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Abstract
This technical report treats some technical considerations related to the probability density function of a function of a random vector.

I. INTRODUCTION

Let be a continuous random vector with known pdf . In many problems it is necessary to find the pdf
of a new random vector defined as a function of , where .

Many textbooks on probability and random variables state the following equality:

(1)

where is the Jacobian of .
There is considerable variation in how precisely the textbook authors state the conditions for the above equality.

Most books do state the condition that be one-to-one (and hence invertible). However, the stated conditions on
differentiability vary widely.
Many engineering books make no mention of the need for to be differentiable, e.g. [1–7]. Many books assume

that is globally differentiable e.g. [8–13], but this condition is too restrictive in some applications. Some books
[14–16] assume that is one-to-one and differentiable on some open set , and that the pdf of
vanishes (is zero) outside of . This is reasonably general, but still inapplicable to problems where, for example,
has a Gaussian pdf and is a proper subset of .
A more general requirement is to assume that , for which the condition that vanishes outside

is a special case. Hoel, Port, and Stone [17] provide such a theorem without proof. Bickel and Doksum [18] provide a
proof of the transformation formula under the condition , but the proof is not entirely rigorous since the
integrals given can cover points outside where the Jacobian need not exist. This technical report provides a rigorous
proof of (1), properly handling the technical details of the set .
This work was motivated by [19], in which a transformation function arises that is differentiable except on a set of

hyperplanes of Lebesgue measure zero.

II. THEORY

The following is simply Theorem 17.2 of [14], included for convenience.
Theorem 1: Let be a one-to-one mapping of an open set onto an open set . Suppose that

(on ) is continuous and that has continuous partial derivatives with Jacobian . Then for
, for any nonnegative function

(2)
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The following Theorem is a generalization of (20.20) in [14]. Standard treatments e.g. [13, p. 143] assume that
the transformation function is globally differentiable. Our generalization allows for a (measure zero) set where the
Jacobian is undefined.
Theorem 2: Let be one-to-one and assume that is continuous. Assume that on an open set

is continuously differentiable with Jacobian . Define by

(3)

where is the set complement (in ) of .
Define . Suppose random vector has pdf (with respect to Lebesgue measure) with nonzero mass

in , i.e. Then the pdf of is given by

(4)

Proof:
For (measurable)

Thus so

by Theorem 1, which applies since . (The set is open since by assumption is open and is continuous.)
Thus by (3):

since is the union of the disjoint sets and . The second integral above is zero since is zero for
by (3). Thus

for , proving that (4) is a pdf of .

REFERENCES
[1] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering, Wiley, New York, 3 edition, 1997.
[2] C. W. Helstrom, Probability and stochastic processes for engineers, Macmillan, New York, 1991.
[3] D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, Wiley, New York, 1994.
[4] A. Papoulis, Probability, random variables, and stochastic processes, McGraw-Hill, New York, 2 edition, 1984.
[5] Y. Viniotis, Probability and random processes for electrical engineers, McGraw-Hill, Boston, 1998.
[6] R. Walpole and R. H. Myers, Probability and statistics for engineers and scientists, Prentice Hall, New York, 5 edition, 1993.
[7] R. E. Ziemer, Elements of engineering probability and statistics, Prentice Hall, NJ, 1997.
[8] J. A. nón and V. Chandrasekar, Introduction to probability and random processes, McGraw-Hill, New York, 1997.
[9] A. Leon-Garcia, Probability and random processes for electrical engineering, AddisonWesley, New York, 2 edition, 1994.
[10] P. Z. Peebles and Jr., Probability, random variables, and random signal principles, McGraw-Hill, New York, 3 edition, 1993.
[11] J. A. Rice, Mathematical statistics and data analysis, Brooks/Cole, Monterey, Calif, 1988.
[12] S. Ross, A first course in probability, Macmillan, Englewood Cliffs, NJ, 4 edition, 1994.
[13] H. Stark and J. W. Woods, Probability, random processes, and estimation theory for engineers, Prentice-Hall, Englewood Cliffs, NJ, 1986.
[14] R. Billingsley, Probability and measure, Wiley, New York, 2 edition, 1986.
[15] A. M. Mood, F. A. Graybill, and D. C. Boes, Introduction to the theory of statistics, McGraw Hill, New York, 3 edition, 1974.
[16] D. Stirzaker, Elementary probability, Cambridge University Press, Cambridge, 1994.
[17] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to probability theory, HoughtonMifflin, Boston, 1971.
[18] M. statistics, P J Bickel K A Doksum, Holden-Day, Oakland, CA, 1977.
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