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ABSTRACT

This paper presents an analysis of the spatial resolu-
tion properties of tomographic image reconstruction based
on a regularized least-squares objective function. The
derivations are based on an idealized space-invariant to-
mographic system having a continuum of radial and angu-
lar samples. The analysis accounts for mismatch between
the true radial point-spread function (PSF) of the measure-
ments and the PSF used in the system model for image re-
construction. An angular-dependent weighting is also in-
cluded, which provides insight into the asymmetric PSFs
observed in images reconstructed by penalized weighted
least-squares methods.

I. INTRODUCTION

All methods for tomographic image reconstruction en-
tail tradeoffs between spatial resolution and noise. We
have recently analyzed the spatial resolution [1, 2] and
noise [3] properties of penalized-likelihood methods for
tomographic image reconstruction. Although the dis-
crete formulations used in [1, 2] are appropriate for com-
puter implementation with real discrete measurements,
they lack some of the insight that one can obtain from an-
alytical methods, even though analytical results are gener-
ally based on idealized measurement systems.

This paper derives the PSF of one form of penalized
least-squares tomographic image reconstruction by ana-
lyzing an idealized tomograph having a continuum of de-
tectors and angles. The model is partially realistic, how-
ever, since we account for a radial detector blur. The

This work was supported in part by the Whitaker Foundation and
NIH grants CA-60711 and CA-54362.

analytical form we derive for this continuous tomograph
shows remarkable agreement with simulations using dis-
crete sampled systems.

II. T HEORY: PSFOF IDEALIZED TOMOGRAPH

A. Notation

Let f(x1, x2) denote an object intensity function de-
fined overIR2. LetP denote the continuous Radon trans-
form operator. Ifp = Pf , then

pφ(r) =

∫
f(l cos φ+ r sinφ, l sinφ− r cos φ) dl

=

∫∫
f(x1, x2)δ(x1 cos φ+ x2 sinφ− r) dx1 dx2.

Define the following inner product for “sinogram space:”

〈q, p〉 =
∫ π
0

∫ ∞
−∞
q?φ(r)pφ(r) dr dφ,

and associated norm‖p‖2 = 〈p, p〉. The adjoint ofP un-
der the above inner product is the backprojection operator
B, i.e.P ′ = B. If b = Bp then

b(x1, x2) =

∫ π
0
pφ(x1 cos φ+ x2 sinφ) dφ.

Proof: if p = Pf then

〈q,Pf〉 =
∫ π
0

∫ ∞
−∞
q?φ(r)pφ(r) dr dφ

=

∫ π
0

∫ ∞
−∞
q?φ(r)

∫∫
f(x1, x2) ·

δ(x1 cos φ+ x2 sinφ− r) dx1 dx2 dr dφ

=

∫∫
f(x1, x2) ·

1
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∫ π
0
q?φ(x1 cos φ+ x2 sinφ) dφ dx1 dx2

=

∫∫
f(x1, x2) (Bq)

?(x1, x2) dx1 dx2

= 〈Bq, f〉,

where the image-space inner product is the standard
choice forL2(IR2). (We assume sufficient regularity con-
ditions to enable any necessary changes of order of inte-
gration.)

LetStrue denote a space-invariantradial sinogram blur-
ring operator with symmetric kernelstrue(r). If y =
Struep, then

yφ(r) = strue(r) ∗ pφ(r),

where∗ denotes 1D convolution.
DefineGtrue = StrueP to be the blurred Radon trans-

form operator. The operatorGtrue is the continuous analog
of the system matrixG in [1]. Given measurements with
additive zero-mean noise:

y = Gtruef + noise,

we would like to recoverf from y.

B. Reconstruction

We may not know the blur functionStrue exactly, but
rather may only have an approximationSmodel with kernel
smodel(r). A penalized least squares (PLS) approach to
this problem is:

f̂ = argmin
f
‖y − Gmodelf‖

2
W + α〈f,Rf〉, (1)

whereGmodel = SmodelP, and the weighted norm is de-
fined by‖p‖2W = 〈p,Wp〉 = 〈Wp, p〉 where ifq = Wp
then qφ(r) = wφ(r)pφ(r). The weightswφ(r) must be
real, i.e.w?φ(r) = wφ(r), and positive. The operatorW
is the continuous analog of the diagonal matrixdiag{ui}
in [1].

If we desire smooth solutionŝf , then we would like
〈f,Rf〉 to be a measure of roughness. Therefore we de-
fine Dj to be the differentiation operator with respect to
thejth spatial coordinate:

(Djf)(x1, x2) =
∂

∂xj
f(x1, x2), j = 1, 2.

Thus

‖Djf‖
2 =

∫∫ (
∂

∂xj
f(x1, x2)

)2
dx1 dx2.

By defining

R = (D′1D1 +D
′
2D2)

m, (2)

we have specified〈f,Rf〉 to be an isotropic measure of
the roughness off . (Note that operatorsD1 andD2 com-
mute.) In particular, for the usual choicem = 1, we have

R = D′1D1 +D
′
2D2,

which is analogous to the matrixR? (for the quadratic
penalty) in [1].

Assumingsmodel(r) is a low-pass filter whose transfer
function Smodel(u) is nonzero atu = 0, one can easily
show that the null spaces ofGmodel andR are disjoint, so
the solution to (1) is

f̂ = [G′modelWGmodel + αR]
−1G′modelWy,

and the estimator mean is:

µ(f) = E{f̂}

= [G′modelWGmodel + αR]
−1G′modelWGtruef.(3)

If W is the identity operator, then (3) represents a space-
invariant mean response, i.e.µ(f) corresponds to a filtered
version off . We now use Fourier methods to derive the
frequency response of that filter.

C. Frequency Response

It is well known [4] that

P ′Pf =
1

r
∗∗ f,

where∗∗ denotes 2D convolution. If we letu1 and u2
denote the 2D spatial frequency coordinates, and define

ρ =
√
u21 + u

2
2, then since the 2D Fourier transform of

1/r is 1/ρ, we have

P ′P = F ′2 ·
1

ρ
· F2,

whereF2 denotes the 2D Fourier operator. (We use the
orthonormal version ofF2, i.e., scaled so thatF ′2F2 is the
identity operator.)

However, we would like to expressP ′WP in the
Fourier domain, not justP ′P. This is probably not possi-
ble for an arbitrary operatorW. Delaney and Bresler con-
sider spectral operatorsW to derive a preconditioner [5].
Here, we restrict attention to weighting functions that are
radially invariant, i.e.wφ(r) = wφ is independent of ra-
dial positionr. In this case one can use the Fourier-slice
theorem to show that

P ′WP = F ′2 ·
wφ
ρ
· F2, (4)
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Since the blur operatorSmodel acts radially, by the
Fourier-slice theorem:

G′modelWGmodel = F
′
2 ·
wφ|Smodel(ρ)|

2

ρ
· F2. (5)

Similarly

G′modelWGtrue = F
′
2 ·
wφS

?
model(ρ)Strue(ρ)

ρ
· F2.

One can express the differentiation property of Fourier
transforms [6] asDj = F ′2(i2πuj)F2 wherei =

√
−1.

Therefore we have:

D′jDj = F
′
2 · (2πuj)

2 · F2,

so

R = (D′1D1 +D
′
2D2)

m

= F ′2 · [(2πu1)
2 + (2πu2)

2]m · F2

= F ′2 · (2πρ)
2m · F2. (6)

(This confirms the statement following (2) that (2) yields
an isotropic measure of roughness.)

Combining (3), (5), and (6) shows that

µ(f) = F ′2 · L0(ρ, φ) · F2f,

where the frequency responseL0(ρ, φ) of the PLS estima-
tor is therefore:

L0(ρ, φ) =

wφS
?
model(ρ)Strue(ρ)

ρ

wφ|Smodel(ρ)|
2

ρ
+ α(2πρ)2m

=
wφS

?
model(ρ)Strue(ρ)

wφ|Smodel(ρ)|2 + β0ρ2m+1
, (7)

whereβ0 = α(2π)2m.
Note that ifwφ is a constant, then the frequency re-

sponse is radially-symmetric. Otherwise the frequency re-
sponse, and hence the point-spread function, will be asym-
metric if the conventional radially-symmetric regulariza-
tion method (2) is used, as observed in [1]. However, in
principle we can eliminate this asymmetry by applying a
regularization operator whose frequency response is pro-
portional towφ (times any power ofρ). In practice, for a
discrete implementation of the regularization operator the
asymmetry should be approximately eliminated.

Note that the frequency response (7) is nonnegative
function. Therefore it is somewhat unsurprising that neg-
ative sidelobes are often observed in the PSFs.

Not surprisingly, the frequency response (7) is unity
nearρ = 0, and then typically decreases with increas-
ing spatial frequency. The form of (7) is very similar to
a constrained least-squares restoration filter [7], or for an
ideal system withSmodel(u) = Strue(u) = 1, to a Butter-
worth low-pass filter. Typical plots ofL0(ρ) are shown in
Figs. 1-4 for the casewφ = 1, which we assume hereafter
unless otherwise stated.

D. Point Spread Function

Since the frequency response is radially symmetric for
wφ = 1, one can compute the corresponding PSFl0(r)
using the Hankel transform [6]:

l0(r) = 2π

∫ ∞
0
L0(ρ) J0(2πρr) ρ dρ, (8)

whereJ0 is the0th order Bessel function. We do not know
of an analytical form for the Hankel transform of (7), even
whenStrue(u) = Smodel(u) = 1, but it is easy to evaluate
the integral numerically. Asβ0 → 0, the FWHM ofl0(r)
approaches 0, whereas for a discrete system, the smallest
possible FWHM is 1 pixel. Therefore, we also define the
blurred response:

l1(r) = l0(r) ∗ 1{|r|≤1/2}, (9)

where1{|r|≤1/2} denotes the standard rectangular func-
tion. Asβ0 → 0, the FWHM ofl1(r) approaches 1, which
better agrees with the discrete results.

Typical plots of the normalized PSFl0(r)/l0(0) are
shown in Figs. 5-8, for several values ofβ0 and for dif-
ferent radial blursStrue(u) = Smodel(u) with no model
mismatch. Note that whenβ0 is small, the point response
functions exhibit ringing.

By computingl1(r) using a very fine discretization of
(8) and (9), we can tabulate the relationship betweenβ0
and the FWHM of the PSF. Typical curves are shown in
Fig. 9, for differentStrue(u) = Smodel(u) cases. In prin-
ciple, one can choose a desired resolution, and then read
off the appropriateβ0 from Fig. 9. This value ofβ0 will be
proportional to the value ofβ that should be used with the
modified penalty of [1]. The proportionality constant is
object independent, so only needs to be determined once
for a given geometric system matrixG as described in [1].
The constant depends on the units one uses when defining
G and the matrixR? of [1]. For a strip-integral tomo-
graphic systemG, we normalize the elements ofG so
that

∑
i gij = 1, which is “count preserving.” In this case,

careful bookkeeping showed that

β0 = β
4π4

∆θ∆b
, (10)
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where∆θ is the angular spacing and∆b is the radial
center-to-center spacing of the strip integrals.

Using this relationship betweenβ and β0, we com-
puted thediscretelocal impulse response using (38) of [1]
and the correspondinganalytical impulse response (9) and
plotted the FWHM of the two in Fig. 10, for the case
of a rectangular radial blur with FWHM=2 pixels, i.e.
Strue(u) = Smodel(u) = sinc(() 2u). For resolutions
greater than about 2 pixels FWHM, the resolution of the
discrete and analytical impulse responses agree quite well.
(For FWHM below 2 pixels, the effects of the discrete pix-
els apparently yield a slightly greater FWHM than pre-
dicted by (9).) Figure 11 displays the analytical PSF (9)
and the discrete local impulse response (38) of [1] for the
caseβ0 = 175, for a tomograph with rectangular strip
integrals with two pixel width. The agreement shown in
Figs. 10 and 11 confirms that one can use Fig. 9 in con-
junction with relationship like (10) to determine a value
for β that will provide reconstructed images having the
user’s desired spatial resolution.

We remind the reader that the fact that this PLS esti-
mator gives a response similar to a Butterworth filter does
not imply that in general penalized-likelihood estimation
is equivalent to Butterworth filtering! The above analysis
does not include nonnegativity, Poisson statistics, realis-
tic system modeling, nonquadratic penalties, and the other
well-known advantages of statistical methods. However,
the above analysis is useful for understanding and quan-
tifying basic resolution properties. It is also useful for
designing preconditioners for fast gradient-based iterative
methods [8,9].

E. A FWHM Rule of Thumb

It is well known that the FWHM of bump-shaped point
spread functions is approximately equal to1/(2ρh), where
ρh is the half-amplitude frequency, i.e.L0(ρh) = 1

2L0(0).
From (7), it is clear that the half-amplitude frequency for
the PLS estimator isβ−1/(2m+1)0 for the ideal case when
Strue(u) = 1. Thus for the usualm = 1 case, the FWHM

of l0(r) is approximatelyβ1/30 . Since we are more inter-
ested inl1(r), Fig. 15 displays the FWHM ofl1(r) versus

β
1/3
0 for various detector blurs. There is a nearly affine

relationship between the FWHM ofl1(r) and β1/30 for
β0 > 5, which may be used to simplify further the table
lookup method for relatingβ to FWHM described in [1].

III. LS D ESIGN OFPENALTY

To yield uniform spatial resolution, we would like a
penalty function whose spectrum iswφρn, wheren is a
free design choice. To match the spatial resolution proper-
ties of unweighted penalized least squares, the target spec-
trum iswφρ2m, i.e.n = 2m. The usual choice ism = 1,
i.e.n = 2. This section describes a practical approach to
designing such a penalty function.

In a discrete implementation, we cannot produce
penalty functions with arbitrary angular variations. How-
ever, we can produce penalty functions whose spectrum is
approximately

R(ρ, φ; r) =
K∑
k=1

rkρ
n cosn

(
φ− π

k − 1

K

)
.

For example, thek = 1 term is justρn cosn φ = un1 , which
corresponds to a penalty in thex1 direction, and thek =
K/2+1 term is justρn cosn(φ−π/2) = ρn sinn φ = un2 ,
which corresponds to a penalty in thex2 direction.

Now we can attempt a (weighted) least-squares fit of the
filter coefficientsr = [r1, . . . , rK ] to makeR(ρ, φ) “best”
approximatewφρn. Objective function:

Φ(r) =

∫ π
0

∫ ∞
0
ω(ρ) [R(ρ, φ; r)− wφρ

n]2 dρdφ

whereω(ρ) is some arbitrary nonnegative weighting func-
tion. Simplifying, we find that

Φ(r) ∝
∫ π
0

[
K∑
k=1

rk cos
n

(
φ− π

k − 1

K

)
− wφ

]2
dφ,

so theρweighting function is irrelevant. MinimizingΦ(r)
is a linear least-squares problem that is equivalent to solv-
ing the linear system of equations

Φr = b

where

bk =
1

π

∫ π
0
wφ cos

n

(
φ− π

k − 1

K

)
dφ (11)

and

Φjk =
1

π

∫ π
0
cosn

(
φ− π

j − 1

K

)
cosn

(
φ− π

k − 1

K

)
dφ.

I suspect there is an analytical inverse forA. Certainly
there is in theK = 2 case.

For discretewφ we can replace the integral in (11) with
a sum, sor = Φ−1b = Φ−1Bw whereB is a simple
dim(r)× nφ matrix.
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Simplest in the casen = 2, which is probably all we
need.

Unfortunately, forn > 3 Φ will be singular forn = 2,
as noted by Web Stayman. A practical approach therefore
is just to discretize the objective function rather than the
solution:

Φ(r) =
∑
j

ωj
∑
k

[
R(ρj , φk; r)− wφkρ

n
j

]2
.

This is a simple linear least-squares problem inr. How-
ever, now theρ weighting is relevant, and must be consid-
ered.

IV. FFT SIMPLIFICATIONS

If the geometric system responseG is approximately
space invariant, and if the target penaltyR? is the standard
quadratic penalty, then if one uses the modified quadratic
penalty of [1], then the local impulse response is approxi-
mately given by (38) of [1]. In this important case, one can
use FFT’s to compute (38) of [1] approximately, thereby
eliminating the need for an iterative method to compute
(38) of [1].

Let j denote the index of a pixel near the center of
the image, and compute the kernelkG′G = G

′Gej. Let
kR be the kernel ofR: kR = Rej . Let fG′G(u1, u2),
fR(u1, u2), andFUPLS(u1, u2) denote the 2D FFT’s of
kG′G, kR, and[G′G+ βR?]−1G′Gej respectively.

For the standard second-order quadratic penalty, the
kernel of the regularization matrixR? is

 0 −1 0
−1 4 −1
0 −1 0


+ 1
√
2


 −1 0 −10 4 0
−1 0 −1


 . (12)

Then from standard properties of circulant matrices
[10]:

FUPLS(u1, u2) =
fG′G(u1, u2)

fG′G(u1, u2) + αfR(u1, u2)
.

Thus one can compute (38) of [1] using two 2D FFT’s and
one 2D inverse FFT.

For systems where the geometric response can be fac-
tored into product of the discretized Radon transform with
a space-invariant blur, one can further simplify the calcu-
lation above.

One useful approximation to the kernel ofG′G is

f(r) =

{
π − 2r, r ∈ [0, 1]
2(arcsin(1/r) − (r −

√
r2 − 1)) r > 1,

,

which is shown in Figure 2 of [11] (cf [12, Fig. 11] and [8,
Fig. 1]). This function has the expected1/r asymptotic
form, but is well behaved near zero—as it must be for a
discrete system.

V. DISCUSSION

We have analyzed the frequency response and point-
spread function of a continuous idealized method for to-
mographic image reconstruction using a penalized least
squares criterion. The analysis includes the effects of mis-
match in the detector blur. The effects of an angularly-
dependent weighting were shown to yield an asymmet-
ric point-spread function; such asymmetries were reported
in [1]. It appears that it may be possible to develop a new
modified penalty function that eliminates this asymmetry
by incorporating a corresponding angular dependence into
the regularizer.

For data with Poisson noise, the effective angular
weighting will be different for each pixel, but should vary
slowly with spatial location.
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Figure 1: Plots ofL0(ρ), the spatial frequency response of
penalized least squares, under the continuous model de-
scribed in Section II, for several values (shown) of the
regularization parameterβ0, for the ideal tomograph with
Strue(u) = 1.
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Figure 2: As in Fig. 1, but for a tomograph with a rectan-
gular detector blur:Strue(u) = sinc(u).
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Figure 3: As in the previous figure, exceptStrue(u) =
sinc(2u).
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Figure 4: As in Fig. 1, but for a tomograph with a Gaus-
sian detector blur:Strue(u) = exp(−2π2u2/σ2), where
σ = (8 log 2)−1/2 so that the FWHM ofstrue(r) is ap-
proximately 1.
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Figure 5: Plots ofl0(r)/l0(0), the impulse response or
PSF of penalized least squares, under the continuous
model described in Section II, for several values (shown)
of the regularization parameterβ0, for the ideal case
Strue(u) = 1.
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Figure 6: As in Fig. 5, but for a tomograph with a rectan-
gular detector blur:Strue(u) = sinc(u).
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Figure 7: As in the previous figure, exceptStrue(u) =
sinc(2u).
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Figure 8: As in Fig. 5, but for a tomograph with a Gaussian
detector blur:Strue(u) = exp(−2π2u2/σ2).
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Figure 9: FWHM of the point spread functionsl1(r) cor-
responding to thel0(r) shown in Figs. 5-8, as a function
of the regularization parameterβ0.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

log
2
 β

0

F
W

H
M

 o
f P

S
F

  
l 1(r

) 
 [p

ix
el

s]

Rectangular Blur, FWHM=2

Analytical Prediction      
Discrete Tomographic System

Figure 10: Comparison of the resolution of the analyti-
cally computed PSF (9) with the resolution of the discrete
PSF ((38) of [1]), for a tomograph with rectangular blur:
Strue(u) = sinc(2u).
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Figure 11: Comparison of analytically predicted PSF us-
ing (9) and discrete PSF from (38) of [1], for a tomograph
with rectangular blur:Strue(u) = sinc(2u).
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Figure 12: FWHM ofl0(r) versuslog2(β0), for various
detector responses.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

10

11

log
2
 β

0

F
W

H
M

 o
f P

S
F

  
l 0(r

) 
 [p

ix
el

s]

Rectangular Blur, FWHM=2

Analytical Prediction      
Discrete Tomographic System

Figure 13: As in Fig. 10 but forl0(r) .


