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Abstract

Computation of the Cramer-Rao bound (CRB) on estimator variance requires the in-
verse or the pseudo-inverse Fisher information matrix (FIM). Direct matrix inversion can be
computationally intractable when the number of unknown parameters is large. In this paper
we compare several iterative methods for approximating the CRB using matrix splitting and
preconditioned conjugate gradient algorithms. We specify matrix splitting algorithms which
have a monotonic property: the approximation sequence increases at each iteration and con-
verges to the CRB from below. Non-monotone Gauss-Seidel and preconditioned conjugate
gradient algorithms converge significantly faster than the monotone algorithms for compara-
ble computational load. We illustrate the methods developed in this paper for an important
class of singular and non-singular inverse problems.

Key Words: Performance bounds, multi-dimensional parameter estimation, monotone
matrix splitting iterations, Gauss-Seidel, preconditioned conjugate gradient.

1 Introduction

The Cramer-Rao (CR) bound is a very widely used lower bound on estimator covariance.
When there are n unknown parameters the calculation of the CR bound involves inversion
of the n x n Fisher information matrix (FIM) Fy. Direct matrix inversion, requiring O(n?)
bytes of memory storage and O(n?®) flops (floating point operations), is intractable if n is
large. For example, in image analysis the pixel intensities are the unknown parameters and
a moderate size image of 128 x 128 = 16384 pixels has a FIM of dimension 16384 x 16384,
requiring 268 Megabytes memory storage (single precision) and 4 Tera flops (4 x 10'? flops)
for computation of the inverse FIM.

Often only a few components of the n-dimensional estimator are of interest in which case
the entire inverse FIM is not needed. For example in image analysis one may be primarily
interested in a small g-pixel region of interest (ROI) corresponding to a tumor or lesion. In
this case methods of sequential partitioning [1] can be used to calculate the ¢ x ¢ submatrix
of the inverse Fisher matrix yielding the CR bound for the ROI. However, while requiring
fewer flops than required for direct full matrix inversion, this algorithm still requires the
same order O(n?) of flops.

In [2] and [3] a recursive method was presented for approximating columns of the CR
bound for unbiased estimation of an element of the parameter vector and for non-singular
FIM. This method was derived by specifying a FIM-dominating matrix which allowed a ge-
ometric series decomposition of the inverse FIM. This FIM-dominating matrix was specified
by exploiting special properties of the Fisher information in a complete-incomplete data re-
formulation of the estimation problem. The geometric series algorithm requires only O(n?)
flops per iteration per parameter so that if convergence is fast, a significant computational
saving is achieved. The main advantage of this algorithm is its monotone convergence which



guarantees a valid and improving lower bound on estimator covariance at each iteration. As
will be shown in this paper, the price of monotonicity is slow convergence.

In this paper we place the method of [2] in the setting of a general class of iterative algo-
rithms, known as stationary and non-stationary linear equation solvers [4]. Using this setting
we develop rapidly convergent CR bound approximation methods which can be applied to
the cases of biased parameter estimation, estimation of a function of the parameters, and
singular FIM. The following iterative equation solvers are considered: monotone and non-
monotone matrix splitting algorithms, such as the method of [2], Jacobi, Gauss-Seidel, and
preconditioned conjugate gradient algorithms. The extension of these algorithms to singular
FIM is achieved by using matrix perturbation. We illustrate these algorithms for an impor-
tant class of inverse problems arising in deconvolution, image restoration, and tomographic
reconstruction.

The main conclusions of this paper are: 1) iterative equation solving methods are effective
for approximating the CRB on estimators of any scalar function of the parameters; 2) for
sparse-matrix inverse problems these methods can be implemented with significant savings in
memory and computation load; 3) if monotonicity can be sacrificed for the user’s application,
the non-monotone Gauss-Seidel and pre-conditioned conjugate gradient methods should be
implemented due to their advantage of very rapid convergence.

2 The Cramer-Rao Bound

Let Y be an observed random variable with probability density fy(y;#) dependent on an
unknown parameter vector § = [f, ..., 0,]7 lying in an open subset © of R™. Define the n xn
Fisher information matrix (FIM)

Fy = Ey[Vy In fy(Y;6) Vy In fy(Y;0)],

where V, denotes the gradient operator (a column vector). Let ¢ = ¢(f) be a known scalar
function of the unknown parameter vector and let £ = #(Y) be an arbitrary estimator of ¢(6)
having known mean function m(f) = Eg|[t].

The CR lower bound on the variance of the estimator #(Y) is [5, 6, 7]

vary(f) > i F (), 1)
where m = Vym is the column gradient vector [g—glb, ceey gTTZ]T, and FJ- denotes the Moore-

Penrose pseudo-inverse [8]. When Fy is non-singular Fy> = F' the ordinary matrix inverse.
Note that the pseudo-inverse form of the CR bound is generally not generally achievable
unless the m lies in the rangespace of Fy [5].

Throughout this paper we will be interested in calculating the right hand side of (1). The
results are easily extended to calculation of the uniform lower bound presented in [5] which
applies to estimators with unknown mean function m(f). The results are easily extended to



estimation of vector-valued functions [t1(8),...,t,(8)]", (¢ < n) by repeated application of
the algorithms given here.

Direct computation of the right hand side of the CR inequality (1) can be accomplished
in O(n?) flops by solving for z in the equation

Fy z = m. (2)

For example, when Fy is non-singular the solution x can be found by the method of Gaussian
elimination (2n®/3 flops) or by methods which exploit positive definiteness of Fy, such as
the QR and Cholesky decompositions (n?/3 flops) [9, Sec. 4.2].

3 Recursive CR Bound Algorithms for Non-Singular
FIM

Here we describe the monotonically convergent algorithm of [2] in the context of standard
splitting iterations [9, Sec. 10.1], also known as stationary iterations [4], for approximating
the solution to the linear equation (2).

3.1 Splitting Algorithms

Let F and N be n X n matrices which split Fy in the sense that F — N = Fy. The matrix
F is called a preconditioning matrix and is assumed to be non-singular.

3.1.1 General Splitting Iterations

The following general splitting iteration for approzimation of the CR bound requires an initial
vector ﬁ(o)

i). u=Ng® +m
i1). Solve: Fﬁ(kH) =u

(3)

n*+) = m” g+ (CRB APPROX)

For any square matrix M define the root convergence factor p(M)as the maximum mag-
nitude eigenvalue of M, also known as the spectral radius of M. It is well known [10, 9] that
if p(F~'N) < 1 then @(k) converges to the vector Fy'm and the approximating sequence n*)
converges to the CR bound m” Fy'm .

Many well known algorithms fall into the category of general splitting iterations, such as
the Jacobi (J) and Gauss-Siedel (GS) iterations [9, Sec. 10.1]. Let the FIM have the additive
decomposition Fy = D + U + L where D is diagonal and U and L are upper and lower
triangular matrices with zero diagonal entries. The J iteration is obtained by making the



identifications F = D, N = —(U + L) in (3). For J iterations, the spectral radius of F~'N
may exceed one and N is not generally non-negative definite. Therefore, the J iterations
may not converge and are generally not monotone. In general to ensure convergence the
Jacobi algorithm must be relaxed, corresponding to using N = (1 — ¢)D — (U + L) in
place of —(U + L) where ¢ € (1,2) is an over-relaxation parameter [11]. The GS iteration
is obtained from the general splitting iteration by identifying F = D + L and N = —U in
(3). Like J iterations the GS iterations yield non-monotonic approximations. On the other
hand, the GS iterations always converge for positive definite FIM. Step (i) of (3) requires 2n?
flops while step (ii) requires a number of flops depending on the specific form of the matrix
F. When F is diagonal, as in J iterations, step (ii) requires n flops. For GS the matrix
F is lower triangular and step (ii) of (3) could be accomplished using backsubstitution (n?
flops). However, GS is never implemented in this way since, by rearranging the order of
computation, steps (i) and (ii) of (3) can be accomplished in only 2n? flops (large n) via the
equivalent iteration:

for j=1 to M (GS Iteration)
r = (i — f5.8%)/ 13
g =r

k
ﬁ{ﬂl—f—l =0
end

where [j], = j mod n, f;; denotes the ij-th element of Fy and f;. denotes the j-th row of
Fy.

3.1.2 Monotone Splitting (MS) Iterations

Assume that F is symmetric positive definite and N = F — Fy is symmetric non-negative
definite. Then it can be shown in an analogous manner to [2, Eq. (9)] that p*+1) — pt) =
mTF_%[F_%NF_%]’“F_%m > 0. Assume also that the splitting algorithm (3) is initialized
with a vector ﬁ(o) such that 77(0) = mTQ(O) is less than or equal to the CRB mTF;lm. This
can be accomplished by setting Q(O) = 0. Under these conditions the approximating sequence
n*®) is monotone non-decreasing in k and, if p(F~'N) < 1, n*) converges to the CR bound
from below. Such a monotonic splitting (MS) algorithm yields a sequence of increasingly
tight bounds on vary(t).

We can ensure that p(F™'N) = p(I — F™'Fy) < 1 by selecting a preconditioning matrix
F which dominates Fy in the sense that F —Fy is non-negative definite [2]. In [2] a diagonal
preconditioning matrix, denoted Fg,,, was specified as the FIM associated with the complete
data for a complete/incomplete data formulation of the estimation problem. Since complete
data is always at least as informative as incomplete data Fgjs > Fy and thus use of Fgy,
as the preconditioning matrix F in (3) yields a monotone MS algorithm.



We next present a general class of FIM-dominating preconditioning matrices F which
ensure monotone convergence under the initialization condition Q(O) = 0. Define the (2p—1)-
diagonal matrix D, in terms of the elements f;; of the matrix Fy

D, = Q +diag (|[Fy — QJ1). (4)

where Q = ((fij)),_j, is a (2p — 1)-diagonal matrix, [A| denotes a matrix whose elements
are the absolute values of those of the matrix A, 1 =[1,...,1]7, and diag(z) is a diagonal
matrix with the elements of the vector z along the diagonal. In particular, D, is a diagonal
matrix with i-th diagonal element 37, |fij| and Dy is the tridiagonal matrix

R 0]
fu %l
D, = > | Fwjl
JEk—1k+1
fnfl,n
L 0 fn,nfl ]2‘,{2' |

The following lemma follows directly from the diagonal dominance of the matrix D, —
Fy = diag (|[Fy — Q|1) — (Fy — Q,) [10, Corollary 7.2.1] and the easily verifiable fact that
when Fy has non-negative entries: (D, — Fy)1 = 0. We give a direct proof in Appendix B.

Lemma 1 Assume that Fy is an n x n symmetric matriz. Then D, — Fy is non-negative
definite. Furthermore, if Fy has only non-negative entries then D, — Fy has rank at most
n— 1.

It can be shown that a necessary condition that an Fy-dominating (2p — 1)-diagonal
matrix F = D, minimize the root convergence factor p(I — F'F), and thus maximize
rate of convergence, is that D, — Fy be rank deficient. Lemma 1 asserts that for Fisher
matrices with non-negative entries D, satisfies this condition. Such Fisher matrices arise
in many applications including the inverse problems to be considered in Sec. 6. A large
number of numerical experiments indicate that F = D, comes very close to minimizing
the root convergence factor over all (2p — 1)-diagonal preconditioning matrices F satisfying
F—-Fy > 0.

4 Preconditioned Conjugate Gradient Algorithm

When the FIM Fy in the linear equation (2) is positive definite, the preconditioned conjugate
gradient (CG) algorithm can be used to approximate the solution z [9, Sec. 10.3] and we



obtain an approximation to the CR bound m”z. The CG algorithm can be interpreted
as resulting from non-monotone and non-stationary acceleration of the splitting algorithm
(3) via the introduction of time-varying acceleration parameters [9, sec 10.3.6]. The CG
algorithm converges to the exact solution x in n iterations when run with infinite precision
arithmetic. However, when run to termination it is not computationally competitive with
Gaussian elimination. We will show that with proper preconditioning matrix F the following
prematurely stopped preconditioned CG algorithm [9, Algorithm 10.3.1] is quite competitive
with direct methods and has significantly faster convergence than MS iterations.

4.1 Preconditioned CG Recursion for CRB

The following preconditioned CG iteration requires initialization of Q(O) and r® = m —
Fyﬂ(o)i

Solve: Fg(k) = z(’“)
0 k=0
k) — ’
« = (B) (k)
" 20, k=0
P2= 0 28 4 o® p=b | k> 0
B <p(k)7FYp(k) >
pEFD = ) A®) Ry, p®)
B = g®) 4\ k)
n*D = @T g*Y (CRB APPROXIMATION)

When the preconditioner F is a banded p-diagonal matrix the CG algorithm requires
the same number of flops per iteration (2n? + 2np?) as the splitting algorithms previously
described. In the CG recursion r*) is the forward residual r*) = m — Fyﬁ(k) = FYAQ(’“)
where Aﬂ(k) is the approximation error Aﬂ(k) = Fy'm — ﬂ(k). While it has long been
observed that the speed of convergence of preconditioned CG generally improves as the
eigenvalue spread of F~'Fy decreases, only a bound on the asymptotic rate of decrease of

the norm of the residuals ||r®]||, = ||%* — Fy'm| s, is available, where ||u[|%, = u"Fyu
k
[4, Sec. 2.3.1]. This relation is: ||Ag(k)||FY < 2||A@(0)||FY (ﬁi) , where & is the spectral

condition number of the matrix F~'Fy, defined as the ratio of the largest to the smallest
magnitude eigenvalues of the matrix.



5 CRB Approximation for Singular FIM

The splitting iterations and CG algorithm described in the previous sections are only ap-
plicable to non-singular FIM Fy. One simple case is easily handled. If the result of the
operation Fym (requires only 2n? flops) returns zero then we know that m lies in the null-
space of F'y in which case the CRB is identically zero. On the other hand, if it is known that
m lies in the range space of Fy- the CR bound mTF;Em for singular F'y can be found in 4n3/3
flops using the QR factorization to solve for the min-norm solution z to Fyz = m [9, Alg.
5.7.2]. However, typically the range space of Fy is unknown and much more computationally
intensive algorithms are required, e.g. the singular value decomposition (SVD) (20n® flops).
Here we present an iterative approximation to the pseudo-inverse form of the CR bound for
tha case of singular FIM and Fym # 0.
Consider the following matrix
G(e) “ ¢ (Fy +ael) ' — L(FY +bel)! (5)
a—>b a—2b
= (Fy +ael) 'Fy(Fy +bel) !,

where € > 0 and a,b € (0,00). Note that for the form (5) it is necessary to restrict a and b
to satisfy a # b, while this is not necessary for the form (6).
G(e) is a convergent approximation to the pseudo-inverse of Fy in the sense

Fy = lim G(e). (6)

e—0t

The representation (6) can be easily established by considering the eigendecomposition of
Fy

T 1 T O
Fi -G = .t — ! 2
Y (€) = o Uit ; (0; + ae)(o; + be) Yilli
i € (oi(a+b)+abe) ¥ 7)

w
— o (oit+ae) (o, +be) "

where 0, >, ..., > o0, > 0 are the r non-zero eigenvalues of Fy arranged in decreasing order,
and {u;}7, is an orthonormal set of eigenvectors. Observe that the range space of G(e)
corresponds to the range space of Fy for all € > 0.

Note that for all € > 0, F{ — G(e) > 0 so that m” G(e)mh > m? F{m. Hence m” G(e)m
is a valid lower bound on var,(#) which converges to the CR bound m”F{m as ¢ — 0. In
view of (6) an iterative approximation to m” G(e)m can be obtained from applying iterative
algorithms to approximate each of the solutions v, and 7, to the linear equations [Fy +
aelly, = m and [Fy + bel]y, = m, respectively. Since the perturbed matrices in these
equations are non-singular the CG, GS and other previously discussed algorithms can be



applied. For example, the following is a splitting algorithm for approximating the singular
CR bound when a # b:
Fllgk—l—l) = [F1 - FY — GGI] ng) - m

Foyf D = [Fo — Fy — bel] ¥ —

n® = [yPI"F,[y] (CRB APPROX) (8)

where F; and F; are suitable preconditioning matrices. The singular splitting iteration (8)
requires approximately three times as much computation as the non-singular CR bound
splitting iteration (3). When a = b one of the two iterative equation solvers in (8) can be
eliminated, leading to 7, = 7, in (8) and the computational burden becomes only twice as
expensive as the non-singular CR bound splitting iteration.

Both the speed of convergence and the normalized asymptotic approximation error § =
m” (F{ — G(e))m/(m” F{m) increase as € increases. It is easily shown that for € < o, =
min;_;,_,{0;}: m? (F$—G(e))m =€ ¥7_,[(a+b) o;+ab€]/[o; (oi+ae) (o;+be)]||ulm]|? ~
¢(a + b)||Fym|/?. Hence the normalized asymptotic approximation error is § ~ ¢(a +
b)||F{m||?/m” F{m. The right hand side of this relation can be manipulated (see Appendix
A) to yield bounds on asymptotic normalized error § valid for € < o
m’ Fym <5< e(a—i—b).

b
O mmE =0 o

(9)
Note that the upper and lower bounds depend on the magnitudes of €, a, and b only through
the product €(a + b). In the following Section, relation (9) will be used to select appropriate
values of these free parameters to attain a desired magnitude of asymptotic normalized error.

6 Application to an Inverse Problem

We will briefly illustrate the iterative CR bound approximations for the following inverse
problem arising in emission computed tomography (ECT). A subject is injected with a
radiopharmaceutical which is taken up by a target object or organ where it emits photons
with intensity proportional to the spatial distribution of the isotope. This spatial intensity
is described by a vector € of non-negative values indexed over n pixels or voxels. One wishes
to estimate the uptake ¢(@) of the radiopharmaceutical over a specified region within the
subject based on a set of noisy projections Y of # onto m detector surfaces. The uptake
is mathematically defined as the sum of the object intensities f over this region: t(8) =
> region Ui- The detector measurements Y are distributed as independent Poisson random
variables with mean vector Ep[Y] = pp = Af 4+ w. The m x n matrix A has non-negative
entries which correspond to probabilities that a given detector detects a photon emitted from
a given pixel. This matrix is typically sparse with mnv nonzero entries, v < 1 being the
matrix sparsity factor. The vector w = « - 1 is a column of scalars o > 0 which correspond



to a spatially homogeneous noise background level. Under the standard assumption that for
each detector the mean number of detected photons are strictly greater than zero the FIM
is non-singular and has the form [2]

Fy(®) = ATD'A. (10)

where D = diag (H) is a diagonal matrix containing the mean number of detected photons
at each detector.

In all of the algorithms that we have discussed the computational bottlenecks occur
in computing the vector-matrix product Fyg(k) (2n? flops) and, for non diagonal F, in
computing the solution to the preconditioning equation Fg(k) = u (np® + 8np flops for
F = D, a p-diagonal preconditioner |9, Sec. 4.3.6]). However due to the simple sparse
product form (10) of Fy the vector-matrix multiplication can be accomplished in two nested
vector-matrix multiplications: Fyﬁ(k) = A" [D_IAQ(’“)] (4mnv flops). Another result of
these simplifications is that the Fisher matrix Fy need not be precomputed or stored. This
is significant since the computation of Fy requires 2mn?v flops and n? memory storage
(typically Fy does not inherit sparseness of A). On the other hand, implementation of the
iterative CR bound approximations only require precomputation of y = Af+w (2mnv flops)
and storage of the mnv non-zero elements of A and m elements of . For matrix sparsity
factors v < 0.05 (more than 95% of all elements of A are zero), commonly encountered in
conventional ECT, this corresponds to a substantial savings in storage and precomputation
requirements.

5 10 15 20 25 30

Figure 1: Undersampled Hoffman brain phantom used for numerical comparisons. The inten-
sity ranges from 0 (black) to 2 (white). Region investigated is square 9-pixel neighborhood
of pixel (21,16).

For these studies the 32 x 32 Hoffman brain phantom shown in Fig. 1 was used as the true
image intensity 6. It was assumed that the overall size, location, and orientation of the brain
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within the image was known. Thus for computation of the bound the unknown parameter
vector  consisted of a lexicographical ordering of the n = 640 pixel intensities within the
ellipsoidal brain boundary. A system matrix A corresponding to axially collimated PET
was constructed which acquires projections of the planar phantom over 40 detector angles
and 80 radial detector bins. This gave a matrix A with m = 3600 rows, n = 640 columns
and sparsity factor v = 0.0427. For this application the memory storage advantages are
substantial: direct methods require n? ~ 400 KBytes to store Fy while the iterative methods
require only mnv + m ~ 100 KBytes to store A and u.

The CR bound approximation algorithms were investigated for unbiased uptake estima-
tion over a specified region. For this case the gradient 1h of the mean m(f) = ¢(#) is given
by the indicator function 1,.4,, of the region, where the i-th element of 1,.,, is 1 if the
intensity 6; corresponds to a pixel lying within the region while it is 0 otherwise. We present
results for the region defined as the square 9-pixel neighborhood of the coordinate (21, 16)
(indicated on Fig. 1). We found that only for the preconditioned CG and the GS algorithms
was the convergence behavior insensitive to the location of the selected uptake region.

Iterative CRB Algorithms
350 T T

BOOF /7ot

N

a1

(=}
T

Bound Approximation

0 20 40 60 80 100
Iteration

Figure 2: Trajectories of iterative algorithms for approximating the non-singular CR bound
for estimates of uptake in the 9-pixel neighborhood of pixel (21, 16). Dotted line labeled CRB
denotes the true value of the CR bound. Rapidly convergent non-monotone Gauss-Seidel
and preconditioned conjugate gradient algorithms are unlabeled curves at far left of graph
(see Figure 3).

Figures 2 and 3 show the convergence trajectories of eight algorithms. Four of these
algorithms, labeled EM, MDO0, MD1, and MD50 are monotone, while the other four, labeled
JOR, GS, CGD, CGDF are non-monotone. MD0, MD1 and MD50 denote the monotone
splitting algorithms obtained by using the respective preconditioning matrices D, D, and
Ds, defined in Sec. 3.1.2. These algorithms have convergence rates which improve with
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Non-Monotone lterations
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Iteration

Figure 3: A magnified view of the non-monotone algorithms including Gauss-Seidel (GS)
and preconditioned conjugate gradient algorithms shown in Figure 2. CGD is a conjugate
gradient algorithm using the standard diagonal Jacobi preconditioner and CGDF uses a
preconditioner tailored to the A matrix considered here.

the number 2p — 1 of non-zero diagonals in D,. The monotone algorithm labeled EM
uses the diagonal preconditioning matrix F = diag; (A*Til/ei) given in [2], where A,; is
the i-th column of A and diag;(a;) denotes a diagonal matrix with the scalars a; arranged
along the diagonal. It is interesting that while this latter algorithm beats the monotone
algorithms MDO0-MD50 in the early iterations, it considerably undershoots the CRB in the
later iterations and ends up converging to the CRB at a much slower asymptotic rate. The
JOR algorithm is a Jacobi iteration implemented with relaxation parameter numerically
selected to minimize the root convergence factor: ¥ = 2/[min(|);|) + max(|)\;|)], where {\;};
are the eigenvalues of diag(Fy )Fy. The standard unrelaxed Jacobi algorithm diverged for all
cases studied and is not shown. The JOR algorithm converges faster than the monotone EM,
MDO0, MD1, and MD50 algorithms and appears to be monotonic. However, close inspection
of the JOR trajectory reveals non-monotone behavior after the first 60 iterations.

In Fig. 3 we zoom into the trajectories of the non-monotone algorithms graphed in Fig.
2. In Fig. 3 the conjugate gradient algorithm labeled CGD uses the standard diagonal Jacobi
preconditioner, i.e. F = diag(Fy ) a diagonal matrix formed from the diagonal elements of the
FIM (these can be precomputed from Fy = AD ™' A in 4nmv flops). The conjugate gradient
algorithm labeled CGDF uses a special preconditioner F consisting of a diagonal matrix,
chosen to make Fy approximately circulant, followed by a Fourier-type preconditioner. The
preconditioner used in CGDF is tailored to the spatially invariant PET application and is
described in [12] in the context of fast least squares PET reconstruction algorithms. The GS
algorithm shows very rapid convergence which is only slightly outdone by CGDF. On the

12



| Alg. | Asy. Conv. Factor | 5% | 0.5% | Break Even |

EM p = 0.9999998 143521 | 540
MDO | p = 0.9983984 160 | 383 | 540
MD1 | p = 0.9983889 153 | 362 | 540
D50 | p=0.9977878 109 [ 259 | 108
JOR | p=0.9975000 60 | 152 | 540
GS p = 0.9376000 3 |6 540
CGD | p’ =0.9317000 8 |12 [540
CGDF | p" = 0.7940000 3 |4 540

Table 1: Asymptotic and finite convergence properties of the iterative algorithms.

other hand, the GS displays a prominent (2%) overshoot which does not occur in any of the
other algorithms.

The convergence properties of these algorithms are quantified in Table 1. The second col-
umn of Table 1 contains the asymptotic convergence factors for these algorithms. The asymp-
totic convergence factors are defined for the splitting algorithms as p = max{|\] ¥ oF Y,

and for the conjugate gradient algorithms as the ratio p = ﬁj, where k is the spectral

condition number x = AF Py /AF"'FY of the preconditioned FIM F~'Fy. The third and
fourth columns show the actual number of iterations to achieve convergence to within a 5%
and a 0.5% tolerance of the CRB, respectively. The fifth column shows the number of itera-
tions for which each algorithm would lose its advantage relative to direct computation of the
CRB (2mnv flops to compute Fy plus n®/3 flops to compute Fy'th via Cholesky methods).
For all algorithms except MD50 the number of flops required per iteration is approximately
dmnv = 0.4 Mflops. MD50 requires an additional 1.6 Mflops per iteration to solve the pre-
conditioning equation D50Q(k) = u. Comparing the second and fourth columns of the table
we see that the asymptotic convergence factor accurately predicts the relative asymptotic
rate of convergence of these algorithms: smaller p or p’ implies more rapid attainment of
0.5% tolerance. On the other hand, by comparison to the third column it is seen that the
asymptotic convergence factor is not a good predictor of finite convergence rates for less
stringent (5%) tolerances.

Next we turn to the case of singular FIM arising in the so-called “missing angle problem”
where image parameters must be estimated from a greatly reduced number and range of
projections. For this study only 10 angles from 0 to w/4 and 40 radial bins per angle were
used; corresponding to decimating the rows of A by a factor of eight. This resulted in a
matrix A of dimension 400 x 640 with rank 400 and range-space condition number on the
order of 1000. We implemented the matrix perturbation algorithm (8) to approximate the
CR bound on variance for estimates of uptake in the same 9-pixel region as before.

a—b

It was found that over the range 0 < o < 1000 the choice of a and b has some effect

on the speed of convergence but that the dominating factor is the value of €¢(a + b)/2. It
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Normalized Asymptotic Error
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O min | :
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Figure 4: The error bounds on the asymptotic normalized error ¢ as a function of pertur-
bation parameter e for the case of singular FIM. Also shown is the exact calculated curve
d = d(e) (labeled “true”) and the average of the upper and lower bounds. Note that this
average is very close to the exact curve for all values of § < 0.15, i.e. 15% error or less.

Iterations for Singular FIM: epsilon = 0.00074
110 T T T T

100f —GS
-- CGD

Bound Approximation

30 ) ) ) )
0 100 200 300 400 500
Iteration

Figure 5: The trajectories of the Gauss-Siedel (GS) and conjugate-gradient with diagonal
Jacobi preconditioner (GCD) for the case of singular FIM and uptake estimation. CGD
settles to within 5% of the true CR bound after fewer then 15 iterations.
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was also noticed that there is considerably more granular noise due to roundoff errors when
implementing the differencing method (5) as contrasted with implementing the perturbed
product method (6). The differencing method also produced large negatively valued bound
approximations in the early iterations. Here we show results for the perturbed product
method and @ = b = 1. We selected a maximum allowable asymptotic normalized error
criterion as § = 0.05, or 5%, and € = 0.00074 was selected according to (9) as the average
of the induced lower and upper bounds on € € = [1d0,, + ||Fym|?/ (2’ Fym)]/2 (see
Figure 4). We assumed that the minimum positive singular value o,,;, of Fy was available.
In a larger problem this minimum positive eigenvalue would have to be estimated, e.g. using
successive power iterations [9].

Figure 5 illustrates the trajectories of the GS and CGD algorithms applied to the iter-
ations (8). The limiting value of both of these algorithms is 41.3 which, as expected, lies
below the true CR bound, which we calculated to be 43.5, by approximately 5%. Note that
the GS algorithm does not converge to within 5% of the limit before 250 iterations. On the
other hand the CGD algorithm settles down to within 5% of the limit after fewer than 15
iterations. Finally it was observed that a significant tradeoff exists between the convergence
rate and . This is because small § forces small € which renders perturbed matrices [Fy + ael]
and [Fy + ael] closer to singular. As a result the asymptotic convergence factors of the pair
7, and 7, in (8) increase towards unity thereby lowering the convergence rate.

7 Conclusion

We have studied several iterative algorithms for approximation of the CR bound including
monotone convergent, splitting matrix iterations; non-monotonic splitting matrix iterations;
and non-monotonic preconditioned conjugate gradient iterations. We have adapted these
algorithms to the difficult case of singular Fisher information matrices for which the stan-
dard iterative algorithms are inapplicable. The computational cost of using a monotonically
convergent algorithm is quite high as compared with a non-monotonic algorithm for the
inverse problems considered. Our numerical studies indicate that unless monotonic conver-
gence is an absolute necessity, the preconditioned conjugate gradient algorithm should be
seriously considered for singular and non-singular CR bound approximation due to its very
rapid convergence.
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Appendix A: Bounds on Asymptotic Error

Lemma 2 Assume that m does not lie in the nullspace of Fy and let § be the normalized
asymptotic error defined as 6 = m' (Fy — G(e))m/(m ' Fym) defined in Sec. 5. Assume
that € is dominated by the smallest positive singular value Omim of F so that to o(e): § =

e(a + b)%ﬂ Then

! Fy 1 1
e(a+ b)m <é6<ela+ b)amm (11)

Proof: By assumption m’ F{1 > 0 so the inequalities are well defined. We first show the

lower inequality. The Cauchy-Schwarz inequality states that |u”v|?> < u"u - v"v for any two

k/2 Ff//”lw we obtain

vectors v and v. Letting u = Fy/"w and v =

MTFI)C/'+1Q - MTFI}C/'Q
w"FyPw — wTFyw

Setting w = Fm and applying the above for £ = 2,1, 0 we obtain the sequence of inequalities

m’Fymh  mPrm  m'Fim  m’[F{]’m
T2 . = .7 . S . T . S Tt ... 0
mFym ™ m Fym — m Ppm m- Fym

where Pr, = F{Fy = FyF5 is a symmetric idempotent matrix which projects vectors onto
the column space of Fy. Since h? F21h = ||Fym||? we have established the lower inequality
n (11). The upper inequality in (11) follows from the sequence of identities

' [Fy ]’ < i {mT[Fﬂ{m}

Tt . . Tt
m- Fym ah:m’ Fymsoy | I Fym

i)
= Imax #
mx#o ( m'm

1

Omin
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Appendix B: Proof of Lemma 1

The matrix D, — A has the form:

> lasg] _
JZ2,p 0 0 a1,p+1 —Qin

0 2 laz]

JAT 3t
_a'n—p—l,n
> lag,]
0 j#k—p,..., k—1 0
kA1 htp—1
—Op+1,1
. 0

_ _ Z‘anﬂ

n1 Un,n—p-1 0 0 j#n—p,..,n—1

Since D, — A is a special case of D; — A for a;; =0, |i — j| > p, it suffices to prove that the
following matrix is Positive Semi-Definite (PSD):

2j#101] —a12 —Q1p
—a 19 —0Ug; — 0oy
DA .21 Eﬁez' 2j 2 (12)
—0n1 —0n2 Zj#n —0nj
Define:
N b
(@) — =
o= o)
where,
b = [_aqla —aqg, ceey —aq,q_l]T,
g—1
a = Z|b@|’
i=1
N = MUY 4 diag;(|b;]).

Since Dy — A is symmetric M9 is the g x ¢ upper left hand block of the n x n matrix D; — A.
We proceed by induction. Assume that A7 1 is positive semi-definite. Since ¢ = 0 implies
b =0, when a = 0, M@ is obviously positive semi-definite. We therefore assume a > 0, in

which case b is not identically zero.

1

M@ = l oF

Consider the following factorization of M@,
%Q I 0
| i

N —2bb" 0 0
T

0* a
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We only need to show that the (¢ — 1) x (¢ — 1) matrix,
L7 —1 . L7
N — =" = MO+ ding,(|ti]) — ~bb
a a
is PSD. Since the sum of PSD matrices is PSD, it is sufficient to show that

1
diag; (|b:/) — —bb" > 0.

Consider for any x = [z1, T2, ..., Tg—1]":

1 q—1 1 q—1 2
" (ding ()~ 208" )2 = Lot | L
a i=1 a \i=1
qg—1

- Z\b| I b Zb—)
T\ &

o bl (5 i
z; z;
LT (Z' S

qg—1 q—1
= a sz\$z|2—<2pz|$z\> (13)
i=1 i=1

v
S

qg—1 qg—1 2
= a)_ pi (|xi|—zpj\$j\)
i=1 j=1
> 0.

Where in (13) we have defined p; = —q|f1||b—|, pi € [0,1), X% p; = 1. Furthermore, for

z=1, (D,— A)1 =0, where 1 =[1,... 1]T This implies that D, — A has at least one zero
eigenvalue, therefore D, — A is rank deﬁcient with rank at most n — 1. O
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