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ABSTRACT

Most expectation-maximization (EM) type algorithms for penalized maximum-likelihood image reconstruc-
tion converge particularly slowly when one incorporates additive background effects such as scatter, random
coincidences, dark current, or cosmic radiation. In addition, regularizing smoothness penalties (or priors)
introduce parameter coupling, rendering intractable the M-steps of most EM-type algorithms. This report
presents space-alternating generalized EM (SAGE) algorithms for image reconstruction, which update the
parameterssequentiallyusing a sequence of small “hidden” data spaces, rather thansimultaneouslyusing
one large complete-data space. The sequential update decouples the M-step, so the maximization can typ-
ically be performed analytically. We introduce new hidden-data spaces that are less informative than the
conventional complete-data space for Poisson data and that yield significant improvements in convergence
rate. This acceleration is due to statistical considerations, not numerical overrelaxation methods, so mono-
tonic increases in the objective function are guaranteed. We provide a general global convergence proof for
SAGE methods with nonnegativity constraints.

1This work was supported in part by DOE Grant DE-FG02-87ER60561, NSF grant BCS-9024370 and NIH grants CA-54362-02 and CA-60711-01.
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I. INTRODUCTION

Imaging techniques with Poisson measurement statis-
tics include: positron emission tomography (PET) [1],
single photon emission computed tomography (SPECT),
gamma astronomy, various microscopy methods [2, 3],
and photon-limited optical imaging [4]. Statistical meth-
ods for image reconstruction or restoration, such as max-
imum likelihood (ML), penalized maximum-likelihood
(PML), or maximuma posteriori (MAP), are computa-
tionally challenging due to the transcendental form of the
Poisson log-likelihood. The difficulty is exacerbated when
one includes smoothness penalties or priors, since these
functionals further couple the parameters. EM algorithms
[5] have proven to be somewhat useful in such problems,
except for two important drawbacks. The first problem
is convergence rate: EM algorithms converge slowly, par-
ticularly when one includes the additive effects of “back-
ground” events such as random coincidences [6], scatter
[7, 8], dark-current [9], or background cosmic radiation.
The second problem is that the M-step of the EM algo-
rithm becomes intractable when one includes smoothness
penalties in the objective function. Since image recon-
struction is ill-posed, such penalties are often very desir-
able.

Unlike the statistical applications that motivated the de-
velopment of the EM algorithm [5], there is usually no
“missing data” in image reconstruction problems. Here
the EM algorithm serves primarily as a computational tool
that replaces one difficult maximization problem with a
recursion of easier maximizations. It is no ordinary nu-
merical tool however, since each EM algorithm exploits
the underlying statistical structure of the log-likelihood.
In that same spirit, this report proposes a new tool for
image reconstruction from Poisson measurements: the
space-alternating generalized EM (SAGE) method. This
method allows one to further exploit the structure of the
log-likelihood.

In contrast to thesimultaneousupdate used in nearly all
EM-type algorithms, the SAGE algorithms presented in
this report usesequentialparameter updates, where each
pixel can be updated individually. A sequential update
eliminates the coupling problem introduced by smooth-
ness penalties. Sauer and Bouman [10] have explained
the rapid convergence of certain sequential updates using
a novel frequency-domain analysis.

Although Dempsteret al. [5] showed that the conver-
gence rates of EM algorithms are related to the Fisher
information matrices of their complete-data spaces, this
property does not appear to have been widely appreci-
ated or exploited. We have previously shown that reducing

Fisher information can lead to remarkable improvements
in convergence rates [11–16]. The relationship between
Fisher information and convergence rate underscores all
of the methods presented in this report. In particular, the
sequential update of our SAGE algorithms allows us to
use small hidden-data spaces that are considerably less in-
formative than the ordinary complete-data space for im-
age reconstruction, which leads to fast monotonic conver-
gence.

Images reconstructed purely by using the maximum
likelihood criterion [1, 17] have been found to be unac-
ceptably noisy. A variety of methods have been proposed
to reduce this noise, usually with some concordant reso-
lution tradeoff. These methods include: aborting the it-
eration before convergence [18], using quadratic approxi-
mations to the likelihood with a penalty [19, 20], using a
separable (non-smoothness) prior [21–23], and introduc-
ing a smoothing step into the ML-EM iteration [24–26].
Perhaps the most popular alternative is the method of
sieves [27, 28]. Sieves are usually implemented by post-
smoothing, even though the commutability requirement
[28, eqn. (12)] is rarely met in practice. However, recent
studies, e.g. [29], have found that MAP (or equivalently
PML) methods outperform the method of sieves. There-
fore, in this report, we focus on penalized maximum-
likelihood image reconstruction, where one modifies the
objective function to include a roughness penalty. This ap-
proach also has the flexibility to include spatially-variant
penalties that reflect prior anatomical boundary informa-
tion [30]. The new complete-data and hidden-data spaces
we introduce are applicable to both penalized and unpe-
nalized maximum-likelihood methods.

Penalized likelihood objective functions for Poisson
statistics are difficult to maximize (in comparison with
Gaussian problems), and dozens of algorithms have been
proposed. Such algorithms can be categorized as: 1)in-
trinsically monotonicmethods, 2)forced monotonicmeth-
ods (typically made monotonic using a line search), and 3)
nonmonotonic methods. Since one could convert any non-
monotonic method to a forced monotonic method by using
a line search, the latter two categories overlap.

Intrinsically monotonic methods are those such as the
ML-EM algorithm for PET where the form of the re-
cursion inherently ensures that the objective function in-
creases every iteration (ignoring finite precision comput-
ing). The only intrinsically monotonic methods for pe-
nalized maximum-likelihood that we are aware of are:
1) extensions of the EM algorithm including generalized
expectation-maximization (GEM) algorithms [31–34] and
expectation/conditional maximization (ECM) algorithms
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[35, 36], 2) algorithms for the trivial case with separa-
ble (non-smoothness) priors [21–23], 3) the algorithms of
De Pierro [37–39], 4) the “ICM-EM” algorithm of Abdalla
and Kay [40], and 5) the new algorithms in this report. For
the purposes of comparison, we derive new faster versions
of the GEM and De Pierro algorithms in Section III us-
ing a new complete-data space. The “ICM-EM” algorithm
of [40] is a special case of our SAGE method, but one that
converges slower than our recommended method (Sec-
tion IV). Most intrinsically monotonic algorithms have
been shown to converge globally to the unique maximum
for strictly concave objectives.

Nonmonotonic methods can diverge if one does not ex-
plicitly check that the objective increases, and in applica-
tions with many parameters it is often expensive to evalu-
ate the likelihood or to “backtrack” when the likelihood
decreases. The SAGE methods we propose avoid line
searches; monotonicity of the algorithms is guaranteed by
thestatisticalformulation. Although it is not our purpose
to argue this point, we believe that convergence properties
are relevant to clinical medical imaging, since algorithm
divergence could have unfortunate consequences.

Perhaps a more accurate name for nonmonotonic meth-
ods would be “not necessarily monotonic” since indeed
most such methods do havelocal convergence. In partic-
ular, the penalized maximum-likelihood estimate is nearly
always a fixed point of such methods. An early approach
was gradient ascent of the objective starting from an ML
estimate [41,42], which was stated to “not guarantee con-
vergence to the global [max]imum.” Gradient ascent is
complicated by the nonnegativity constraint. Most other
nonmonotonic methods are variations of the one-step late
(OSL) method of Green [43, 44], first mentioned in [45].
In the OSL approach, one circumvents the problem of cou-
pled equations by “plugging in” values from the previous
iteration. Unfortunately, such an approach can diverge,
unless modified to include a line search [46]. Similar
strategies include the BIP algorithm [47, 48], the meth-
ods in [49, 50], and nested gradient or Jacobi iterations
[29, 51, 52]. Most such strategies include a user-specified
step size parameter, and one user has noted that “finding
good values for [the step size] and the number of times to
iterate requires painful experimentation [53].” Other OSL-
like methods are given in [53, 54], which have been re-
ported to occasionally diverge [54]. The sequential update
of our SAGE methods is close in form (cf Type-III algo-
rithms in Table 1) to the coordinate-wise Newton-Raphson
ascent of the objective function proposed by Bouman and
Sauer [55,56]. As described in Section IV, that method is
also not necessarily monotonic, although is has appeared

to converge for the examples we have tried.
Any of the above methods could be forced to be mono-

tonic by adding a line-search step. Lange has shown
convergence for a line-search modification of OSL [46],
and Mucuogluet al.have adapted the conjugate gradient
method [57]. We show below that our intrinsically mono-
tonic ML-SAGE algorithm converges faster than even the
line-search accelerated ML-EM algorithm of Kaufman
[58].

The organization of this report is as follows. Section II
describes the general structure of the SAGE method. Sec-
tion III introduces new complete-data spaces and hidden-
data spaces for Poisson data, and gives several algorithms
for unpenalized maximum-likelihood. Section IV presents
new algorithms for the penalized maximum-likelihoodob-
jective. These algorithms, along with the proof of global
convergence in Appendix I, are the main contributions of
this report. Sections V and VI illustrate the convergence
rates of the various algorithms.

II. T HE SAGE METHOD

In previous work [13–15] we described the SAGE
method within a statistical framework. In this section, we
first describe a generalized version of the method without
direct statistical considerations, and then introduce the sta-
tistical version as a special case. The non-statistical per-
spective is extended from the work of De Pierro [39, 59],
and contains the algorithms of [13–15] and [38,39] as spe-
cial cases.

A. Problem

Let the observationY have the probability distribution
f(y; �true), where�true is a parameter vector residing in
a subset� of thep-dimensional spaceIRp. Given a mea-
surement realizationY = y, our goal is to compute the
penalized maximum-likelihood estimatê� of �true, de-
fined by:

�̂
4
= argmax

�2�
�(�)

where
�(�)

4
= log f(y; �)� P (�); (1)

andP is an optional penalty function. Analytical solutions
for �̂ are often unavailable due to the complexity off , the
coupling inP , or both. Thus one must resort to iterative
methods.

Most iterative image reconstruction methods update
all pixels simultaneouslyeach iteration. Recently how-
ever, the advantages ofsequentialpixel updates have been
noted by Sauer and Bouman [10], including: fast conver-
gence, natural enforcement of nonnegativity, and decou-
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pled penalty functions. Unfortunately, in applications with
Poisson statistics, there is no analytical form for maximiz-
ing the likelihood with respect to a single parameter while
holding the other parameters fixed (see the next section).
Thus, to implement a conventional coordinate-ascent se-
quential update [60], one must use one-dimensional line
searches or Newton-Raphson updates. To ensure mono-
tonicity, those approaches may require several evaluations
of the objective, and are thus more expensive than the in-
trinsically monotonic methods we propose below.

To describe the SAGE method, we need to first estab-
lish some notation. As in [15], we define anindex set
to be a nonempty subset off1; : : : ; pg. If S is an index
set, then~S denotes the set complement ofS intersected
with f1; : : : ; pg. If the cardinality ofS ism, then�S de-
notes them dimensional vector consisting of them ele-
ments of� indexed by the members ofS. Similarly � ~S

denotes thep � m dimensional vector consisting of the
remaining elements of�. For example, ifp = 5 and
S = f1; 3; 4g, then ~S = f2; 5g, �S = [�1 �3 �4]

0, and
� ~S = [�2 �5]

0, where0 denotes vector transpose. Finally,
functions like�(�) expect ap-dimensional vector argu-
ment, but it is often convenient to split the argument� into
two vectors:�S and� ~S , as defined above. Therefore, we
define expressions such as the following to be equivalent:
�(�S ; � ~S) = �(�).

B. Algorithm

The algorithm below is a generalization of the method
in [15]. Let �0 2 � be an initial parameter estimate.
A SAGE algorithm produces a sequence of estimates
f�ig1i=0 via the following recursion:

Generalized SAGE Algorithm

For i = 0; 1; : : : f

1. Choose an index setSi.
2. E-step: Choose a functional�i(�Si ; �

i) satisfying:

�(�Si ; �
i
~Si
)� �(�i) � �i(�Si ; �

i)� �i(�iSi ; �
i):

(2)
3. M-step:

�
i+1
Si

= argmax
�
Si

�i(�Si ; �
i) (3)

�
i+1
~Si

= �
i
~Si

(4)

g.
The maximization in (3) and the inequality in (2) are over
the set

f�Si : (�Si ; �
i
~Si
) 2 �g:

This is an “algorithm” in a loose sense, since there

is considerable latitude for the algorithm designer when
choosing the index setsfSig and functionalsf�ig. The
basic idea behind the SAGE method is borrowed directly
from the EM method, but adapted to a sequential update.
Rather than trying to maximize�(�Si ; �

i
~Si
) over �Si at

theith iteration, we maximize instead some user-specified
functional�i(�Si ; �

i). That functional is carefully cho-
sen to ensure (using (2)) that increases in�i yield in-
creases in�. If �i andSi are chosen wisely, then one
can maximize�i(�; �i) analytically, yielding a recursion
of the form�i+1

Si
= gi(�i), which obviates the need for

line searches. The image reconstruction algorithms given
in the next sections illustrate this important aspect. Even if
one cannot maximize�i analytically, one can often choose
�i such that line searches for maximizing�i(�; �i) are
cheaper than line searches for maximizing�(�; �i~Si). In
some cases, maximizing�i(�; �i) will increase�(�; �i~Si)

almost as much as maximizing�(�; �i~Si) itself.
Rather than requiring a strict maximization in (3), one

could settle simply for local maxima [16], or for mere in-
creases in�i, in analogy with GEM algorithms [5]. These
generalizations provide the opportunity to further refine
the tradeoff between convergence rate and computation
per-iteration.

C. Convergence Properties

It follows from (2) and (3) that the sequence of esti-
matesf�ig generated by any SAGE algorithm will mono-
tonically increase the objective�(�i). If the objective
function is bounded above, then this monotonicity ensures
thatf�(�i)g converges, but it does not guarantee conver-
gence of the sequencef�ig. In [15], we provided regu-
larity conditions under which the sequencef�ig also con-
verges monotonicallyin norm, and derived an expression
for the asymptotic rate of convergence. The nonnegativity
constraint for image reconstruction violates one of those
regularity conditions. Therefore, in Appendix I we prove
global convergence under mild conditions suitable for im-
age reconstruction with nonnegativity constraints.

D. Hidden-Data Spaces

A natural approach to choosing functionals�i that sat-
isfy (2) is to use the underlying statistical structure of the
problem. In many problems, one can simplify the form of
the log-likelihood by augmenting the observed data with
some additional unobservable or “hidden” data. The fol-
lowing definition formalizes this concept.

Definition 1: A random vectorX with probability dis-
tributionf(x; �) is anadmissible hidden-data spacewith
respect to�S for f(y; �) if the joint distribution ofX and
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Y satisfies

f(y;x; �) = f(yjx; � ~S)f(x; �); (5)

i.e., the conditional distributionf(yjx; � ~S) must be inde-
pendent of�S .
Any complete-data space associated with a conventional
EM algorithm is a special case of this definition [15].

Given an admissible hidden-data spaceX , define the
following conditional expectation of its log-likelihood:

Q(�S ; ��) = Q(�S ; ��S ; �� ~S)

= E
�
log f(X ; �S ; �� ~S)jY = y; ��

	
(6)

=

Z
f(xjY = y; ��) log f(x; �S ; �� ~S) dx:

Combine this expectation with the penalty function:

�(�S ; ��)
4
= Q(�S ; ��)� P (�S ; �� ~S): (7)

It then follows from [15] that a functional� generated us-
ing (5)-(7) satisfies (2). Such a functional also satisfies:

r
�S

�(�) = r10
�S
�(�S ; �); (8)

which is used in our proof of global convergence. Thus,
one can easily design a SAGE algorithm by first choosing
index setsfSig, choosing admissible hidden-data spaces
fX ig, and then generatingf�ig functionals using (5)-(7).
The “majorization” method of De Pierro [39, 59] is an
alternative method for choosing�i functionals; see Sec-
tion IV.C.

E. Choosing Index Sets

In general, there are a wide variety of possible choices
for the index setsSi, as discussed in [15]. In this report
we focus on single-pixel index sets, e.g.:

Si = f1 + (imodulo p)g: (9)

In practice, rather than always using the same order of up-
dates, we alternate between four natural raster scan orders
(top-down, left-right, etc.).

III. M AXIMUM LIKELIHOOD

In this section we first review the linear Poisson model
that is often used in image reconstruction problems, and
summarize the classical EM algorithm (ML-EM-1) for
maximizing the likelihood [1, 17]. We then introduce a
new complete-data space that leads to a new, faster con-
verging EM algorithm: ML-EM-3. Even less informative

hidden-data spaces lead to new SAGE algorithms that con-
verge faster than both ML-EM-3 and the line-search ac-
celerated EM algorithm (ML-LINU) [58]. We presented
some of this material in [14, 15]; we include it here since
the concepts behind the new complete-data spaces and
hidden-data spaces are easier to explain in the maximum-
likelihood framework than in the penalized maximum-
likelihood case described in the next section.

The derivations sketched below all use the following
property of scalar Poisson variates:

If X1 � Poissonf�1g andX2 � Poissonf�2g are inde-
pendent andY = X1 +X2, then [17]

EfX1jY = y;�1; �2g = �1
y

�1 + �2
: (10)

A. The Problem

Assume that the emission distributioncan be discretized
into p pixels with emission rates� = [�0; : : : ; �p]

0. As-
sume that the emission source is viewed byN detectors,
and letNnk denote the number of emissions from thekth
pixel that are detected by thenth detector. Assume the
variatesNnk have independent Poisson distributions:

Nnk � Poissonfank�kg;

where theank are nonnegative constants that characterize
the system [17]. The detectors record emissions from sev-
eral source locations, so at best one would observe only
the sums

P
kNnk, rather than eachNnk . Background

emissions, random coincidences, and scatter contaminate
the measurements, so we observe

Yn =
X
k

Nnk + Rn;

wherefRng are independent Poisson variates:

Rn � Poissonfrng:

Thus, our measurement model is

Yn � Poissonf
X
k

ank�k + rng: (11)

In this report, we assume the background ratesfrng are
known. This assumption is not essential to the general
method, and one could generalize the approach to accom-
modate joint estimation [12] off�kg andfrng. We as-
sume the column sumsa�k =

P
n ank are nonzero.

Given realizationsfyng of fYng, the log-likelihood for
this problem is given by [17]:

L(�) = log f(y;�) �
X
n

(��yn(�) + yn log �yn(�)) ;

(12)
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where
�yn(�) =

X
k

ank�k + rn: (13)

(Throughout this report, we use the symbol “�” between
expressions that are equivalent up to constant terms that
are independent of�.) We would like to compute the ML
estimatê� from y = [y1; : : : ; yN ]0, where the elements of
�̂ are constrained to be nonnegative.

To apply coordinate ascent directly to this likelihood,
one might try to update�k by equating the derivative of
the likelihood to zero:

0 = �a�k +
X
n

ank
yn

ank(�k � �ik) + �yn(�
i)
: (14)

Unfortunately, this equation has no analytical solution—
hence the popularity of EM-type algorithms [17].

B. ML-EM Algorithms

che complete-data space for the classical EM algorithm
[17] for this problem is the set of unobservable random
variates

X
1 = ffNnkg

p
k=1; fRngg

N
n=1: (15)

The log-likelihood for this complete-data space is

log f(X1;�) �
X
k

X
n

(�ank�k +Nnk log(ank�k)) :

Using (10) (see [17]), one finds that

�Nnk = EfNnkjY = y;�ig = �ikankyn=�yn(�
i):

Thus, for this complete-data space, theQ function (6) be-
comes [17, eqn. (4)]:

Q
X
1(�;�i) = Eflog f(X1;�)jY = y;�ig

�
X
n

X
k

�
�ank�k + �Nnk log(ank�k)

�
:

By defining

ek(�
i) =

X
n

ankyn=�yn(�
i); (16)

we can simplifyQX1 to

QX1(�;�i) �
X
k

�
�a�k�k + �ik ek(�

i) log �k

�
: (17)

This Q function is a separable, concave function of
�1; : : : ; �p. MaximizingQX1(�;�i) analytically leads to
the ML-EM-1 algorithm [17], which is a Type-I algorithm
in Table 1 with its M-step (53) given by:

�i+1k = �ikek(�
i)=a�k: (18)

Interpreting the Type-I algorithm of Table 1 with (18) in
words, ML-EM-1 works as follows: the current parameter
estimate�i is used to compute predicted measurements
f�yng, those predictions are divided into the measurements
and backprojected to form multiplicative correction fac-
tors fekg, and the estimates aresimultaneouslyupdated
using those correction factors2. This EM algorithm con-
verges globally [12,17] but slowly. The root-convergence
factor is very close to 1 (even ifp = 1 [12]).

The slow convergence is partly explained by consider-
ing the Fisher information of the complete-data spaceX

1

[12]. One can think ofX1 as data from a hypothetical to-
mograph that knows whether each detected event is a true
emission or a background event, and knows in which pixel
each event originated. Such a tomograph would clearly be
much moreinformativethan real tomographs, and this in-
tuition is reflected in the Fisher information matrices. The
Fisher information of the parameter vector� for the ob-
served dataY evaluated at the ML estimatê� is

FY(�̂) = Ef�r2
�
L(�)g

���
�=

^
�

= A
0diag

n
A�̂+ r

o�1
A;

whereas the Fisher information forX1 is diagonal:

FX1(�̂) = diag
n
a�k=�̂k

o

(provided�̂ is positive.) One can show thatFX1 > FY

using a Fisher information version of the data processing
inequality [61]. Indeed,FX1 is completely independent
of the background ratesfrng, reflecting the fact that the
parameters are completely isolated from the uncertainty
due to the background eventsfRng inX1.

To improve the convergence rate, we would like to
choose a complete-data space that is less informative than
X

1. To do so, we depart somewhat from the intuitive rela-
tionship betweenX1 and the underlying image formation
physics, and instead exploit the statistical structure of (11).
The first approach we tried was to define the following
new complete-data space:

X
2 = ffXnkg

p
k=1g

N
n=1;

where thefXnkg are unobservable independent Poisson
variates that includeall of the background events:

Xnk � Poissonfank(�k + rn=an�)g; (19)

2ML-EM-1 is essentially the ML-IB algorithm of [6]. The ML-IA algorithm
of [6] has a more informative complete-data space and slower convergence [12].
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wherean� =
P

k ank . Then clearlyYn =
P

kXnk has the
appropriate distribution (11). The Fisher information for
X

2 is diagonal:

FX2(�̂) = diag

(X
n

ank

�̂k + rn=an�

)
;

which is smaller thanFX1 . However, upon forming the
functionQX2 using (6), one finds that it has no analytical
maximum (unless the ratiorn=an� is a constant indepen-
dent ofn), so one is usually little better off than with (14).
This illustrates once again the tradeoff between conver-
gence rate and computation per-iteration [12].

A comparison ofQX1 andQX2 suggested that to ob-
tain analytical maxima, we would like to replace the term
rn=an� in (19) with a term that isindependentof n. There-
fore, we propose to use a complete-data space with the
following form:

X
3 = ffMnkg

p
k=1; fBngg

N
n=1;

where fMnkg and fBng are unobservable independent
Poisson variates:

Mnk � Poissonfank(�k +mk)g

Bn � Poissonfrn �
X
k

ankmkg; (20)

and wherefmkg are design parameters that must satisfyX
k

ankmk � rn; 8n; (21)

so that the Poisson rates offBng are nonnegative. With
these definitions, clearly

Yn =
X
k

Mnk + Bn

has the appropriate distribution (11)3.
The Fisher information forX3 is diagonal:

FX3(�̂) = diag
n
a�k=(�̂k +mk)

o
; (22)

and now depends onrn though (23) below. This Fisher in-
formation is smaller thanFX1(�̂), which leads to faster
convergence. In light of (22), to makeFX3 small we
would like the design parametersfmkg to be “as large as
possible,” but still satisfying the constraint (21). In partic-
ular, we have found it natural to choose a setfmkg whose

3Under the conditions for global convergence discussed in Appendix I (e.g.
strict concavity), the design parametersfmkg will affect only the rate of con-
vergence of the EM sequence�i, but not the limit of that sequence. If the
likelihood is not strictly concave, then the�i limit will in general depend on
both the starting value and themk 's.

smallest element is as large as possiblesubject to (21). A
simple solution to this min-max problem is:

mk = min
n : an�

6=0

�
rn

an�

�
: (23)

We discuss alternatives to (23) based on other min-max
criteria in Appendix II, none of which we have found to
perform significantly better than (23) in the few PET cases
we have tried, but that might be advantageous in some sit-
uations.

The design (23) clearly satisfies (21), and at least one
of theN constraints in (21) is met with equality. Thus,
the Mnk terms absorb some of the background events,
but usually not all. For tomographic systems, thean�' s
vary by orders of magnitude between rays traversing the
center of the object and rays grazing the object's edge,
so
P

k ankmk << rn for most n. Many of the back-
ground events remain separated inBn. In contrast, in im-
age restoration problems, if the point-spread function is
roughly spatially invariant and the background ratesfrng
are uniform, then the ratiosfrn=an�g will be fairly uni-
form and nearly all of the background events will be ab-
sorbed intofMnkg.

Using a similar derivation as for (17) one can show:

QX3(�;�
i) �

X
k

�
�a�k(�k +mk)

+ (�ik +mk)ek(�
i) log(�k +mk)

�
; (24)

whereek was defined by (16). LikeQX1, this function is
also separable, and its partial derivatives are:

@

@�k
QX3(�;�

i) = �a�k + ek(�
i)
�ik +mk

�k +mk
:

To implement the M-step, one cannot simply maximize
QX3 by zeroing its partial derivatives, because of the non-
negativity constraint. However, it is easy to verify that
QX3 is a concave function with respect to�k, so that
if its derivative vanishes at a negative�k, then the point
�k = 0 will satisfy the Karush-Kuhn-Tucker conditions
for the nonnegativity constraint (see Fig. 1). This leads to
the ML-EM-3 algorithm, which, like ML-EM-1, is also a
Type-I algorithm of Table 1, with (18) replaced by:

�i+1k =
h
(�ik +mk)ek(�

i)=a�k �mk

i
+
; (25)

where

[x]+ =

(
x; x > 0

0; x � 0
:
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This is a simple change to the implementation of ML-EM-
1, but it does lead to improved convergence rates, both the-
oretically and empirically, provided of course that some
mk > 0. In PET, since random coincidences are perva-
sive, we will havern > 0 for all n, so thatmk > 0 for all
k.

Like ML-EM-1, since ML-EM-3 is an EM algorithm
it monotonically increases the likelihood every iteration
[15]. An interesting difference between the iterates gen-
erated by ML-EM-1 and ML-EM-3 is that the latter can
move on and off the boundary of the nonnegative orthant
from iteration to iteration. This may partly explain the
faster convergence of ML-EM-3, since when ML-EM-1
converges to the boundary, it can do so atsublinearrates
[12].

C. ML Line-Search Algorithms

caufman [58] noted that ML-EM-1 is the special case
where� = 1 of the form:

�i+1k =

�
�ik + �

�
�k

a�k

�
@

@�k
L(�i)

�
+

: (26)

The ML-LINB-1 and ML-LINU-1 algorithms [58] use a
line-search to choose an�i > 1, which accelerates con-
vergence. For ML-LINB-1, the search over� is bounded
such that�i+1 is positive, whereas ML-LINU-1 allows an
unconstrained“bent line” search, in which� can be cho-
sen large enough that some pixels would become negative,
but are set to zero [58]. Similarly, ML-EM-3 is the special
case where� = 1 of the form:

�i+1k =

�
�ik + �

�
�k +mk

a�k

�
@

@�k
L(�i)

�
+

: (27)

In the few PET experiments we tried, “accelerating” ML-
EM-3 using a line-search to choose�i > 1 only slightly
increased the convergence rate.

D. ML-SAGE Algorithms

The EM algorithms described above update all pixels si-
multaneously. Sauer and Bouman [10] have shown that se-
quential update methods often converge much faster than
simultaneous update methods. There is also a subtle sta-
tistical motivation for using a sequential update: by using
an alternating sequence of hidden-data spaces, we can as-
sociate a large fraction of the background events with each
parameter as it is updated, yielding much less informative
hidden-data spaces and thus faster convergence. In con-
trast, in ML-EM-3 the background events are distributed
among all of the pixels, and the values formk are small.
Therefore, we now derive three SAGE algorithms using

individual pixels for the index sets:Si = fkg, where
k = 1 + (imodulo p).

The most obvious hidden-data for�k is just

X
4;k = fNnk; Rng

N
n=1;

which is a subset of the classical complete-data space (15).
TheQX4;k function (6) for thekth parameter is therefore
simply taken from (17):

QX4;k(�k;�
i) � �a�k�k + �ikek(�

i) log�k:

Maximizing QX4;k (�;�i) analytically yields the ML-
SAGE-4 algorithm, which is a Type-III algorithm of Table
1 with the M-step (56) given by:

�i+1k = �ikek(�
i)=a�k: (28)

In words, Type-III algorithms update the parametersse-
quentially, and immediately update the predicted mea-
surements�yn within the inner loop, whereas Type-I algo-
rithms wait until all parameters have been updated4.

The Fisher information forX4;k is just thekth diago-
nal entry ofFX1 . It is therefore unsurprising that we have
found ML-SAGE-4 to converge somewhat faster than ML-
EM-1 for well conditioned problems but not for poorly
conditioned problems. We now improve significantly on
ML-SAGE-4 by introducing new hidden-data spaces sim-
ilar to (20), only even less informative. The main idea is
the following: since we are updating one pixel at a time,
we can associate nearly all of the background events with
each pixel as it is updated. This is not very intuitive from
the point of view of the imaging physics, but is completely
admissible and sensible from a statistical perspective.

Define unobservable independent Poisson variates:

Znk � Poissonfank(�k + zk)g

Bnk � Poissonfrn � ankzk +
X
j 6=k

anj�jg; (29)

wherefzkg are design parameters that must satisfy

ankzk � rn +
X
j 6=k

anj�
i
j; 8n; (30)

so that the Poisson rates ofBnk are nonnegative. Note
that this constraint is much less restrictive than (21). Then
clearly

Yn = Znk + Bnk

4Incremental updates like (57) will accumulate numerical error, so must be
treated with caution if used repeatedly. Fortunately, the SAGE algorithms con-
verge in a small number of iterations. In those rare occasions that we run
SAGE for many iterations, we “reset” the estimated projectionsf�yng using (13)
roughly every 20 iterations.



10

has the appropriate distribution (11) for anyk.
We let the hidden-data space for�k onlybe

X
5;k = fZnk; Bnkg

N
n=1:

The Fisher information forX5;k with respect to�k is the
scalar value

F
X

5
k

(�̂k) = a�k=(�̂k + zk);

which again suggests that we would like thezk ' s to be as
large as possible subject to the constraint (30).

We have investigated two choices for thezk ' s. The first
choice is independent ofi:

zk = z0k = min
n:ank 6=0

frn=ankg; (31)

which clearly satisfies (30)5. This first choice is useful
whenever the background ratesfrng are non-negligible.
When the ratesfrng are negligible, thefzkg will be tiny,
and ML-SAGE-5 is no better than ML-EM-1. However,
since we are updating a single pixel, we can consider
the contributions from all of the other pixels as “pseudo-
background” events. This opportunity is indicated by the
form of (29), which the reader should contrast with (20).
Therefore, when the background rates are negligible, we
use the following second choice forfzkg, which is now
dependent on iterationi:

zk = zk(�
i) = min

n:ank 6=0
f(rn +

X
j 6=k

anj�
i
j)=ankg

= min
n:ank 6=0

f�yn(�
i)=ankg � �ik: (32)

This choice also satisfies (30). Clearlyzk(�i) > z0k , so
usingzk(�i) should yield faster convergence. Neverthe-
less, the disadvantage of usingzk = zk(�

i) is that one
must recompute the minimization (32) overn for every
pixel each iteration, increasing the computation per iter-
ation. Therefore we usually only usezk(�i) when the
background ratesfrng are negligible. These tradeoffs are
illustrated in Sections V and VI.

The definition (31) ofzk involves only a singleank in
each denominator, rather than the suman� contained in
the definition (23) ofmk . Thus, the values ofz0k and
zk(�

i) are orders of magnitude larger thanmk, and a very
large fraction of the background events is absorbed into
the termZnk which is associated with�k while it is up-
dated. ThereforeF

X5
k

is much smaller than thekth diago-
nal entry ofFX3 .

5Note that thesezk 's would violate (21), so attempting to substitutezk for
mk in ML-EM-3 would violate the admissibility condition for hidden data
spaces (5) and destroy the monotonicity of ML-EM-3.

Using a similar derivation as forQX3 , one can show:

QX5;k (�k;�
i) �

�a�k(�k + zk) + (�ik + zk) ek(�
i) log(�k + zk): (33)

MaximizingQX5;k(�;�i) analytically (subject to the non-
negativity constraint), yields the ML-SAGE-5 algorithm,
which is also a Type-III algorithm of Table 1, with (28)
replaced by:

�i+1k =
h
(�ik + z0k)ek(�

i)=a�k � z0k

i
+
: (34)

This is a small change to ML-SAGE-4, but one that sig-
nificantly accelerates convergence. Indeed, the implemen-
tation differences between ML-EM-1, ML-EM-3, ML-
SAGE-4, and ML-SAGE-5 are all remarkably minor, but
the differences in convergence rates are quite large, as il-
lustrated by the results in Section V.

For clarity, we refer to the algorithm based on the choice
zk = zk(�

i) as ML-SAGE-6, which can be written:

�i+1k =
h
(�ik + zk(�

i))ek(�
i)=a�k � zk(�

i)
i
+
: (35)

IV. PENALIZED MAXIMUM LIKELIHOOD

Since image reconstruction is ill-conditioned, regular-
ization is very desirable. We described the maximum like-
lihood algorithms above primarily to introduce the new
hidden data spaces. In this section we turn to regular-
ized image reconstruction using penalized likelihood ob-
jectives. We first present a new SAGE algorithm based on
the hidden-data spacesfX5;kg. To provide a fair compar-
ison with alternative methods, we also derive new versions
of the GEM algorithm of Hebert and Leahy [32], the paral-
lelizable algorithm of De Pierro [39], and the one-step late
algorithm of Green [43], all using the new complete-data
spaceX3. As we show in Section V, these modified al-
gorithms based onX3 all converge somewhat faster than
their original versions based onX1, but none converge
as fast as SAGE on a conventional serial computer. Nev-
ertheless, they may be useful in some pixel-based parallel
computing environments, and they allow us to perform the
most conservative comparison between SAGE and its al-
ternatives.

We have implemented all of the algorithms given be-
low with several convex penalty functions. However, to
give explicit expressions for the algorithms without un-
due notation, we first focus on a simple quadratic smooth-
ness penalty. At the end of the section we briefly discuss
how to implement the non-quadratic case, which is fairly
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straightforward once the quadratic case is understood. The
quadratic smoothness penalty used below is:

P (�) = �
1

2

X
k

X
j2Nk

1

2
wkj(�k � �j)

2 (36)

whereNk is a neighborhood of thekth pixel andwkj =

wjk. In the work reported in Section V, we letNk be the
8 pixels adjacent to thekth pixel, and setwkj = 1 for
horizontal and vertical neighbors andwkj = 1=

p
2 for

diagonal neighbors. Combining this penalty with the log-
likelihood (12) yields the penalized likelihood objective
function (1):

�(�) =
X
n

(��yn(�) + yn log �yn(�))� �P (�):

It is easy to show that� is strictly concave for the penalty
given by (36), under mild conditions onA. Our goal is to
maximize�.

A. Penalized SAGE Algorithm

For simplicity, our SAGE algorithms for the penalized
maximum-likelihood case use single-pixel index sets6:
Si = fkg, wherek = 1 + (imodulo p). We have imple-
mented penalized maximum likelihood SAGE algorithms
with both theX4;k andX5;k hidden-data spaces. The
X

4;k version is essentially identical to the “ICM-EM” al-
gorithm of Abdalla and Kay [40]. TheX5;k version is sig-
nificantly faster, so we focus on that case. Following (7),
define

�5;k(�k;�
i) = QX5;k(�k;�

i)� P (�k;�
i
�k)

� �a�k(�k + zk) + (�ik + zk)ek(�
i) log(�k + zk)

��
X
j2Nk

wkj
1

2
(�k � �ij)

2; (37)

whereQX5;k was defined in (33), and�i�k is the vector
of length(p � 1) obtained by removing thekth element
from �

i. The M-step (3) requires maximizing�5;k(�;�i),
which we can do analytically by zeroing its derivative
since�5;k(�k;�i) is a strictly concave function of�k. The
derivative of�5;k(�;�i) with respect to�k is:

@

@�k
�5;k(�k;�

i) =

�a�k + ek(�
i)
�ik + zk

�k + zk
� �

X
j2Nk

wkj(�k � �ij):

6It is certainly feasible to update more than one pixel at a time, with some
increase in the complexity of the M-step. Such tradeoffs are a subject for future
exploration.

Of course, since we are only updating one parameter,
there is no problem with coupled equations. Equating this
derivative to zero yields a quadratic formula:

Ak(�k + zk)
2 + 2Bk(�k + zk)� Ck = 0;

where

Ak = �
X
j2Nk

wkj

Bk =
a�k � �

P
j2Nk

wkj(�
i
j + z0k)

2

Ck = ek(�
i)(�ik + z0k):

Just as in the derivation of (25), the constrained maximum
of �5;k(�;�i) corresponds to either the positive root of the
quadratic, or the value�k = 0, since�5;k is strictly con-
cave. This leads to the PML-SAGE-5 algorithm, which is
an algorithm of Type-III in Table 1 with the M-step (56)
given by:

�i+1k =

2
4�Bk +

q
B2
k +AkCk

Ak
� z0k

3
5
+

: (38)

We refer PML-SAGE-6 as the version of (38) wherezk =

zk(�
i), as defined by (32). Again, we usually only use

PML-SAGE-6 when the background ratesfrng are negli-
gible. In words, we first compute theek correction term
from the current projection estimate, then update thekth
pixel using a quadratic formula that involves both the data
and the neighboring pixels, and then immediately update
the projection estimate before proceeding to the next pixel.
In practice, the actual implementation has two important
differences: 1) the pixels are updated in four different
raster scan orders rather than using the same order each it-
eration (cf frequency analysis in [10]), and 2) the quadratic
formula is computed using numerically stable formulae
[60, p. 156] rather than the conventional form (38), i.e.

�i+1k =

2
4 Ck

Bk +

q
B2
k + AkCk

� zk

3
5
+

:

Note that as� ! 0, this last formula approaches the unpe-
nalized update (34). Global convergence of PML-SAGE-5
and PML-SAGE-6 is established in Appendix I.

One “generalization” of this algorithm that could be ex-
plored further is the following. Rather than updating each
pixel once using (38), we could loopM times over each
pixel before moving onto the next pixel. This is like hav-
ing a miniature EM iteration within every pixel update. In
the limit asM increases, this algorithm would approach
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a coordinate ascent of�(�). In the few experiments we
have tried, this performed no better than usingM = 1,
which is consistent with the benefits of under-relaxation in
successive over-relaxation methods [19], as demonstrated
in Figures 8, 10, and 12.

B. Modified GEM Algorithm

The GEM algorithm for image reconstruction [32] is
a very intuitive approach to extending the EM algorithm
to the penalized maximum-likelihood case. Rather than
usingX1 as in [32], we now develop a GEM algorithm
using the new complete-data spaceX3. Following (7), let

�3(�;�i) = QX3(�;�i)� P (�);

whereQX3 was defined in (24). The GEM algorithm is
similar to the special case of the SAGE algorithm of Sec-
tion II whereSi = f1; : : : ; pg and�i = �3 for all i. Thus,
the M-step (3) requires us to maximize�3(�;�i). Unfor-
tunately, its partial derivatives are coupled:

@

@�k
�3(�;�i) =

�a�k + ek(�
i)
�ik +mk

�k +mk
� �

X
j2Nk

wkj(�k � �j): (39)

This coupling prohibits analytical maximization. The
basic idea behind the GEM method [32] is to forgo
maximization in favor of simply increasing�3(�;�i) us-
ing a coordinate-ascent method. Increasing�3 using
coordinate-ascent is easier than maximizing�(�) by co-
ordinate ascent since we can solve (39) with respect to
�k (while holding the other parameters fixed) using es-
sentially the same quadratic formula as (38). Extending
the derivation in [31, 32] leads to the PML-GEM-3 algo-
rithm, which is a Type-II algorithm of Table 1, with the
M-step (54) given by:

Ak = �
X
j2Nk

wkj

Bk =
a�k � �

P
j2Nk

wkj(�
?
j +mk)

2

Ck = ek(�
i)(�ik +mk)

�i+1k =

2
4�Bk +

q
B2
k +AkCk

Ak
�mk

3
5
+

: (40)

In this pseudo-code,�?k denotes themost recentestimate
of �k, e.g.:

�?j =

(
�i+1j ; j < k

�ij; j � k
:

In other words, the updates are done “in place”. We refer
to the conventional GEM algorithm based onX1 (where
mk = 0 8k) as PML-GEM-1.

Following [32], we usually cycleM times through the
inner loop overk with different raster scan orders, so
that the coordinate ascent can approach the maximum of
�3(�;�i). Typically M = 2 seems adequate. This loop
overM is relatively inexpensive since no projections are
recomputed within it. SinceAk is independent ofi, it can
be precomputed, and sinceCk is independent of�?k, it is
initializedbeforethe cycle overM .

One can easily verify that�i+1k given by (40) satis-
fies the one-dimensional Karush-Kuhn-Tucker conditions
with respect to the nonnegativity constraint. Thus PML-
GEM-3 yields a sequence of estimatesf�ig that mono-
tonically increase the objective�. Global convergence of
GEM follows from Theorem 3 of [35], provided the ob-
jective is strictly concave.

Note that PML-SAGE-5 and PML-GEM-3 are some-
what similar, except that PML-SAGE-5 uses the less in-
formative hidden data spaceX5, and it updates the projec-
tions immediately after each parameter update. Although
subtle, these two differences lead to PML-SAGE-5 con-
verging significantly faster.

C. Modified De Pierro Algorithm

An alternate approach to circumventing the coupled
equations is the novel majorization method of De Pierro
[38,39]. This monotonic method has the advantage that it
is more parallelizable than GEM, and it is globally conver-
gent7. This method applies a decomposition to the penalty
P () that is similar in concept to the decomposition that re-
lates the log-likelihood to theQ function. First, note that
for any convex functionh,

h(ax+ by) =

h

�
1

2
(axi + 2by � byi) +

1

2
(2ax+ byi � axi)

�

�
1

2
h(axi + 2by � byi) +

1

2
h(2ax+ byi � axi):

Thus, by defining

P �(�;�i) =

�

8

X
k

X
j2Nk

(�ik � 2�j + �ij)
2 + (2�k � �ij � �ik)

2;

7Global convergence for De Pierro's method with theX1 complete-data
space was shown in [39]. TheX3 complete-data space version herein con-
verges globally by a special case of our proof in Appendix I.
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it follows that

P �(�;�) = P (�)

P �(�;�i) � P (�)

r10P �(�;�) = r10P (�):

De Pierro [39] usedQX1 ; here we useQX3 to define:

��(�;�i) = QX3(�;�i)� P �(�;�i):

Thus, our modified method of De Pierro is the special case
of the SAGE algorithm in Section II withSi = f1; : : : ; pg
and�i = �� for all i. Note that the above construction
of �� is somewhat different than the formulation given
by (7), but nevertheless�� satisfies the essential condi-
tion (2). Remarkably, by this construction��(�;�i) is sep-
arable, with partial derivatives given by

@

@�k
��(�;�i) = �a�k + ek(�

i)
�ik +mk

�k +mk

��
X
j2Nk

wkj(2�k � �ij � �ik):

Thus we can maximize��(�;�i) by zeroing the partial
derivative (and minding the Karush-Kuhn-Tucker con-
ditions). This leads to the PML-DePierro-3 algorithm,
which is a Type-I algorithm of Table 1 with the M-
step (53) given by:

Ak = 2�
X
j2Nk

wkj

Bk =
a�k � �

P
j2Nk

wkj(�
i
j +mk)� �ikAk=2

2

Ck = ek(�
i)(�ik +mk):

�i+1k =

2
4�Bk +

q
B2
k +AkCk

Ak
�mk

3
5
+

: (41)

Strictly speaking, this method is actually a type of GEM
algorithm since maximizing�� does not yield the max-
imum of �3(�;�i) [5]. We have found empirically and
theoretically [16] that PML-DePierro-3 converges slightly
slower than PML-GEM-3 on a serial computer. Indeed,
one can compare (41) with (40) to see that PML-DePierro-
3 takes slightly smaller steps than PML-GEM-3. How-
ever, although not noted in [38, 39], one can add a loop
analogous to the loop overM in the PML-GEM-3 algo-
rithm, which then leads to comparable performance to
PML-GEM-3. Again, typicallyM = 2 sub-iterations
is adequate. Since the two algorithms have comparable
performance on serial computers, we focus on the GEM
algorithm in the next section. We include the modified
De Pierro algorithm here because of its potential use with
parallel computers.

D. Modified One-Step-Late (OSL) Algorithm

Green's OSL algorithm [43] “avoids” the problem of
coupled equations by linearizing the penalty function, or
equivalently, by substituting the parameter estimates from
the previous iteration into the derivative of the penalty.
We follow the development in [43], but substituteQX3 for
the conventionalQX1 . UsingQX3 with S = f1; : : : ; pg,
from (3) the M-step requires maximizing

�3(�;�i) = QX3(�;�i)� P (�);

whereQX3 was defined in (24). Ignoring nonnegativity
constraints, this maximization is equivalent to solving

0 = r
�

�
QX3(�;�i)� P (�)

�
:

Ther
�
QX3(�;�i) term is separable, butr

�
P (�) is not,

so the suggestion of Green [43] is to assume

r
�
P (�)

��
�=�

i+1 � r
�
P (�)

��
�=�

i :

Ironically, this approximation is particularly good for slow
converging algorithms! Under that approximation, one
has

@

@�k
�3(�;�i) �

�a�k + ek(�
i)
�ik +mk

�k +mk
� �

X
j2Nk

wkj(�
i
k � �ij);

which is now separable, so it can be treated analytically
by the Karush-Kuhn-Tucker conditions. This leads to the
PML-OSL-3 algorithm, which is a Type-I algorithm of Ta-
ble 1, with the M-step (53) given by:

�i+1k =

"
(�ik +mk)ek(�

i)

a�k + �
P

j2Nk
wkj(�

i
k � �ij)

�mk

#
+

: (42)

This approach is popular due to its simplicity, but itcan
diverge, particularly for large values of�. We include it
for the purpose of comparison with PML-SAGE. We refer
to the case of (42) wheremk = 0 8k as PML-OSL-1.

It is straightforward to show [46] that PML-OSL-1 and
PML-OSL-3 can be expressed in the form (cf (27))

�i+1k =

"
�ik + �

 
�k +mk

a�k +
@

@�k
P (�i)

!
@

@�k
�(�i)

#
+

:

Therefore, one can also accelerate PML-OSL-1,3 and/or
make them have global monotonic convergence by choos-
ing� using a line-search [46]. For the case wheremk = 0,
we refer to these algorithms as PML-LINB-1 and PML-
LINU-1 for the bounded and unbounded searches for�

(cf Section III.C).
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E. Coordinate-wise Newton Raphson (CNR)

Bouman and Sauer [55, 56] have proposed a non-EM
type of algorithm for maximizing�(�) based on apply-
ing coordinate-ascent directly to the objective, which cir-
cumvents the problem of coupled parameters due to the
penalty function. They used a one-dimensional Newton-
Raphson update, which is based on a second order Tay-
lor's approximation of the log-likelihood. Without a line-
search, monotonicity is not guaranteed when using this ap-
proximation. Their method is equivalent to the following
expansion:

�(�S ; �
i
~S
) � L(�i)� �P (�S ; �

i
~S
)

+ _LS(�
i)(�S��

i
S)�

1

2
(�S��

i
S)
0 �LS(�

i)(�S��
i
S); (43)

where

_LS(�
i) = r0

�S
L(�)

���
�=�

i

�LS(�
i) = � r2

�S
L(�)

���
�=�

i :

For a sequential update, one simply takesSi = fkg =

f1 + (imodulo p)g, in which case:

_Lk(�) =
@

@�k
L(�) = ek(�)� a�k;

�Lk(�) = lk(�) = �
@2

@�2k
L(�) =

X
n

a2nkyn=�yn(�)
2:

Thus

�(�k;�
i
�k) � L(�i) + (ek(�

i)� a�k)(�k � �ik)

�
1

2
lk(�

i)(�k � �ik)
2 � �

X
j2Nk

wkj
1

2
(�k � �ij)

2;

dropping terms independent of�k as usual. We can thus
update�k by zeroing the derivative of the above approx-
imation to�(�;�i�k). This leads to the PML-CNR algo-
rithm, which is an algorithm similar to Type-III in Table 1
with the step (56) given by:

lk =
X
n

a2nkyn=�y
2
n

�newk =

"
�iklk + ek(�

i)� a�k + �
P

j2Nk
wkj�

i
j

lk + �
P

j2Nk
wkj

#
+

�i+1k = !�newk + (1� !)�ik:

The algorithm presented in [55, 56] was for the case
! = 1. We have added the parameter! because under-
relaxation (i.e.,! < 1) is often useful for sequential meth-
ods [19], as we confirm in Section V. The PML-CNR algo-
rithm is more expensive per-iteration than PML-SAGE-5,

since one must compute the second derivative termslk. In-
cluding a line search to enforce monotonicity would add
considerable expense.

F. Nonquadratic penalties

The SAGE method is not limited to quadratic penalties.
One can easily implement other penalty functions such as
the flexible penalty introduced by De Pierro [39,59]:

P (�) =
X
c

hc(hwc;�i); (44)

where eachwc is a vector of lengthp, andfhcg are poten-
tial functions such as those proposed in [41,46].

For the proof of convergence in Appendix I, we assume
that each functionhc(�) is strictly convex. Convexity
is not needed todefineor to implementthe algorithms.
However, we expect that if the convexity condition is vio-
lated, then all of the algorithms will have only local con-
vergence rather than global convergence. Whether local
convergence is acceptable will depend on many factors,
including the quality of the initial estimate. Methods such
as “deterministic annealing” [34] may be necessary to get
good results for non-convex penalties.

For most non-quadratic penalty functions, there are not
analytical forms for the maxima of the�i functionals.
Therefore, for convex but non-quadratic objectives, we
apply a single one-dimensional Newton-Raphson step to
�5;k(�k;�

i) with respect to�k. We then use (37) to
see if�5;k increased; if not, we halve the step size un-
til it is increased. This ensures that PML-SAGE-5 and
PML-SAGE-6 will be monotonic even with non-quadratic
penalties. This halving search is inexpensive since evalu-
ating (37) does not require reprojections, in contrast to an
interval search applied to the objective function�.

Strictly speaking this halving approach does not quite
meet the requirements of our global convergence proof in
Appendix I, since�i+1k will not exactly satisfy the Karush-
Kuhn-Tucker conditions. Of course, finite-precision com-
puting is never exact, so global convergence proofs should
not be interpreted too literally. One could apply multiple
Newton-Raphson steps rather than just one, but we doubt
that the extra effort would be worthwhile. However, we
conjecture that one could extend the convergence proof of
Lange [46] to prove global convergence of SAGE for cases
where the lack of a closed form for the M-step requires the
use of 1-D interval searches.

An alternative method for “preserving edges” is to use
penalty functions based on augmenting the emission pa-
rameters with a line process [62–64]. The SAGE method
is applicable to such augmented objective functions, al-
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though with the same caveats about non-concavity that ap-
ply to other deterministic optimization methods.

V. SIMULATION METHODS

We now provide some anecdotal results that demon-
strate that the new complete-data spaces lead to faster con-
vergence rates for the EM-type algorithms, and that SAGE
methods converge even faster. These empirical results cor-
roborate the analysis given in [12, 15, 16]. Our purpose is
only to compare convergence rates, not to argue whether
or not penalized maximum-likelihood images are better in
any sense than filtered backprojection (FBP) images. Of
course we hope that providing a new algorithm for rapidly
computing images using statistical criteria will facilitate
more comprehensive comparisons of image reconstruction
methods in future work.

We have evaluated the algorithms' convergence rates
using a 2-D slice of the digital Hoffman brain phantom
shown in Fig. 2, with intensity 4 in the gray matter, 1
in the white matter, and 0 in the background. (All im-
ages are displayed by mapping the range [0,5] to gray lev-
els [0,255].) The phantom is discretized on a 80 by 110
grid with 2mm square pixels. The phantom was forward
projected using precomputed factorsank corresponding to
an idealized PET system having 100 angles evenly spaced
over180�, and 70 radial samples with 3mm spacing. Each
ank was precomputed as the area of intersection between
the square pixel and a strip of width 6mm. (Since the strip
width is wider than the radial spacing, the strips overlap.)
The detector response is thus a 6mm rectangular function.
Only image pixels within a support ellipse of radii 39 by
54 pixels were reconstructed.

The projections were multiplied by nonuniform atten-
uation factors corresponding to an ellipse with radii 90
and 100 mm with attenuation coefficient 0.01/mm, sur-
rounded by an elliptical 5mm thick skull with attenua-
tion coefficient 0.015/mm. Nonuniform detector efficien-
cies were applied using pseudo-random log-normal vari-
ates with standard deviation 0.2. The sinogram was glob-
ally scaled to a mean sum of 900000 true events. All of the
above effects were also incorporated into theank factors.
Pseudo-random independent Poisson variates were drawn
according to (11), and a uniform field of Poisson dis-
tributed background events with known mean were added.
Three data sets were studied, one with 5% background
events, another with 35% background events, representing
the range of random coincidence contamination typically
found in PET scans, and one with 0% background events.
Having no random coincidences is impossible in PET, but
we include this case since the results may be of interest for

other applications.
For the unpenalized maximum-likelihood algorithms,

the initial estimate�0 was a uniform ellipse. For the
penalized maximum-likelihood algorithms the initial es-
timate was the image formed by applying FBP using a 3rd
order Butterworth filter with cutoff 0.6 of Nyquist (10mm
resolution). FBP image values below 0.1 were set to 0.1
so that�0 was nonnegative.

VI. RESULTS

The main results are illustrated by Figures 3-21. Not
all algorithms are shown in all figures for the following
reasons. We found that the LINU algorithms converged
faster than the LINB algorithms only in the 0% back-
ground cases, so the LINU results are shown only in those
cases. In the 0% background cases, all “-5” and “-4” al-
gorithms are identical(z0k = 0), as are all “-3” and “-1”
algorithms(mk = 0), so the -5 and -3 algorithms are not
shown.

A. Maximum Likelihood

Figures 3-5 display the unpenalized likelihood�(�i)
versus iteration for several of the maximum likelihood al-
gorithms discussed in Section III. The following points are
illustrated by these results.

� ML-EM-3 converges only slightly faster than ML-
EM-1, although the difference grows with increasing
background fraction. ML-LINU-1 converges faster
than ML-EM-3.

� ML-SAGE-5 and ML-SAGE-6 converge faster than
ML-LINU-1, and appear to reach an asymptote
sooner. The difference grows with increasing back-
ground fraction. (ML-SAGE-5 is also easier to
implement than the bent-line ML-LINU-1 method.)
ML-SAGE-5 converges faster than ML-LINU-1 even
when the background fraction is as small as 5%.

� For 5% and 35% background fractions, ML-SAGE-5
increases the likelihood faster than ML-SAGE-6 dur-
ing the early iterations, but by the 10-20th iteration,
ML-SAGE-6 passes ML-SAGE-5. In light of Fig-
ures 7-12, it may be useful to under-relax ML-SAGE-
6.

� For 0% background events, the difference between
ML-SAGE-6 and ML-LINU-1 is minimal, so for ML
reconstruction, the SAGE methods presented in this
report are most useful when the background is non-
negligible.

Qualitatively, ML-SAGE-5 images exhibit the infamous
noisy checkerboard effect in an order of magnitude fewer
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iterations than even ML-LINU-1, so some regularization
method is clearly necessary8.

B. Penalized Maximum Likelihood

Figures 7-12 display the penalized likelihood objective
�(�i) � �(�0) for the EM-type algorithms, including
“close ups” of�(�i) � �(�0) for PML-SAGE-5 and -6
and PML-CNR in the early iterations. It is also interesting
to examine the rates of convergence inL2 norm, i.e.

k�i � �̂k =
X
k

�ik � �̂k:

Unfortunately�̂ is not known exactly, and cannot be com-
puted exactly with finite precision computers. For illustra-
tive purposes, we took̂� to be the 100th iteration of PML-
SAGE-5, at which point it had converged to within single
floating point machine precision. Figure 6 compares the
norm convergence rates for the algorithms.

The following points are illustrated by these results.

� In all cases, GEM and OSL (and De Pierro' algo-
rithm, not shown) had indistinguishable convergence
rates.

� PML-GEM-3 and PML-OSL-3 converge faster than
the conventional PML-GEM-1 and PML-OSL-1 re-
spectively, and the increase in speed grows with the
background fraction.

� Even with only 5% random coincidences, PML-
SAGE-5 clearly increases faster and reaches its
asymptote sooner than PML-GEM-3 and PML-OSL-
3. The advantage for 35% background is even
greater.

� For 0% background events,z0k = 0, so PML-SAGE-
5 is identical to PML-SAGE-4 (which is identical
to the “ICM-EM” algorithm of [40]), and converges
at the same rate as PML-GEM-1. For 0% back-
ground PML-SAGE-6 converges faster per-iteration
than PML-GEM-1 or PML-LINU-1.

� We experimented with several values of! for PML-
CNR for this data set, and found it converged fastest
when ! = 0:6, i.e., which PML-CNR isunder-
relaxed. Using this under-relaxation, the conver-
gence rates of PML-CNR and PML-SAGE-5 (or
PML-SAGE-6 in the case of 0% background) were
quite comparable for these data sets.

� The conclusions given above in terms of the conver-
gence in the objective function�(�i) also held true

8Fast convergence is clearly desirable for penalized objective functions,
but we advise caution when using “stopping rules” [18] in conjunction with
coordinate-based algorithms (such as ML-SAGE-5) for the unpenalized case,
since for such algorithms thehigh spatial frequencies converge faster than the
low frequencies [10].

for convergence inL2 norm, as shown in Fig. 6. The
slopes of the lines in this logarithmic plot is related to
the asymptotic convergence rate, and one can see that
PML-SAGE-5 and PML-CNR (with! = 0:6) con-
verge significantly faster than the other algorithms.

Since PML-SAGE-5 is a monotonic algorithm applied
to a strictly concave objective function, it is very robust to
the initial estimate. Figures 13 and 14 display several it-
erations of PML-SAGE-5 estimates initialized with a uni-
form image, a checkerboard image, and a FBP image. The
difference images rapidly decrease to values that would be
invisible on a conventional 8-bit display, so we have am-
plified the differences by a factor of 4 for display here. For
35% background events the effects of the checkerboard
initial estimate are negligible by 8-10 iterations; for 5%
background the effects of the initial estimate are negligi-
ble by 15-20 iterations.

As discussed in Section IV, SAGE is also applicable to
non-quadratic penalties. The images in Figure 15 were
reconstructed by applying PML-SAGE-5 to a penalized-
likelihood objective with the following penalty function:

P (�) = �
1

2

X
k

X
j2Nk

wkjh(�k � �j);

where

h(u) =
1

2
�2 (ju=�j � log(1 + ju=�j)) ;

where we used� = 0:8. This penalty is one of several
suggested by Lange [46, Table III]. Figure 15 demon-
strates that the iterates produced by PML-SAGE-5 con-
verge rapidly even for non-quadratic penalties.

VII. COMPUTATION

Table II summarizes the computation times for 40 it-
erations on a DEC 3000/400 workstation. Also shown
is the floating point operations (flops) for the algorithms.
Based on flops alone, ML-SAGE-5 should at worst take
25% more time per iteration than ML-EM-1. The actually
CPU time for ML-SAGE-5 was about 72% higher than
ML-EM-1 per iteration, so apparently either floating point
operations do not solely dominate the CPU time, or further
code optimization is needed. Figures 16-21 are essentially
the same as Figures 7-12¡ except that we have plotted CPU
time on the horizontal axis. Even though our implementa-
tion of the SAGE algorithms runs slower than the floating
point calculations would suggest, the curves in Figs. 16-
21 demonstrate the SAGE algorithms converge faster than
the other monotonic algorithms, and the gap widens with
increasing background fraction. The reader should bear in
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mind that these comparisons could vary significantly be-
tween implementations.

Why does ML-SAGE-5 require about 25% more
floating point operations per iteration than ML-EM-
3? The reason is due to the difference between equa-
tions (51), (52) and (55) in Table I. For a simultaneous up-
date algorithm like ML-EM, the ratiosn = yn=�yn can be
precomputed before computing theek terms, so there are
onlym +N multiplies required, whereas for ML-SAGE,
since the�yn terms are continually changing, the calcula-
tion of ek using (55) requires2m multiplications. There
is an approach that can mitigate this 25% disadvantage; if
one has enough dynamic memory to store bothfankg as
well asfqnkg, whereqnk is precomputed as:

qnk = ankyn;

then for both ML-SAGE and ML-EM one can compute
theek terms using

ek =
X
n

qnk=�yn:

In this case the floating point computations of ML-SAGE
and ML-EM are virtually identical, although the memory
requirements of ML-SAGE will be roughly twice that of
ML-EM.

For applications where it is currently impractical to
precompute and store theank factors, such as 3D PET
or cone-beam SPECT, the above discussion is somewhat
mute. In those applications, the extram multiplications
required by ML-SAGE will be inconsequential relative to
the work required for on-line recalculation of theank ' s.
In those cases, PML-SAGE-6 will be more favorable than
is suggested by Table II since once one has expended the
effort to compute theank ' s for thekth pixel in order to
computeek using (55), one may as well also use those
ank ' s to computezk(�i) using (32).

VIII. D ISCUSSION

This report presents new algorithms (namely PML-
SAGE-5 and PML-SAGE-6) for image reconstruction
from Poisson measurements using a penalized likelihood
objective function. The algorithms converge rapidly,
monotonically, globally, and naturally enforce nonnega-
tivity constraints. There are two main principles behind
the new algorithms that lead to the improved convergence
rates. The first principle is to update the pixel estimates se-
quentially rather than simultaneously. This idea has been
used successfully by other authors as well [40,55,56]. The
second principle is our use of new hidden data spaces that
are less informative, formed by “mixing together” some of

the emission events with the background events. Our re-
sults show that either of these ideasby itselfleads to only
small improvements in convergence rates (consider ML-
EM-3 or ML-SAGE-4 relative to ML-EM-1), but the two
principles applied in tandem (e.g. ML-SAGE-5 or ML-
SAGE-6) lead to large improvements in convergence rates.

One very important issue that is beyond the scope of
this report is the selection of the regularization parameter
�. Qualitatively, increasing� leads to increased smooth-
ness, similar to decreasing the cutoff frequency for con-
ventional FBP reconstruction. Automatic methods for
choosing smoothing parameters such as cross validation
are one possibility, but such methods may be unstable in
imaging problems [65]. We are currently investigating a
frequency-domain method for relating the unitless param-
eter� to a quantitative measure of image resolution, so
that one can choose appropriate values for� that yield
consistent reconstructed resolution regardless of measure-
ment variance.

We have attempted as fair of a comparison between
SAGE methods and the alternatives as we think is possi-
ble. We presented slightly improved versions of several al-
ternatives (GEM, OSL, De Pierro, etc.), and experimented
with several choices for the design parametersmk. Nev-
ertheless, we cannot rule out the possibility that a better
choice forfmkg, or even a better choice for the complete-
data space will be eventually found. Such an extension
could be very useful since algorithms such as De Pierro's
method have the advantage of being more suitable for fine-
grain parallel computers than the SAGE algorithms we
presented in this report. As described in Section II, the
generic SAGE method offers more flexibility than we have
used in this report. We are currently studying alternatives
to PML-SAGE-5 that may be more suitable for fine-grain
parallel computing (see Appendix III). Regardless how-
ever, in PET there is always the opportunity for coarse-
grain parallel implementations with 100% processor uti-
lization since contemporary PET systems produce dozens
of slices.

By suitablyunder-relaxing the PML-CNR algorithm of
Bouman and Sauer [55, 56], we were able to accelerate
PML-CNR to the point where the convergence rates of
PML-CNR and PML-SAGE-5,6 are comparable on the
examples we have tried. The SAGE algorithms have the
advantages of monotonicity and less computation time
(for PML-SAGE-5). However, in principle it is intuitive
to expect that since the PML-CNR method is based on a
second-order approximation to the likelihood, in some sit-
uations it might converge faster locally to the maximum
of the objective. We have not seen this yet, but the sit-
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uation is confounded by the nonnegativity constraint in-
herent to Poisson problems; conventional wisdom about
“supra-linear” convergence with Newton methods may not
apply for coordinate-based methods with nonnegativity
constraints. We believe further comparison of SAGE and
PML-CNR is needed for a range of different phantoms and
both quadratic and non-quadratic penalties. It may be that
a hybrid algorithm is useful: monotonic PML-SAGE dur-
ing the early iterations, and then greedy PML-CNR near
the maximum. Another alternative to PML-SAGE that
should be investigated is preconditioned conjugate gradi-
ent [57, 58], although such methods are trickier to imple-
ment due to the nonnegativity constraint.

Our results remind one that it is essential to use iden-
tical data sets when comparing the convergence rates of
different algorithms. The convergence rate of PML-CNR
appeared to be faster in [56], but for a rather different ob-
ject and imaging system.

There is one subtle implementation issue that differs
somewhat between SAGE and EM. The SAGE algorithm
is optimized when the factorsank are precomputed and
stored bycolumn(n varying fastest). (If one uses on-line
forward and backward projections, these should be pixel-
driven for SAGE.) In contrast, the EM algorithm is indif-
ferent to the storage organization, since the entire set of
ank terms is used at once. Ironically, some EM implemen-
tations have been based onrow storage (k varies fastest)
due to historical use of row-action methods (e.g. ART).
On Unix workstations, even dynamic memory size should
not preclude use of precomputedank ' s, since one can of-
ten use themmap() function to access theank ' s from disk
faster than recomputing them on the fly.

We have compared several algorithms, and the reader
may wonder what is the impact of these results on “prac-
titioners” of penalized likelihood image reconstruction?
In light of Fig. 9 and our experience with other exper-
iments, we recommend using PML-SAGE-5 when pro-
cessing Poisson measurements with a nonnegligible ad-
ditive background (scatter, randoms, etc.) on conven-
tional serial computers. For measurements with zero back-
ground, Figure 16 shows only a slight advantage for PML-
SAGE-6 relative to PML-LINU-1, so we recommend that
each user compare PML-SAGE-6 and PML-LINU-1 for
her application.

In light of the considerable recent progress in improv-
ing the convergence rates of algorithms for maximum like-
lihood and penalized likelihood image reconstruction, it
is highly unlikely that SAGE will be the final word. It
is somewhat remarkable that the statistical principles be-
hind the SAGE methods yield convergence rates that ri-

val conventional numerical tools such as line-searches and
Newton's methods, yet ensuring algorithm monotonicity.
It seems likely that further development using statistical
perspectives will lead to additional improvements.

IX. A PPENDIX I: CONVERGENCE

The proof in [15] of local monotonic convergence in
norm to a fixed point is inapplicable to problems with non-
negativity constraints, except when the fixed point hap-
pens to lie in the interior of the nonnegative orthant. In this
appendix, we prove convergence of a very general form of
SAGE that allows the limit to lie on the boundary of the
nonnegative orthant. The proof structure is based on [17],
with some aspects based on [39].

We begin by stating some general sufficient conditions
for convergence. These conditions make no specific ref-
erences to the Poisson likelihood or penalty used in this
report, so this proof will apply to a broad class of nonneg-
atively constrained estimation problems. Following the
general proof, we verify that the specific SAGE algorithms
presented in this report meet the required conditions under
the linear Poisson model.

Define the following sets:

<+
S = f�S : �k � 0; k 2 Sg;

�+ = f� 2 <p : �k � 0; k = 1; : : : ; pg;

S(�0) = f� : �(�) � �(�0)g:
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for k; j 2 Si.
To eliminate the interior restriction used in [15], we im-

pose the following two regularity conditions on the objec-
tive.

Assumption 1:�(�) is strictly concave (and continuous
and differentiable) on�+.

Assumption 2:For any �0 2 �+, the setS(�0) is
bounded.
As noted in [17], the assumption of strict concavity is ad-
equate to “make up for” relaxing the restriction to the in-
terior of�+. We do not consider strict concavity to be an
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overly restrictive assumption; if� is not strictly concave,
then typically either it does not have a unique maximum,
in which case it is a questionable choice of objective, or
it has local maxima, and no known deterministic algo-
rithms are guaranteed to find the global maxima, including
SAGE. Like any monotonic algorithm, for a non-strictly
concave objective SAGE will only find a global maximum
if initialized suitably close to one.

We assume the iterates are produced by an algorithm
having the general form given in Section II, i.e., each it-
eration is associated with an index setSi and a functional
�i(�Si ; �

i), and the iterates satisfy�i+1~Si
= �

i
~Si

. We as-

sume that the functionals�i satisfy the following condi-
tions.

Condition 1: The functionals�i satisfy (2), i.e.:

�(�Si ; �
i
~Si
)� �(�i) � �i(�Si ; �

i)� �i(�iSi ; �
i);

for �Si 2 <
+
Si

and�i 2 �+.
Condition 2: Each functional�i(�; �) is strictly con-

cave and twice differentiable on<+
Si

for any � 2 �+,
and each�i(�; �) is continuous on<+

Si
��+.

Condition 3: The following derivatives match8i:

@

@�k
�(�) = r10

k �
i(�Si ; �)

for any� 2 �+ andk 2 Si.
Condition 4: For �i 2 �+, the iterates satisfy the

Karush-Kuhn-Tucker conditions8k 2 Si:

r10
k �

i(�i+1
Si

; �i)

(
= 0; �i+1k > 0

� 0; �i+1k = 0
:

Condition 5: For any bounded setS, there exists a
CS > 0 such that for everyi, for all �� 2 S, and for all
(�Si ;

�� ~S) 2 S:

�min

n
J
i(�Si ;

��)
o
� CS ;

where�minfJg denotes the minimum eigenvalue ofJ .
Condition 6: For eachk 2 f1; : : : ; pg, there is an index

setS(k) containingk and functional�(k) that is used regu-
larly to update thekth element of the parameter�. Define
Ik = fi : Si = S(k) and�i = �(k)g: Then for eachk
there exists an integerimax (which may depend onk) such
that

8n � 0 9i 2 [n; n+ imax] s:t: i 2 Ik:

(This condition is clearly satisfied if the index sets and
functionals are chosen periodically.)

Using the above Assumptions and Conditions, we can
now prove a series of Lemmas that establish global con-
vergence.

Lemma 1:The iteratesf�ig yield monotonic increases
in �(�i), and are thus contained in the setS(�0). Further-
more,S(�0) is compact and convex.
Proof: Monotonicity follows from Conditions 1 and 4.
Since � is strictly concave (Assumption 1),S(�0) is
strictly convex. Since� is continuous (Assumption 1),
S(�0) is closed [66, p. 91]. ThusS(�0) is compact since
it is closed and bounded (Assumption 2), by the Heine-
Borel theorem [66, p. 58]. 2

Lemma 2:There exists aC > 0 such that for anyi

k�i+1 � �ik2 � C�1(�(�i+1)� �(�i)):

Proof: From Condition 1 and since�i+1~Si
= �

i
~Si

, it suffices
to show8i:

k�i+1
Si
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Expand�i(�; �i) about�i+1
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using Taylor's expansion with
remainder [67, p. 599]:
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From Condition 4, it follows that

r10�i(�i+1
Si

; �i)(�i+1
Si

� �iSi) � 0;

so setting in�Si = �
i
Si in (45) yields

Ck�i+1
Si

� �iSik
2 � �i(�i+1

Si
; �i)� �i(�iSi ; �

i);

whereC = C
S(�

0
)
. We have used Condition 5 and the

fact thatx0Ax � kxk2�minA for any positive definite
matrixA. 2

Lemma 3:

k�i+1 � �ik ! 0 asi!1:

Proof: Sincef�(�i)g is monotone increasing (Lemma 1)
and bounded above (by continuity of� and compactness
(Lemma 1) ofS(�0) [66, p. 78]), it follows that�(�i+1)�
�(�i)! 0. The Lemma then follows from Lemma 2.2

Lemma 4:The sequencef�ig has a limit point9 �?. For
any such limit point, if�?k > 0, then

@

@�k
�(�?) = 0:

9The reader should note the distinction between limits and limit points (or
cluster points) [66, p. 55].
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Proof: By Lemma 1 and [66, p. 56], there is a subsequence
im and limit point�? 2 S(�0) such thatk�im��?k2 ! 0

asm ! 1. Now pick any indexk, and definekm to be
the smallesti � im such thati 2 Ik. By Condition 6,
km � im + imax. By the triangle inequality:

k�km � �?k2 � k�km � �imk2 + k�im � �?k2;

the second term of which goes to 0 asm ! 1. For the
first term, applying the triangle inequality repeatedly:

k�km � �imk2 �
im�1X
i=km

k�i+1 � �ik2;

which is a sum of at mostimax terms by Condition 6,each
of which goes to 0 asm! 1 by Lemma 3. Thusk�km�
�
?k ! 0 asm!1. Again using the triangle inequality:

k�km+1 � �?k2 � k�km+1 � �kmk2 + k�km � �?k2:

Thusk�km+1 � �?k ! 0 asm!1.
Sincekm 2 S(k), i.e. on iterationsfkmg one updates

�k , by Condition 4:

�km+1
k � r10

k �
(k)(�

km
S(k)

; �km) = 0:

Taking the limit asm ! 1 and using continuity (Condi-
tion 2) shows:

�?k � r
10
k �

(k)(�?
S(k)

; �?) = 0:

The Lemma then follows from Condition 3. 2

Lemma 5:The sequencef�ig converges to a limit�1.
Proof: As in [17, Lemma 3], the number of limit points is
finite (at most2p), due to Assumption 1, the nonnegativity
constraint, and Lemma 4. However, since a bounded (As-
sumption 2) sequencef�ig for which k�i+1 � �ik ! 0

(Lemma 3) has a connected and compact set of limit points
[68, p. 173], there must be only one limit point. 2

Lemma 6:The limit �1 satisfies the Karush-Kuhn-
Tucker conditions for�.
Proof: For an element�1k > 0, we have@=@�k�(�1) =

0 by Lemma 4. Now suppose for somek we have�k = 0

but @=@�k�(�
1) > 0. Then by continuity (Assump-

tion 1) and Lemma 3,@=@�k�(�i) > 0 for all i suffi-
ciently large. Thus by Conditions 3 and 6,

r10
k �

(k)(�i
S(k)

; �i) > 0

for all i 2 Ik sufficiently large. But since�(k)(�; �i) is
strictly concave (Condition 2), ifr10

k �
(k)(�i

S(k)
; �i) > 0,

then�i+1k > �ik. This contradicts�ik ! 0, so if �1k = 0

we must have@=@�k�(�
1) � 0, establishing the Karush-

Kuhn-Tucker conditions. 2

Since a strictly concave objective has only one point
that satisfies the Karush-Kuhn-Tucker conditions, namely
the constrained maximum, the limit�1 must be that point.
Lemma 6 thus establishes global convergence under a
generic set of assumptions and conditions. All that re-
mains is to verify that the conditions are satisfied for the
SAGE algorithms presented in this report.
Remark:

In all of SAGE algorithms in this paper, the�i function-
als areadditively separablein their first argument, which
means that the curvature matricesJ i(�Si ; �

i) are diago-
nal. In this case, Condition 5 reduces to verifying that
the diagonal elements ofJ i have a positive lower bound.
This is clearly the case for convex penalties such as the
quadratic penalty (36). In other words, for separable�i

functionals, a sufficient condition for Condition 5 is:
Condition 50: For any bounded setS, there exists aCS >
0 such that for all� 2 S

�
1

2

@

@�2k
P (�) � CS :

Theorem 1:A sequencef�ig generated by any of the
PML-SAGE-4, PML-SAGE-5, or PML-SAGE-6 algo-
rithms for penalized maximum-likelihood image recon-
struction converges globally to the unique maximum of
a strictly concave objective function� having a penalty
function satisfying Condition 50, providedzk > 0 8k.
Proof:

� Assumption 2 follows from the behavior of the Pois-
son log-likelihood as�k !1 [17].

� Condition 1 follows from [15, Theorem 1].
� Condition 2 is easily verified for the hidden-data

spaces and penalty functions used in this report.
� Condition 3 follows by the construction of�5;k us-

ing (5)-(7).
� Condition 4 is built into the definition (3), and is sat-

isfied by (38).
� Condition 5 follows from Condition 5' since the

SAGE algorithms have separable�i functionals.
� Condition 6 is inherently satisfied by the cyclical se-

quential update used in PML-SAGE-5.

2

If one hopes for global convergence, then Condition 50

is a reasonable restriction; it is clearly satisfied for the
quadratic penalty (36), and for most strictly convex penal-
ties.
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There is an important technical difference between our
proof and the assumptions in [17]. In [17] it was assumed
that the sequence was initialized in the interior of�+, and
remained in the interior of�+ for every iteration. With
our new complete-data spaces and hidden-data spaces, the
iterates can come and go from boundary of�+ since the
termszk are nonzero. However, whenzk is positive, one
can verify that the corresponding functions�5;k are well-
defined and differentiable on an open interval containing
zero.

Condition 2 as stated is only met ifzk > 0 for all k,
which will be true ifrn > 0 for all n. If one were to in-
clude the effects of say, cosmic radiation, then in practice
it is always the case thatrn > 0. However, if somern, and
hence somezk are zero, it is simple to modify the proof
to establish global convergence to the maximum. There
is one important technical detail however; one cannot use
zk > 0 in one iteration and then switch tozk = 0 in a later
iteration, since then�ik could get stuck on the boundary
of �+. Provided that one consistently uses eitheronly the
original complete-data space oronly the new complete-
data spaces, then global convergence is assured.

As stated above, the proof does not always apply to the
unpenalized maximum-likelihood algorithms ML-EM-1,
ML-EM-3, ML-SAGE-1, and ML-SAGE-5, because the
curvature assumption Condition 5 is not necessarily satis-
fied without a strictly convex penalty. However, one can
replace Condition 5 with an alternative condition thateach
�i(�Si ; �

i) must be a monotonically decreasing function
of �k . This approach was used in [12, 17]. With this
condition, a small modification of the above proof estab-
lishes global convergence of the unpenalized algorithms,
provided that Assumption 1 is still satisfied. This strict
concavity will not be satisfied if the system matrixA does
not have full column rank. We consider this to be a mi-
nor point since in the underdetermined case regulariza-
tion is particularly essential, and the above proof shows
that PML-SAGE-5 converges globally for strictly concave
penalized maximum-likelihood objectives. We conjecture
that the methods of [69, 70] could be extended to estab-
lish convergence of ML-EM-3, ML-SAGE-5, etc. without
the strict concavity assumption, but such a proof would
probably be of limited academic interest since in practice
one rarely iterates a ML algorithm to convergence in the
unregularized, underdetermined case.

If one is willing to be content with a local convergence
result, then it is possible to relax the assumption of strict
concavity for the�i functionals, using a region of conver-
gence idea similar to that in [15,16].

X. A PPENDIX II: mk DESIGN

The simple choice (23) for the design parametersfmkg
for ML-EM-3 satisfies the constraints (21), but is not nec-
essarily an optimal choice. In light of the form of the
Fisher information (22) ofX3, we would like themk ' s
to be as “large as possible” subject to (21). One way to
quantify this goal is the following weighted min-max cri-
terion:

max
m2M

min
k

�
mk

wk

�
;

where

M =

(
m :m � 0;

X
k

ankmk � rn8n

)
:

The solution to this min-max problem is not unique in gen-
eral, except for the smallest elements ofm which one can
easily show are given by

mk = wk�n1 (46)

n1 = argmin
n

�n

�n =
rnP

k ankwk

;

where the minimization is only over then for which the
denominator is nonzero. For any nonnegative weights
fwkg, the design (46) clearly satisfies (21). Let

Kn = fk : ank 6= 0g:

Then for k =2 Kn1 , the correspondingmk ' s are not re-
stricted by the constraintX

k

an1kmk � rn1 :

so it is possible to further increase thosemk ' s. Fork 2
Kn1 we freeze the values ofmk to m?

k = wk�n1 , and
then subtract from both sides of(21) to obtain the new
constraintX

k=2Kn1

ankmk � rn �
X

k2Kn1

ankm
?
k; n 6= n1:

Defining

�0n =
rn �

P
k2Kn1

ankm
?
kP

k=2Kn1
ankwk

; (47)

we can then let

n2 = argmin
n

�0n;

and assignm?
k = wk�

0
n2

for k 2 Kn2 . This process can
be repeated until everymk is restricted by an active con-
straint, at which point the setfm?

kg will satisfy (21) (eas-
ily shown by induction), and will in some sense be “as
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large as possible.” However, in the few PET simulations
we tried, the additional effort iterating to obtainfm?

kg
yielded only a very slight improvement over the simple
design (23).

In light of (22), we have experimented with three
choices for the weights: i)uniform: wk = 1, ii) sen-
sitivity weighted: wk = a�k, and iii) image weighted:
wk = 1=maxf�̂k; �g for some small� > 0. For the few
PET simulationswe tried, all three performed nearly indis-
tinguishably, so the results in Section V are simply based
on uniform weights without iterating, i.e. (23). The ba-
sic problem is simply that in an EM-type algorithm with
a simultaneousupdate, the background eventsfrng must
be spread out over all the pixels, so the values ofmk are
fairly small relative to the pixel values�k. In contrast, in
thesequentialupdate of our ML-SAGE-5 method, many
of the background events can be associated with pixelk

as it is updated, so the values forzk (see (31)) are or-
ders of magnitude larger than themk ' s. We conclude that
this difference largely explains the rapid convergence of
ML-SAGE-5 relative to ML-EM-3 shown in Section V.
However, it is possible that in other contexts a nonuniform
weighting based on (47) would improve the convergence
rate of ML-EM-3.

Considering (22) again, an alternative criterion for
choosing the setfmkg is to ask that the largest element
of FX3 be as small as possible, subject toboth (21) and
the constraint thatmk � 0 8k. This is equivalent to:

max
m2M

min
k

�̂k +mk

a�k
:

Again, this min-max problem does not have a unique so-
lution. However, we can give an algorithm for generat-
ing nonnegativemk ' s that satisfy (21). First, by defining
xk = mk=a�k, �k = �̂k=a�k, andwnk = anka�k, our prob-
lem is equivalent to:

max
x2X

min
k
fxk + �kg;

where

X =

(
x : x � 0;

X
k

wnkxk � rn8n

)
: (48)

Our algorithm for specifying thexk ' s can be thought
of as a “water-filling” algorithm where we initially let the
solution have the form

xk = [l � �k]+

for a level l, and then choosel as large as possible sub-
ject to (48). Only some of thexk ' s will be restricted by

whichever constraint in (48) is active, so we freeze those
xk values, and then continue to increase the water levell

until another constraint in (48) becomes active. This pro-
cess is repeated until allxk ' s are restricted by an active
constraint.

Formally then, define

l1 = max

(
l :
X
k

wnk [l � �k]+ � rn 8n

)
;

and letN1 be the active constraints:

N1 =

(
n :
X
k

wnk [l1 � �k]+ = rn

)
:

Define

K1 = fk : l1 > �k; wnk 6= 0; n 2 N1g ;

and fork 2 K1, fix

x?k = [l1 � �k ]+ :

For the second iteration, define

l2 = max

8<
:l :

X
k2K1

wnkx
?
k +

X
k=2K1

wnk [l � �k]+ � rn 8n

9=
; ;

and letN2 be the active constraints for that maximization.
Fork in

K2 = fk =2 K1 : l2 > �k; wnk 6= 0; n 2 N2g ;

fix x?k = [l2 � �k]+. Repeat this process until allxk ' s
are restricted by an active constraint. One can show by
induction that this process will satisfy the constraint (48).
Furthermore, one can show that this construction yields a
x
? that has the following optimality property:

For any otherx 2 X , if there is somek such that
xk > x?k, then there must be somej such that
xj < x?j , andxj+�j � xk+�k. In other words,
one can only increase any of the elements ofx

?

by decreasing some other element ofx
? whose

sumx?k+�k is smaller. Thusx?+� is “as large
as possible” in a strong sense.

Having found thexk ' s using the above algorithm, one
then computes the correspondingmk ' s usingmk = a�kxk.
Finding the levelsl1; l2; : : : is feasible but nontrivial com-
putationally, so the performance of this “optimal” (in the
sense of asymptotic convergence rate) set ofmk ' s has not
been evaluated.
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XI. A PPENDIX III: PARALLEL SAGE

All of the preceding SAGE algorithms in this report
were based on single pixel index sets. In this appendix,
we sketch an approach for updating multiple pixels simul-
taneously. To simplify the presentation, we only present
the unpenalized ML algorithms—the extension to PML
is straightforward. The approach described below is very
general (encompassing ML-SAGE-4,5,6 and ML-EM-1,3
as special cases), and can be made more amenable to par-
allel computing. It may also be possible to make it more
computationally efficient than ML-SAGE-5,6.

First, split the set of image pixels intoG disjointgroups
K1; : : : ;KG such that

G[
g=1

Kg = f1; : : : ; pg:

For example, the “red-black” checkerboard groupings
would correspond toG = 2, the ML-SAGE-4,5,6 algo-
rithms would beG = p, and the ML-EM-1,3 algorithm
would beG = 1. The SAGE algorithm alternates between
updating the pixels in each group, i.e.Si = Kg, where
g = 1+(imodulo G). For updating thegth group, define
the following hidden-data space:

X
g =

n
fZnkgk2Kg

; fBngg
oN
n=1

;

where

Znk � Poissonfank(�k + zk)g; k 2 Kg;

Bng � Poissonfrn +
X
k=2Kg

ank�
i
k �

X
k2Kg

ankzkg:

Note that
Yn =

X
k2Kg

Znk +Bng

has the proper distribution (11). The design parameters
fzkg must satisfy:X

k2Kg

ankzk � rn +
X
k=2Kg

ank�
i
k; 8n; (49)

so that the Poisson rates ofBng are nonnegative. The con-
straint (49) offers much more flexibility than both (21)
and (30), and we have only begun to explore its poten-
tial. Perhaps the simplest approach to choosing thezk ' s is
to letzk = zg(�

i) for k 2 Kg, where

zg(�) = min
n

(
rn +

P
k=2Kg

ank�kP
k2Kg

ank

)
: (50)

This choice is almost surely not opimal however.

The M-step for this complete-data space has the same
form as (35), only allk 2 Kg are updated simultaneously.
In other words, the algorithm is a hybrid between Type I
and Type III algorithms in Table I. Assuming the num-
ber of groupsG is much less thanp, then it will be more
efficient to use (51) and (52) than (55), eliminating the
25% overhead for SAGE. However, one must perform the
minimizations (50) each iteration (or find a better choice
than (50)). We are currently exploring these tradeoffs.
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Type-I Algorithm (e.g. ML-EM, PML-OSL)
and
Type-II Algorithm (e.g. PML-GEM)

Initialize �
0

for i = 0; 1; : : : f

�yn =
X
k

ank�
i
k + rn; n = 1; : : : ; N

sn = yn=�yn; n = 1; : : : ; N (51)

ek =
X
n

anksn; k = 1; : : : ; p (52)

for k = 1; : : : ; p f

�i+1k = gk(ek;�
i); (Type-I), or (53)

�i+1k = gk(ek ;�
?;�i); (Type-II) (54)

g
g

Type-III Algorithm (e.g. ML-SAGE, PML-SAGE)

Initialize �
0, �yn =

P
k ank�

0
k + rn; n = 1; : : : ; N .

for i = 0; 1; : : : f

k = 1 + (imodulo p)

ek =
X
n

ankyn=�yn (55)

�i+1k = gk(ek;�
i) (56)

�i+1j = �ij ; j 6= k;

�yn := �yn + (�i+1k � �ik)ank ; 8n : ank 6= 0 (57)

g

TABLE I

THREE GENERIC PSEUDO-CODE ALGORITHM TYPES FOR PENALIZED MAXIMUM-LIKELIHOOD IMAGE RECONSTRUCTION. ALL OF THE ALGORITHMS

PRESENTED IN THE TEXT ARE OF ONE OF THESE THREE TYPES. WITHIN EACH TYPE, THE ALGORITHMS DIFFER IN FORM OF THE FUNCTIONSg() USED IN

THE M-STEP.
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CPU Seconds
% Background Floating Point Operations

0% 5% 35% multiply add x > 0? x > y? log;
p

ML-EM-1 25 25 25 2m+ 2p+N 2m� p N

ML-EM-3 24 24 2m+ 2p+N 2m+ p N + p

ML-LINB-1 26 26 26 2m+ 3p+ 4N 2m+ 5N 2N 2N

ML-LINU-1 10 34 26 27 4m+ 4p+ 9N

ML-SAGE-4 45 37 37 3m+ 2p 2m m

ML-SAGE-5 36 35 3m+ 2p 2m+ 2p m+ p

ML-SAGE-6 67 64 64 4m+ 2p 2m+ 3p m+ p m� p

ML-CNR 4m+ 2p 3m+ 3p m+ p

WLS+SOR [19] 3m+ 2p 2m+ p p

PML-OSL-1 26 26 37 2m+ 5p+N 2m+ 8p N

PML-OSL-3 25 35 2m+ 5p+N 2m+ 10p N + 2p

PML-GEM-1 26 26 38 2m+ 9p+N 2m+ 9p N p

PML-GEM-3 26 37 2m+ 10p+N 2m+ 12p N + p p

PML-LINB-1 29 29 40 2m+ 10p+ 4N 2m+ 18p+ 5N 2N 2N

PML-SAGE-4 42 39 68 3m+ 9p 2m+ 8p m p

PML-SAGE-5 40 68 3m+ 10p 2m+ 13p m+ p p

PML-SAGE-6 42 41 114 3m+ 10p 2m+ 13p m+ p m� p p

PML-CNR 42 40 85 ?m+ 5p 3m+ 12p m+ p

TABLE II

CPU SECONDS FOR40 ITERATIONS OF EACH ALGORITHM. THE NUMBER OF NONZEROank ' S IS DENOTEDm; TYPICALLY m << pN . SINCEm >> N

AND m >> p, THE TERMS INVOLVINGm DOMINATE. MOST OF THE FLOATING POINT COMPARISONS WITH0 ARE UNNECESSARY WHENrn > 0, SINCE

THEN �yn > 0, HENCE THE FASTER EXECUTION TIME OFPML-SAGE-5FOR 5% AND 35%BACKGROUND. THE EXECUTION TIMES FOR THE-CNR AND

-OSL ALGORITHMS ARE withoutCHECKING FOR MONOTONICITY; ALL THE OTHER ALGORITHMS ARE MONOTONIC.
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Fig. 1. Typical plots ofQ
X3(�;�i) versus�k. In the left plot, the maximum occurs for�k > 0. For the right plot, although the unconstrained maximum occurs

for a negative�k , the nonnegatively constrained maximum is at�k = 0, due to the concavity ofQ
X3 .

Fig. 2. Digital brain phantom (left), and filtered backprojection reconstructed image (right).
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Fig. 3. Log-likelihoodL(�i)� L(�0) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 0% random coincidences.
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Fig. 4. Log-likelihoodL(�i)� L(�0) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 5% random coincidences. Not shown is
ML-SAGE-4, which is indistinguishable from ML-EM-1.
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Fig. 5. Log-likelihoodL(�i)�L(�0) vs. iteration for unpenalized maximum-likelihood reconstruction from data with 35% random coincidences. Not shown is
ML-SAGE-4, which is indistinguishable from ML-EM-1.
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Fig. 7. Penalized likelihood�(�i) vs. iteration from data with 0% random coincidences.
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Fig. 9. Penalized likelihood�(�i) vs. iteration from data with 5% random coincidences. Not shown is PML-SAGE-6, which is indistinguishable from PML-
SAGE-5. Also not shown is PML-SAGE-4, which is indistinguishable from PML-OSL-1.
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Fig. 10. Penalized likelihood�(�i) vs. iteration from data with 5% random coincidences.
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Fig. 11. Penalized likelihood�(�i) vs. iteration from data with 35% random coincidences. Not shown is PML-SAGE-6, which is indistinguishable from
PML-SAGE-5. Also not shown is PML-SAGE-4, which is indistinguishable from PML-OSL-1.
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Fig. 12. Penalized likelihood�(�i) vs. iteration from data with 35% random coincidences.
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Fig. 13. PML-SAGE-5 estimates from data with 5% random coincidences at iterationsi = 0;5; 10;20 (left to right). Top row: initialized with uniform image.
Middle row: initialized with thresholded filtered-backprojection image. Bottom row: absolute value of difference between top and middle rows amplified by
a factor of 4.
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Fig. 14. PML-SAGE-5 estimates from data with 35% random coincidences at iterationsi = 0;2; 4;8 (left to right). Top row: initialized with uniform image.
Middle row: initialized with “checkerboard” image alternating between intensities 0 and 4. Bottom row: absolute value of difference between top andmiddle
rows amplified by a factor of 4.

Fig. 15. PML-SAGE-5 estimates from data with 35% random coincidencesat iterationsi = 0; 2;4;10 (left to right) for a penalized maximum likelihood objective
with a nonquadratic “edge-preserving” penalty (see text). The iterates produced by the SAGE method stabilize rapidly even fornonquadratic penalties.
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Fig. 16. Penalized likelihood�(�i) vs. CPU time from data with 0% random coincidences.

0 5 10 15 20
4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

CPU Seconds

P
en

al
iz

ed
 L

o
g

-L
ik

el
ih

o
o

d

Penalized Maximum Likelihood - Quadratic Penalty

0% Randoms

PML-SAGE-6-

PML-CNR   ω = 1.0
PML-CNR   ω = 0.6
PML-CNR   ω = 0.4

Fig. 17. Penalized likelihood�(�i) vs. CPU time from data with 0% random coincidences.
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Fig. 18. Penalized likelihood�(�i) vs. CPU time from data with 5% random coincidences.
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Fig. 19. Penalized likelihood�(�i) vs. CPU time from data with 5% random coincidences.
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Fig. 20. Penalized likelihood�(�i) vs. CPU time from data with 35% random coincidences.
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Fig. 21. Penalized likelihood�(�i) vs. CPU time from data with 35% random coincidences.


