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ABSTRACT analytical form we derive for this continuous tomograph

This . : ?h_ows remarkable agreement with simulations using dis-
paper presents an analysis of the spatial resolu

tion properties of tomographic image reconstruction bas%r(?te sampled systems.
on a regularized least-squares objective function. The ||, THEoRY PSFOF IDEALIZED TOMOGRAPH
derivations are based on an idealized space-invariant to- .
mographic system having a continuum of radial and angﬁ'- Notation
lar samples. The analysis accounts for mismatch betweemet f(z1,x2) denote an object intensity function de-
the true radial point-spread function (PSF) of the measufied overR%. Let P denote the continuous Radon trans-
ments and the PSF used in the system model for imagefa#m operator. Ifp = P £, then
construction. An angular-dependent weighting is also in-
cluded, which provides insight into the asymmetric PSkg(r) = /f(l cos ¢ + rsin ¢, lsin ¢ — rcos ¢) dl
observed in images reconstructed by penalized weighted
least-squares methods. = // f(z1,22)0(x1 cos ¢ + zosin ¢ — r) dzy dzo.

I. INTRODUCTION Define the following inner product for “sinogram space:”

All methods for tomographic image reconstruction en- oo
tail tradeoffs between spatial resolution and noise. We la.p) :/0 Zm 45(r)ps(r) dr do,
have recently analyzed the spatial resolution [1, 2] and
noise [3] properties of penalized-likelihood methods fdnd associated norifp||*> = (p, p). The adjoint ofP un-
tomographic image reconstruction. Although the digler the above inner product is the backprojection operator
crete formulations used in [1, 2] are appropriate for conff, i.e. P’ = B. If b = Bp then
puter implementation with real discrete measurements, x
they lack some of the insight that one can obtain from an-  b(z1,z2) = / P (1 cos @ + 2 sin @) dep.
alytical methods, even though analytical results are gener- 0

ally based on idealized measurement systems. Proof: ifp = P f then
This paper derives the PSF of one form of penalized oo
least-squares tomographic image reconstruction by af@-Pf) = / / Q3 (r)pe(r) dr do
lyzing an idealized tomograph having a continuum of de- OW e
tectors and angles. The model is partially realistic, how- = /0 / qp(r) //f((l?l,mg) .

ever, since we account for a radial detector blur. The
0(x1 cos ¢ + xosin ¢ — r) dry dze dr do
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/ q3 (1 cos ¢ + 2 8in @) dp dzy da By defining
0

= //f(l'l,m) (Bq)*(z1,2) dz1 dzo R = (D1D1 + DyD2)"™, (2)

we have specifiedf, R f) to be an isotropic measure of

= By, f), the roughness of. (Note that operator®; andD, com-
where the image-space inner product is the stand&?&'te') In particular, for the usual choiee = 1, we have
chpice forL,(IR?). (We assume sufficient regularity con- R = D, Dy + DD,
ditions to enable any necessary changes of order of inte-
gration.) which is analogous to the matrikR* (for the quadratic
Let Sirue denote a space-invariargdial sinogram blur- Penalty) in [1]. _ '
ring operator with symmetric kernelue(r). If y =  ASSUMINGsmodel(r) is a low-pass filter whose transfer
Sirueps then function Sp0q4e1(¢) IS NONzero atu = 0, one can easily
show that the null spaces 6f..q.1 @ndR are disjoint, so
Yo(1) = Strue(r) * py(r), the solution to (1) is
wherex denotes 1D convolution. f = [GhroaeWmoda + aR] ™ Grroaa Wy,

DefineGyrue = StrueP to be the blurred Radon trans4nd the estimator mean is:
form operator. The operatdk,.. is the continuous analog

of the system matrixG in [1]. Given measurements with #(f) = E{f}
additive zero-mean noise: = [GlhodeWGmodel + AR] " Glo g WGtrue A3)
Y = Girue f + NOISE If W is the identity operator, then (3) represents a space-
invariant mean response, isg.f) corresponds to a filtered
we would like to recoveyf from y. version of f. We now use Fourier methods to derive the

frequency response of that filter.
B. Reconstruction

. C. Frequency Response
We may not know the blur functios;,,. exactly, but a y P

rather may only have an approximatiSp,,q« with kernel  Itis well known [4] that
Smodel (). A penalized least squares (PLS) approach to

1
/
this problem is: PPf=_*xf,

where % denotes 2D convolution. If we lef; and us
denote the 2D spatial frequency coordinates, and define

whereGyoqe = Sumoau P, and the weighted norm is de-” — \/u? + u3, then since the 2D Fourier transform of
fined by [plf3, = (v, Wp) = (Wp,p) where ifg = Wp 1/7191/p, wehave

thengy(r) = wy(r)pe(r). The weightswe(r) must be
real, i.e.wj(r) = wy(r), and positive. The operatot/

's the continuous analog of the diagonal mattixg{u;} where F, denotes the 2D Fourier operator. (We use the

in [1]. : . :

: o oa : rthonormal version ,i.e., | hak, F5 is th

If we desire smooth solutiong, then we would like orthonormal version af, i.e., scaled so thak, 75 is the
O‘denmy operator.)

(f,Rf) to be a measure of roughness. Therefore we de-

, . - ) However, we would like to expres®’ in the
fine D; to be the differentiation operator with respect t& ; . S eXP WP .

, : : ourier domain, not jusP’P. This is probably not possi-
the jth spatial coordinate:

ble for an arbitrary operatanV. Delaney and Bresler con-
o sider spectral operatodd’ to derive a preconditioner [5].
(Djf)(@1,22) = %f(xl’f/@)v J=12. Here, we restrict attention to weighting functions that are
’ radially invariant, i.e.wy(r) = wy is independent of ra-
Thus dial positionr. In this case one can use the Fourier-slice
theorem to show that

2
0
ID; fII?> = // (ﬁjf(mhﬂh)) dxy dxs. PWP = F - % - Fa, 4)

f=arg min|ly - Gmoderf Iy + a{f,Rf), (1)

1
,P/,P:]:é';‘f%
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Since the blur operatoS,,,q4c1 acts radially, by the Not surprisingly, the frequency response (7) is unity
Fourier-slice theorem: nearp = 0, and then typically decreases with increas-
ing spatial frequency. The form of (7) is very similar to

2
M -F5. (5) aconstrained least-squares restoration filter [7], or for an

/ /
gmodelwngdel = ‘7:2 )

P ideal system withS,,04e1(4) = Strue(u) = 1, to a Butter-
Similarly worth low-pass filter. Typical plots afy(p) are shown in
Figs. 1-4 for the casey = 1, which we assume hereafter
Sx S, '
G WGire = Fh - L2 modeli)p) true(p) 5. unless otherwise stated.

. o D. Point Spread Function
One can express the differentiation property of Fourier _ i i )
transforms [6] aD; = F}(i2mu;)F wherei = v/—1 Since the frequency response is radially symmetric for
Therefore we havej' ? ’ " w, = 1, one can compute the corresponding RSF)

using the Hankel transform [6]:
DiD; = Fy - (2mu;)? - T,

lo(r) =27 [~ Lo(p) Jol2mpr) pdp,  (8)
SO 0
whereJ; is theOth order Bessel function. We do not know
R = (D\D1+DyDy)™ of an analytical form for the Hankel transform of (7), even
= F}-[(2mu1)? + 2mus)?™ - Fo When Sirue (1) = Smodel (1) = 1, but it is easy to evaluate
— F.(2mp)*" - Fo. (6) the integral numerically. Agy — 0, the FWHM ofiy(r)

approaches 0, whereas for a discrete system, the smallest
(This confirms the statement following (2) that (2) yieldpossible FWHM is 1 pixel. Therefore, we also define the
an isotropic measure of roughness.) blurred response:
Combining (3), (5), and (6) shows that
L(r) =lo(r) * Lr<1/2ys 9)

f— / . .
u(f) = Fy- Lo(p, 9) - Fof, where 1j,1<1 /2y denotes the standard rectangular func-
where the frequency responkg(p, ¢) of the PLS estima- tion. Asgy, — 0, the FWHM ofl; (r) approaches 1, which

tor is therefore: better agrees with the discrete results.
N Typical plots of the normalized PSk(r)/lp(0) are
WgSH odel (P) Strue (P) shown in Figs. 5-8, for several values 6§ and for dif-
Lo(p,¢) = 02 ferent radial blursSiye(u) = Smoder(u) With no model
Wy| Smodel (0)| + a(2rp)Pm mismatch. Note that whefi, is small, the point response
p p functions exhibit ringing.
weS™ 11(0)Serue(p) By computingl; () using a very fine discretization of

— , 7 . .
WolSmode (9)2 + Gop?H1 (7) (8) and (9), we can tabulate the relationship betwsgn
and the FWHM of the PSF. Typical curves are shown in
wheregy = a(2r)2™. F_ig. 9, for differentSi e (u) = model (1) gases. In prin-
cCiple, one can choose a desired resolution, and then read
sponse is radially-symmetric. Otherwise the frequency &1 (e appropriate from Fig. 9. This value ofi will be
ypﬁgportlonal to the value gf that should be used with the

sponse, and hence the point-spread function, will be as dified v of 111, Th ional )
metric if the conventional radially-symmetric regularizar-no ified penalty of [1]. € proportionality constant Is

tion method (2) is used, as observed in [1]. However, ﬂpject independent, so only needs to be determined once

principle we can eliminate this asymmetry by applying fé)r agiven geometric system matdx as described in [1].

regularization operator whose frequency response is p-t%le constant depends on the units one uses when defining
G and the matrixR* of [1]. For a strip-integral tomo-

portional tow, (times any power op). In practice, for a hi lize the el o
discrete implementation of the regularization operator gggapnic systent, we normalize the e_ements SO
thaty"; g;; = 1, which is “count preserving.” In this case,

asymmetry should be approximately eliminated. )
Note that the frequency response (7) is nonnegati%refm bookkeeping showed that

function. Therefore it is somewhat unsurprising that neg- A7t

ative sidelobes are often observed in the PSFs. Bo = 5m’ (10)

Note that if w, is a constant, then the frequency r
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where Ay is the angular spacing and, is the radial I1l. LS DESIGN OFPENALTY

center-to-center spacing of the strip integrals. To vield uniform spatial resolution, we would like a

Using this relationship betweefl and o, we €Om- o1ty function whose spectrum is,p™, wheren is a
puted thediscretelocal impulse response using (38) of [1keq design choice. To match the spatial resolution proper-

and the correspondirgnalytical in_1pu|_se response (9) andties of unweighted penalized least squares, the target spec-
plotted the FWHM of the two in Fig. 10, for the case, iswyp?™, i.e.n = 2m. The usual choice isy = 1

of a rectangular radial blur with FWHM=2 pixels, i.; ¢ ,, _ 5 This section describes a practical approach to
Strue(w) = Smoder(u) = sinc(() 2u). For resolutions yesigning such a penalty function.

greater than about 2 pixels FWHM, the resolution of the | " 5 jiscrete implementation, we cannot produce
discrete and analytical impulse responses agree quite Well, o+ functions with arbitrary angular variations. How-

(For FWHM below 2 pixels, the effects of the discrete pixs e\ \ye can produce penalty functions whose spectrum is
els apparently yield a slightly greater FWHM than pre;

_ , _ _ proximately
dicted by (9).) Figure 11 displays the analytical PSF (9)Io
and the discrete local impulse response (38) of [1] for the K E—1
casef, = 175, for a tomograph with rectangular strip R(p,¢;r) = > rgp™ cos™ <¢ — T > :
integrals with two pixel width. The agreement shown in k=1
Figs. 10 and 11 confirms that one can use Fig. 9 in copor example, thé = 1 term is justp” cos™ ¢ = u?, which
junction with relationship like (10) to determine a Va|UQOrresponds to a penalty in the direction, and the: =
for 3 that will provide reconstructed images having thg/zJr 1 term is justp” cos™ (¢ — w/2) = p"sin™ ¢ = uf,
user’s desired spatial resolution. which corresponds to a penalty in the direction.

We remind the reader that the fact that this PLS esti-Now we can attempt a (weighted) least-squares fit of the
mator gives a response similar to a Butterworth filter do€iger coefficientsr = [r1,...,7x] to makeR(p, ¢) “best”
not imply that in general penalized-likelihood estimatioapproximate%pn_ Objective function:
is equivalent to Butterworth filtering! The above analysis
does not include nonnegativity, Poisson statistics, realis- ¢ (r) = /7r /Oow(p) [R(p, ¢;1) — w¢pn]2 dpd¢
tic system modeling, nonquadratic penalties, and the other 0 Jo
well-known advantages of statistical methods. HoweVegnerew(p) is some arbitrary nonnegative weighting func-
the above analysis is useful for understanding and qug@n . Simplifying, we find that
tifying basic resolution properties. It is also useful for
designing preconditioners for fast gradient-based iterative [ K E_1 2
methods [8, 9]. ®(r) o /0 lz r) cos™ (¢ — T ) - w¢>] dg,

k=1

E. A FWHM Rule of Thumb Co L L
so thep weighting function is irrelevant. Minimizin@(r)

It is well known that the FWHM of bump-shaped points a linear least-squares problem that is equivalent to solv-
spread functions is approximately equal {§2p, ), where ing the linear system of equations
py is the half-amplitude frequency, i.&9(ps) = 5Lo(0).
From (7), it is clear that the half-amplitude frequency for ®r=>%
the PLS estimator i@o_l/@m“) for the ideal case when
Strue(u) = 1. Thus for the usual = 1 case, the FWHM
of I(r) is approximately3,’*. Since we are more inter- T n (¢ _ k- 1) db  (11)
ested inl; (r), Fig. 15 displays the FWHM df; (r) versus ™ Jo K
ﬁé/?’ for various detector blurs. There is a nearly affingng

relationship between the FWHM df(r) and 53/3 for 1 g b1
Bo > 5, which may be used to simplify further the tableP;; = —/ cos” <¢) — 77‘77> cos™ (gb — T > do.
lookup method for relating to FWHM described in [1]. o
| suspect there is an analytical inverse far Certainly
there is in the/{ = 2 case.
For discretew, we can replace the integral in (11) with
asum, sor = &b = &' Bw whereB is a simple
dim(r) x ngy matrix.

where
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Simplest in the case = 2, which is probably all we V. DISCUSSION

need. We have analyzed the frequency response and point-

Unfortunately, forn > 3 @ will be singular forn = 2, g,004 function of a continuous idealized method for to-
as noted by Web Stayman. A practical approach therefore, - ohic image reconstruction using a penalized least

Is just to discretize the objective function rather than the, . res criterion. The analysis includes the effects of mis-
solution: match in the detector blur. The effects of an angularly-

O(r) = ij Z [R(pj,qbk;f) — wd)kp?r, dependent weighting were shown to yield an asymmet-

j k ric point-spread function; such asymmetries were reported

This is a simple linear least-squares problenr.irHow- in [1]. It appears that it may be possible to develop a new
ever, now the weighting is relevant, and must be considnodified penalty function that eliminates this asymmetry

ered. by incorporating a corresponding angular dependence into
the regularizer.
IV. FFT SIMPLIFICATIONS For data with Poisson noise, the effective angular

If the geometric system responég is approximately weighting will be different for each pixel, but should vary
space invariant, and if the target penai®y is the standard Slowly with spatial location.
guadratic penalty, then if one uses the modified quadratic
penalty of [1], then the local impulse response is approxi-
mately given by (38) of [1]. In this important case, one carl1] J. A. Fessler and W. L. Rogers. Spatial resolution
use FFT’s to compute (38) of [1] approximately, thereby  properties of penalized-likelihood image reconstruc-
eliminating the need for an iterative method to compute  tion methods: Space-invariant tomograpHsEE Tr.
(38) of [1]. Im. Proc, 5(9):1346-58, September 1996.

Let j denote the index of a pixel near the center of , , :
) . 2] J. A. Fessler. Resolution properties of regularized
the image, and compute the kerdglo = G'Ge’. Let [2] Prop g

. image reconstruction methods. Technical Report
kr be the kernel ofR: kr = Re!. Let forg(ui,ug), g P

297, Comm. and Sign. Proc. Lab., Dept. of EECS,
fr(u1,u2), and Fyprs(u1,uz) denote the 2D FFT'’s of Uni .
: , niv. of Michigan, Ann Arbor, Ml, 48109-2122, Au-
kaa, kr, and[G'G + BR*| LG’ G¢’ respectively. v Ichig !
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Figure 1: Plots of_y(p), the spatial frequency response of o1} 1000
penalized least squares, under the continuous model de-
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0
scribed in Section I, for several values (shown) of the 0 Spatial Frequency p !
regularization parametety, for the ideal tomograph with
Strue(u) = 1. Figure 3: As in the previous figure, exceffc(u) =
sinc(2u).
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. o 04f
gular detector blurSi,ue(u) = sinc(u). =
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Figure 4. As in Fig. 1, but for a tomograph with a Gaus-
sian detector blur:Sye(u) = exp(—272u?/0?), where

= (8log2)~'/2 so that the FWHM Ofs,u(r) is ap-
proximately 1.
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Ideal Tomograph
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Figure 5: Plots ofly(r)/1y(0), the impulse response or
PSF of penalized least squares, under the continuous
model described in Section Il, for several values (shown) 0 o5 1 15 2 25 3 35 a4
of the regularization parametef,, for the ideal case Radal Posiion 1 [Pixels

Strue(u) =1

Figure 7: As in the previous figure, excef(u) =
sinc(2u).
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Figure 6: As in Fig. 5, but for a tomograph with a rectan-
gular detector blurS,ue(u) = sinc(u).
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Figure 8: Asin Fig. 5, but for a tomograph with a Gaussian
detector blur:Sue(u) = exp(—2m2u?/0?).
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Figure 9: FWHM of the point spread functiohgr) cor- with rectangular blurSyue(u) = sinc(2u).
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Figure 11: Comparison of analytically predicted PSF us-
ing (9) and discrete PSF from (38) of [1], for a tomograph
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Figure 12: FWHM ofly(r) versuslog,(0y), for various
detector responses.

Figure 10: Comparison of the resolution of the analyti-

cally computed PSF (9) with the resolution of the discrete 11
PSF ((38) of [1]), for a tomograph with rectangular blur: 10|

Strue(u) = sinc(2u).
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Figure 13: As in Fig. 10 but foly(r) .



