signal for all doppler channels (i.e. fixed matched-filter). This is known as the

processing using recetwer time scaling (PURTS) described next.

3Since the total number of samples in one period changes from one doppler channel to the next,
it is impossible to calculate the DFT using one of the fast transform algorithms described in Blahut

(8]
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interpolate crosscorrelate
to a with m(t) — Y, ét)
i crosscorrelate
interpolate ; t
0 o with m(t) — yOH()
Kt . derpodulate Z(t)
filter
interpolate crosscorrelate
o a, with m(t) e ya I\(At)

Figure 3.2: The broadband receiver with PURTS. The outputs ya,(t) to ya,, () com-
bines to form the broadband ambiguity surface.

3.4.2 Broadband Receivers With PURTS

The basic principle behind PURTS is to compensate for the time-scale prior to
the crosscorrelation. As a result, each doppler channel would have the same number
of samples per period. Therefore, only one reference signal is required for processing
all doppler channels. It is much easier to design a fast algorithm for one reference
signal than to design M fast algorithms for M doppler channels as in the case of
PUTTS. In fact, for the case of m-sequences, the Fast Hadamard Transform described
in Appendix A may be utilized under PURTS. A block diagram of the broadband
receiver utilizing PURTS is shown in figure (3.2).

In continuous time, the demodulated response at 0-doppler is

2(t) = r(t)e 2t (3.25)
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The compensation in time-scale (i.e. the linear interpolation) is implemented in two

steps. The first step adjusts the phase of z(t) for proper demodulation so that

2(t) = 2(t)e??Iolemitmollzelt (3.26)

o

The second step is to time-compress the demodulate response to give

zar(t) = z;,( ! ) . (3.27)

1 —-«o
Finally, the output of the crosscorrelation is

Ap(r, &) = / Za(t+ 7)m*(t)dt . (3.28)

Equation (3.28) represents the broadband processing with PURTS in continuous

time.
In order to show the validity of equations (3.26) and (3.27) as a means for linear

interpolation, consider the case of a single path reception given by
r(t) = ao(t)(1 = B")m((1 — p')t — S)es2mfo1=F)tema2nfoS (3.29)

where

B = 1, (3.30)

is the true doppler of the signal and
S = 1(t,) — Bt (3.31)
is the remapped time delay. From (3.25), the demodulated response is
2(t) = as(t)(1 = F)m((1 — §')t = §)e Il tem2mfos (3.32)

In (3.32), the 0-doppler demodulation did not compensate for the doppler-shift in

the carrier (i.e. e/?™/f"t). therefore, the purpose of the “two-step” interpolation
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is to correct for this carrier mismatch and to rescale the baseband signal prior to

crosscorrelation. From (3.26), the phase compensation results in
(1) = ao(t)(1 = BYm((1 = B)t — §)emIell=F)-melte=stnloS 0 (3.33)

and the time-compressed response at the o'* doppler channel is

z(t) = ao(t)(l_ﬂl)m(l'ﬁlt—s)

1 —-o 1—-do

ol |22} e

Therefore, if the zero doppler response is interpolated to the true doppler channel of

the signal (i.e. o' = #), then the time-compressed response in (3.34) would become
zo(t) = ao(t)m(t — S)e 95 (3.35)

which is just a time-shifted version of the baseband signal.

In discrete time analysis, K periods of the sampled reception will be coherently
averaged to reveal the full potential of the PURTS. For K-period processing, the
minimum number of samples required is K N;(1 — a,;.). As in (3.26), the phase of

z[n] is adjusted so that

2l n] = z[n)er?mie/regmitmnfo(1=e)/rs (3.36)

To implement the linear interpolation in discrete time, let the desired but unattain-

able sample index be

z[n] = n(l - o), (3.37)

and the integer on the left of desired index be ¢[n], given by

cfn] = |z[n]] . (3.38)
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c[n] is the greatest integer less than or equal to z[n]. In addition, let
Aln] = z[n] — ¢[n] (3.39)

be a number between 0 and 1 such that z[n] = ¢[n] 4+ A[n] is the integer plus fraction
representation of z[n]. Then the time compressed samples at the a** doppler channel
are

zar[n] = (1= Alr])zgleln]] + Aln]z [e[n] + 1], (3.40)
where z[,[c[n]] is the actual sample immediately before the desired z,[n]. An im-
portant point to keep in mind is that regardless of which doppler channel is being
processed, the number of demodulated samples in one period is always the same. In
this particular case, there are Ny samples in a period for each doppler channel. The

coherent average of K periods is given by
1 K
zok[n] = Emﬂ zon+mMN]; 0<n< N, (3.41)
and the crosscorrelation for the a** doppler channel is 2,7 as[n] @ m[n]. In general, ®
may be a linear or cyclic crosscorrelation since zero-padding is not required. Again,
the only reference signal required is the transmitted signal m|n].
Due to the advantages of PURTS, it will be used exclusively in the analysis of

weak signal detection in subsequent chapters. To simplify notations, the subscript

B in (3.28) will be dropped.

3.5 Shift-Invariance Property of Receiver Output

In sections 3.3 and 3.4, PUTTS and PURTS were described in terms of their
processing efficiency, capabilities for coherent averaging, and differences in the types
of crosscorrelations. In this section, the existence of a shift-invariant property for

narrowband and broadband receivers is discussed. Unlike the emphasis between
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PUTTS and PURTS for narrowband and broadband receivers, the existence of
a shift-invariant property depends on whether the reception is doppler-shifted or

doppler-scaled (i.e. narrowband or broadband reception).

3.5.1 Narrowband Reception

In narrowband signal processing, the envelope of the receiver output with PUTTS
is shift-invariant in both time-delay and doppler. Assuming a single path noiseless
reception with attenuation constant a, the continuous time reception of a narrowband

signal can be modeled as

r(t) = am(t—r(t))e? =)
= am(t— 7(t,))e? (Tt gmidn o(r(lo)=Ftoto) | (3.42)

Equation (3.42) may be written more compactly as
r(t) = am(t— T(to))ejz’rf"(1_ﬂ,)te'jz’rf"(T(t")'ﬁ/t") , (3.43)

Complex demodulating the reception in (3.43) gives,

Z(t) = r(t)e Pt

= am(t—7(t,))e 2P temitmlol(rlte)=Fto) (3.44)

When the output of the crosscorrelation is conditional on the parameters of the

modeled reception, the output of the narrowband receiver may be written as*

An(r, e |T,B,a) = a ejz"f°(ﬁlt°‘7(t°))/m(t — 1(to))m*(t — )&l Il =B gy

- a ejzﬂfO(ﬁltO‘T(tO))ejQWfO(a’_ﬁl)T(tO)

[ty (@ + r(t) = my N gy (3.45)

*The limit of integration have been omitted intentionally to allow focusing on the integrand.
Subsequent sections will focus on these limits, and its significance in the estimate of the time delay

().
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The significance of the narrowband ambiguity function is that the integral in (3.45)
is only a function of the differences between search and true variables for both time-

delay and doppler which means

| An(m, e | 7(t,),5,a) | = | a An(T — 7(ts), 0" — 3') | 0,0,1) | (3.46)

3.5.2 Broadband Reception

When the broadband processing with PURTS is conditional on the parameters of
the single-path reception, the time-scaled, demodulated response may be obtained
from equations (3.29)-(3.34). Therefore, the output of the crosscorrelation is given

by

15529 = (122 et (221}
A=t i

-exp{j27rf0<i:§:—l) t}dt. (3.47)

The integral on the right of (3.47) is not shift invariant with respect to 7 and o’. In

chapter IV, a variation of this broadband receiver is introduced with the advantage
that its broadband receiver ambiguity function is approximately shift-invariant in
both doppler and time-delay. This invariance property is the key to computation

economy for weak signal detection under multipath propagation.



CHAPTER IV

Shift-Invariant Method for Strong Path
Cancellation

As mentioned in the introduction, when both weak and strong paths are present
at the reception, the floor level due to the strong paths may be higher than the
peaks of the weak paths. Under this circumstance, the floor level of the strong
paths must be removed in order to detect the presence of the weak paths. The
Shift-Invariant Method for Strong Path Cancellation (SIMSPC) described in this
chapter has the advantage that the strong paths can be removed without affecting the
strength of the weak paths. More important, (SIMSPC) can be implemented with
very few computations due to the absence of interpolation utilized in generating
a broadband ambiguity surface. The basic principle behind (SIMSPC) is to pre-
calculate a reference ambiguity surface consisting of a single-path reception and store
it in memory. To remove the strong path interference, the reference surface may be
shifted, rescaled, and subtracted from the observed ambiguity surface with minimal
interference to the weak paths.

Two types of shift-invariant surfaces are introduced. The first type is formed using
the sliding processing receiver whereby the crosscorrelation utilizes two periods of

the reception to form a one-period output. It has the advantage that the broadband

46
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ambiguity surface at the output of the receiver is shift-invariant in both doppler
and time-delay. The second type of shift-invariant surface is formed using block
processing. Due to the cyclic crosscorrelation in block processing, the broadband
ambiguity surface is no longer shift-invariant in time-delay. However, the demodulate
surface is shift-invariant in both time-delay and doppler; hence, a computational
efficient method for weak signal detection may be constructed using this demodulate
surface. The efficacy of these two shift-invariant surfaces is shown using m-sequence
signals.

4.1 Strong Path Cancellation Without Shift-Invariant Am-
biguity Surfaces

In all but the simplest situations, the received broadband signal is the sum of
many delayed, doppler-scaled, and attenuated replicas of the transmitted signal. One
application to the model of this reception is the transmission of sound in deep sea.
The deep sound channel, sometimes known as the sofar channel, is a consequence of
the characteristic velocity profile of the deep sea.

The velocity profile may be divided into several layers. The surface layer is af-
fected by the daily changes of heating, cooling and wind action. Below the surface
layer lies the seasonal thermocline where the velocity changes with depth as the tem-
perature changes. This negative velocity gradient will vary with seasonal changes.
Under the seansonal thermocline is the main thermocline where the velocity profile
is only slightly affected by seasonal changes. In this layer the velocity will decrease
with decreasing temperature until the water temperature reaches to about 4° C.
Underneath the main thermocline is the deep isothermal layer where the tempera-

ture decreases very slowly as the pressure becomes enormous. However, due to the
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increase in pressure with depth, the sound velocity will also increase with depth due
to the effect of pressure on sound velocity. Therefore, the depth at which the main
thermocline layer and the deep isothermal layer meets is where the sound velocity
reaches its minimum velocity which varies from near the surface to about 4000 feet
[47]. The velocity profile causes the deep sea channel to act much like a lens. The
negative velocity gradient in the main thermocline layer will cause sound rays to
bend down toward the depth with minimum velocity. In the deep isothermal layer,
sound rays will bend upward toward the depth of minimum velocity.

Sound rays from the source to the receiver may take on many different paths
depending on the geometry of the source and receiver as well as the sound velocity
profile. Some of the rays or paths from the source would experience surface or bottom
reflections, but the majority of the paths will remain within the acoustic channel and
experience no acoustic losses by scattering from either the surface or the bottom.
Both the surface and bottom bounces produces a frequency-independent phase-shift
as well as a loss due to scattering or absorption. The most significant cause for
transmission loss within the acoustic channel is due to spherical and cylindrical
spreading. Paths within the acoustic channel may also experience added loss due to
absorption [47]. Regardless of the trajectories of these paths and the propagation
medium, the path receptions may be accurately modeled as attenuated, time-delayed
and doppler-scaled replicas of the transmitted signal. The goal is to identify each
and every path.

Any bandlimited bandpass signal with period Pr can be modeled as the positive

frequency “analytic signal”

s(t) = am(t)ed™ et (4.1)
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The noiseless multipath reception is

N
) = 3 ay mlt = ry (1) O
p=1
N ' , '
= Loy mi(1 = Byt = Sy (1.2
r=1
where

By = T (4.3)
Sp = 7p(te) = Tt - (4.4)

and a, is the complex attenuation coeflicient which takes into account of both geo-
metric losses and possible phase-shifts. The index p in the summation indicates the
different path receptions. In order to differentiate the strong signal receptions from
the weak signal receptions, it is assumed that the first M paths in the summation
correspond to the major paths (strong paths) and the remaining (N-M) paths cor-
respond to the weak paths. Each path may be characterized by the parameters S,
B, and the relative amplitude a,.

A straight forward approach to strong signal cancellation would be to precalcu-
late a receiver ambiguity surface with unity amplitude for each and every possible
combinations of 3’ and S, and store these receiver ambiguity surfaces in memory.
These stored receiver ambiguity surfaces are referred to as the “reference ambiguity
surfaces” in order to distinguish them from the receiver ambiguity surface observed at
the output of the receiver. Once the time-delays, doppler, and amplitude (Sp, By ap)
are obtained for each of the major paths, reference ambiguity surfaces corresponding
to these major paths may be retrieved from memory and subtracted from the receiver

ambiguity surface. The residue consisting of weak paths is

M
A_m(r,0) = A(r,a|S,8,a) - Zap A1 o Sp,ﬂ}',,l) , (4.5)
p=1
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where

S - [51,52,....,51\7] (46)
B = [B1, B2 Byl (4.7)
a = l[a, az....,an], (4.8)

and A,(1,a | S,,8,,1) is the reference ambiguity surface with unity gain. This
method of strong signal cancellation has a drawback. It requires the storage of
reference ambiguity surfaces for all possible values of S, and ;. A typical small
underwater acoustic measurement might use 50 search values for 3, and 2000 search
values for S, so each reference ambiguity surface would require 10° pixels (one pixel
= one complex number). Due to the doppler invariance to be described in section
4.2, only 2000 of the 10° reference surfaces are required for storage. At 8 bytes/pixel,
this corresponds to 1.6 gigabytes of memory. In 1992, 1.6 gigabytes of memory would
cost approximately $1600 which is certainly within practical limitations. However, for
transmission of signals with long periods and small sampling intervals ( see Appendix
C), the cost could easily rise to $250,000-$2 million. Therefore, the strong signal
cancellation based on all precalculated surfaces is fast but very costly. If the reference
function had been shift-invariant in time the required memory would be drastically
reduced to 10° pixels—a practical PC memory in 1992. Hence, this current research
searches for processing with time shift-invariant surfaces.

4.2 Shift-Invariant Ambiguity Surface With Sliding Pro-
cessing

The primary objective of this section is to describe the sliding processing receiver
and how its output may be expressed as a shift invariant function of both time-delay

and doppler. Part of this invariance is done by an apt choice of variables.The doppler
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parameters are moved to an exponent. In order to describe the signal processing of

the sliding processing receiver, let
e £ 1-d, (4.9)

where o is the search variable for the doppler parameter 8 defined in (3.30). There-

fore,

et =

(4.10)

1—o
To interpolate from the 0-doppler channel to the a* doppler channel, the phase-

compensated, demodulate response is
() = z(t)edfol-eT)t (4.11)

where z(t) is the demodulated reception in (3.25). The time-scaled, demodulated

reception becomes

zo(t) = 2zl (e%t), (4.12)

At this point the limits of integration for the crosscorrelation must be defined.
The interval of integration corresponds to an integer number of periods of the signal
at the search doppler, and is simply labeled Pr. For signal processing, the output of

the crosscorrelation is expressed as
Pr
Ay(r,e%) = / 2a(t + T)m*(t)dt (4.13)
0

where the subscript s denotes the use of a sliding processing receiver. The peaks of
As(7,e”) will indicate the presence of individual paths in the reception. However, if
one were to interpret the significance of the parameters corresponding to the peaks
of the ambiguity surface, one would need to define the arrival time and provide

a model for the reception. Let ¢, be the arrival time of the first path detected,
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and 6, be the time difference between the first arrival and the last arrival. Assume
that a single-period integration is over the interval from ¢t = ¢, to t = t, + Pr
where t, > q, + 6,. This would ensure that all the path arrivals are integrated for
one period. Alternatively, it may be assumed that r(¢) is available for integration
starting from ¢ = t,. For the integration in (4.13), the noiseless multipath reception

may be modeled as
Z a, m(t — 7 (t))esZrIolt=7p(1)), t>0 (4.14)

where

Tp(t) = Tp(to) + T (t —1,) - (4.15)

Using the exponential form of doppler factor, 8, can be defined as

e 2 - B,
e P = 1, - 7"(p,t0) (4.16)
so that
(o= ) 1 -5,
“=Pplt — Py 4.17
: =5, (4.17)

and the noiseless multipath reception is written as
Zap m(e Prt — S,)el?mdoe” Pig=i2mfoSy (4.18)

where

Sy = 1p(te) — (L —e™P)t, . (4.19)

The demodulated reception is

N
= > a, m(e7Prt — S, )ei2mfole ™ 1)t =j2nfoSp (4.20)
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and the rescaled, demodulated reception becomes

za(t) = z,(e*)
N , )
= > a, m(el@=Prt — Sp)eﬂ”f"[(e( P)-1)t=5y] , (4.21)
p=1
where
(1) = z(t)e?mloll-eTt (4.22)

In order to clarify that (4.13) is shift-invariant in time, define a new time-delay
variable T), as

Tp é e(ﬁp"a) Sp

_— e(ﬂp"a) [Tp(to) — (1 _ e—ﬁp)to] , (423)
so that z,(t) can be written as
al o fo(el @) :
z2(t) = _a, m[el*=fo) (¢ — T,)]es 2" ele Pt~ Tp) g=i2nfoTy (4.24)
p=1

The output of the sliding processing receiver conditioned on the multipath parame-

ters is given by

P,
As(r,e* | TyePa) = / ’ 2o(t + T)m*(t)dt
0

N ) Pr
= Z ape"z"f"T”/ m(e(a’ﬁ”)(t +7—T1,))m*(¢)
r=1 0

. ewp{jZWfo(e(“‘ﬁP) —1)(t+7—Tp,)}dt

N
= > Ay(e*7|e P Ty a,), (4.25)
p=1
where the vector of remapped time delays is
T = [Ty, Ty,....... TN, (4.26)
the vector of doppler compression for the N paths is

e = [P, B b (4.27)
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and the vector of path amplitudes is
a = [ai, az,....... ,aN] - (4.28)
In (4.25), the receiver ambiguity function of the p** path is

. P.
Adre” | Ty e, a,) = ape 5 [imfele=e g - T (1)
0

exp{j2r fo (e — 1)t + 7 —T,)}dt . (4.29)
This form of the receiver ambiguity function has the essential characteristic that
Ay(, e | Tpe P a,) = a,e™ ™o A (1 — T, e~ | 0,1,1) . (4.30)

With the exception of a phase shift, the receiver ambiguity function is shift-invariant
in both time-delay and doppler.

Through all this remapping of time-delays, it may be difficult to keep track the
significance of each time-delay representation. In summary, the primary purpose for
remapping time delays is to manipulate the parameters of the signal model in such
a way that the ambiguity surface is seen to be shift-invariant in both time-delay and
doppler. The exponential doppler factor suggests that if the doppler separations be-
tween successive doppler channels are exponentially spaced, the resultant ambiguity
function will be shift-invariant in doppler and time-delay.

However, if tracking the various path arrivals is the primary objective, then the
precise meaning of 7T, becomes irrelevant. In other words, only the relative time-
delays among the paths are essential. The absolute time-delays 7,(¢) of individual
paths are of no concern.

In sonar targetting and in tomography, the knowledge of the absolute time-delay is
crucial. In such cases, 7,(t) may be calculated from 7, and 8, which are determined

from the ambiguity surface. Since the constant time-delay determined from the
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ambiguity surface is the true contant delay modulo T}, one must add the constant ¢,
to the estimate of T}, from the ambiguity surface. The constant delay 7,(¢,) is given
by

Tp(te) = (Tp+to) + (1 —eP?)t, . (4.31)
This assumes that « = 3, at the peak of the path. Using (4.15), the absolute

time-delay is

H(t) = (T +to)+(1—e™)to + (1 —e)(t —1,)

= T,+t,+(1—eP)t. (4.32)

Recall that t, on the right of (4.32) is the time-delay for all paths at the start of the
integration in (4.25). In section 4.3, the shift-invariant property of this ambiguity

function will be utilized to cancel strong paths within a reception.

4.2.1 Discrete Time Analysis of Shift-Invariant Surface

In practice, the demodulation and the doppler scaling are implemented through
sampling. Both the time delay and doppler are calculated at discrete intervals. In
order to avoid notational complexity, the discreteness of the doppler variables o will
be implied through the use of brackets in the analysis. However, there will be times
when a subscript for « is essential for the emphasis of an analysis at a particular
doppler channel. When the nominal sampling interval ¢, is defined as

A 1
ty = —
my f,

where m, is the “sampling multiplicity”. For example, O. A. Tomography tradi-

(4.33)

tionally uses a sample rate of 4f, samples per second. The discrete version of the

demodulated reception is

z[n] = r(nt; —|—to)<'3‘j2"f°"t1 . (4.34)
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Adjusting the phase for proper demodulation,
2 n] = z[n]e 2 oll=e"nt (4.35)

With the exception of the exponential doppler factor, the time-scaling is the same as

in (3.37)-(3.40). To clarify the subtle differences, the equations are restated below.

Let
2] = ne®
cn] = [z[n]]
An] = z[n] - c[n) | (4.36)

then the time compressed samples at the o** doppler channel is
za[n] = (1= Aln])z [e[n]] + Aln]z,[c[n] + 1] . (4.37)

The discrete version of the correlation output for signal processing is

Py-1
Av,e®] = €ty Y za[n +vim*[n], (4.38)

n=0

where the discrete samples of the baseband reference is
m*[n] = m*(nt1 +46,), (4.39)

the number of samples in a period is

P
Py = =L, (4.40)
t
and
r
v=—. (4.41)
131

Conditional on the noiseless multipath parameters, the discrete version of the corre-

lation output becomes

N Py-1
Alv,e* | Sye7Pra] = et ) a, Y m(e@™ ) ((n+ v)t, — Sp)m*n]
p=1 n=0

-exp {j27rfo [(e(o’_ﬁ”) - 1) ((n+v)ty — Sp)]} . (4.42)
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In order to write the discrete version of the output in a time shift-invariant form,

define
T, = (Pr=0) (4.43)
3
and the receiver ambiguity function becomes
~ . < N PN_l ~
Afv,e® | T' e P a] = etie 2ol g, % m(e@ P (n + v - T))t)
p=1 n=0

- eTp {j27rfo (e(o"ﬁ") -~ 1) (n+v-— Tp)tl} , (4.44)
where the vector of re-remapped time delays is

T = [Ty, Toyeoeoy, Tn] (4.45)

Therefore, the second summation on the right of (4.44) is also shift invariant with

respect to both time-delay and doppler.

4.3 Strong Signal Cancellation with Sliding Processing

This section describes the cancellation of strong paths utilizing the invariance
property of the broadband ambiguity function in section 4.2. The invarinace property
in (4.30) implies that only one reference ambiguity surface is required for storage.
All reference ambiguity surfaces may be obtained by shifting the stored reference
ambiguity surface to the desired point in the time-doppler plane along with the
appropriate phase shift.

The reference ambiguity surface may be obtained from the reception consisting

of only one path. Suppose the noise-free model of the single-path reception is
() = a, m(t — 7(¢t) + t,)exp{j2n fo(t — 7(¢) + ¢,)} , (4.46)

where

) = 1.(t,) + 7 (t—1,). (4.47)
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Following the same broadband processing as in section 3.4, the reference ambiguity

function is!

P
Ars(r, e | T, eﬁ',a,) = / ! 2ot + 7+ g )m™(t)dt
0
Pr :
= ] are I Trm (@A) (t 4+ 7 — T,))m*(t)
0

cexp{f2n f (P — 1)t + 17— T.)}dt,  (4.48)

where

T, = e¥=) [r(t,) — (1—eP)t,| . (4.49)

Recall in section 4.1 that a direct method for strong signal cancellation is to
subtract the sum of the ambiguity functions of the strong paths from the receiver
ambiguity function of the reception (i.e. the reception containing both strong and

weak paths).
M
As-m(1,e®) = Ay(r,e | TyeP,a) — 3 a, Aj(r,e” | Tp,e™™,1) . (4.50)
p=1

It is assumed that the parameters T,, e’# and a, can be accurately obtained? from
the receiver ambiguity function A,(7,e* | T,e ?,a). Without this knowledge, it
would be impossible to determine the second summation on the right of (4.50). The
advantage of the (SIMSPC) with sliding processing is that A,(e*, 7 | e™#,T,,1) can

be obtained from the shifted versions of the reference ambiguity surface since

As(r,e® | T,y e, 1) = e‘jz’rf"(TP"T’)—1—AT,3(T+TT—T,,,e"+ﬂ'—ﬁ”,| e P T, a,). (4.51)

T

Therefore, (SIMSPC) requires the storage space of only one reference ambiguity

surface.

1Since the reception consists of only one path, the last arrival and the first arrival are the same
so that 8, will equal zero.
*The estimate of the amplitudes a, is discussed in further detail in section 4.5.
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Although the equivalence in (4.51) appears to have the desired shift-invariance
in both time-delay and doppler, only the magnitude of the ambiguity function is
shift-invariant. Fortunately, the phase difference between the left and right side of
(4.51) is a constant for each doppler channel and may be easily calculated so that the
phase-corrected, broadband ambiguity function will be truly shift-invariant in both
magnitude and phase.

The (SIMSPC) with sliding processing is block diagrammed in figure 4.1.

4.4 Broadband Receiver Using Block Processing

For the sliding processing receiver the correlation between z,(t) and m(t) is cal-
culated using a linear correlator. For block processing, the correlation is cyclic, and
is given by

Py-1

Aplv, e | T,,e‘ﬁ,a] = Y z[njm*[n+v mod Py]

= > znjmn+v]], (4.52)

n=0
where [[ ]] denotes the mod Py operation, and the subscript b denotes the use of a
block processing receiver. Recall that z,[n] is made up of two factors; m(e(@=#»)(n 4
V—Tp)tl) and ezxp {j27rfo [(e("‘“ﬁl’) — 1) (n+v-— Tp)tlJ } The first factor is a doppler
scaled and time delayed version of m(t). It has periodicity e(®»=*) Pr. The samples
used in the crosscorrelation are taken from n = 0 to n = Py — 1 which corresponds
to one period of the zero doppler signal m(t). In general, z,[n] is non-periodic for
two reasons. When o # f,, the Py samples of z,[n] do not represent one period
of the baseband signal within z4[n] since m(el®#)(n + v — T,);) has periodicity of
e®=%) Pr and not Pr. Second, the period of the phase term is [fo(ele=Pfr) — 1)1

which also differs from Pr. Taking a cyclic correlation of a non-periodic signal is not
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Figure 4.1: The (SIMSPC) with sliding processing receiver. The total number of
strong paths is M. The “residue” is the ambiguity surface with strong
paths removed. It is utilized for weak path detection.
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equivalent to a linear correlation of a non-periodic signal. In fact, as long as z,[n]

does not have periodicity Pr, cyclic correlation is different from linear correlation.

As a result,
Ap[v,e® | Ty e P 1] # e T Ay — T, el*F) | 0,1,1] . (4.53)

The inequality in (4.53) states that the ambiguity function under block processing is
not shift-invariant in both time-delay and doppler. However, the doppler invariance

still hold 2. Specifically, for Tj =T,

Ay, e | Tj, €%, a5] = Ezi.Ab[u, eOtBi=b) | Ty, P aj] (4.54)
o

1

which implies that for a constant time-delay, the block ambiguity surface is invariant
in the doppler variable e®. This result is not surprising since cyclic correlation
affects the time-delay Tp and not the doppler scaling. As previously mentioned,
if the ambiguity surface is only shift-invariant in doppler, the problem of memory
storage arises. To circumvent this problem, an alternate method for strong path
cancellation with block processing is proposed which utilizes the time shift-invariant

property of the demodulate response as well as the speed of cyclic crosscorrelations.

4.4.1 Strong Signal Cancellation With Block Processing

Although the receiver ambiguity surface for block processing does not have the
time shift-invariant property as the receiver ambiguity surface for sliding processing,
the rescaled, demodulated reception z,(t) is shift invariant in both time-delay and

doppler. Conditional on the multipaths, the rescaled, demodulated surface may be

3Since the time-delay variable T, is coupled to the doppler factor, one must be careful when
comparing two paths with same time-delay but different doppler. In particular, in order for two
paths with different doppler to have the same time-delay, the parameter Tp(to) defined in (4.15)
must differ for the two paths.
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defined as
Dy(t,e® | Tye™P,a) 2 2,(t) , (4.55)
where
N
Dy(t,e” | Tye P,a) = > a, Dyt e | T,,e P 1) . (4.56)
p=1

Dy(t,e* | T'y e~ P, a) and z,(t) differ mainly in their notation. z,(t) is usually referred
to as the output of the ot* doppler-time compressor whereas D,(t,e* | T',e7 ", a)
is referred to as the surface generated by all the doppler-time compressors. Since
z4(t) is shift-invariant in both time-delay and doppler, the demodulate surface is

also shift-invariant in both variables; hence,
Dy(t, e | Tp,e P2, 1) = el Dy(t — T,,e% P | 0,1,1) (4.57)

Therefore, the shift-invariance of a reference demodulated surface

Dya(tye* | Tre™,a,) & z4() (4.58)

may be utilized for efficient cancellation of strong paths.

The block processing method for strong path cancellation may be implemented
as follows. First, T,,e”r and a, are obtained from the observed receiver ambiguity
function for each of the M strong paths. For each strong signal, a shifted version
of the reference demodulate surface is constructed. Then the sum of the M shifted

version of the reference demodulate surface is formed and is given by

M
Dr,b,M(t7 6a) a Z g:_?’_eﬂero(Tp—Tr)DT,b(t +T, -1, e+ Br—Byp I T,, 6"ﬁr7 Clr)
p=1"7
M
= Y Dy(t,e* | T, e a,) . (4.59)
p=1

Each doppler channel of the demodulate surface D, a(¢, €*) must be crosscorrelated
with the baseband signal m(t) to produce the desired output. The resultant ambi-

guity surface A, ar(7,€%) is constructed from the output of all the crosscorrelations.
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Since all required shifts are pre-computed at the demodulate stage,
M
A pm(T, %) = ZA[,(T, e | Tp,e‘ﬁp,ap) , (4.60)
p=1

and the reference ambiguity surface A, (7, e*) equals the sum of the ambiguity
surfaces of the M strong paths. Finally, the reference ambiguity surface is subtracted

from the receiver ambiguity surface and the residual surface given by

Ap_m(m,e®) = A(r,e* | Tye P,a) — Arp (T, %)

N
= Z Ap(r, e | Tpoe ", a,) (4.61)
p=M+1

consists of only weak paths; hence, weak paths may be identified by the peaks of this
residual surface.

A block diagram of (SIMSPC) for the block processing receiver is provided in

figure 4.2

4.5 Amplitude Estimation

In previous sections, it is assumed that the parameters of the strong paths may be
readily obtained from the receiver ambiguity surface. This is true in the case of the
doppler and time-delay variables, but the complex amplitudes a,’s are not readily
available without additional calculations. For the case of a single-path reception, the
peak of the receiver ambiguity surface is equal to the amplitude associated with the
path. However, for multipath reception, each peak has components from all path
arrivals. Specifically, if fip is the peak of the p™ path at the point (¢™#¢,T,), then

A

A, may be expressed as
A, = Ay(r,e®|TyeP,a)| ,on,
e“:eﬂP

N
= Zai As(r,e* | T; e'ﬂ‘,l) | r=1,
=1

e =eﬁP
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Figure 4.2: The (SIMSPC) with block processing receiver. The total number of
strong paths is M. Unlike the (SIMSPC) with sliding processing re-
ceiver, the demodulate surface is shifted in both time and doppler. The
“residue” is the ambiguity surface with strong paths removed. It is uti-
lized for weak path detection.
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N
A, = a7 T > a; AT e” | Tiye™ 1) | rom,

t=1 BC!_—_eﬁp
i#p
N N
= A+ Y ai Afr, e | The™ 1) | v, (4.62)
[E eo‘zeﬂp
i#p
where
A, & qe T for 1<p< N (4.63)

is the true peak associated with the p'* path. Assuming the contribution from the

weak signals are negligible,

M

A, = A, + Za,- As(r,e” | T,-,e_ﬁ‘,l) | =z, . (4.64)
f=1 ex=ePp
i#p

The estimate of A,’s may be obtained by solving a set of linear equations given by

~

CA = A, (4.65)
where
A = [A1, Ay Ay]T (4.66)
A = [Ay, A, . AT (4.67)
C11  C12 amMmM
C1 C2 - CM
C = (4.68)
i CM], .« .. .« e CMM |

Therefore, if the coeflicients ¢;,’s were available, then a, can be easily computed. In
general, these coefficients cannot be determined from the receiver ambiguity surface

of a multipath reception. However, since

Ag(r,e® | Tpe ™ 1) = %e_ﬂ”ﬁ(T”_T')AT,S(T + T, = Ty, eHFr=Pe) | T e a,),

r

(4.69)
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the coeflicients can be obtained from shifted versions of the reference ambiguity

surface as follows. Let

e—jZWfo(Tp“Tr)
Aprs(tia) = —— A, (7 + T, — T, cT8=00) | T =P 4,) (4.70)
ar

be the shifted version of reference surface for the p™* path. Except for a scaled factor,
A, (T, @) is the same ambiguity function as the ambiguity function of the p** path.
Then the ¢, coefficient may be determined by evaluating A,.s(7,«) at the point
(T, €%). Specifically,

cip = Aprs(T,0) |ea=§?i . (4.71)

Therefore, each column of C may be calculated from one shifted-version of the refer-
ence ambiguity surface. Once the A,’s are determined, a,’s can be readily obtained
using equation (4.63).

For the block processing receiver, the procedure for estimating the amplitudes
requires additional computation since the reference ambiguity surface is not shift-
invariant in time-delay and doppler. In order to calculate c;, for the p'* path, the
reference demodulate surface is shifted to the point (7, e’r). Let

1 .
Dy (7, @) = ;—e'ﬂ’rf"(T”‘T'Db(t + 7T, -1, e tPr="0p | T, eﬁ',ar) (4.72)

represent the shifted version of the reference demoduate surface for the p** path.

Additionally, for each path p, let
zrip(t) £ Drpp(7,0) leocers for LSi< M; it p (4.73)

represent the demodulate response of the 8% doppler channel. Then the coefficient
cip is determined from the output of the cyclic crosscorrelation between z,;,(¢) and
m(t) and is given by

C,'p = z,.y,-,p(t)®m(t) |t=T.' . (474)
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Equations (4.72) — (4.74) is repeated for each and every strong path until all
coeflicients are obtained. Although amplitude estimation under block processing
requires the additional complexity of crosscorrelations, it does avoid the necessity

for interpolations.

4.5.1 Amplitude Approximation With M-Sequence Ambiguity Surface

In section 4.5, the coefficients c;, are required for the calculation of the complex
amplitudes a,. However, if the coefficient matrix C in (4.68) were the identity
matrix I, the reduction in computations may be substantial. For ambiguity surfaces
with very low floor level, approximating the off-diagonal elements of C' with zeros
may be suitable. Consider the case of m-sequence transmission. The ambiguity
surface is shaped like a thumbtack. It consists of a spike at the center and a plateau
region surrounding the spike. The magnitude of the off-diagonal elements in C
depends on the variations in this plateau region. To a good approximation, this
plateau region may be assumed to have uniform distribution of energy. Specifically,
it 1s assumed that each doppler channel has equal energy, and that this energy is
evenly distributed within the doppler channel on the time-delay axis. The equal
energy assumption for each doppler channel is based on the narrowband argument

that for small differences in doppler

[oimin (4.75)

/OPT'A“’F) Fat = [T M) PIM(F - F) P df

&

where

F = eoof, . (4.76)
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For m-sequence signals with L digits, the off-diagonal coeflicients are 10 log(L) dB
below the peak of the ambiguity surface. Hence, if L is 1023 digits, the off-diagonal
coeflicients are 30 dB down from this peak. Recall that the purpose for calculating
these coefficients is to eliminate the contribution of the strong paths at the peaks
of the weak path. Ideally, if the strong paths are completely eliminated, the peak-
to-floor level of the weak path would be infinite. However, when the off-diagonal
coefficient of C are assumed to be zero this is no longer true. To evaluate the

significance of the off-diagonal coefficients, define an error vector by

e2CaA, (4.77)
where i i
0 7 I
. 1 9 ... 1
c =" o (4.78)
| 0

is the matrix of the squares of the off-diagonal coefficients of C and
A = [A% A% .. AT (4.79)
1s the vector of the squares of the true amplitudes. Therefore, the error vector
e = [e1, €2, em]T (4.80)

represents the energy of the interference among the peaks of the strong paths. Each
¢, generates its own floor level which affects the detectability of the peaks of the

weak path. The floor level due to ¢, is

Fp2 = zép
1 M
2
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Therefore, the sum of M floor levels due to interference is

M
F} = > F?. (4.82)

1=1

Assuming A? is the largest among all strong paths,

A?
F} < M(M —1)~2

< T (4.83)

From (4.78) to (4.83) it is assumed that the interference is coherently summed at the

signal peaks. A measure of the total interference is the floor-to-signal ratio given by

(%’)w < 10 log ([M(—AI{;—IE) : (4.84)

For M=10 (10 strong paths), L=1023, the cost of neglecting the off diagonal terms in
(4.68) is the presence of a floor level that is 40 dB down from the peak of the strong
signal. Prior to strong path cancellation, the floor level due to the ten paths is 20 dB
down from the peak. Therefore, if the peaks of the weak path is approximately 20dB
down from the peak of the strong path, approximating C by the identity matrix will

not affect the detectability of the weak paths.
4.6 Simulation Results

In this section, simulation results of (SIMSPC) are provided. Except for dif-
ferences in computational complexities, the results are valid for both the sliding
processing receiver and the block processing receiver. To carry out the simulation, a
reference surface is created and stored in memory. To test the validity of doppler in-
variance, receiver ambiguity surfaces with various true dopplers are subtracted from
the shifted versions of the reference surface. In other words, the reference ambigu-
ity surface and the receiver ambiguity surface differ only in doppler. Similarly, for

time-delay invariance, the receiver ambiguity surfaces with various true time-delays
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are subtrated from the time-shifted versions of the reference surface. A detailed
discussion of this simulation is provided in appendix D. The primary purpose of
this simulation is to show the extent of the floor reduction after surface subtraction.
It is not designed to provide a detailed analysis of the ripples in figures (4.3) —
(4.8). For example, the simulation for doppler invariance does not show why there
are small variations in the performance of surface subtraction for various degrees
of surface shifts. It does indicate that greater than 40 dB of improvement in floor
reduction can be expected. Since it is assumed that the noise floor is much lower
than the signal floor, the simulation consists of signal only and provides a set of ex-
amples for signal floor reduction. In order to analyze the performance of the different
cancellation schemes, two different performance criteria are considered. The mean-
square error criterion (m.s.e.) is a simple yet effective performance indicator utilized
in many situations. The median criterion has the advantage that it is insensitive to
outliers in the ambiguity surface. Therefore, the median is a useful criterion in cases
where the ambiguity surface contains large narrow peak(s). In order to reduce the
effect of outliers, the large peak(s) in the m-sequence ambiguity function is left out
in the calculation for the (m.s.e.).

Figures (4.3) and (4.4) plot the results of strong signal cancellation for the case
when the reference ambiguity surface and the strong signal ambiguity surface differ
in doppler. The figures show improvement with increasing sampling rate. This is

due to the effect of linear interpolation when a single processor is utilized. Similarly,

~

5)

to (4.8) also indicate an improvement with increasing sampling rate. In both cases,

for the case of strong signal cancellation in the direction of time-delay, figures (4.

the improvement is greater than 30dB. Figures (4.7) and (4.8) compares the cancel-

lation of the ambiguity surface between transducer filtered reception and non-filtered
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Figure 4.5: Floor level reduction after cancellation with different sampling rates.
Shifts in time-delay. (m.s.e. criterion)

reception. It is interesting to note that the performance criteria does influence the

outcome of this comparison.

4.7 Constructing the Reference Ambiguity Surface

Unlike the receiver ambiguity surface, the reference ambiguity surface must con-
sists of only one path. At first, it may seem that the reference ambiguity surface may
be constructed by calculating the ambiguity function in (3.28) for the transmitted
signal. The problem with this form of construction is that the ambiguity function
in (3.28) does not include the effect of filtering (i.e. transducer filtering, demodulate
filtering, etc.) Therefore, the reference ambiguity surface must be constructed from
a single-path reception. ldeally, the single-path reception would undergo the same
filtering processes as the multipath reception. In most cases a single-path reception

may be obtained by positioning the transducer and the receiver in close proximity.
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Figure 4.6: Floor level reduction after cancellation with different sampling rates.
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Alternatively, the reference ambiguity surface may be constructed using the re-
celver ambiguity surface for signals with good autocorrelation function. In principle,
this method of construction is similar to the strong signal cancellation to be de-
scribed in chapter V. Due to their similarity, detailed analysis of this construction is
appended to the end of chapter V.

Signals with good autocorrelation function have the property that the main lobe
of the autocorrelation is narrow, and the sidelobes are negligible. For this type of
signal, the peaks of the strong paths are well isolated from one another in the re-
ceiver ambiguity surface. Therefore, it is possible to extract the p** path from the
receiver ambiguity surface by zeroing the output of the crosscorrelation at the p*
doppler channel except for the position of the p** peak. The purpose for zeroing the
pt" doppler channel is to eliminate the contribution from all other paths within the

reception. Since all the energy of the pt* path is concentrated at the p** peak, the
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zeros would not significantly affect the pt* path. To create the reference surface, the
“cleansed” version of the p'* doppler channel is crosscorrelated with m*(¢) to form
the modified demodulated output. This modified demodulated output is interpo-
lated to all doppler channels to form the reference demodulate surface. For sliding
processing, the reference demodulate surface may be crosscorrelated with m(t) to

form the reference ambiguity surface.



CHAPTER V

Hyperslice Cancellation by Coordinate Zeroing
(HCCO)

The HCCO preprocessing is a simple yet effective means for eliminating the floor
level associated with the strong paths (i.e. the strong paths) without significantly
affecting the reception from the weak paths. The simplicity of the HCCO preprocess-
ing stems from the fact that only a single doppler channel is required to perform the
floor reduction as opposed to the previous technique which involved the subtraction
of the entire ambiguity surface. Furthermore, HCCO preprocessing does not require
the shift-invariant properties described in chapter IV. It does increase the number of
computations at reduced complexity as compared to (SIMSPC).

The basic idea behind HCCO preprocessing is quite simple. Consider a hypo-
thetical situation where one has two sources of light impinging on a distant surface.
The light sources are red and blue. Suppose only the contribution from the red light
source is desired. A straight forward method would be to construct a filter (i.e. a red
filter) at the location of the surface to eliminate the contribution from the blue light
source. More advanced filters may require knowledge of both the magnitude and
phase of the blue light at the surface. A better approach to blue light cancellation

would be to block off the blue light at its source so that it does not spread to the
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entire surface; hence no filtering is required at the surface. This is the basic idea
behind HCCO preprocessing. The two light sources are the weak and strong paths.
The ambiguity surface is analogous to the spread of the light sources onto the distant
surface. One does not need to eliminate the strong path from the entire ambiguity
surface. Instead, the strong path may be canceled at a single doppler channel (i.e.
the source) before the strong path is interpolated to all the doppler channels of the
entire ambiguity surface. For signals with good autocorrelations (i.e. radar/sonar
signals), the strong path and the weak path are “well” isolated at the true doppler
of the strong path. This enables one to eliminate the strong path without disturbing
the weak path (i.e. the red light and the blue light are isolated from each other at
the source).

In section (5.1) HCCO preprocessing is described using the ideal, analytic model
for reception. Section 5.1.1 describes the extent of floor reduction and the corrup-
tion of weak paths. The special case of HCCO preprocessing utilizing m-sequence
signaling is described in section (5.2). Under this special case, the number of compo-
nents zeroed is directly proportional to the extent of floor reduction and weak path

corruption may be approximated quantitatively.

5.1 Strong Signal Cancellation Through HCCO Prepro-
cessing

One of keys to HCCO preprocessing is the projection of the demdoulated sequence
in the data space onto the arrival space and the projection of the processed sequence
in the arrival space back to the data space. Both the forward projection and the
back projection may be thought of as matrix transformations from one space to the

other.
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The data space is the space occupied by the demodulated sequence of the re-
ception at a particular doppler channel. The number of coordinates N in the data
space will depend on the sampling rate of the receiver. For pulse compressed signals,
the data space is characterized by an even distribution of path energy among all the
coordinates. As a result, the time-delay of a path reception cannot be estimated
from the sequence in the data space. Figure 5.1 is a plot of the m-sequence signal in
the data space.

In contrast, the arrival space is the space occupied by the pulse-compressed form
of the path reception. Specifically, the energy of the strong path is concentrated
within very few coordinates in the arrival space. The word Hyperslice in HCCO
refers to the “slice” or subspace spanned by these few coordinates. The HCCO is
used to describe the cancellation of the energy within these few coordinates in the
arrival space by zeroing. The process of zeroing affects the arrival space only within
these few coordinates where the energy of the strong path is concentrated; hence,
the rest of the coordinates in the arrival space remains undistorted. However, when
the zeroed sequence in the arrival space in projected back to the data space, the
zeroing affects the values of all the coordinates in the data space. In figure 5.2, the
arrival space of the m-sequence signal is plotted. Due to pulse-compression (i.e. the
projection from the data space to the arrival space), the energy of the m-sequence
signal is concentrated in very few coordinates indicated by T} in figure 5.2. The two
other small pulses in figure 5.2 are multipaths from bottom bounces. The number of
coordinates occupied by T (i.e. the Hyperslice) will vary depending on the impulse
response of the strong path.

HCCO preprocessing may be divided into four major steps. The first step is to

rescale and demodulate the reception according to the true doppler of the strong
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MST89 testl ph:1 skp: 0 Wed Nov 01 15:48:41 1989

Figure 5.1: The demodulated sequence of the m-sequence signal in the data space.
The energy of the m-sequence signal is spread evenly among all data
space coordinates. The 8 lines are meant to be read as a single line (i.e.
the beginning of the second line continues from the end of the first line
and so on). A total of 512 digits of the 511-digit m-sequence are plotted
(the first digit of line one is repeated in the last digit of line eight).
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paths!. The second step is to project the rescaled, demodulate samples from the
data space to the arrival space (forward projection). This is accomplished by cross-
correlating the rescaled, demodulated reception with a replica of the transmission.
The third step is to replace the major peaks in the arrival space by zeros in order to
eliminate the strong paths. Unfortunately, this will also eliminate parts of the weak
paths as well. Finally, the “cleansed” response from the arrival space is projected
back to the data space (inverse projection). This is accomplished by correlating the
“cleansed” response with the conjugate of the transmitted signal. Further processing
will be required to detect the presence of weak paths. This involves the standard
process of interpolation and crosscorrelation utilizing the modified, demodulated se-
quence in the data space. To analyze HCCO preprocessing in further detail, consider

the simple case of a two-path reception given by?
r(t) = 7a(t) + ru(?)
= as(t)(1 = B;)s((1 - B,)t — S.)

. ei2nfol(1-)t=5]

+ aw(t)(1 = B,)s((1 = B,)t — Suw)

. B2 Sl1=BL)t=Su] (5.1)

where the subscript s and w denote the parameters of the strong path and the weak
path respectively. S and ' are the constant delays and doppler factor defined in
(3.31) and (3.30), respecitvely. The relative strength of the strong path and the

weak path is determined by a,(t) and a,(t). Complex demodulating the two-path

IThe true doppler is assumed to be known prior to preprocessing. The true doppler of the strong
paths may be obtained from the ambiguity surface without the preprocessing, or in the case of a
fixed-fixed bistatic sonar the true doppler would be zero-doppler. It is assumed that the strong
paths all have the same doppler. The search for the true doppler of strong paths under relative
motion of the transducer and the receiver is discussed in section (5.2.7).

2The exponential form of the doppler variable is purposely left out to emphasize the fact that
shift-invariance is not required with HCCO preprocessing.
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reception at zero doppler gives

z(t) = r(t)e et

= z(t) + z(1). (5.2)

Instead of trying to eliminate the floor level of the strong path from the 2-D ambiguity
surface, HCCO preprocessing eliminates the strong signal at a single doppler channel
prior to the calculation of the ambiguity surface. This method of strong signal
cancellation is best described using periodic, pulse compressed signals [40], [33].

Pulse compressed signals are long, modulated pulses that have most of the benefits
of a short pulse while keeping within the practical constraints of the peak-power
limitation of transducers. At the true doppler of a path reception, the crosscorrelation
compresses the long pulse to a duration of 1/B, where B is the bandwidth of the
modulated pulse. For the two-path reception above, z,(¢) and z,(t) cannot be both
compressed at the output of a single doppler channel due to their differences in
doppler.

The basic principle behind HCCO preprocessing is to compress the reception of
the strong signal into a short pulse while leaving the weak path uncompressed. The
compressed pulse will be “well isolated” from the weak path; hence, the strong path
can be easily separated from the weak path. Specifically, the demodulated reception

is interpolated to the true doppler of the strong signal with o’ = 8, such that 3
Zat(t) = Zoa(t) + 2zwar(t), (5.3)

where

2o (t) = ay(t)s(t —S,) (5.4)

3The true doppler of the strong path can be easily obtained by calculating the frequency shift
in the carrier if the transmission uses an exalted carrier.
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is simply a scaled and time-shifted version of the baseband signal in the tranmission

and

o o

exp{j?wfo[(ll:i%—l)t——.sw}} (5.5)

is a scaled, time-shifted and doppler-scaled version of the baseband signal. The next

A 1 -3
Zwa () = aw(t)<11_ﬁw)5(1_ﬁllut—5w>.

step is to project the rescaled, demodulated response in the data space to the arrival

space. The output of this forward projection is given by

Yo(7) = /za/(t)m*(t — 7)dt

= Yars(T) + Yorw(T) (5.6)

where
Yaro(T) = as(t) /Tp s(t—T)s*(t — 7)dt (5.7)

is the pulse compressed output of the strong path, and

oral7) = [z (t)s"(t = )i (58)

is the doppler-mismatched output of the weak path. The energy of the strong path
is concentrated within a very short duration whereas the energy of the weak path
represented by | o, (7) |? is spread evenly over the entire period Tp. At this stage
of the HCCO preprocessing, the strong path is “well isolated” from the weak path.

The next crucial step in the HCCO preprocessing is to replace the peak pulse and
its impulse response of the strong path in y,(7) with zeros. Since the zeros are placed
within a very short time interval, the weak path is not affected significantly. However,
the strong signal is mostly, if not totally, eliminated by this zeroing. Although the

strong path has been identified and largely eliminated due to pulse compression,
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the uncompressed weak path remains undetected. Therefore, the remaining task of
the HCCO preprocessing is to detect the presence of the weak path by generating a
broadband ambiguity surface from this “cleansed” output.

Let §arw(7) represent the modified form of yaw(7). In addition, let S(f) and
Yo w(f) represent the Fourier Transform of s(t) and §a,.(7) respectively. The next

step in the preprocessing is to project the “cleansed” output back to the data space

which may be implemented in the frequency domain by inverse filtering

Zulf) = %é{—) (5.9)

Let Z,(t) be the inverse Fourier Transform of Zo(f). Then, Z4(t) represents the
modified, demodulated reception at the at* doppler channel. With the strong path
removed, Z.(t) is interpolated to all doppler channels of interest using (3.26) and
(3.27) with z(t) replaced by Z,(t). This is followed by calculating the crosscorrelation
in (3.28) for each doppler channel to form the modified, broadband ambiguity surface
Apceo(T, ') where the weak path can now be detected.

Figure 5.3 summarizes the major steps for HCCO preprocessing.

5.1.1 Floor Reduction and Weak Path Corruption

In this section, a qualitative analysis of signal floor reduction will be discussed.
In order to simplify notations, the exponential doppler factor discussed in chapter
IV will be utilized. Futhermore, whenever a tilde (~) is used above a variable, it will
denote the respounse after HCCO preprocessing.

In the analysis to follow, it is assumed that the reception consists of only a single
strong path (i.e. r(t) = ry(t)). Let a; be the true doppler of this path. Then the

response at the arrival space of this reception is denoted by y,,(¢). Under HCCO
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preprocessing, this output is “cleansed” of its peaks in order to remove the strong
signal. Let
Jou (1) = You(t) — ya, (1) (5.10)
represent this “cleansed” output, where y,, (t) is the component of the output that is
zeroed. To analyze the extent of the floor reduction after the zeroing, the outputs at
all doppler channels must be analyzed. Let §,,(t) be the output at the a?h doppler
channel after HCCO preprocessing. In other words, §,,(t) represents the “residue”
or floor level at the aéh doppler channel after HCCO preprocessing. In particular,
Ja,(t) will be a function of the “cleansed” output §a,(t). The objective, therefore, is
to establish the functional relationship between 7o, (t) and gq,(t) for all j # <.
In order to evaluate the relationship between o, (t) and (%), the general form
for interpolating from one doppler channel to another is provided. First let z,,(f)
be the demodulated response of the at* doppler channel. To interpolate from «a;th

doppler channel to a?h doppler channel, the phase-adjusted response is

2 (1) = zg,(t)ed2 el e (5.11)

04,05

where the subscript a;, o; in 2, , (t) means the interpolation is from the ot doppler
channel to the aj-h doppler channel. Time scaling 2., , (t), the demodulated response
1905

at the aj-h doppler channel is

Za; (1) = 24, 4, (M7 . (5.12)

0,0

The relationship between 7, () and g, (t) is more easily obtained in the frequency
domain. Let Y, (f) and Y,,(f) denote the Fourier Transforms of Ja,(t) and gq,(1),
respectively. Then the output at the a;h doppler channel after HCCO preprocessing
is

Yo, () = 5°(f)2a,(f) (5.13)
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where Z~a1( f) is the spectrum of the “cleansed” demodulated response Z, (¢). From

(5.11) and (5.12), the demoulated response at the a?h doppler channel may be written

as
éaJ(t) = 2&.’ (eaJ_ait)ej2ﬂfo(ea,'_ea] )t
= Za(emT )l (5.14)
where
Fy & e —em). (5.15)

Using the time-scale and phase shift properties of the Fourier Transform, the “cleansed”

demodulated response at the aj-h doppler channel is
Zay(f) = €70 Zo(e57(f — Fy)) . (5.16)

From the inverse filtering in (5.9), the “cleansed” demodulated response at the o

doppler channel is given by

Zlf) = G2 (5.17)
hence, the output in (5.13) becomes
() = s |em@E ) (5.19
Y! (e¥i%(f — Fy;

_ s [z%(f) — el ,))))] (5.19)
= Ya,’(f) - Yci_,(f) (520)

where f/;(f) is the transform of y;, () in (5.10), and

Y/_ eXiT — 'y

V() = s e O ) 5.21)

is the component utilized to cancel the floor level at the aj-h doppler channel.
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Ideally, if the HCCO preprocessing is successful at eliminating all the contribu-
tions from the strong signal at the of* doppler channel, then Y, (f) = Yo (f)
for all o}s and the entire floor level of the ambiguity surface would be eliminated.
In practice, it may not always be possible to eliminate all the sidelobes associated
with the transducer response of the peak pulse during the process of zeroing. Under
this circumstance the inverse filtering in (5.9) may magnify the remaining sidelobes
to the point where the floor level is actually higher than it is before the HCCO
preprocessing.

The degree of floor reduction may be measured by the amount of energy remained

in each doppler channel. From Parseval’s theorem
[ o) Pt = [1¥0,(5) I dF (5.22)

therefore, using the relationship in (5.18), the total energy in the aﬁ«h doppler channel

is

J1Rn P = oo [ e = R P

(5.23)
Applying Schwarz’s Inequality [20] to the energy in (5.23),
ey S*(f) - -
Yo: 2 d < e2(01, o) 2 d Ya' X~ . Fi’ 24
[P d [V sty P [ 1B = B P
= o) [ Vale s (f = Fy) P df (5.24)
where the inter-channel energy coefficient is given by
- S*(f)
Cii(f) = e , 2df . 5.25
() [V sty Y (5.25)

Due to C;;(f) in (5.24), the amount of energy removed in the af* doppler channel is

not necessarily equal to the amount of energy removed in the aj-h doppler channel.
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Therefore, the extent of floor reduction through HCCO preprocessing will depend on
both the autocorrelation of the signal and its inter-channel energy coefficient C;;(f).

In general, when the reception consists of both strong and weak paths, the zeroing
implemented during HCCO preprocessing may affect the detectability of the weak
signal. This results in an inherent tradeoff between the degree of floor reduction
of the strong signal and the degree of weak signal corruption. Due to the linearity
in the processing, the degree of weak signal corruption may be analyzed separately
from the degree of floor reduction of the strong signal. To analyze the effect of the
zeroing on weak paths, the above analysis for floor reduction is repeated with the
exception that it is assumed the reception consists of a single, weak path instead
of a single, strong path (i.e. r(t) = r,(t)). Again, the degree of weak signal
corruption will depend on the floor characteristics of the signal transmitted as well
as the inter-channel coefficient.

In the following section, the m-sequence signal described has the advantage that
its autocorrelation is “two-valued” and the total energy of each doppler channel is
bounded above by a constant. Furthermore, due to the “uniformity” of the its signal

floor level, weak signal corruption may be analyzed quantitatively.
5.2 HCCO Preprocessing With M-Sequences

As mentioned in the previous section, the inverse filtering may lead to unde-
sired response within the HCCO preprocessing. In 1986, Birdsall and Metzger [5)
described a unique way of m-sequence processing known as the Factor Inverse Fil-
tering (FIF). Due to the special characteristics of FIF, a straightforward m-sequence
crosscorrelation may be substituted for the inverse filtering; hence, none of the prob-

lems of inverse filtering exist under m-sequence processing. In section 5.2.1, FIF for
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m-sequences will be described in further detail. Section 5.2.2 will discuss the floor
reduction of strong signal and section 5.2.3 utilizes the properities of the ambiguity
surface to better approximate weak signal corruption. Finally, HCCO preprocessing

under m-sequence signaling is laid out step-by-step.

5.2.1 Factor Inverse Filtering (FIF)

M-sequence signals are a special class of signals used in pulse compression. An m-
sequence signal is a continuous signal, phase modulated by a periodic binary control
signal known as an m-sequence [26]. Its two-level autocorrelation function is ideal
for separating the strong path from the weak path in a reception. In general, an

m-sequence signal may be represented by
mn] = u+vb, n=0,1,2,...,L-1, (5.26)

where b, take on interger values of +1 or -1, and L is the number of digits in a
period of the m-sequence signal. In many publications [51], [26], v = 0 and v = 1
so that m[n] takes on values of +1. The disadvantge of such an assignment is that
the autocorrelation function of m[n] has a non-zero off-peak value. In [7], it is shown

that when m|n] is expressed as
mln] = e*nf (5.27)

where u = cos(f) and v = jsin(d), and 6 is chosen as the “period-matched
angle” (i.e. 0 = tan™'(v/L) ) [7], the resultant autocorrelation function will have

zero off-peak values.

L-1

domlm i+n] = 0  forn # 0,+L,+2L,..... (5.28)
1=0

L-1

omlilm i+n] = L forn = 0,£L,+2L,..... (5.29)

1=0
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In other words, each period of the discrete sequence autocorrelation function contains
a single peak and zero everywhere else.

The complex form of the m-sequence transmission is
Smod(t) = Aedottnd) 0T <t < (n4+ DTy, (5.30)
where T is the duration of one digit. The single digit spectrum is given in [7] by

Sn(f) = ATdejbng6j2”(fo“f)("+0'5)Td3inc((fo —_— f)Td)

= (=1 TeAT e ™ Tag=02" Tangine((f, — F)T4) - (5.31)

where f,T, is the integer number of cycles in a digit. Since the spectrum of L digits

in one period is the sum of the spectra of each of the L digits

L
Smod(f) - Z Sn(f) 3 (532)
n=1
the spectrum for a one-period m-sequence transmission is
L
Smod(f) = (=0T AT e Tagine((f, — f)Ty) Y eltrle 12 Tan | (5.33)
n=1

The demodulated or downshifted version of this transmission is given by

L
S(f) — (_1)fonATde—jw(f-f—fo)TdSinc(de) Z ejb,,ee—-j%rden. (534)

n=1

It is much easier to think of S(f) as a product of two factors; a pulse factor and a
modulation factor.

S(f) = P(HM(f) (5.35)

The pulse factor
P(f) = ('—1)f°TdATde—j”(f-"f")Tdsinc(de) (5.36)

has most of its energy concentrated around DC. The modulation factor

L
M(f) = ) eftrfems2niTan (5.37)

n=1
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1s the discrete-time Fourier Transform of the complex modulation sequence. Due to
the zero off-peak values of the autocorrelation function in (5.28), the discrete Fourier
Transform (DFT) of the autocorrelation function | M(k) |* will be a constant for
all k. In other words, if M(f) in (5.37) is evaluated at the eigenfrequencies (i.e.
f = k/LTy) such that

Mlk] = i eitnle=itmkn/L (5.38)

n=1

then | M[k] | will be a constant.

Usually the output of a matched-filtered receiver is given by the product between
the demodulated reception Z[k] and the matched-filter S*[k] = P*[k]M*[k]. Since
S(f) can be factored into two terms, the idea of FIF is to multiply Z[k] by the

modulation factor M*[k| only, so that the output of the receiver is
Y[k] = Z[k|M*[K] (5.39)

Since | Mk] | is a constant, multiplying Z[k] by M*[k] is the same as dividing Z[k] by
M k] except for a scale factor. Essentially, what FIF does is to divide the spectrum
of the demodulated reception by M[k] in order to recover the pulse spectrum P[k].
In practice, FIF is implemented in the time domain by crosscorrelating z{n] with
m*[n].

In (5.9), the inverse filtering corresponds to dividing the output Y[k] in (5.39)
by S*[k]. However, under FIF, the inverse filtering corresponds to dividing Y [k] by
M~[k]. Again, due to the constant magnitude of M*[k], dividing Y[k] by M*[k] is
the same as multiplying Y[k] by M[k] except for a scale factor. And in the time
domain, this corresponds to the crosscorrelation between y[r] and m[n]. Therefore,
the problems associated with inverse filtering is no longer present under m-sequences

with FIF. A block diagram of HCCO preprocessing using m-sequence signaling is
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provided in figure 5.4.

In the analysis above, it is assumed that the reception is sampled at a rate of
one sample per digit. The primary reason for this assumption is that FIF is a
crosscorrelation with the m-sequence m[n] (one sample per digit). In section 5.2.7,
the general case of multiple samples per digit will be analyzed in detail. Although
the sampled reception consists of many samples per digit, the FIF crosscorrelation
is still implemented as though the reception were sampled at one sample per digit.
In order to perform FIF crosscorrelation at one sample per digit when the sampled
reception consists of many samples per digit, the sampled reception is demultiplexed

at the input and multiplexed at the output of the FIF crosscorrelation.

5.2.2 Floor Reduction
Narrowband Assumption

To approximate the degree of floor reduction, consider the case of narrowband
processing. The narrowband processing with PURTS 1is similar to the broadband
processing with the exception that time-scaling in (5.12) is omitted. In contrast to
the frequency analysis of the floor reduction discussed in section 5.1.1, this section
will analyze the floor reduction in the time domain. Due to the constant magnitude of
M k], inverse filtering is replaced by the crosscorrelation with the complex conjugate
of the sharp signal. This inverse projection onto the data space may be expressed as

1

Lm*[n] , (5.40)

Zun] = Juln] ®

where «; is the doppler channel selected for HCCO preprocessing. Using matrix

computations, the cyclic crosscorrelation in (5.40) becomes

2., = =My, , (5.41)
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where

2o, = [50!;'[0]7 20::‘[1]7 ) 201.‘[[’ - IHT (5'42)
is one of the vector of the one-sample-per-digit “cleansed” demodulates in the data
space,

Yoo = [ai[0], T[] o, e [L — 1]]T (5.43)

is the vector of the “cleansed” outputs in the arrival space, and

m[0]  m[l] .- -+ m[L—1]
m[L —1] m[0] --- -+ m[L -2
M = : - : : (5.44)
| m[l]  m[2] m[0] |

is the cyclic matrix of m-sequences (i.e. the inverse projection matrix from the arrival
space to the data space) used in the crosscorrelation. The matrix M in (5.44) has

the essential property that

1
ZMﬂM::%Mwﬁ’:I. (5.45)

In other words, VIEM is a unitary matrix. Using the property in (5.45), the total

energy in z,, in (5.41) is

“H =~ 1. .
Mz, = Z‘ingHM'yai

1.y
= —L—yaiyaé . (546)

Therefore, the total energy in Z,, is directly proportional to the total energy in g, ..
One way of evaluating the degree of floor reduction is to calculate the total volume

of the ambiguity surface associated with the residue. A simple way to calculate this
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volume is to consider cross-ambiguity function between z,,[n] and m[n] given by

L1
X, fa] = 30 Zo[n]m [l — nle?fé (5.47)
11=0
where
fo = 2m(e™ —e™) fola, (5.48)

and t; = 1/m, f, is the sampling interval. Using the volume constraint of (2.39), the

total volume of this cross-ambiguity surface is

» L—1
Vio = / Y | Xmeln, 04 2 df,

= S imltl P[5
L-1
= L ZO | Za,[n] |2 ) (5.49)

where the integer arguments are modulo L. Substituting the total energy from (5.46)
into (5.49),

L-1
Vm,z = Z |gai[n] |2 . ' (550)

n=0

Equation (5.50) states that the total volume of the residue surface (i.e. the floor
level) is directly proportional to the energy contained after the process of zeroing
in the at* doppler channel. If 1/L is the width of the resolution cell in the doppler
domain, then the contribution of the at* doppler channel to the total volume of the

ambiguity surface is
1 L-1
volume in a!* channel = I Sl daln] . (5.51)
n=0

Zeroing the peaks associated with the strong signal will directly result in the cancella-
tion of its floor. Although (5.50) provides a simple relationship between peak-zeroing
and floor reduction, it cannot be easily generalized to the broadband case due to in-
terpolation. However, for small differences in doppler, the narrowband results may

be used to approximate the results in broadband signaling.
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Broadband Assumption
Under the broadband assumption, the output at the aEh doppler channel is
Vo, = M7z, , (5.52)

where 3, and Z,; are equivalent to (5.43) and (5.42) with a; replaced by ;. Using

the property in (5.45), the total residual energy in the a}h doppler channel is
iy, = zIMM"z,
_ r3H:
= Lz, z,,; . (5.53)

In broadband processing, the demodulates at the aj-h doppler channel must be
interpolated from the demodulates in the of* doppler channel. First the demodulates

at the of* doppler channel is adjusted for proper demodulation.

éix.’,aj [TL] = Eai [TL]C

32 (1= )n/my (5.54)
The time-scaling in discrete time is described from (3.37) to (3.40) and repeated

here for the general case of interpolating from an off-doppler channel to another

off-doppler channel.

z[n] = ne*™%
cn] = |z[r]]
A[n] = z[n]—c[n]. (5.55)

After linear interpolation, the demodulates at the a;»h doppler channel is
Zo;ln] = (1= ARz, o, [e[n]] + An]2;, o [cln] + 1] . (5.56)

The linear interpolation from (5.54) to (5.56) may also be expressed in matrix form
by

%, = Tz, , (5.57)
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where T is the interpolating matrix whose elements are functions of o; and «;. Each
row of T consist of only two non-zero elements. Specifically, the n** row will have the
non-zero components (1 — A[r]) and A[n] in columns c[n] and ¢[n] + 1, respectively.
The interpolating matrix T" may be easily computed with any desktop computer.

The total energy in z,, is given by
= P13, . (5.58)

In the narrowband case, T is the identity matrix and the relationship between any
two doppler channels can be easily determined. In the broadband case, T7T is not
diagonal; hence, the total energy in the a?h doppler channel cannot be easily related
to the total energy in the of* doppler channel. However, since the rows of T are
properly normalized (i.e. (1 — A[n]) + A[n] = 1 ), an upper bound of | Z,[n] |? is
given by

| Zo, (0] | < | Zagmaz | (5.59)

where

| Zaiymaz | = maz(] 2,00 |, | Zau[1] |, ooy | Zai [L] ] (5.60)

is the maximum of the af* demodulates. Recall in (5.46) that

™

. 1 g.

bEa = T s (5.61)
t L : 1

then the maximum componenet | Z4, mqz |* may be further upper bounded by

|£a¢,maa: |2 S zﬁia.

_ L.m.
= 7YaYa - (5.62)

Substituting the upper bounds in (5.59) and (5.62) into (5.53), the total energy in

the azh doppler channel becomes

L-1
“H - : 2
Yo, Y4; < L Z | Zoimaz

n=0
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" L-1 1 H
Yo ¥a, S L2 7U0Ya,

n=0

= Ly, ¥, - (5.63)

Although (5.63) is a “loose” upper bound, it does indicate that the zeroing imple-
mented during HCCO preprocessing will reduce the floor level associated with the
strong path. In fact, if the energy of the strong path were totally eliminated at the
ot doppler channel, then the floor level associated with the strong path will be com-
pletely removed. Again, if the doppler search is within a small interval, the results
in section 5.2.2 with narrowband assumption will provide a better approximation to

the degree of floor reduction.

5.2.3 Weak Path Corruption

Unlike the analyses in previous sections, the detectabilily of the weak path will be
determined by the ratio between the corrupted peaks of the weak paths and the floor
level of these weak paths. In this section, it is assumed that the reception consists of
a total of N paths; M strong paths and (N-M) weak paths. To determine the degree
of weak path distortion, it is further assumed that the floor level of the strong paths
are totally eliminated. Following the same notations used in previous sections, «;
will denote the doppler channel selected for preprocessing (i.e. the doppler channel
of the strong paths *). In addition, the true dopplers of the weak paths are assumed
to be different from a;. If this were not so, the weak paths may be easily detected
without HCCO preprocessing.

With the assumption that the energy is uniformly distributed within a doppler

channel, a simple measure of weak path corruption may be derived. Specifically, it

It is assumed that all strong paths have the same true doppler.
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is assumed that
YA,

| Yau[n] | = pg;ﬂ TL

where A, is the complex amplitude of the p* path arrival and L is the number of

(5.64)

digits in a period. Note that the path amplitude A, refers to the peak of a weak

path when M +1 < p < N. Similarly,

| Aln, %] | ~ (5.65)

3~

Equation (5.65) says that each sampled residue at the a!* doppler channel creates
its own floor level, and that the floor level is 1/v/L below the magnitude of the
sampled residue. Both assumptions (5.64) and (5.65) are based on the narrowband
assumptions in (4.75) that for small differences in doppler the total energy is the
same for each doppler channel. Furthermore, the uniformity of the energy does not
come from mathematical proofs; it comes from limited experience with laboratory
and field signals and computer simulations.

Due to the zeroing implemented during the preprocessing, the peaks of the weak
paths are reduced. Since the number of digits removed during preprocessing is D;
L — D is the remaining digits that can be compressed to form the peak of the pt*
weak path®. Therefore, the energy contained in the peak of the p** weak path is

approximately

N D\?
AP=1ar(1-7) (5.66)

2
where (1 — %) represents the fraction of the total energy remained. Equations

(5.66) implies that removing portions of a signal, then correctly doppler compen-

sating and crosscorrelating, reduces the peak-magnitude-squared proportional to the

SIn order to simplify the calculation of the peak level, it is assumed that interpolation among
doppler channels are negligible. In other words, one digit removed “off-doppler” is equivalent to
one digit removed “on-doppler”. This is simply a narrowband argument.
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fraction of time removed. Although /1,3 represents the corruption of the pt* weak path
due to preprocessing, it does not represent the actual peak that is observed. This
is due to the fact that the (N-M) weak paths create their own mutual interference.

Prior to preprocessing, the energy of the p* weak path due to mutual interference is

A 20 A2 N | Aj |2
| p,obs | ~ ! P ’ - Z L ’ (5-67)
T

where A, .5 is the observed peak of the p* path. From equations (5.66) and (5.67),

the magnitude-squared peak after preprocessing becomes

1 2 i o2 a |/1j|2
‘Ap,obsl ~ |AP! - Z L
j=M+1
J#p
D\* L-D X
=14 (1-7) - S D IAE . (569)

J=M4+1
J#p
In order to analyze the detectability of the weak paths, it is necessary to determine
both the corruption of the peaks of the weak path as well as the floor level of the

ambiguity surface after preprocessing. Prior to preprocessing, the mean-square floor

of the ambiguity surface due to the weak paths is

1 N
=LY (569
p=M+1

This simply states that the mean-square floor of the ambiguity surface is sum of the
median level of the individual weak paths. At first, it would seem that an appropriate

measure of the mean-square floor of the ambiguity surface after preprocessing would

be
. N
Msz = Z IAP |2
p=M+1
1 X D\?
= 7 Y 14,F (1—-L-> . (5.70)
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This implies that the magnitude of each weak path is reduced by a factor of (1 - %),
and the mean-square floor is simply 1 times the sum of the combined peaks of the
weak paths. One must be careful. The problem with the above statement is that
although the peak is reduced by a factor of (1 - %), the sidelobe of the pt* weak
path at the a;h doppler channel is no longer zero®. The non-zero sidelobe is one of
the artifacts of partial crosscorrelation of m-sequences. These sidelobes must also be
included in the calculations for the mean-square floor of the ambiguity surface. An
easier way to measure the mean-square floor of the ambiguity surface is to determine
the total available energy in any doppler channel.

Using the equal-energy assumption, the total energy at the az»h doppler channel is

L1 L1
el P = 30 1 daln] I (5.71)

n=0 n=0

Since D components in the o!* doppler channel are zeroed, (5.71) becomes

L-1 L-D-1
Z—:O ’ ga,‘[n] ,2 = Z-:o I f’]ae[n] |2 . (5.72)

Since all strong paths are canceled through the D zeroes, each component of ,,[n]

is the sum of the floor level of the (N-M) weak paths.
L-D-1 [ N A, |?

L-1
Z !ga,’[n] Iz = Z Z I

nz=0 n=0 p=M+1
L-D X
= —5— X 4. (5.73)
p=M+1

Assuming equal distribution of the total energy across the entire doppler channel,

the mean-square floor of the ambiguity surface after preprocessing is given by

~ o 1 L-1 ~ )
Ms = ZZ I?/aj["]l
n=0
L-D &
= % % | 4, |* . (5.74)
p=M+1

6Prior to preprocessing, assuming single path reception, the true doppler channel will consist of
one peak and zeros everywhere else.
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The evaluation of the mean-square floor in (5.74) does not require any knowledge of
the partial crosscorrelation of m-sequences. Both the peaks of the weak paths and
their sidelobes are incorporated in the total energy of the o!* doppler channel. In
comparison, the mean-square floor in (5.70) is always less than the mean-square floor

given in (5.74) due to the missing sidelobes in the calculation of (5.70). Specifically,

M2 = ar [:L—-“L—-Q] . (5.75)

A measure of the detectability of the pt* weak path is the weak signal-to-mutual

floor (WSM) ratio given by

A 2
WSM £ 10 log [l—A”-—b-’—J , (5.76)
M

For the special case of a single weak path ( i.e. N=M+1 ),

_ D\?
WSM = 10 log {Q—L—_—]SL—LJ
(%)
= 10 log [L - D] , (5.77)

and for

L=511;, D=1; WSM =27.1dB
L =511; D=20; WSM = 26.9dB
L=511; D=200. WSM = 24.9dB
L =511; D =2500; WSM =10.4dB

(5.78)

Therefore, the HCCO preprocessing will not significantly reduce the detection capa-

bility of weak paths compared to those path’s own SNR.



104

5.2.4 Weak Path Corruption Under Noise

In practice, noise must be included in the above analysis. The performance of the
preprocessing will deteriorate with increasing noise level in the reception. However,
one of the primary requirement for preprocessing is the assumption that the weak
signal-to-noise ratio must be sufficiently high. If this were not true, the process of
eliminating the floor level associated with the strong paths would be meaningless.

In the presence of noise, the zeroing of the peaks will not only remove a portion of
the weak paths but a few noise components as well. Assuming additive white gaussian
noise (AWGN), the level of the noise components removed during the process of
zeroing the peaks is determined by the mean-square floor of the noise components
at the output stage of the preprocessing. Let n,,[d,] be the noise output at the o
doppler channel. Assuming uniform distribution of the noise energy across the entire

doppler channel,
E[| no,ldp) ] = G2 for all d, (5.79)

where G, is the standard deviation of the noise. After HCCO zeroing, the total noise

energy remained in the of* doppler channel is

L-1 L-D-1
EY il = X G
= (L-D)G?, (5.80)

and the mean-square floor of the noise floor after preprocessing is

2 ]‘L—l ~ 2
G = 7Y lialnl|

n==0

L-D
= TGi : (5.81)
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5.2.5 HCCO Preprocessing With the Lake Seneca Measurements

The data set taken at Lake Seneca in December, 1990 consisted of 12 hydrophone
channels of data. The m-sequence signal used in the transmission contains 511 digits
per period. The m-sequence law was 1175 (octal) which specifies the coefficient
associated with the primitive polynomial in equation (A.9). There were 3 carrier
cycles per digit and the modulation angle was 84.375 degrees. The carrier was 250
Hz and the sampling rate was 2 kHz. There was a little over 4 periods of the reception
available for processing.

Only the first channel of the measured data is utilized for HCCO preprocessing.
This is due to the relative location between the transducer and the first hydrophone
(40 feet apart). The source is at a depth of 300 feet. The other 10 channels are
at a distance of 51 feet from the surface and will most likely have strong surface
return present. The last channel is a direct feed from the signal generator to the a/d
converter.

The reception from the first channel contains a direct path at 0-doppler and a
weak surface return also at 0-doppler. In order to simulate the effect of weak path
corruption after HCCO preprocessing, it is assumed that there exist strong paths at
an off-doppler channel. The purpose of the HCCO preprocessing is to remove the
strong paths at this off-doppler channel in the arrival space by zeroing the peaks
and impulse responses associated with the strong paths. To obtain the off-doppler
response in the arrival space, the 0-doppler demodulated response in the data space
1s interpolated to the off-doppler channel of the strong paths. This is followed by a
projection onto the arrival space where the assumed strong paths are zeroed. The
zeroed response is then projected back onto the data space and interpolated to all

doppler channels. Each of the doppler-interpolated response is projected onto its
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Figure 5.5: The signal-to-noise ratio of the weak path was 14.8dB prior to prepro-
cessing. The difference between the true doppler of the weak path and
the true doppler of the strong paths is (e®»=* — 1) = 0.0006.

arrival space. In combination, they form the residual ambiguity surface where weak
paths may be detected. In order to measure the experimental result of the WSM
ratio, the peak of the 0-doppler channel is used as the observed peak of the weak
path (i.e. the direct path of the reception). The median of the residual ambiguity
surface is used as the measurement of the floor level after strong path cancellation.

In figures (5.5) to (5.8), the theoretical approximation to (5.87) is plotted along
with the results from the Lake Seneca measurement. Due to the presence of noise

peaks, the WSM ratio for the experimental results were unreliable below 13dB.

5.2.6  Weak Path Corruption Within Blind-spots

Although the ambiguity surface of the m-sequence signal behaves much like the
ambiguity surface of noise (i.e. one central peak and a flat floor level everywhere else),

the ambiguity surface of the m-sequence differs from the noise ambiguity surface in
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Figure 5.6: The signal-to-noise ratio of the weak path was 17.8dB prior to prepro-
cessing. The difference between the true doppler of the weak path and
the true doppler of the strong paths is (e*»~* — 1) = 0.0006.
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Figure 5.7: The signal-to-noise ratio of the weak path was 14.8dB prior to prepro-
cessing. The difference between the true doppler of the weak path and
the true doppler of the strong paths is (e~ — 1) = 0.0026.
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Figure 5.8: The signal-to-noise ratio of the weak path was 19.8dB prior to prepro-
cessing. The difference between the true doppler of the weak path and
the true doppler of the strong paths is (e**~* — 1) = 0.0026.

that the m-sequence ambiguity surface has a sinc-like function along the doppler
axis at the true travel time of the signal reception. If both the strong path and
the weak path differ only in doppler, the cancellation of the strong path through
HCCO preprocessing may severely degrade the detectability of the weak path. This
is referred to as the “blind-spot” of the HCCO preproceesing. The term is originally
used in MTI (Moving Target Indicator) to indicate the nulls occuring at multiples
of the repetition frequency. Weak signals appearing at these repetition frequencies
will be eliminated due to zeroing. For HCCO preprocessing, this is analogous to
the reduction of the floor level of the strong path at the expense of removing the
peaks of the weak path. For a single path reception, the noiseless ambiguity function

evaluated at the true travel time is

A(e*,7 | ", T,, Pr) |r=1y = Prsine(f(e®™ —1)Pr) , (5.89)
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Recall that a, corresponds to the doppler channel selected for HCCO preprocessing.

It is also the true doppler of the strong paths. And under high signal-to-noise ratio,

WSM = 10 log [(1 — sinc®(fo(e* ™ — 1)Pr))(L — D)] (5.93)

= 10 log [(1 = sinc®((e*™® = 1)QL)(L = D)| , ~ (5.94)

where () is the number of cyles in a digit. Since WSM in (5.94) is a function of
(1-sinc) squared, the strength of the i** weak path will be significantly reduced if the

true doppler of the strong paths and the i** weak path differ in doppler by®
1
QL’

where (e*~*+1 —1) is referred to as the size of the doppler bin, and 51—13 corresponds to

| %o — 1] < (5.95)

the width of the major lobe in the doppler axis of the ambiguity surface®. Another
way to interpret (5.95) is that QL | e* ™ — 1 |= 1 corresponds to a one cylce
difference between the period of the two doppler channels. Therefore, if two paths
differ by more than one cycle, the affect of blind-spot is negligible.

Figures (5.9) and (5.10) provide a comparison between the experimental results
and the theoretical WSM ratio given in (5.92). Again, the Lake Seneca measurement
described in section 5.2.5 provides the basis for the experimental results. In this case,
1t is assumed that there exists a strong path which differ only in doppler from the
weak path (i.e. the direct path). As in section 5.2.4, due to the presence of noise
peaks, WSM ratio for the experimental results were unreliable below 13dB. In figures
(5.9) and (5.10), the size of the doppler bin is 1/6QL. The result show that the “blind
spot” effect is significant only if the difference in doppler between the weak path and

the strong path is less than 46 doppler bins or :i:alf.

81t is assumed that one of the strong paths and the i** weak path have equal time-delay.

°If the doppler bins and the width of the major lobe are to be expressed in terms of frequency in
Hz, multiply both sides of (5.95) by f.. Hence, the size of the doppler bin in Hz is fe(e®—* — 1),
and the width of the major lobe is p-.
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Figure 5.9: Removal of the strong path when the strong path and the weak path
differ only in doppler. The signal-to-noise ratio of the weak path was
15.8dB prior to preprocessing.
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Figure 5.10: Removal of the strong path when the strong path and the weak path
differ only in doppler. The signal-to-noise ratio of the weak path was
17.8dB prior to preprocessing.
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5.2.7 Signal Processing of HCCO Preprocessing

In contrast to the weak signal detectability analyzed in previous sections, this
section provides the reader with an in-depth knowledge of the signal processing as-
pects of HCCO preprocessing. The intent is to help the reader to understand why
each of the steps in the signal processing is essential and how the reader may carry
out these computations. A supplementary, step-by-step approach to HCCO prepro-
cessing without the explanations is provided in Appendix B.

In order to avoid complicated notations, fixed-fixed bistatic sonar is assumed (i.e.
all strong paths arrive at zero doppler; a; = 0 ). The procedure for detecting weak
paths through HCCO preprocessing is split into three parts. Part A describes the
process of sampling and demodulation. Part B implements the HCCO preprocessing,
and part C calculates the ambiguity surface from the preprocessed demodulates.

Frequently, several periods of the signal reception are summed in order to improve
the output signal-to-noise ratio. If X is the desired number of periods processed, at
least X periods at the extreme dopplers must be sampled at the reception due to the
broadband interpolation necessary for the calculation of the ambiguity surface; X+1
is the common practice and is usually more than sufficient.

The essential parameters for processing m-sequence signals are as follows.

L = Number of digits in a period of the m-sequence
@ = Number of cycles in a digit

QL = f.T, = Number of cycles per period

m, = Number of samples in a cycle

0 = period-matched angle

67 = transmission angle
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b, = =1 ; binary codes of the m-sequence
fo = Center frequency for the signal transmission
m,f. = Sampling rate
t; = time between samples, 1/m, f.
X = Number of periods processed
r(t) = continuous time reception
amin = doppler index of interest with maximum time compression
Omaz = doppler index of interest with minimum time compression

A) Sampling and Demodulation.

1) Sample the reception at zero doppler.
rln] = r(nty) . (5.96)

Since m,QL is the number of samples in a period, there should be (X + 1)m,QL
number of samples in r[n].

2) Complex demodulate the sampled reception r[n], forming z[n].

z[n] = r[ple??momh

= r[n]es2™/m (5.97)

3) Remove the —2f, component using a demodulate filter. A sinc-type LPF
is obtained by averaging the demodulates over one cycle. A sinc-squared LPF is
obtained by cascading the two sinc-type LPF in series. The sinc-squared LPF will
perform better than the sinc-type LPF in rejecting the —2f. component since its
sidelobes are lower.

my—1

Z[m] = Y zm—1]. (5.98)

1=0
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my—1

Z'fm] = > Z[m—1]. (5.99)
i=0
B) HCCO Preprocessing.

To implement the HCCO preprocessing, the demodulated samples are divided
up into segments of one period each. Each segment of the demodulated samples is
preprocessed individually. At the end of the preprocessing, the preprocessed segments
are recombined to form a single, modified demodulated sequence.

1) Unlike the usual matched-filter receiver, the first step in the preprocessing
is to remove'only the m-sequences from the demodulated samples (i.e. divide the
spectrum of the demodulates by M(f) instead of M(f)P(f)). To remove the m-
sequences and achieve sharp waveform responses, the Factor Inverse Filtering (FIF)
from section 5.2.1 is applied. To implement FIF, each period (m,QL samples) of
the demodulated samples is divided up into m,Q sequences!®. m,Q is the number
of samples in a digit; hence, each of the m,@ demultiplexed, demodulated sequences
has length L. Each of these m,(Q sequences will be processed as if only one sample

per digit were received. Let z; [m], ¢ =10,1,2,...,m,Q — 1 be the ¢* sequence of

the r** period of 2”[m] and is given by

¢=0,1,2,....m,Q -1

2y [m] = 2'lg+ mQ +rm.QL] where m=0,1,2,..L—1 (5.100)

r=0,1,2,... X
After demultiplexing, the samples of each of the m,Q sequences are spaced m,Q
apart. In order to obtain high peak responses after pulse compression, the reference

m-sequence used in the cyclic crosscorrelation must utilize the same angle 61 as in

the transmission. Therefore, the output of the cyclic crosscorrelation!? (the forward

10The crosscorrelation may be efficiently computed using Fast Hadamard Transform when the
demodulated samples are demultiplexed into subsets of one sample per digit each.
1Al cyclic crosscorrelation in this section is mod L.
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projection) for each of the m,Q demultiplexed, demodulated sequences is

L-1
SQ»T [k] = Z Zt,],,r[m]e—jbk+m0T k = 07 17 27 ety L - 1
m=0
L-1 L-1
= cos(0r) > 2 [m] — 7 sin(07) > 2l [m]brsm - (5.101)
m=0 m=0

The first summation on the right of (5.101) requires only L summations for each of
the m,Q sequences (m,Q L additions in total). The second summation on the right
of (5.101) involves only additions and subtractions. However, the second summation
requires (L-1)L additions'? for each of the m.Q sequences for a total of m,QL(L —
1) + m, QL = m,QL? additions. Due to the efficiency of Fast Hadamard Transform
(FHT) the number of additions for both sums can be reduced to (L +1) - loga(L + 1)
(see Appendix A) for each of the m, Q) sequences for a total of m,Q(L+1)-logy(L+1).

2) In section 5.2.1, it is shown that when the transmission angle 67 of the m-
sequence is chosen as the period-matched angle (i.e. 07 = 8, = tan~'(v/L)), the
autocorrelation function will have zero off-peak values. Furthermore, the magnitude
of the spectrum of the m-sequence M(f) will be a constant so that dividing the
demodulated reception Z(f) = P(f)M(f) by M(f) is the same as multiplying by
M*(f) except for a constant. The FIF simply recovers the pulse factor P(f). These
are no longer true when the transmission angle is different from the period-matched
angle. If FIF in (5.101) were implemented using a non-period-matched angle, the re-
sultant output would not be the ideal pulse (i.e. one at the peak and zero everywhere
else in the time domain). Instead, the peak will remain high, but the magnitude of
the off-peak values will be a non-zero constant. The magnitude of this non-zero
constant will depend on the angles 67 and 8;.

There are two primary reasons why the transmission angle is not the period-

12The time for computing an addition and a subtraction is approximately the same.
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matched angle. First, it is a common practice to use an exalted carrier in the

transmission. This is obtained by using a transmission angle in the range

% < 0p < 0. (5.102)

As an exam‘ple, it may be shown that at 67 = I half of the transmission power is
in the carrier. Since the carrier is narrowband, it is easier to determine the pres-
ence of signal in the reception through FFT provided that the SNR is high enough.
Additionally, any doppler-shift may be determined from the frequency-shift in the
carrier; hence, the calculation of the ambiguity surface is not required. However, the
carrier alone is insufficient for the purposes of sonar/radar since the carrier has very
poor travel-time resolution. The second reason for not using the period-matched
angle is that the signal generator used in experiments stores angles in discrete steps.
Therefore, the angle used in the transmission may be slightly lower than the period-
matched angle.

The purpose of this step is to remove the non-zero, off-peak values (the bias level)
from the crosscorrelation output s, .[k] in the arrival space to increase the resolution
of the strong paths!3. To understand the principle behind bias removal, let A, and
A_ be the phasors associated with the period-matched angle and let A, and A_
be the phasors associated with the transmission angle. The relationship among the
phasors is diagrammed in figure 5.11.

In figure 5.11, if the phasor A, and A_ were

Ay = €7 (5.103)

A = e (5.104)

I31f the transmission angle is the same as the period-matched angle then this step may be skipped.
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then
Ay = ———L%t 5.105
* sin(6r) ‘ ( )
~ _ SZTL(HT) _joL
A. = sin(GL)e , (5.106)

provided that the reference mapping constant ~ is real.
Consider the m-sequence m[i] = €?%T phase modulated at the transmission angle.
m[i] takes on value of either A, or A_ depending on the sign b;. The autocorrelation

of m[i] is given by

L-1

Z: mlilm*i+n] = C  forn # 0(mod L) (5.107)
L-1

S mlim*i+n] = L forn = 0 (mod L) (5.108)

1=0

where C is a complex constant which equals zero only if the transmission angle
equals the period-matched angle. This suggests that when the transmission angle
differs from the period-matched angle, the phasors A, and A_ may be re-directed
to phasors with period-matched angle so that the constant C in (5.107) will equal
zero. In other words, the autocorrelation of the re-directed phasors will take on all
the properties associated with the period-matched angle. Specifically, if the reference
mapping constant v in figure 5.11 is subtracted from each of the m-sequence digits

m[t] used in the transmission, then the ideal autocorrelation results.

L-1

;(m[i] —y)(m*i—nl—7) = 0  forn # 0 (mod L) (5.109)
= s stn(67)

S (mfi] =) (m*i—n]—v) = = @ L forn = 0 (mod L) (5.110)
i=0 sin(fr)

In (5.109) and (5.110), both (m[:] — ) and (m*[¢ + n] — 7) are elements in the set
{A,, A_}, the period-matched phasors.
The above method for bias level removal may be applied directly to the crosscor-

relation in (5.101) with the exception that the data mapping constant §, subtracted
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from z;/, [m] is complex in general, and it must be properly scaled to take into account
the M strong paths in z.[m]. As in (5.109), the zero off-peak level at the output
of the crosscorrelation may be obtained when the mapping constants v and 6, are

subtracted from sequences m*[n] and z; [m], respectively.
L-1

Sorli] = D_(2g,In) = &g)(m*[n — 4] — )

n=0

L-1
= 2" [n] — 6,)(e7 =07 — ~) | 5.111
q,7 q
n=0
In (5.111), 3, ,[¢] represents the crosscorrelation output with the bias level removed.

Using the diagram in figure 5.11, the reference mapping constant - is given by

sin(6r, — 0r1)
= —_—— 112
4 sin(6y) (5 )

To compute §,, consider the noiseless analytic model of the demultiplexed de-

modulates 2, [n] given by

2 n] = 27 [n] + 20 .[n], (5.113)

q?r 33‘117' quYT

where 2z, [n] and z, ,.[n] are the demultiplexed demodulates associated with the
strong paths and weak paths respectively. Since all strong paths are assumed to

arrive at zero doppler, each strong path may be modeled as a scaled, time-delayed,

and phase-shifted version of the transmitted m-sequence.

M
20 n] = Y ape*%mn — k) + 2 (n]. (5.114)

q?r w)QYT
p=1

Since the weak paths do not contribute significantly to the magnitude of z;,[n], it

may be assumed that

M
zy.[n] m Y ape % mn — k]
p=1
M .
= 3 geltnifr (5.115)

p==l
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where m[n] = /" and g, = a,e™7?"%*% . Substituting the noiseless demodulates

zy.[n] in (5.115) into the equation for bias removal in (5.111) gives

L-1 M

Sq0(1] = Z(Zg eln—kpb1 _ 5q)(e_jbn-i0T - )

n=0 p=1

- oot 07 b ibr _ 5 S —jbnitr
Z 9p Z e e —68, ) €

=1 n=0 n=0

- ng Z e/on=kp0T 4 Y6, L . (5.116)

n=0

For the noiseless model of the reception, the bias-removed output of the crosscorre-

lation §,,[7] will have zero off-peak level if

stn(0r)
Ir sin(0r)

'§q,T[i] = 0 fOT'i # k],kg,...,kM. (5118)

8q.r 1] (5.117)

The data mapping constant §, may be obtained by substituting the zero off-peak

condition in (5.118) into (5.116).

M L-1 L-1 M L-1
ng Z eI (Bn—kp—bn—i)0r _ 8, Z e Ibn—ifr _ ~ Z 9 Z elbn—kpfr . 6L = 0

r=1 n=0 n=0 p=1 n=0

for ©# ki, ko, ..., kar (mod L) (5.119)

Using the property of m-sequences in [26], it is a straightforward analysis to show

that 3°L23 ei(ba—kp=tn=3)07 is 5 constant regardless of the value of k, as long as ¢ #

ki, kz,...,kn (mod L). The same property may be used to show that 3L} e=ibn-ifr

and Y"E20 e?n-kT are both constants regardless of i and k,. In fact, these two sums
are complex conjugates of one another. From these results, (5.119) may be simplified

and reduced to

M M
ng¢o — 641 — ngsﬁI +éyL = 0, (5.120)
=1 p=1
where
L-1 '
$o = D eltnbre=iba—ifr o0 (mod L) (5.121)

n=0
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L-1

¢ = Y einfr (5.122)
n=0
L-1

¢ = S el (5.123)
n=0

Solving for é,,

b, 79751
6 = [¢ _VL}Z gy - (5.124)

Multiplying both sides of (5.124) by S>EZ1 efta-kefr = g* gives

¢o B 795{ ] = "
§, = |—2 1L , 5.125
q [45{(¢1—7L) T;)Zq,‘r 77,] ( )

where

L-1
2! [n] g ejb"“‘PBT . 5.126)
q, p

n=0 n=0

Equation (5.125) states that the data mapping constant é, is proportional to the
DC value of the demultiplexed demodulates z; [n]. The constant of proportionality
is uniquely determined by the period L, the transmission angle 67 and the period-
matched angle 6.

Expanding the zero off-peak output in (5.111),

L~1
S.0[7] = Z z;',,,[ ”Jb n—if Z 2"q,r[n] — 6,61 + 8,vL
n=0 n=0
= $,.[7] — Dbias level, (5.127)
where
bias level = 4 Z zg,[n] + &g1 — 847 (5.128)
n=0

The “bias level” in (5.128) is the component necessary to convert a non-zero, off-
peak output s, .[7] to one with zero, off-peak output §,,[:]. As in the case of &,

the “bias level” in (5.128) is also proportional to the DC value of the demultiplexed
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demodulates z;.[r]. This method of removing the “bias” level has the advantage
that the “bias” can be removed after the initial crosscorrelation in (5.101)*
3) With the “bias” level removed from each of the m,Q output sequences, the

next step is to recombine the m,Q) output sequences by multiplexing.

g=0,1,2,...,mQ —1
selg+kQ] = 5,,[k] where ¢ m=0,1,2,..,L—1 (5.129)

r=20,1,2,..,. X

4) At this point the major peaks of the strong paths are well isolated from the
weak paths. The energy of the strong paths are concentrated in very short intervals
of time. Therefore, the strong paths can be readily removed by replacing the major
peaks and their impulse responses with zeros. Let §.[n] denote the output sequence
with strong paths remove. Ideally §,[n] will contain only weak paths.

5) The next step is to project 3.[n] from the arrival space back to the data
space (inverse projection). As in the forward projection, the inverse projection is
also implemented using sharp sequences (i.e. one sample per digit). Therefore, it is

necessary to demultiplex the modified output 3,[n] as follows.

4

g=0,1,2,...,m,Q — 1
~ FAN
S0r[n] = &lg+nQ] where { m=0,1,2,....L —1 (5.130)

r=20,1,2,..., X

\

In step 2), the transmission angle was used in the forward projection. For the
inverse projection, the period-matched angle is used instead. The necessity for using

the period-matched angle in the inverse projection is detailed in the following matrix

14 Alternatively, one may use one value of § for all ¢ demodulates. § may be obtained by taking
the average over all §; (i.e. 6§ = 1/(m,Q) Zq—'l 64). This has the benefit of further reducing the

affect of noise.
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analysis. As in the previous model for the demultiplexed demodulates in (5.113), let
ZQJ‘ = zs,q,r + zw,q,r y (5131)

where z,,. is the q*" vector of the multiplexed, demodulated sequence associated
with the strong paths, and z,,,, is the ¢* vector of the demultiplexed, demodulated
sequence associated with the weak paths. In addition, let Mt denote the cyclic,
m-sequence matrix with transmission angle 6y, and let M, denote the cyclic, m-
sequence matrix with period-matched angle 8. Using the phasor diagram in figure

5.11, the relationship between Mt and M|, is given by

ML = K(MT—-‘)’) (5.132)

M7 = k(Mp—~)¥ (5.133)

where the entries of 4 are all identically v, and « is a constant which reflects the

differences between the magnitude of Mt and Mt — ~. In addition, from (5.45),

| R K2 H

IMEML = S (Mp— 3 (Mp ) = 1. (5134)
The ¢** forward projection with bias removal may be written as

éq,; = (Mr —)(2,— &) . (5.135)

Recall in (5.125) that 6, is proportional to the DC value of the 0-doppler, demul-
tiplexed demodulates 2] [n]. Since the exalted carriers of the doppler-scaled weak
paths are shifted away from DC, §, is the data mapping constant of only the strong

paths. Therefore, the cyclic crosscorrelation in (5.135) becomes

5,0, = (Mp — ¥)(240r — 8;) + (M1 — ¥)Zw g - (5.136)
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After strong path are removed by zeroing, the output of the crosscorrelation contains

only the weak paths so that

Sgr = (MT_‘Y)zw,q,r

1
= Mz, . (5.137)
K

To recover zy,q,r from &, ,, multiply both side of (5.137) by £ M. Using the identity

in (5.134), the modified demodulated sequence is

K
> — Hy
Zgr = ML Sgr

(5.138)

The significance of (5.138) is that the inverse projection is implemented using the m-
sequence matrix M f’ with period-matched angle. Futhermore, once the demodulates
Zu,q,r has been correctly interpolated to the true doppler of the weak paths, the
matrix utilized to project the weak paths z,,, in the data space onto the arrival
space is the m-sequence matrix with transmission angle M. The weak paths in the
arrival space will also require bias removal just as in the case of the strong paths.

The actual signal processing of (5.138) is given by

1 L-1 ]
Zrlk] = 7 30 darln]e™

n=0

L-1 L-1
= cos(0L) Y 34.[n] + j sin(6r) > 3gr[n]bktn - (5.139)

n=0 n=0

Again, the summation "5 3, ,[n]bisn may be efficiently computed using the Fast
Hadamard Transform in Appendix A.

6) The next step is to multiplex the m,Q modified, demultiplexed demodulates
Z,+[k] to form a single modified, demodulate sequence for the r** period. This is

required for interpolation.
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Multiplexing %, ,[k], the modified, demodulated sequence is
¢g=0,1,2,....m,Q — 1

g+ kQ) = Z,,[k] where { k=012 L-1 (5.140)

r=01,2...X

7) Steps 1) — 6) are repeated until all (X+1) one-period segments are prepro-
cessed.

8) Recall that the sampled, demodulated sequence z"[m| in Part A, step 3)
is divided into single-period segments in order to utilize the efficiency of the Fast
Hadamard Transform. Each of the single-period segments of the modified, demodu-
lated sequence in (5.140) must be recombined to form a single, modified, demodulated
sequence of (X + 1)(m,QL) samples long. First, let z, denote the vector of samples

for the r** period.
z, = [z[0],2[1], ..., z[m QL = 1]]T; r=1,2,...X +1 (5.141)
Then the X + 1 vectors are recombine to form a single vector.
2 = (21,29, 000, Zpqa) - (5.142)

The HCCO preprocessing is completed. The vector z is a modified form of the
demodulated sequence consisting of only weak paths.
C) Forming the Residual Ambiguity Surface For Weak Path Detec-
tion.

The formation of the residual ambiguity surface from z is a straightforwad appli-
cation of the broadband receiver. To interpolate from 0-doppler to the a** doppler

channel, 2z is phase adjusted.

2ulm] = Z[m]edtr—eTm (5.143)
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The second step implements the time compression. Let

z[m] = me® (5.144)
cfm] = |z[m]] (5.145)
Alm] = z[m]—c[m]. (5.146)

Then the time-compressed samples are
Zalm] = (1= Alm])za[clm]] + Alm]2s,[c[m] + 1] . (5.147)

2)In order to improve the output signal-to-noise ratio, X periods are summed.

X
Zaoum(n] = D Zaln +mm,QL) (5.148)

m=0

-

3) Crosscorrelate the summed demodulates Z, yum[n] with the transmitted m-
sequence utilizing FHT in appendix A.
Let 5,[k] be the output of this cyclic crosscorrelation so that the residual ambi-

guity surface is simply the combined outputs of all doppler channels given by
Anceo[ky €] |eazes = 3a,[k], (5.149)

where «; is an element of {amin, ..., @maz}. From this residual ambiguity surface,
the presence of weak paths may be determined. A summary of the steps in parts A),

B), and C) is provided in Appendix B.

5.2.8 TIllustrative Results

To illustrate the effectiveness of HCCO preprocessing, simulation results are plot-
ted in figures (5.12) and (5.13). In figure (5.12), the noiseles reception consists of a
strong path and a weak path. The peak of the weak path is 23 dB below the peak

of the strong path reception. For the 511 digit m-sequence, the signal floor (median
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floor) associated with the strong path is 27dB below the peak of the strong path.
Therefore, the weak path-to-mutual floor level (WSM) prior to HCCO preprocessing
is 4dB and the weak path cannot be detected. However, after HCCO preprocess-
ing, the WSM ratio is approximately 27dB and the weak path is clearly detected
[figure (5.13)]. Since the simulation assumes a noiseless reception, each run in this
simulation would have given the same result.

In order to simulate the reception of two paths with different dopplers, time-delays
and magnitude, two separate sequences of the m-sequence signal are generated at
0-doppler with a non-zero time-delay between the two sequences. One of the two
sequences is scaled in magnitude to serve as the weak path. The weak path 1s
linear interpolated to an off-doppler channel so that the two sequences will differ
in doppler. At this point the two sequences will differ in doppler, time-delay and
magnitude. These two sequences are addved together to simulate the demodulated

response of a two-path reception at 0-doppler.

5.3 Other Considerations

When filtering (i.e. transducer, front-end, and demodulate filters) is introduced
in the analysis for preprocessing, the main issue concerns the impulse response of the
filters. Ideally, each major peak with its associated impulse response is replaced with
zeros at the output stage of the preprocessing. The disadvaqtage of this approach is
that the degree of weak path corruption depends on the number of zeros replaced.
Therefore, the detectability of weak paths will largely depend on the tradeoff be-
tween weak signal corruption and floor level reduction of the strong paths. In most
instances, the impulse response of the transducer is determined from experimental

measurements; therefore, the performance of the preprocessing under filtering will
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Figure 5.13: Strong path is removed through preprocessing. Weak path is clearly
detected.
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be evaluated along with experimental results.

In previous sections, it is assumed that all strong paths arrive at a single doppler
channel. This is true in the case of a fixed-fixed bistatic sonar. In the case of a con-
stant relative motion between the transducer and the receiver, HCCO preprocessing
may require a slight modification. For example, in ocean acoustic tomography, each
path would arrive at a slightly different doppler. This is known as the differential
doppler and it is primarily due to the differences in sound speed at varying depths
within the ocean. Since the preprocessing described in section (5.2) implements the
single-channel elimination of the major peaks, the selected doppler channel («,) will
be an “off-doppler” channel to most of the strong paths. Theoretically, at most
one path will be “on-doppler” in any given doppler channel. On the other hand, if
the differential doppler is small, preprocessing the strong paths at only one doppler
channel may reduce the signal floor to a level that is much lower than the peaks of
the weak paths.

If the doppler of the strong paths were significantly different, a variation of the
HCCO preprocessing may be utilized. Assuming the true doppler for each and ev-
ery strong path is known prior to preprocessing'®, the HCCO preprocessing may
be repeated M times for M strong paths. Specifically, an HCCO preprocessing is
implemented for each of the M doppler channels of the strong paths. At the output
of each preprocessing, only the strong path corresponding to the selected doppler
channel is eliminated through zeroing'®. After M sequential repetitions, all M strong
paths will be eliminated. Essentially, this method eliminates the major peak of each

strong signal at its true doppler channel.

15The true doppler for each strong path may be obtained through the ambiguity surface of the
reception without the preprocessing.

16For multiple period processing, all periods corresponding to the selected doppler channel must
be preprocessed prior to the interpolation to the next doppler channel.
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5.4 Constructing the Shift-Invariant Reference Ambiguity
Surface

In Chapter IV the shift-invariant method for strong signal cancellation was dis-
cussed. This method has the adavantage that the strong paths may be eliminated by
subtracting the shifted versions of the reference surface from the receiver ambiguity
surface. Therefore, only one reference surface was required for storage. The simple,
yet impractical way of constructing the reference surface discussed in chapter IV
requires a reception consisting of only one-path. In the case of m-sequence signaling,
a better approach is to utilize a variation of the HCCO preprocessing to create a
reference surface from a multipath reception.

The construction of a reference ambiguity surface utilizing the HCCO preprocess-
ing is quite simple. Instead of zeroing the peaks of the strong paths at the output of
the crosscorrelation, one would retain the peak pulse associated with a single strong
path and zero the rest of the output. In other words, the single, strong path becomes
the desired signal and the rest of the paths are the interference. After zeroing, the
residue would consist of only a single strong path. To create the reference ambiguity
surface from the single path, the steps outlined in section 5.2 for weak path detection
is carried out without further modification.

Suppose ¥, 4,[n] is the cleansed output containing a single strong path. The

corresponding modified, demodulated sequence is
Zs,ai[n] = ?jS,ai [Tl] b2y m*[n] . (5150)

Using the set of equations for interpolation from (5.54) and (5.55), Z;,q,[n] for amin <
a; < Qymqz can be computed from Z; 4,[n]. In combination, the modified, demodulated

sequences for all doppler channels forms the reference demodulate surface D, 4[n, e®]
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discussed in section 4.4.1 for block processing.
For sliding processing (section 4.3), each of the modified, demodulated sequences

is crosscorrelated with the m-sequence itself to form the output
378,013' [Tl] = Es,oz]‘ {n] ® m[n] . (5151)

The combination of these outputs forms the reference ambiguity surface A, ,[n, e®].



CHAPTER VI

Noise Peaks

In previous chapters, it is assumed that the weak signal-to-noise ratio is large
enough to detect the weak path’s presence once the interference from strong paths
are eliminated. If the reception can have at most one arrival and the arrival time
is known a priori, then the problem may be set up as a simple binary detection
problem utilizing the likelihood ratio test. The probability of false alarm Pr and the
probability of detection Pp may be calculated given the median noise level and the
signal-to-noise ratio (SNR). Unfortunately, in a doppler-scaled, multipath reception,
the time-delay, doppler and the number of path arrivals are unknown. Under this
circumstance, the problem of joint detection and estimation requires a generalized
likelihood ratio test. This corresponds to setting a threshold on the envelope of the
ambiguity surface. When a peak pulse is greater than this threshold, a path is as-
sumed to be detected, and the parameters associated with the signal is determined
by its location in the ambiguity surface. In the binary detection problem the thresh-
old is determined by the mediaﬁ noise level in the reception. However, the noise level
alone is insufficient in the case of a generalized likelihood ratio test.

Consider the case of a single-period reception. To arrive at the probability of

false alarm one must calculate the probability that the highest peak of the noise

134
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within the period exceeds the threshold. This would be followed by calculating the
probability that the second highest peak of the noise exceeds the threshold and so
forth. Furthermore, the probability of detection would depend on the signal-to-noise
peak ratio (SNPR) as opposed to the SNR. Therefore, in the case of doppler-scaled,
multipath reception, the problem of joint detection and estimation is closely tied to
the level of noise peak within the reception.

In section 6.1, the noise peak of a single doppler channel is described. In the
case of a single doppler channel, the noise-only reception may be modeled as an i.i.d.
random sequence. The distribution of the noise peak is the distribution of the peak
of this random sequence; hence, Pr may be approximated using the distribution of
this peak. Alternatively, Pr may be modeled as a problem in level crossing. This is
an accurate model when the threshold level is set high enough such that Pr is much
smaller than one. Under this assumption, the crossing rate may be described by the
Poisson distribution.

Section 6.2 describes the noise peak of the entire ambiguity surface. Since the am-
biguity surface is a linear interpolation of the single doppler channel, it is of interest
to determine the relationship between the noise peak of the ambiguity surface and
the noise peak of a single doppler channel. Specifically, the problem is to determine
the relative magnitude between the noise peak of the entire ambiguity surface and
the noise peak of the single doppler channel. This provides a simple generalization
of Pr from a single doppler channel to an ambiguity surface.

Finally, in section 6.3, the detectability of path arrivals is determined by the
SNPR. The SNPR may be easily derived using the distribution of the noise peak in

sections 6.1 and 6.2.
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6.1 Noise Peak of Single Doppler Channel

6.1.1 Distribution of Noise Peak Under I.I.D. Assumption

The power spectral density of white gaussian noise ¥(f) may be approximated
by a constant value, say %No from -W to W and is zero everywhere else. W may

represent the bandwidth of the match filter receiver. Since ¥(f) = INyrect(f/2W),

the correlation function of the noise is
P(r) = N,Wsinc(2Wr), (6.1)

which equals zero when 7 is a multiple of ZLW except at 7 = 0. At 7 = 0, ¢(7) has
the value N,W, which is the total noise power. Hence, samples of noise spaced in
time by multiples of 1/2W are statistically independent zero-mean, gaussian random
variables. For a single path reception with period T,, the number of 1.i.d. complex

gaussian variables is

N, = 2WT, (6.2)
The magnitude-squared noise reception may be modeled as
e = |k +jy | (6.3)

where z and y; are independent gaussian random variables with equal variance.
Since the magnitude-squared output of the reception is of interest, the N, random

variables ris are independent, exponentially distributed random variables given by
Fr(r) = 1—¢"%7, (6.4)

where 0> = R,(0) = N,W is the variance of the gaussian random variables. In
practice, it is more efficient to compute the median level of the noise rather than the

noise variance. It may be shown that the median value of the exponential distribution
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(i.e. z,, s.t. Fgr(ry,) = 0.5) is linearly proportional to the noise variance (i.e. r,, =
2In(2)0?). Therefore, SNR and the signal-to-noise (median) ratio (SN R,,) are closely
related.

The distribution of the peak of N, independent random variables is given by the
products of the individual distribution. Since they are also identically distributed,

the maximum s of N, i.i.d. random variables has the distribution

FS(S) = FR](S)FRz(S) FRNP(S)

= [l—e"%7| 7. (6.5)
-]

Setting Fg(s,,) = 0.5, the median value of the peak is given by

Sm = —20%In (1 - e:l%ﬁz> . (6.6)

Although the distribution of noise peak for exponential distribution in (6.5) is mean-

ingful, the extensions to multiple doppler channels is somewhat limited.

Asymtotic Distribution of Extremes

The study of classical extreme value theory is concerned with distributional prop-

erties of the maximum of n i.i.d. random variables
$n = maz(ry,r2,...,Ty) (6.7)

as n becomes large. In central limit theory, one obtains an asymptotic normal dis-
tribution for the sum of many i.i.d. random variables regardless of their common
original distribution function. A similar situation holds in extreme value theory.
The classical extreme value states that if for some sequences of normalizing con-
stants a, > 0, b,, a,(s, — b,) has a nondegenerate limiting distribution function

G(x), then G must have one of just three possible general families of distribution.
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Furthermore, it is not necessary to know the detailed nature of F' to know which lim-
iting form of distribution it belongs to. In fact, this is determined by the behavior
of the tail of Fr(r) for large r [25].

The extreme value theory which is referred to as the Extremal Types Theorem
was discovered first by Fisher and Tippett [15] and later proved in complete generality

by Gnedenko [18]. The three Extreme Value Distributions are

Type I: G(z) = exp(—e™®), —~00 < T < 00 (6.8)

Type II: G(z) = (6.9)

Type III:  G(z) = (6.10)
1 x>0

For the special case of an exponential distribution in (6.4), the sequences a,, and b,
may be obtained using Theorem 1.5.1 in [25]. Briefly, the theorem states that for a

sequence of real numbers u,, if
n(l — Fr(u,)) — g asn — oo (6.11)

then

Plsp, <uy,] — e* asn — oo. (6.12)

For the exponential distribution, one may choose u,, to be

U, = —20%n (ﬁ) (6.13)

n

such that 1 — Fr(u,) = £ holds. Then by (6.12)

Pls, < =20%In(p) + 20%In(n)] — e™*. (6.14)
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Now, let 4 = €7 and (6.14) becomes
Pls, <20z + 20%In(n)] — exp(—e™), (6.15)

which 1s the Type I form of the Extreme Value Distributions with

1
n = 6.16
a 57 (6.16)
b, = 20%In(n). (6.17)

Rearranging variables, it may be shown that
Pls, < 2'] — exp(—e (271" =2%n(n)y (6.18)

Therefore, the distribution of the noise peak for N, i.i.d. random variables may be

approximated by

Fs(z') ~ exp(—e~ 297 (#"=20%n(Np))) (6.19)

for large N,.

Simulation results of independent exponential random variables with 0% = 1 are
plotted in figures (6.1) and (6.2). The points are plotted on double exponential
probability paper. The linear approximation is used to determine the parameters a,,
and b, (i.e. —In(In(—Fs(z'))) = a.(z’ —b,) where n = N,). Each point in figure
(6.1) represent the maximum of 511 independent random variables, and a total of
150 maxima are plotted to approximate the probability distribution. As expected,
an and by, obtained from figure (6.1) agrees with the analytical results in (6.16) and
(6.17).

In figure (6.2), the number of independent variables is still 511; however, three
interpolated samples are added between every two independent variables. This is

achieved by zero-padding the frequency domain of the independent variables. The
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reason for finding maximum of interpolated sequences is twofold. As mentioned
previously, for single period reception, samples that are spaced 1/2W apart are
uncorrelated. However, the maximum of these N, uncorrelated samples do not reflect
the maximum of the period in continuous time. This is the practical consequence of
discrete measurement of a continuous signal. The interpolation represents a better
approximation to a continuous waveform. Second, the interpolation is an essential
part of the doppler-scaling discussed in section 6.2. In figure (6.2), the maximum
of (4x512) samples are plotted. The value of @, does not vary significantly with
interpolation; however, b, increased from 12.3 to 14.3, which corresponds to an
increase in the median level of about 0.7dB. As a comparison, the median of the
individual exponential random variable is 1.4 dB while the median of the maximum
of 511 i.i.d. exponential random variables is 11.1 dB.

The advantage of analyzing the peak distributions using the Extreme Value Dis-
tributions stems from the fact that the limiting distribution of the peak has the same
form regardless of the actual distribution of the individual samples Fr(r). As in the
case of the interpolation in figure (6.2), the peak distribution is well approximated
by the Type I Extreme Value Distribution given the appropriate values of a, and
bn. On the other hand, the product of N, distributions in (6.5) does not accurately

reflect the peak distribution under interpolation.

6.1.2 Probability of False Alarm For High Threshold Level

Instead of analyzing the peak distribution of noise within a period of the re-
ception, an alternate approach is to consider the number of upcrossings of a high
threshold by a random noise process r(t). Each threshold crossings may be regarded

as points (i.e.“time instants”) at which the noise process exceeds a certain threshold
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Figure 6.1: Distribution of the maximum of n=511 i.i.d. exponential random vari-

ables. The results are plotted on double exponential probability paper.
(@, = 0.46, b, = 12.3)

Probabil ity Diskribution (X}

Noise peak (mapnituds-—equored)

Figure 6.2: Distribution of the maximum of 2048 interpolated samples of n=512
1i.d. exponential random variables. The results are plotted on double
exponential probability paper. (a, = 0.42, b, = 14.3)



142

level u. These times of exceedances are stochastic in nature and may be viewed as a
point process. It is possible to show that the point process of upcrossings of a level
takes on an increasingly Poisson character as the threshold level becomes higher [25].
This is intuitively satisfying since threshold crossings at very high level are very rare
events so that they can be considered statistically independent. The number of times
n the noise process crosses the threshold u from below within an interval 7' may be

approximated by the Poisson distribution

P (T) = e | (6.20)

For very high threshold level, the probability of false detection may be approximated
by the probability that the noise process crosses the threshold at least once during

the interval and is given by

2
.

(6.21)

For very high threshold, AT, the expected value of the number of crossings within

T, is kept small. And for AT << 1,
Q. ~ AT . (6.22)

In order to calculate @, in (6.22), the false alarm rate A may be obtained using

Rice’s formula [32] given by

Mu) = /Ooofp(u,i")dv‘, (6.23)

where 7 = dr/dt is the rate of change of the noise process r(t) and p(r,#) is the joint
probability density function of r(¢t) and #(¢). A brief derivation of the formula may

be found in Helstrom [21] and Papoulis [30].
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For the special case of exponentially distributed noise process r(t) given by
r(t) = z(t) +jy(t) I (6.24)

where z(t) and y(t¢) are independent Gaussian processes with mean zero, it may be

shown that at any time ¢, (¢) and its first derivative ()
r(t) = 2z(t)2(t) + 2y(t)y(t) (6.25)

is orthogonal (i.e. R..(7) even implies R,;(0) = 0 ). Since the r(t) and r(t) are
jointly Gaussian [30], the two processes are independent at any time ¢. Therefore,

using conditional probabilities, a modified form of Rice’s formula is
Mu) = / i Ju)p(u)dn . (6.26)
0

The conditional probability density function is

"2

pi/u) = (27Rss(0)) heap [‘zRZ-(mJ

2

= (8“77Ria‘:(0))_%e$p [—m] , (6.27)

where
R,'-f(O) = 4’LLR¢,;-(O) ; (628)
and the variance of the in-phase and quadrature components in (6.24) are assumed

to be the same. The probability density function p(u) is

1 u
p(u) = 2R.(0) eTp | ~5p 0l (6.29)
where R, (0) is the variance of z(t). Substituting the conditional probability in (6.27)

and p(u) in (6.29) into Rice’s formula in (6.26),
) [2R(0) :
T

Mu) = plu

= [237%%((00—))] : exp [— 231:(0)} . (6.30)
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Using the approximation for the probability of false alarm in (6.22),

Qo = TWe [m] eTp I}-—M} y (631)

where W, is the r.m.s. bandwidth of the gaussian process z(t) defined in [21] as
R::(0)]?
v = [

[, P25
[ 2o Sa(£)df } (6.32)

and S;(w) is the power spectral density of z(¢).
For the special case of m-sequence processing, the noise power spectral density

at the output of the receiver is
N, . ,
Se(w) = 5 sine (Taf) for —f.<f<fe. (6.33)
and the r.m.s. bandwidth is given by

vQ (6.34)

where ) is the number of cycles in a digit. Substituting (6.34) into the probability

of false alarm in (6.31),

In figure (6.3), the probability of false alarm in (6.35) is plotted against the probabil-
ity of false alarm calculated using the peak distribution function (i.e. Pr =1 — Fs(u))
in section 6.1.1. Note that for small Pr, the two approximations are essentially the
same. For the Poisson distribution, the Pp is only valid when the crossing rate is
small. When Pr is approximated using the extreme distribution, it is assumed that

at most one sample may cross the threshold within one period (i.e. the 2nd, 3rd ...
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Figure 6.3: The probability of false alarm using the distribution of noise peak vs.the
probability of false alarm using Rice’s Formula.

n'h largest peaks are insignificant under high threshold). Hence, at higher thresh-
old, both approximations are invalid. Although both methods lead to similar result
in approximating Pp, the peak distribution function of section 6.1.1 plays a more

important role in determining the signal detectability described in section 6.3.

6.2 Noise Peak of Ambiguity Surface

In section 6.1, the extreme value distribution was discussed as a means of evaluat-
ing the probability of false alarm. This sections discusses the noise peaks of ambiguity
surface by extending the results given in the previous section. The primary goal of
this section is to compare the extremes of the ambiguity surface with the extremes of
the single-doppler channel. The ratio of the two extremes would indicate how much
larger the peak surface noise is relative to peak noise of a single doppler channel.

At first, one may arrive at a distribution function for the noise peak by assum-
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ing i.i.d. samples for the entire ambiguity surface (i.e. all doppler channels are
independent). Although this would simplify the analysis of noise peaks, it does not
accurately reflect the presence of “coupling” among doppler channels.

For a single-channel processor, the ambiguity surface is obtained by interpolating
the output of the sampled, demodulated reception. Therefore, the “off-doppler” noise
samples are simply interpolated versions of the noise samples from the 0-doppler
channel’. For a fixed noise sequence at the 0-doppler channel, the noise sequence
at “off doppler” channels are deterministic. It may be thought that due to the
deterministic nature of the sequence at “off doppler” channels, one may derive a
deterministic upper bound for the noise peak for the ambiguity surface. In particular,
given the magnitude of the noise peak at 0-doppler, the question is whether or
not there exits an upper bound on the magnitude of the noise peak for the entire
surface. One upper bound for the noise peak is given by the total noise energy within
the doppler channel. However, this upper bound does not provide any meaningful
description of the noise peak. Unfortunately, a tighter upper bound does not exist in
general. The ambiguity surface of a single-path reception may be described as a sum
of the signal ambiguity function and the noise ambiguity function or cross-ambiguity

function. Specifically,
A(r,e*) = Ay(r,e%) + Au(7,€%) (6.36)

where the signal ambiguity function is

Pr
Ay(r,e) = / m(ee=P(t — 7))m*(t)dt . (6.37)

¢

and the cross-ambiguity function of the noise is

Pr
An(r,e%) = /0 n(e(t — 7))m*(t)dt . (6.38)

1The output of the single-channel processor is assumed to be fixed at 0-doppler output.
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Due to the deterministic nature of the signal ambiguity function, properties of the
signal ambiguity function may be pre-determined. However, the cross-ambiguity
function is random; hence, it is impossible to derive a tigher energy upper bound
other than the total noise energy within any doppler channel. In other words, the
properties of the ambiguity function applies to the signal and not the noise. Any
attempt to describe the noise peak must be based on stochastic analysis; hence, a

stochastic upper bound would be more appropriate.

6.2.1 Noise Peak With Independent Doppler Channels

A simple extension from the noise peak of a single-doppler channel to the noise
peak of the ambiguity surface is to assume independent doppler channels. This
assumption is briefly discussed by Helstrom in [21]. The number of independent
doppler channels within the ambiguity surface may be approximated by the correla-
tion between doppler channels. If M, independent channels are assumed, then the
noise peak of the ambiguity surface is the same as the noise peak of a single-doppler
channel with M, periods. Consider the special case of m-sequence signaling with
AWGN, the narrowband noise outputs at two doppler channels f; and f; are given

by
ni(r) = [nu(yme(t - )ty (6.39)
n;(r) = /nw(t)m*(t — 1)l it (6.40)
where n,,(t) is the AWGN with noise power N,/2. The cross spectral density of the

noise 1s

Sii(f) = S(f = £)S°(f = £i)Su(f) , (6.41)
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where S, (f) = N,/2 is the power spectral density of the noise and S(f) is the signal

spectrum given in [7] by

S(f) = PUHM(S)

L
= (=) T AT esine((fo — £)Ta) S etrle 12/ Tan - (6.42)

n=1
and Ty, b, 8, L are the m-sequence parameters defined in appendix B. The corre-

lation C;;(0) between n;(7) and n;(7) at zero delay may be calculated by

Ci;(0) = Elni(r)n;(7)]
= [Suf)df
L
_ ﬁz’g $ emitnfaTak / P(f — f)P*(f)df

k=1

= Cum(fa)Cp(fa) , (6.43)

where

L
NO Z e-—j?ﬂ'dedk

k=1

R AR , (6.44)

Crlf) = [P(f = f)P(f)df
= (ATy)? / sinc[Tu(f — f)|sine[Tufaldf

= (7T fa) " cos(rTafa), (6.45)

and

fo = fi—f;. (6.46)

Both Cn(fa) and Cp(fa) are functions of the difference in frequency shifts. However,
Cm(fa) is usually much narrower than Cp(f;) so that the first zero of C;;(0) is the

same as the first zero of Cp(fs). The first zero of Cus(fs) would determine the
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minimum frequency shift f; = F, required for two doppler channels to be considered
independent. Therefore, if the ambiguity surface has a doppler spread of

(fmaz — fmin), the total number of independent doppler channels is

M, = f—m—i—;h . (6.47)

The Pr may be determined by the distribution of the maximum in (6.5) with N,
replaced by M,N, or with Rice’s Formula in (6.31) with T replaced by M,T. In
some cases (i.e. high threshold), the independent-channel assumption may be jus-
tified; however, under lower threshold, the approximation may be inappropriate.
Furthermore, it is assumed that the number of independent channels for narrowband
processing is the same as the number of independent channels for broadband pro-
cessing. To get a more precise form of the peak noise distribution, the extreme value

distribution in section 6.1.1 may be utilized.

6.2.2 Distribution of Noise Peak Using Extreme Value Distribution

In section 6.1.1, the Type I extreme value distribution for the exponentially dis-
tributed random variables is introduced. It is shown that the parameter a, is a
function of the variance ¢?, while b, increases logarithmically with increasing num-
ber of independent samples. In the case of the ambiguity surface, the samples are
still exponentially distributed; however, the samples from different doppler channels
may be highly correlated. As mentioned previously, the extreme value distribution
is a limiting form of distribution which require very little knowledge of the sample
distribution. In fact, if the correlation function E[r;r;.,] decays to zero at a sufficient
rate, the Type I extreme value distribution will hold for dependent sequences [25].

Using the Type I extreme value approximation, the distribution of the noise peak
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Figure 6.4: Distribution of the noise peak of the ambiguity surface (511 digits, 52
doppler bins; 1 doppler bin=0.58 knots). The results are plotted on
double exponential probability paper. (a, = 0.49, b, = 19.74)

for the ambiguity surface may be approximated by
F.(z,) = exp(—eta(@a=ba)y (6.48)

for some constants a, > 0, b, depending on the length of the period and the number
of doppler channels in the ambiguity surface. In figure (6.4), the noise peaks of 150
ambiguity surfaces under m-sequence signaling are plotted on double exponential
paper. The straight line in the figure is the distribution function for a double expo-
nential distribution. The Pr may be readily calculated from this double exponential
distribution. The normalized parameters 2a,0? and b,/20? for varying surface size
are plotted in figures (6.5) and (6.6) respectively. Since the parameter 2a,0? remains
relatively constant, the double exponential approximation will only vary with b, for
different surface sizes.

In order to compare the noise peak of a single doppler channel versus the noise
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Figure 6.5: A plot of the normalized parameter 2a,0? for different size of the ambi-
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Figure 6.6: A plot of the normalized parameter b,/20? for different size of the am-
biguity surface. A doppler channel is equivalent to 0.58 knots.



152

peak of the ambiguity surface, one may evaluate the differences between their median

levels. Specifically, let

Fi(z,) = exp(~e )

~ e:rp(——e”(z"?)“l(r"z"zl”(N))) (6.49)

be the distribution of the noise peak for a single doppler channel. Additionally, let
Zs,m be the median level of the peak of a single doppler channel when Fy(z,,,) = 1/2,
and z,,, be the median level of the surface peak when F,(z,mm) = 1/2. Evaluating

(6.48) and (6.49) at 1/2 give

(203 N zym — 20%n(N)) = 0.37 (6.50)

ao(Tam —bs) = 037, (6.51)
and the difference between the median levels is

Tam(dB) ~ 25.m(dB) = 10l0g(0.37a;" + b,) — [1010g(0.37 + In(N)) + 10log(20%)] .
(6.52)
Since a, does not vary significantly with increasing surface size, let a, ~ a, and the

difference in (6.52) becomes
Tam(dB) — z,m(dB) = 10log(0.37 4+ b)) — 10l0¢(0.37 + In(N)) , (6.53)

where ¥, = 51’&“5 For the special case of m-sequences with N = 511 independent
samples, b/, varies from 7.1 to 10.0 for surface sizes ranging from £0.58 knots to £15
knots. This corresponds to a difference in the median level from 0.5dB to 2.0dB; a
small but significant increase in the median level.

Although the limiting distribution function provides an adequate approximation

to the distribution of the noise peak, the parameters a, and b, need to be evaluated



153

on a case by case basis. Each type of ambiguity surface will have its own set of
parameters. Therefore, the distribution of the noise peak cannot be generalized for

all types of signals.

6.3 Signal-to-Noise Peak Ratio

In sections 6.1 and 6.2, different methods for calculated the Pr was introduced.
This section describes the likelihood of signal detection with additive noise. Usually,
signal detectability is analyzed using the Pp which is a function of both the Py
and the SNR. In the simple case of a single arrival, the Pp may be approximated
by the method described in Hestrom (pp.309-312)[21]. Specifically, he plotted the
SNR versus the time-bandwidth product by first using the equation for Pp in (6.31)
to calculate the threshold level u and then applying the result of Pp for the case
of unknown phase (i.e. known time-delay, unknown phase) to determine the value
of the SNR attaining the specified value of Pp. However, in a multipath reception
the number of arrivals is unknown and the Pp is difficult to evaluate. Instead the
detectability of arrivals at reasonable Pr is determined by the signal-to-noise peak
ratio (SNPR). In contrast to the SNR, the SNPR will indicate the strength of the
signal relative to the threshold u determined by the statistics of the noise peak.

As described in the beginning of chapter VI, the median noise level is a good
approximation of the noise variance. Similarly, the variance of the noise peak may
be approximated by the median of the noise peak. Although the median noise level
for the ambiguity surface can be readily calculated, the median of the noise peak will
be approximated using the Type I extreme value distribution described in section

6.2.2. The SNPR may be defined as

2
SNPR £ 10log [ A } , (6.54)

Tam
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where z,,, is the median value of the noise peak and A is the magnitude of the

signal. Using the approximation in section 6.2.2,

A2
= ! . .
SNPR = 10log { 5T 03T T bg)] (6 55)

As mentioned above, the median noise level m,, can be readily calculated by taking
the median value of the ambiguity surface. Since m, = 2In(2)o? is the magnitude-

squared median level of a single noise variable, the SNPR may be written as

In(2)A?
= 10log |——222
SNPR 10log [mn(0.37+b{1)]
= SNR- NP, (6.56)
where
0.37 4+ 0
= 10! - ;
NP 10 og[ () } (6.57)

Therefore, NP represents the decrease in detectability of the signal arrival due to
noise peaks. For the case of m-sequences, NP ranges from 10.3dB to 11.8dB for
surface sizes of £0.58 knots to £15.0 knots. This range of N P suggests that NP is
largely due to the noise peak of the single doppler channel. Extensions to multiple
doppler channels does not increase the level of NP significantly. Although the level
of NP may be large for long periods, signal detectability will ultimately depend on
SNR. For m-sequences, the SNR will depend on two factors; the length of the m-
sequence L and the number of periods M that is averaged coherently. Specifically,

the SNR for m-sequences is given by

(6.58)

2
SNR = 10log [MAmL} ,

My

where A,, is the magnitude of the signal prior to pulse compression.



CHAPTER VII

Summary and Conclusion

This dissertation is concerned with the detection of weak, broadband signals in
the presence of strong signal interference. The basic philosophy adopted in this
dissertation is to approximate the time-delay by a linear, time-varying model so
that the presence of a path arrival is indicated by the peak pulse of a 2-D receiver
surface known as the broadband ambiguity surface. Due to the presence of the floor
level (i.e. 2-D sidelobes) associated with strong paths, the peaks of the weak paths |
are undetected. To detect the weak paths, the floor level of the strong paths must
be removed. Accordingly, this dissertation discussed two computationally efficient
method for strong path cancellation under broadband processing: (1) The Shift-
Invariant Method for Strong Path Cancellation and (2) the Hyperslice Cancellation
by Coordinate Zeroing (HCCO) preprocessing.

Chapter II presented some of the basic mathematical relationships, terminology
and concepts in narrowband, radar/sonar resolution. For single parameter resolution,
it is shown that travel time resolution is inversely proportional to the bandwidth
while the resolution in doppler is inversely proportional to the signal duration. For
the combined resolution, the ambiguity function is the appropriate tool for analyzing

radar/sonar signals. It is shown that resolution in the 2-D ambiguity surface can only

155
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be reduced at the expense of increasing floor level. This is due to the property that
the volume of the ambiguity surface is a constant regardless of the type of signal
transmitted.

Chapter III discussed some of the fundamental differences between narrowband
and broadband processing of radar/sonar signals. For narrowband signals, the re-
ceived signal is simply modeled as doppler-shifted signal. Consequently, matched-
filters for individual doppler channels are simply doppler-shifted versions of one an-
other. For broadband signals, the received signal is not only doppler-shifted but
time-scaled as well. This time-scaling of the baseband signal introduces additional
complexities in a broadband receiver. Depending on the type of receiver utilized,
either the matched-filters or the received signal must be rescaled in time. Chapter
IIT introduced two different broadband receivers. The first receiver, processing using
transmitter time scaling (PUTTS), rescales the matched-filters to compensate for the
doppler-scale of the received signal. For single-period processing, the linear crosscor-
relation between the matched-filters and the received signal may be efficiently com-
puted via FFT. The second method, processing using receiver time scaling (PURTS),
is utilized when multiple-period processing and cyclic crosscorrelation are desired. In
this case, the matched-filter is fixed while the received signal is rescaled in time. Since
the matched-filter is fixed, it is easier to obtain a computationally efficient scheme to
implement the crosscorrelation. For m-sequence signaling, the cyclic crosscorrelation
is implemented using the Fast Hadamard Transform discussed in Appendix A.

The Shift-Invariant Method for Strong Path Cancellation (SIMSPC) in chapter
IV is a computationally efficient means for strong path cancellation. The primary
goal is to construct a shift-invariant reference surface such that the strong signal

and its floor level may be canceled by subtracting a shifted version of the reference
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surface from the receiver surface. The shift-invariance in doppler is achieved by
moving the doppler factor into the exponent. The shift-invariance in time-delay
is more complicated. For the case of a sliding processing receiver (i.e. receiver
utilizing linear crosscorrelation), the shift-invariance in time-delay is accomplished
by appropriate remapping of the time-delay variable. However, for a block processing
receiver (i.e. receiver utilizing cyclic crosscorrelation), this is no longer true. Instead,
a reference surface constructed from two periods of the demodulate surface is stored
in memory. It is shown that the envelope of the demodulate surface is shift-invariant
in both doppler and time-delay. Simulation result indicate that the signal floor level
may be lowered by 30-40 dB.

In chapter V, the HCCO preprocessing is introduced. Instead of subtracting
the entire floor level, the strong paths are removed at a single doppler channel.
For m-sequences, the matched-filter output of the strong paths are compressed into
very narrow pulses. If weak paths are present in the reception but at a different
doppler, the energy of the weak paths would be uniformly distributed across the entire
period of the matched filter output. The basic principle of HCCO preprocessing is
to eliminate the strong paths by zeroing the peaks associated with the strong paths
before processing for the entire ambiguity surface. The zeroing of these peaks does
introduce distortion to the weak paths as well. However, numerical analysis of m-
sequences indicate that even when half of the period is zeroed, the weak signal-to-
mutual floor ratio remains relatively high at 25 dB for L=511 digits.

The problem of noise peaks is discussed in chapter VI. Within the ambiguity
surface, noise peaks maybe falsely identified as path arrivals. For the single doppler
channel, the Pr may be approximated by the distribution of the noise peak. Under

the 1.i.d. assumption, the distribution of the noise peak may be readily computed.
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However, for multiple-channel surface, the doppler channels are highly correlated
and the i.i.d. assumption is invalid. It is shown that the extreme value distribution
may be utilized as an approximation to the noise peak when the noise samples are
correlated. For doppler channels of interest, simulation result indicate that the noise
peak of the entire ambiguity surface is only 2 dB above the noise peak of the single
doppler channel.

Throughout this dissertation it is assumed that the search parameters for the
received signal consist of a coﬁstant time delay and a doppler factor. In the case
of SIMSPC, the modelling and the remapping of the search parameters are essen-
tial to the shift-invariant property of the broadband ambiguity surface. In the case
of HCCO preprocessing, the remapping of the doppler and time-delay variable are
not required. However, HCCO preprocessing does rely on signals having “good”
autocorrelation property. Furthermore, the characteristics of the inverse projection
is critical to the degree of floor reduction. The advantage of SIMSPC over HCCO
preprocessing is that SIMSPC will work with any type of signal as long as a refer-
ence surface can be constructed. On the other hand, when the time-delay is more
accurately modeled with the addition of a third term (i.e. the second derivative of
7(t)), the HCCO preprocessing will be superior to SIMSPC since HCCO prepro-
cessing eliminates the strong signal at one doppler channel. In future studies, the
tradeoffs between SIMSPC and HCCO preprocessing may be further analyzed. The
tradeoffs will most likely depend on the type of signal transmitted and the model
of its reception. Additionally, it may be possible to extend HCCO preprocessing to
signals without “good” autocorrelation property. For instance, it may be possible
to transform the matched-filter output to a domain where energy of the weak and

strong is further isolated. Finally, in this dissertation it is assumed that only one
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sensor is utilized in the receiver. Future studies may investigate the possibility of
utilizing beamforming with multiple sensors in conjunction with the methods for

weak signal detection.
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APPENDIX A

Efficient Computation of M-sequence Correlation
Through Fast Hadamard Transform

This appendix describes an efficient means of m-sequence cross-correlation through
Fast Hadamard Transform (FHT). It is also known as the “Hadamard processing” for
m-sequence signals. The problem with the direct method of computation is that the
cyclic cross-correlation requires L? additions where L is the period of the m-sequence
(i.e. L =2¥—1). The output of the cyclic cross-correlation may be written in matrix

form as

Yao = M2k_1Z007 (Al)

where where z,, is a 2¥ — 1 vector composed of the demodulated sequernces of the

ot doppler channel and is given by
Zao = [2a0[0], 20, (1], -+ 20 [2F = 11T (A.2)

The computation in (A.1) can be drastically reduced by exploiting the equivalence
between the m-sequence matrix and the Walsh-Hadamard matrices [4], [19]. Due
to the special form of the Fast Hadamard matrix, the matrix multiplication may
be implemented through a “butterfly” similar to those of Fast Fourier Transform.

In fact, the matrix multiplication requires only (L + 1) - logy(L + 1) additions. In
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[11] and [9], the equivalence between m-sequence matrix and the Walsh-Hadamard
matrices has been reorganized to provide a step by step approach to implementing

the m-sequence correlation through FHT.

A.1 Fast Hadamard Transform

As in the case for the Discrete Fourier Transform, the Hadamard Transform may
be described in terms of a matrix multiplication. The matrix used in the transfor-
mation is known as the Walsh-Hadamard matrix which has only £1 as its elements.

The Walsh-Hadamard matrix may be specified recursively by
H, = [1]

H:., H;,
H, = , (A3)

H,, -H;,

and these matrices exist only for orders of 2*.

11 1 1
1 -1 1 -1
H, = (A.4)
1 1 -1 -1
1 -1 -1 1

The associated butterfly for the 4** order Walsh-Hadamard matrix is provided in
figure (A.1).
In order to establish an equivalence between the Walsh-Hadamard matrix with

the m-sequence matrix, it is convenient to express the Walsh-Hadamard matrix over

GF(2)L.

!The equivalence between the Walsh-Hadamard matrix and the m-sequence matrix is easily
shown over GF(2). However, the implementation of the cross-correlation through FHT is over the
reals.
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the example above,

00
P 01|00 11
T i oflo1o
_11_
(000 0|
010 1
- (A.8)
0011
(011 0]

The matrices B and BT will play a central role in establishing the equivalence

between the Walsh-Hadamard matrix and the m-sequence matrix.

A.2 The M-Sequence Matrix for Cross-Correlation

To construct a period of the m-sequence of length [ = 2¥ — 1, one needs a
primitive polynomial h(x) of degree k. The primitive polynomial may be expressed

as
k-1
h(z) = zF 4+ > gal . (A.9)
—
Once the primitive polynomial is specified, the m-sequence may be recursively com-
puted over GF(2) by

k-1
miyr = ZijH_j . (AlO)

=0

The m-sequence matrix used in the crosscorrelation is a L x L square matrix. Each
row of the m-sequence matrix is a period of the m-sequence and each successive
row is simply the successive cyclic shift of the previous row. Again, the m-sequence

matrix over the reals £1 will be denoted by M; while the m-sequence over GF(2)
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will be denoted by M;. For the simple case of k=2, the characteristic polynomial is
[26]

h(z) = z*+z+1, (A.11)
and one form of the m-sequence matrix associated with this characteristic polynomial

1s )

:
01 1

M;=|1901]-: (A.12)
110

One of the special structure of the m-sequence matrix is that any row of the matrix
may be obtained from the k previous rows of the matrix. Specifically, if m;; 1,7 =
0,1,...,25 — 1 are the elements of the m-sequence matrix, then using the recursion

given in (A.10) the elements of the p™* row may be obtained from rows p—k to p— 1.
k-1
Mpi = 3 CaM(p—ktn); (mod?2)  for j=0,1,2,.,L—1 (A.13)
n=0
It is not difficult to conclude from (A.13) that M _, can be constructed from linear
combinations of k successive rows of Mx_; (i.e. since (k+ 1) row of M,s_, is a
mod 2 combination of the first k rows of Ma_;, the (k + 2)t* row is also a mod 2
combination of the first k rows, and so forth). Due to this property, M ok_1 may be

factored as

My_, = WS, (A.14)

where S is a binary matrix of size k x 25 —1 which is formed by the k successive rows of
the matrix My_,. Wisa weight matrix of size 2% — 1 x k with elements determined

by the recursive relation in (A.10). For the above example when 2% — 1 = 3,

S = . (A.15)
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To construct the matrix W, observe that the first k rows must form a k x k identity

matrix. The remaining rows of W will be constructed using the recursion

k-1
Wy ; = Z CnW(p—k+n),j (mOd 2) for p > k; J=0,1,2 "72k -2 (A16)

n=0

where w, ; are elements of the matrix W. Hence, for k=2,

10
11

As a consequence of this factorization, it is now possible to analyze the equivalence
between the m-sequence matrix and the Walsh-Hadamard matrix.

A.3 The Equivalence Between Walsh-Hadamard Matrix and
the M-sequence Matrix

The benefit of factorizing M ,x_; and H . is that their equivalence may be ob-
tained through the equivalence of their factors. Before this equivalence can be es-
tablished, M _; must be slightly modified since My is a 28 — 1 ¢ 2F — 1 matrix
and H is a 2F z 2% matrix. This is accomplished by bodering the matrix W with

a row of zero on top and a column of zeros on the left of S. Specifically, let

. o
w 2 (A.18)
B4
S 2 |o s ] (A.19)
The modified m-sequence matrix may be defined as
2 A A A
M,y = WS, (A.20)

which has a row of zero on top and a column of zero on the left. The equivalence

between M ,x and H,« can be established by comparing W with B and S with B”.
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Since W is simply a row permutation of B, the two matrices are related by

~

W = P,B, (A.21)

where P, is the permutation matrix. This permutation matrix may be constructed
as follows. Recall that the rows of B given in (A.7) is listed in increasing numberical
order. Suppose the numerical representation for the i** row of W is N;, then one
simply needs to place a ‘1’ at the (N; 4+ 1)** column of the :** row of P,, with zeros

everywhere else on the :** row. For the above example,

1000

0010
P, = . (A.22)

0100

0 001
In (A.22), the location of the ‘1’ for the second row is placed at the third column
since the numerical value of the second row of W is 2 or [1 0] in binary (i.e. N; = 2).

Similarly, S is a column permutation of B7; hence
s = B'p, (A.23)

where P, is a column permutation matrix for S. To construct P, note that the
numerical value of the j®* column of S denoted as N ; determines the location of the
‘1’ in the j% column of P,. Specifically, the ‘1’ is placed at the (N; + 1)* row of
the j** column of P, with zero everywhere else on the ;% column. And for the case

above,

1 000

0100
P, = , (A.24)

0010

0 001
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which turns out to be the identity matrix. Using (A.21) and (A.23), the modified

m-sequence matrix may be expressed as
M, = P,BB'P,. (A.25)
The original m-sequence matrix My, may be reduced to its original size by

MQI:_] = VLM‘zva

= V,P,BBTP,V;
= V P,HuP,Vr, (A.26)
where
Vi = o Iy, ] (A7)
o
Vi = , (A.28)
-I2k_1

and I, _q is the identity matrix of size (2% — 1) x (2¥ — 1). For k=2,

0100
Ve = 0010 (A.29)

Vr = , (A.30)

0 01

Recall that the equivalence above is constructed under GF(2), whereas the im-

plementation for the crosscorrelation is performed under the reals?. Fortunately, the

2The reason for constructing the equivalence under GF(2) is due to the fact that Hox and
M 5x_, cannnot be factored into any desirable form over the reals.
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matrices P,, and P, are permutation matrices; hence, the zeroes and ones of Hx
and M ,_, may be replaced by &1 without any further modification. Therefore, the

output of the crosscorrelation utilizing FHT may be written as

YQ, = M2k__lzao

o

= VLPszkPSVTZC,O , (A31)

The purpose of V1 is to increase the size of the data vector z,, by appending a
zero at the top of this vector. In contrast, the purpose of V' is to reduce the size of
the processed 2* vector to a vector of size 2 —1. Both V7 and V1, do not require any
computations. The permutation matrix P, scrambles the data vector throeugh index
reordering and the computation involved is negligible in comparision to the process
of interpolation and the computation of the butterfly during FHT. Likewise, the
permutation matrix P, descrambles the output vector from FHT and the number
of computation is also negligible. The only significant computation involves the
process of computing the butterfly in the FHT. Each stage of the butterfly requires
2% additions. Since there are k stages in the butterfly, the total number of additions

required for the computation of the butterfly is k2.
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A) Sampling and Demodulation.

1) Sample the reception at zero doppler.

rln] = r(nt)), (B.1)

1
mrfo’

where t; =

2) Complex demodulate the sampled reception.
z[n] = r[n]es?fort (B.2)

3) Remove the —2f, component using a sinc-squared filter.

my—1

Z'[m] = g z[m — 1]
m] = 3 m—i]. (B.3)

1=0
B) HCCO Preprocessing.

1) Implement the forward projection using Factor Inverse Filtering (FIF):

a) Demultiplex the demodulated sequence for one period of the

demodulated sequence.

¢g=0,1,2,....m.Q — 1

"

zpelm] £ (g +mQ+rm.QL]  where  m=0,1,2,....L—1

r=0,1,2,..,. X

\

(B.4)
b) Calculate the FIF for each of the m,Q demultiplexed demodulates

using FHT in appendix A.
L

sqrlk] = D 2l [m]e™®+m9 (mod ) k=0,1,2,..,L -1

=0

-

3

L-1 L-1
= cos(f7) > =zl [m] — j sin(fr) >z [mlbgym . (B.5)

m=0 m=0



172

c) If the transmission angle differs from the period-matched angle, remove

the “bias” level from each of the m,() demultiplexed outputs.

Sqr[k] = s4.[k] — bias level , (B.6)
where
L-1
bias level = v Yz [n]+ 6,61 — 6,7L (B.7)
n=0
and
¢a—7¢I :lL—l " ~
6, = |—=——"— z, .n B.8
*’ [¢;(¢1—7L) 2 7ol o)
sz'n(HL - 0T)
— ) B.
7 sin(6r) (B-9)
L—l . .
$o = D etniremitn=ifr oL () (mod L) (B.10)
n=0
L-1
g = Y einir (B.11)
n=0
L-1
¢ = > el (B.12)
n=0

d) Multiplex the m,Q output sequences to form a single output sequence.

g=10,1,2,....m,Q — 1

Selg+ km,Q] = 3§,,[k] where ! k=0,1,2,...,L -1 (B.13)

r=20,1,2,..., X

\

2) For each strong path, remove its peak and its transducer response. This
is accomplished by zeroing the output sequence s.[k] at the peaks and transducer
responses. Denote this modified output by 3.[k].

3) Implement the inverse projection to obtain the modified, demodulated se-

quence.
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a) Demultiplex the modified, output sequence.

g=20,1,2,....,m,Q — 1

Solk] 2 & lg+km,Q] where { k=019 .. L—1 (B.14)

r=0,1,2,..,X

b) Implement the FIF for each of the m,Q segments via FHT.

L-1
ot = 23 Gy e (mod 1)
n=0
L-1 L-1
= cos(0p) ) g.ln] +j sin(0) D Sor(nlbrin . (B.15)
n=0 n=0

¢) Multiplex the modified, demodulate sequence.

¢q=0,1,2,...,m.Q — 1

Zlg+km, Q) = Z,[k] where { k=0,1,2,...[—1 (B.16)

r=1,2,... X +1

4) Repeat steps 1)—3) for each of the remaining periods.

5) Form a single modified, demodulated sequence from all preprocessed periods.

z = [21,22,....,23_’_1] 5 (B17)
where
Z = [z[0],%[1],. ... zmQL-1)]T; r=1,2,.. X +1. (B.18)

C) Generation of the Ambiguity Surface.
1) Interpolate the modified, demodulated sequence to all doppler channels.

a) Properly demodulate for the at* doppler channel.

Zolm] = 3[m]es?m(=e"m (B.19)
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b) Time compress for the o** doppler channel.

Za[m] = (1 = Alm])Zale[m]] + A[m]2a[c[m] + 1], (B.20)
where
z[m] = me” (B.21)
cm] = |zlm)) (B.22)
Alm] = z[m] - c[m]. (B.23)

c¢) Repeat a) and b) for each doppler channel from amin t0 Amae.
2) For each interpolated sequence, sum over X periods to achieve higher SNR.
X-1
Zasum[m] = Y Zu[m+ rm, QL] (B.24)
r=0
3) For each doppler channel, immplement the crosscorrelation using Factor In-
verse Filtering (FIF):

a) Demultiplex the demodulated sequence for the single-period, modified

demodulated sequence of the o** doppler channel.

g=20,1,2,....m,Q — 1
Zralm] 2 Zogumlg+mm.Q] where (B.25)

m=0,1,2,...L—1

b) Calculate the FIF for each of the m,Q sequences using FHT in

appendix A.

L-1
Sealk] = D Zyalmle T (mod L) k=0,1,2,..,L -1
m=0

L-1 L-1
=z COS(HT) Z_O Eq,a[m] —j SZTL(OT) E Eq,a[m]me . (B26)

m=0
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c) Remove the “bias” level for each of the m,Q modified, output se-

quences.
. L-1
nga[k] = gqya[k] - 7 E Eq,a[m]
m=0
L-1
—8¢ Y e7kmr 4 N6 [ (mod L) , (B.27)
m=0
where
¢0 - 7(;5; } = ~I1
by = | ——-7— Z, nl B.28
! [¢{(¢1—7L) n; ol ( )

and 7, ¢,, ¢; are as defined in (B.9), (B.10) and (B.11) respectively.

d) Multiplex the m,@Q modified, output sequences to form a single output

sequence.

N g=0,1,2,...m.Q —1
Salg + km, Q) = 5,4[k] where (B.29)
k=0,1,2, ... L—1

e) Repeat a)—d) for all doppler channels from iy t0 Cgs.
3) Form the ambiguity surface using crosscorrelation outputs of all doppler chan-

nels.

Ahcco[kaea] Ie":eao = §ao[k] y (B30)

where «, is an element of {nin, ..., ¥maz}-
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APPENDIX C

Cost For Storing Reference Surfaces Without

Time Shift-Invariance

In a large-scale tomography, storing reference surfaces for strong signal cancel-

lation is very costly. To get an idea of this cost, examples are given below which

calculates the number of pixels required for each reference surface. The following is

a list of parameters in a typical m-sequence transmission:

L

fe

number of digits in a period = 1023 digits
center frequency = 250 Hz

number of cycles in a digit = 4

search variable for doppler

maximum of o/ = 3.43z107% (+10 knots)

minimum of &' = —3.432107%(—10 knots)

signal period = 16.368 seconds .

To calculate the number of pixels required for each reference ambiguity surface,

one must compute the number of time-delay bins and doppler bins required to capture

the essential features of an ambiguity surface. At a sampling rate of 4f,, the total
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number of time-delay bins in a period is
M, = 4f.T, = 16368 . (C.1)

It is often easier to determine the step size of doppler bins through single frequency
analysis[7]. In a single frequency transmission, the crosscorrelation between two
sinewaves is zero if they differ by £1 cycle in a period. Now, f.1, is the total
number of cycles in a period for a zero doppler sinewave whereas the total number
of cycles in a period for a doppler-shifted sine wave is (1 — o/)f.T,. Therefore, a
one-cyle difference between these two sinewaves will result if o/ = 1/f.T,. If 1/f.T,
were chosen as the doppler step size, the details of the ambiguity surface would be
missing. In practice, one chooses a doppler step size that is one-fourth of 1/f.7, (i.e.

1/4f.T,). Therefore, the total number of doppler bins is given by

My = (o, — o\, )Af.T, ~ 113 . (C.2)

mazr min

The total number of pixels in a reference surface is M,M; = 1.85210°. At 8
bytes/pixel, one reference surface requires 14.8 megabytes of storage space. Without
time shift-invariance, one reference surface is required for each possible time-delay
bin. Therefore, 16368 reference surfaces at 14.8 megabytes each corresponds to 242.2
gigabytes of memory. At a rate of $1000/gigabyte, the storage space will cost approx-
imately $250,000. Furthermore, if the number of digits in a period of the m-sequence
were increased to 2047, the number of time-delay and doppler bins for each reference
surface would increase to 32752 and 225, respectively. This would require a total

memory of 1932 gigabytes which is approximately equivalent to $2 million.
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APPENDIX D

Simulating the Shift-Invariant Property of the
M-Sequence Receiver Ambiguity Surface

The m-sequence law used in the simulation is 45 (octal) which specifies the coef-
ficient associated with the primitive polynomial z° 4+ 22 + 1. Four periods of the 31
digit m-sequence are jointly processed. The search variable for doppler covers £10
knots which is evenly divided into 37 doppler bins. These 37 doppler bins also cor-
responds to a four-cycle difference between the analysis interval with the maximum
doppler compression and the analysis interval with the minimum doppler compres-
sion. Specifically, the difference between the maximum and the minimum search
variable for doppler is approximately 4/ f. T4 where T4 is the analysis interval equal
to four periods. A detailed discussion on the structure of the m-sequence ambiguity
surface is provided in appendix E. The following is a list of pertinent parameters

associated with the m-sequence simulation.

L = Number of digits in a period of the m-sequence = 31
N, = Total number of periods in the analysis interval = 4
¢ = Number of cycles in a digit = 4

QL = f.T, = Number of cycles per period = 124
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m, = Number of samples in a cycle = 4
m,() = Number of samples per digit = 16
Ny = Total number of samples in N, periods = (m,Q)(N,L)
0 = period-matched angle = 79.82 degrees
by = =1 ; binary codes of the m-sequence
fo = Center frequency for the signal transmission = 250 Hz

m,f, = Sampling rate = 1 kHz

t; = time between samples, 1/m, f,
e*mn = doppler index of interest with maximum time compression = 1.00361
e*me* = doppler index of interest with minimum time compression = 0.99641
N, = extra digits sampled at 0-doppler necessary for interpolation = 2

D.1 The Single-Path Receiver Ambiguity Surface

The noiseless, single-path reception is modeled as a 0-doppler, zero time-delay

reception. The sampled reception is given by

I [

- ’"[LanJ] M 0<n< (mQ)N,L—1+N,) (D)

where |z| is the greatest integer less than or equal to z, and
mlk] = e k=0,1,...N,.L -1+ N, (D.2)

are the period-matched, m-sequence digits. In (D.1), r[n] consists of samples from
the 4-period m-sequence signal. Specifically, there are 16 samples per digit of the

m-sequence. The extra digits NV, is included to compensate for the time compression
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during linear doppler interpolation. The 0-doppler, demodulated reception is
z[n] = rn]e"9zmn/me (D.3)

The steps for linear doppler interpolation were explained in more detail in section
3.4.2 and are repeated here in a more compact form. To interpolate the demodulated

reception to the a!* doppler channel, the phase of z[r] is adjusted so that

zl [n] = z[n]

oy

ei2mn/my o—j2mein/my (D.4)

The linear interpolated version of z, [n] is

] = (1= Afal)2l felml] + Alnlet el] 411 (D.5)
where
z[n] = ne™ (D.6)
cn] = |z[n]] (D.7)
Aln] = z[n]—¢[n]. (D.8)

Each of the interpolated doppler channels z,,[n] will have the same number of sam-
ples. For a 4-period analysis, each doppler channel will have Ny = (m,Q)(N,L)
samples. In this simulation, the four periods are concatenated and not averaged
prior to crosscorrelation. The receiver output for the ai* doppler channel is given by

the (mod Nr) cyclic crosscorrelation
Np-1
Yoi K] = D zai[n]miln — k] 0<k<Nr-1. (D.9)

n=0

where mgy[n| are samples of the m-sequence given by

maln] = m{tm" J] 0<n<Np—1. (D.10)
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The combined receiver outputs from all doppler channels forms the receiver ambiguity

surface A(k,e* | 0,1,1) where
A(k,e™ 1 0,1,1) = yu[k] V e¥mm < e < ePmer | (D.11)
D.2 Reference Ambiguity Surface for Doppler Invariance

The first type of reference surface desired is a reference surface which only differ
in doppler from the 0-doppler, single-path surface in section D.1. To obtain the

noiseless, reference surface, let the single-path reference signal be modeled as

_I] eijrfoe’Si nty

ron] = m [Lm’fQ

= m [I_anJ] ej27reﬂjn/mr’ 0<n< (mrQ)(NrL -1+ Nr) (D.12)

where e is the true doppler of the reference surface. To obtain the reference am-
biguity surface from r,[n], substitute r.[n] for r[n] in (D.3) and continue through to
the end of section D.1. The resultant reference ambiguity surface becomes

Ar(k,e* | 0,e%,1) for evmin=hi < e < e¥masth;  [p essense, once the signal recep-
tion is properly modeled, the processing is identical regardless of its true doppler. To
simulate the SIMSPC, subtract the doppler shifted version of the reference ambiguity

surface from the receiver ambiguity surface

Aresidue(k,e™) = A(k,e* [0,1,1) — A, (k,e*™5 | 0,¢%.1) . (D.13)

In figures (4.3) and (4.4) the “shift in doppler” in the x-axis represents the specific
value of €1 chosen for the reference surface. The “improvement in dB” in the y-axis
is the m.s.e. and median-squared level of the residue Asesidue(k,€*'). The two curves

in (4.3) reflect the changes in performance under different sampling rate.
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D.3 Reference Ambiguity Surface for Time-Delay Invari-
ance

The second type of reference surface desired is a reference surface which only
differ in time-delay from the 0-doppler, single-path surface in section D.1. To obtain
the time-shifted, 0-doppler reference surface, let the single-path reference signal be

modeled as

re[n m 11| giznoln=Ty)ta
[n] [L 5 J}

My

- [Lm%?d 2 =T/me 0 <n < (m,Q)(N,L —1+ N,) (D.14)

Again, the processing steps (i.e. demodulation, interpolation, crosscorrelation) are
the same as those in section D.1. The resultant reference ambiguity surface is denoted
as Ar(k,e* | T;,1,1) for T; <k < Nr+T;. An example of the reference ambiguity
surface 1s depicted in figure D.1. To simulate the SIMSPC, subtract the time-shifted,
phase-adjusted version of the reference ambiguity surface from the receiver ambiguity

surface given by
Avesidue(k ) = A(k,e* | 0,1,1) — e™¥Ti/mr A (k — Tj,e% | Tj,1,1) . (D.15)

In figures (4.5) and (4.8) the “shift in time-delay” in the x-axis represents the par-
ticular value of T; chosen for the reference surface. The “improvement in dB” in the

y-axis is the m.s.e. and median-squared level of the residue Ayesigue(k, ).
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Figure D.1: Normalized magnitude of a 0-doppler, single-path, reference ambiguity
surface for m-sequences; one doppler bin is equivalent to 0.58 knots. The
time-delay bins are spaced 1/2 cycles apart. The demodulated sequence
is filtered by a third-order Butterworth filter.
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APPENDIX E

Structure of the M-Sequence Ambiguity Surface

One of the main differences between the ambiguity surface of the m-sequence
and the thumbtack-like ambiguity surface of random noise is the presence of a sinc-
shaped pulse in the doppler axis of the m-sequence ambiguity surface (see figure
D.1). In addition to the sinc-shaped pulse, figure D.1 also indicate the presence of
nulls along the time-delay axis at multiples of +10 doppler bins (i.e. multiples of
1/(foNT,) where NT, is the analysis interval). The first feature, the sinc-shaped
pulse, is a property of all m-sequences regardless of the number of periods processed.
The second feature, the nulls along the time-delay axis, is present only if multiple-
period crosscorrelation is implemented. These features are detailed in the following

analysis.

E.1 Single-Period Crosscorrelation

In continuous time, the ambiguity surface for a 0-doppler, m-sequence signal is
given by

T, . «
Aq(r,e”|0,1,1) = / pm(e"’t)m“(t — 1)l Dtgy (E.1)
0

where T, is the period of the m-sequence signal and the subscript 1 denote a single-

period crosscorrelation. For small doppler differences, it may be assumed that
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m(e®t) = m(t) so that the ambiguity surface in (E.1) evaluated at 7 = 0 becomes

T, . o
Al(T, e | 0,1, 1) ‘730 ) / 6-]27rfo(e -1t g4
0

= T,sinc(f,(e* — 1)T,)e ™ o(*-DTp (E.2)

Therefore, at zero delay, the magnitude of the ambiguity function is approximately
sinc-like in the doppler axis. From (E.2) the zeros of the sinc-shaped pulse is at

multiples of 1/(f,T}).

n

foTp

The first zero (i.e. e*° —1 = 1/(f,T,)) corresponds to a one-cycle difference between

e —1 =

for n=41+42, ... (E.3)

the period of the 0-doppler channel and the period of the o'* doppler channel.
E.2 Multiple-Period Crosscorrelation
The ambiguity surface for the multiple-period crosscorrelation may be written as
NT, ‘ "
An(r,e® | 0,1,1) = / m(e*t)ym*(t — 7)e 2oVt (E.4)
0

where N is the number of periods processed. Again, assuming no doppler-scaling for

the baseband signal, then

N-1 ) . T, ’ )
An(r e [0,1,1) 30 e (W (i) (1 r)e 7t - (B.5)
k=0 0
Using the fact that
- e fo(e-1)kT, _ 1 e~ 92 fo(e®—1)TpN
2 T ] = e—r2nfo(er-1)Ty

k=0

sin(r fo(e® = D)T,N) —im(N=1) fole*=1)Tp
sin(m fo(e* — 1)) ¢ ’ (E-6)

the ambiguity surface in (E.5) becomes

sin(m fo(e® = 1)T,N) =T (N=1)fo(e®~1)T;
sin(rw fo(ex — 1)T})

T, , .
. / m(t)m*(t — 7)e I Il 1t gy (E.7)
0

AN(T, 60 I 0, 1, 1)
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The magnitude of the N-period, ambiguity surface is related to the magnitude of the
single-period, ambiguity surface by

sin(w f,(e® — 1)T,N)

sin(7 fo(e* — 1)T}) | Ay(r,e*]0,1,1) ] . (E.8)

| An(7,e%]0,1,1) | =

The factor sin(r f,(e* — 1)T,N)/sin(n fo(e* — 1)T},) is a comb filter which peaks up
at every e — 1 = n/(f,1p), n = 0,£1,%2,... and has N-1 zeroes between any
two peaks. The zeros are located at every e* — 1 = n/(foNT,), n = £1,+2,....
Therefore, the four-period crosscorrelation in figure D.1 contains nulls along the
time-delay axis at multiples of 1/(f,NT,). The first zero at e* — 1 = 1/(fONTp)
corresponds to a one-cycle difference between the analysis interval of the 0-doppler
channel and the anaylsis interval of the a!* doppler channel. The most significant
difference between the zeros described in this section and the zeros described in the

previous section is that the zeros in this section is valid for all time-delay T whereas

the zeros described in the previous section is true only at 7 = 0.
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