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ABSTRACT

Most expectation-maximization (EM) type algorithms for penalized maximum-likelihood image reconstruc-
tion converge particularly slowly when one incorporates additive background effects such as scatter, random
coincidences, dark current, or cosmic radiation. In addition, regularizing smoothness penalties (or priors)
introduce parameter coupling, rendering intractable the M-steps of most EM-type algorithms. This report
presents space-alternating generalized EM (SAGE) algorithms for image reconstruction, which update the
parametersequentiallyusing a sequence of small “hidden” data spaces, rather thiamultaneouslysing

one large complete-data space. The sequential update decouples the M-step, so the maximization can tyf
ically be performed analytically. We introduce new hidden-data spaces that are less informative than the
conventional complete-data space for Poisson data and that yield significant improvements in convergence
rate. This acceleration is due to statistical considerations, not numerical overrelaxation methods, so mono-
tonic increases in the objective function are guaranteed. We provide a general global convergence proof for
SAGE methods with nonnegativity constraints.

1 This work was supported in part by DOE Grant DE-FG02-87ER60561, NSF grant BCS-9024370 and NIH grants CA-54362-02 and CA-60711-01.



I. INTRODUCTION Fisher information can lead to remarkable improvements

Imaging techniques with Poisson measurement staf’g_convergence rates [11-16]. The relationship between

tics include: positron emission tomography (PET) [1f|sher information and cor_lvergence rate underscores all
the methods presented in this report. In particular, the

single photon emission computed tomography (SPEC?J,

gamma astronomy, various microscopy methods [2, §fquential gpdate of our SAGE algorithms_ allows us tq
and photon-limited optical imaging [4]. Statistical methyse small hidden-data spaces that are considerably less in-

ods for image reconstruction or restoration, such as m&[matlve than t_he ord|_nary complete-data space for im-
imum likelihood (ML), penalized maximum-likelihood29€ reconstruction, which leads to fast monotonic conver-

(PML), or maximuma posteriori(MAP), are computa- 96M¢€ . .
tionally challenging due to the transcendental form of the Images rgconstructed purely by using the maximum
Poisson log-likelihood. The difficulty is exacerbated whel{linood criterion [1,17] have been found to be unac-
one includes smoothness penalties or priors, since thE§R!APIY noisy. A variety of methods have been proposed

functionals further couple the parameters. EM algorithrﬁ% reduce this noise, usually with some concordant reso-

[5] have proven to be somewhat useful in such problen#‘ét,ion tradeoff. These methods include: aborting the it-

except for two important drawbacks. The first problel%rat_ion before convergence [18], using quadratic approxi-
is convergence rate: EM algorithms converge slowly, pemat'onS to the likelihood with a penalty [19. 20], using a

ticularly when one includes the additive effects of “bacl{°1e|o""r"jlble (nc_)n-smoot_hness) prior [21__23]' _and introduc-
ground” events such as random coincidences [6], scatfi @ Smoothing step into the ML-EM iteration [24-26].

[7, 8], dark-current [9], or background cosmic radiatior?._erhaps the most popular aIterna'Flve is the method of
The second problem is that the M-step of the EM algS.€VeS [27.28]. Sieves are usually implemented by post-
rithm becomes intractable when one includes smoothn88%00thing, even though the commutability requirement
penalties in the objective function. Since image reco[‘?—s’ eqn. (12)] is rarely met in practice. Howeve_r, recent
struction is ill-posed, such penalties are often very desit/dies. €.9. [29], have found that MAP (or equivalently

able. PML) methods outperform the method of sieves. There-

Unlike the statistical applications that motivated the déqrez n th_'s report, we focgs on penalized maximum-
velopment of the EM algorithm [5], there is usually nJ)|kellhood image reconstruction, where one modifies the

“missing data” in image reconstruction problems. Her%bjectlvefunctlontomcludearoughness penalty. This ap-

the EM algorithm serves primarily as a computational togroach also has the er>_<ibiIity to in'clude spatially_—variant
that replaces one difficult maximization problem with Qenaltles that reflect prior anatomical boundary informa-

recursion of easier maximizations. It is no ordinary ndion [30]. The new complete-data and hidden-data spaces

merical tool however, since each EM algorithm exploif@e introduce are applicable to both penalized and unpe-

the underlying statistical structure of the log-likelinood'ze€d maximum-likelihood methods. _
In that same spirit, this report proposes a new tool for Penalized likelihood objective functions for Poisson

image reconstruction from Poisson measurements: fHjustics are :In‘flcult to dmdaX|m|ze glnlcomﬁarls;)n W'tt)h
space-alternating generalized EM (SAGE) method. Thqasaussmn problems), and dozens of algorithms have been

method allows one to further exploit the structure of th%.rop.osed. Such aI.gorlthms can be categonzeq am-1)
log-likelihood. trinsically monotonienethods, 2jorced monotonimeth-

In contrast to theimultaneousipdate used in nearly all ods (typically made monotonic using a line search), and 3)

EM-type algorithms, the SAGE algorithms presented ffenmonotonic methodSince one could convert any non-

this report ussequentiabarameter updates, where eacfionotonic method to a forced monotonic method by using
line search, the latter two categories overlap.

pixel can be updated individually. A sequential upda?e o _
eliminates the coupling problem introduced by smooth- Intrmsmally' monotonic methods are those such as the
ness penalties. Sauer and Bouman [10] have explairﬁ\éld'l_z'vI 'algorlthm for PET where the'form of thg re-
the rapid convergence of certain sequential updates usfigSIon inherently ensures that the objective function in-
a novel frequency-domain analysis. creases every iteration (ignoring finite precision comput-
Although Dempsteet al. [5] showed that the conver—'ng_)' The only |ntr|'nS|(':aIIy monotonic methods for pe-
gence rates of EM algorithms are related to the FisH%?“zed maX|mum—I|keI|hood that We are aware of are.
information matrices of their complete-data spaces, tﬁllg exten§|ons of 'th'e EM algorithm mclgdlng generalized
property does not appear to have been widely appretaqoectat!on—maX|_m|zat|on (G_EM) a_lgorlthms [31_34] and
ated or exploited. We have previously shown that reducir‘?é'c)(:"c'["”‘t'On/cond't'onal maximization (ECM) algorithms



[35, 36], 2) algorithms for the trivial case with separao converge for the examples we have tried.
ble (non-smoothness) priors [21-23], 3) the algorithms of Any of the above methods could be forced to be mono-
De Pierro [37-39], 4) the “ICM-EM” algorithm of Abdallatonic by adding a line-search step. Lange has shown
and Kay [40], and 5) the new algorithms in this report. F@monvergence for a line-search modification of OSL [46],
the purposes of comparison, we derive new faster versi@msl Mucuogluet al. have adapted the conjugate gradient
of the GEM and De Pierro algorithms in Section Il usmethod [57]. We show below that our intrinsically mono-
ing a new complete-data space. The “ICM-EM” algorithrtonic ML-SAGE algorithm converges faster than even the
of [40] is a special case of our SAGE method, but one tHate-search accelerated ML-EM algorithm of Kaufman
converges slower than our recommended method (SE8].
tion 1V). Most intrinsically monotonic algorithms have The organization of this report is as follows. Section I
been shown to converge globally to the unique maximudescribes the general structure of the SAGE method. Sec-
for strictly concave objectives. tion Il introduces new complete-data spaces and hidden-
Nonmonotonic methods can diverge if one does not exata spaces for Poisson data, and gives several algorithms
plicitly check that the objective increases, and in applicsr unpenalized maximum-likelihood. Section IV presents
tions with many parameters it is often expensive to evaloew algorithms for the penalized maximum-likelihood ob-
ate the likelihood or to “backtrack” when the likelihoodective. These algorithms, along with the proof of global
decreases. The SAGE methods we propose avoid lowavergence in Appendix I, are the main contributions of
searches; monotonicity of the algorithms is guaranteed thys report. Sections V and VI illustrate the convergence
thestatisticalformulation. Although it is not our purposerates of the various algorithms.
to argue this point, we believe that convergence properties
are relevant to clinical medical imaging, since algorithm Il. THE SAGE METHOD
divergence could have unfortunate consequences. In previous work [13-15] we described the SAGE
Perhaps a more accurate name for nonmonotonic matfethod within a statistical framework. In this section, we
ods would be “not necessarily monotonic” since indediist describe a generalized version of the method without
most such methods do halaxal convergence. In partic- direct statistical considerations, and then introduce the sta-
ular, the penalized maximum-likelihood estimate is neariigtical version as a special case. The non-statistical per-
always a fixed point of such methods. An early approagpective is extended from the work of De Pierro [39, 59],
was gradient ascent of the objective starting from an Mind contains the algorithms of [13—15] and [38,39] as spe-
estimate [41,42], which was stated to “not guarantee catial cases.
vergence to the global [max]Jimum.” Gradient ascent is
complicated by the nonnegativity constraint. Most othéy. Problem

nonmonotonic methods are variations of the one-step latq et the observatioly” have the probability distribution
(OSL) method of Green [43, 44], first mentioned in [45]f(y; 0:rue ), Whereb,,... is a parameter vector residing in
In the OSL approach, one circumvents the problem of codisubse® of the p-dimensional spaci®R”. Given a mea-

pled equations by “plugging in” values from the previousyrement realizatiod” = y, our goal is to compute the

iteration. Unfortunately, such an approach can diverggenalized maximum-likelihood estimage of 6., de-
unless modified to include a line search [46]. Similgned by:

strategies include the BIP algorithm [47, 48], the meth- § 2 arg max ®(0)

ods in [49, 50], and nested gradient or Jacobi iterations 6€0

[29,51,52]. Most such strategies include a user-specifigflere

step size parameter, and one user has noted that “finding ®(0) 2 log f(y;0) — P(9), (1)

good values for [the step size] and the number of times to

iterate requires painful experimentation [53].” Other 0SI12NdL” IS an optional penalty function. Analytical solutions
like methods are given in [53, 54], which have been réQr 0 are often unavailable due to the complexityfothe

ported to occasionally diverge [54]. The sequential updaﬁ%uﬁ”ng in.P, or both. Thus one must resort to iterative
of our SAGE methods is close in form (cf Type-IlI algo—met ods_. . _
Most iterative image reconstruction methods update

rithmsin Table 1) to the coordinate-wise Newton-Raphson ™ ) ) _
ascent of the objective function proposed by Bouman aﬁUi pixels simultaneousheach _|te_rat|on. Recently how-
Sauer [55,56]. As described in Section IV, that method fyer, the advantages séquentiapixel updates have been

also not necessarily monotonic, although is has appeap&ﬁed by Sauer and Bouman [10], mcludl_ng: fast conver-
gence, natural enforcement of nonnegativity, and decou-



pled penalty functions. Unfortunately, in applications witls considerable latitude for the algorithm designer when
Poisson statistics, there is no analytical form for maximizhoosing the index setsS’} and functionals¢'}. The
ing the likelihood with respect to a single parameter whileasic idea behind the SAGE method is borrowed directly
holding the other parameters fixed (see the next sectidndm the EM method, but adapted to a sequential update.
Thus, to implement a conventional coordinate-ascent $ather than trying to maximizé(OSi,Ogi) over@g: at
guential update [60], one must use one-dimensional litle:th iteration, we maximize instead some user-specified
searches or Newton-Raphson updates. To ensure mdoaetional ¢ (8 Oi). That functional is carefully cho-
tonicity, those approaches may require several evaluatises to ensure (using (2)) that increasespinyield in-
of the objective, and are thus more expensive than the aneases inb. If ¢* and S* are chosen wisely, then one
trinsically monotonic methods we propose below. can maximizep'(-; 0i) analytically, yielding a recursion

To describe the SAGE method, we need to first estaif-the form@%* = ¢7(8"), which obviates the need for
lish some notation. As in [15], we define amdex set line searches. The image reconstruction algorithms given
to be a nonempty subset ¢f,...,p}. If S is an index inthe next sections illustrate thisimportant aspect. Even if
set, thenS denotes the set complement $fintersected one cannot maximizé' analytically, one can often choose
with {1,...,p}. If the cardinality of$ is m, then8s de- ¢’ such that line searches for maximizing(-; 6°) are
notes then dimensional vector consisting of the ele- cheaper than line searches for maximizibg, Ogi). In
ments ofé indexed by the members of. Similarly 85 some cases, maximizing (-; gi) will increase®(-, ggi)
denotes the — m dimensional vector consisting of thegimost as much as maximizirdg -, ggi) itself.
remaining elements of. For example, ifp = 5 and  Rather than requiring a strict maximization in (3), one
§ = {1,3,4}, thens = {2,5}, 85 = [0y 05 64], and could settle simply for local maxima [16], or for mere in-
65 = [0 65]', where’ denotes vector transpose. Finallygreases i, in analogy with GEM algorithms [5]. These
functions like®(6) expect ap-dimensional vector argu- generalizations provide the opportunity to further refine

ment, butitis often convenientto splitthe argum@mto  the tradeoff between convergence rate and computation
two vectors:6s and@, as defined above. Therefore, W@ er.jteration.

define expressions such as the following to be equivalent:
®(05,05) = ©(0). C. Convergence Properties

B. Algorithm It follows from (2) and (3) that the sequence of esti-
_ _ o mates{0'} generated by any SAGE algorithm will mono-
~ The algorlthgn below is a generalization of the metho@ically increase the objectivé (). If the objective
in [15]. Let#” < © be an initial parameter estimatefnction is bounded above, then this monotonicity ensures
A SAGE algorithm produces a sequence of estimalggy; (¢ (')} converges, but it does not guarantee conver-
{6°}:2, via the following recursion: gence of the sequend®’}. In [15], we provided regu-
_ _ larity conditions under which the sequenj@} also con-
Generalized SAGE Algorithm verges monotonicallin norm and derived an expression
For i=0,1,... { for the asymptotic rate of convergence. The nonnegativity
constraint for image reconstruction violates one of those
regularity conditions. Therefore, in Appendix | we prove
global convergence under mild conditions suitable for im-
®(05i,0%) — ©(0') > ¢'(05::0') — 6(05:;6').  age reconstruction with nonnegativity constraints.

2
3. M-step: ) D. Hidden-Data Spaces

1. Choose an index sét. ' '
2. E-step: Choose a function#l(6 . ; 8*) satisfying:

A natural approach to choosing functionalsthat sat-
isfy (2) is to use the underlying statistical structure of the
4) problem: In.many problems, one can simplify the form pf

the log-likelihood by augmenting the observed data with
I some additional unobservable or “hidden” data. The fol-
The maximization in (3) and the inequality in (2) are ovebwing definition formalizes this concept.
the set ' Definition 1: A random vectorX with probability dis-
{0s: 1 (05:,0%,) € OF. tribution f(z; 8) is anadmissible hidden-data spauvéth
This is an “algorithm” in a loose sense, since thef@spect tds for f(y; 0) if the joint distribution of X' and

0?{1 = argmax¢'(0g:i;6") 3
0.
i+1 7
o5 = 0y



Y satisfies hidden-data spaces lead to new SAGE algorithms that con-
verge faster than both ML-EM-3 and the line-search ac-
fly,z;0) = f(y|z:;05)f(=; 6), (5) celerated EM algorithm (ML-LINU) [58]. We presented
_ . o _ some of this material in [14, 15]; we include it here since
i.e., the conditional distributiofi(y|e; 65) must be inde- concepts behind the new complete-data spaces and

pendent obs. hidden-data spaces are easier to explain in the maximum-

Any complete_—data space associat_ed Wit_h_"f‘ conventioneé”hood framework than in the penalized maximum-
EM algorithm is a special case of this definition [15]. i alihood case described in the next section.

Giv_en an ao_lr_nissible hidde_n-datg spa’ée_define the The derivations sketched below all use the following
following conditional expectation of its log-likelihood: property of scalar Poisson variates:

Q(0s5;0) = Q(0s;05,0;) If X1 ~ Poisson{u,} andXy ~ Poisson{uy} are inde-
= E{logf(X;05,05)|Y =y;0} (6) pendentand = X; + X, then[17]
= /f(:vIY = y;0)log f(z;05,0;) dz. E{X1|Y = yipa, p2} = (10)
M1+ 2

Combine this expectation with the penalty function: ~ A. The Problem

A B B Assume that the emission distribution can be discretized
P(0s:0) = Q(05;0) — P(6s,05). (7) " into p pixels with emission rated = [Ao, ..., ). As-
sume that the emission source is viewedMydetectors,
and letV,,;. denote the number of emissions from #th
pixel that are detected by theh detector. Assume the

VOS‘I’(O) _ Vlgos(b(OS? 9) ®) variatesN,,;. have independent Poisson distributions:

It then follows from [15] that a functionat generated us-
ing (5)-(7) satisfies (2). Such a functional also satisfies:

o ) Npi ~ Poisson{a,z A},
which is used in our proof of global convergence. Thus,

one can easily design a SAGE algorithm by first choosinghere thez,,;, are nonnegative constants that characterize
index sets{ 5"}, choosing admissible hidden-data spacéise system [17]. The detectors record emissions from sev-
{X}, and then generatings'} functionals using (5)-(7). eral source locations, so at best one would observe only
The “majorization” method of De Pierro [39, 59] is arthe sums}_, N,;, rather than eaclv,,. Background
alternative method for choosingf functionals; see Sec-emissions, random coincidences, and scatter contaminate
tion IV.C. the measurements, so we observe

E. Choosing Index Sets Yy =Y Nup+ Ry,
k

In general, there are a wide variety of possible choices _ _ _ .
for the index setss’, as discussed in [15]. In this reportVhere{ £, } are independent Poisson variates:

we focus on single-pixel index sets, e.g.: R, ~ Poisson{r,}.
5% = {1+ (i modulo p)}. (9) Thus, our measurement model is
In practice, rather than always using the same order of up- Y, ~ Poisson{) _ anxA + 74} (11)
dates, we alternate between four natural raster scan orders k
(top-down, left-right, etc.). In this report, we assume the background rdtes} are

known. This assumption is not essential to the general
method, and one could generalize the approach to accom-

In this section we first review the linear Poisson modetodate joint estimation [12] of A} and{r,}. We as-
that is often used in image reconstruction problems, asdme the column sums; = )", a,; are nonzero.
summarize the classical EM algorithm (ML-EM-1) for Given realizationdy, } of {Y,,}, the log-likelihood for
maximizing the likelihood [1, 17]. We then introduce &his problem is given by [17]:
new complete-data space that leads to a new, faster con- _ _
verging EFI)VI aIgorithmF:) ML-EM-3. Even less informative LX) = log fy; A) = Zn: (=9n(A) + ynlog gn(A)).

(12)

1. M AXIMUM LIKELIHOOD



where Interpreting the Type-I algorithm of Table 1 with (18) in
Un(A) = Z Uk AL + T (13) words, ML-EM-1 works as follows: the current parameter
k estimateX’ is used to compute predicted measurements
(Throughout this report, we use the symba{™between {¥,}, those predictions are divided into the measurements
expressions that are equivalent up to constant terms that backprojected to form multiplicative correction fac-
are independent of.) We would like to compute the ML tors {e; }, and the estimates asmultaneouslypdated
estimate\ fromy = [y, ..., yy]’, where the elements ofusing those correction factrsThis EM algorithm con-
A are constrained to be nonnegative. verges globally [12,17] but slowly. The root-convergence
To apply coordinate ascent directly to this likelihoodactor is very close to 1 (evenjif = 1 [12]).
one might try to update; by equating the derivative of The slow convergence is partly explained by consider-
the likelihood to zero: ing the Fisher information of the complete-data spaAce
Y [12]. One can think ofX ! as data from a hypothetical to-
0=—ar+ Y ank —— - (14) mograph that knows whether each detected event is a true
- Ak (A — AL) + Un(XY) °C . C o
emission or a background event, and knows in which pixel
Unfortunately, this equation has no analytical solution-each event originated. Such a tomograph would clearly be

hence the popularity of EM-type algorithms [17]. much morenformativethan real tomographs, and this in-
_ tuition is reflected in the Fisher information matrices. The
B. ML-EM Algorithms Fisher information of the parameter vectdrfor the ob-

che complete-data space for the classical EM algorittifirved datd” evaluated at the ML estimateis

[17] for this problem is the set of unobservable random . 5
variates Fy(A) = E{—V/\L(/\)}‘/\:;\

X' = {Nu}foy {R 320 (15)
The log-likelihood for this complete-data space is

log (X" A) =D > (—ankAk + Nk log(ankr)) .-
k n

_ A’diag{Aﬁ\ T r}_l A,
whereas the Fisher information fa¢! is diagonal:
] FX1(X) = diag{a.k/ﬂk}

Using (10) (see [17]), one finds that

(provided) is positive.) One can show th#tgx: > Fy
using a Fisher information version of the data processing

Thus, for this complete-data space, héunction (6) be- inequality [61]. IndeedF'x: is completely independent

Nop = B{N&Y = y; X'} = Motk yn /Fn (X)),

comes [17, eqn. (4)]: of the background rateg-,, }, reflecting the fact that the
parameters are completely isolated from the uncertainty
Qxt (X)) = E{log (XL MY = y; N} due to the background evert&,,} in X'
— ZZ (—ank s + N log (@) - To improve the convergence rate, we would like to
. choose a complete-data space that is less informative than

X'. To do so, we depart somewhat from the intuitive rela-
tionship betweeX ! and the underlying image formation
; _oag hysics, and instead exploit the statistical structure of (11).
) =S tprtn /G (AY), 16) PhYsK _ _ :
er(X) Zn:a ¥/ Yn(A') (16) The first approach we tried was to define the following
new complete-data space:

By defining

we can simplify¢)x: to

. . . X? = {{Xaio oz,

Qxr (N A) = 3 (—apdi + A ex(N) log Ae) . (17) !
k where the{ X,,;,} are unobservable independent Poisson

This Q function is a separable, concave function gfariates that includell of the background events:
Ay oy Ap. Maximizing Qxa (+; %) analytically leads to .
the ML-EM-1 algorithm [17], which is a Type-I algorithm Xk ~ Poisson{ans(As +rn/dn. )}, (19)

in Table 1 with its M-step (53) given by: 2ML-EM-1 is essentially the ML-IB algorithm of [6]. The ML-IA algorithm
of [6] has a more informative complete-data space and slower convergence[12].

AL = Ner(N)/ay. (18)



wherea,,. = 3. a,r. Then clearlyy,, = >, X,; has the smallest element is as large as poss#uéject to (21). A
appropriate distribution (11). The Fisher information fogsimple solution to this min-max problem is:
X? is diagonal:

mp = min?éo {T—n} . (23)
~ N Gn. Ay,
Fx:(A) = diag{z A“#} :
w Akt T/ We discuss alternatives to (23) based on other min-max

which is smaller tharFx:. However, upon forming the criteria in_Ap_p_endix I, none of which we have found to

functionQx using (6), one finds that it has no analytica{Perform S|gn|f|cantly bett_er than (23) in the few I_DET cases

maximum (unless the ratio, /.. is a constant indepen-We _have tried, but that might be advantageous in some sit-

dent ofn), so one is usually little better off than with (14)Yations. o

This illustrates once again the tradeoff between conver-The design (23) clearly satisfies (21), and at least one

gence rate and computation per-iteration [12]. of the N constraints in (21) is met with equality. Thus,
A comparison ofQx: and Qx> suggested that to ob-the M, terms absorb some of the_ background events,

tain analytical maxima, we would like to replace the terfput usually not all. For tomographic systems, the's

I /. in (19) with a term that independenof n. There- Vary by orders of magnitude betwefan rays tra_versmg the

fore, we propose to use a complete-data space with fg&ter of the object and rays grazing the object's edge,

following form: SO ) anpmy << 1, for mostn. Many of the back-
ground events remain separateddp. In contrast, in im-
X = {{Mu}o_,, {B. Y, age restoration problems, if the point-spread function is

roughly spatially invariant and the background rafes}
where {M,} and {B,} are unobservable independenire uniform, then the ratiogr, /a,,.} will be fairly uni-
Poisson variates: form and nearly all of the background events will be ab-
sorbed into{ M, }.

My~ Poisson{an(Ax +mi)} Using a similar derivation as for (17) one can show:

B, ~ Poisson{r, — Zankmk}, (20)
k QX3(A; AZ) = Z (—a.k(/\k + mk)

and where{m,. } are design parameters that must satisfy k

Z Gppmy < Ty, Y0, (22) + (/\}c + mk)ek(ki)log(/\k + mk)) ) (24)

k wheree;, was defined by (16). Lik€x:, this function is

so that the Poisson rates pB,,} are nonnegative. With also separable, and its partial derivatives are:
these definitions, clearly

Yo=Y My + B, ox G NX) = st aOR T
’ To implement the M-step, one cannot simply maximize
has the appropriate distribution (13 ()x= by zeroing its partial derivatives, because of the non-
The Fisher information foX ? is diagonal: negativity constraint. However, it is easy to verify that
. . Qx> is a concave function with respect fg,, so that
Fx:(XA) = diag{“k/(/\k + mk)} ; (22) ifits derivative vanishes at a negativg, then the point

A = 0 will satisfy the Karush-Kuhn-Tucker conditions

and now depends an, though (23) below. This Fisher in'for the nonnegativity constraint (see Fig. 1). This leads to

formation is smallﬁr ;[]harfxl(/\), which leads to I1I‘aster the ML-EM-3 algorithm, which, like ML-EM-1, is also a
convergence. n 9 t of (22), to makEx: small we Type-I algorithm of Table 1, with (18) replaced by:
would like the design parametefs:; } to be “as large as

possible,” but still sa_tlsfylng the constraint (21). In partic- /\?1 _ [( E 4y )en( M) au — mk] : (25)
ular, we have found it natural to choose a&ef, } whose +

2Under the conditions for global convergence discussed in Appendix | (€¥here
strict concavity), the design parametérs ;. } will affect only the rate of con- x, >0
vergence of the EM sequenéé, but not the limit of that sequence. If the [$]+ = 0. <0
likelihood is not strictly concave, then ti# limit will in general depend on ’ =
both the starting value and the;'s.



This is a simple change to the implementation of ML-EM#ndividual pixels for the index sets$’ = {k}, where
1, butitdoes lead to improved convergence rates, both the= 1 4 (i modulo p).

oretically and empirically, provided of course that some The most obvious hidden-data &y is just

mg > 0. In PET, since random coincidences are perva-

sive, we will haver,, > 0 for all n, so thatm, > 0 for all XY = Ny, R,

Like ML-EM-1, since ML-EM-3 is an EM algorithm which is a subset of the classical complete-data space (15).

it monotonically increases the likelihood every iteratio _heQXM function (6) for thekth parameter is therefore

[15]. An interesting difference between the iterates geﬁ'—mIOIy taken from (17):
erated by ML-EM-1 and ML-EM-3 is that the latter can A N = —aa ) i i
: , : = —a. + ALer(A") log Ag.
move on and off the boundary of the nonnegative orthant Oxrr (A X) ROk ker(A) log A
from iteration to iteration. This may partly explain theviaximizing Qx...(-; A') analytically yields the ML-
faster convergence of ML-EM-3, since when ML-EM-ISAGE-4 algorithm, which is a Type-IIl algorithm of Table
converges to the boundary, it can do ssablinearrates 1 with the M-step (56) given by:
[12]. . : :
_ _ /\}j’l = Aep(A)/ag. (28)
C. ML Line-Search Algorithms
caufman [58] noted that ML-EM-1 is the special cagd Words, Type-lil algorithms update the parametses
wherea = 1 of the form: quentlallyiand_ |r_nmed|_ately update the predicted mea-
surementgj,, within the inner loop, whereas Type-I algo-
Vit [ i+ (ﬁ) iL(/\i)] . (26) 'ithms wait until all parameters have been updéted
k g a/) OAg + The Fisher information foiX ** is just thekth diago-
nal entry of F'x:. It is therefore unsurprising that we have
found ML-SAGE-4 to converge somewhat faster than ML-
EM-1 for well conditioned problems but not for poorly
o " conditioned problems. We now improve significantly on
141 _ _
such thak™" is positive, whereas ML-LINU-1 allows anML-SAGE-4 by introducing new hidden-data spaces sim-

unconstrainedbent line seargh, in whicf: can be cho- jlar to (20), only even less informative. The main idea is
sen large enough that some pixels would become negatiye

. : . thé following: since we are updating one pixel at a time,
but are set to zero [58]. Similarly, ML-EM-3 is the SPEC13e can associate nearly all of the background events with
case wherex = 1 of the form:

each pixel as it is updated his is not very intuitive from
At = g A+ my iL(,\i) 27) the point of view of the imaging physics, but is completely
O ' admissible and sensible from a statistical perspective.

I
_ _ _ Define unobservable independent Poisson variates:
In the few PET experiments we tried, “accelerating” ML-

EM-3 using a line-search to choosé > 1 only slightly Znp  ~ Poisson{au,(Ar + 21)}
increased the convergence rate. Bu. ~ Poisson{r, — auzn + > aniA;}, (29)

£k
D. ML-SAGE Algorithms 7

The EM algorithms described above update all pixels $¢here{z; } are design parameters that must satisfy
multaneously. Sauer and Bouman [10] have shown that se- »
) < AL
guential update methods often converge much faster than Uk S Tn + Z njAjs V10, (30)
. . i#k
simultaneous update methods. There is also a subtle sta-
tistical motivation for using a sequential update: by using that the Poisson rates 8f,, are nonnegative. Note
an alternating sequence of hidden-data spaces, we cartl@stthis constraint is much less restrictive than (21). Then
sociate a large fraction of the background events with eadkarly
parameter as it is updated, yielding much less informative Y, = Znk + Bk
hidden-data spaces and thus faster convergence. In cop- _ , .
. .. Incremental updates like (57) will accumulate numerical error, so must be
trast, in ML-EM-3 the background events are distribut@@ated with caution if used repeatedly. Fortunately, the SAGE algorithms con-
among all of the pixels and the values foy. are small. Vverge in a small number of iterations. In those rare occasions that we run

. . . SAGE for many iterations, we “reset” the estimated projectigns} using (13)
Therefore, we now derive three SAGE algorithms usingughly every 20 iterations.

The ML-LINB-1 and ML-LINU-1 algorithms [58] use a
line-search to choose art > 1, which accelerates con-
vergence. For ML-LINB-1, the search oweris bounded

a.p +
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has the appropriate distribution (11) for ahy Using a similar derivation as fdpx=2, one can show:
We let the hidden-data space for only be ,
QX5,k(/\k; AZ) =

—a.k(/\k + Zk) + (/\}g + Zk) ek(Ai)log(/\k + Zk). (33)

Maximizing ¢ xs»(-; /\i) analytically (subject to the non-

X% = {70, B},

The Fisher information foX >* with respect to\, is the

scalar value - . . :
negativity constraint), yields the ML-SAGE-5 algorithm,
Fx5(;\k) = a~k/(;\k + 21), which is also a Type-Ill algorithm of Table 1, with (28)
g replaced by:
which again suggests that we would like thés to be as
large as possible subject to the constraint (30). AL = [( Lt 2D)er( A /ag — 22] . (39
We have investigated two choices for thes. The first +
choice is independent of This is a small change to ML-SAGE-4, but one that sig-
) nificantly accelerates convergence. Indeed, the implemen-
zr = 29 = min {rn/ank} (31) . )
b a0t R tation differences between ML-EM-1, ML-EM-3, ML-

SAGE-4, and ML-SAGE-5 are all remarkably minor, but
which clearly satisfies (38) This first choice is useful the differences in convergence rates are quite large, as il-
whenever the background ratés, } are non-negligible. |ystrated by the results in Section V.
When the rategr, } are negligible, thez; } will be tiny,  For clarity, we refer to the algorithm based on the choice
and ML-SAGE-5 is no better than ML-EM-1. However;; — (') as ML-SAGE-6, which can be written:
since we are updating a single pixel, we can consider
the contributions from all of the other pixels as “pseudo- ,\;’jl — [(,\;’g 1+ Zk(,\i))ek(,\i)/a.k — Zk(,\i)] . (35)
background” events. This opportunity is indicated by the +
form of (29), which the reader should contrast with (20). IV. PENALIZED MAXIMUM LIKELIHOOD
Therefore, when the background rates are negligible, w
use the following second choice fgky }, which is now
dependent on iteration

CSince image reconstruction is ill-conditioned, regular-
ization is very desirable. We described the maximum like-
lihood algorithms above primarily to introduce the new

=2 = min {(re+ Y awAi) an) hidden data spaces. In this section we turn to regular-
i 70 s ized image reconstruction using penalized likelihood ob-
_ . 0 (A a )t — AL (32 jectives. We first present a new SAGE algorithm based on

ni%o{y (X ane) = A (32) the hidden-data spacéX °>*}. To provide a fair compar-

ison with alternative methods, we also derive new versions
) p ) of the GEM algorithm of Hebert and Leahy [32], the paral-
using z;(A') should yield faster convergence. Neverthg iz aple algorithm of De Pierro [39], and the one-step late
less, the disadvantage of using = z;(A') is that one ;0 qrithm of Green [43], all using the new complete-data
must recompute the minimization (32) overfor every spaceX?. As we show in Section V, these modified al-
pixel each iteration, increasing the computation per itelt ithms hased o ® all converge somewhat faster than
ation. Therefore we usually_o_nly usg(A’) when the their original versions based oK', but none converge
background rategr,, } are negligible. These tradeoffs ares fast as SAGE on a conventional serial computer. Nev-

||Iusrt]rat§df_|n_ _Sectlons \;Zar?d V:. | o . ertheless, they may be useful in some pixel-based parallel
The definition (31) of:;. involves only a singlex,; N 55 ting environments, and they allow us to perform the

each d_en_qmmator, rather than the sum contalg\ed N most conservative comparison between SAGE and its al-
the definition (23) ofm,. Thus, the values of; and ternatives

z:(A") are _orders of magnitude Iargerthm, and avery e have implemented all of the algorithms given be-
large fraction of the background events is absorbed iNiRy with several convex penalty functions. However, to
:jhe tgrthnk \hoICh is asso?‘]lated |\|Nlthr]: while rl1t ISUP- " give explicit expressions for the algorithms without un-
a}[e T efre OWX;@ is much smaller than thieth diago- due notation, we first focus on a simple quadratic smooth-
nal entry ofF xs. ness penalty. At the end of the section we briefly discuss

®Note that these;,'s would violate (21), so attempting to substitaiefor hOw to implement the non-quadratic case, which is fairly
my in ML-EM-3 would violate the admissibility @ndition for hidden data
spaces (5) and destroy the monotonicity of ML-EM-3.

This choice also satisfies (30). Cleary(\') > z¥, so
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straightforward once the quadratic case is understood. Tk course, since we are only updating one parameter,
quadratic smoothness penalty used below is: there is no problem with coupled equations. Equating this
derivative to zero yields a quadratic formula:

PO=5500 Y e - AP (36)

 EN, Ar( Mg+ 21)* + 2Bp( Mg + 21) — Cf, = 0,
where A, is a neighborhood of théth pixel andw;; = Wwhere
wjx. In the work reported in Section V, we |af; be the
8 pixels adjacent to théth pixel, and setv;; = 1 for Ay = B Z Whj
horizontal and vertical neighbors ang,; = 1/\/5 for TEN , o
diagonal neighbors. Combining this penalty with the log- By = ar =B jen, wrilA; + %)
likelihood (12) yields the penalized likelihood objective 2
function (1): Cr = er(N) (AL +27).
b(A) = Z (=Fn(A) + yn log (X)) — BP(A). Just as in the derivation of (25), the constrained maximum
n of #>*(-; A" corresponds to either the positive root of the

quadratic, or the valug;, = 0, since¢®* is strictly con-
cave. This leads to the PML-SAGE-5 algorithm, which is
an algorithm of Type-IIl in Table 1 with the M-step (56)

It is easy to show thab is strictly concave for the penalty
given by (36), under mild conditions oA. Our goal is to
maximize®.

given by:
A. Penalized SAGE Algorithm
. . . . . —Bk‘|‘\/B;3‘|‘Aka
For simplicity, our SAGE algorithms for the penalized AL = — 290 . (38)
maximum-likelihood case use single-pixel index 8ets Ap

5t = {k}, wherek = 1 + (i modulo p). We have imple- N

mented penalized maximum likelihood SAGE algorithmé/e refer PML-SAGE-6 as the version of (38) whefe=
with both the X** and X** hidden-data spaces. Thex(A'), as defined by (32). Again, we usually only use
X** version is essentially identical to the “ICM-EM” al-PML-SAGE-6 when the background ratgs, } are negli-
gorithm of Abdalla and Kay [40]. Th& >* versionis sig- dible. In words, we first compute thg correction term
nificantly faster, so we focus on that case. Following (7fom the current projection estimate, then update/ttie

define pixel using a quadratic formula that involves both the data
' ' ' and the neighboring pixels, and then immediately update
GPF Ak A = Qxsn (Mg XY — P(Ar, A) the projection estimate before proceeding to the next pixel.

_ : : In practice, the actual implementation has two important
= —ag( Ak + 21) + (AL + 26)es(X) log(Ag + 25) differences: 1) the pixels are updated in four different
1 ; raster scan orders rather than using the same order each it-
- (Mg — A2 37 _ - .
ﬂjEZN:k wa2( b AD 37) eration (cf frequency analysisin [10]), and 2) the quadratic
formula is computed using numerically stable formulae

whereQxs» was defined in (33), andl_, is the vector (g0, p. 156] rather than the conventional form (38), i.e.
of length(p — 1) obtained by removing thith element

from X. The M-step (3) requires maximizing*(-; \*), - C
which we can do analytically by zeroing its derivative Ay = 3 \/m ~ ~k
since¢®*(A\x; ') is a strictly concave function of;,. The bty Pt A

derivative of¢™"(-; X) with respect to is: Note that agi — 0, this last formula approaches the unpe-

sy : nalized update (34). Global convergence of PML-SAGE-5
3—,\k¢ A AY) = and PML-SAGE-6 is established in Appendix I.
' One “generalization” of this algorithm that could be ex-
AL+ 2k ; lored further is the following. Rather than updating each
_a. A 2k _ (Ae — AL, p g p g
@k +exl )/\k + 2 ﬂjEZN:k s (A = X)) pixel once using (38), we could loold times over each

pixel before moving onto the next pixel. This is like hav-

61t is certainly feasible to update more than one pixel at a time, with so ini ; ; i ;
increase in the complexity of the M-step. Such tradeoffs are a subject forfugjﬁeg a miniature EM iteration within every plxel Update' In

exploration. the limit as M increases, this algorithm would approach
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a coordinate ascent df(\). In the few experiments weIn other words, the updates are done “in place”. We refer
have tried, this performed no better than usitig= 1, to the conventional GEM algorithm based &ft (where
which is consistent with the benefits of under-relaxation in; = 0 Vk) as PML-GEM-1.
successive over-relaxation methods [19], as demonstrate8ollowing [32], we usually cyclel! times through the
in Figures 8, 10, and 12. inner loop overk with different raster scan orders, so
- _ that the coordinate ascent can approach the maximum of
B. Modified GEM Algorithm #3(; XY). Typically M = 2 seems adequate. This loop
The GEM algorithm for image reconstruction [32] igver M is relatively inexpensive since no projections are
a very intuitive approach to extending the EM algorithecomputed within it. Sincél;, is independent of, it can
to the penalized maximum-likelihood case. Rather th&e precomputed, and sin¢g is independent ofy, it is
using X! as in [32], we now develop a GEM algorithninitialized beforethe cycle over\/.
using the new complete-data spaXé. Following (7),let ~ One can easily verify thak}jl given by (40) satis-
' ' fies the one-dimensional Karush-Kuhn-Tucker conditions
PN A) = Qxa (A X) = P(A), with respect to the nonnegativity constraint. Thus PML-
_ _ _ . GEM-3 yields a sequence of estimateks'} that mono-
whereQ)x: was defined in (24). The GEM algorithm IStonically increase the objectivi. Glob;{ﬁgnvergence of

S_'m'll?r tr? the;p_euftl case of t:le ZSéGE falgolrllt.hr_phof S€EEM follows from Theorem 3 of [35], provided the ob-
tion ll where$® = {1,..., p} and¢* = ¢° for all i. Thus, jective is strictly concave.

the M-step (3) requires us to maximizé(; X'). Unfor- "0 that PML-SAGE-5 and PML-GEM-3 are some-
tunately, its partial derivatives are coupled: what similar, except that PML-SAGE-5 uses the less in-
formative hidden data spadé®, and it updates the projec-
tions immediately after each parameter update. Although
subtle, these two differences lead to PML-SAGE-5 con-

LT M _ 3 Z wii(Ae — A (39) verging significantly faster

Ak tme S . . .
ISk C. Modified De Pierro Algorithm

This coupling prohibits analytical maximization. The An alternate approach to circumventing the counled
basic idea behind the GEM method [32] is to forgg PP g P

o . . . i equations is the novel majorization method of De Pierro
maximization in favor of simply increasing®(-; \") us- . : .
. . . ) [38,39]. This monotonic method has the advantage that it
ing a coordinate-ascent method. Increasifig using - . .

. . . S is more parallelizable than GEM, and itis globally conver-
coordinate-ascent is easier than maximizihg) by co-

. . ; enf. This method applies a decomposition to the penalt
ordinate ascent since we can solve (39) with respect PP P P y

. . , . _?) that is similar in concept to the decomposition that re-
Ak (while holding the other parameters fixed) using Mites the log-likelihood to th@ function. First, note that

J 5 »
— ¢ (A ) =
3/\k¢ (A AY)

—a.p + ek(AZ)

sentially th_e same guadratic formula as (38). Extendlr]ggr any convex functior
the derivation in [31, 32] leads to the PML-GEM-3 algo- '
rithm, which i.s a Type-ll algorithm of Table 1, with the h(az + by) =
M-step (54) given by:
A, = B Z Wi h (%(aaﬁ + 2by — by') + %(2(136 + by' — axz))
TEN 1 : : 1 : :
B - ar = B3 jen, Wki(AT + mg) < §h(a$2 + 2by — by') + §h(2ax + by' — ax').

2

L Thus, by definin
Cr = ex(A)AL + my) Y J

PO(AXN) =
1 —Bk‘|‘\/Bz‘|‘Aka
A= 1 ey (40) p ; iN2 i yi2
K N T2 2 (k=20 AP+ (20 = Af = A%
k JEN,
In this pseudo-code); denotes thenost recenestimate e
of Az, e.g.: "Global convergence for De Pierro's method with iNé complete-data

i1 . space was shown in [39]. ThE?® complete-data space version herein con-
A= { /\j , 1< k verges globally by a special case of our proof in Appendix I.

7 A >k
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it follows that D. Modified One-Step-Late (OSL) Algorithm

P°(X;N) = PN Green's OSL algorithm [43] “avoids” the problem of
PPN A) > PN coupled equations by linearizing the penalty function, or
V10 pe( /\7 A) B V10p(A) equivalently, by substituting the parameter estimates from
' N ' the previous iteration into the derivative of the penalty.
De Pierro [39] used)x:; here we usé€)x- to define: We follow the development in [43], but substitupe;: for
° i i o i the conventionaf)x:. Using@Qx- with S = {1,...,p},
A = A ) = PO ). . B
OUAX) = Qe (A X (A2 from (3) the M-step requires maximizing
Thus, our modified method of De Pierro is the special case 5 . .
of the SAGE algorithm in Section Il witd® = {1, ..., p} PP (A A") = @x2 (A A) — P(A),
and¢’ = ¢° for all i. Note that the above construction . . . -
_wh f 24). |
of ¢° is somewhat different than the formulation glvexv ereQx: was defined in (24).  lgnoring nonnegativity

- ) “constraints, this maximization is equivalent to solvin
by (7), but neverthelesg® satisfies the essential condi- a 9

tion (2). Remarkably, by this constructief(-; ') is sep- 0=V, (st(/\; A — P(/\)) ‘
arable, with partial derivatives given by
d . : S AL +my TheVQxa(+ %) term is separable, bty P(A) is not,
I (A A7) = —ag + ex(A )m so the suggestion of Green [43] is to assume
=B > wri(2M, — Al = ). VAP yi+t ® VAP _yi -

JEN, . . TR .
* Ironically, this approximation is particularly good for slow

Th‘%s we can max_imi.ze>°(-;,\2) by zeroing the partial converging algorithms! Under that approximation, one
derivative (and minding the Karush-Kuhn-Tucker cons

ditions). This leads to the PML-DePierro-3 algorithm, J

PR ; . (bS(A; Ai) ~
which is a Type-l algorithm of Table 1 with the M- I\
step (53) given by: N

—a., 4 epn(N)E - wri (AL — AY),
J k
; ; which is now separable, so it can be treated analytically
&= 4 (A — AL AR/2 _
By = @k = B 2jen Wi+ me) = ApAr/ by the Karush-Kuhn-Tucker conditions. This leads to the
P 2 PML-OSL-3 algorithm, which is a Type-I algorithm of Ta-
Cr = (XA} + ). ble 1, with the M-step (53) given by:
, -B \/ B+ ALC i i
= | VTR ey e [ Qhmoa) T
Ak . b lan B e, wii(X = A)) N

Strictly speaking, this method is actually a type of GEMy,i< approach is popular due to its simplicity, butén

glgorithm ginceimaximizingbc’ does not yielql_the MaX- diverge particularly for large values gf. We include it
imum 9f ¢°(-; X') [5]. We have_z found empirically _andforthe purpose of comparison with PML-SAGE. We refer
theoretically [16] that PML-DePierro-3 converges sllghtlyO the case of (42) wherey, = 0 Vk as PML-OSL-1.

slower than PML'GEM'?’ on a serial computer. Ind_eed, It is straightforward to show [46] that PML-OSL-1 and
one can compare (41) with (40) to see that PML-DePierrgyy _0s|.-3 can be expressed in the form (cf (27))
3 takes slightly smaller steps than PML-GEM-3. How-

ever, although not noted in [38, 39], one can add a loop_,_, ; Ak + my, 0 ;

analogous to the loop ove! in the PML-GEM-3 algo- A=Akt a4+ =2 P(X\Y) a,\kq)(’\ )

rithm, which then leads to comparable performance to I +
PML-GEM-3. Again, typicallyM = 2 sub-iterations Therefore, one can also accelerate PML-OSL-1,3 and/or
is adequate. Since the two algorithms have comparabieke them have global monotonic convergence by choos-
performance on serial computers, we focus on the GENM) « using a line-search [46]. For the case where= 0,
algorithm in the next section. We include the modifiedie refer to these algorithms as PML-LINB-1 and PML-
De Pierro algorithm here because of its potential use withNU-1 for the bounded and unbounded searchesafor
parallel computers. (cf Section 11I.C).
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E. Coordinate-wise Newton Raphson (CNR) since one must compute the second derivative tégis-
g5lyding a line search to enforce monotonicity would add

Bouman and Sauer [55, 56] have proposed a non- :
considerable expense.

type of algorithm for maximizingb(A) based on apply-
ing coordinate-ascent directly to the objective, which cig Nonquadratic penalties

cumvents the problem of coupled parameters due to the _ o _ _
penalty function. They used a one-dimensional Newton-1he SAGE_ m_ethod is not limited to quadratl_c penalties.
Raphson update, which is based on a second order T%r,le can easily |mp!ement other penalty functions such as
lor's approximation of the log-likelihnood. Without a line{h€ flexible penalty introduced by De Pierro [39, 59]:
search, monotonicity is not guaranteed when using this ap- B ol e
proximation. Their method is equivalent to the following P(A) = Zc:h ((w", A)),
expansion:

(44)

where eachw® is a vector of lengtlp, and{A°} are poten-
tial functions such as those proposed in [41, 46].

. : ] - , , For the proof of convergence in Appendix I, we assume
+Ls(0')(05-05)—5(05-05)'Ls(6')(05—-05), (43) that each functiorh<(-) is strictly convex. ~ Convexity

is not needed talefineor to implementthe algorithms.

o However, we expect that if the convexity condition is vio-
Ls(6') = V’OSL(O)‘O_Oi lated, then all of the algorithms will have only local con-
. 9 n vergence rather than global convergence. Whether local
Ls(6") = - VOSL(O)‘OZO" : convergence is acceptable will depend on many factors,
including the quality of the initial estimate. Methods such
as “deterministic annealing” [34] may be necessary to get
good results for non-convex penalties.

®(05,0%) ~ L(0') — BP(65,6%)

where

For a sequential update, one simply takés= {k} =
{1 + (¢ modulo p)}, in which case:

. J For most non-quadratic penalty functions, there are not
Li(A) = —L(A) =er(A)—a ) : S
HA) O\ (A) = ex(X) = a, analytical forms for the maxima of the' functionals.
9?2 Therefore, for convex but non-quadratic objectives, we

. B B 5 - 5
Ly(A) = LX) = _3/\zL(’\) =D b/ Tn(N)*. apply a single one-dimensional Newton-Raphson step to
" >F(\k; A1) with respect tod,. We then use (37) to
Thus see if>* increased; if not, we halve the step size un-
; ; ; ; til it is increased. This ensures that PML-SAGE-5 and
SN, A ) =~ LN AY) —ar)( A — A . .
(A Ay (X) + (er(X) = @) (Ae = AL) PML-SAGE-6 will be monotonic even with non-quadratic
1 ; ; 1 ' enalties. This halving search is inexpensive since evalu-
LA (Mg — AL — ~(Ak — A2 Pe . TIEAPETIS
2 A b ﬂjEZN:k ks 2( F i) ating (37) does not require reprojections, in contrast to an

. . [ I h lied to the objective functidn
dropping terms independent &f as usual. We can thusmtewa Search app )

. o Strictly speaking this halving approach does not quite
update), by zeroing the derivative of the above APPIOX: cet the requirements of our global convergence proof in

'Tﬁ“on ;[10 (I;](." ’\—’“)I' T:;,:Erlneaidr:”tor f[heTPMLI'I(I:i'r\]IRT)aZI?eOiAppendix 1, since\:™! will not exactly satisfy the Karush-
rithm, WRIch IS an a'go simifarto type Kuhn-Tucker conditions. Of course, finite-precision com-

with the step (56) given by: puting is never exact, so global convergence proofs should

I, = Z a yn |2 not be interpreted too literally. One could apply multiple
n Newton-Raphson steps rather than just one, but we doubt
Jmew  _ ALl 4 ex(A) —ag + 3 Y e, WhiN: that the extra effort would be worthwhile. However, we
mew :
b+ 5% en, Wk N conjecture that one could extend the convergence proof of

Lange [46] to prove global convergence of SAGE for cases
where the lack of a closed form for the M-step requires the

The algorithm presented in [55, 56] was for the cadl$® Of 1-D interval searches. _ _
w = 1. We have added the parameteibecause under- An alternative method for “preserving edges” is to use

relaxation (i.e.w < 1) is often useful for sequential meth.P€nalty functions based on augmenting the emission pa-
ods [19], as we confirm in Section V. The PML-CNR a|g0_r_amete_rs with a line process [62—64]._ Th_e SAGE_method
rithm is more expensive per-iteration than PML-SAGE-%> applicable to such augmented objective functions, al-

AFL = DAY (1 — w) AL
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though with the same caveats about non-concavity that apher applications.

ply to other deterministic optimization methods. For the unpenalized maximume-likelihood algorithms,
the initial estimate\’ was a uniform ellipse. For the
V. SIMULATION METHODS penalized maximum-likelihood algorithms the initial es-

We now provide some anecdotal results that demdimate was the image formed by applying FBP using a 3rd
strate that the new complete-data spaces lead to faster eder Butterworth filter with cutoff 0.6 of Nyquist (10mm
vergence rates for the EM-type algorithms, and that SAG&solution). FBP image values below 0.1 were set to 0.1
methods converge even faster. These empirical results &srthat\” was nonnegative.
roborate the analysis given in [12, 15, 16]. Our purpose is
only to compare convergence rates, not to argue whether
or not penalized maximum-likelihood images are better in The main results are illustrated by Figures 3-21. Not
any sense than filtered backprojection (FBP) images. &f algorithms are shown in all figures for the following
course we hope that providing a new algorithm for rapidhgasons. We found that the LINU algorithms converged
computing images using statistical criteria will facilitatéaster than the LINB algorithms only in the 0% back-
more comprehensive comparisons of image reconstructgrmund cases, so the LINU results are shown only in those
methods in future work. cases. In the 0% background cases, all “-5” and “-4” al-

We have evaluated the algorithms' convergence ragesithms are identicalz) = 0), as are all “-3" and “-1"
using a 2-D slice of the digital Hoffman brain phantoralgorithms(m; = 0), so the -5 and -3 algorithms are not
shown in Fig. 2, with intensity 4 in the gray matter, Shown.
in the white matter, and O in the background. (All im- _ o
ages are displayed by mapping the range [0,5] to gray |é- Maximum Likelihood
els [0,255].) The phantom is discretized on a 80 by 110Figures 3-5 display the unpenalized likeliho®@\)
grid with 2mm square pixels. The phantom was forwasgrsus iteration for several of the maximum likelihood al-
projected using precomputed factarg. corresponding to gorithms discussed in Section Ill. The following points are
an idealized PET system having 100 angles evenly spailfstrated by these results.
over180°, and 70 radial samples with 3mm spacing. Each .

a,; Was precomputed as thgzJ area of interse?:tion%etweeﬁ ML-EM-3 converges only slightly faster than ML-
" EM-1, although the difference grows with increasing

th_e square pixel and a strlp of W'dth 6mm. (Sl_nce the strip background fraction. ML-LINU-1 converges faster
width is wider than the radial spacing, the strips overlap.) than ML-EM-3

The d_etector response Is thus a 6mm rectangular_functlon.. ML-SAGE-5 and ML-SAGE-6 converge faster than
Only image pixels within a support ellipse of radii 39 by

54 pixels were reconstructed. ML-LINU-1, and appear to reach an asymptote

The projections were multiplied by nonuniform atten- SOOneT. The_dn‘ference grows Wlt.h increasing back-
uation factors corresponding to an ellipse with radii 90 ground fraction. (ML'SAGE'S Is also easier to
and 100 mm with attenuation coefficient 0.01/mm, sur- implement than the bent-line ML-LINU-1 method.)
rounded by an elliptical 5mm thick skull with attenua- ML-SAGE-5 converges faster than ML-LINU-1 even

o 0
tion coefficient 0.015/mm. Nonuniform detector efficien- when the background fraction is as small as 5%.
. : : .« For 5% and 35% background fractions, ML-SAGE-5
cies were applied using pseudo-random log-normal vari-~ . o
) had . increases the likelihood faster than ML-SAGE-6 dur-
ates with standard deviation 0.2. The sinogram was glob- . : : : :
ing the early iterations, but by the 10-20th iteration,
ally scaled to a mean sum of 900000 true events. All of the . )
. . ML-SAGE-6 passes ML-SAGE-5. In light of Fig-
above effects were also incorporated into the factors. .
: . . ures 7-12, it may be useful to under-relax ML-SAGE-
Pseudo-random independent Poisson variates were drawn 5
according to (11), and a uniform field of Poisson dis- ' :
) g to (11) : o For 0% background events, the difference between
tributed background events with known mean were added. L
. . ML-SAGE-6 and ML-LINU-1 is minimal, so for ML
Three data sets were studied, one with 5% background ) L
: . reconstruction, the SAGE methods presented in this
events, another with 35% background events, representing .
o L . report are most useful when the background is non-
the range of random coincidence contamination typically nealigible
found in PET scans, and one with 0% background events. glgiole.
Having no random coincidences is impossible in PET, bQualitatively, ML-SAGE-5 images exhibit the infamous
we include this case since the results may be of interest farisy checkerboard effect in an order of magnitude fewer

VI. RESULTS
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iterations than even ML-LINU-1, so some regularization for convergence i, norm, as shown in Fig. 6. The

method is clearly necessé&ry slopes of the lines in this logarithmic plot s related to
_ _ o the asymptotic convergence rate, and one can see that
B. Penalized Maximum Likelihood PML-SAGE-5 and PML-CNR (witho = 0.6) con-

Figures 7-12 display the penalized likelihood objective  verge significantly faster than the other algorithms.

:I)(’\Z) - (I)f’\o) fog the EI\/L—type algorithms, including  gjnce pML-SAGE-5 is a monotonic algorithm applied
close ups qu)_(’\ ) = (I)(’\_ ) for_ PML'S_AGE'E? and 6 to a strictly concave objective function, it is very robust to
and PMI_"CNR in the early iterations. _It IS alsq INteresting o initial estimate. Figures 13 and 14 display several it-
to examine the rates of convergencelinnorm i.e. erations of PML-SAGE-5 estimates initialized with a uni-
H/\z' _ ;\H _ Z A — Ar. form image, a checkerboard image, and a FBP image. The
A difference images rapidly decrease to values that would be
. invisible on a conventional 8-bit display, so we have am-
UnfortunatelyX is not known exactly, and cannot be compjified the differences by a factor of 4 for display here. For
puted exactly with finite precision computers. For illustraso, packground events the effects of the checkerboard
tive purposes, we took to be the 100th iteration of PML- jnitia| estimate are negligible by 8-10 iterations; for 5%
SAGE-5, at which point it had converged to within singlgackground the effects of the initial estimate are negligi-
floating point machine precision. Figure 6 compares tig, by 15-20 iterations.
norm convergence rates for the algorithms. As discussed in Section IV, SAGE is also applicable to
The following points are illustrated by these results. non-quadratic penalties. The images in Figure 15 were

« In all cases, GEM and OSL (and De Pierro' algdeconstructed by applying PML-SAGE-5 to a penalized-
rithm, not shown) had indistinguishable convergendielihood objective with the following penalty function:
rates. 1

+ PML-GEM-3 and PML-OSL-3 converge faster than P(A) =55 D00 wkih(A = X)),
the conventional PML-GEM-1 and PML-OSL-1 re- ko eNk
spectively, and the increase in speed grows with thgere
background fraction. .

« Even with only 5% random coincidences, PML- h(u) = =62 (|u/é] = log(1 + |u/é])),

SAGE-5 clearly increases faster and reaches its 2

asymptote sooner than PML-GEM-3 and PML-OSLwhere we used = 0.8. This penalty is one of several
3. The advantage for 35% background is evesuggested by Lange [46, Table Ill]. Figure 15 demon-
greater. strates that the iterates produced by PML-SAGE-5 con-

« For 0% background events) = 0, so PML-SAGE- verge rapidly even for non-quadratic penalties.

5 is identical to PML-SAGE-4 (which is identical
to the “ICM-EM” algorithm of [40]), and converges
at the same rate as PML-GEM-1. For 0% back- Table Il summarizes the computation times for 40 it-
ground PML-SAGE-6 converges faster per-iteratiogrations on a DEC 3000/400 workstation. Also shown
than PML-GEM-1 or PML-LINU-1. is the floating point operations (flops) for the algorithms.

« We experimented with several valueswofor PML- Based on flops alone, ML-SAGE-5 should at worst take
CNR for this data set, and found it converged faste85% more time per iteration than ML-EM-1. The actually
whenw = 0.6, i.e., which PML-CNR isunder CPU time for ML-SAGE-5 was about 72% higher than
relaxed. Using this under-relaxation, the conveML-EM-1 per iteration, so apparently either floating point
gence rates of PML-CNR and PML-SAGE-5 (opperations do not solely dominate the CPU time, or further
PML-SAGE-6 in the case of 0% background) wereode optimization is needed. Figures 16-21 are essentially
quite comparable for these data sets. the same as Figures 7-12j except that we have plotted CPU

« The conclusions given above in terms of the conveime on the horizontal axis. Even though our implementa-
gence in the objective functio@l(/\i) also held true tion of the SAGE algorithms runs slower than the floating

8Fast convergence is clearly desirable for penalized objective functiopsomt calculations would suggest, the curves in Figs. 16-
but we advise caution when using “stopping rules” [18] in conjunction wit? 1 demonstrate the SAGE algorithms converge faster than
coordinate-based algorithms (such as ML-SAGE-5) for the unpenalized ca§§e other monotonic algorithms, and the gap widens with

since for such algorithms th@gh spatial frequencies converge faster than the ) . .
low frequencies [10]. increasing background fraction. The reader should bear in

VIl. COMPUTATION



17

mind that these comparisons could vary significantly b#e emission events with the background events. Our re-
tween implementations. sults show that either of these iddasitselfleads to only
Why does ML-SAGE-5 require about 25% moresmall improvements in convergence rates (consider ML-
floating point operations per iteration than ML-EM-EM-3 or ML-SAGE-4 relative to ML-EM-1), but the two
3? The reason is due to the difference between eqpainciples applied in tandem (e.g. ML-SAGE-5 or ML-
tions (51), (52) and (55) in Table I. For a simultaneous uBAGE-6) lead to large improvements in convergence rates.
date algorithm like ML-EM, the rati@,, = 4,,/y, can be  One very important issue that is beyond the scope of
precomputed before computing theterms, so there arethis report is the selection of the regularization parameter
only m + N multiplies required, whereas for ML-SAGE,5. Qualitatively, increasing leads to increased smooth-
since they,, terms are continually changing, the calculaaess, similar to decreasing the cutoff frequency for con-
tion of e, using (55) require2m multiplications. There ventional FBP reconstruction. Automatic methods for
is an approach that can mitigate this 25% disadvantage;hioosing smoothing parameters such as cross validation
one has enough dynamic memory to store Beth. } as are one possibility, but such methods may be unstable in

well as{q,x }, whereg,, is precomputed as: imaging problems [65]. We are currently investigating a
frequency-domain method for relating the unitless param-
Gnk = CnkYn, eter § to a quantitative measure of image resolution, so

that one can choose appropriate values#ahat yield
then for both ML-SAGE and ML-EM one can compute . ppropriay 4 y
. consistent reconstructed resolution regardless of measure-
thee; terms using .
ment variance.
e = ank/%‘ We have attempted as fair of a comparison between
n SAGE methods and the alternatives as we think is possi-

le. We presented slightly improved versions of several al-
: . ) rnatives (GEM, OSL, De Pierro, etc.), and experimented
and ML-EM are virtually identical, although the memor © ( ) P

. . . ith several choices for the design parameters Nev-
requirements of ML-SAGE will be roughly twice that of gn parametags
ML-EM ertheless, we cannot rule out the possibility that a better

o o . . choice for{my}, or even a better choice for the complete-
For applications where it is currently impractical to

recompute and store the,, factors, such as 3D PETdata space will be eventually found. Such an extension
precompuite K ’ ould be very useful since algorithms such as De Pierro's

or cone-beam SPEC.T’ t_he above dlscusspn 1S S.Omewhaeghod have the advantage of being more suitable for fine-
mute. In those applications, the extramultiplications

. . ) : : rain parallel computers than the SAGE algorithms we
required by M.L'SAGE W'”.be mconsequ_entlal relative t%resented in this report. As described in Section I, the
:h?hwork reqwrePdef rS(,)Anc-alg % re_lclatl)culatlonfof tlng;l S;[h 8%eneric SAGE method offers more flexibility than we have
1 ThOse cases, ) =0 WIThe more favorable uaed in this report. We are currently studying alternatives
is suggested by Table Il since once one ha_s expendedtto PML-SAGE-5 that may be more suitable for fine-grain
eff;)nrt t? compilqute tg?”k ifo:nthekthvsgl(legigool:dsirttﬁoéaearallel computing (see Appendix Ill). Regardless how-
€0 ,pE: ecx US tg (/\Z»)' one ;Zy as ever, in PET there is always the opportunity for coarse-
anj'S 10 COMpUte(X') using (32). grain parallel implementations with 100% processor uti-

VIIl. DISCUSSION Ii?atli_on since contemporary PET systems produce dozens

: . of slices.

This report presents new ?Igo_rlthms (namely PML' By suitablyunderrelaxing the PML-CNR algorithm of
SAGE-5 and PML-SAGE-6) for image reconstructiog,,man and Sauer [55, 56], we were able to accelerate
from Poisson measurements using a penalized I|keI|ho[99”__C|\IR to the point where the convergence rates of
objective function. The algorithms converge rapidlys\, _~NR and PML-SAGE-5.6 are comparable on the
monotonically, globally, and naturally enforce nonneggs ,hjes we have tried. The SAGE algorithms have the
tivity constralpts. There are two main principles beh'ngdvantages of monotonicity and less computation time
the new aIg_onthrr_13 t_hat !ead tothe 'mp“’?’ed CONVETYeNESr PML-SAGE-5). However, in principle it is intuitive
rates._TheflrstprlnC|pIe_|sto update the p|?<e_l estimates ?S'expect that since the PML-CNR method is based on a
quentially rather than simultaneously. This idea has Ioe‘s'zélcond-order approximation to the likelihood, in some sit-
used successiully by other authors as well [40,55,56]. TDgtions it might converge faster locally to the maximum

second principle is our use of new hidden data spaces t@f"{he objective. We have not seen this yet, but the sit-
are less informative, formed by “mixing together” some of

In this case the floating point computations of ML-SAG
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uation is confounded by the nonnegativity constraint ival conventional numerical tools such as line-searches and
herent to Poisson problems; conventional wisdom abddygwton's methods, yet ensuring algorithm monotonicity.
“supra-linear” convergence with Newton methods may nititseems likely that further development using statistical
apply for coordinate-based methods with nonnegativiperspectives will lead to additional improvements.
constraints. We believe further comparison of SAGE and
PML-CNR is needed for a range of different phantoms and IX. APPENDIX |: CONVERGENCE
both quadratic and non-quadratic penalties. It may be thatrhe proof in [15] of local monotonic convergence in
a hybrid algorithm is useful: monotonic PML-SAGE durnorm to a fixed point is inapplicable to problems with non-
ing the early iterations, and then greedy PML-CNR neaggativity constraints, except when the fixed point hap-
the maximum. Another alternative to PML-SAGE thabens to lie in the interior of the nonnegative orthant. In this
should be investigated is preconditioned conjugate gradppendix, we prove convergence of a very general form of
ent [57, 58], although such methods are trickier to implSAGE that allows the limit to lie on the boundary of the
ment due to the nonnegativity constraint. nonnegative orthant. The proof structure is based on [17],
Our results remind one that it is essential to use idepith some aspects based on [39].
tical data sets when comparing the convergence rates ofve begin by stating some general sufficient conditions
different algorithms. The convergence rate of PML-CNRr convergence. These conditions make no specific ref-
appeared to be faster in [56], but for a rather different obrences to the Poisson likelihood or penalty used in this
ject and imaging system. report, so this proof will apply to a broad class of nonneg-
There is one subtle implementation issue that diffegsively constrained estimation problems. Following the
somewhat between SAGE and EM. The SAGE algorithgeneral proof, we verify that the specific SAGE algorithms
is optimized when the factors,, are precomputed andpresented in this report meet the required conditions under
stored bycolumn(n varying fastest). (If one uses on-linghe linear Poisson model.
forward and backward projections, these should be pixel-Define the following sets:
driven for SAGE.) In contrast, the EM algorithm is indif-

ferent to the storage organization, since the entire set of RY = {05:0,>0,kes5},
a,;, terms is used at once. Ironically, some EM implemen- Of = {0c R :0,>0,k=1,...,p},
tations have been based mw storage k varies fastest) S(6°) = {6 : 3(6) > B(6°)).

due to historical use of row-action methods (e.g. ART).

On Unix workstations, even dynamic memory size shoukdso define:

not preclude use of precomputeg.'s, since one can of-

ten use thenmap() function to access the,;,'s from disk VP8 (0%:;0) 2 —¢Z(051- 0)

faster than recomputing them on the fly. 6i=0%
We have compared several algorithms, and the rea ar

may wonder what is the impact of these results on “prac-

titioners” of penalized likelihood image reconstruction?

In light of Fig. 9 and our experience with other expefyhere

iments, we recommend using PML-SAGE-5 when pro- )

cessing Poisson measurements with a nonnegligible ad- [Vm(bi(@si; *)] _ 0 </5i(05i‘ 0)

ditive background (scatter, randoms, etc.) on conven- ki 00r0;

tional serial computers. For measurements with zero back- ;

ground, Figure 16 shows only a slight advantage for PM ork,j €5 . ) o . .

SAGE-6 relative to PML-LINU-1, so we recommend that To eliminate the interior restriction used in [15], we im-

each user compare PML-SAGE-6 and PML-LINU-1 fOpose the following two regularity conditions on the objec-

Z’ Pt A 1 Z —
J'(0s:i;0) = —§V20¢ (05i:0),

her application. Ve.
In light of the considerable recent progress in improv- Assumption 1:2(0) i '_f strictly concave (and continuous
ing the convergence rates of algorithms for maximum IlkémOI differentiable) o® o on
Assumption 2For any8° € ©1, the setS(8") is

lihood and penalized likelihood image reconstruction, it
is highly unlikely that SAGE will be the final word. It Pounded. _ _ o
is somewhat remarkable that the statistical principles b%s noted in [17], the assumption of strict concavity is ad-

hind the SAGE methods yield convergence rates that ?quate to "make up for” relaxing the restriction to the in-
terior of @*. We do not consider strict concavity to be an
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overly restrictive assumption; i is not strictly concave, Lemma 1:The iterateg#'} yield monotonic increases

then typically either it does not have a unique maximurin ®(8*), and are thus contained in the $¢8°). Further-

in which case it is a questionable choice of objective, atore,S(8°) is compact and convex.

it has local maxima, and no known deterministic algd?roof: Monotonicity follows from Conditions 1 and 4.

rithms are guaranteed to find the global maxima, includif@ince ® is strictly concave (Assumption 1)5(6°) is

SAGE. Like any monotonic algorithm, for a non-strictlystrictly convex. Sinceb is continuous (Assumption 1),

concave objective SAGE will only find a global maximun®(6°) is closed [66, p. 91]. ThuS§(8") is compact since

if initialized suitably close to one. it is closed and bounded (Assumption 2), by the Heine-
We assume the iterates are produced by an algoritBorel theorem [66, p. 58]. O

having the general form given in Section Il, i.e., each it- Lemma 2:There exists & > 0 such that for any

eration is associated with an index $étand a functional , , , ,

¢'(05;60"), and the iterates satis§t' = 0%, We as- [ 02\_’2_ < C_l(‘l’(.elﬂ)l— ®(6)).

sume that the functionalg’ satisfy the following condi- Proof: From Condition 1 and siné = 05, it suffices

tions. to showv::

Condition 1: The functionals)’ satisfy (2), i.e.: ; ; 1 ir i . i

, ntionals satisty (2). 1e. 103" — 0517 < 76051 0°) - 6'(05:0)).
(0,05 ) — B(6) > ¢ (04:;0') — &' (0 6°), o . _ o
(85, 03:) (6) 2 #'(05:;6') = ¢'(05::6') Expandfbl(-;OZ)about@f;rl using Taylor's expansion with

for 65 € RE, andé’ € ©F. | remainder [67, p. 599]:
Condition 2: Each functional¢'(-; @) is strictly con- : : ikl i
cave and twice differentiable o, for any6 € O+, ¢'(05:;0") = ¢'(05;0') +

and eachy'(-; -) is continuous o, x O,
Condition 3: The following derivatives matcti::

1 . . . .
k

VI (0005 — 0F") + (05 — 01

' From Condition 4, it follows that
for any® ¢ O andk ¢ S°.
Condition4: For 8’ ¢ 0%, the iterates satisfy the Vs (05t 0 (0 - 6%) > 0,
Karush-Kuhn-Tucker conditiong: € S*: '
o 92+1 0 so setting idg: = 6%, in (45) yields
<0, 4 =0 ClIOG = Oi[|* < ¢'(65:0') — ¢'(05:;6),
Condition 5: For any bounded sef, there exists a
C's > 0 such that for every, for all & € S, and for all whereC' = 05(00). We have used Condition 5 and the

Vi (055 0Y)

(0s,65) € S fact thatz’ Az > ||z||*\minA for any positive definite
. , matrix A. ]
Auin {7'(05::8)} > Cs, Temma 3:
whereAnin{J} denotes the minimum eigenvalue.bf _ Ht‘)“f1 - 0'|| — 0 asi — 0o
Condition 6: For eachk € {1,..., p}, thereis an index Proof: Since{®(68")} is monotone increasing (Lemma 1)

setS(*) containingt and functionab(*) that is used regu- and bounded above (by continuity éfand compactness
larly to update théth element of the parametér Define (Lemma 1) ofS(6°) [66, p. 78]), it follows thatb(6'*)
T, = {i : 5 = §® and¢’ = ¢*)}. Then for each: ®(6°) — 0. The Lemma then follows from Lemma 2]

there exists an integéf,., (which may depend ob) such ~ Lemma 4:The sequencgf’} has a limit point 6*. For
that any such limit point, if; > 0, then

Vn > 03i € [n,n + imax] s.t. 7 € Zg. 9
, L e . —®(6°) =0
(This condition is clearly satisfied if the index sets and 00, '

functionals are chosen periodically.) L o o
. . . 9The reader should note the distinction between limits and limit points (or
Using the above Assumptions and Conditions, wWe C@kter points) [66, p. 55].
now prove a series of Lemmas that establish global con-
vergence.
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Proof: By Lemma 1 and [66, p. 56], there is a subsequenge must have) /96, (6°) < 0, establishing the Karush-

i, and limit pointd* € S(8°) such that|@'™ —6*||> — 0
asm — oo. Now pick any indext, and definég:,,, to be
the smallest > i,, such that € 7,. By Condition 6,
km < iy + tmax. BY the triangle inequality:

1% — 6%||* < [|0" — 0™ 1* + [|6 — 6" ||*;

the second term of which goes to O@as— oo. For the
first term, applying the triangle inequality repeatedly:
16" — (2 < Y (|9 — 67|,
1=km
which is a sum of at most, . terms by Condition 6each

of which goes to 0 as: — oo by Lemma 3. Thug@* —
0*|| — 0 asm — oo. Again using the triangle inequality:

051 — 072 < [0+ — 0| 4 [j6Fn — 0|2

Thus||@*"*! — 6*|| — 0 asm — .
Sincek,, € 5%, i.e. on iterationg k,,, } one updates
6., by Condition 4:

0+ - Vit (0;0M) = 0.

Taking the limit asm — oo and using continuity (Condi-
tion 2) shows:

07 - V10s(F) (0%, 0%) = 0.

The Lemma then follows from Condition 3. O
Lemma 5:The sequencéd'} converges to a limi@~°.

Proof: Asin [17, Lemma 3], the number of limit points is
finite (at most?), due to Assumption 1, the nonnegativity
constraint, and Lemma 4. However, since a bounded (As-.

sumption 2) sequencg®’} for which ||t — @'|| — 0

(Lemma 3) has a connected and compact set of limit points

[68, p. 173], there must be only one limit point. O
Lemma 6:The limit 8> satisfies the Karush-Kuhn-
Tucker conditions fo.
Proof: For an elemeréi;® > 0, we haved/06,®(0>)
0 by Lemma 4. Now suppose for sorheve havef;, = 0
but 9/06,®(6*) > 0. Then by continuity (Assump-
tion 1) and Lemma 39/06,®(6°) > 0 for all i suffi-
ciently large. Thus by Conditions 3 and 6,

Vi (0505 6') > 0

for all i € I, sufficiently large. But since(")(-; ") is
strictly concave (Condition 2), 716" (0%,,;6°) > 0,
thend ™! > ¢i. This contradict®i, — 0, so if ° = 0

Kuhn-Tucker conditions. a

Since a strictly concave objective has only one point
that satisfies the Karush-Kuhn-Tucker conditions, namely
the constrained maximum, the linéit® must be that point.
Lemma 6 thus establishes global convergence under a
generic set of assumptions and conditions. All that re-
mains is to verify that the conditions are satisfied for the
SAGE algorithms presented in this report.

Remark:

In all of SAGE algorithms in this paper, th¢ function-
als areadditively separablén their first argument, which
means that the curvature matricdy8:; 8°) are diago-
nal. In this case, Condition 5 reduces to verifying that
the diagonal elements of have a positive lower bound.
This is clearly the case for convex penalties such as the
quadratic penalty (36). In other words, for separatile
functionals, a sufficient condition for Condition 5 is:
Condition 5’: For any bounded s&, there exists &'s >
0 such that for alp € S

10
_58—0213(0) > Cs.

Theorem 1:A sequence 8} generated by any of the
PML-SAGE-4, PML-SAGE-5, or PML-SAGE-6 algo-
rithms for penalized maximum-likelihood image recon-
struction converges globally to the unique maximum of
a strictly concave objective functiob having a penalty
function satisfying Condition’s providedz; > 0 Vk.

Proof:

« Assumption 2 follows from the behavior of the Pois-

son log-likelihood as\;, — oo [17].

Condition 1 follows from [15, Theorem 1].

» Condition 2 is easily verified for the hidden-data

spaces and penalty functions used in this report.

« Condition 3 follows by the construction ef*** us-
ing (5)-(7).

« Condition 4 is built into the definition (3), and is sat-
isfied by (38).

» Condition 5 follows from Condition 5' since the
SAGE algorithms have separaliefunctionals.

« Condition 6 is inherently satisfied by the cyclical se-
guential update used in PML-SAGE-5.

0
If one hopes for global convergence, then Condition 5
is a reasonable restriction; it is clearly satisfied for the
guadratic penalty (36), and for most strictly convex penal-
ties.
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There is an important technical difference between our X. APPENDIX Il: m; DESIGN
proof and the assumpti_or_1§ ir_1 [171. In [1_7] it was assumedThe simple choice (23) for the design parameters }
that the sequence was initialized in the interiofdf, and ¢, \) _EM-3 satisfies the constraints (21), but is not nec-
remained in the interior 0®™ for every iteration. With essarily an optimal choice. In light of the form of the
our new complete-data spaces and hldden-daf[a spaces,;}gﬁer information (22) ofX?, we would like them,'s
iterates can come and go from boundaryddf since the to be as “large as possible” subject to (21). One way to

termsz; are nonzero. However, when is pcismve, ON€ quantify this goal is the following weighted min-max cri-
can verify that the corresponding functions” are well- erion:

defined and differentiable on an open interval containing . {mk}
max minq —
Zero. meM k| wg
Condition 2 as stated is only metif, > 0 for all &, \yhere
which will be true ifr,, > 0 for all n. If one were to in-
clude the effects of say, cosmic radiation, then in practice ~ Aq — {
itis always the case that, > 0. However, if some-,, and

hence some; are zero, itis simple to modify the proofry,q sy tion to this min-max problemis not unique in gen-

to establish global convergence to the maximum. TheIEy| ey cent for the smallest elementsfwhich one can
is one important technical detail however; one cannot u§§sily show are given by

zr > 0in one iteration and then switcht@ = 0 in a later

m:m > O,Zankmk < rnVn} .
k

iteration, since ther)\}; could get stuck on the boundary mE = WgPn, (46)
of ®T. Provided that one consistently uses eittely the ny = argminp,
original complete-data space only the new complete- TZ
data spaces, then global convergence is assured. P = =
>k Gk Wk

As stated above, the proof does not always apply to the
unpenalized maximum-likelihood algorithms ML-EM-1Wwhere the minimization is only over thefor which the
ML-EM-3, ML-SAGE-1, and ML-SAGE-5, because thed€nominator is nonzero. For any nonnegative weights
curvature assumption Condition 5 is nataessarily satis- 1w}, the design (46) clearly satisfies (21). Let
fied without a strictly convex penalty. However, one can Ky = {k : any # 0Y.
replace Condition 5 with an alternative condition thath
$'(8i;0') must be a monotonically decreasing functiofthen fork ¢ K,,, the corresponding;'s are not re-
of ;. This approach was used in [12,17]. With thistricted by the constraint
condition, a small modification of the above proof estab-
lishes global convergence of the unpenalized algorithms, D gk < Ty
provided that Assumption 1 is still satisfied his strict g
concavity will not be satisfied if the system matrixdoes SO it is possible to further increase thosg's. Fork ¢
not have full column rank. We consider this to be a mi~, We freeze the values ofy; to mj = wypn,, and
nor point since in the underdetermined case regularizBen subtract from both sides (21) to obtain the new
tion is particularly essential, and the above proof show8nstraint
that P_ML-SAGI_E-S converges gIob_aIIy_for strictly concave Z apmy < 7, — Z e, 1 % n1.
penalized maximum-likelihood objectives. We conjecture kEKon, kEKn,
that the methods of [69, 70] could be extended to estab-
lish convergence of ML-EM-3, ML-SAGE-5, etc. withouD€fining .
the strict concavity assumption, but such a proof would ol = 'n — Zke’% Ank M, (47)
probably be of limited academic interest since in practice " Zk@cnl Uphwp
one rarely iterates a ML algorithm to convergence in thge can then let
unregularized, underdetermined case.

If one is willing to be content with a local convergence ngy = arg mgn Pros
result, then it is possible to relax the assumption of strict N , i
concavity for thep’ functionals, using a region of conver-2nd assignn; = WkPry fo_r k€ Ko, This Process can
gence idea similar to that in [15, 16]. be r_epeated _untll eveny., is restrlctf_ed by an active con-

straint, at which point the sétn} } will satisfy (21) (eas-
ily shown by induction), and will in some sense be “as
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large as possible.” However, in the few PET simulationghichever constraint in (48) is active, so we freeze those
we tried, the additional effort iterating to obtafm»;} =z values, and then continue to increase the water level
yielded only a very slight improvement over the simplentil another constraint in (48) becomes active. This pro-
design (23). cess is repeated until all,'s are restricted by an active
In light of (22), we have experimented with three€onstraint.
choices for the weights: iyniformt w; = 1, ii) sen- Formally then, define
sitivity weighted w;, = a.;, and iii) image weighted
wy = _1/ma)_<{;\k,6} fgr some smalb > 0. For the fe_w _ I = max{l : ank =7, <7 Vn},
PET simulations we tried, all three performed nearly indis- z
tinguishably, so the results in Section V are simply based
on uniform weights without iterating, i.e. (23). The ba@nd letV; be the active constraints:
sic problem is simply that in an EM-type algorithm with
a simultaneousipdate, the background evedts,} must M = {n : ank [ — 7]y = rn} )
be spread out over all the pixels, so the valuespfare k
fairly small relative to the pixel values;. In contrast, in Define
the sequentialupdate of our ML-SAGE-5 method, many
of t_he_ background events can be associated with gixel Ki={k:li > wu 20, n € A7},
as it is updated, so the values for (see (31)) are or-
ders of magnitude larger than the,'s. We conclude that and fork ¢ K, fix
this difference largely explains the rapid convergence of
ML-SAGE-5 relative to ML-EM-3 shown in Section V. vy = [l — 7],
However, it is possible that in other contexts a nonuniform
weighting based on (47) would improve the convergenE@' the second iteration, define
rate of ML-EM-3.
Considering (22) again, an alternative criterion for _ max{l: Z Wl + Z war [l = 7], < Vn},
choosing the sefm;} is to ask that the largest element Pres e
of Fx2 be as small as possible, subjectamth (21) and

the constraint thaty;, > 0 V&. This is equivalent to: and letV; be the active constraints for that maximization.
. Fork in
max min M
memM k a.f ' KQI{k¢K1:12>Tk7wnk#ovneNQ}v

Again, this min-max problem does not have a unique sgx v = [l — ], Repeat this process until atl;'s
lution. However, we can give an algorithm for generajye restricted by an active constraint. One can show by
ing nonnegativen;'s that satisfy (21). First, by defininginduction that this process will satisfy the constraint (48).
xf = myg/a, Te = Ag/ar, andw,; = agpa.g, OUr prob-  Furthermore, one can show that this construction yields a

lem is equivalent to: x* that has the following optimality property:

max min{zy + 7%}, For any other € ., if there is somé such that
TeX k * !

x> xj, then there must be somesuch that
where z; < xj andz; +7; < x4+ 7. In other words,
one can only increase any of the elementgof
X = {:1: tx > O,ankxk < rnVn} . (48) by decreasing some other elementedfwhose
k sumzy + 73, is smaller. Thuge™ + 7 is “as large

Our algorithm for specifying the:;'s can be thought @S Possible”in a strong sense.

of as a “water-filling” algorithm where we initially let the Having found thez,'s using the above algorithm, one
solution have the form then computes the corresponding's usingmy = a.pzy.
Finding the levelgy, I5, . . . is feasible but nontrivial com-
putationally, so the performance of this “optimal” (in the
for a levell, and then chooskas large as possible subS€nse of asymptotic convergence rate) setgfs has not
ject to (48). Only some of the,'s will be restricted by Peen evaluated.

v = [l — 7],
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XI. APPENDIX III: PARALLEL SAGE The M-step for this complete-data space has the same

All of the preceding SAGE algorithms in this reporfo™ as (35), only alk: € &, are updated simultaneously.
were based on single pixel index sets. In this appendi®, 0ther words, the algorithm is a hybrid between Type |

we sketch an approach for updating multiple pixels sim(@1d Type Il algorithms in Table I. Assuming the num-
taneously. To simplify the presentation, we only presefi§" Of 9roups= is much less thap, then it will be more
the unpenalized ML algorithms—the extension to PMETCIENt t0 use (51) and (52) than (55), eliminating the
is straightforward. The approach described below is vefy 70 ©verhead for SAGE. However, one must perform the
general (encompassing ML-SAGE-4,5,6 and ML-EM-1 Riinimizations (50) each iteration (or find a better choice
as special cases), and can be made more amenable to{fap (50)). We are currently exploring these tradeofs.
allel computing. It may also be possible to make it more

computationally efficient than ML-SAGE-5,6. _ _
First, splitthe set of image pixels in@disjointgroups | he authors gratefully acknowledge helpful discussions

XIl. ACKNOWLEDGEMENT

Ki.....Ke such that with Neal Clinthorne and W. Leslie Rogers, and Stephanie
Y Sandor for bringing thenmap() function to their atten-
@ tion.
U K,=A{1,...,p}.
g=1

For example, the “red-black” checkerboard groupings
would correspond t@7 = 2, the ML-SAGE-4,5,6 algo-
rithms would beG = p, and the ML-EM-1,3 algorithm
would beG = 1. The SAGE algorithm alternates between
updating the pixels in each group, i.6° = K,, where

¢ = 14 (i modulo ). For updating theth group, define
the following hidden-data space:

N
X {{an}ke}cg’{ ng}}n——l ’
where

Zni ~ Poisson{ant(Ar + 2z)}, k € Ky,

B,, ~ Poisson{r, + Z ank/\ﬁg — Z Ank 2k -
k¢, keK,

Note that

keK,
has the proper distribution (11). The design parameters
{zr} must satisfy:

Z AnkZk S Tn + Z ankA;m vnv (49)
keEKy kg,

so that the Poisson rates Bf, are nonnegative. The con-
straint (49) offers much more flexibility than both (21)
and (30), and we have only begun to explore its poten-
tial. Perhaps the simplest approach to choosingtheis

to letz; = 2,(\%) for k € K, where

nt nkA
T+ 2okgK, Gnk k} (50)

Zke}Cg Unk

2g(A) = min {

n

This choice is almost surely not opimal however.
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Type-I Algorithm (e.g. ML-EM, PML-OSL)
and
Type-Il Algorithm (e.g. PML-GEM)

Initialize Y
fori=0,1,...{
U = > @At n=1...,N
k
Sp = yn/gnvnzlva (51)
€r = Zanksnv k=1,....p (52)
fork=1,...,p{
A = giler; X, (Type-l), or (53)
A= grle N5 XD, (Type-l) (54)

| Type-IIl Algorithm (e.g. ML-SAGE, PML-SAGE)

Initialize A, Un = Sk @k Al + 1o, m=1,...,N.
fori=0,1,...{
k= 1+ (¢modulo p)
€ = Zankyn/gn (55)
AL = gr(er X)) (56)
i+1 _ P
Un = Yo+ (/\}j'1 — ALk, Y i an, #0 (57)

TABLE |
THREE GENERIC PSEUDGCODE ALGORITHM TYPES FOR PENALIZED MAXIMUM-LIKELIHOOD IMAGE RECONSTRUCTION ALL OF THE ALGORITHMS
PRESENTED IN THE TEXT ARE OF ONE OF THESE THREE TYPEW/ITHIN EACH TYPE, THE ALGORITHMS DIFFER IN FORM OF THE FUNCTIONg/() USED IN
THE M-STER
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CPU Seconds
% Background Floating Point Operations
0% 5% 35%)| multiply add x>0? a>y? log, ./
ML-EM-1 25 25 25| 2m+2p+ N 2m —p N
ML-EM-3 24 241 2m +2p+ N 2m +p N+p
ML-LINB-1 26 26 26| 2m+3p+ 4N  2m 45N 2N 2N
ML-LINU-110 | 34 26 27| 4m+4p+ 9N
ML-SAGE-4 45 37 37| 3m +2p 2m m
ML-SAGE-5 36 35| 3m+2p 2m + 2p m+p
ML-SAGE-6 67 64 64| 4m + 2p 2m + 3p m+p m-—p
ML-CNR dm + 2p 3m + 3p m+p
WLS+SOR [19] 3m+2p 2m+p P
PML-OSL-1 26 26 37| 2m +5p+ N 2m + 8p N
PML-OSL-3 25 35| 2m+5p+ N 2m + 10p N +2p
PML-GEM-1 26 26 38| 2m+9p+ N 2m + 9p N p
PML-GEM-3 26 37| 2m 4+ 10p+ N 2m+12p N+p P
PML-LINB-1 29 29 40| 2m 4+ 10p+ 4N 2m+ 18p+ 5N 2N 2N
PML-SAGE-4 42 39 68| 3m + 9p 2m + 8p m P
PML-SAGE-5 40 68| 3m + 10p 2m + 13p m+p p
PML-SAGE-6 42 41 114 3m + 10p 2m + 13p m+p m-—p p
PML-CNR 42 40 85| ?m + 5p 3m+ 12p m+p
TABLE Il

CPUSECONDS FORA0OITERATIONS OF EACH ALGORITHM. THE NUMBER OF NONZERQz ' S IS DENOTEDm; TYPICALLY m << pN. SINCEm >> N
AND m >> p, THE TERMS INVOLVING . DOMINATE. MOST OF THE FLOATING POINT COMPARISONS WITH) ARE UNNECESSARY WHENr, > 0, SINCE
THEN %y, > 0, HENCE THE FASTER EXECUTION TIME OFPML-SAGE-5FOR5% AND 35%BACKGROUND. THE EXECUTION TIMES FOR THE-CNR AND

-OSL ALGORITHMS ARE WithOUtCHECKING FOR MONOTONICITY, ALL THE OTHER ALGORITHMS ARE MONOTONIC
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Fig. 1. Typical plots of2 x5 (A; Ai) versusiy. Inthe left plot, the maximum occurs far, > 0. For the right plot, although the unconstrained maximum occurs
for a negative\, the nonnegatively constrained maximum is\at= 0, due to the concavity dP x s .

Fig. 2. Digital brain phantom (left), and filtered backprojection reconstructed image (right).
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Fig. 3. Log-likelihoodZL(A*) — L(A°) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 0% random coincidences.
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Fig. 4. Log-likelihoodL(A') — L(A°) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 5% random coincidences. Not shown is
ML-SAGE-4, which is indistinguishable from ML-EM-1.
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Fig. 5. Log-likelihoodZ(A") — L(A%) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 35% random coincidences. Not shown is
ML-SAGE-4, which is indistinguishable from ML-EM-1.
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Fig. 6. L, distance|A* — A|| vs. iteration from data with 35% random coincidences. Not shown is PML-GNR: (0.6), which is indistinguishable from
PML-SAGE-5.
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Fig. 7. Penalized likelihood(A®) vs. iteration from data with 0% random coincidences.
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Fig. 8. Penalized likelihoo®(A!) vs. iteration from data with 0% random coincidences.
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Penalized Maximum Likelihood - Quadratic Penalty
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Fig. 9. Penalized likelihooé(A!) vs. iteration from data with 5% random coincidences. Not shown is PML-SAGE-6, which is indistinguishable from PML-
SAGE-5. Also not shown is PML-SAGE-4, which is indistinguishable from PML-OSL-1.
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Fig. 10. Penalized likelihoo@(A*) vs. iteration from data with 5% random coincidences.
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Fig. 11. Penalized likelihoo®(A') vs. iteration from data with 35% random coincidences. Not shown is PML-SAGE-6, which is indistinguishable from
PML-SAGE-5. Also not shown is PML-SAGE-4, which is indistinguishable from PML-OSL-1.
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Fig. 12. Penalized likelihoo@(A*) vs. iteration from data with 35% random coincidences.
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Fig. 13. PML-SAGE-5 estimates from data with 5% random coincidences at iteratiens, 5, 10, 20 (left to right). Top row: initialized with uniform image.
Middle row: initialized with thresholded filtered-backprojection image. Bottom row: absolute value of difference between top and middle rdied agnpli
a factor of 4.
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Fig. 14. PML-SAGE-5 estimates from data with 35% random coincidences at iteratiens, 2, 4, 8 (left to right). Top row: initialized with uniform image.
Middle row: initialized with “checkerboard” image alternating between intensities 0 and 4. Bottom row: absolute value of difference betweenitifieand
rows amplified by a factor of 4.

OO

Fig. 15. PML-SAGE-5 estimates from data with 35% random coincidences at iteratiofs2, 4, 10 (left to right) for a penalized maximum likelihood objective
with a nonquadratic “edge-preserving” penalty (see text). The iterates produced by the SAGE meflipel stplally even fomonquadratic periges.
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Penalized likelihoo@(A*) vs. CPU time from data with 5% random coincidences.
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