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Abstract—Let X, = {z1,...,2»}, be an i.i.d. sample having mul-
tivariate distribution P on [0,1]?. We derive a.s. limits for the
power weighted edge weight function of greedy approximations
to a class of minimal graphs spanning k£ of the n samples. The
class includes all minimal k-point graphs constructed by the po-
tential function partitioning method of Ravi, Sundaram, Marathe,
Rosenkrantz and Ravi [1] where the edge weight function satisfies
the quasi-additive property of Redmond and Yukich [2]. This in-
cludes greedy approximations to the k-point minimal spanning tree
(k-MST), Steiner tree (k-ST), and the traveling salesman problem
(k-TSP). An expression for the influence curve (IC) of the mini-
mal weight function is given which characterizes sensitivity of the
greedy algorithm to small perturbations in the underlying distri-
bution. The form of the IC indicates that the weight function has
robustness properties in R? which are analogous to those of rank
order statistics in one dimension. We also show that the log of the
minimum weight function is a robust estimator of the Rényi en-
tropy of order v, where v € (0,1) is a function of the sample space
dimension and the edge weight power exponent.

I. INTRODUCTION

Assume that we are given a set X, = {1,...,Z,} of n points in
R®. Fix k and denote by X, 1 a k-point subset of X, 0 < k < n.
The elements of the subset X, ; are distinct and there are (Z)
possible k-point subsets of X,,. The minimal k-point Euclidean
graph problem is to find the subset of points X, ; and the set of
edges connecting these points such that the resultant graph has
minimum total weight L(X, ). This problem arises in competi-
tive bidding for network routing contracts when some nodes may
be left out of the connected network, the traveling salesman prob-
lem for visiting at least k out of n cities, and other combinatorial
optimization problems.

For example, the Euclidean minimal k-point spanning tree (k-
MST) is the minimum weight tree spanning any k of the points.
As pointed out in Eppstein [3] the planar k-MST problem was
shown to be NP-complete by Zelikovsky and Lozevanu [4] and
Ravi, Sundaram, Marathe, Rosenkrantz and Ravi [1]. Ravi etal
proposed a polynomial time approximation algorithm for the pla-
nar k-MST with approximation ratio O(k'/*) which has been
successively improved to O(log(k)) by Garg and Hochbaum [5],
O(log(k)/loglog(n) by Eppstein [3], O(1) by Blum, Chalasani
and Vempala [6], 2v/2 by Mitchell [7], 3 by Garg [8], and 1 + ¢
by Arora [9]. Arora has recently obtained a linear time 1 + €
algorithm for multi-dimensional k-point TSP, MST and Steiner
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problems [10].

In this paper we derive a.s. limits for the power weighted edge
weight function of greedy approximations to a class of minimal
graphs spanning k of the n samples. The class includes all minimal
k-point graphs constructed by the potential function partitioning
method of Ravi, Sundaram, Marathe, Rosenkrantz and Ravi [1]
where the edge weight function satisfies the quasi-additive prop-
erty of Redmond and Yukich [2].

A direct result of the asymptotics of the minimal k-point weight
function is that the log of the minimum weight function is a
strongly consistent and robust estimator of the Rényi entropy
of order v of P, where v € (0,1) is a function of the sample
space dimension and the edge weight power exponent. Entropy
estimation has been of interest for pattern analysis, process com-
plexity assessment, model identification, tests of distributions,
and other applications where invariance to scale, translation and
other invertible transformations is desired in the discriminant [11],
[12], [13]. Another application is in vector quantization where
Rényi entropy is related to asymptotic quantizer distortion via
the Panter-Dite factor and Bennett’s integral [14], [15]. Possi-
ble applications of our results include: estimation of Lyapounov
exponents in non-linear models [16], [17], multi-modality image
registration using mutual information matching criteria [18], stop-
ping criteria for regression and classification trees [19], and other
general entropy estimation problems [20], [11]

The principal results presented here are as follows:

1. A polynomial time greedy algorithm for constructing an
approximation to the minimal k-point graph and its edge
weight function is presented which is a direct generalization
of the algorithm of Ravi, Sundaram, Marathe, Rosenkrantz
and Ravi [1] developed therein for minimal k-point minimum
spanning tree approximation on the plane.

2. A tight a.s. asymptotic bound on the entropy estimation
error is given which can be used to determine the required
partition resolution to obtain a prescribed estimator error
when a bound on the total variation of the density function
is known.

3. Zero asymptotic error is achieved when the density function
is piecewise constant over the resolution 1/m partition cells
of the greedy algorithm.

4. We give a condition, called a tightly coverable graph prop-
erty, which holds when &+ o(k) of the vertices of the k-point
graph can be covered by a resolution 1/m partition set (a.s.)
as k — oco. This condition is satisfied for the greedy approx-
imation by its construction. If the exact minimal k-point
graph satisfies this condition then the weight of the mini-



mal k-point graph converges to the same asymptotic limit as
the greedy approximation, i.e. the greedy approximation is
asymptotically optimal.

5. A robust Rényi entropy estimator is proposed based on the
log of the weight of the minimal k-point graph with edge
weight exponent . This estimator is shown to converge a.s.
to a conditional Rényi entropy of order v = (d—+)/d € (0,1),
where d > v is the sample space dimension. Inspired by the
convergence rates established in [21], for v < 1/d we predict
that the rate of convergence of the Rényi entropy estimator is
equal to 1/4/n. This would make our estimator competitive
with standard histogram estimation techniques of entropy
estimation.

6. Influence curves studies are presented which quantitatively
establish that the greedy minimal k-point graph construction
generates a robust estimator of distribution entropy.

7. The influence curve study provides a threshold rule on the
graph’s edge weight function which can be applied to se-
lect an optimal threshold proportional number of points
(n —k)/n =1 — «. This threshold specifies the number of
points which should be rejected from the sample to achieve
maximum outlier rejection rate while preserving inliers.

8. The asymptotic results presented hold for a very general
class of graphs constructed by minimizing an edge weight
function which is a quasi-additive functional. This class in-
cludes the optimal Euclidean traveling salesman tour, the
minimal spanning tree, the Steiner tree, and the two popu-
lation minimal matching graph.

The outline of the paper is as follows. In Section II-A we re-
view Euclidean minimal spanning graphs, including those arising
from the solution of the traveling salesman problem, the minimal
spanning tree, and the Steiner tree. In Section II-B we review
the theory of quasi-additive functionals which were used by Red-
mond and Yukich to prove a general asymptotic theorem on the
edge weight function of minimal spanning graphs. A minimal k-
point graph is defined in Section III and in Section III-A we give
a lemma giving a partition approximation for such graphs which
satisfy a tightly coverable property. Then in Section IV we treat
the asymptotic theory of greedy approximations with a series of
lemmas and convergence results. This is followed in Section VII
by a study of quantitative robustness of the greedy approximation
via the influence function.

II. BACKGROUND

Assume that X, = {z1,...,z,} is a realization of n i.i.d. ran-
dom vectors where each z; takes values in R? and has distribution
P with Lebesgue density f. Additional smoothness assumptions
on f will be required and will be given in the sequel. To sim-
plify certain mathematical technicalities we will assume that the
distribution is supported on the unit cube [0, 1]%. Any finitely sup-
ported distribution can be mapped to this domain by invertible
linear transformation. Although we do not prove it, the restric-
tion to finite support can undoubtedly be relaxed for densities
satisfying the tail decay bounds of [22].

A. Minimal Euclidean Graphs

An n-point (Euclidean) undirected graph G is defined by a
set of vertices X = {x1,...,z,} and a set of edges £ = {e;;},
where each edge e;; = (z;, ;) connects a pair of vertices x;, ;.
If for two vertices x and y a graph G has a sequence of edges
(®,j,), (€51, %j5),---,(xj,,y) then G is said to contain a path
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from x to y. A graph is said to be connected if there exists a
path between any pair of its vertices. If there exists a sequence of
distinct edges which provide a path from any vertex back to itself
the graph is said to contain a cycle. A graph which contains no
cycles is an acyclic graph called a tree. By the span of a graph we
mean the set of vertices which are connected by edges. The degree
of a graph is the maximum number of edges which can be incident
on any single vertex. The complete graph over X, = {z1,...,2n}
is a graph for which each pair of vertices are connected by an
edge; such a graph has (’2’) edges, is connected, has cycles, and is
of degree n.

Different graphs can be compared based on their weights
which are defined as follows. If z = [[z]i,...,[z]d]” and y =
[Wli,---,[y]la]" are two vertices connected by an edge e we de-

note by |e| the Euclidean length ||z — y|| = \/ZZ:I([x]k — [y]x)?
of the edge. Let ¢ be an edge weight function which satisfies
¥ (le]) > 0. The total weight L(X) of of a graph G with edges {e}
and vertices X is defined as the sum of the edge weights

La(X) =Y v(lel). (1)

eeG

While as in [23] the results of this paper might be extended to
general weight functions which satisfy v (le]) ~ O(le|”) as |e]
approaches 0, we will restrict our attention to the case of “power
weighted edges” of exponential order 7y

Y(le]) = lel”, 0<y<d. (2)

A.1 Euclidean Traveling Salesman Problem

In the Euclidean traveling salesman (TSP) problem the ob-
jective is to find a graph of minimum weight among those that
visit each point in X, = {z1,...,z,} exactly once. The resultant
graph is called the minimal TSP tour. This problem is NP-hard
and arises in many different areas of operations research [24]. Let
T (Xn) denote the possible sets of edges in the class graphs of
degree 2 which span A,. The weight of the minimal TSP tour is

specified by
D kel

" eeT(Xn)

A.2 Euclidean Minimal Spanning Tree Problem

In the Euclidean minimal spanning tree (MST) problem the ob-
jective is to find a graph of minimum weight which spans nodes
Xn = {z1,...,2,}. This problem admits exact solutions which
run in polynomial time and arises for d = 2 in VLSI circuit lay-
out and network provisioning [25], [26], two sample matching
[27],pattern recognition [28], clustering [29], nonparametric re-
gression [30] and testing for randomness [31]. Let M (X}) denote
the possible sets of edges in the class of acyclic graphs which span
Xr. The weight of the MST is specified by

LMST(XR):MH(len) Z le|”.

A.3 Euclidean Steiner Tree Problem

In the Euclidean Steiner tree (ST) problem a set of addi-
tional nodes ), called Steiner nodes, can be inserted into the
MST problem to reduce the weight required to span the nodes
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Xn = {z1,...,2z»}. The first formulation of this problem seems
to be attributed to Gauss in the context of connecting 3 towns
with a network of roads of minimum overall length [9]. Steiner
tree problems are NP-hard but have been of interest for minimum
area routing problems, e.g. in VLSI layout [32]. Let S(X, UY)
denote the possible sets of edges in the class of acyclic graphs
which span X,, UY, where the finite set ) is free. The weight of
the minimal ST is specified by

Lot (X,) = min el”.
ST( ) V,8(XnUYy) Z | |
e€ES(XpUY)

The asymptotic behavior of each of the weight functions
Ltsp, LmysT and Lgt can be studied using the more general con-
cept of quasi-additive euclidean functionals introduced by Red-
mond and Yukich [2] and extended to the case of power weighted
edges in [21] and [33].

B. Quasiadditive Euclidean Functionals

Let F be a finite subset of [0,1]¢, i.e. a set of points. Define
the following conditions on a real valued set function L [2], [21]:

Null Condition: L(¢) = 0, where ¢ is the null set.

Subadditivity: There exists a constant C with the following
property: If Q™ = {Qi}g’;dl is a uniform partition of [0, 1]
into m? cubes Q; each of edge length m~! and volume m ¢
and if {g;},<,a is the set of points in [0,1]? which translate
each Q; back to the origin such that Q; — ¢; = m~'[0,1]¢,
then

L(F) <m 'Y Lm[(FN Qi) - q) + Cim® 7

i=1

Superadditivity: There exists a constant C> with the fol-
lowing property:

L(F) 2m™ S Lml(F 1 Qi) - ¢:]) — Com®™

i=1

Continuity: There exists a constant C3 such that for all
finite subsets F and G of [0, 1]?

|L(F UG) — L(F)| < C3 (card(G)) 4= 1/4

L is said to be a continuous subadditive functional if it satis-
fies the null condition, subadditivity and continuity. L is said
to be a continuous superadditive functional if it satisfies the null
condition, superadditivity and continuity.

Definition 1: A continuous subadditive functional L is said to
be a quasi-additive functional when there exists a continuous su-
peradditive functional L™ which satisfies L(F) +1 > L*(F) and
the approximation property

|E[L(Un,. ..

U] — EIL™(Un,...,Up)]| < Cant@=771/4 (3)

where Ui, ..., U, are i.i.d. uniform random vectors in [0, 1]¢.

When such a functional L* exists it is called the dual of L.
As shown in Redmond and Yukich [2, Thm. 1.3] and [21, Thm
2.3] duals can frequently be constructed by identifying a related
boundary rooted graph over X,. In [21, Thm 2.3] it is shown that
L is quasi-additive for the following minimal graph problems: the

minimal TSP tour, the MST, and the two population minimal
matching problem. The following theorem is proven? in [21].

Theorem 1: Let L be a quasi-additive Euclidean functional
with power-exponent v, and let X, = {z1,...,z,} be an ii.d.
sample drawn from a distribution on [0,1]¢ with an absolutely
continuous component having (Lebesgue) density f(z). Then

(4)

n—oo

lim L(X,)/n"" " =g, /f(x)(d_w/dda:, (a.s.)

In Theorem 1 fr,, is a constant which only depends on 7 and
the definition of the functional L, i.e. the graph optimality crite-
rion (TSP, MST, or Steiner tree). In particular, 8z, is indepen-
dent of the distribution of the z;’s. Theorem 1 is a generalization
of Steele’s work [23] which itself is a generalization of the well
known Beardwood, Halton and Hammersley Theorem [34].

III. MINIMAL k-POINT EUCLIDEAN GRAPHS

We denote by X, , a k-point subset of X,,, 0 < k < n. The
minimal k-point Euclidean graph problem is to find the subset of
points X, = X, and the set of edges connecting these points

such that the resultant graph has minimum total weight L(X,, ;)

L(X, ) = minL(X,).

Xn ke

Define k = |an| as the integer part of an. For the purposes of
asymptotic analysis we will fix @ € (0,1) and study the behavior
of L(X, |an|) as n — co. More generally define the weight func-
tional L (F') as the k-minimal graph which spans k = |acard(F) ]
of the points in the finite set F. Then L(X) ;) = Lo (Xy). It is
not difficult to see that L. (F') neither satisfies the subadditivity
property nor the continuity property. Hence, the elegant methods
of Steele [23], Redmond and Yukich [2], and Rhee [35] cannot be
directly applied.

A. A Tight Cover Property

Let Q™ be a uniform partition of [0,1]¢ into m? cubes Q; of
edge length 1/m. The quantity 1/m is called the resolution of the
partition. The following definition of a tightly coverable graph
specifies a class of k-point graph algorithms for which the ver-
tices of the minimal graph can be covered by a small number of
partition cells Q;.

Definition 2 (Tightly Coverable Graphs) Let Q™, m =
1,2,..., be a sequence of uniform partitions of [0,1] of resolu-
tion 1/m and let o(Q™) denote the sigma-algebra generated by
the partition cells in Q™. Let G, be the complete graph span-
ning X,. For a € [0,1] let G be an algorithm which constructs
a subgraph of G, with k = |an]| vertices X, C X,. Define
D = N{ces(om):x, ,eCt D the minimum volume partition set
which covers X, ;. The algorithm G is said to generate tightly
coverable subgraphs if for any € > 0 there exists an M such that
for all m > M

card(X, N DT, |) — lan]

lim sup <e (a.s.)

n—o0 n

2In [21] Redmond and Yukich actually prove even stronger convergence (com-
plete convergence) of the functional L, = L(Xy) and give asymptotic convergence
rate.
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Tightly coverable subgraphs have the property that the ver-
tices A, 1 can be dissected from the rest of the points in X, using
a scalpel of resolution 1/m. For an arbitrary distribution of ver-
tices Xy, this property would allow us to index A, » over the (Z)
possible combinations of k-point sets of X,, by indexing the sets of
verticesdD N X, over the partition-generated subsets D € a(Q™)
of [0,1]¢.

B. A Covering Lemma

Consider the class (sigma algebra) o(Q™) of sets of resolution
1/m. Out of this class we define C3' to be a set of probability at
least « for which L(C N X},) is minimized

o = argminogo(gm):P(mZaL(C N Ax,).

where P(C) = P(z; € C). As in the tight cover definition, define
&' as the minimum volume set in ¢(Q™) containing X, ;,

Dy = Nceo(omy:cox: , C.

Note that &, ; is contained in set Dy' but may not be contained
in CJ'.

With these definitions we have:

Lemma 1: Let L be a quasi-additive functional with power ex-
ponent vy as in Theorem 1. If card(X, N Cy') > k

|L(54) = L(X, 0 O] /@0 < 5

n n

l(card(?fn new) - ’f) o +2 <Card(Xn nDi) — k) (‘“W]

Proof of Lemma 1

Let Xf’g be any k-points in X, N CJ*. Due to continuity of L
we have

o

‘L(Xn NCa) — L(X, ; k)td=n/d

)| < Cs (card(X, NCY) —

Hence, since X, ; are the vertices of the minimal k-point graph

(6)
LX.nCy) > L(ng) — Cs (card(X, NCY) — k)(d*w)/d
> L(X; ;) — Cs(card(X, N CY) — k)(d—‘v)/d .

Furthermore, again by continuity,

|L(X, N DY) — L(X;: )| < Cs (card(X, N DF) — k)7 (7)

so that
L(X, N D) < L(X;, ;) + Cs (card(X,, N D) — k)“4=7/4 - (8)
Hence, combining (6) and (8)

L(X, N Dy') — L(X, N CYY) 9)

< Cs [(card(Xn A DP) — k) 4 (card(X, N CT) — k)(d’”/d]

On the other hand, by definition of C' the left side of inequality
(9) is greater than zero so that

|L(X, N D) — L(X, N C™)]
< Cs [(card(Xn A DP) — k) 4 (card(X, N CT) — k)(d’”/d]
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which when combined with (7) gives
|L(X7 1) = L(X, nCT)|
< |L(Xa (1 D) = L(Xu 0 C)| + |L(X54) — L(Xa 11 D)

<Cs [(card(/'\f'n NC™) — k)99 4 3 (card(X, N DY) — k)“—”/d] .

Dividing both sides by n(4=7/? establishes the lemma. i

When k = |an]| the first additive term on the right side of the
inequality of Lemma 1 can be shown to converge a.s. to a term
of order O(m?~%) using Lemma, 6 and arguments similar to those
used to prove Lemma 7. Thus if the minimal k-point graph can
be shown to be tightly coverable, for any ¢ > 0 there exists an
M such that: limsup,, ., |[L(X) ;) — L(X, N om)|/nld=/d < ¢
(a.s.) for all m > M. It would then be possible to show that
L(X; ) /n'“= /% would converge to the same a.s. limit as that
of the greedy minimal k-point approximation given in the next
section. Conversely, if the greedy approximation given below is
not asymptotically equivalent to the exact minimal k-point graph
then the latter graph does not satisfy the tightly coverable condi-
tion. The question whether the tightly coverable condition holds
or not for the minimal k-point graph is still an open problem.

IV. LiMiT THEOREM FOR k-POINT GREEDY APPROXIMATION

Since the computation of the exact minimal k-point graph X, ,
has complexity which is exponential in the number of points n,
the asymptotics of polynomial-time approximations are also of in-
terest. Here we obtain asymptotic results for a greedy algorithm

_ originally introduced by Ravi, Sundaram, Marathe, Rosenkrantz

and Ravi [1] for constructing approximations to the k-MST on
the plane. Their algorithm produces graphs which by construc-
tion satisfy the tightly coverable property introduceed in the last
section. Here we define a generalized version of their algorithm
which constructs graphs in d dimensions, d > 1, using arbitrary
quasi-additive edge weight functions.

The algorithm is implemented in three steps: 1) the user speci-
fies a uniform partition Q™ of [0, 1]¢ having m? cells Q; of resolu-
tion 1/m; 2) the algorithm finds the smallest subset B} = U;Q;
of partition elements containing at least k points; 3) out of this
smallest subset the algorithm selects the k points X, , which min-
imize L(X, ). Stage 3 requires finding a k-point minimal graph
on a much reduced set of points, which is typically only slightly
larger than k if m is suitably chosen, which can be performed in
polynomial time.

The smallest subset mentioned in Stage 2 of the algorithm is
not unique. Figures 1 and 2 show an example with m =5, k = 17
for which there are two possible smallest subsets, in this case both
contain 18 points.

Similarly to [36], [1] we specify a small subset by the follow-
ing greedy algorithm: i) find a reindexing {Q(i)}z’;dl of the cells
in [0,1]% ranked in decreasing order of the number of contained
points, card(X, N Q) > ... > card(X, N Q,a)) (if there are
equalities arrange these in lexicographical order); ii) select the
subset specified in Stage 2 by the recursion:

Greedy Subset Selection Algorithm

Intialize: B=¢, j =1
Do until card{X, N B} > k
B=BUQ
End j=j+1
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Fig. 1. A sample of 75 points from the mizture density f(z) = 0.25f1(z)+
0.75f. () where fo is a uniform density over [0,1]% and f1 is a bi-
variate Gaussian density with mean (1/2,1/2) and diagonal covari-
ance diag(0.01). A smallest subset B} is the union of the two cross
hatched cells shown for the case of m =5 and k = 17.
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Fig. 2. Another smallest subset By containing ot least k = 17 points for
the mizture sample shown in Fig 1.

At termination of the algorithm j = § < m® and we have a

dlef B = Ul 1Q ;) containing at least k

points. Let XGm be the k vertices of the graph found by the
greedy algonthm

minimal subset B[7,

It should not be surprising that as n — co the greedy subset
selection algorithm should produce the smallest resolution-1/m
set A of probability close to & = k/n. Indeed, this is the basis for
the asymptotic theorems stated below. Therefore we next specify
a class of minimal subsets in the sigma-algebra o(Q™) which have
coverage probability of at least a.

Define the cell probabilities p; = fQ z)de, i = 1,...,m%
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If for any C € o(Q™) satisfying P(C) > « the set A € o(Q™)
satisfies

P(C) =z P(A) 2 o,

then A is called a mininal resolution-1/m set of probability at
least a. The class of all such sets is denoted A’ and, as shown in
the following construction, all sets in A" have identical coverage
probabilities pam > a.

The class A7’ can be generated by the following greedy algo-

rithm: i) find a reindexing {Q@}{’fl of the cells in Q™ ranked
in decreasing order of cell probabilities, p1) > ... 2 Qnay; ii)
select a subset A using the Greedy Subset Selection Algorithm
applied to the modified cell ordering prescribed in i). Assume the
greedy algorithm terminates at iteration j = q. If ¢ > p41)
then A is the only set in the class Ag'. Otherwise, let there be
K — T identical values of ¢; satisfying oi—1) > ¢y = ... =
Olq) = -+ = Q(K) > P(k+1) Where I < g and K > g. Then .Am
contains S = (qflil) sets {A4;} constructed by taking the last
q—I+1 cells that the greedy algorithm added to A and exchang-
ing them with any of the ¢ — I + 1 possible combinations of cells
in the set {Q(r),...,Q(x)}. Each of these sets A; is composed of
an identical number g of dissecting cells {Qf" }9_, in Q™ having
identical sets of coverage probabilities {P(Q]A’) i ={eo =1
and satisfying P(A4;) = pam > a,i=1,...,8

Before developing the main result of this section we define some
notation.

We will be interested in two special subsets generated by AgJ'.
The interior A% defined as the intersection of all S sets in AJ

Anr = NA;eam A; (10)
and the associated residual set

AT Ua;eam Ai — Nazeam Ai (11)

= Ua;a;ean AiA?
A% is the “core” of the set A2 and AL is the “crust” of the set.

The total variation v(Q) over a rectangle @ C [0, 1] of a func-
tion g on R? is defined as [37]

v(Q)—hmsupZIg z) = g(zi-1)| = v(Q), (12)

{zi}e@

where the limsup is taken over all countable subsets {z1, 22, ..., }
of points in Q. The function g is said to have bounded variation
over @ if v(Q) < co. By convention, v(¢) = 0 for ¢ the empty
set.

To simplify the presentation we assume throughout that the
distribution P of each of the i.i.d. points in X, = {z1,...,zn} is
absolutely continuous with respect to Lebesgue measure and has
a density f(z). The results of [23] and [2] assert that the addi-
tion of singular components, e.g. delta functions, to the density
does not change the asymptotics of L(X,). Here it does change
the asymptotics since the points of support of singular compo-
nents entail zero edge weights and are therefore more attractive
to include in the minimum k-point graph. However, the effect of
singular components will only be to change the value of a thresh-
old  on f(x) (see remark below). The main result of this section
is the following asymptotic theorem.

Theorem 2: Let X, be an ii.d. sample from a distribution
having Lebesgue density f(z). Fix a € [0,1], v € (0,d). Let



f4=1/4 be of bounded variation over [0,1]¢ and denote by v(A)
its total variation over a subset A C [0,1]¢. Then, the total edge
weight L(XnG’,:) of a k-point graph constructed by the resolution-
1/m greedy algorithm satisfies

lim sup L(Xf{"anj)/n(d_w/d - ﬂL,»,/ FE () da

n—oo

< 6, (a.s.), (13)

where A} € A7’ is any minimal resolution-1/m set of probability
at least «,

ma

2m ™ Bry Y v(Qi NOAT) + Calpag — )77/
i=1

= O(m"™%), (14)

and pam is the coverage probability of sets in A;". Furthermore,
the bound (13) holds pointwise when L(X

n,lan]
EIL(XCp, ).

) is replaced by

We prove Theorem 2 in Section V. It is of interest here to
relate the integral in (13) to the Rényi entropy of the density f(x).
The key to this relation is the following lemma which relates the
integral over a set A in A7 in (13) to a constrained minimum
over A € o(Q™).

Lemma 2: Under the assumptions of Theorem 2

@1/ ()i = min @=1/4 () dg
AT A

+0(m™%). (15)
Proof of Lemma 2

First recall that by construction of Ag' the coverage probability
of any set in A" satisfies for some g: Zl L Pe) < a, lel Py =
pam 2 a,and 0 <pam —a < (g, where o) > ... > @4y, are
the rank ordered cell probabilities.

In view of Lemma 4 it is sufficient to show that (15) holds

for blocked densities of the form f(z) = f(z) = E:n:dl 610, (x).
Observe that for any AZ € AL and for any 7 satisfying
mdcp(q,l) <n< mdcp(q): if z € A then f(z) > 5. Equiva-
lently, f{@=1/4(z) — Af(x) < 0 where A = /¢, With Iam (x)
the indicator function of A} this implies that for any A € a(Q™)

Lig (@)(f“" 7" (2) = M (2)) < La(@) (f"(2) = Af(2)),

for all z. Therefore, integrating this inequality over z € [0, 1]¢

/ (F44 (@) = Af(2)) do g/ (F9= 774 2) = Af(2)) d,
m A

a

or
/ f(d*"r)/d(x)dx _/ f(dfv)/d(z)dz (16)
m A
<A ( f(z)dz —/ f(x)dm) .
A A
Now, as P(Ay') = pam, if P(A) > o then the right side of this

inequality is upper bounded by A(pam — a) < ¢ = m™ %0 ,.
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Hence, minimizing both sides of the inequality (16) over A we
obtain

Fd=)/d () d < i Fd—)/d 1\ g
/m f (@)de < {AEU(QI"ILI)IB’(A)Za} /A f (z)de
+0(m™%).

Since, obviously,

/ FE I (2)de > =D/ (5)d

min
{A€a(Q™):P(A)>a} /A
the lemma is established. O

We can now show how Theorem 2 can be related to estima-
tion of Rényi entropy. Using Lemma 2 and the fact that o(A™)
converges to the class of Borel subsets B of [0,1]%, it is an easy
exercise to show that

li (d=1/d (Vg — inf (d=1/d(pyq
e A f (w)dz AEB:III}(A)ZQ Af (w)dz

/ £/ () dga7)
A

= inf
A€EB:P(A)=a

Now for any Borel set A in [0,1]¢ having P(4) > 0 define the
conditional density f(z|A) = f(z)/P(A)Ia(z) where I4(z) is the

indicator function of A. The Rényi entropy of f(z|A) of order
€ (0,1) is defined as

R, (f|A) = log/f (z]|A)dx (18)

This is also called the conditional Rényi entropy given A. As
1 — v > 0 minimization of R, (f|A) over A is equivalent to min-

imization of the integral in (18). Let A, be the probability-at-
least-a Borel subset of [0,1]¢ which minimizes R, (f|A)

v (f| Ao A )
RAfA) = il R(fI4) (19)
For v = (d — v)/d define the following function of L(X o LanJ)

A def 1 )

R, = —— (log L(X,'T,,.))/(lan])” —log Br.,) (20)

An immediate consequence of Theorem 2 is the following.

Theorem 3: Under the assumptions of Theorem 2 R,, is a
strongly consistent estimator of the minimum conditional Rényi
entropy R, (f|A,) of order v € (0,1) as m,n — oco.

Before developing the proof of Theorem 2 in the next section,
we make the following remarks.

1. The bound § in Theorem 2 is tight since it reduces to zero for
the case = 1, yielding the classical a.s. BHH limit theorem,
Theorem 1, for minimal graphs spanning all n points X,.
Indeed, in this case, for arbitrary m > 0 the class A2 of
resolution-1/m probability-at-least-c sets contains only one
set Ay = [0,1]¢. Therefore, pam —a = 0, 0AY = ¢, the
empty set, and v(Q; N AL ) = 0 as required.

2. Theorems 2 and 3 are easily extended to the case where the
density of P contains singular components, e.g. delta func-
tions. Specifically, let P have the mixed density f(z)dz + ps
where dz is Lebesgue measure, f(x) is the absolutely con-
tinuous component and ps is the singular component of P
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relative to Lebesgue measure. Let the support of the singu-
lar measure be A, and let as = ps([0,1]¢) = P(4;) < a.
Then, we know from Lemma 6 that lim,— L(X, N A;) =0
and hence points falling in the singular part A of [0, 1]¢ con-
tribute negligible weight. Thus, by the strong law of large
numbers, asn of the n points can be included in the graph
at negligible cost leaving only (o —as)n points in [0, 1]¢ — A,
whose edge weights are asymptotically significant. There-
fore, in the case of a singular component with as; < «, The-
orem 2 holds with the class Ag replaced by the class Ag_,,
of resolution 1/m subsets with coverage probability at least
a—as. If as > a then Ay is replaced by the empty set
and L(XLGOZJ) converges to zero a.s. as m,n — oco. Like-
wise, it can be shown that when there is a singular compo-
nent Lemma 2 holds with the minimization over the class
{A € 6(Q™) : P(A) > a} replaced by a minimization over
the smaller class

{A €a(Q™): / f(z)dr > max{a — as,O}} .
A

. As can be seen from Lemma 7, Theorem 2 holds for any
method of selection of k = |an]| points from the minimal
subset B} of o(Q™) covering at least k points. It does not
depend on the precise way that a few points are eliminated
from the set By" to form Xﬁg‘. This implies that for large n
all methods of elimination are equivalent, including simply
randomly rejecting points from Bjp' until exactly k points
remain.

. In smooth estimation problems the normalization factor re-
quired to ensure convergence of a parameter estimator to a
finite non-zero constant is typically 1/n. In contrast Theo-

rem 2 says that the stabilization factor for L(XSTL"MJ) is the

larger quantity l/n(d”’)/d7 ie., L(XE*L”&M) is less explosive
as a function of n. On the other hand, inspired by [21, Thm.
2.5] which gives the tight convergence rate |E[Las7(Xn)] —
Brarsr a1 = 0O (max(l,n(d_"_l)/d)) for the MST
under the uniform distribution, we conjecture that the rate
of convergence in the limsup of Theorem 2 is only O(1/n'/%)
for v < d—1 while it is the standard O(1/+/n) for v > d —1.
For d = 2 these rates are identical but for d > 2 the estima-
tor (20) of Renyi entropy is best implemented for orders v
in the range 0 < v < 1/d.

. The bound 6 of Theorem 2 decays to zero as a function
of resolution 1/m at overall rate O(m”~%). The first term
medBL,A, E:n:dl v(Qi NOAY) < 2ﬂL,7m7dv([0, 1]) decays as
m~?% and and is due to non-uniqueness of the resolution-
1/m subsets Ay € A7 all of which have identical coverage
probability but over which f may have different variation.
When f is, in the terminology of [23], a “blocked distribu-
tion,” f(z) =m™% ZZ’S pilg,(z), over the resolution-1/m
cells this term is equal to zero. The second additive term
Cs(par —a)@="/? is due to the overshoot of coverage prob-
ability by the subsets AJ' € AL'. This term is zero when it so
happens that the « chosen in the greedy algorithm is exactly
attainable by a 1/m resolution subset. However, this term
decays to zero only as m”~? and dominates the resolution
convergence rate. Note that this implies that the rate of con-
vergence in m of the bound § in Theorem 2 is fastest for small
~. For d > 2 this trend is opposite with respect to the rate
of convergence in n (see previous remark) and is reminiscent
of the fundamental tradeoff between bias or resolution (due
to insufficient m) and variance (due to insufficient n) which
characterizes most estimation problems.

6. Since SUPeq, Fla=M/d gy <

d
v([0,1]%) and o v(@in
dAT) < v([0,1]%) we can weaken the a.s. bound in Theorem
2 by using the result (37), which was shown in the proof of
Theorem 2. This results in the following

§ < [2B0,m™ + Cam” "] v([0,1]%). (21)

This a.s. bound holds uniformly over the class of all density
functions such that f{®~7/? has total variation less than or
equal to v([0,1]%). Thus if an upper bound T on the total
variation of an unknown density is available and a consis-
tent estimate of conditional Rényi entropy R, = R, (f|Ao)
is desired such that
Gm v
|L(X,, Vo)) (Lan])” = Bry exp{—(1 = v)R,)| <€

the weakened bound (21) can be used to give a selection rule
for the required partition resolution 1/m

€
< °
1/m < 2+ C3)o

. The Borel set A, of probability-at-least-a defined in (19)

which minimizes Rényi entropy of order v is independent of v
and can be constructed by a simple water pouring procedure.
To see this define the Lagrangian

p(A,N) def / FAI () dr — A </ f(z)dz — a)
A A

for A > 0. Consider an arbitrary Borel subset AA C [0, 1]*
outside of A,, Ao N AA = ¢. By Kuhn-Tucker, A, must
satisify p(Ao + AAN) — p(4s,\) < 0 for A, to minimize
p(A, A) and hence minimize entropy. Here

p(Ao + AAN) — p(Ao, N) = / (1 _ )\fw/d) f(dfw)/d7
AA

which is negative when A, is defined by

Ao ={z: f(z) 2 n}. (22)

where, if possible, n = A7 > 0 is selected to satisfy
P(A,) = a. Hence, in this case, the conditional density
f(z|Ao) in (20) is obtained by truncating f(z) wherever it
falls below n and renormalizing to obtain a valid probability
density integrating to 1 over [0,1]¢. See Fig. 3 for illustra-
tion.

When for any a > 0 the set {z : f(z) = a} has (Lebesgue)
measure zero f(x) has no flat spots and it is always possible
to select n in (22) to satisfy P(A,) = a. Otherwise, we
need to slightly modify the definition (22) of A,. Let n be
such that the set {z : f(z) < n} has probability a_, the set
{z : f(z) = n} has probability @+ —a— > 0 and assume that
a € (a—, ). Then defining

A, ={x: f(&) 2 n}UC, (23)

where C is an arbitrary Borel subset of {z : f(z) = n}
having P(C) = @ — a—, is an entropy minimizing subset of
probability a.

. The minimum entropy set A4, in (19) is not unique. For ex-

ample any arbitrary probability zero set can be added to A,
without affecting the entropy. A more interesting example
occurs when f is a uniform density for which case any set A
of area « minimizes entropy. In this case the asssertion of
Theorem 2 may come as a surprise since the largest distance
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between points in A should be smallest for connected sets of
small diameter, e.g., a sphere. However, let A = U2, A; be
a countable union of disjoint sets A; and having vol(A4) = a.
Note that only a single edge is needed between A; and A;
to form a connected graph over any two sets. Thus in the
limit of large n the total edge weight of the graph is domi-
nated by connections between points within each A; and not
connections between different A;. This is because the total
edge weight depends more on the average edge weight than
the maximum edge weight.

9. In the Rényi entropy estimator (20) the constant 3r,, is
a bias offset which can in principle be computed offline as
it does not depend on f. However, while upper and lower
bounds are available, see e.g.[38] for MST bounds, analytic
expressions for 81, are not available. Alternatively, for some
estimation or classification problems only relative entropy
may be needed, e.g. testing for different entropy rates be-
tween two populations via the ratio of k-point graph weight
functionals, for which the bias offset need not be known.

10. Counsider the case that f = (1 —¢€)f1 +€f, is a mixture of a
nominal density fi of interest and a contaminating density
fo and € is small. Then, since f; increasingly dominates f,
as € decreases, for small € a suitable threshold n («) exists
for which: f(z|A,) = fi(z). Thus (20) can be viewed as a
robust estimator of the Rényi entropy of the nominal density

fi.

V. PROOF OF THEOREM 2

Here we present a set of lemmas that are needed to prove The-
orem 2. First we establish by Lemma 3 that any set B;* obtained
by the greedy algorithm belongs to class AJ' with probability
close to one. Then it is shown in Lemma 4 that replacing f(x) by
its piecewise constant approximation leads to an approximation
error to the integral in (13) that goes like O(m~%). This allows
us to establish in Lemma 5 that the length of a MST spanning
all points in B]' provides an estimate of f f¥(z)dx. This result
is then refined in Lemma 7 where it is shown that asymptotically
the length of this MST increases at the same rate as the length of
the k-MST spanning only k = |an]| of these points. It is then a
simple matter to put Lemmas 5 and 7 together to prove Theorem
2.

Lemma 3: For given a € [0,1] and a set of n i.id. points
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Xy, = [z1,...,2,]" let BT be the minimal cover of |an] points
with resolution-1/m produced by the greedy subset selection al-
gorithm. Then

P (liminf {X,: B € AZ’}) =1

n— 00

Proof of Lemma 3

Define the m? independent random variables N; = card(X, N
Q) of points in cell Q;, i = 1,...,m%. By definition, the greedy
algorithm gives a minimal cover B[, containing at least an
points which satisfies the two conditions:

G—1
n! Z N(i) < « (24)
i=1
q
n! Z Noy > o (25)
i=1

Define (i), the index function which establishes a correspon-
dance between rank ordered probabilities ¢y >,...,> ¢4y and
the cells Q; which support each of these these probabilities: i.e.
with this notation P(z; € Q;),) = ¥ For arbitrary ¢ > 0
define the events E,(¢) and F),

qg—1
En(E) = {Xn ZTL_IZNU)‘P SO{—E} (26)
i=1
q
Fn = Xn : n_l ZNU)‘P Z « o . (27)
i=1

Comparing these equations to (24) and (25) it will suffice to show
P(liminf E, N F,) = 1. Equivalently, since P(limsup E;, U F5) <
P(limsup E;) + P(limsup F;;) we show that the latter two quan-
tities are zero.

Define i.i.d. Bernouilli sequences Y, = {y1,...,yn} and Z, =
{z1,...,2,} as
yi = Ian(zj) —Ig,, (xj), j=1,...,n
Zj = IALH(I']‘), j=1,...,n.

def m _
andp, = P(y; =1) = P(a; € A7)~ P(xi € Q) = 30—} #0i)

and p. dlef P(zj =1) = P(zi € A2') = 3.7, ¢@;). Then we have

the equivalent form for (26) and (27)

E.(e) = {Yn:n_IZija—e} (28)
F, = {Zn:n_lzn:sza}. (29)

Let 0 be defined as the smallest non-zero value of ¢;, i =
1,...,m% Then by definition of A™ we have

py <a and p. > a+4. (30)

From Sanov’s theorem [39], [40]

P(En(e)) <

< (n+1)" exp{—nK(a—epy)}
P(Fy;) <

(n+1)* exp{-nK(a,p:)}
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where K(p1,p2) = p2lnpi/p> + (1= p2) In(1 —p2)/(L = p1) > 0 is
the Kullback-Liebler distance between two Bernoulli probability
distributions {p1,1 — p1} and {p2,1 — p2}, p1,p2 € [0,1]. Fur-
thermore, from (30) and the fact that K(pi,p2) is increasing in
|[p1 — p2|, we have for € < (o — py)/2

P(E;(e)) < (n+1)"exp{-nK(a—ea)}
P(F) < (n+1)%exp{—nK(a,a+d)}.

It is easily verified that for any p > 0

oo

> m41)ye < / (u+2)% " du=C,,
0

n=1

where C, = 2(2p® + p + 1)/p®. Hence,

oo

> P(E;(e)

< CK(O(*E,D() < o0

CK(a,a+5) < 00,

L[]
v
5
AN

n=1
and by Borel-Cantelli we have P(limsupEy(e)) = 0,
P(limsup F};) = 0 and the lemma follows. a

While BJ;,| does not necessarily converge to any fixed set as
n — 00, the preceeding lemma establishes that it converges to
the equivalence class of sets defined by A7’ .

The next result relates the error of a blocked distribution ap-
proximation of [ =M/ (4)dx to the total variation of f.

Lemma 4: For v € [0,1] let f” be of bounded variation over
[0,1]¢ and denote by v(A) its total variation over any subset A €

[0,1]¢. Define the resolution 1/m block density approximation
- _ md a

f(z) =" 0ilg, (x) where 6; = m fQ x)dz. Then for any
A€a(Qm)

0< [ 7@ - @l <w™ Y @0 ).
A i=1

Proof of Lemma 4

First note that as t" is a convex cap function, by Jensen’s
inequality |C|™* f(‘ z)dzr < (|C| ! f(, )U for any Borel
set C of positive Volume |C|. The left side 1nequa11ty of Lemma
4 now follows from the relation

[ 7@ = (31)
A
=m Z {(md f(x)dx) — f"(z‘)dm] .
i:Q;NA%d Qi Qi

We next deal with the right side of the inequality in Lemma
4. As functions of bounded variation are continuous except at
possibly a countable number of points [37], by the mean value
theorem for each Q; there exist points ﬁl E Qi and ¥; € Q;
such that fQ z)dz = f(&)m ¢ and fQ x)dz = f¥ (i)m ™%
Hence, using (31) and the definition (12) of v

f*(@)ldz

(" (2)
A
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=m™ T (&) - ()

i:Q;NAF#¢
<m™h NG — £ ()
:Q;NAFP
<m™ Z v(Q; N A).
1:Q;NAF#P i=1
This establishes the Lemma. O

Lemma 5: Assume f is of bounded total variation v(Q;) in each
partition cell Q; € Q™. Let A be any set in the class AJ'. Then

for any quasi-additive functional L, (B[3,,)) def L(X. N BT,,))

lim sup
n—oo

Lu(Bl )/ 3, / 4D ()
A

md

<2m™ 8L, Z v(Qi NOAT), (a.s).

i=1
Furthermore, this same bound holds when L, (B, ) is replaced
by E[Ln(B{4,))]-

The following follows directly from Theorem 1

Lemma 6: Assume the conditions of Theorem 1 and let A be
an arbitrary Borel subset of [0,1]%. Then for any quasi-additive
functional L, (A) = L(X, N A)

lim L, (A)/n(¢ /4 =3L,7/ I ydz,  (a.s.)
A

n—00

Furthermore, the above (a.s.)
E[L,(A)]/n4=/% as n — .

limit is the pointwise limit of

Proof of Lemma &
- md
Let f(z) =) " 0ilq,(x) be the blocked distribution approx-

imation to f(z) of Lemma 4. Now for any sets A, A" € Ay and
v = (d —)/d, we have by the definitions (10), (11) of A}, AT,

and the triangle inequality
/ n m ! / n m )
ANOAY Al OAY

Al
/ 4 / 1 i )
ANSAY ANBAY
/ n ? ’ / n ? ’
Al OAY Al OAY
/ 4 / 1 i )
ANSAY A'NOAY

By construction of A7, the cell probabilities {y;}i:0;ca and
{¢i}i:0,car are identical so that the last term on the right side of
the inequality is equal to zero. We therefore obtain by application
of Lemma 4

<

+

+

_/A,f < 2 may m > w(Qi N AN DA™
md
< 2m™Y w(QiNAAT). (32)
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Next by Lemma, 6 for any of the finite number of sets A € A
and any e > 0 there exists an integer no = no(A) such that for all
n > no

(33)

La(A)/n@=/ — gy / FOI e < 6, (a.s)
A

Let n1 be defined as the largest of the {no(A)}acam. By Lemma
3 there exists an integer n» such that for all n > n»

min L (A) < Ln(Bon)) < max Ly(A),

.S). 34
A€ AT A€ AT (a-5) (34)

Now choosing n3 = max(n2,n1) it follows from (33) and (34) that
for all n > ns

: (d=v)/d
8 min x)dxr — €
L,y Py /Af ()

a

< Lu(Bap))/n@

<oy s [ SOV e (s,
o A

Applying the bound (32) we have for arbitrary A € A7 and all
n > ns3

Lo(BT )/ d — By / 4D () e
A

ma

<2m B, Zv(Ql NOAY)+e, (a.s.).

i=1
Since € is arbitrary the a.s. limit of Lemma 5 follows.

It remains to show that the same bound also holds for the limit
E[L, (B[, )]/n'4="/4 1t follows from Lemmas 3 and 6 that for
any € > 0 there exists n, such that for n > n,, P(B[';M € AY) >
e and

E[Ln(A)]/n(d_”/d _ ,8L,'y/ f(d_w/d(a:)da: <e
A

for any A € AJ'. Furthermore, as L, is continuous it is bounded:
L (A) < C (card(X, N A))4-0/4 < Oypld=1/d
and therefore for n > n,

min E[L(4)] — Csn'*™ /e < BlLn (B3]
< Angi)él E[Ln(A)] 4 Csn'™ 4 (a.s).

Combining the above and again applying (32) yields for n > n,

BlL (B )]/n @4~y / 4D/ ()
A

me

<A +Ca)e+2m "By Y v(QiNOAL).

i=1

Since € is arbitrary we obtain the desired bound. O

We next extend Lemma 5 to a minimal graph constructed over
any k points X, i, e.g. Xf;ﬂ”, drawn from B[,

CSPL-314 JULY 1998

Lemma 7: Let X, |an| be any |an| points selected from B[G,,, -
def

Then, for any quasi-additive functional Ly(B[,,|) = Ln(Xn N
Blon))
limsup | Ln (Bn)) = L( X, (an))| /04774
n— 00
< C3(pam — a)(d_w/d, (a.s.)
and

limsup | E[Ln (Ban;) — EIL(X,, jan))]| /0477

n— o0
< Cs(pag — )=/,

where pam = P(Ay) is the coverage probability of sets AL in
AT

Proof of Lemma 7

Firstly, note that from continuity of L and the fact that an —
1< lan] <an

|Ln(BmeJ) - L(Xn,LanJ)| /n(d—'y)/d (35)
(d=v)/d
card (B — |lan
Sogl ( LaZJ) ! J]

< Cs [n~teard (Bftny) — o] 7 4 Cam (1,

Next we establish an a.s. limit for the first additive term on the
right side. Lemma 3 guarantees that there exists an no such that
m

lan € A4 with probability arbitrarily close to one. Therefore,
for n > n, and for any € > 0, by Sanov’s theorem we have

P (nilcard(Xn NBl,) —a> e)

n
:P(n_IZziZe+a>

i=1
<(n+1)’exp{-nK(e+a,par)}

where z;’s are i.i.d. Bernoulli random variables with P(z; = 1) =
par = Y. ¢, as defined in the proof of Lemma 3. Now

0 d:ef K(e+a,pam) > 0 for any € > pam — « and therefore, since

D s (n+1)%exp ™ < 2(2p%+p+1)/p* < 00, by Borel-Cantelli
we have

(36)
P (limsup {Xn :n” card(X, N Bil,)) — a > pam — a}) =0.

Since Can~(@="/d converges pointwise to zero as n — 0o, the a.s.
limit in the Lemma follows directly from (36) and (35).

Finally, as in the proof of 5, it can be shown that since L(X, N
lan)) — L(Xn, |an)) is bounded, EL(X, N B{},,)) — EL(Xy, |an)]
satisfies the same asymptotic properties. a

We now have all the ingredients for the proof of Theorem 2.
Proof of Theorem 2

Combining Lemmas 5 and 7 and applying the triangle inequal-
ity we see that there exists an integer n, such that for all n > n,

f(d*"r)/d(x)dx

‘L(Xn,LanJ )/n(diw)/d - ﬂL,W
AT

me

< Qm_d,@Lﬁ Z v(Qi NOAY) + Cs(pam — a)(d_‘Y)/d, (a.s.)

i=1
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where A} is any set in the class A7'.

It remains to show that § = O(m?~?). For this we recall as
in the proof of Lemma 3 that the coverage probability of any set
A € AY is a sum of the rank ordered cell probabilities P(Q;y) =
¢y, i =1,...,q, where Ef:_ll o < aand Y7 i > @, and
therefore

q
0SPAN) —a = > ¢un—a<pq=
i=1 Qa)

where, by the mean value theorem, { is a point in Q. This

gives the order m?~¢ bound on the second additive term in § of
Theorem 2

0 < Ca(pam — ) < Cam ™ sup FT A (g, (37)
TEQ;

Since sup,cq, flé=/d(z) < v([0,1]*) and E;’;dl v(Q:i N
AT < v([0,1]%) and v([0,1]*) < co, Theorem 2 is established.
O

]

VI. EXAMPLES

We first assume that f is a uniform density over the d-
dimensional unit sphere S(0,1). Tt is obvious that for a € [0, 1]
a Borel subset A, which minimizes Rényi entropy is

1

a d
g : < _—
A= rilkds <|5(0,1)d|>

and the associated minimum entropy conditional density is

, o.w.

1
F(al40) ={ 5 T

By Theorem 2 L(X%m J)/n(d_'”/d converges a.s. to a linear

n.lan
function of «

BL.y /f(d_wd(l‘le)dfc =a-Bry.

Next assume that f is a multivariate Gaussian density with
mean p and covariance 021 on RY. Note that, unlike the previous
example, the support of f is R which is not compact and cannot
be mapped into [0,1]%. However, in practice the range is finite
and we can approximate by a truncated Gaussian density with
compact support. The minimum entropy set for this case is

Ao ={o ol <o/ (es)}

where Q;;(; d) is the quantile function of a Chi-squared density

with d degrees of freedom. The associated conditional density is
L ll=1?

aGroye 0, TE€A

0, 0.w.

f(z|4o) =

and L(XSm)/n4=/4 converges a.s. to the non-linear function
of a

s [ 1977 el o) = Qa7 a3 ) - (270)%

(z)dz = m~"f(€)

11

where v = (d — v)/d.

These two examples suggest that the greedy k-point graph
can be effectively used to discriminate between uniform and non-
uniform densities based on plots of L(XS™)/n?=7/4 a5 a func-
tion of a.

VII. INFLUENCE FUNCTIONS

Influence functions have been used to study quantitative ro-
bustness of estimators to outliers and other contaminating densi-
ties for over thirty years [41]. These functions provide a quantita-
tive measure of outlier sensitivity of an estimator. An unbounded
influence curve implies that the effect of an outlier on the estima-
tor can be very severe. Robust estimators, such as the trimmed
mean estimator which rejects observations which exceed a given
sample quantile, have bounded influence curves (see Figure 4).

Influence Curves for alpha-Trimmed Mean
50 r

40f

30

201

IC(x,F,T)
o

_30} —alpha=1
— alpha = 0.6
—-40[ —alpha=0.8

-50 50

X of

Fig. 4. 2in

Trimmed mean influence curves for one dimesnsional observa-
tions and various trimming proportions 1 —«. The trimmed mean
estimator is a rank order statistic which robsutifies the sample
mean estimate by rejecting all samples whose values exceed ei-
ther of the sample quantiles 1 — «/2 and «/2.

Here we give the influence function for the normalized greedy
minimal k-point graph weight L(XS7)/(lan]) @~ 7/¢ described
in Section IV. The influence function motivates the use of the
weight function as a robust estimator of the entropy of a nomi-
nal density fi in the mixture model f = (1 —¢€) + fie. It also
establishes a kind of outlier robustness which is similar to that
of rank order statistics for one dimensional observations. Fi-
nally, it gives an asymptotic approximation to the variance of
L(x% )/(lan]) =774 which can be used to construct confi-

n,lan]
dence intervals on finite sample accuracy.

Let P, be the empirical distribution function of the n samples
X ={z1,...,20}

p(a) defL / L., (z)dx
A

n

for arbitrary Borel set A. For any statistic T, = T'(P,) converging
a.s. to T'= T(P) the influence function (called an influence curve
for one dimensional samples z;) is defined as [42]

10(zs) = lim LCL=8)P+50.,) —T(P)

s—0 S

(38)
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where 4., is a concentrated distribution centered at z, € R and
s € [0,1]. For small s, (1—s)P+sd,, is interpreted as a perturbed
distribution resulting from exchanging sn of the n samples z; from
distribution P with sn samples from the concentrated distribution
0z,. Thus IC(z,) can be used to probe the asymptotic sensitivity
of the estimator 77, to localized perturbations of P.

The influence function can also be used to approximate asymp-
totic estimator variance [42] via the formula

— /IC
= LGTanJ/(LanJ)(d /4 wwe have by The-

orem 3 that T}, converges a.s. to the integral (17) which we thus
identify as T'(P).

nvar

Now identifying T,

In the Appendix (Lemma 8) we show that IC(z,) has the fol-
lowing form for densities f having no flat spots (cf Remark 2 of
Section IV)

(39)
_ ’Z—jl () —uff (x| Ao )dx+ 2N 2o|Ao), o € Ao
Ic_ﬂ“{ 2 ¢(a) —v [ ( o Ay)dz, Lo & Ao
where ¢ is a non-negative function and 4, = {z : f(z) > n} is

the entropy minimizing set of probability a.

Note that the influence function (39) may take on positive or
negative values for z, inside of A, while it takes on positive values
outside of A, (observe that f'7% = f~1"=U increases without
bound if the tails of f decreases to zero). This can be explained as
follows. By the theory developed in the Section IV we know that
asymptotically the minimal k-point graph spans all points within
A, and none of the points outside of A,. Therefore exchanging
a small number of vertices of the k-point graph within A, with
a small number of points outside of A, necessarily increases the
overall weight of the graph. On the other hand, the value of IC
on the interior of A, corresponds to the effect on the weight due
to perturbing the locations of a small number of vertices. Thus,
depending on the direction of these perturbations the weight of
the graph can either increase or decrease.

We illustrate these phenomena in Figure 5 where IC is plotted
as a function of z, € R? for the case of the bivariate Gaussian
distribution considered in the previous subsection. Two cases are
shown, the figure on the left is the influence function for a = 1,

e., for the minimal graph spanning all points (labeled MST),
and the figure on the right is for a = 0.8, i.e. for the minimal k-
point graph (labeled k-MST) spanning only 80% of the n points.
Note that, as expected, the influence function is bounded for the
k-point graph but unbounded for the graph spanning all n points.
This suggests that the greedy k-point minimal graph is a natu-
ral multi-dimensional extension of rank order statistical methods
such as the trimmed mean. This complements the comments of
Friedman and Rafsky [27] in which they proposed the MST as
a natural generalization of one dimensional rank order statistical
tests of Smirnov and Wald Wolfowitz.

VIII. CONCLUSION

We have given strong asymptotic convergence results for greedy
approximations to minimal k-point graphs. These convergence re-
sults indicate that the weight function of minimal k-point graphs

CSPL-314 JULY 1998

IC for MST IC for k—MST: alpha =0.8

MST and k-MST influence curves for bivariate Gaussian density
on the plane.

provide natural extensions of one dimensional rank order statis-
tics to multiple dimensions. Our results also provide an interest-
ing alternative to kernel or histogram methods of entropy esti-
mation. In addition to this and other applications mentioned in
the introduction of this paper, our results can also be applied to
robustification of minimal graph methods proposed for pattern
recognition [28], exploratory non-linear regression [43], clustering
[29], and testing for randomness [31].

IX. APPENDIX

For v € (0,1] define the function

gv(n) = / fr(z)dz.
{e:f(2)>n}

Note that when A, is the minimum entropy subset of probability
a defined in (22) then g, (n fA z)dz and g1 (n) = P(4,) =
a.

(40)

Lemma 8: Let f be a Lebesgue density over R? and assume
that for any a > 0 the set {z : f(z) = a} has measure zero.
Assume «,n have the relation a = g1(n). Let 0, be a uniform
distribution over a hypercube with center z, and volume A?,
where A is smaller than the modulus of continuity of f. Then the
influence function (38) of T\, = L(X™ )/(lan])@~ /4 has the

n,lan]
form
IC(xo) = (41)
3 — —uff )+ £fT 1(a:0|A) To € Ao
Loy a,,( — fo a:|A )dz, To & Ao

where v = (d — v)/d,

]

90 (91" ()
g1 (97" (@)

f(z) > n} is the entropy minimiz-

() =

is non-negative and 4, = {z :
ing set of probability a.
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Proof of Lemma 8

First we define an entropy minimizing set A of probability «
analogously to definition (22) of A,

As ={z: fs =}

where 7 satisfies

/ fs = Q. (42)
As
Using fs = (1 — s)f + sd,, this latter relation implies
a = (1—3)/ f+s/
A A,
{ (1=s) [, f+s, (=9 f(z)+sA7" >
(1-s) jAs f o.w.
Therefore
_ R (-s)flw) +sA™ >0
[={E (1

On the other hand, using the definition gi(a) = f{w:f@»a} f and
the assumption that A is less than the modulus of continuity of
f, which implies that over the support of d,, the density f(z) =
f(zxo), it is seen that

[

{ g1(n/(1 = 5)) + A f(zo),
gi1(n/(1 =),

(44)

0 <n—(1—s)f(zo) <sA™?

o.w.

Hence, combining (43) and (44) we have an equation for the
threshold 1 = n(s) which guarantees (42)

n= (45)
(1—s)git (522 — A% f(w0)), 0<n—(1—5)f(wo) <sA™?
(1—s)gr' (4=2), (1—=5)f(zo) 2 m
(1- s)gf1 (lfs) , o.w.

where we have used the obvious fact that, as {z : f(z) = a},
a > 0, has measure zero, gi(a) is strictly monotone decreasing
and thus has an inverse g;*(b).

Next we express fA f¥ to order o(s)

/f:=/ f”+SV/ (5us — I 4 ols),
Asg Asg Asg

and note the following identities

[
A

s

v—1 fujl(x0)7
ba, =
[

0<n—(1—s)f(x,) <sA™?

o.w.

gv /(1 = 5)) + A~V 7 (x0),
gv (n/(1=s)),

(1= 5)f(zo) +sA™" 2

o.w.

(46)
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To simplify the notation we define the partition Eo, E1, E> of
R?

Eo(s) {z:0<n—(1—s)f(x) <sA™Y}
Ei(s) = {x:(1-s)f(z) 2n}
BEsx(s) = {x:(1—s)f(z)+sA™" <n}.

Putting (46) and (46) together and using (45) we obtain

(47)
R o G R SERIAES
T (w0)) ) + s (@0 mur, (v)
FATY 7 (20) Iy (20) + 0(5)
To compute IC(z,) it remains to evaluate the limit
(48)

IC(20)/Br.~

13%% [/fs"(z|As)dx—/f”(z|Ao)dx]

| v v
J'lslﬁ)lg {/Asfs(x)dx—/Aof (a:)da::|

First observe that Eo = Eo(s) converges to the empty set as s —
0. Hence, in what follows we can safely neglect terms in (47) which
are multiplied by Ig,. Next observe that, as {z : f(z) = a} has
measure zero g, g1 and g; ! are differentiable a.e. Furthermore,
applying the chain rule to the identity g1(g7'(q(s))) = ¢(s), for
any differentiable function g(s)

g7 @(s) = 4 (5)/9: (97 (a(s))):

Identifying g(s) = (¢ —s)/(1—s) over Ei(s) and q(s) = a/(1—s)
over F>(s), observing that E1(0) = A, and E2(0) = Ag, and
o(s)/s — 0, it can be verified after some algebra that the limit
(48) takes the form

]

1 9. (91" (@)

IC(x0)/BLy = —— — (=114, (o alae(z,
@)/Pe = 5 T @) [(0 = D), () + ol ag ()]
—0v (97 (@) + o @o) (o)

Finally, using g, (97" (a)) = [, f* and the definition of the
conditional density f(z|A,) we obtain the assertion of Lemma 8.
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