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ABSTRACT Penalized-likelihood approaches for reducing noise have two
. . . . . irqportant advantages over alternatives such as stopping rules
This paper examines the spatial resolution properties of' . . S -
. L ) ) and sieves. First, the penalty function improves the condition-
penalized-likelihood image reconstruction methods by analyz-

: . . ing of the problem, so certain iterative algorithms converge
ing thelocal impulse responseThe analysis shows that stan- 9 P 9 9

o o . . very quickly. Second, one can choose penalty functions that
dard regularization penalties indusace-variantocal impulse y4a Y P y

. ; . .~ control desired properties of the reconstructed images, such as
response functions, even for space-invariant tomographic sys- ) ; ; . 2
. ST : reserving edges [4] or incorporating anatomical side informa-
tems. Paradoxically, for emission image reconstruction ttie :
e N . _tion [5, 6]. In contrast, the smoothness that one obtains through
local resolution is generally poorest in high-count regions . L .- . :
X . . ; stopping rules is limited by the characteristics of the iterative al-
We show that the linearized local impulse response induced . . . oo
. . . rithm. A possible disadvantage of penalized-likelihood meth-
by quadratic roughness penalties depends on the object S
. S . : has been the absence of an intuitive method for choos-
through its projections. This analysis leads naturally to a modi- L X
lﬂg the value of the regularization parameter, even for simple

fied regularization penalty that yields reconstructed images wi (adratic penalties. One contribution of this paper is a new

nearly uniform resolution. The modified penalty also provide§ . . s o i
a very practical method fathoosing the regularization param-g%JeCt independent method for specifying the regularization pa

. i L2 rameter in terms of the desired resolution of the reconstructed
eter to obtain a specified resolutidmimages reconstructed by.

penalized-likelihood methods. Image.
This paper describes another possibly undesirable property of

Keywords: emission tomography, local impulse response, penalized-likelihood image reconstruction methods that has not
iterative reconstruction been previously documented (except in [7] to our knowledge),
and then proposes a solution to the problem. Through analysis
and empirical results we demonstrate that when one uses stan-
dard space-invariant roughness penalties, the reconstructed im-
ages havebject-dependent nonuniform spatial resolution, even
Statistical methods for image reconstruction can provide iffor space-invariant tomographic systenf®r emission imaging
proved spatial resolution and noise properties over convahe resolution is generally poorest in high-count regions, which
tional filtered backprojection (FBP) methods. However, itergs opposite to what one might expect or prefer. In Section V we
tive methods based solely on maximume-likelihood criteria pr¢propose a new modified space-variant roughness penalty that
duce images that become unacceptably noisy as the iteratigig$ds images with nearly uniform resolution. Based on our
proceed. Methods for reducing this noise include: stoppiagalysis, one could extend the method to provide other reso-
the iteration before the images become too noisy (long befaigion characteristics, such as “higher resolution in high count
convergence) [1], iterating until convergence and then pogégions” etc., in a manner similar to methods for space-varying
smoothing the image [2], using smooth basis functions [3], amggularization [8, 9], but in this paper we focus on the goal of
replacing the maximum-likelihood criterion with a penalizedsroviding uniform resolution.
likelihood (or maximuna posterior) objective function that in-
cludes a roughness penalty to encourage image smoothnessdé

I. INTRODUCTION

his paper is somewhat in the spirit of previous studies that
d thelocal impulse respons§l0-14] or an effective lo-

This work was supported in part by NIH grants CA-60711 and CA—5436§al_ Gaussian resolutior_1 [15] to quantify th_e resolution prop-
and DOE grant DE-FG02-87ER60561. erties of the unregularized maximum-likelihood expectation-
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maximization (ML-EM) algorithm for emission tomographyallows one to build an object-independent table relaghtp
However, there is an important difference in our approach: singgatial resolution (FWHM) for a given tomographic system, so
the ML-EM algorithm is rarely iterated until convergence, prethat one can seleg to achieve a consistent specified resolu-
vious studies examined the spatial resolution properties of Mtien within planes, between planes, and even between subjects.
EM as a function of iteration In contrast, since there areThe task of choosing the “optimal” resolution is left to the user,
now fast andglobally convergentlgorithms for maximizing just as the “optimal” cutoff frequency (and filter) for FBP are
both penalized-likelihood [16—19] and penalized weighted lead#termined by different criteria in different contexts.
squares [20-22] objective functions, rather than studying theNonuniform resolution properties are not unique to
properties of thalgorithmsas a function of iteration, we studypenalized-likelihood methods. The ML-EM algorithm for emis-
directly the properties of thestimatoras specified by thebjec- sion tomography also exhibits resolution variation and asym-
tive function(Sections Il and Il). This simplifies the practicalmetry [11] [29]. An advantage of the penalized-likelihood ap-
use and interpretation of our analysis since the specifics of gmach is that one can modify the penalty to overcome the reso-
iterative algorithm are unimportant (provided one uses a gldition nonuniformity (Sections V, VI, and VII), whereasi it is not
ally convergent method). Our main results (14) and (16) showfvious how to modify ML-EM to achieve uniform resolution.
therefore be applicable to a broad range of inverse problemsPET and SPECT systems usually have intrinsically nonuni-
(Although we focus on image reconstruction, most of the issusm spatial resolution [30] (although PET systems are usually
also pertain to quantum-limited image restoration.) nearly space invariant near the center of the scanner [30]). In
In conventional FBP image reconstruction, one controls tHis paper our simulations focus on an idealized PET system that
tradeoff between resolution and noise by adjusting the cutdgfessentially space invariant, except perhaps for the effects of
frequencyf. of a filter. Sincef, has units of inverse length, discretizing the Radon transform. Thus, the resolution nonuni-
there is an intuitive (and object-independent) relationship H@rmities we report are due solely to the interaction between the
tween f, and the spatial resolution of the reconstructed imag@9-likelihood and the penalty terms of the objective function,
For idealized tomographs, one can use the Hankel transforfifl not due to the system response. We hope to study the effects
to compute the point spread function (PSF) as a function @fpenalty functions in systems with intrinsically space-variant
f. [23].  But for real systems, one usually determines tH€solution in future work.
(monotonic) relationship betweefy and the full-width half-  In Section IXwe also analyze a continuous idealization of pe-
maximum (FWHM) of the PSF through the following empiricanalized least-squares image reconstruction. Some readers may
approach. First, acquire a sinogram using a point or line sourggefer to skim that section first.
possibly at several locations within the scanner. Then pick a

filter type (e.g. Hanning) and reconstruct images for several dif- IIl. L OCAL IMPULSE RESPONSE

ferent values off... Finally, compute the FWHM of the PSF for LetY = [Y3,...,Yx] denote a random measurement vec-
each case, and record a table ¢f,(FWHM) value pairs. In tor (e.g. a noisy sinogram) with density functigty; ¢), where
subsequent studies, one typically chooses the desired resolufica [01, .. .,6,])" is an unknown parameter inpadimensional

(FWHM) by experience or by visually observing the resolutiorparameter spac®, and’ denotes vector transpose. In imag-
noise tradeoff, and then obtains the appropriatéom the ta- ing problemsg typically denotes image pixel values in lexico-
ble. One needs to perform this tabulation only once for a givgnaphic ordering an® = {6#:6; >0, j =1,...,p}. Given a
scanner, since FBP is linear (and hence its resolution properjesticular realizatioy” = y, an estimator of the forr = é(y)
are object-independent). has mean:

In contrast, in penalized-likelihood image reconstruction, a . .
regularization parametet controls the tradeoff between res- n(0) = Egl0(Y)] = /G(Q)f(y;G) dy. 1)
olution and noise, but the units @f are at best opaquely re-
lated to spatial resolution. Therefore it is not obvious how teor linear and space-invariant problems, one can characterize
specify the regularization parameter. As a further complicatidhe properties of: either in the spatial domain by specifying the
one finds that for a fixed, the reconstructed spatial resolutiorfglobal) impulse response, or in the spectral domain by speci-
varies between subjects, and even within the same subject (Sgieg the frequency response (Fourier transform of the impulse
tion V). One could choos@ using statistical criteria such asresponse), as in Section IX.
minimum mean-squared error [24,25]. However, mean-squaredpectral methods are generally inapplicable to nonlinear es-
error is composed equally of both bias (resolution) and varianigeators for which the impulse response is space variant. For
(noise), whereas those two contributions usually have unequoanlinear estimators one can analyzeltiwal impulse response
importance in medical imaging, particularly when images are fof [11]). For an estimator with megn(¢), we define the local
be interpreted visually. Furthermore, data-driven methods fiorpulse response of thigh parameter (pixel) to b#:
choosingg can be unstable in imaging problems [26]. Many 01 5ei 9
other alternatives have been proposed, e.g. [27, 28], most of () = lm 0 + 6¢’) — p(0)
which have again been assessed with respect to mean-squared =0 g

error. One practical contribution of this paper is that we de- 2We restrict our discussion to estimators where the above limit is well de-
’ ‘ﬁned. The reader is cautioned that non-convex penalties can lead to estimates

velop a method for normalizing th? penalty fl_m(_:tion SUCh_thﬁ’ﬂtat arediscontinuousunctions of the data [31]. We focus here on well-behaved
the object-dependent componentias nearly eliminated. This convex penalties.
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0 ) .
= Wu(@), j=1,...,p, ) A. Brute Force Evaluation of Local Impulse Response
J

Unlike the simple penalized weighted least squares estimator
wheree? is the jth unit vector of lengthp. This impulse re- described above, most estimaté(g) do not have an explicit

sponse is local in two different senses. First, it is a function Bpalytical form. When there is no explicit form f(y), there

the indexj, reflecting the space-variant nature of nonlinear es- usually no explicit form for the estimator meakp) either.

timation. Second, it depends on the location in the paramemus it would at first appear that to investigate the local impulse

space© through the argumert, reflecting the nonlinear ob- response of a nonlinear estimator of interest, one must resort to

ject dependence. The local impulse response also depend§ B_Hm_erical approach based on (.1) and (2), repla_cing the expec-
the measurement distribution through (1). Thus, the local iffion in (2) by the sample mean in a computer simulation. The
pulse response characterizes the object, system, and estinJQ{B)rW'ng recipe illustrates this brute-force approach.

dependent properties. The local impulse response measures the Select an objedt of interest and generate multiple realiza-
change in the mean reconstructed imalye to perturbation of tions {y(™1M_ of noisy measurements according to the
a particular pixel in the noiseless objéct density f (y; 9).

To confirm that (2) is a natural generalization of the usual def- ) _
inition of impulse response, consider an estimator whose meat APPly the estimator of interest to each of the measurement
is linear in6: (@) = LO. Then the conventional definition of ~ realizations to obtain estimatgs(y™)} 5.
impulse response ig(e’), which is thejth column of L. Eval-

i ; ha X e Estimate the estimator mean using the sample mean:
uating (2), one finds that is also thejth column of L. (If

in addition L is a circulant matrix, then the impulse response 1 X
is space-invariant, andl corresponds to a convolution [32].) (o) = i O(y™). (4)
Also note thaf.(#) = 6 for unbiased estimators, in which case m=1

19 = e7. Penalized-likelihood estimators are always biased, so
local impulse responses will typically be bump-like functions,
rather than the ideal impulsé (e.g. Fig. 1).

As a specific example, consider the penalized weighted least-

e Choose a pixej of interest and small valu§ and gener-
ate a second set of noisy measurements according to the
densityf (y; 0 + de?).

squares estimator [21]: e Apply the estimator to the second set of noisy measure-
. ments, and compute the sample mean to obtain an estimate
0 = 0(y) = argmin (y — A0)'W (y — A0) + 50’ RO, 7i(6 + 6¢e7).
whereW and R are symmetric nonnegative definite matrices * Estimate the local impulse response:
for which the null spaces aR and W A are disjoint. For a ‘ 71(0 + Sed) — (0
fixed W, this estimator is linear ip: (0) ~ Z 5) 'u( )- (5)
0(y) = [A'W A + BR] 7 A'Wy, By taking ¢ sufficiently small and)M sufficiently large, one
can obtain arbitrarily accurate estimates of the local impulse re-
and assumind’y[Y'] = A0, one can evaluate (2) to show sponse.
IV =[A'WA+ 3R] AW Ae’. (3) B. Unbiased Estimator for Local Impulse Response

. . . .., Ifone wants to evaluate the local impulse response for pixels
For such linear estimators, the local impulse response is |n91e— ji, of interest, the above procedure requitést 1)1
pendent off. As we show in Section ll, the local impulsejy,, e reconstructions. The following method [33-35] reduces

responses of the nonlinear penalized-likelihood estimators EHE computation to onlyM/ image reconstructions. Note that
image reconstruction have approximately the same form as @bm )

except thal¥ and R may depend oA.
There are at least three reasons to study the local impulse rg- 5\ _ i _ i 5 _ i/ 5 .

sponse. The first reason is simply to understand the resolutioa 6) = 80ju(9) 00 Bsl0(Y)] = 09, 0(v) f(y:0) dy

properties of penalized-likelihood estimators. The second rea-

son is that the local impulse response allows one to quantify lo- = E, [é(y)i log f(Y;6)].

cal resolution, which in turn allows one to choose the smoothing 90,

parameted sensibly. The third reason is that comprehensiofhus one can show [34, 35] that

of the resolution properties enables the design of better penalty

J

functions. In particular, we show how to modify the standard lJ'/@ 1 M O(y™) — (0 dlog f(y™); 6) ©)
regularization penalty to achieve nearly uniform resolution. )= M—-1 Zl (v B ) 90,

3Because of this interpretation, we use the tpomt spread functiofPSF) . . . . ~ . .
synonymously with local impulse response, even though this stretches the uldafn unbiased estimator f(ﬂ’(@), whereu(a) was defined in

meaning of PSF. (4). Once one performs thel reconstructions{é(y(m))}nf‘{zl,
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then one can estimate the local impulse respdv’r/@e formany By taking4 sufficiently small, one can obtain very accurate es-
pixels with little additional effort. timates of the linearized local impulse responsé.iff linear in
By taking M sufficiently large, one can obtain arbitrarily acy, then (10) is exact of course.

curate estimates of the local impulse response. Unfortunatelyyg jllustrate this method, Fig. 1 shows a profile through sev-
M may need to be very large for sufficient accuracy. Oftegta| |ocal impulse response functions of FBP and of the emis
we would gladly accept aapproximationto the local impulse sjon ML-EM algorithm [38] (stopped at 30 iterations, well be-
response if we could avoid performing extensive numerical Sifgye convergence). The objegtwas a uniform ellipse of ac-
ulations. The remainder of this paper is devoted to approximgjity within a uniform elliptical attenuatdr Despite the fact
tions suitable for likelihood-based estimators in tomography.that the elliptical object has uniform activity, the resolution of
the nonlinear ML-EM estimator is clearly nonuniform, whereas
the FBP resolution is uniform since the smoothing provided by
In the context of emission tomography, several investighe Hanning window is space-invariant. Using a similar pertur-
tors have observed [13, 14, 36, 37] that the ensemble mean §p&on approach applied to both the noiseless mean of the data
likelihood-based estimator is approximately equal to the valdgf) and to a single noisy realizatidn, Stamoset al.[10] re-

that one obtains by applying the estimator to noiseless data: Ported strongly object-dependent point response functions for
the ART and ML-EM algorithms.

C. Linearized Local Impulse Response

w(0) = Eol0(Y)] = 6(Y (8)) =y (7) Several investigators have used this easily implemented em-
pirical approach to study the properties of maximum-likelihood
Here estimators in emission tomography. However, being empirical,
V(0) = B Y] = .0) d 8 it fails to reveal general estimator properties. &malyticalex-
(©) olY] /yf(y ) dy ® pression for the linearized local impulse response would facil-

denotes th fh tvectord tes th itate understanding general properties of image reconstruction
enotes the mean of the measurement vector OeSIN€ 1 ethods. The next section derives an analytical expression for

value O.f th? es.t|mato'r when given no!seless deitd)). Th's the local impulse response of implicitly defined estimators.
approximation is equivalent to assuming that the estimator is

locally linear. LetV, = [32- ... 32-] and consider the first-
H F \/ . FBP (H ing Wind
order Taylor expansion @(Y") aboutY (6): 5 FBP (Hanning Window)
O(Y) = 0(Y (0)) + V,0(Y(9)) - (Y —Y(0)); 52 2 2
taking the expectation of both sides yieldy. The remainder gl ! !
of this paper uses this local linearity approximation. R0 0 0
Substituting (7) into (2) yields the following definition of the
linearized local impulse response 60 70 80 ) 110 120
- . ~o ML-EM (30 Iterations)
. J —_
B = lim (Y (0 + de?)) —6(Y (0)) 3 3 3
6—0 0
o . 22 2 2
= —0(Y(9)). 9 S
55,0 (6) © 1 .
Since we focus on this form in the remainder of this paper, fcS o o 0
brevity we usually omit the adjective “linearized.”
60 70 80 90 110 120

The form of (9) leads to a much simpler recipe for numeri-
cally evaluating the local impulse response.

Horizontal Pixel

) ) o Figure 1. Horizontal profiles through the local impulse re-
* Select an objecf of interest, a pixelj of interest, and a yonge functions of FBP with a Hanning window (top) and

sma.llivalueé. Qeneratej two noiseless measurements Vegtihe ML-EM algorithm at 30 iterations (bottom), for three
tors: Y (6) andY (0 + de”). pixels located along the horizontal midline of an elliptical ob-

ject. Solid line: computed using the linearized approximation
%fO); Circles: computed using the unbiased estimator (6) from

M = 2000 realizations.

e Apply the estimator of interest to each of the two noisele
measurements, obtaining estimad#¢¥ (¢)) andd(Y (0 +
del)).

e Estimate the local impulse response:

Ao ; Yoy 4lmage sizel28 x 64 at 3mm pixels, 128 radial bins, 110 angles, 3mm ray
j _ ’ ’ l
19 (9) ~ G(Y(G + de )) H(Y(H)) . (10) spacing, 6mm strip width, ellipse radii 58,26 pixels, attenuator radii 180,84 mm,
6 with g = 0.0095/mm.
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I1l. I MPLICITLY DEFINED ESTIMATORS whereL(6,y) = log f(y;0) denotes the log-likelihoodR(6)
Many estimators in tomography are defined implicitly as tHg @ 0Ughness penalty function, aids a nonnegative regular-
maximizer of some objective function: Ization parameter that controls the !nfluence o_f the penalty, and
hence the tradeoff between resolution and noise.
0 = 0(y) = argmax (6, y). (11)  DefineR(¢) = V2R(0) to be the Hessian of the penalty, and
oee note thatV!! R = 0. For penalized-likelihood estimators of the
form (15) we have from (14) the following expression for the

We assumé has a unique global maximum, so th&y) is well )
gcal impulse responée

defined. There is often no analytical form for such estimat0|J
hence the ubiquitous use of iterative algorithms for perform- o 3 R
ing the required maximization. Fortunately, the linearized local’ (8) = [-V*L(6,Y) + BR(6)] ' V' L(4, Y)55:Y(0).

impulse response (9) dependsly on the partial derivatives J (16)

of the implicitly defined estimatof(y). As discussed in [37], s expression should be useful for investigating estimators in
even thougl¥(y) itself is unknown, one can determine its pary yariety of imaging problems. Next we evaluate expression

tial derivatives using the implicit function theorem and the chaifi 6) for Poisson distributed measurements, which will be the
rule. Disregarding the nonnegativity constrajhe maximizer focys of the remainder of this paper.

of ® satisfies:
B. Poisson Statistics

aT;j(I)(H’y) 9—ity) =0Jj=1...p (12) " Both emission and transmission tomographic systems yield
W independent measurements with Poisson statistics; the primary
for anyy. In vector notation: difference is in the form of their assumed measurement means

10n A Y (). In both cases the assumed log-likelihood has the form:
VTe(0(y),y) =0 vy,

whereV'® = [52- ... ;2-]is the row gradient operator (with L(o,y) = Zy% log ¥;i(0) — Yi(0),
respect to the first argument ®). Now differentiate again with ’
respect tgy using the chain rule: neglecting constants independentof Thus
VX (0(y), y)V,0(y) + V' 2(0(y),y) =0,  (13) ) yi o -
’ . a0y = X (Y(o) N 1) a0, 1(0)
where the(j, k)th element ofv° is 52— and the(j, i)th , ! i !
. 2 . L 0 1 0 -
element ofV!! is 2. For simplicity we drop the depen- —L(# = ———Y(0 17

dence ofY” oné except where explicitly needed. Assuming that

2

—V209(0,Y) is positive definite, substitutg = Y into (13 __v — ¥\ 95 9 5

(6,Y) is positi finite, substitutg (13) 89‘8916L(9,y) Z(W(e)) aayﬁ(e)aekyz(e)
and solve for the partial derivatives éfY (¢)): J i i J

2
A o200 V-1ollg g _ Y 1 8Y 1

V,0(Y(0)) = [-VX®(4,Y)] Ve, V). Z( 0 )aejaek 2(0).(18)

Combining with the chain rule applied to (9):
5 5 C. Emission Tomography
@) = W@(Y(@)) =V,0(Y (0))%}7(9) For emission tomography [38f, denotes the radioisotope
J J concentration in thgth voxel, and the measurement mean is

= [—VQOCD(é,Y)]_lvll@(é,}?)%?(e). (14) linear in@: .
’ Yi(0) = aij0; +ri. (19)
This equality expresses the local impulse response solely in =

terms of the partial derivatives of the objective function and thﬁ1e {a;;} are nonnegative constants that characterize the tomo-

measurement mean, i.e., we have eliminated the dependence on; . .
the implicitly defined estimatdi(y) graphic system, and tHe-; } are nonnegative constants that rep-

resent the mean contribution of background events (random co-

A. Penalized-Likelihood Estimators incidences, scatter, etc.). Substituting (19) into (17) and (18):
In the remainder of this paper, we focus on penalized- 2 , n
likelihood objective functions of the form: —VTLOy) = AD{W(@J A
2(6,4) = L(0, ) - BR(O), (15) VUL(0,y) = A'D [ﬁ}

SAlthough it appears we are assuming that (12) holds forgfiom (9) one
sees we really only need (12) to hold near the gaseY (), i.e. the noiseless 6We consider the class of objective® for which the Hessian
case. The nonnegativity constraint is often largely inactive for noiseless datay/2°L(6,Y) + BR(6) is positive definite; i.e.®(6,y) is at leastlocally
S0 (12) is a reasonable assumption. strictly concave near the noiseless cé&eY (6)).
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whereA = {a;; } is anN x p sparse matrix andd[u;] denotesa  To summarize, we have derived a general local impulse re-

N x N diagonal matrix with diagonal entries, ... ,un. Not-  sponse expression (14) for penalized-likelihood estimators, and
ing thata%jY(a) = Ae¢? and substituting into (16) yields thespecific expressions (20) and (23) for emission and transmission
local impulse response: tomography.
. Y, « 1 . IV. RESOLUTION PROPERTIES
1 (6) = [A’D[ _2@ } A+ ﬂR(O)]‘lA’D[ - } J
Y7(0) Yi(0) The local impulse response approximations for penalized-

likelihood image reconstruction in emission tomography (20)
and transmission tomography (23) differ only by the definitions
of thew; terms in the diagonal matrix. Thus, the local impulse
response has the following generic form:

For moderate or small values 8f6 is a slightly blurred version
of ¢ (see (7)). Since the projection operatidi is a smooth-
ing operator, the projectioris(6) andY (6) are approximately
equal. Thereforge we simplify the above expression to
) . . . ) 7 ~ / MN1—1 A’ 7
K (0) ~ [A/D [ufmls(e)] A + ﬁR(G)]_lA’D [ufmls(e)] Aej, l (9) [A DGA + ﬁR(e)] A DaAe s (25)
(20)  whereD, = DJu;(0)] is an object-dependent diagonal matrix
where _ 1 with u;(#) defined by (21) for emission tomography and (24)
uS™(0) = 7.0 (21) for transmission tomography.

¢ Many penalty functions used in tomography can be written in
is the reciprocal of the variance ®f under the assumed Poisthe following forn®:
son model. For penalized-likelihood estimators in emission to-
mography, (20) is our final approximation to the local impulse L]
response. RO) =) 3 > wiktp(8; — 6k), (26)

J=1" keN;

D. Transmission Tomography ) ) ) _ )
L . whereN; is a neighborhood of pixels near pixgly is a sym-
For transmission tomography [38]; denotes the linear at- metric convex function, ane;; = wy;. For a “first-order”

tenuation coefficier_1t of thgth pixel. Thg measu're_ment mean%eighborhood one chooses;, to equal 1 for horizontal and
are nonlinear functions of the attenuation coefficients: vertical neighboring pixels, and O otherwise; for a “second-
» order” neighborhood one also includeg, = 1/\/5 for di-
Y;(0) = bexp | — Z aij0; | + i (22) agonal neighbors. With either of these standard choices for the
i=1 w;'s, we refer toR(#) as auniform penalty since it is shift-

invariant; i.e., translating the image yields an identical value of
The{a;;}, {b;}, and{r;} are nonnegative constants that charag).

terize the system, transmission source strength, and backgroundne of the simplest uniform penalties is theniform
events respectively. From (17) and (18) one can show [37] thqtiadratic penaltywhich refers to the case whepéz) = z2/2.
In this case the penalty has a quadratic form:

_VQOL(ev y)

AD[10) - )1 - 2| 4 1
o0 R(0) = 50'R,

V1L(0,y) = —A'D [1 - T—] .
Y;(0) whereR is ad-independenp x p matrix defined by:

; o . Dien; Wits k=17
Y (9) used in the emission case, one can substitute the above Leny T .
formulae into (16) to derive an approximate local impulse re-

sponse for transmission tomography: In the quadratic case the local impulse response simplifies to:
1(0) ~ [A'D[uf™"(0)] A+ BR(0)] " A'D[ui"™"(0)] A(ej ) 1(0) ~ [A'DyA + BR) A’ Dy Ac’ . 27)
23
which is of the same form as (20). However, in this case A. Projection Dependence

Under the same assumptions about the similarity ¢4) and
Ry~ {

tram (Y;(0) — ;)2 WhenR(0) is a quadratic form so tha is independent o,
u(0) = 7}—,1,(9) (24)  then remarkably the local impulse response approximatien
given by (27)depends on the objeétonly through its projec-
is approximately the reciprocal of the variance (cf [37]) ofionsY (#) (see (21) and (24)). Even if the object is unknown,

log(bi/ (Y — 1)). 8If 4)(x) > O for all z, then it is easily shown that the only vectors in the
"The diagonal terms in (20) and the preceding equation are sandwiched g space of the matri’2 R(6) are of the formv = 1,v1, wherel,, is the

tween the backprojection and projection operatdrsand A, which smooth lengthp vector of ones. For any tomographic system that satidfigsi1, #

out most differences betwedn(9) andY (0). In a sense, the heavy-tailddr 0 (i.e. the projection of a uniform image is nonzero), we can then conclude

kernel that makes tomography ill-posed works to our advantage when makihgt A’ Dy A + BR(6) is positive definite and therefore invertible, as required

the above approximations. by (16).
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its projections are approximately known through the noisy meaf 3, one could use (27) to choose a value fothat induces
surementg;. Thus, even for real noisy measurements, we candesired resolution at some pixglof interest in the image.
predict the local impulse response simply by replaci@) However, the induced resolutions at other points in the image
with y in (20) or (23). This simple approach is effective primamould still be different, which motivates the modified penalty
ily because the diagonal terms in (20) and (23) are sandwictdmleloped in the next section.
between the backprojection and projection opera#rand A,
which greatly smooth out the noisegni.e. V. RESOLUTION UNIFORMITY
P 4 , A This section analyzes the problem of resolution nonunifor-
A D[Yi(eﬂ A~ A'Dly| A (28) mity more closely. This analysis leads to a natural modified
B. Nonuniformity penalty function that induces more uniform resolution. For sim-
. . plicity we focus on emission tomography; parallel arguments
. One mlght expect' that a un]fornj penalty such' as (?6) WpLg%ply to transmission tomography.
induce uniform spatial resolution, just as space-invariant sieves
do [2]. Using the preconditioned conjugate gradient [22, 39] @&. Emission Tomography
Gauss-Siedel [20, 21] algorithms, one can evaluate (25) or (27?

and then display the local impulse response for several Iocang;,sbwl is an operator that, due to the lexicographic order-

within the object. Upon doing this, one immediately finds th . : ;
- - . ing of pixels, one can treat as a mapping from image space to
the local impulse response is vergnuniform even for standard . . : . .
. i . X image space. The operatd’ Dy A is shift-variant for emis-
uniform quadratic penalties. (See Section VI.) . L .
. ) sion tomography, which is the crux of the problem of resolution
The next section elaborates on this property, but one can par-. . . . . .
. . . .. nonuniformity. The previous section noted that the nonuniform
tially understand the source of the resolution nonuniformity b
considering (27). If the measurement noise was homosce
tic with variancer, then D would be simply a scaled identity
matrix: D = v, and from (27) the local impulse respons

would be

n emission tomography, the Fisher information matrix

iagonal of theDy term is partially responsible for the nonuni-
S- . X
orm local impulse response. But even without that term, the
spatial resolution would still be nonuniform because typically
BvenA’ A is a shift-variant operator in PET and SPECT. How-
ever, one often models the system matias a product of three
li(e) — [V—lA’A + ﬂR]_ly_lA/Aej factors:a;; = cigijs;, such thatG’' G is approximately shift-
— [A’A+vBR] A’ AL (29) invariant, whereG' = {g;;} represents the object-independent
geometric portion of the tomographic system responsecfée
In other words, noise with varianceleads to an impulse re- represent ray-dependent factors that change between studies, in-
sponse that corresponds to an “effective” smoothing parametkrding detector efficiency factors, dead time, radioisotope de-
vB3. Thus, the influence of the smoothing penaltna invari- cay, and (in PET) attenuation factors. Tdyés represent pixel-
ant to changes in the noise varianeehich perhaps explains in dependent factors such as spatial variations in sensitivity, and
part why choosing} is considered by many investigators to béin SPECT) “first-order” attenuation correction factors (cf the
a difficult process. The Poisson case is more complicated simtge-space Chang method [40] for SPECT attenuation correc-
the values ofDy vary along the diagonal. Since a given pixel ision). For our PET work thus far, we have simply usgd= 1.
primarily affected by the detectors whose rays intersect it, ealchmatrix notation:
pixel sees a different “effective variance” and hence a different
effective smoothing parameter. A = D[¢;] GDls;]. (30)

This resolution nonuniformity can also be explained from, . . . . . .
4 P r]Fh|s factorization is not unique. If one desires resolution uni-

a Bayesian perspective. The Fisher informatidiDy A is a . .

measure of theertaintyin the data. For pixels where this date{(orrir\?'ti/' thﬁ n the gna%&s 'that f?r:lotv(\f ;uiggestshtizaitnsnﬁ snhtould
certainty is smaller (due to higher noise variance in the rasg € oiCbI onosé%cfsab {Isf/\]; SOS a a1 fSranZiti n Ianal
that intersect that pixel), the posterior estimate will give moé's possible” (cf (43) below). (See [41] for a ona analyses

weight to the prior, which (being a smoothness prior) will cause ;Tgt;[ril\lﬁrrl]an(t?,%r;?n?g|It2—g<;1gﬁr;tslm1agiilfr;gi]ns¥stems.)
more smoothing. In emission tomography, pixels with higher 9 P 9

activity yield rays with higher counts and hence highksolute 19(6) ~ [D[s;] G' D[q:(6)] GD]s;] + BR(HV)]A
variance otower certainty. Paradoxically, penalized-likelihood ! !
methods using the standard uniform penalty thus Haweer - D[s;] G'D[q;(0)] GD[s;] ¢, (31)

spatial resolution in high-count regionsThis property is cer-
tainly undesirable, and may explain in part why many authofs 9 15
have characterized the uniform quadratic penalty as causing a(0) = ci/Yi(0). (32)
“oversmoothing,” since the most prominent image features drePET, thesey;’s are very nonuniform due to attenuation cor-
generally smoothed the most! rection factors that range from 1 to 100, detector efficiencies

_ _ that vary over an order of magnitude in block crystal systems,
C. Choosings for one pixel and the intrinsic count variations of Poisson measurements.

Since (27) allows one to pre_diCt the |Oca! impulse reSponses|n spECTG will only be approximately object-independent due to atten-
(and hence the spatial resolution) at any pikels a function uation.

ere
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The Fisher information matrix for estimatirgs:
F(0) = A'D[u;(0)] A = D[s;] G'D[q:(0)] GD]s;] . (33)

As a consequence of the nonuniformity of this, the diagonal
of F'(#) is also nonuniform, which contributes greatly to the
shift-variance of the’(8) operator in PET.

Understanding the structure &f(9) is the key to correcting
the resolution nonuniformity. From (33) the diagonal elements
of F(#) can be written:

Fij(0) =57y 95a(0) =r5(0)Y g5 i=1,-...p,
3 3 (34)

-._‘..... where we define
50) =5 \/Z a0/ h 69

" Due to thel /r response of tomographg;(6) is fairly concen-
trated about its diagonal, so (34) suggests the approximation:

'-.‘L-. F(0) = D[s;] G'D]gi(0)] GDl[s;] = AgG'GAy,  (36)

where
Ao = DIr;(0)] (37)

is ap x p diagonal matrix. From (34) one sees that approxi-
mation (36) is exact along the diagonal®B{6), and would be
exact on the off-diagonal elements if thgs were equal. The
approximation (36) turns out to be reasonably accurate even for
very nonuniformy;’s because the;’s vary slowly as a function

of j, due to the smoothing implicit in (35). This approximation
also reflects the fact that the local impulse response of gixel
depends primarily on theg’s that correspond to rays that inter-
sect pixel;.

To visualize (36), Fig. 2 shows the various matrices for a
Figure 2: lllustration of the approximation (36). Upper left: théoy PET problenf (with s; = 1). The nearly Toeplitz-block-
matrix G'G which is approximately Toeplitz-block-Toeplitz. Toeplitz structure o&z'G is apparent.

Upper right: the Fisher informatio = G'D[¢;(0)] G in- Substituting (36) into (31) and rearranging yields the follow-
cluding Poisson noise covariance. The nonuniform diagonag) approximation to the local impulse response:

is caused by the nonuniform Poisson noise variance. Lower .
right: the approximatiom\G’'GA; note the agreement with 1 (6)

[AgG'GAg + BR(O)] T ApG' GAge’

Q

the upper right matrix, i.eF ~ AG'GA. Lower left: = AJ'[G'G + BAR(O)A,' | PG G Age?
A7 G'D[q;(0)] GA™!; note that this matrix is a reasonable ap- = k;(0)A,'[G'G + BA;'R(O)A,' ) ' G'Ge?, (38)
proximation toG’ G.

because\ge! = k;(0)e’.

What does\y represent statistically? From (35), we see that
k;(0) is a normalized backprojection dfy; }, whereg; is the
inverse of the variance of thi¢h corrected measurement/c;.
Thusx;(6) represents an aggregatertainty of the measure-
ment rays that intersect thigh pixel. Since the local impulse
responsé’ is typically concentrated about pixgla somewhat
cruder but nevertheless very useful approximation that follows
from (38) is

V(0) ~ [G'G+ B/k3(0) R(O)]"G'Ge’, (39)

19The object was & x 2 uniform rectangle in 8 x 6 image. We used; = 1,
so the only nonuniformity in the;’s was due to thd /Y; () contribution of
Poisson noise.
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(cf (29)). The accuracy of this approximation improvessgas
decreases (and hentieapproaches the impulsé). This ex-
pression again illustrates the property that the effective amount
of smoothings/x3(#) increases with decreasing measurement

nonuniformities that are induced by the interaction be-
tween the nonuniform statistics and the penalty function.
Essentially we are correcting for the,’ RA," term in
(38).

certaintyx, (6).

Approximation (39) illuminates the paradoxical oversmooth- ®
ing of high-count regions with the uniform penalty. If pixel
j is transected by rays with high counts, then from (32) and
(35) we see thag; and hence:; () will be small, so the effec-
tive smoothing parametg¥/;(6)? above will be large, causing
lower resolution. A9); increases, the rays that intersect it will
also increase, so the local resolution decréases

Sincer; (0)/k,(0) ~ 1 for k € Nj, the termrs; (9)A," in

(42) effectively acts as an identity matrix for pixels ngar

so for local impulse responses that are fairly narrow we can
disregard thecj(a)Agl term, leading to the approximation

(0) ~ [G'G + BR*(0)] ' G'Gé’. (43)

By “narrow” we mean relative to the scale of the spatial
fluctuations inx; (). However, in regions where the cer-
tainty «;(6) is more rapidly varying as a function of spa-
tial position (such as near the edge of an object), the pres-
ence of the term;(9) A, indicates that there will be some
asymmetry in the local impulse response. As illustrated in
Section VI, such asymmetry can occur with or without our
modifications to the penalty. Further work is needed to
correct these asymmetries.

B. A Modified Penalty

The form of (38) suggests several possible methods for modi-
fying the penalty function to improve resolution uniformity. We
focus on one approach that is easily implemented. R€9)
denote a “target” penalty function of the form (26) (presumably
shift-invariant) whose properties would be suitable if we had
Dy, = I. Suppose we have estimatgs;} of {x;(0)}, and
consider thenodified penalty

R(0) = %Z Z wik kR0 — k).

Jj kEN;

C. Practical Implementation

In practice, the term:;(6) is unknown, since it depends on
the noiseless measurement m&g#). Fortunately, we can ma-

nipulate the noisy data to provide a reasonable estihaiaf
If R(§) = VZR(#) denotes the Hessian of this modified;;(6)
penalty?, then one can show that

Zl;ﬁj w]l/%]’%lw(ej - 016)7 .7 =k 5
—wjkkjRrp(0; — k), j#k . A
max{y;, 10}

(40)

We first compute from the measurements an estimate
the termg; (0) defined by (32):
R;i(0) = {
(44)
so that if D[#;] ~ Ap and we letR*(0) = V2R*(0), then _ _
The “10” factor ensures that the denominator is not too close to
(41) zero, and hopefully provides a little robustness to model mis-
) . . . . . match by giving no rays an inordinate weighting. We then re-
This approx_lm_atlon reh_es_ on _the fact that neighboring p'xelﬁace theg; () term in (35) withg; to precomputet;, which
have very similar certainties, i.ex(6) ~ r;(6) for k € Nj, \ye then use in (40). Thus, implementing the modified penalty
which again follows from the smoothing effect of (35). Subeq) simply requires one extra backprojection. (To save a little
stltutlng (41) into the expression for the local impulse reSpONSEmputation, one could probably replace (35) with an approx-
(38) yields the new approximation imate backprojector.) The cost of multiplying ly#;, in (40)
1(0) ~ r;(0)A;'[G'G 4 BR*(0)]\G'Ge. @s negligible compa_red to th_e forward projections required by
iterative reconstruction algorithms.
If the geometric respons@ is nearly space invariant, then to Since thei;'s depend on the data, our modified penalty
within our approximation accuracy, (42) corresponds to near§0) is data-dependent! Bayesian-minded readers may find the
uniform resolution except for the following features. idea of a data-dependent “prior” to be somewhat disconcert-
. ) . _ ing. We make absolutely no pretense that this approach has any
* _Unllke the unlform_ qua_ldratlc target penalty_, for Whlm Bayesian interpretation. The purpose of the penalty is solely to
is constant along its diagonal, nonquadratic penalties leggq noise, and the purpose of our modification to the penalty
to object-dependent Hessiafi&' (¢). However, users of is. solely to control the resolution properties. As an alternative

nonquadratic penalties presumably desire certain nonulr(y—(44), one could periodically update the's by substituting

formities, i.e. more smoothing in flat regions and less__, . o " . .
. . one’'s current estimate df into (35) within an iterative algo-
smoothing near edges. Our modified penalty (40) pre; . . ; .
A o . rithm. But the extra effort is unlikely to change the final esti-
serves this important characteristic of nonquadratic penal- : . .
. L . _mate very much, since, as noted earlier, small changes in the
ties. Our modification only corrects for the resolution , . . . -
g;'s have minor effects on the estimate due to the “sandwich
1However, note that even uniform objects (eflg= [1 ... 1]) lead to effect described in footnote 7 and by (28).

nonuniform resolution (i.e. to shift-variant local impulse response), sifgd . ) o
will be a nonuniform vector due to the different lengths of the line integrals Since (40) and (44) define the modified pena‘ﬂy‘)) to be

through the object. a function that depends aj the matrixV!!' R is no longer ex-
120ne can easily verify that this Hessian is nonnegative definite:if 0. actly 0, so strictly speaking the steps between (14) and (16) need

R(0) ~ AgR*(0)As.

(42)
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modification. However, because of the effective smoothing surements. Fof, we used thé28 x 64 emission image shown
the definition (35), the partial derivatives with respeciytof in Fig. 3, which has relative emission intensities of 1, 2, and 3
the modified penalty are very small, so we ignore this second-the cold disk (left), background ellipse, and hot disk (right)

order effect. respectively. We included the effects of nonuniform attenuation
o in the¢;'s by using an attenuation map qualitatively similar to
D. Transmission Tomography Fig. 3, but with attenuation coefficients 0.003/mm, 0.0096/mm,

For transmission tomography, we use a modified penalty sig?d 0-013/mm for the cold disk, background ellipse, and hot

ilar to (40). The only difference is that rather than using tri@iSk respectively. The pixel size was 3mm. Rather than being
{g;} defined in (32), we use thi;} defined by (24) for com- anthropomorphic, this phantom was designed to demonstrate

puting {#,} in (35). Without our modification to the penalty,t_hat the modified penalty induces nearly uniform qutial re§olu-
it follows from (39) (and from empirical experience) that atlion €ven for problems where the standard penalty yields highly
tenuation maps reconstructed with standard uniform penaltMuniform spatial resolution. . o
have the finest resolution in high density regions (through which'Ve Simulated a PET emission scan with 128 radial bins and
the fewest photons pass unabsorbed, so the corresponding fdfsangles uniformly spaced oves0°. Theg;; factors corre-
have fewer counts and hence lower variance and higher ab¥nded to 6mm wide strip integrals with 3mm center-to-center
lute certainty). Again this property is undesirable, particular§Pacing. We set; = 0_'1% > 2; a0, which corresponds
since mismatch between the spatial resolution of attenuationt0% random coincidences.
maps and emission measurements can cause image artifacts in _ ) _
PET [42]. With our modified penalty, the resolution is nearl§ Resolution Uniformity
uniform. Furthermore, if one uses the same geometric m@del We computed local impulse response functitiiig) for three
for both emission and transmission reconstrucfipthen one pixels j, corresponding to the center of the cold disk, the cen-
can use the same parametefior both cases, encouraging conter of the image, and the center of the hot disk. We used the
sistency between emission and transmission spatial resolutiggcipe following (9) withd = 0.01 to evaluate’(6), for both
. the standard penalty (26) and the modified penalty (40) with

E. Choosing3 Y(x) = z%/2. For both penalties we used a first-order neigh-

For a quadratic target penalfy*(6), the local impulse re- borhood. We used this recipe rather than any of the approxima-
sponse (43) induced by our modified penalty (40) is indepefiens that followed it (such as (20)) to provide a more convinc-
dent of the object. Thus the process of choosing the smoothdg demonstration; for routine work we usually just use (31).
ing parametep is significantly simplified by the following ap- (The results of (31) are not shown in Fig. 4 since they turn out
proach. Letj be a pixel in the center of the image, for exampld0© be indistinguishable from the curves shown, which supports
For a given system geometric respoi&eprecompute the local the accuracy of the approximations leading to (31).) We maxi-
impulse response (43) for a range of valuesdofFor each3, Mized the objective function (15) to computen (5) using 20
tabulate some measure of resolution, such as the FWHNL ofiterations of the PML-SAGE-3 algorithm [18].
Then, when presented with a new data set to be reconstructedig- 4 displays horizontal and vertical profiles through the
at someuser-specified resolutiorsimply interpolate the table local impulse responses for the estimators corresponding to the
to determine the appropriate value fér Finally, reconstruct two penalty functions. The circles in Fig. 4 are for the unbiased
the object using the modified quadratic penalty. Section @ptimator (6) ford = 2000 realizations. The standard penalty
presents results that demonstrate the effectiveness of this kgs highly nonuniform spatial resolution, whereas the modified
proach. Analytical results in Section IX further simplify thePenalty yields nearly uniform spatial resolution. These results
process of building this table for certain tomographs. are typical.

Many (but not all) nonquadratic penalties are locall
quadratic near 0, and it is this quadratic portion of the penaly ASymmetry
that is active within relatively flat regions in the image. For such |n part because of the large eccentricity of the ellipse in
penalties, one could use the table approach described aboveig0 3, the local impulse responses of both penalties are asym-
specify the desired “resolution” in the flat parts of the imagenetric. Fig. 5 displays contours at levels 25, 50, 75, and 99%
and then adjust any remaining penalty parameters to control §jehe peak value for each PSF, computed using:tigtour
influence of edges etc. For penalties that are not even localiction of Matlab. We hope to extend the analysis in this paper
quadratic, such as the generalized Gaussian Markov randgfgevelop suitable modifications to the penalty that will reduce
field prior [31], further investigation is needed. this asymmetry. (The corresponding contours for FBP were vir-

tually circular.)
VI. EXAMPLES

This section demonstrates the improved resolution unifd- Choosing3
mity induced by the modified penalty (40) within a penalized- \we now describe how we selectetifor this simulation,
likelihood image reconstruction method for PET emission megnich jllustrates the effectiveness of the table-based approach

B3For transmission imaging, the detector efficiences etc. are includgégin described in Section V-E. First, We decided fpr iI|UStrati0_n
S0A = G, i.e., there are ne;’s. purposes to use a FWHM of 4 pixels. Since the strip
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width is twice the pixel size in this example, the detector re Standard Penalty
sponse (as discussed in Section 1X) is a rectangular functi(0 08 0.08
with frequency responsg;,ye(u) = sinc(() 2u) From the an- vertical
alytical results shown in Fig. 18 for that detector blur, we nee’% 0.08 ‘
log, Bo ~ 9.3. From (52) in Section I1X 0.04 0.04 .

. 0.02 0.02

log, 3 = log, % = 9.3+ log, % ~ —4.44, 0 0 o P
40 60 80 100 0 100

so we used3 = 27444 for the modified penaly$. Did this Modified Penalty
choice of 8 actually give the desired 4 pixels FWHM reso- os 0.08
lution? Since Fig. 5 shows that the local impulse respons, horizontal 0.06 vertical
is asymmetric, clearly the resolution is not exactly 4 pixels” ’
FWHM isotropically. In particular, for the same 3 pixels con-2% 0.04
sidered above, the horizontal resolutions were 3.10, 3.38, ai0.02 0.02
3.34 pixels FWHM, whereas the vertical resolutions were 5.2¢ 0 0
4.83, and 4.76 pixels FWHM. However, the averages of the ho m %0 %0 100 0 100

izontal and vertical resolutions were 4.19, 4.10, and 4.05 pixe pixel

FWHM, all of which are within 5% of the target resolution of 4

pixels FWHM. Thus, although further work is needed to corre&tigure 4: Horizontal and vertical profiles (concatenated left
the asymmetry in such eccentric objects, the proposed methodight) through three local impulse response functions for a
for selectingl appears to yield local impulse responses whogenalized-likelihood estimate of the image shown in Fig. 3. The
averageresolution is very close to the desired resolution. Thestandard quadratic penalty yields highly nonuniform resolution
results are typical in our experience. (upper profiles), whereas the proposed modified penalty leads to
nearly uniform spatial resolution (lower profiles). Note that for
the standard penalty the resolution is poorest in the high-count
disk.

To address this question, we generated 100 realizations of
Poisson distributed simulated PET measurements for the object
shown in Fig. 3, and for the system properties described in Sec-
tion VI. For each realizatiopV, ..., 4% we used 20 iter-
ations of PML-SAGE-3 [18] to compute penalized-likelihood
estimates{(y(™))}19°  for several values off for both the
standard and the modified quadratic penalties. For each value
of 3, we computed the empirical standard deviatiorépfor

Figure 3: Digital phantom used to examine spatial resolutigRe pixels at the centers of the two disks in Fig. 3. (The results
properties. were similar for the pixel at the image center, so are not shown.)

A. Just What You Expected

Fig. 6 shows the tradeoff between resolution (measured by

Itis well known that the global smoothllng parama@on- the average FWHM of the local impulse response) and noise
trols an overall tradeoff between resolution and noise: Iargg%[Ig
r

VIl. WHAT HAPPENS TO THEVARIANCE?

s lead to coarser resolution but less noise, and vice-ve easured by the empirical standard deviationgas varied.
e ) . ' . 6 also shows predicted standard deviations computing us-
The analysis in preceding sections shows that for the mo

fied penalty to induce uniform spatial resolution, the “IocaIfHg the variance approximations described in [37]. (The good

. X . agreement between empirical and predicted results in Fig. 6 is
smoothing parameter must effectively be larger in some are

. o flitther confirmation of the utility of the approximationsin [37].)
and smaller in others. Thus, it is natural to expect that thes n Fig. 6, the resolution/noise data points follow an essen-

changes in the local resolution will also influence the nmseﬁally identical tradeoff curvéor both the standard and the mod-
but is the influence global or local? I.e., if the modified penalt|¥i d penalty This is true both for the analytically predicted
increases the resolution (and hence the noise) at a given pif(gjdeoff (the solid line and the dashed line overlap almost per-
will that noise somehow propagate to distant pixels and Ieadf 0ctly) as well as for the empirical results (the circle and the
an overall worse resolution/noise tradeoff?

plus symbols lie on the same curve). These results suggest that

1“For the standard penalty, we used the above valug séaled down by the effects of the modified penalty are essentially local: a given

2 for the singlej corresponding to the pixel at the center of the image, gs; ; ; ;
smjjggested by (39) and described in Section IV-C. This choice matched the r slc)>(-e| MOVES up or down its own resolution/noise tradeoff curve

lution at the image center for the two penalties, as illustrated in the center piits the specified resolution, a_nd then has a variance that is the
of Figs. 4 and 5. same value as would be obtained if one were to use the standard




VIl WHAT HAPPENS TO THE VARIANCE? 12

Standard Penalty PSF of penalized likelihood.) This window induces a PSF in-

distinguishable from that of penalized-likelihood estimates with

36 36 36 the first-order quadratic penalty . As shown by Fig. 7, at any
34 @ 34 34 given resolution the empirical standard deviations for the FBP
32 32 32 images are higher than for the penalized-likelihood estimates.
30 30 30 This demonstrates that even using the oft-maligned quadratic
28 28 28 penalty, penalized-likelihood image reconstruction can outper-

40 45 50 “60 65 70 780 85 90

form FBP in terms of the tradeoff between resolution and noise.

Of course nonquadratic prior models may give even better re-
Modified Penalty sults for objects that are consistent with those models, but re-

36 36 a6 sults such as Fig. 7 show that quadratic penalties provide a use-

ful reduction in image noise over a large range of spatial reso-
34 34 34 .

lutions.
32 32 32

30 30 30 Empirical Resolution/Noise Tradeoff
0.4 T T T T T T
28 28 28 \
40 45 50 60 65 70 80 85 90 —— Standard Penalty: Predicted

0.35F
- - Modified Penalty: Predicted

O Standard Penalty: Empirical

Figure 5: Contours of the local impulse response functions o3f + Modified Penalty: Empirical

25, 50, 75, and 99% of each peak. Left: center of cold disl
middle: center of image, right: center of hot disk.

0.25F

0.2F

Std. Dev.

penalty but globally adjugt to enforce that specified resolution 0.151
at the given pixel. This property probably hinges on the fac
that thex; factors are spatially smooth. If one were to artifi-
cially create anx; map having discontinuities and then apply 0.05f Cold Disk
the modification (40), then it is plausible that the results wouli , o
be less regular than indicated in Fig. 6. Readers who apply va 2 25 3
ations of (40) to induce some type of data-based non-uniform

resolution will need to consider the resolution/noise tradeoff ffigyre 6: Resolution/noise tradeoff for penalized-likelihood
more detail. _ _ ~emission image reconstruction with standard and modified
Fig. 25 shows central horizontal profiles through empiricgladratic penalties. The two penalties induce virtually identi-

standard deviation maps of the penalized likelihood estimateg tradeoff curves. (The dotted lines connect points that corre-
for both the modified and the standard quadratic penalties. Alggond to the sam@ value.)

shown is a calculated prediction of the variance, an approxi-
mation developed in [43]. As noted in footnote 14, the penalties
were chosen to have matched resolution at the image center, ¢ oa . _ Empirical Resolutio/Noise Tradeof
in Fig. 25 the estimator variance is also matched at the imag

center. Note however that whereas the variance for the stand: o.3s}

0.1f Hot Disk

35 4 X 5
Resolution: FWHM of PSF [pixels]

+ FBP: Hamming

O FBP:CLS
penalty is fairly uniform (at least for this object), the variance X PL: Modified Penalty
for the modified penalty is nonuniform. (Of course as we hav  %3[
shown itis the other way around for the spatial resolution.) Thi .| +
nonuniformity is consistent with the results of Fig. 6. 5 O

9 o2} '
8

B. Quadratic Penalties Ar&seful
0.15p

Fig. 7 compares the resolution/noise tradeoff of penalize
likelihood with that of images reconstructed by FBP with ¢ o1f
Hamming window and with a constrained least-squares (CL¢
window corresponding to (50) of Section IX:

0.05¢ Cold Disk

. . 02 2?5 ;3 315 4‘1 4:5 é 5?5 (Ii 6.5
sinc(2u) / sinc(u) € [0,4] (45) Resolution: FWHM of PSF [pixels]
sinc?(2u) + fud ’ i

Figure 7: Resolution/noise tradeoff of FBP with Hamming win-
(whereu denotes spatial frequency: cycles per radial samplebw and the constrained least-squares (CLS) window (45). At
(Dividing by sinc(u) compensates for the linear interpolatiorany given resolution, the variances of the penalized-likelihood
step of backprojection in the FBP algorithm. We found this cogstimates are smaller than those of FBP.
rection improved the match between the PSF of FBP and the



Vill DISCUSSION 13

VIIl. DISCUSSION nonuniform diagonal in (25) may induce additional types of
) o nonuniformities beyond the resolution effects reported here.
~ We have analyzed the local impulse response of implicitly dg e ifically, we conjecture that the “propensity to retain edges”
fmgd gsnmators (14) and of penallzed—l'lke_llhood estimators fp{¢ opposed to smoothing them out) will be space-variant, again
emission tomography (20) and transmission tomography (23),e to coupling between the Hessian of the log-likelihood and
The analysis and empirical results show that the local impulge, fessian of the penalty in (25). If so, then modified penalties
response is asymmetric and has nonuniform resolution for PQigeh, a5 (40) may be useful for restoring the (presumably desir-
son distributed measurements. We proposed a modified regulgfiy space invariance of the effects of edge-preserving penal-
ization penalty (40) that improved the spatial resolution unifofies “The importance of such modifications is more likely to ap-
mity but not the asymmetry. pear in rigorous studies of tlemsembleharacteristics of edge-
For the space-invariant tomographs considered here, the i@serving methods, rather than in anecdotal examples.

olution nonuniformity arises from the nonuniform diagonal of Thjs paper has emphasized space-invariant tomographs. Fur-
the Fisher information matrix, which in turn is a consequengger investigation is needed for space-variant systems such as
of the nonuniform variance of Poisson noise. In principle onr@PECT emission measurements and truncated data such as fan-

could “avoid” this problem altogether by using anweighted peam transmission SPECT and 3D cylindrical PET.
least-squares estimator. We have shown qualitatively in [21]

that nonuniform weighting is essential to achieve the desirable
noise properties of statistical methods. In Section X, we provide
additional analyses and quantitative results that demonstrate the
importance of weighting. Therefore we advocate retaining the
nonuniform weighting that is natural for Poisson statistics, but
modifying the penalty to compensate for the undesirable spatial
resolution properties. Fortunately this modification does not de-
stroy the benefits of the weighting, as shown in Section X and in
Fig. 7, apparently because the nonuniform weighting is applied
in sinogram space, whereas the penalty acts on the image space.
It is an open question as to whether the modified penalty would
be effective for problems such as restoration of quantum-limited
image measurements, where both the unknown parameters and
the data are images.

Some colleagues have argued that nonuniform resolution is
desirable and expected. This opinion is presumably based on
the idea that statistical methods can make better use of the
measurement information and thus provide higher resolution
in high-count regions. lronically, our analysis shows that the
effect of uniform penalties is just the opposite: more smooth-
ing occurs in high-count regions. Although we have empha-
sized methods for achieving resolution uniformity, one could
apply our analysis to develop alternative modified penalties that
yield higher resolution in high-count regions according to some
user-specified criterion. Since we now see that the statistics
of the data themselves do not automatically provide a natu-
ral resolution-noise tradeoff in penalized-likelihood estimators
(contrary to what may have been a widely held misconcep-
tion), any such user-specified criteria will probably be consid-
ered somewhat arbitrary.

We have shown the somewhat remarkable result that the local
impulse response induced by quadratic penalties depends on the
object only through its projections. Thus, one does not need to
know the object to predict the reconstructed resolution, since
the noisy measurements serve as an adequate approximation to
the object’s projections. In contrast, the local impulse response
for nonquadratic penalties depends explicitly on the (unknown)
object (cf (25)) through the Hessian of the penalty. Being able
to predict and control the resolution properties induced by such
penalty functions remains an important challenge.

For nonquadratic edge-preserving potential functignshe
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Part II: Resolution and Noise Properties ofihich is analogous to the matri in Section IIl.

Penalized Least-Squares Image ASSUMINGsmodel(7) is @ low-pass filter whose transfer func-
Reconstruction tion Spodel(u) is Nnonzero att = 0, one can easily show that
the null spaces of,,,,q4c1 @andR are disjoint, so the solution to
IX. PSFOF IDEALIZED TOMOGRAPH (46) is
F_ / —1 7
Although the discrete formulation used in Section Ill is ap- f = [Gnode1model + AR] ™ Giyoael¥;

propriate for computer implementation, it lacks the insight or@nd the estimator mean is:

can obtain from analytical.meth_ods_. This section derives th%( £) = E{f} =[Gl o qeiGmodel + AR] G, o qerGruef. (47)

PSF of one form of penalized-likelihood tomography by an-

alyzing an idealized tomograph having a continuum of deteEbis is a space-invariant mean response i(g,) corresponds

tors and angles. The model is partially realistic, however, sinta filtered version of . We now use Fourier methods to derive

we account for a radial detector blur. The analytical form wi@e frequency response of that filter.

derive for this continuous tomograph shows remarkable agree-

ment with simulations using discrete sampled systems. '
Let f(z1,22) denote an object defined d&’. Let P denote It is well known [44] that

the continuous Radon transform operatop ¥ P f, then PPf = f *%7

py(r) = / flcos¢ + rsing,lsing —rcos¢) dl. wherexx denotes 2D convolution. If we let; andus denote the
2D spatial frequency coordinates, and define- \/u? + u3,
then since the 2D Fourier transformbfr is 1/p, we have

Frequency Response

Let Sirue denote a space-invariant radial sinogram blurring o
erator with symmetric kerne,ue(r). If y = Struep, then

1
! _ ! R
Yo (r) = strue(r) * po(r) PP=FFe
wherex denotes 1D convolution. whereF;, denotes the 2D Fourier operator.
DefineGirue = SirueP 10 be the blurred Radon transform op- Since the blur operata$,, 4.1 acts radially, by the Fourier-
erator, which is analogous to the matékin Section V. Given slice theorem:

measurements with additive zero-mean noise: , | Smoder (w)[?
. gmodelngdEI = fQ : - Fa. (48)
Yy = gtruef + noisg
. Similarl

we would like to recoverf from y. We may not know the blur y .
function S, exactly, but rather may only have an approxima- G\ Gome = Fl - Siodel (4) Strue (u) - P
tion Sioder With kernelspeqel (). A penalized least squares mode p
(PLS) approach to this problem is: From the differentiation property of Fourier transforms:

f= argmfin 1y = Gmoderf||* + a(f, Rf), (46) DDj = F; - (2mu;)? - Fo,

. SO
whereGodel = SmodelP @and where the norms and inner prod-

ucts are the standaid, functionals oriR?. - [/ m 2%k 2(m—k)
If we desire smooth solution§ then we would like(f, R f) R = Fp | g ) (Bru) T (2mus) Fa
to be a measure of roughness. Therefore we déhin¢o be =0
the di iati i ‘ i = Fp-[@2mur)? + (2muz)’]™ - Fy
e differentiation operator with respect to tft@ spatial coor- 2
dinate: = F}-(2mp)*™ - F. (49)
0 . -
Dif = 5 —flay,22), j=1,2. Combining (47), (48), and (49) shows that
J
Thus u(f) = Fy - Lo(p) - Fof,
) 9 2 where the radially-symmetric frequency respoiigép) of the
ID; fII” = // (gf(whm)) dzy dws. PLS estimator is therefore:
J

S* u) Strue (U
M S* Odel(U)Strue (’U,)
Lo(p) = 5o

P
(™ Emeta (B 4 g (27p)2m [ Smoder(w)[? + Bop" 1
R = Z ( L ) ('D'l'Dl)k(’D'Q’DQ)m*k’ (50)
0 whereBy = «a(27)*™. Not surprisingly, the response is unity
we have specifiedf, Rf) to be an isotropic measure of the c&” = 0, and then typically decreases with increasing spatial

roughness off. (Note that operator®; andD, commute.) In frequency. The form .Of (5.0) Is very similar oa constraingd
particular, for the usual choioe. — 1, we have least-squares restoration filter [45], or for an ideal system with

Smodel(t) = Strue(u) = 1, to a Butterworth low-pass filter.
R = DDy + DyDs, Typical plots ofLy(p) are shown in Figs. 10-13.

By defining
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B. Point Spread Function We remind the reader that the fact that this PLS estimator

Since the frequency response is radially symmetric, one C@Hes a response similar to a Butterworth filter does not imply

compute the corresponding P&fr) using the Hankel trans- that in genergl pgnalized-likelihood es;imation is gquivalent to
form [46]: Butterworth filtering! The above analysis does not include non-

negativity, Poisson statistics, realistic system modeling, non-
guadratic penalties, and the other well-known advantages of
statistical methods. However, the above analysis is useful for

h is theoth order B ' . We d K ]ynderstanding and quantifying basic resolution properties. It is
whereJo IS theOth order Bessel function. We do not now Oly150 useful for designing preconditioners for fast gradient-based

an analytical form for the Hankel transform of (50), even Whﬁfbrative methods [22, 39].
Strue () = Smodel(u) = 1, but it is easy to evaluate the integral '
numerically. Asg, — 0, the FWHM ofly(r) approaches 0, c. A FWHM Rule of Thumb
whereas for a discrete system, the smallest possible FWHM is . ,
1 pixel. Therefore, we also define the blurred response: It IS well_known that the FWHM of bump-shaped p0|_ntspread
functions is approximately equal y/(2p;,), wherep,, is the
li(r) = lo(r) * Ljri<1/2}, (51) half-amplitude frequency, i.d.o(pn) = %LO(O). From (50), it
is clear that the half-amplitude frequency for the PLS estimator
wherely . <1/2; denotes the standard rectangular function. A’éﬂo_l/(QmH) for the ideal case WheSiue(u) = 1. Thus for
Bo — 0, the FWHM ofl, (r) approaches 1, which better agreeg,e usuakn — 1 case, the FWHM of,(r) is approximately

with the discrete results. 1/3 o . . . .
Typical plots of the normalized PSE(p) /I (0) are shown 0 ° Since we are mor?/?terestedl;m), Fig. 9 displays the

in Figs. 14-17, for several value ¢ and for different radial FYWHM of L1 (r) versusg,™ for various detector blurs. There
BIUrS Strue (1) = Smodel (1) With no model mismatch. Note that!S & nearly affine relationship between the FWHM ) and
when/, is small, the point response functions exhibit ringing /"~ for 8o > 5, which may be used to simplify further the table

Using analytically computed (p), we can tabulate the rela-lookup method for relating to FWHM described in Section V-
tionship betweers, and the FWHM of the PSF. Typical curvesE-
are shown in Fig. 18, for differerfl;;,e(u) = Smodel(u) Cases.
In principle, one can choose a desired resolution, and then read X. VARIANCE APPROXIMATIONS
off the appropriate3, from Fig. 18. This value of3y will be COMPARE WITH (45) of [41].
proportional to the value ¢f that should be used with the modi- The approximation (36) provides an opportunity to derive
fied penalty of Section V. The proportionality constant is objestmple approximate expressions for the variance of penalized-
independent, so only needs to be determined once for a giVikrlihood and unweighted penalized least-squares estimators.
geometric system matri& as defined in Section V. The con-This section derives such approximations and demonstrates that
stant depends on the units one uses when defi@irand R*. they are usefully accurate. The expressions give further insight
For a strip-integral tomographic syste®, we normalize the into why weighted statistical methods outperform unweighted
elements oz so that) _, g;; = 1, which is “count preserving.” statistical methods for image reconstruction, as illustrated qual-
In this case, careful bookkeeping showed that itatively in [21].
At In this section we focus on quadratic penalties, although one

, (52) can extend the analysis to nonquadratic penalties. The follow-

TAVZANS ing matrix will be central to all the approximations that follow:

whereAy is the angular spacing anl, is the radial center-to-
center spacing of the strip integrals.

dis%?é?glctzz irr?]laﬂfsnesgg %e;g:?ijgnsn%o't;; ecg?rrgsu;iz.the whereR* is the Hessian of the standard quadratic penalty. The
P P PONEMY 1 atrix M g has the following interpretation. Suppose we could

alytical impulse response (51) and plotted the FWHM of the . . .
two in Fig. 19, for the case of a rectangular radial blur WitHbserve hypothetical noisy measurementsith meancz6 and

FWHM=2 pixels, i.6.Serue (1) = Smoder(t) — sinc(2u). For with the identity covariance matrix. If we applied the penal-

. ~ . 0 - ! *1—1 v/
resolutions greater than about 2 pixels FWHM, the resolution%l‘Ed least-squares estimatbr= [ G + ﬂR.] G A o su(?h
asurements, theW 3 would be the covariance @t In this

the discrete and analytical impulse responses agree quite ) . . :

(For FWHM below 2 pixels, the effects of the discrete pixels a ypothetical scenario, the following term
parently yield a slightly greater FWHM than predicted by (51).) . .
Figure 20 displays the analytical PSF (51) and the discrete local o(B) = \/(ej)'Mﬁej = \/[Mﬁ]jj (54)
impulse response (43) for the casg = 175, for a tomograph

with rectangular strip integrals with two pixel width. The agreevould be the standard deviation é)‘, where (e?) Mgel =
ment shown in Figs. 19 and 20 confirms that one can use Fig.[Dd 3] ;; is thejth diagonal entry oM 5. Note that for quadratic

in conjunction with relationship like (52) to determine a valupenalties, the matrid4 g is independent of the obje€éf so one

for 8 that will provide reconstructed images having the user®uld precomputd 3 or key portions ofM g (such as the cen-
desired spatial resolution. tral few diagonals) using algorithms similar to those discussed

lo(r) =2m /O N Lo(p) Jo(2mpr) p dp,

Bo=2

M; = [G'G+ B8R 'G'G|G'G + BR*]™,  (53)
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in [37]. For nearly space-invariant tomographs, the diagonal 0éing this approximation, we can easily compute a “standard
ey o et P Bt map: wner it e sty v 7.
The approximations that follow below stem from the follow(Note that the numerator is a constant independen) dfig. 24

ing approximation for the covariance of penalized-likelihoodisplays such a map, along with the empirical standard devia-

estimate®®" in emission tomography [37]: tion map from theM = 2000 realizations described in Sec-
tion VI, in this case for3 = 27444, Fig. 25 displays hori-

Cov{éPL} ~|[F + (BR|'F[F + S8R, (55) zontal profiles through the two maps shown in Fig. 24. De-

spite our use of several approximations that might as first seem

whereF was defined by (33). fairly crude, the predicted and empirical results agree remark-
ably well. The largest disparity is at the edge where the object is
A. The Standard Penalty zero and the empirical standard deviation is near zero small due
For the standard penalty one usBs= R*. Substituting in to the nonnegativity constraint. (We would expect similar dis-
the approximation (36) into (55) and simplifying yields crepancies in interior cold regions.) But for usual regions that
are not too clos€ to zero, the above approximation should be
Cov{éPL} ~~ useful for purposes such as generalizing Huesman’s weighting

method [47, 48] from FBP to penalized-likelihood estimators,

Agl [G'G + gAglR*Agl]*l G'GIG'G+ ﬁAgl R*A;l]*lAgl. or for searching for statistically significant regions in brain ac-
. e ) ) . tivation studies [49, 50].
That is not much simplification, but if one restricts attention to

examining the variance of particular pixels, then using approxt: Unweighted Penalized Least Squares
mations in the same spirit as (39) we have ) . ,
FBP is an example of amnweightedestimator: all measure-

Var{g;rf’L} = (el Cov{éPL} ol ments are treated equally. As noted in [51], FBP (with a ramp
filter) is closely related to an unweighted least-squares estimate,
N —1 px p =171 v / 1 pxr-11-1_; Inthe special case when the system matrix is the Radon trans-
(e?)[G'G + BA,  R* A, 2G GIGG+BA RN e ¢ (i.e. no blur). Using an apodizing window with FBP is
Rj (0) essentially equivalent to using a quadratic penalty with an un-
(1) [G'G + ﬁ/n?(&)R*]*lG’G[G’G + B/H?(Q)R*]*lej weighteq penalized Ie_ast-squares e_stimator (cf Sect_ion IX). We
~ 2 (0) - now derive an approximate expression for the covariance of the
following unweighted penalized least-squares estimator:

J
Thus for the standard quadratic penalty:

éQPULS _ . el 2 o R0
Varl gPL) & 7O/55(0)) o argmin | — GO|I* + 0
= oY ~ GG+ ORI,

One can easily tabulate(3) for a range of values of, and \here
then apply linear interpolation to evaluate (56) for many pixels 5~ Dle My —
, . g=Dlc; |y—r
j. (See Fig. 25))
-~ is a sinogram precorrected for attenuation, randoms, etc. Note
B. The Modified Penalty that there is no need to use the modified penalty for this
The modified penalty leads to a simpler approximation for th&weighted estimator, since (ignoring the nonnegativity con-
estimator covariance. Substituting in the approximations (3gyaint) the local impulse response is easily shown to be
and (41) into (55) and simplifying yields: ) )
U =[G'G+ BR''G'Ge,
Cov{éPL} ~ Ay MgA;L. Gn N
which is independent of. Except for the nonnegativity con-
If one only wants the variances, then further simplification &raint, the estimato# @V is linear, so an nearly exact ex-
possible. Note that from (37)\ is a diagonal matrix, so using Pression for its covariance is:
(57): A
, _ cov{aQPULS} ~ [G'G+BRY'G'D]q*] GIG'G+BR*) ™,
APL i\ spL) . (1) Mpgel
Var{ﬁj } = (&) COV{H }eJ N
w3 (0) whereg; ™ is the variance ofj;, and{q; } were defined in (21).
We thus have the following approximation to the standard de(i @PProximation analogous to (36) is:
ation of 9L for the modified penalty:
1on o1 Hedpenalty G'D[¢'] G ~ 0G'GQ

Var éPL ~ U(ﬁ) (58) 15For the above approximation to be accurate, the estimate should be at least
J : one or maybe two standard deviations above zero.
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whereQ) = D[w;] is diagonal with entries D. Comparison

_ From (58), (61), and (35), we have:
wj—\/zg?jqil/zg?j, (58). (61). and (35)

i % V: éPL ~ 2 2 2 ;= 2 hz ;
which leads to the covariance approximation: ar{ J } ¢ zi:g”/;gwq ¢ /zi: i1
cov{éQPULS} ~ [G'G + R QG GG'G + BR*| . Var{é?PULS} ~ EY g3a )Y gk =S hiya
If Q were a scaled identity matrix, it would commute with ' ' '
[G'G + BR*]7. Since the diagonal elements@fvary slowly whereh;; = g2/, g2, andc = o(8). Sinceh;; > 0 and

. o / *1 2, iJ i Ji’ : Z,
spatially, it is reasonable to suppose tand|G'G + SR S, hij = 1, it follows frojm Jensen’s inequality that

approximately commute. More specifically, ket be any unit
vector, then we maintain that | Var{éfL} < Var{é;;PULs} 7

QIG'G + BR*| e ~ [G'G + BR] tw;e?,  (59)
since[G'G + BR*] el is fairly well localized (see Fig. 8). It with equality if and only if all of they;'s are equal to the same

value, i.e., if and only if the measurements are homoscedastic

6 T T T T T T (or if G = I). Homoscedasticity never happens for Poisson
measurements in tomography, so the PL estimator will always
have smaller variance than the UPLS estimator at equivalent
. 4 spatial resolutions.
G G+ BR e Fig. 27 compares profiles through the standard deviation
ar 1 maps for the penalized-likelihood and unweighted penalized
least-squares estimates. The variances of the PL estimates are
3t { significantly lower than those of the UPLS estimates.

This result, though approximate, adds further evidence to
the importance of using weighting for heteroscedastic measure-
ments, either explicitly as in penalized weighted least-squares
estimators [21, 52], or implicitly by using penalized-likelihood
r 1 estimators. We note without proof that using analyses similar to
the above, one can show that precorrecting PET data for multi-
0 plicative effects such as detector efficiency and attenuation has
, , , \ \ \ the effect of making likelihood-based estimators more like an
0 20 40 Horizg(r)ltal PierSO 100 120 unweighted estimator, thereby destroying some of the benefits

of using statistical methods.

Figure 8: Horizontal profile through typical case ['G
mg{*],lej, in this caseaoﬁ — 4 gh typ | + Xl. ACKNOWLEDGEMENT
J. Fessler gratefully acknowledges an enlightening discus-

follows from (59) that sion with H. Barrett, who pointed out the nonuniform sensitivity
Q[G'G + SR ~ [G'G + SR 'Q, (60) Problem in SPECT, and thanks an insightful reviewer for sug-

. . o . gesting (6).
which leads to the following approximation for the covariance

of the unweighted penalized least squares estimator: |. EET SMPLIFICATIONS

COV{GQPULS} ~ QM Q, If the geometric system respon&e is approximately space
whereM 5 was defined by (53). Thus invariant, and if the target penalfg* is the standard quadratic
penalty, then if one uses the modified quadratic penalty of [53],
AQPULS | __ then the local impulse response is approximately given by (43)
Var{oj } ~o(B)w;. (61) . In this important case, one can use FFT’s to compute (43)
For the 100 realizations described in Section VI, we corfPproximately, thereby eliminating the need for an iterative
puteddPULS ysing the iterative algorithm described in [21]Method to compute (43) .
including the nonnegativity constrainfig. 26 shows the em- Let j denote the index of a pixel near the center of the im-
pirical sample standard deviations map of those estimates 28§, and compute the kerrigh o« = G'Ge’. Letkp be the
well as the approximation (61). Fig. 27 shows profiles throudternel of R: kp = Re’. Let Fgg(ui,u2), FRp(u1,u2),
those maps, and again demonstrates the accuracy of the vari@i€eFupLs (u1, u2) denote the 2D FFT's ok, kg, and
approximation (61). Again, the greatest disagreement is outs{@G + BR*| ™ G'Ge’ respectively.
of the object where the nonnegativity constraint is active. For the standard second-order quadratic penalty, the kernel of
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the regularization matridR* is

0 -1 0 -1 0 -1
-1 4 -1 |+—= 04 0 (62)
0 -1 0 V2| 1 g [10]

Then from standard properties of circulant matrices [32]:

Fora(u1,u2)
Forq(ui,uz) + aFg(uy,ug)’

Fyprs(u1,u2) = [11]

Thus one can compute (43) using two 2D FFT’s and one 2D
inverse FFT.

For systems where the geometric response can be factg@eﬂ
into product of the discretized Radon transform with a space-
invariant blur, one can further simplify the calculation above.

One useful approximation to the kernel@fG is

10 ={

r € 10,1]
r>1, ’

T — 2r,

13
2(arcsin(1/r) — (r — [13]

r2 —1))

which is shown in Figure 2 of [21] (cf [20, Fig. 11] and [39, Fig.
1]). This function has the expectégr asymptotic form, butis [14]
well behaved near zero—as it must be for a discrete system.
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Figure 24: Empirical and predicted standard deviation maps
(egn. (58)) ford*L: penalized-likelihood emission image re-
construction using the modified quadratic penalty.
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Figure 27: Central horizontal profile through Fig. 26



