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ABSTRACT

We analyze the asymptotic convergence properties of a general class of EM�type algorithms for es�
timating an unknown parameter via alternating estimation and maximization� As examples� this
class includes ML�EM� penalized ML�EM� Green�s OSL�EM� and many other approximate EM al�
gorithms� A theorem is given which provides conditions for monotone convergence with respect
to a given norm and speci�es an asymptotic rate of convergence for an algorithm in this class�
By investigating di�erent parameterizations� the condition for monotone convergence can be used
to establish norms under which the distance between successive iterates and the limit point of the
EM�type algorithm approaches zero monotonically� We apply these results to a modi�ed ML�EM
algorithm with stochastic complete�incomplete data mapping and establish global monotone conver�
gence for a linear Gaussian observation model� We then establish that in the �nal iterations the
unpenalized and quadratically penalized ML�EM algorithms for PET image reconstruction converge
monotonically relative to two di�erent norms on the logarithm of the images�

I� INTRODUCTION

The maximum
likelihood �ML� expectation
maximization �EM� algorithm is a popular iterative
method for nding the maximum likelihood estimate �� of a parameter � when the likelihood func

tion is too di�cult to maximize directly ��� ��� ��� ��� �	� �� ���� The penalized ML
EM algorithm
is a variant of the ML
EM algorithm which can be used for nding MAP estimates of a random
parameter ���� ��� ���� To apply the penalized or unpenalized ML
EM algorithm requires formu

lation of the estimation problem in terms of the actual data sample� called the incomplete data�
and a hypothetical data set� called the complete data� To be able to easily implement the ML
EM
algorithm the complete data must be chosen in such a way that� the complete data log
likelihood
function is easily estimated from the incomplete data via conditional expectation �E�� and the com

plete data log
likelihood function is easily maximized �M�� Three types of convergence results are
of practical importance� conditions under which the sequence of estimates converges globally to a
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xed point� norms under which the convergence is monotone� and the asymptotic convergence rate
of the algorithm� A number of authors ���� ��� �� have derived global convergence results for a wide
range of exact ML
EM algorithms by using an information divergence approach� These authors
establish monotone convergence of ML
EM algorithms in the information divergence measure� This
guarantees that successive iterates of the EM algorithm monotonically increase likelihood� While
increasing likelihood is an attractive property� it does not guarantee monotone convergence in terms
of Cauchy convergence� successive iterates of the EM algorithm reduce the distance to the ML esti

mate in some norm� In addition� for some implementations the region of convergence may only be a
small subset of the entire parameter space so that global convergence may not hold� Furthermore�
in some cases the ML
EM algorithm can only be implemented by making simplifying approxima

tions in the conditional expectation step �E� or the maximization step �M�� While these algorithms
have an alternating estimation
maximization structure similar to the exact ML
EM algorithm� the
information divergence approach developed to establish global convergence of the exact ML
EM
algorithm may not be e�ective� In this paper we develop a generally applicable approach to conver

gence analysis which allows us to study monotone convergence and asymptotic convergence rates
for algorithms which can be implemented via alternating estimation
maximization�

We dene an EM
type algorithm as any iterative algorithm of the form �i�� � argmax�Q��� �i��
i � �� �� � � � where � � � � IRp� This general iterative algorithm specializes to popular EM
type
algorithms including� penalized and penalized ML
EM algorithms ��� ���� generalized ML
EM
with stochastic complete
incomplete data mapping ���� one
step
late �OSL� penalized ML
EM �	��
majorization methods ���� and approximate ML
EM algorithms such as the linear and quadratic
approximations introduced in ��� ��� Let �� be a xed point of the EM
type algorithm which occurs
on the interior of � and assume that Q is a smooth function of both arguments� We give an

implicit relation between successive di�erences ��i��
def
� �i�� � �� and ��i

def
� �i � �� of the form

��i�� � M��
� M���i�� where M� and M� are p � p matrices associated with the �p � �p Hessian

matrix of Q��i��� �i�� Using this implicit relation we derive conditions for monotone convergence
and show that the asymptotic rate of convergence is the maximum magnitude eigenvalue of the
curvature matrix �r��Q���� ������r��Q���� ��� where r��Q and r��Q are p � p matrices of mixed
derivatives at the point ���� ���� For ML
EM this curvature matrix is monotonically increasing in
the conditional Fisher information matrix associated with the complete data�

We provide several illustrations of our convergence results� First we consider a generalized
version of the standard ML
EM algorithm which permits the complete data to be specied in such
a way that it is related to the incomplete data via a possibly random transformation� This algorithm
is of interest since the conventional convergence analysis of the EM algorithm is inapplicable due to
the presence of additive noise in the mapping from the complete data to the incomplete data� Then
we give general forms for the asymptotic convergence rates for the linearized EM algorithm ���� the
unpenalized and penalized ML
EM algorithms� the OSL penalized ML
EM algorithm �	�� and the
majorization method ���� For the latter algorithms the asymptotic convergence rates are of similar
form to those obtained by Green �	� for the standard case of deterministic complete�incomplete
data mapping� Afterwards we consider ML
EM and penalized ML
EM for two important practical
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examples� a linear model involving jointly Gaussian statistics for the complete and incomplete
data and a PET reconstruction model involving jointly Poisson statistics� For the linear Gaussian
model the incomplete data is the output of a Gaussian additive noise channel with input equal to
the complete data� We show that it is necessary for the channel noise to be uncorrelated with the
channel input� i�e� the complete data set� in order to guarantee convergence to the ML estimate� It is
found that the ML
EM algorithm is guaranteed to converge monotonically in a weighted Euclidean
norm for all initial points and is therefore globally monotonically convergent in this norm� It is also
found that increasing the channel noise variance can only degrade the asymptotic convergence rate
of the ML
EM algorithm� For the PET reconstruction model we show that when the unpenalized
ML
EM algorithm converges to a strictly positive estimate� in the nal iterations convergence is
monotone in the following sense� the logarithm ln �i of the i
th image converges monotonically in
the weighted Euclidean norm kuk �

Pp

b�� Pb
��b u

�� where Pb is the probability of detecting emissions
at pixel b and �� is the ML estimate� When Pb � �� this is asymptotically equivalent to monotone

convergence of the error ratios
h
��

i
�

��
�

� � � � �
��ip

��p

iT
to zero in the standard unweighted Euclidean norm�

Similar results are obtained for quadratically penalized ML
EM algorithms for PET reconstruction�

II� AN ARCHETYPE ALGORITHM

Let � � ���� � � � � �p�
T be a real parameter residing in an open subset � � �� � � � � � �p of the

p
dimensional space IRp� Given a function Q � ���� IR and an intial point �� � �� consider the
following recursive algorithm� called the A
algorithm�

A�Algorithm� �i�� � argmax
���

Q��� �i�� i � �� �� � � � � ���

�If there are multiple maxima� then �i�� can be taken to be any one of them�� Assume that �� � �
is a xed point of the recursive mapping ���� i�e� �� satises�

�� � argmax
���

Q��� ���� ���

Let k � k denote a vector norm on IRp� For any p � p matrix A the induced matrix norm jjjAjjj
���� of A is dened as�

jjjAjjj
def
� max

u�IRp

kAuk

kuk
� ���

where u denotes a vector in IRp� A special case is the matrix�	 norm jjjAjjj� which is induced by the
Euclidean vector norm kuk � uTu�

jjjAjjj�
def
�

s
max
u

uTATAu

uTu
��
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jjjAjjj
�

� is the maximum eigenvalue of ATA� We say that a sequence ui� i � �� �� � � �� converges
monotonically to a point u� in the norm k � k if�

kui�� � u�k � kui � u�k� i � �� �� � � � � ���

Consider the general linear iteration of the form

vi�� � Avi� i � �� �� � � �

with jjjAjjj � �� Then� since kvi��k � jjjAjjj � kvik � kvik� the sequence fvig converges monotonically
to zero and the asymptotic rate of convergence is specied by the root convergence factor ��A�
which is dened as the largest magnitude eigenvalue of A ����� Observe that ��A� is identical to
jjjAjjj� if A is real symmetric non
negative denite�

Assume that the function Q��� �� is twice continuously di�erentiable in both arguments � and
� over �� � � �� We dene the Hessian matrix of Q over � � � as the following block partioned
�p� �p matrix�

r�Q��� �� �

�
r��Q��� �� r��Q��� ��
r��Q��� �� r��Q��� ��

�
� ���

where r��Q��� �� � r�rT
�Q��� ��� r��Q��� �� � r�

rT

�
Q��� ��� and r��Q��� �� � r�

rT
�Q��� �� are

p � p matrices of partial derivatives ��

��i��j
Q��� ��� ��

��i��j
Q��� ��� and ��

��i��j
Q��� ��� i� j � �� � � � � p�

respectively�

A region of monotone convergence relative to the vector norm k � k of the A
algorithm ��� is
dened as any open ball B���� �� � f� � k� � ��k � �g centered at � � �� with radius � � � such
that if the initial point �� is in this region then k�i � ��k� i � �� �� � � �� converges monotonically to
zero� Note that as dened� the shape in IRp of the region of monotone convergence depends on the
norm used� For the Euclidean norm kuk � uTu the region of monotone convergence is a spherically
shaped region in �� For a general positive denite matrix B the induced norm kuk � uTBu makes
this region an ellipsoid in �� Since all norms are equivalent for the case of a nite dimensional
parameter space� monotone convergence in a given norm implies convergence� however possibly
non
monotone� in any other norm�

Dene the p�pmatrices obtained by averagingr��Q�u� u� andr��Q�u� u� over the line segments

u � ���� and u � �����

���

A���� �� � �
Z �

�
r��Q�t� � ��� t���� t� � ��� t����dt

A���� �� �
Z �

�
r��Q�t� � ��� t���� t� � ��� t����dt�
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For tk � ��� ��� k � �� � � � � p� dene the p � p matrices obtained by taking each of the p rows

of r��Q��� �� and r��Q��� �� and replacing � and � with points ��tk�
def
� tk� � �� � tk��

� and

��tk�
def
� tk� � ��� tk��

��

���

A���� �� � �

�
���
r�

�

��
Q��� ��t���j����t�	

���
r�

�

�p
Q��� ��tp��j����tp	

�
��	

A���� �� �

�
���
r

�
�

��
Q��� ��j����t�	�����t�	

���
r

�
�

�p
Q��� ��j����tp	�����tp	

�
��	 �

De�nition � For M� and M� de�ned as either A� and A� in 
�� or as A� and A� in 
�� de�ne
R� � � as the largest open ball B���� �� � f� � k� � ��k � �g such that for each � � B���� ���

M���� �� � �� for all � � � ���

and for some � � 	� � �













hM���� ��

i��
�M���� ��















 � 	�� for all � � �� �	�

The following convergence theorem establishes that� if R� is not empty� the region in Denition
� is a region of monotone convergence in the norm k � k for an algorithm of the form ����

Theorem � Let �� � � be a �xed point of the A algorithm 
�� �i�� � argmax���Q��� �i�� i �
�� �� � � �� Assume� i� for all � � �� the maximum max�Q��� �� is achieved on the interior of the set
�� ii� Q��� �� is twice continuously di�erentiable in � � � and � � �� Let the point �� initialize
the A algorithm�

�� If the positive de�niteness conditions 
�� is satis�ed� then the sucessive di�erences ��i �
�i � �� of the A algorithm obey the recursion�

��i�� � �M���
i��� �i����M���

i��� �i� ���i� i � �� �� � � � � ����

	� If �� � R� for a norm k � k� then k��ik converges monotonically to zero with at least linear
rate� and
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�� ��i asymptotically converges to zero with root convergence factor

�
��
�r��Q���� ���

��
r��Q���� ���

�
� ��

Proof of Theorem ��

Dene �� � � � �� and ��i � �i � ��� Convergence will be established by showing that

k��i��k � k��ik� Dene the �p� � vectors 
 �
h
�

�i

i
� 
� �

h
��

��

i
and �
 � 
� 
�� By assumption ii

we can use the Taylor formula with remainder ���� Eq� B����� to expand Q���
�
def
� �r��Q��� �i��T

about the point 
 � 
� �
h
�
�

��

i
�

Q���
� � Q���

�� �

Z �

�
r�Q���t
 � ��� t�
��dt �
�

Now since by assumption i� �� � argmax���Q��� ��� occurs in the interior of �� Q���

�� �

r��Q���� ��� � �� a row vector of zeros� Therefore�

Q���
� �
Z �

�
r�Q���t
 � ��� t�
�� �
dt� ����

�From denition ����

Z �

�
rQ���t
 � ��� t�
��dt �

h
�A���� �

i�
��� A���� �

i�

i
�

we have from ����

r��Q��� �i� � �A���� �
i��� � A���� �

i���i� ����

On the other hand� consider the k
th element of the left hand side of the ���� and dene ��t� �
t� � ��� t���� From the mean value theorem�

Z �

�

�
r�

�

��k
Q���t�� �i�t���� �r�i

�

��k
Q���t�� �i�t����i

�
dt

� r�

�

��k
Q���tk�� �

i�tk���� �r�i
�

��k
Q���tk�� �

i�tk����
i

� ��A��k���� �
i��� � �A��k���� �

i���i

where tk is some point in ��� ��� which in general depends on �� �i� and ��� and �A��k�� �A��k� denote
the k
th rows of the matrices A�� A� dened in ���� Therefore ���� is equivalent to

r��Q��� �i� � �A���� �
i��� � A���� �

i���i� ����
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Combining ���� and ���� we obtain the general relation�

r��Q��� �i� � �M���� �
i��� �M���� �

i���i� ����

where M� and M� are either A� and A� or A� and A�� Now� we know �i�� � argmax�Q��� �i� lies
in the interior of �� r��Q��i��� �i� � �� Therefore from Eq� �����

�M���
i��� �i���i�� �M���

i��� �i���i � �� ����

Now if the positivity condition ��� holds for � � �i then M���� �
i� is invertible for all � and it follows

from Eq� ���� that�

��i�� � �M���
i��� �i����M���

i��� �i� ���i� ����

Furthermore� by properties of matrix norms ����

k��i��k �






M���

i��� �i����M���
i��� �i�







 � k��ik
� sup

���







�M���� �
i����M���� �

i�






 � k��ik� ����

Therefore� if �i � R�� by condition �	� sup��� jjj�M���� �
i����M���� �

i�jjj � 	� � � so that�

k��i��k � 	� � k��ik�

Since R� is an open ball centered at �� which contains �i� this implies that �i�� � R�� By induction
on i we conclude that k�i � ��k converges monotonically to zero with at least linear convergence
rate�

Next we establish the asymptotic convergence rate stated in the theorem� By continuity of the
derivatives of Q��� �i� and the result ���� we obtain�

M���
i��� �i� � �r��Q���� ��� � O�k��ik�

M���
i��� �i� � r��Q���� ��� � O�k��ik��

Thus� by continuity of the matrix norm�

	� 	 sup
���







�M���� �
i����M���� �

i�






 �










��r��Q���� ���
��

r��Q���� ���









�O�k��ik�� ����

Since 	� � � taking the limit of ���� as i�
 establishes that








��r��Q���� ���
��

r��Q���� ���









 � �� ��	�

Furthermore ���� takes the asymptotic form�

��i�� � ��r��Q���� ������r��Q���� ��� ���i � o�k��ik��

�



Therefore the asymptotic rate of convergence is given by the root convergence factor

�
�
��r��Q���� ������r��Q���� ���

�
�

For any matrix A we have ��A� � jjjAjjj ���� Thm� ����	� so that� in view of ��	�� the root
convergence factor is less than one� �

The careful reader will have noticed that in the proof of Theorem � all that was required of �i��

was that r��Q��i��� �i� � �� Analogously to the A
algorithm ��� let f�ig be a sequence of points
in � generated by the following stationary point version of this algorithm which we call the AZ
algorithm�

�i�� � argzero�r
��Q��� �i�� i � �� �� � � � � ����

where argzero�r
��Q��� �i� is any point � in � where the gradient r��Q��� �i� is zero� Note that the

stationary point need not be unique� any stationary point will do� If we assume that the algorithm
���� is implementable� i�e� a stationary point exists at each iteration i � �� �� � � �� then we have�

Corollary � Let �� � � be a �xed point of the algorithm 
�� �i�� � argmax���Q��� �i�� i �
�� �� � � �� Assume� i� for all � � �� the maximum max�Q��� �� is achieved on the interior of the set
�� ii� Q��� �� is twice continuously di�erentiable in � � � and � � �� iii� relative to the matrix
norm jjj�jjj the region of monotone convergence R� is non�empty� Let the point �� initialize the AZ
algorithm 
	��� Then Assertions � and 	 of Theorem � hold for the AZ sequence f�ig�

In the case that the parameter space � � IRp the AZ algorithm ���� is always implementable�

Lemma � In addition to the conditions of Corollary � assume that � � IRp� Then for each
iteration i � �� �� � � � of the AZ algorithm 
	�� there exists a point � for which r��Q��� �i� � ��

Proof

As in the proof of Theorem �� assuming �i � R� we have from Eq� �����

r��Q��� �i� � �M���� �
i��� �M���� �

i���i

� �M���� �
i�
�
�� � �M���� �

i����M���� �
i� ���i


� �M���� �

i� � d��� ����

Where the p
element vector d��� � ����� �M���� �i����M���� �i� � ��i���� is a function of �� Since
�
�
M��

� M�

�
�






M��

� M�







 � � for all � � �� the eigenvalues of �M��
��M� lie in the interval ���� ��

�



for all � � �� Since � � IRp is unbounded� there exist points � � �� and � � �� in � such that
all p entries of the vector d��� are strictly positive and strictly negative� respectively� Since d���
is continuous this implies that there exists a point � � � such that d��� � � which implies that
r��Q��� �i� � � as claimed� �

In investigating monotonic convergence properties of the sequence f�ig it is sometimes useful to
make a transformation of parameters � � � � Consider a smooth invertible functional transformation
g� � � g���� Then �i can be represented as g���� i�� where g�� is the inverse of g� the sequence f� ig
is generated by the analogous A
algorithm�

� i�� � argmax
��g��	

�Q��� � i�� i � �� �� � � � �

and

�Q��� � i�
def
� Q

�
g������ g���� i�

�
� Q��� �i�




��g�� ��	��i�g����i	

�

The convergence properties of the sequence � i � g��i� can be studied using Theorem � with M�

and M� dened in terms of the mixed partial derivatives of �Q�

r�� �Q��� � i� � J�����
�
r��Q

�
g������ g���� i�

�
J���� i�

r�� �Q��� � i� � J�����
�
r��Q

�
g������ g���� i�

�
J������

where J��� � rg���j��g����	 is the p� p Jacobian matrix of partial derivatives of g�

In particular� the relation ���� of Theorem � with M� � A� and M� � A� gives a recursion for
�� i � g��i�� g�����

�� i�� � � �A���
i��� � i���� �A���

i��� � i� ��� i ����

� J�� i���
�
A�

�
g���� i���� g���� i�

���
A��g

���� i���� g���� i��J���� i� ��� i�

III� CONVERGENCE OF THE EM ALGORITHM

Let an observed random variable Y take values fyg in a set Y and let Y have the probability
density function f�y� �� where� � � ���� � � � � �p�T is a real� non
random parameter vector residing in
an open subset � � �� � � � � ��p of the p
dimensional space IRp� Given a realization Y � y� the
penalized maximum likelihood estimator is dened as the parameter value which maximizes the
penalized likelihood of the event Y � y�

��
def
� argmax

���
fL���� P ���g ����

	



where L��� � ln f�y� �� is the log
likelihood function and P ��� is a penalty function� If f���
is a prior density for �� the penalized ML estimator is equivalent to the MAP estimator when
P ��� � � ln f���� When P ��� is constant we obtain the standard unpenalized ML estimator�

��
def
� argmax

���
L���� ����

Under broad conditions the penalized ML estimator enjoys many attractive properties such as con

sistency� asymptotic unbiasedness� and asymptotic minimum variance among unbiased estimators
����� However� in many applications direct maximization of the functions in ���� and ���� is in

tractible� In this case the EM approach o�ers a simple indirect method for iteratively approximating
the penalized and unpenalized ML estimates�

III�a� A General Class of EM Algorithms with Stochastic Mapping

The key to the ML
EM algorithm is to identify Y as an incomplete data set derived from
a more informative hypothetical complete data set X� where by more informative we mean that
Y can be represented as the output of a �
independent channel C with input X� See Figure ��
Mathematically� this means that the conditional density of Y given X is functionally independent
of �� Observe that this denition of complete data is more general than the standard denition�
e�g� as used in ��� ���� since it permits the complete and incomplete data to be related through a
stochastic mapping� Our denition of complete data reduces to the standard denition when the
channel C is specialized to a noiseless channel� i�e� a deterministic many
to
one transformation h
such that Y � h�X��

Let the random variable X take values fxg in a set X and let X have p�d�f� f�x� ��� Then for an
initial point �� the EM algorithm produces a sequence of points f�ig�i�� via one of the recursions�

�i�� �

���
��

argmax�fQ��� �i�g� i � �� �� � � �
or
argzero� fr

��Q��� �i�g � i � �� �� � � �
����

where Q��� �� is the conditional expectation of the complete data log
likelihood function minus the
penalty�

Q��� ��
def
� Efln f�X� ��jY � y� �g � P ���� ����

The recursion ���� is a special case of the A algorithm ��� and thus convergence can be investigated
using Theorem ��

Using the elementary identity f�x� �� � f�xjy
�	f�y
�	
f�yjx
�	 and the property that f�yjx� �� � f�yjx�

is independent of � the Q function in the EM algorithm ���� takes the equivalent form�

Q��� �� � ln f�y� �� � Efln f�Xjy� ��jY � y� �g

��



�Efln f�yjX�jY � y� �g � P ���

� L��� �H��� ���W ���� P ����

Here H��� �� � Efln f�Xjy� ��jY � y� �g is the �negative� complete
data conditional entropy and
W ��� is a function independent of �� The above Q function di�ers from the standard penalized ML

EM Q function of ��� 	� in only one respect� the presence of the function W ���� For the standard
case� the mapping from complete to incomplete data is deterministic� f�yjX� �� is degenerate�
and W ��� � �� Since Efln f�Xjy� ��jY � y� �g and W ��� are functionally independent of �� an
equivalent form for the Q function in the penalized ML
EM algorithm ���� is�

Q��� �� � L����D��k��� P ��� ����

where D��k�� is the Kullback�Liebler 
KL� discrimination�

D��k��
def
�
Z

ln
f�xjy� ��

f�xjy� ��
f�xjy� ��dx�� ����

The following properties of the KL discrimination D��k�� follow directly from ���� Ch� ���

�� D��k�� 	 � where  �! holds i� g�xjy� �� � g�xjy� �� a�e� in x�

�� When di�erentiation of f�xjy� �� under the integral sign is justied ���� Sec� �����

�a� r��D��k�� � r��D��k�� � �

�b� r��D��k�� 	 �

�c� �r��D��k�� � r��D��k��

�� r��D��k�� � FXjy���� where

FXjy���
def
� Ef�r�

� log f�Xjy� ��jY � y� �g�

is the non
negative denite conditional Fisher information�

The representation ���� immmediately gives�

Lemma � The penalized ML�EM algorithm with stochastic mapping 
	�� generates a sequence
f�ig�i�� for which the penalized ML estimate �� � argmax�fL���� P ���g is a �xed point� Further�
more� for any initial point �� the penalized likelihood is non�decreasing at each step in the sense
that�

L��i���� P ��i��� 	 L��i�� P ��i�� i � �� �� � � � �

��



Proof of Lemma 	�

Fix i and let �i � ��� Then�

�i�� � argmax
�

fL����D��k���� P ���g

Since L��� � P ��� and �D��k��� individually take their maximum values at the same point � � ��
we have �i�� � �i � ��� By induction we thus obtain �n � �� for all n � i� The monotonic increase
in penalized likelihood follows from the chain of inequalities�

� � Q��i��� �i�� Q��i� �i�

� �L��i���� P ��i����� �L��i�� P ��i��

�D��i��� �i� �D��i� �i�

� �L��i���� P ��i����� �L��i�� P ��i��

where the last inequality is a consequence of the inequality� D��� �i� 	 D��i� �i� � � for all �� �

We will need the following denitions�

De�nition � For �� � argmax�fL��� � P ���g the penalized ML estimate de�ne the symmetric
Hessian matrices�

Q
def
� �r��Q���� ���

L
def
� �r�

��L�
���

P
def
� r�

��
P ����

D
def
� r��D���k���� ��	�

The following relations follow directly from ���� and properties of the KL discrimination�

Q � L �P�D

r��Q���� ��� � �D� ����

Theorem � Assume� i� the penalized ML estimate �� � argmax�fL��� � P ���g occurs in the
interior of the set �� ii� for all � � �� the maximum max�Q��� �� is achieved on the interior of
the set �� iii� L���� P ���� and D��k�� are twice continuously di�erentiable in � � � and � � �
and L � P � �r�

��
�L���� � P ����� � �� Let the point �� initialize the EM algorithm with stochastic

mapping 
	���

��



�� If the positivity condition 
�� is satis�ed then the sucessive di�erences ��i � �i � �� of the A
algorithm obey the recursion 
����

	� If �� � R� then k��ik converges monotonically to zero with at least linear rate and

�� ��i asymptotically converges to zero with root convergence factor

�
�
I�Q���L�P�

�
�















I�Q�

�
� �L �P�Q�

�
�
















�

which is strictly less than one�

Proof of Theorem 	

By Lemma �� in the notation of Theorem �� the EM algorithm has a xed point at �� � ���
Furthermore� since Q��� �� � L��� �D��k�� � P ���� assumption iii of Theorem � guarantees that
Q��� �� is twice continuously di�erentiable in both arguments� Thus the assumptions of Theorem �
are satised and item � of Theorem � follows� Now by Theorem � the root convergence factor is given

by �
�
��r��Q���� ������r��Q���� ���

�
� �From identities ��	� and ���� ��r��Q���� ������r��Q���� ��� �

Q��D � �D�L�P���D � I�Q���L�P�� Since L�P is positive denite and D is non
negative
denite �property ��b of the KL discrimination�� Lemma � �Appendix� asserts that the eigenvalues
of Q��D are in the range ��� ��� Furthermore� I�Q���L � P� is similar to the symmetric matrix

I�Q�
�
� �L�P�Q�

�
� and therefore these two matrices have identical eigenvalues� Since ��A� � jjjAjjj�

for any real symmetric non
negative matrix A the theorem follows� �

Note that when the penalty function induces coupling between parameters� the M
step of the EM
!algorithm! described above can be intractable� The OSL method of Green and the majorization
method of DePierro� both described below� address this di�culty by modifying the Q function�

III�b� Linear Approximation to ML�EM Algorithm

In ��� the unpenalized ML
EM algorithm was formulated for the di�cult case of intensity pa

rameter estimation for continuous
time ltered Poisson
Gaussian observations� By selecting the
complete data as the unobservable Poisson increment process fdNtgt����T  over the time interval
��� T �� an ML
EM algorithm was derived of the form�

�i�� � argmax
�

Q��� �i�� i � �� �� � � � ����

where

Q��� ��
def
�

Z T

�

��tjy� �� ln�tj��dt ����

��



and �tj�� is the Poisson point process intensity over time t � ��� T � and parameterized by ��
and ��tjy� �� � EfdNtjY � y� �g is the conditional expectation of the Poisson increment process
given Y � y and � � �� i�e� the minimum mean
square error estimate of Nt� Unfortunately the
computation of the conditional mean estimator proved to be intractible and instead the best linear
estimator ��t� �jy� �� was substituted into �����

�Q��� ��
def
�

Z T

�

��tjy� �� ln�tj��dt

While the algorithm resulting from replacing Q by �Q is no longer an ML
EM algorithm� and
the ML estimate may not even be a xed point� it belongs to the class of A algorithms ��� for
which Theorem � can be applied to establish monotone convergence properties and asymptotic
convergence rate� In particular� with �� a xed point� the asymptotic convergence rate to �� is

�
�
�r�� �Q���� ������r�� �Q���� ���

�
�

III�c� One�Step�Late 	OSL
 Penalized ML�EM

Green �	� ��� proposed an approximation� which he called the one
step
late �OSL� algorithm�
for the case of tomographic image reconstruction with Poisson data and a Gibbs prior for which
the M step of the penalized ML
EM algorithm is intractible� Green"s algorithm is equivalent to
linearizing the prior ln f��� about the previous iterate �i in �����

�i�� �

���
��

argmax� fEfln f�X� ��jY� �ig�r�i ln f��
i��� � �i�g � i � �� �� � � �

or

argzero� fr�Efln f�X� ��jY� �ig�r�if��
i�g � i � �� �� � � �

� ����

Again Theorem � is applicable by identifying Q in the theorem with the function Efln f�X� ��jY� �ig�
r�i ln f��i���� �i� in ����� If the OSL algorithm converges to a xed point �� the asymptotic con

vergence rate is�

�
�
�r��Q���� �������r��Q���� ��� �r�

�i ln f��
���
�

� �
�
�L�D����D�P�

�
which is identical to the result cited in ���� for the standard case of deterministic complete�incomplete
data mapping and the Gibbs prior f��� � expf��V ���g�

IV� APPLICATIONS

We consider two separate applications� the linear Gaussian model and the PET image re

construction model� These two cases involve complete and incomplete data sets with Gaus

sian�Gaussian and Poisson�Poisson statistics� respectively�

��



IV�a� Linear Gaussian Model

Consider the following linear Gaussian model�

Y � G� �Wy ����

where � � � � IRp is a p
element parameter vector� G is an m � p matrix with full column rank
p � m� and Wy is an m
dimensional zero mean Gaussian noise with positive denite covariance
#yy� The unpenalized ML estimator of � given Y is the weighted least squares estimator�

�� � �GT#��yyG���GT#��yyY� ����

Next consider decomposing the matrix G into the matrix product BC where the m�n matrix
B has full row rank m� the n � p matrix C has full column rank p� and p � m � n� With this
decomposition we can dene a complete
incomplete data model associated with �����

Y � BX�W ����

X � C� �Wx ����

where the m
element vector W and the n
element vector Wx are jointly Gaussian with zero mean

and �
independent positive denite covariance matrix E�

��
W

Wx

�
�WWx�

�
� These assumptions

guarantee that � be identiable in the noiseless regime when Wx andW are vectors of zeroes� The
model ���� is of interest to us since the non
zero noiseW case is not covered by the standard ML
EM
algorithm assumptions� On the other hand� the Gaussian complete�incomplete data mapping ����
species Y as the output of a simple additive noise channel with input X� a complete
incomplete
data model for which our theory directly applies�

For the Gaussian model ���� the conditional distribution of Y given X � x is specied by a
m
variate Gaussian density N ���#� with vector location parameter�

� � Bx�E�WjX � x� ��

� Bx�#yx#
��
xx �x�C��

and matrix scale parameter�

# � #yy � #T
xy#

��
xx#xy�

By assumption the scale parameter # is functionally independent of �� However� unless #nx � �
the location parameter � generally depends on �� To ensure that the conditional density ofY given
X � x be independent of � it is required that W and Wx be uncorrelated� Under this condition
���� is a valid complete
incomplete data model�

��



The complete data log
likelihood is�

ln f�x� �� � ��
��x�C��T#��xx �x�C�� � �

� ln j#xxj�

Now the unpenalized ML
EM algorithm is of the form ���� with�

Q��� �� � E�ln f�X� ��jY� �� ����

� ��
��E�XjY� ���C��T#��xx �E�XjY� ���C��

��
�E

h
�X�E�XjY� ���T#��xx �X�E�XjY� ���




Y� �
i
� �

� ln j#xxj

� ��
�
�E�XjY� ���C��T#��xx �E�XjY� ���C�� �K�Y� ��

where K�Y� �� is functionally independent of �� The conditional expectation in ���� has the form�

E�XjY� �i� � �I� #xy#
��
yyB�C � �i � #xy#

��
yyY ��	�

� �I� #xxB
T#��yyB�C � �i �#xxB

T#��yyY� ����

It is easily veried that�

�r��Q��� �� � CT#��xxC

� FX

and

r��Q��� �� � CT#��xxC�CTBT#��yyBC ����

� CT#��xxC�CTBT �B#xxB
T � #nn�

��BC ����

� FX � FXjy ����

where FX � Ef�r�
� ln f�X� ��g and FXjy � Ef�r�

� ln f�XjY� ��jY � y� �g are unconditional and
conditional Fisher information matrices associated with X�

Since the matrices r��Q and r��Q are functionally independent of � and � the matrices A� �
A� � M� and A� � A� � M� dened in ��� and ��� are given by the �
 and �
independent matrices�

M���� �� � FX

M���� �� � FX � FXjy�

Now the condition M���� �� � � ��� is satised since C is full rank� Thus we obtain from Theorem
� the recursion for ��i � �i � ���

��i�� � F��X �FX � FXjy� ���
i

This is equivalent to�

F
�
�
X��

i�� � F
�
�
�

X �FX � FXjy�F
�
�
�

X � F
�
�
X��

i� ����

��



Take the Euclidean norm of both sides of ���� to obtain�

k��i��k �















F��

�
X �FX � FXjy �F

�
�
�

X
















�

� k��ik ����

where jjj�jjj� is the matrix
� norm and k�k is the weighted Euclidean norm dened on vectors u � IRp�

kuk
def
� uTFXu� ����

Applying the Sherman
Morrisey
Woodbury ��� identity to the matrix FX � FXjy ���� we see
that it is symmetric positive denite�

�F
def
� FX � FXjy

� CT �#��xx �B
T �B#xxB�#nn�

��B�C � CT#��xx �#
��
xx �BT#��nnB���#��xxC

� �� ����

Thus F
�
�
�

X �FX � FXjy�F
�
�
�

X is symmetric positive denite and therefore�













F��

�
X �FX � FXjy�F

�
�
�

X
















�

� �

�
F
�
�
�

X �FX � FXjy �F
�
�
�

X

�

� �
�
I� F��X FXjy

�
� �

�
I� ��F� FXjy�

��FXjy

�
� �

where we have used Lemma � and the fact that �F � � and FXjy 	 �� Therefore from �����

k��i��k � k��ik

and the ML
EM algorithm converges monotonically in the norm k � k ���� for all initial points
��� Therefore it converges globally in any norm� The asymptotic convergence rate is seen to be

�
�
I� F��X FXjy

�
� We have thus established the following�

Theorem � The ML�EM algorithm for the Gaussian complete�incomplete data mapping de�ned
by 
��� globally converges everywhere in � � IRp to the ML estimate� Furthermore convergence is

monotone in the norm kuk
def
� uTFXu and the root convergence factor is ��A� � � where A is the

matrix�

A � I� F��X FXjy ����

where

FX
def
� CT#��xxC ��	�

FXjy
def
� CTBT �B#xxB�#nn�

��BC� ����

��



Finally� it is useful to remark that due to the form of A ����� the spectral radius ��A� can
only increase as the covariance #nn of the channel noise W increases� We therefore conclude that
while increased channel noise does not a�ect the region of monotone convergence of the ML
EM
algorithm it does adversely a�ect the rate of convergence for the Gaussian model �����

IV�b� PET Image Reconstruction

In the PET problem the objective is to estimate the intensity � � ���� � � � � �p�
T � �b 	 �� governing

the number of gamma
ray emissions N � �N�� � � � �Np�T over an imaging volume of p pixels� The
estimate of � must be based on the projection data Y � �Y�� � � � �Ym�

T � BothN and Y are Poisson
distributed�

P �N� �� �
pY

b��

��b�

Nb$

Nb

e��b �

P �Y� �� �
mY
d��

��d�

Yd$

Yd

e��d ����

where �d � E��Yd� is the Poisson intensity for detector d�

�d �
pX

b��

Pdjb�b

and Pdjb is the transition probability corresponding to emitter location b and detector location d�
To ensure a unique ML estimate we assume that m 	 p� the m � p system matrix ��Pdjb�� is full
rank� and ��d� Yd� are strictly positive for all d � �� � � � � m�

The standard choice of complete data X for estimation of � via the EM algorithm is the set
fNdbg

m�p

d���b��� where Ndb denotes the number of emissions in pixel b which are detected at detector
d ���� ���� This complete data is related to the incomplete data via the deterministic many
to

one mapping� Nd �

Pp

b��Ndb� d � �� � � � � m� It is easily established that fNdbg are independent
Poisson random variables with intensity E�fNdbg � Pdjb�b� d � �� � � � � m� b � �� � � � � p and that the
conditional expectation Efln f�X� ��jy� �ig of the complete data log
likelihood given the incomplete
data is �����

Efln f�X� ��jY� �ig �
mX
d��

pX
b��

�
YdPdjb�

i
b

�id
ln�Pdjb�b�� Pdjb�b

�

where �id �
Pp

b�� �
i
bPbjd� For a penalty function P ��� the Q function for the penalized ML
EM

algorithm is�

Q��� �i� � Efln f�X� ��jY� �ig � P ����

��



which yields a sequence of estimates �i� i � �� �� � � � of �� In order to obtain asymptotic convergence
properties using Theorem � it will be necessary to assume �i lies on the interior of �� i�e� �i lies
in the strictly positive orthant� for all i � � � This assumption only holds when the unpenalized or
penalized ML estimate �� lies in the interior of �� a condition which is usually not met throughout
the image� For example� when

Pm

d�� Pbjd � � the pixel b is outside the eld of view and it is easily

established that ��b � �� Therefore� for the following analysis to hold� the pixels for which �� lies on
the boundary must be eliminated from the vector �i�

Under these assumptions

�r��Q��� �i� � diagb

�
�ib
�b

�
� �B��i� �C��i�� � diagb

�
�ib
�b

�
� P��� ����

r��Q��� �i� � diagb

�
�ib
�b

�
�C��i� ����

where� similar to the denition in ����� B��i� is the positive denite p� p matrix�

B��i�
def
�

mX
d��

Yd

��id�
�
P dj�P

T
dj��

B��i� �C��i� is the p� p positive denite matrix

B��i� �C��i�
def
� diagb

�
�

�ib

mX
d��

YdPdjb

�id

�
�

and

P���
def
� r�

�P ����

The matrices A���� �
i� and A���� �

i� dened in ��� are obtained by taking the k
th row of
�r��Q��� �i� and the k
th row of r��Q��� �i� and replacing � and �i with ��t� � tk� � �� � tk���
and �i�t� � tk�

i � ��� tk���� respectively� k � �� � � � � p� This gives�

A���� �
i� � diagb

�
�ib�tb�

�b�tb�

�
� �Bt �Ct� � diagb

�
�ib�tb�

�b�tb�

�
�Pt ����

A���� �
i� � diagb

�
�ib�tb�

�b�tb�

�
�Ct ����

where Pt is the p� p matrix�

Pt
def
� �

�
���
r�

�

����t�	
P ���t���
���

r�
�

��p�tp	
P ���tp��

�
��	 � ����

�	



Bt is the non
negative denite p� p matrix�

Bt
def
�

mX
d��

Yddiagb

�
�

�id�tb�

�
P dj�P

T
dj�diagb

�
�

�id�tb�

�
� ����

Bt �Ct is the positive denite p� p matrix�

Bt �Ct
def
� diagb

�
�

�ib�tb�

mX
d��

YdPdjb

�id�tb�

�
� ����

and �id�tb�j
def
�
Pp

k�� �
i
k�tb�Pkjd�

Now if A���� �
i� is invertible for all �� and �i we have from ���� of Theorem ��

��i�� � ��A���
i��� �i����A���

i��� �i� ���i ��	�

� diagb

�
�i��b �tb�

�ib�tb�

�
� �Bt �Ct � diagb

�
�i��b �tb�

�ib�tb�

�
Ptdiagb

�
�i��b �tb�

�ib�tb�

�
���Ct ���

i

where t � �t�� � � � � tp�
T is a function of �i� �i��� ��� Unfortunately� it can be shown that for any �i�

sup��� jjjA���� �
i����A���� �

i�jjj is unbounded for any Euclidean
type norm of the form kuk� � uTDu
where D is positive denite� Thus the monotone convergence part of Theorem � fails to apply� This
suggests that to establish monotone convergence properties of the PET EM algorithm� we should
consider other parameterizations of ��

Consider the alternative parameterization dened by the logarithmic transformation g��

� � ln � � �ln ��� � � � � ln �p�
T �

The inverse of the transformation g��� � ln � is the exponential transformation

g����� � e� � �e�� � � � � � e�p �T �

and the Jacobian is the diagonal matrix with diagonal elements�

�J����bb � e��b �

Using ���� and ���� we obtain from �����

�� i�� � diagb

�
e��

i
b �tb	

� h
�Bt � �Ct � diagb

�
e�

i��

b
�tb	��

i
b �tb	

�
�Ptdiagb

�
e�

i��

b
�tb	��

i
b�tb	

�i��
� �Ct diagb

�
e�

i
b �tb	

�
��� i

where �Bt� �Ct and �Pt are Bt� Ct and Pt of ����
���� parameterized in terms of � � ���� and
��tb� � tb� � �� � tb��� � b � �� � � � � p� Using the facts that �b � ln �b and ��tb� � ln ��tb� for some
tb � ��� ��� b � �� � � � � p� we can express the above in terms of the original parameterization to obtain�

����

� ln �i�� � Dt
�� �Bt �Ct �RT

t PtRt�
��Ct Dt �� ln �i�

��



where

Dt
def
� diagb

�
�ib�tb�

�
Rt

def
� diagb

�
�i��b �tb�

�ib�tb�

�

and � ln � is the vector�

� ln �
def
� ln � � ln ���

In ���� we have dropped the overline in t for notational simplicity� We divide subsequent treatment
into the unpenalized and penalized cases�

Unpenalized ML�EM

For the unpenalized case Pt � �� so that Bt�Ct�Pt � Bt�Ct is symmetric positive denite
and we have from �����

�Bt �Ct�
�
�Dt �� ln �i�� ����

� �Bt �Ct�
�
�
�Ct�Bt �Ct�

�
�
� � �Bt �Ct�

�
�Dt �� ln �i

Taking the Euclidean norm of both sides of ���� we obtain�

�
� ln �i��

T
DT

t �Bt �Ct�Dt

�
� ln �i��


����

�















�Bt �Ct�

�
�
�Ct�Bt �Ct�

�
�
�
















�

�
�
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It is easily seen that DT

t �Bt �Ct�Dt is the diagonal matrix�

DT

t �Bt �Ct�Dt � diagb

�
�ib�tb�

mX
d��

Yd

Pdjb

�id�tb�

�
� ����

This establishes�

pX
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�ib�tb�
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�
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�i��b

��b
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��Ct
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�ib�tb�
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�
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��b
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We next consider the asymptotic form of ���� for small k��ik�� By using �ib�tb� �
��b � tb��ib

and �id�tb� � ��d �O�k��i�k�� we obtain�

DT

t �Bt �Ct�Dt � DT �B�C�D� O�k��ik��

� diagb

�
��b

mX
d��

Yd

Pdjb

��d

�
� I �O�k��ik��� ����

�
�
�Bt �Ct�

��Ct

�
� �

�
�B�C���C

�
�O�k��ik�� ����

where ��d �
Pp

b�� Pdjb
��b and D � Dtjt��� C � Ctjt�� � C����� B � Btjt�� � B����� It is proven in

Appendix B that 	�
�
def
� ���B�C���C� � �� Using the asymptotic forms ���� and ���� in �����

�
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T
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Pdjb

��d
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�
�
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Identifying the norm k � k dened by�

kuk
def
� uT diag

�
��b

mX
d��

Yd

Pdjb

��d

�
u

�
pX

b��

��b

mX
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Yd

Pdjb

��d
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we have the equivalent form���� ln �i��
�� � �� � O�k��ik��
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� ����

Thus if �i is su�cently close to ��� ��� ln �i��
�� �

��� ln �i
�� ��	�

Now it is known that the ML
EM PET algorithm converges �	� so that k�i � ��k � �� As
long as �� is strictly positive� the relation ���� asserts that in the nal iterations of the algorithm
the logarithmic di�erences ln �i � ln �� converge monotonically to zero relative to the norm �����
Furthermore the speed of this asymptotic monotone convergence is inversely proportional to 	�

� �
���B�C���C��

The norm k � k in ���� has a simpler equivalent form which is functionally dependent on Yd

only through ��� The PET log
likelihood function ln P �Y� �� ���� has derivative at the maximum
likelihood estimate ���

�

���b
lnP �Y� ��� �

pX
d��

�
Yd

Pdjb

��d
� Pdjb

�
� b � �� � � � � p� ����
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Now since �� is a stationary point of lnP �Y� �� this derivative is zero and�

pX
d��

Yd

Pdjb

��d
� Pd

where

Pb
def
�

pX
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Pdjb

Thus ��	�is equivalent to�
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��b
�
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Finally we note that�

� ln � � ln
�b
��b

�
�b � ��b

��b
�O�j��bj�

so that to O�k��ik�� ���� is equivalent to�

pX
b��

Pb

�
�i��b � ��b

��b
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Pb

�
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Assuming the simple case where Pb �
Pm

d�� Pdjb � � we conclude that asymptotically the vector of

ratios ��i���
def
� ���ib�

��b� � � � ���
i
b�
��b�

T converges monotonically to zero in the standard Euclidean
norm�

We summarize these results in the following theorem�

Theorem � Assume that the unpenalized PET ML�EM algorithm converges to the strictly positive
limit ��� Then� in the �nal iterations the logarithm of sucessive iterates converge monotonically to
log �� in the sense that for some su�ciently large positive integer M �

k log �i�� � log ��k � 	�
�k log �

i � log ��k� i 	M�

where 	�
� � ���B�C���C�� B � B����� C � C����� the norm k � k is de�ned as�

kuk
def
�

pX
b��

Pb
��b u

�
b�

and Pb
def
�
Pm

d�� Pdjb�

��



Quadratically Penalized ML�EM

We assume that P ��� � �
��

T#� where # is a symmetric non
negative denite p�pmatrix� There
is no known closed form solution to the M
step of the penalized ML
EM algorithm ���� unless
# is diagonal� Therefore� for non
diagonal # the recursion ���� is only a theoretical algorithm�
Nonetheless� the convergence properties of this theoretical penalized ML
EM algorithm can be
studied using Theorem ��

Since Bt �Ct is positive denite� Bt �Ct �RT
t PtRt � Bt �Ct � Rt#Rt is positive denite

and from ���� we have the representation�
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Taking the Euclidean norm of both sides
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As in our study of unpenalized ML
EM we turn to the asymptotic behavior of the penalized

ML
EM inequality ����� First observe that as before DT

t �Bt �Ct�Dt � diagb
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Now it is easily shown that since # is non
negative denite� 	�
�
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where D
def
� diagb�

��b�� Identifying the norm k � k dened by�

kuk
def
� uT

�
diag

�
��b

mX
d��

Yd

Pdjb

��d
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we have�
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�From these results we obtain�

Theorem  Assume that the quadratically penalized PET ML�EM algorithm converges to the
strictly positive limit ��� Then� in the �nal iterations the logarithm of sucessive iterates converge
monotonically to log �� in the sense that for some su�ciently large positive integer M �

k log �i�� � log ��k � 	�
�k log �

i � log ��k� i 	M�

where 	�
�
def
� � ��B�C�#���C� � 	�

� � � ��B�C���C�� B � B����� C � C����� and the norm k � k
is de�ned by 
���

V� CONCLUSION

We have presented a methodology for studying the asymptotic convergence properties of EM

type algorithms� We have indicated how our methods apply to several important EM and ap

proximate EM algorithms presented in the literature� We have established asymptotic monotone
convergence of the log images and asymptotic rate of convergence for the PET ML
EM and pe

nalized ML
EM image reconstruction algorithms� A weakness of the theory given here is that it
does not apply to cases where the maximization in the M step is achieved on a boundary of the
parameter space� While there are a certain number of such problems where this theory will not
apply� we believe that the theory will nonetheless be useful for a large number of applications ar

eas� The theory presented in this paper has recently been applied to evaluating the convergence
properties of a rapidly convergent class of EM
type algorithms called space
alternating generalized
EM �SAGE� algorithms ����

��



APPENDICES

A� Matrix Lemmas

The following matrix results are used in the paper�

Lemma � Let the p�p symmetric matrices A and B be positive de�nite and non�negative de�nite�
respectively� and de�ne the matrix C � A�B� Then the eigenvalues of the matrix C��B all lie in
the interval ��� ���

Proof� Since the matrix C is positive denite there exists a symmetric positive denite square

root factor C
�
� such that C � C

�
�C

�
� � Furthermore� since C�

�
�BC�

�
� is non
negative denite�

C�
�
�BC�

�
� � �I � C�

�
�AC�

�
� � 	 �� Now adding the fact that C�

�
�AC�

�
� is positive denite�

we obtain � � C�
�
�BC�

�
� � I so that all of the eigenvalues of C�

�
�BC�

�
� are non
negative and

strictly less than one� Dening S � C
�
� � observe that C��B � S�� �C�

�
�BC�

�
� � S� so that C��B

and C�
�
�BC�

�
� are similar matrices� Since similar matrices have identical eigenvalues C��B has

eigenvalues in ��� ��� �

Lemma � Let B be an n � p matrix with full column rank p � n� Then ��A� � � implies

�
�
�BTB���BTAB

�
� ��

Proof� We use the following fact� if ��A� � � then � � AAT � I� The following sequence of
inequalities establishes the lemma�

��
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�
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�
� �

where the last inequality follows directly from Lemma �� The inequality on the third line follows
from the fact that the symmtric idempotent matrix B�BTB���BT satises� � � B�BTB���BT � I�

�

��



B� PET ML�EM Results

Lemma  Let the p�element vectors P dj�� d � �� � � � � m� span IRp and assume m 	 p� Assume that
�b � � for all b � �� � � � � p and Yd � � for all d � �� � � � � m� De�ne the matrices�

B
def
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� where 	�

� � ��� ���

Proof

Since the P dj�"s span IRp and the Yd"s are positive the matrix B is positive denite� Hence� by
Lemma �� it will su�ce to show that C is non
negative denite� Dene D � diagb��b�� Then�
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Therefore it su�ces to show that Ed 	 � for all d � �� � � � � m� Let u � IRp be arbitrary� Then
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