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1 Introduction, Motivation and Fundamental Limits

Spread-spectrum communication systems are well known for their ability to combat var-
ious sources of interference and multipath fading. In this section we demonstrate that
spread-spectrum alone is actually not very good at defeating a worst-case pulsed or partial-
band jammer. The performance of a spread-spectrum system (either direct-sequence or
frequency-hopped) can be degraded by on the order of 30-40dB by a hostile and intelligent
jammer. This severe loss in performance can be completely overcome with the appropriate
use of error control coding.

In this section we will restrict our consideration to frequency-hopped spread-spectrum
with partial-band interference. The case of direct-sequence with pulsed interference is
the dual and similar results can be obtained. The block diagram of the transmitter and
receiver are shown in Figure 1.

—> Channel Modulate Spread
FEncode
Channel
<~ Channel Demodulate Despread
Decode

Figure 1: Transmitter and receiver block diagram

Consider a system with bandwidth W. This bandwidth is divided into g frequency slots
as shown in Figure 2. The frequency slots or bins are nonoverlapping. We will assume
the transmitter uses power P and modulates an R bit per second data stream using
binary (orthogonal) FSK modulation. The energy per bit of information is £, = P/R.
The bandwidth needed is W/q which we will assume is equal to R. A jammer does not
know which frequency slot or bin the communicator is using. As a result the jammer
can have several strategies. The first strategy is to jam the whole bandwidth W that
the transmitted signal is hopping over. We will assume that the jamming signal has
no exploitable structure (like being a CW jammer). Jamming the whole bandwidth will
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Figure 2: Time-frequency representation of frequency-hopped spread-spectrum

guarantee that some noise affects the transmitted signal no matter which frequency slot is
being used. If the jammer has power J, then the power spectral density of the jammer will
be No/2 = J/(2W). This is the two-sided spectral density. It includes power at negative
frequencies as well as positive frequencies. Thus Ny = J/W. The bit error probability of
binary FSK is given by

Py = 0.5exp{—Fy/2Ny}. (1)

This is an exponential decrease in error probability with signal-to-noise ratio £j/Nj.
To get bit error probability 107° requires 13.35dB for E,/Ny. We can equivalently express
this in terms of the ratio of transmitted power by the communicator and transmitted
power by the jammer using the above relations, £, = P/R, No = J/W. Thus we can
calculate the signal-to-noise ratio as

Ey[No = (P/R)[(JIW) = (P[J)(W]R). (2)

Since the ratio of bandwidth to data rate is equal to the processing gain (spreading factor)
g we have that

Ey[No = (P[J)(q)- (3)

Thus we immediately see improved performance (for fixed P/.J) by spreading. This
is quite obvious since a fraction (¢ — 1)/q of the jammer power is not falling into the
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Figure 3: Error probability for full-band jamming

frequency slot used by the communicator. In fact only the fraction 1/¢ of the power is
in the slot being used by the communicator and thus the effective jamming power is .J/q.
The error probability is thus

P, =0.5exp{—Pq/2.J}. (4)

For the same bit error rate 107° with ¢ = 100 we require a P/J=-6.65dB while for
g = 1000 we require P/J=-16.65dB. The plot of error probability versus P/.J for ¢ = 100
and ¢ = 1000 is shown below. It is clear that more spreading gives a gain of 10log;,(q)
dB in signal-to-noise ratio required for a given error probability. In Figure 3 the error
probability for noncoherent demodulation of frequency-hopped binary FSK with full-band
jamming is shown. Now consider an intelligent jammer. The jammer decides to jam only
a fraction p of the slots where p is between 0 and 1. Thus the jammer’s power is only
spread over the bandwidth pW. The rest of the bandwidth we will assume contains no
interference or noise. The error probability is now calculated as follows. With probability
p the error probability is 0.5exp{—(Ppq)/2J} while with probability 1 — p the error
probability is 0. Thus the average error probability is

P, = p0.5exp{—(Ppq)/2J} + (1 — p)0.0 (5)
P = Sexp{=(Ppg)/2J}. (6)

It now we look for the worst case partial-band jammer we need to maximize the right
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Figure 4: Error probability with worst-case partial-band jamming

q Full-band Jamming | Worst-case partial-band jamming
100 -6.56 25.66
1000 -16.56 15.66
10000 -26.56 5.66

Table 1: P/J (dB) required for error probability 107° for different spreading factors in
full-band and worst-case partial-band jamming.

hand side over the parameter p. This can be done easily with the following result.

) 0bexp{—(Pq)/2J} Pq/J <2
b= { =1 /(Pql])  PqlJ>2. (7)

What this means is that for signal-to-noise ratio sufficiently high (Pq/.J > 2) the error
probability decreases inverse linear with signal-to-noise ratio. This is shown in Figure 4
for ¢ = 100 and ¢ = 1000. Now consider the P/.J required for 107> error probability. For
g = 100 we require P/J=25.66dB while for ¢ = 1000 we require P/J =15.66 dB. Thus
the worst case partial band jammer degrades performance relative to a full band jammer
by 32.31dB for both ¢ = 100 and ¢ = 1000. This is a huge degradation in performance.

The conclusion is that worst-case jamming severely degrades performance of a frequency-
hopped spread-spectrum communication system. Similar results apply to direct-sequence



spread-spectrum with pulsed interference. As a result a huge processing gain is required
to obtain reasonable performance results. To get back to the results for ¢ = 100 with full
band jamming we would need to increase the processing gain by more than 22dB or by a
factor of 166 (that is we would need to have q=16600).

Fortunately, there is an alternative method of recovering from the huge loss in per-
formance without the need to spread the signal of such huge bandwidths. The method
involves the use of error control coding. Error control coding works as follows in a partial-
band interference environment. First the information bits are encoded and redundant bits
are added. From a certain subset of the information bits and redundant bits the actual
information bits can be determined. As a simple example suppose the encoder repeats
each information bit three times and transmits these bits over different frequencies. As-
sume, for the sake of argument that the decoder knows which bits were interfered with
and which were not interfered with. In order for the decoder to make an error all three
of the bits must be interfered with. If one of them is not and the decoder knows it, as
we have assumed, then the decoder can determine the transmitted information perfectly.
Thus we are forcing the jammer to spread his signal over much of the bandwidth in order
to guarantee that the information and redundant bits are interfered with. Notice that
we are effectively using three times the bandwidth with this scheme because there each
information bit is transmitted three times over different frequencies in the time duration
of one data bit. So we can think that our overall spreading is 3¢g rather than ¢. With such
a modest increase in the spreading factor (compared to an increase by a factor of 166) we
can show a very large improvement in performance.

There are many different coding strategies that can be employed to counteract the
effect of a partial-band jammer. It would be nice to know the fundamental limit on per-
formance possible for the worst-case jammer with the best possible code and decoding
algorithm. Fortunately this can be done using the fundamental results in information
theory. Given a certain spreading factor and given a code rate r (information bits/coded
bit) we would like to know what is the minimal ratio of P/.J required for small error prob-
ability. This has been computed for various modulation schemes including binary FSK.
In Figure 5 the minimum value for Fy/Ny = Pq/Jr needed for reliable communication
as a function of the code rate r is shown. The lower curve in Figure 5 is the minimum
Ey/Ng needed for a full-band jammer. The upper curve is the minimum F;, /Ny needed for
a worst-case partial-band jammer. As can be seen below rate 0.5 the two curves coincide.
This indicates that the worst-case jammer at code rates below 0.5 is the same as a full-
band jammer. That is, the optimum jamming strategy is to spread the jamming power
over the full bandwidth of the spread-spectrum signal. The minimum £, /Ny required for
reliable communications (arbitrarily small error probability) is 6.71dB when using binary
FSK with noncoherent detection. This occurs with a code rate of about 0.5 . Thus we
require P/J(q/r)=6.71dB. If we have spreading by a factor of 50 (so that the overall
spreading is ¢/r=100) then the P/.J required is 13.29dB. This is compared to 25.66dB
for an uncoded system with the same ratio of bandwidth to data rate. Thus optimal
coding has bought us about 39dB improved performance. If we think of the received
power decreasing as the fourth power of the distance (as it would in the case of a ground
wave) then the gain is more than a factor of 9.4 in increased distance. If the propagation
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Figure 5: Minimum signal-to-noise necessary for reliable communication vs. code rate

causes the power to decrease as the second power of the distance (as it would for free
space propagation) then the increase range is a factor 88. This gain is without sacrifice
in data rate or bandwidth. The disadvantage is the increased complexity in the receiver
and the potentially large delay required.

In Table 2 we show the required signal-to-noise ratio for error probability 10™° for no
coding and the corresponding signal-to-noise ratio for arbitrarily small error probability
with coding. Notice that the worst-case partial-band jammer does not degrade the system
performance relative to a full-band jammer since the code rate is 1/2. If we had used a
higher code rate there would have been a slight degradation in performance.

In Figure 6 the minimum required signal-to-noise ratio for reliable communication is
shown for coherent reception of BPSK. As in the noncoherent case there is a code rate
below which the optimum jamming strategy is to jam the whole band. Unlike BFSK with
noncoherent reception the optimal code rate is as small as possible with the minimum
signal-to-noise ratio approaching -1.59dB.

Now consider what happens with binary frequency shift keying in a Rayleigh faded
environment. Rayleigh fading occurs because of multiple paths between the transmitter
and receiver. These multiple paths can either add constructively or add destructively.
It the symbol duration is relatively long the different paths will have approximately the
same delay (relative to the symbol duration) and will not cause any intersymbol interfer-
ence. The received signal in this case is just the transmitted signal but with a Rayleigh
distributed amplitude. For noncoherent demodulation the bit error probability is given
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Figure 6: Minimum signal-to-noise ratio for coherent BPSK for worst-case partial-band
jamming and full-band jamming

q Code Rate Full-band jamming Worst‘—case ‘partlal—
band jamming
100 r =1 (no coding) - 6.56 25.66
1000 r =1 no coding -16.56 15.66
10000 | r =1 (no coding) -26.56 5.66
50 | r=1/2 (no coding) -13.29 -13.29
500 r =1/2 no coding -23.29 -23.29
5000 | r =1/2 (no coding) -33.29 -33.29

Table 2: P/.J (dB) required for error probability 107° for different spreading factors in
full-band and worst-case partial-band jamming with and without coding.
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Figure 7: Error probability for noncoherent reception of BFSK in Rayleigh fading
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This is plotted in Figure 7. As can be seen in the plot below the error probability decreases
only inverse linearly with signal-to-noise ratio. This results in a loss in performance of
30-40dB.

One simple method to overcome this huge loss in performance is to use error control
coding with frequency hopping. As a simple example consider transmitting the same
information symbol three times on three different frequency hops. If we assume the
frequencies are separated by more than the coherence bandwidth of the channel then
the amplitude of the received signal on the different hops is independent. As such, it
is unlikely that the signal will be severely attenuated on all three hops simultaneously.
Thus the probability of error will be significantly improved compared to sending the
information once on a single hop. There are many different codes that can be used to
overcome Rayleigh fading. It would be nice to know the fundamental limit on performance
with the best possible code. Fortunately this can be done using information theory. In
Figure 8 we plot the minimum signal-to-noise ratio needed for reliable communication as
a function of the rate of the code with Rayleigh with different assumptions about the
information available and different types of decoder processing. As can be seen with the
best codes the minimum signal-to-noise ratio needed is 7.37dB for Rayleigh fading with
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Figure 8: Minimum signal-to-noise ratio necessary for reliable communication using BFSK
with noncoherent reception in Rayleigh fading; a: soft decisions, side information avail-
able, b: soft decisions, no side information, c¢: hard decisions side information available,
d: hard decisions, no side information.
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Figure 9: Minimum signal-to-noise ratio necessary for reliable communication using BPSK
with coherent reception in Rayleigh fading; a: hard decisions, no side information, b: hard
decisions, side information available, c: soft decisions, side information available, d: soft
decisions, side information available, optimum input signal.

side information and soft decision processing. For no fading the minimum signal-to-noise
ratio needed is 6.71dB. Thus the fundamental loss in performance due to Rayleigh fading
is only about a 0.7dB compared to the 30-45dB loss in performance without coding. For
coherent reception we show similar curves in Figure 9.

The conclusion of the above is that a well designed spread-spectrum communication
system which must operate in either a jamming or fading environment must employ some
form of coding to gain back the huge loss due to an intelligent (partial-band, unstructured)
jammer or due to Rayleigh fading. While the discussion here has been for frequency-hop
spread-spectrum similar arguments can be made for direct-sequence spread-spectrum.

Now that the fundamental limit on performance with the best possible codes (inde-
pendent of complexity and processing power required) has been determined the research
question becomes, how do we find codes that achieve performance close to the optimum
with minimum complexity? There are many other issues that need to be considered as
well. One important issue not addressed above is the channel propagation model. In
a wireless environment there will time-selective, frequency-selective and space-selective
fading. Selectivity offers possible advantages. The advantage with selectivity is that the
whole signal is not deeply faded all the time at all antennas. As such we can average out
the deep fades due to destructive interference with the situation where the fade is due to

13



constructive interference. This type of fading needs additional processing in order to take
advantage of the selectivity. Another issue is coherent demodulation versus noncoherent
demodulation. Clearly larger gains are possible with coherent demodulation compared to
noncoherent demodulation. Antenna diversity is another issue. Again, larger gains are
possible with multiple antennas versus a single antenna.

When multipath fading and/or partial-band interference occurs there are various issues
that need to be addressed in designing a coded-modulation scheme. These include whether
the receiver has estimates of the channel (faded level, jamming level) or not. Another issue
is the memory of the channel. Memory can be exploited by the receiver by employing
estimation schemes that allow us to determine channel parameters. Other important
parameters when designing a coded-modulation scheme include delay required, packet or
bit error rate desired, complexity of decoding algorithm, time variation of the channel.
These issues apply to both direct-sequence spread-spectrum systems and frequency-hop
spread-spectrum systems. Another issue has to do with the transmitted signal. We
would like the signal to occupy the smallest possible bandwidth and require minimal
energy to transmit a signal with a given power. This implies that a power efficient
amplifier is important. Power efficient amplification usually is done by driving an amplifier
into saturation. This may cause the signal to be distorted and may generate sidebands
outside the frequency band the signal is supposed to occupy. The distortion and sideband
generation increases if the envelope of the signal is not constant. Thus constant envelope
signaling is important in minimizing the amount of energy consumed at the transmitter.
However, constant envelope signals general require more bandwidth than nonconstant
envelope signals. Thus very careful design is necessary when trying to minimize the
consumed power.

14



2 Channel Models

The performance of environment, transmitted signals are especially prone to attenuation,
distortion, and interference by the time they arrive at the desired receiver. Although many
of these channel characteristics are unpredictable, they can often be accurately modeled
using statistical methods.

A communication system is highly dependent upon the channel characteristics. In a
mobile communication In this section we discuss various types of fading and interference
that occur in a mobile communication environment. Channel fading can be classified into
three types: path loss, shadowing and fast fading. We first give brief descriptions of the
basic propagation mechanisms of reflection, diffraction, and scattering, followed by de-
tailed descriptions of the statistical models. Finally, we introduce our channel simulation
process.

2.1 Fading

The two main effects of fading are signal distortion and attenuation. In free space, the
signal power decays with distance as 1/d*>. However, in actual radio communication
environments, there are various scatterers and reflectors such as buildings and trees, which
may result in severe signal distortion and attenuation. The presence of various scatterers
and reflectors also makes the received signal amplitude fluctuate very rapidly as the radio
moves. Because of this uncertainty, we generally describe the signal fluctuations using
statistical models. Usually, we deal with the effect of fading using three concepts: large
scale path loss, shadowing, and multi-path fading.

2.1.1 Basic Propagation Mechanisms

If both the transmitter and receiver are located in free space, the received power P, is
given by

RGGN
b= lrper ®)

where P; is the transmitted power, (; the transmitter antenna gain, (G, the receiver
antenna gain, d the distance between the transmitter and the receiver in meters, L the
system losses (L > 1), and A the wavelength in meters. Hence the received signal is
inversely proportional to the square of the distance in free space propagation.

However, in the practical situations, the terrain effects and the presence of radio-wave
scatterers along the path further affect the received signal strength. Variations in the
contour and roughness of the terrain, including any scatterers present, cause changes in
propagation loss as the result of reflection, scattering and diffraction.

A. Reflection
When electromagnetic wave propagating in one medium impinges upon another medium
having a different dielectric constant, permeability, or conductivity, the wave is partially
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Material Permittivity ¢, | Conductivity o(s/m)
Poor Ground 4 0.001
Typical Ground 15 0.005

Good Ground 25 0.02

Sea Water 81 5.0

Fresh Water 81 0.01

Table 3: Permittivity and conductivit of typical terrestrial materials

reflected and partially transmitted. For the case of a plane wave in air incident normally
on a perfect conductor, the wave is completely reflected without loss of energy as can
be seen from the case of a perfect mirror. The ratio, called the reflection coefficient, of
the electric field intensity of the reflected wave to that of the incident wave from the free
space is given by the Fresnel formulas:

: L _ 450 N _ .
B sin 6, ¢(€T ]27ch€o) cos? 0, "

Eri sing; + ¢(5T - jﬁ) — cos? 0,

and

—3—9 N¢inh. — 9 y_ 20.
i (e, ]Zchgo)Sm 0; ¢(5T ]27ch€0) cos? 0,
vl (€T—jm)81ﬂei—|—\/(a‘:T—]m)—COS 02

where E,,(Ep,) is the vertical (horizontal) component of the electric field of the reflected
wave, F,;(Er;) the vertical (horizontal) component of the electric field of the incident
wave, ¢, the relative permittivity of the second medium, ¢, the electric permittivity of the
vacuum, o the conductivity of the second medium, f. the frequency of the electromagnetic
wave, §; the angle between the incident wave and the interface. Some typical values of &,
and o for some terrestrial materials are tabulated in Table 3. From the Fresnel formulas,
we see that the ratios are close to -1 when #; is very small, which implies that the reflected
electric field has almost the same amplitude but opposite phase compared to the incident
electric field, when 0; is very small.

B. Diffraction

Diffraction around the earth’s curvature makes it possible to transmit radio signals
beyond the line of sight and allows an electromagnetic wave to propagate beyond an
obstruction. Although the field strength decreases rapidly as one moves deeper into the
shadowed region, the field may be still finite and have sufficient strength to be useful. The
phenomenon of diffraction can be easily explained using Huygen’s principle, which states
that all points on a wavefront can be considered as point sources for the production of
secondary wavelets, and that these wavelets combine to produce a new wavefront in the

16



direction of propagation. Diffraction is caused by the propagation of secondary wavelets
into the shadowed region.

On a propagation path dominated by a single prominent mountain or building, the
received field strength is usually computed by use of the classical knife-edge diffraction
theory of optics. The field strength at a point in the shadowed region, called the diffraction
zone, is the vector sum of the fields due to all of the secondary Huygen sources in the
plane above the knife-edge. The field strength E; of a knife-edge-diffracted wave is given
by

14+j 2
By = EoF(v) = Eq ;J/ exp(—j ) dt (12)

where Fj is the free space field strength in the absence of the knife edge and v is defined
by

2(dy + dy)

—h
v Ny dy

(13)
with d; and dy the distances of the knife edge from the transmitter and the receiver, h
the height of the knife edge and A the wavelength of the wave. The function F(v) is the
complex Fresnel integral. However, in most cases of practical interest, one must consider
not only the direct ray from transmitter to receiver via knife-edge, but also the rays that
are reflected from the ground on either or both sides of the knife-edge.

Some examples of diffraction loss combined with propagation loss are tabulated in
Table 4. We assumed the hill is smooth and the propagation loss follows the 1/d* law.
Antenna height is assumed to be 2m for both the receiver and the transmitter. We see
that with higher frequency the loss is larger. And as the receiver moves toward the ob-
stacle, we have more diffraction loss.

C. Scattering

The measured path loss in a mobile radio environment is often less than what is
predicted by reflection and diffraction only. This is because when a radio wave impinges
on a rough surface, the reflected energy is spread out (diffused) in all directions due to
scattering. To test the roughness of a surtace, let’s define a critical height h. by

A

¢ 8 cos b;

(14)

where 6; 1s the angle of incidence as defined previously. Hence the critical height depends
on the angle of incident. A surface is considered smooth if its minimum to maximum
proturbance & is less than h. and is considered rough otherwise. This is called the Rayleigh
criterion.

For rough surfaces, the reflection coefficients need to be modified by multiplying a
scattering loss factor p,; to account for the diminished reflected field. Ament, 1953, derived
the formula

mop, cos b;

ps = GXP[—S(f)Q] (15)
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fe (MHz) | Dp(km) | Dr(km) | h(m) | Total Loss (dB)
38 1 1 30 141.3
38 1.9 0.1 30 146.6
38 1 1 100 150
910 1 1 30 180.4
910 1.9 0.1 30 187.6
910 1 1 100 191.3

fo : Frequency of the signal transmitted;

Dr . Distance between transmitter and obstacle;
Dp : Distance between receiver and obstacle;

h : the height of the obstacle;

Total Loss = Transmitted Power/Received Power in dB

Table 4: Examples of Some Diffraction and Propagation Loss

which was modified by Boithias, 1987, to

mop, cos b; mop, cos b;

ps = GXP[—S(f)Z]]o[S(fﬂ (16)

where 0j, is the standard deviation of the surface height about the mean surface height
and [, 1s the zeroth order modified Bessel function of the first kind.

Radio waves are scattered by objects such as trees, lampposts, and moving vehicles
that have dimensions comparable to the wavelength. For urban mobile radio systems,
models based on the bistatic radar equation may be used to predict the scattering losses
in the far field. The bistatic radar equation, as given by Skolnik, is

P.G.G Noy
P = |
(Ar P BB L, (1)L, ()L, (17)

where

P, = received Power [w]

P, = transmitter Power [w]

Gy = transmitting-antenna gain in direction of target
G, = receiving-antenna gain in direction of target

o, = bistatic cross section [m?]

dr = transmitter-to-target distance [m]

dr = receiver-to-target distance [m]

L,(t) = propagation loss over transmitter-to-target path
L, = propagation loss over receiver-to-target path

L, = system loss

A = wavelength [m].
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2.1.2 Statistical Description

The propagation loss can be predicted in principle by considering all of the above three
mechanisms of propagation, namely, reflection, diffraction and scattering, given enough
information about the topographical situations. The sufficiency of the information is
dependent both on the complexity of terrain structure and the heights of the antennas.
Combining empirical and analytical methods, we can reduce the requirement of computa-
tions. However, in the mobile radio environments, the receivers not only have low antenna
height but also change their locations, which result in rapid fluctuations in the received
field strength. So statistical methods are particularly required for the prediction of the
propagation loss in the mobile environments.

The large-scale path loss is defined to be the average path loss over an area of radius
of a few hundreds times of wavelengths. In this path loss that is called the area mean, the
effects of detailed terrain structure in the immediate vicinity of the receiver is removed.
The Longley-Rice model and Okumura model are among the most popular ones in the
prediction of the large-scale path loss. While the Okumura model is known to be suitable
for the urban and suburban areas, the Longley-Rice model is more accurate for the rural
areas.

In actual radio communication environments, received field strength generally fluctu-
ate very rapidly as the receiver moves from one place to another separated by a distance of
the order of the wavelength of the transmitted signal. So we usually employ a statistical
method to describe the situations. First we consider the local mean which is defined as
the signal strength averaged over a distance of a few tens of wave length, typically 40
wavelengths. The fluctuation from this local mean is called the multi-path or fast fading
effect. In general, this fast fading effect is modeled by wide-sense stationary uncorrelated
complex Gaussian scattering (WSSUS) model[1].

In the local mean, the effect of fast fading is removed. However, as the experiments
reported by Egli in 1957, for paths longer than a few hundred meters, the local-mean power
fluctuates with a ’log-normal’ distribution about the area-mean power. This medium scale
effect is called shadowing because it is due to the presence of the topographical situations
in the vicinity of the antennas. The correlation of the received amplitudes as a function
of time depends on the velocity of the radio but is generally on the order of seconds
or longer. In a cellular environment the shadowing and the path loss are dealt with by
using power control techniques, increasing the power when the signal amplitude drops
and decreasing the power when the signal amplitude increases. This implies the use of
feedback to determine power levels. It also implies relatively slow time variations so that
the feedback takes effect before the propagation changes.

In summary, the received signal is modeled to fluctuate statistically from the local
mean, which is also assumed to fluctuate statistically from the large sale path loss.

A. Large-scale Propagation Loss

There have been various efforts to find efficient and accurate ways to predict large-scale
propagation loss. Usually, both analytical and empirical methods are used. Empirical data
are useful for reducing computational requirements as well as increasing the accuracy of
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Environment Path Loss Exponent, n
Free-Space 2

Urban Area Celluar Radio 2.7-4
Shadowed Urban Cellular Radio 5-6

In Building Line of Sight 1.6 - 1.8
Obstructed in Building 4-6
Obstructed in Factories 2-3

Table 5: Typical Path Loss Exponents for Various Environments

the predictions. For example, the large-scale propagation loss over seawater is vastly dif-
ferent from that over a rural forested area. FEmpirical data give comparisons for those
losses and allow us to apply the results to similar situations. However, the validity of
empirical models at certain frequencies and environments other than those used to derive
the models can only be established by verifying them against data from those specific
frequencies and environments. On the other hand, models based solely on analytical tools
demand computational complexity that often exceeds practicality. Therefore, most of the
propagation models for large-scale propagation loss are at least partially empirical. In the
following we briefly describe some of the most popular models.

a) Log-Distance Path Loss Model

As indicated previously, average received signal power decreases with distance raised
to some exponent. In the log-distance path loss model, the average path loss PL(d) for
transmitter and receiver with separation d is expressed as a function of d through a path
loss exponent n as

d
PL(d) o< (7-)" (18)
do
where dy is the free space close-in distance, and n is the path loss exponent that indicates
the rate at which the path loss increases with distance. The value of n depends on the

terrain structure, with some typical values given in Table 5.

b) Longley-Rice Model

One of the most well-known models for propagation loss prediction is the Longley-
Rice model[2], applicable for point to point communication systems in the frequency
range from 40 to 100 MHz and over various types of terrain. The median transmission
loss 1s predicted using the path geometry of the terrain profile and the refractivity of
the troposphere. A two-ray ground reflection model is used to predict signal strengths
within the radio horizon. Diffraction losses over isolated obstacles are estimated using the
Fresnel-Kirchoff knife-edge equations.

There have been many modifications and corrections to the original model. One im-
portant modification deals with radio propagation in urban areas, and this is particularly
relevant to mobile radio communication[2]. This modification introduces an additional
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term called the urban factor (UF) which has been derived by comparing the original
Longley-Rice model to the Okumura model discussed below.

The Longley-Rice model cannot incorporate corrections due to environmental factors
in the immediate vicinity of the vehicle. Furthermore, it does not address any factors to
account for the effects of buildings and foliage, and multipath is not considered.

c) EPM-73

The Empirical Propagation Model-73 (EPM-73)[3] provides reasonable accuracy and
simplicity with minimal input information. This model provides simple empirical formulas
for various situations that give large-scale path loss in dB. The model can largely be
divided into two groups according to the magnitude of the dimensionless parameter h/A,
where h is the antenna height and A is the wavelength measured in the same units. Hence
the model is actually a combination of high-A /A and low-A /X modes. These two modes are
limited in their applicability to certain combinations of frequency, distance, and antenna
height. For most situations, one of the two modes is clearly applicable, but in some
instances a transition region will arise where one of the modes will be applicable only
over certain distances. In this transition range, the mode that predicts the larger loss is
generally the more accurate.

Because this is a purely empirical model, its validity can only be checked by compar-
ison with measured data. Lustgarten and Madison [3] compared predicted and measured
values over a frequency range of 20 to 10,000 MHz over approximately 7000 paths in
many different areas. The results of these comparisons are given in Tables ??7 through 11.
Here, m is the average, over a number of paths, of the predicted loss minus the measured
value, and the root mean square deviation o, is the standard deviation from the mean.
A positive m means that the model is predicting too much loss compared with measured
data. The tables also give comparisons between EPM-73 and other models. Note that
TIREM (terrain-integrated rough-earth model) produces lower deviations for high values
of h/A. This model is more complex and includes terrain-data. The Longley-Rice model
does not consider terrain features in detail and has accuracy similar to that of EPM-73.

d) Okumura Model

Of the models widely available, the Okumura model[7] is the one usually chosen for the
analysis of mobile-radio propagation in urban and suburban areas. The modified model[§]
is not as simple as the original Okumura model. Generally speaking, the Okumura model
is considered to be among the best in terms of accuracy of path loss prediction for mature
cellular radio systems in an urban or suburban area. It offers standard deviations of about
12 dB from measured data.

The median propagation loss L5 in the Okumura model can be written as

LSO = LF + Amu(f? d) + G(hte) + G(hre) dB (19)

where L is the free space propagation loss, A,,, is the median attenuation relative to free
space, G/(h¢) is the base station antenna height gain factor, G/(h,.) is the mobile antenna
height gain factor, hs is the effective antenna height of the transmitter and h,. is the
effective antenna height of the receiver.

21



Freq. | Receiver | No. of | EPM-73 IPS TIREM | Longley-Rice
Height | Paths m Om m Om m Om m Om
a2y | m) @B) | @B | () (dB)
910 6 105 1.9 | 126 | 3.8 | 12.7 | 3.7 | 7.3 | 1.3 12.4
910 9 103 | 4.0 | 11.9 | 3.3 | 12.1 | 5.1 | 6.5 | 3.8 11.8
910 12 105 3.7 1 11.8 | 1.3 | 123 | 44 | 7.3 | 3.7 11.7
1846 6 115 | -2.6 | 14.6 | -2.3 | 15.7 | -4.4 | 109 | -3.0 | 14.7
1846 9 129 | -2.0| 155 |-3.6 | 17.0 | -5.0 | 11.7 | -2.7 | 15.0
1846 12 129 | -26 | 13.8 |-54]156 |-3.5|11.1 |-3.6 | 13.5
4595 6 178 | -1.4 (181 |-2.0]21.1 |-5.01]13.0|-1.9 | 17.3
4595 9 206 |-3.1 183 |-6.5|20.7|-6.8|13.3|-3.1| 18.1
4595 12 179 |-3.1|18.1 |-7.8 1206 |-6.4|124|-3.2 | 18.0
9190 6 213 0.7 1205 |-23 253 |-3.8 146 | 1.7 | 20.2
9190 9 227 1 -0.3120.5]-6.1|25.6|-49]13.9 | 0.3 20.2
9190 12 233 | -0.9|18.8|-8.4|23.6|-48]|13.5|-05]| 1838

Note: These statistics in all cases are for Colorado Plains measurements taken from [4] with a horizontal

polarization; transmitter antenna height of 6 m; careful siting assumed for Longley-Rice results.

Table 6: Comparison of predictions and measured data for high values of h/A

Freq. | Antenna | Pola | Dist. No. EPM-73 1PS TIREM Longley-Rice

Height | riza | Range | Area of m O, m O, m O, m Om

(MHz) (m) tion | (km) Paths (dB) (dB) (dB) (dB)
20 3.3 3 A% 1-50 col. 393 1.7 1 5.9 | -5.1| 5.9 — — | -4.0 | 6.1
50 4 3 A% 1-50 col. 393 | -0.7] 82 |-1.7| 83 | -11.3 | 1.b3 | -4.3 | 8.6
100 3 6 H 1-80 col. 447 0.8 1 9.7 | 59| 9.8 -7.2 | 12.5 ] -1.0 | 10.0
100 3 9 H 1-80 col. 444 1.5 {10.0| 5.7 | 10.1 | -6.2 | 11.8 | 0.0 | 10.3
100 4 6 H 10-52 | ohio 475 05| 84 | 45 |12.7| -34 | 119 | -1.7 | 8.2

Note: These statistics are for measurements taken from [5]; Random siting assumed for Longley-Rice

results.

Table 7: Comparison of predictions and measured data for high values of h/A

EPM-73 IPS TIREM | Longley-Rice
m O, m O, m o, m O,
(dB) | (dB) (dB) (dB)

3784 [-40[88[-40[115[-37] 81

Note: These statistics in all cases are for Colorado Plains measurements taken from [4] with 1000 samples;

horizontal polarization; frequency=100MHz; distance range: 6.5 to 121km; random siting assumed for

Longley-Rice Results.

Table 8: Comparison of predictions and measured data for intermediate values of h/A
and unequal antenna height
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Approx. | No. of | EPM-73 IPS TIREM | Longley-Rice
Freq. m o, m on m o, m o,
(MHz) | Paths (dB) (dB) (dB) (dB)

230 117 9.1 (126 | 11.9 [ 138 |79 | 7.2 | 11.7| 12.3
410 121 |48 (156 | 7.2 | 163 |54 | 11.5] 9.1 15.6

Note: These statistics in all cases are for Colorado Plains measurements taken from [6] with horizontal
polarization; antenna heights: 6m (transmitter) and 9m (receiver); distance range: 0.5 to 119 km; random

siting assumed for Longley-Rice results.

Table 9: Comparison of predictions and measured data for intermediate values of h/A
and unequal antenna height

No. of | Dist. EPM-73 IPS TIREM | Longley-Rice
Area Range m om m om m om m om
Paths | (km) (dB) (dB) (dB) (dB)
Washington | 488 1-60 | 12.4 1 13.9 | 20.2 | 14.6 | 3.8 | 15.8 | 9.2 14.1
Idaho 232 10-34 | -3.6 | 9.8 | 4.6 | 10.0 | -10.8 | 16.3 | -7.1 | 10.3
Wyoming 348 3-44 | -2.9 | 11.2 | 4.0 | 11.7 ] -7.5 | 154 | -6.1 | 11.4

Note: These statistics in all cases are for measurements taken from [6] with vertical polarization; frequency
= 230 MHz; antenna height combinations of 0.6, 1, 2, and 3m; random siting assumed for Longley-Rice

results.

Table 10: Comparison of predictions and measured data for very low antenna height

Frequency Range(MHz) | 20 < f <100 | 100 < f <200 200 < f <400
Standard Deviation(o,,) 5log f 13log f — 16 14
Frequency Range(MHz) | 400 < f <600 | 600 < f <1000 | 1000 < f < 10,000
Standard Deviation(c,,) | —20log f + 65 10 8log f — 14

Table 11: Standard deviation (o,,) of comparison between EPM-73 predictions and mea-
sured values
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Okumura developed a set of curves that show the median attenuation A,,, relative
to the free space loss, and plots of G/(hs) and G(h,.) in terms of the respective effective
antenna heights are available. Generally, G(hs.) varies at a rate of 20dB per decade and
G/(h,e) at a rate of 10dB per decade for h,. < 3m.

Various corrections can be applied to the above formula based on terrain-related pa-
rameters such as transmitter effective antenna height h;., terrain undulation height Ay,
isolated ridge height, average slope of the terrain, and the mixed land-sea parameter.
Correction factors for these parameters are also available in the form of Okumura curves.

For many situations, extrapolations of the derived curves can be made to generate
values outside the range of measurements. The validity of the curves depends on the
circumstances and the smoothness of the curve. This model is particularly good in urban
and suburban areas but not as good in rural areas over irregular terrain.

e) Hata Model

The Hata model [9] is an empirical formulation of the graphical path loss information
provided by the Okumura model. In this model, the urban area propagation loss is used as
the standard loss and correction factors are considered for other situations. The standard
formula for the median path loss in urban areas is given by

Lso = 69.55 + 26.16 log,, fo — 13.8210g 0 hue — a(hye) + (44.9 — 6.55log, o hye) logy d dB(20)

where f. is the frequency between 150 and 1500M Hz, hy is the effective transmitter
antenna height from 30 to 200m, h,. is the effective receiver (mobile) antenna height from
1 to 10m, d is the distance between transmitter and receiver in kilometers, and a(h,.) is
the correction factor for effective antenna height, which is a function of the size of the
service area. For a small to medium sized city, the correction factor is given by

a(hye) = (1.11ogyg fo — 0.7)hye — (1.5610gy, f- — 0.8) dB (21)

and for a large city the correlation factor is

8.29(log o 1.54h,.)2 — 1.1 dB  for f. <200M Hz
a(h,.) = { 3.2(logyo 1175k, )2 — 4.9 dB  for f.> 400M H= (22)
We need to modify the path loss formula as
Lso = Lso(urban) — 2[10g10(§—§)]2 —5.4 dB (23)
for a suburban area and
Lso = Lso(urban) — 4.78(logy, f.)> — 18.33 logy, f. — 40.98 dB (24)

for an open area.

The predictions of the Hata model are generally within 1 dB of those of the Okumura
model if d exceeds 1km. Because of this accuracy and simplicity, Hata’s model has great
practical significance, even though it does not have any path-specific corrections that are
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available in Okumura’s model.

B. Shadowing

Although we model the propagation loss as a random variable, this does not necessarily
mean that the actual loss measured at a particular location fluctuates randomly. Rather,
we observe the randomness as the location of the measurements from a specific point
changes by a distance of A or more. The expected value of the signal strength is the
spatial average of the signal strengths. We call this the medium scale average of the local
mean.

It is known that the local mean power fluctuates with a log-normal distribution as
the antenna moves a distance of the order of tens or hundreds of wavelengths. More
specifically, the probability distribution of the local mean power p is given by

fo(p) = — ~ L ped (25)

where p is the area mean power and A is the the logarithmic standard deviation of the
shadowing expressed in natural units. The standard deviation expressed in dB is 4.34
times the deviation in natural units.

Egli reported a logarithmic standard deviation of about 8.3 dB and 12 dB for VHF
and UHF frequencies, respectively, for average terrain. These fluctuations are caused not
only by local shadow attenuation from obstacles in the vicinity of the antenna, but also by
large-scale effects leading to a coarse estimate of the area-mean power. This fluctuation
reflects shadowing if the vehicle moves over several kilometers and is called the large-area
shadowing.

In contrast, most papers on mobile propagation consider only the small-area shadow-
ing; i.e., the log-normal fluctuations of the local-mean power over a distance of tens or
hundreds of meters. Marsan et al reported a median of 3.7 dB for small area shadowing.
Preller and Koch measured local-mean powers at 10m intervals and studied shadowing
over 500m intervals. The maximum standard deviation experienced was about 7 dB, but
50% of all experiments showed shadowing of less than 4 dB.

C. Multipath Fading

In urban areas there are typically many objects that reflect, diffract, and scatter
the transmitted signal to the receiver. These phenomena involve not only a change in
amplitude but also a change of phase, so both constructive and destructive interference
can occur. Signals arriving at the receiver within a fraction of one signaling interval
can be considered to have arrived at roughly the same time. As the receiver moves, the
trajectories of the multipath signals will change, which results in changes of magnitudes
and phases. The result is a rapid fluctuation of power in the composite received signal.

This phenomenon of multipath fading is usually described by the Gaussian wide-sense
stationary uncorrelated scattering model. If the number of signals received at roughly the
same time is sufficiently large, then (through the central limit theorem) the net received
signal can be modeled as a complex Gaussian random variable. The signal components re-
ceived at different times are uncorrelated because they have traveled over different paths.
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The magnitude of the complex Gaussian random variable is a Rayleigh random vari-
able; hence Rayleigh fading occurs. Actual measurements show that the received signal
strength may or may not follow the Rayleigh distribution[8]. This is due to the fact that
in some cases only a few signals arrive at the receiver at roughly the same time.

a) Doppler Power Spectrum, Time Selectivity and Correlation Time
Due to the motion of the receiver or scatterers, the received signal along a given path
can undergo a frequency shift. The actual amount of frequency shift Af is given by

Af = Y cos 0 (26)
c

where v is the speed of the vehicle, ¢ is the speed of the light, # is the angle of the signal’s
arrival measured from the front of the vehicle, and f. is the carrier frequency of the signal.
The Doppler power spectrum measures the amount of power received at various frequency
shifts, which can also be used to determine the direction from which the signals arrive
at the receiver. When the Doppler power spectrum is highly localized to some specific
direction, it strongly indicates that there are only a small number of paths arriving at the
same time, and this may result in a departure from the Rayleigh fading model.

Although Doppler fading fluctuates, it does so smoothly as the receiver moves. There-
fore, the received signal strengths measured at different locations are generally correlated
in accordance with the time elapsed if the receiver moves at a constant rate. This corre-
lation can be described as

Bl (et +7)] = i3 (5 7) 27)
where r(t) and r(t 4+ 7) are the received signal strength at time ¢ and ¢ + 7, v is the
speed of the receiver, A is the wavelength of the carrier, 2 is the average power of the
received signal, and J(-) is the inverse Fourier transform of the Doppler power spectrum.
We observe that the correlation decreases as t increases. The threshold 7. for which
the correlation becomes small compared to a particular standard is called the correlation
time to that standard. The correlation time is inversely proportional to the product of
the speed of the vehicle and the carrier frequency f.. For example, tau, is given by

c

4ov f.

if we choose 0.5r3 as our standard of correlation with an isotropic receive antenna.

For frequencies of 1 GHz and vehicle speeds of 100km/hr, for example, the rate of
change of the fade is on the order of 100 times per second. For lower speeds and lower
carrier frequencies the fade rate is lower. As a second example, for carrier frequencies of

(28)

Te RO

50 MHz and vehicle velocities of 10km/hr, time variations occur about once every two
seconds. This is termed the time selectivity of the channel.

b) Delay Spread, Frequency Selectivity, and Coherence Bandwidth

In addition to time variations, fast fading also exhibits frequency selectivity. If there
exists only one path for the signal transmission, then the channel impulse response h(t)
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can be represented as a delta function, resulting in a frequency response H(f,¢) which
is constant over the entire frequency range. However, when there are multiple routes to
the receiver, the received signal arrives at different times and the impulse response h(t)
becomes a sum of delta functions with different amplitudes. As a result, the frequency
response H(f,1) is no longer a constant function of frequency. The maximum B, such that
H(f,t) is roughly constant for all f in an interval of length B, according to a particular
standard is called the coherence bandwidth. The coherence bandwidth is usually defined
to be

1

B, ~ —
8A

(29)

where A is the delay spread of the channel, which in turn is defined by
o BPBOP P
Joo ()2 foT A ()]

where h(t) is the impulse response of the channel. The coherence bandwidths for path
lengths of approximately 2 to 4km are typically in the range of 100 kHz to 1 MHz.

)’ (30)

—

If a signal is spread over a bandwidth equal to twice the coherence bandwidth then fad-
ing can be mitigated to some extent by employing appropriate processing algorithms. Sim-
ilar conclusions can be applied to time and frequency selectivity, which is how frequency-
hopped and direct-sequence spread spectrum combat multipath fading.

2.2 Interference

In the case of wireless communication, two different types of interference can be experi-
enced. Unintentional interference from other users is called multiple access interference
(MATI). If the MAT is caused by a large number of users, then the cumulative effect can
be approximated by an additive Gaussian noise process. Jamming is an intentional form
of interference that aims to disrupt communications. Intelligent jamming signals can
significantly degrade the performance of a communication system.

To design a robust communication system under hostile jamming environments, it is
very important to consider worst-case scenarios. It is fairly easy to develop techniques for
reliable communications when the jamming signals are highly structured, but building a
robust receiver that performs well under a variety of jamming signals is much more diffi-
cult. One concept that is often employed to combat jamming is to build parallel branches
in the receiver. One branch may work well for a certain subset of possible jamming sce-
narios and another branch may work well for another type of jamming situation. The
receiver can select the correct data stream through error detection techniques.

Game theoretic methods can often be used to develop robust receivers in a jamming
situation. A communication designer wants to find the best possible communication
strategy for the worst possible jammer. The desire of the jammer is to find the best
jamming strategy for the best possible communication system. If the performances for
these two optimization problems are the same then we say the game has a saddle point
solution. In what follows, we play the role of the communicator.
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For certain scenarios the worst case jamming strategy is known. For example, if the
communicator transmits a signal with a constraint on the average power and if the jammer
has a similar constraint, then it is known that the optimal strategy for the jammer is to
jam with a Gaussian distributed amplitude and that the communicator should also use a
Gaussian distributed amplitude. However in many practical situations the amplitude of
the communicator is constrained in peak value (as well as average value). Furthermore,
receiver processing in many situations is limited by the number of quantization levels. In
such cases, Gaussian jamming is no longer the worst case.

Next we describe a class of jamming strategies that closely approximate some real-
istic jamming scenarios. We do not, however, consider jamming strategies that attack
vulnerabilities in synchronization, acquisition, and tracking.

2.2.1 Partial Time or Partial band Interference (Jamming)

One particularly useful class of jamming strategies is the class of partial-band jamming.
In this strategy, the jammer is assumed to be average power constrained but not peak
power constrained. Consider, for example, a frequency-hop spread-spectrum system. The
jammer could place different levels of energy in different frequency bands. The jamming
strategy could in fact consist of an arbitrary number of amplitude levels with different
fractions of the band for each level. Realistically, the worst case jammer is actually two-
valued, being either completely silent in a given band or jamming with the maximum
possible power. The optimization strategy can be based on a single parameter in this
case, which is the fraction of the band that is jammed. Once that is determined, the
jammer distributes his total power over that bandwidth. If the jammer occupies a small
fraction of the band, then the power density in that band is quite large but the probability
of "hitting” the desired user is quite small. If the jammer occupies the whole band then
he is guaranteed to affect the transmitted signal, but the jamming power spectral density
is reduced exactly by the number of frequency slots (the processing gain) available to the
transmitter. It turns out that in the absence of coding, the optimal jamming strategy
(as shown above) is to jam only a small fraction of the band. With optimal coding of
sufficiently small rate the worst-case jamming strategy is to jam the whole band, and thus
coding allows spread-spectrum to operate with its full anti-jam processing gain. Similar
arguments can be made for direct-sequence spread-spectrum with a pulsed interferer.

2.2.2 Multiple Access Interference

In addition to intentional jamming, there may exist interference due to multiple access.
For a well-designed code-division multiple-access (CDMA) system, the output of a fil-
ter matched to a particular spreading sequence is small when a spreading sequence for
a different user is input. This makes possible several simultaneous transmissions over
a common communication channel. When the number of users transmitting signals is
large, the interference can be approximated by additive Gaussian noise. However, if an
undesired transmitter is located very close to the receiver, the communication quality will
be significantly degraded due to the near-far phenomenon. Power control methods are
generally used to mitigate multiple access interference when signals are transmitted from
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multiple mobile users to a base station. However, in mobile-to-mobile communication
systems, the situation is more complex and simple power control schemes may not be
particularly effective.

2.3 Simulation Model

The purpose of our channel simulation is to develop models that can be used for the evalu-
ation of various communication techniques based on actual measurements. Although our
channel models are based on empirical data, we do not perfectly simulate actual situations
for two reasons. First of all, it is not possible to reproduce the actual situations perfectly.
Moreover, it is often not particularly useful to evaluate communication techniques for
specific situations. Instead, we generate realistic models that contrast the performance
of various communication techniques. Empirical data add a realistic dimension to our
models.

Ideally, in a single channel simulation we should be able to generate the transmitted
signal with certain power, attenuate it according to the large-scale path loss, shadow it,
submit it to multipath fading, and then add it to other signals. Our simulation generates
large scale propagation loss values in systems with both long and short packet duration,
and then empirical data are used to develop a model for multipath fading.

2.3.1 Large-scale Propagation Loss and Shadowing

For our simulation, we use the Hata model and the EPM-73 for the prediction of large-
scale path loss. EPM-73 is used for the rural situations and Hata model is used for
suburban and urban areas. The root mean square deviations of the predictions from the
actual measurements in various situations were introduced earlier. These deviations con-
strain the standard deviation of the log-normal distribution which we use to account for
shadowing. We approximate these two values as equivalent.

A. Systems with short packet duration

Whether it is necessary to combine shadowing with multipath fading depends on the
duration of a packet in the communication system. If the packet duration is sufficiently
small so that the change of shadowing effect is negligible during its transmission, then
we use only multipath fading in the simulation. In this case we combine large-scale
propagation loss and shadowing to predict the performance of the system.

For example, if the large-scale path loss is I and if the standard deviation of the
log-normal distribution is o, then we can say that 99% (or 95%) of all possible sit-
uations the large-scale path loss combined with the shadowing loss does not exceed
L+ 2580(L + 1.960). So if the error rate is found to be Pe at the specific loss of
L 4+ 2.580 (L + 1.960) from our multipath fading channel model, then we can say with
99% (95%) of certainty that the error rate is within FP..

B. Systems with long packet duration

When the packet duration is large enough that the vehicle can move through areas
where the shadowing effect changes, then the situation is more complicated. In this
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Excess Delay(us) | 0 03 07|10 16| 25| 30| 3.7 |63 |80] 95 |10.2
Relative Average
Amplitude 0.75]0.56 | 0.81 | 0.96 | 1.0 | 0.76 | 0.63 | 0.87 | 0.25 | 0.65 | 0.45 | 0.16

Table 12: Relative Average Amplitude on Pine Street (NY)

Excess Delay(us) 0 |1.1| 415 | 4.8 5.4
Relatvie Average Amplitude | 1.0 | 0.8 | 0.447 | 0.282 | 0.282

Table 13: Relative Average Amplitude in American Legion Drive (Suburban)

case we need to combine the effects of shadowing and multipath fading to simulate our
communication system. Although the effect of shadowing can be described by a log-
normal distribution, approximations must be used to model how it changes as the receiver
moves. We do this by dividing the packet duration into subintervals such that the effect
of shadowing is different from one subinterval to another, but within each subinterval the
shadowing follows a log-normal distribution. In this way, we incorporate shadowing into
our multipath fading channel simulation model.

2.3.2 Multipath Fading

The wide-sense stationary complex Gaussian uncorrelated scattering (WSSUS) channel
model and the empirical data from the measurements performed by D. C. Cox [8, 10] are
the theoretical and empirical bases for our multipath fading channel models. Specifically,
we used the data measured on ”"Pine Street (New York)” [10] and in ”American Legion
Drive (Suburban)” [8]. For those two environments, both the average delay profiles and
the Doppler spread power spectra are provided. The observed Doppler power spectrum at
some particular delay may be highly localized around some frequency, indicating that the
signals arriving at that particular delay mostly came from one specific direction. Because
the reflection coefficients are highly dependent upon the angle of incidence, this implies
that the distribution of received power should diverge from the Rayleigh distribution; this
has been verified.

For the simulations, we first simplified the average delay profiles as shown in Tables
12 and 13.

The maximum excess delay on Pine Street is about 10us, with a delay spread of about
2.5us. Observations performed at other places also indicate that the maximum excess
delay can reach 5 — 10pus in an urban area and that the delay spread is on the order
of 2us, making the Pine Street data typical for urban areas. On the other hand, the
data from American Legion Drive do not represent typical suburban situations. Usually
the delay spread in a suburban area is on the order of 0.25us while that of American
Legion Drive is about 2us. However, this discrepancy is not a defect because we can
introduce a scale parameter to the excess delays and observe the performance variations
of the communication techniques as a function of the scale parameter. We expect that
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the performance of a direct-sequence spread-spectrum (DSSS) system is not affected by
the change of the scale parameter as long as the excess delays are resolvable, while that of
a frequency hopping spread spectrum (FHSS) system may be affected by this parameter.

In our simulations, the Doppler delay power spectra are approximated by piecewise
constant functions. As explained in sec. 2.1.2-C-a), the Fourier transforms of these func-
tions give correlations between the received amplitudes at different times. To create the
correlated Rayleigh fadings, we first generate complex white Gaussian random sequences
with mean zero and unity variance, take their Fourier transforms, multiply them by the
square roots of the Doppler delay spectra, and then take the inverse Fourier transforms.
This gives complex correlated Gaussian random sequences whose amplitudes are Rayleigh
random sequences. The correlated Rayleigh random sequences are used to evaluate the
DSSS systems.

The complex correlated Gaussian random sequences combined with information about
excess delays give the time variant impulse response h(7,t) whose Fourier transform
H(f,t) is the time variant frequency response of the multipath fading channel. H(f,t)
and H(f + Af,t) are correlated in general, but the correlation decreases as Af become
larger. The coherence bandwidth for our system is about 100 kHz.

We divided the frequency range of interest into ¢ non-overlapping slots so that the
frequency response of the channel is roughly constant over each of these slots. The values
of the frequency response at the central frequencies of the slots are used for the fading
parameters of the frequency hopping systems. We choose ¢ large enough that the slot
bandwidth is smaller than the coherence bandwidth. The coherence bandwidth is inversely
proportional to the delay spread A as shown above. This is why we expect the performance
of the FHSS system will depend on the scale parameter for the excess delays.

Cox used 910 MHz signals in his measurements, but we use these simulation models
for a carrier frequency of 30-2000 MHz. Although the data may not be accurate for
frequencies different from 910 MHz, the general characteristics of the channel will be
roughly the same.

31



3 Coded Modulation With Multicast Schemes for
Communication Using Convolutional Code and Nonorthog-
onal Signals

In this section, we describe a technique for getting improved coded-modulation perfor-
mance in communication system using orthogonal and nonorthogonal signals. The sig-
nals are bit interleaved convolutionally coded using the orthogonal code or nonorthogonal
Nordstrom-Robinson code or one of the Kerdock codes. This combination allows for either
coherent or noncoherent demodulation, and obtains large distance between coded wave-
forms. Since it is nearly as easy to demodulate the nonlinear Nordstrom-Robinson code
as a standard orthogonal modulation, the gain is achieved without significant increase in
complexity.

Furthermore, multi-rate data can be transmitted simultaneously through joint modu-
lation or multiplexing schemes. This suggests a multicast strategy and adaptive coding
can be applied with significant gain in signal-to-interference ratio for low rate input data
over high rate data.

3.1 Introduction

This section is concerned with communication systems operating at low rate and low
signal-to-noise ratio. Low rate convolutional codes combined with standard binary phase
shift keying (BPSK) modulation do not have any advantage over moderate rate (rate 1/3-
1/2) convolution codes concatenated with a repetition code and BPSK modulation. How-
ever, if a binary convolutional code is bit interleaved and concatenated with an orthogonal
code/modulation then significantly larger distances are possible. This is possible provided
sufficient interleaver depth is available or equivalently sufficient delay is allowed. More-
over, with an orthogonal code the receiver can demodulate the signal without knowledge
of the phase of the received signal (noncoherent demodulation). In this section we consider
the combination of bit interleaved convolutional codes with orthogonal and nonorthogonal
modulation techniques such that noncoherent demodulation is still possible. Of specific
interest is replacing the orthogonal modulation with a Nordstrom-Robinson code or a
Kerdock code and determining the performance. We will show that such combinations
allow for increase distance (at the same rate) as the combination of convolutional code
and orthogonal modulation. The demodulation and decoding can be done in several ways.
The optimum bit error probability algorithm, and a simplified algorithm (similar to the
dual-max algorithm) are both derived.

The modulation schemes considered in this section are nonorthogonal. Here we use
the terms modulation and code interchangeably. A code (or modulation signal set) is just
a set of M vectors of length n with components from a common alphabet. In this section
the alphabet is {+1}. The orthogonal code is a set of M vectors of length n = M such
that any two distinct vectors have zero for their inner product. This code (signal set) can
be doubled by adding the negative of each vector. This is called the biorthogonal code or
biorthogonal modulation. Specifically, the 32-ary biorthogonal signal set BO(16,5) con-
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sists of 32 vectors of length 16 such that distinct vectors are either orthogonal or antipodal.
Another example is the Nordstrom-Robinson code N R(16,8) [11] for which there are 256
vectors of length 16. The NR(16,8) code is composed of the 32-ary biorthogonal code of
length 16, BO(16,5), plus seven of its proper translates. This code N R(16,8) is a member
of the Kerdock family of codes [11]. The code has 256 codewords while the BO(16,5) has
32 codewords only. The complexity of the demodulation of the N R(16,8), however, does
not significantly exceed that of the BO(16,5) under the dual-max algorithm.

Niomior——

Figure 10: Block Diagram of Transmitter

—>| Demodulator |—>| Deinterleaver —>

Figure 11: Block Diagram of Receiver

Coding is a crucial element of many communication systems. Convolutional coding
generally performs better than hard-decision decoded block codes. Low rate convolutional
codes have distance properties that are no better than a medium rate convolutional code
concatenated with a repetition code. In order to achieve low rates with better distance
properties, many times medium rate (e.g. rate 1/2) codes are concatenated with orthogo-
nal codes. This not only allows for better distance properties but also gives the flexibility
of allowing noncoherent demodulation. However, when combined with the M-ary modu-
lation schemes, the resulting channel as seen by the decode becomes bursty. This can be
mitigated by employing a bit interleaver of sufficiently large size as shown in Figure 10.
The output of the convolutional encoder is interleaved and then used as the input to the
M-ary modulation. At the receiver the demodulator (soft) output is deinterleaved and
then decoded as shown in Figure 11. This method of coding and modulation achieves
fairly large Hamming distance between codewords. For example, the concatenation of the
constraint length 5 and rate 1/2 convolutional code with BO(16,5) modulation achieves
an overall Hamming distance of 56 provided there is sufficient interleaving depth. In this
section we show that the orthogonal code can be replaced by a higher rate code (e.g. a
Kerdock code or a Reed-Muller code) whereby a lower rate convolutional code for the
same overall rate is possible. In this case the overall code achieves a larger distance and
lower error rate in certain cases.

Multi-rate data can be transmitted through this new coded modulation scheme. One
way of doing this multicast scheme is to jointly modulate data of different rates after a
proper pre-spreading on the low rate data. The other way is to encode data of different
rates separately and combine the output with a multiplexer. Adaptive coding for this
multicast scheme can be applied at the receiver side based on channel condition, and
significant gain in signal-to-interference ratio (SIR) can be obtained for low rate data over
high rate data.
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3.2 Modulation

In this section we derive the optimal and sub-optimal modulation/demodulation algo-
rithms on M-ary orthogonal or nonorthogonal code.

3.2.1 Biorthogonal Code
The 32-ary biorthogonal code of length 16, BO(16,5), has 32 codewords vy, vy, ..., 03

with minimum distance 8. Five bits by, by, b3, by, bs can be transmitted in every 16 channel
chips of BO(16,5) and thus the rate is 5/16. Assume a codeword v, corresponds to
b1, by, b3, by, bs with n = 16b; + 8by + 4b3 + 2b, + bs. When a codeword is transmitted and r
is the received signal, conventional demodulation at the receiver is to find the maximum
of all the output of the 32 correlators. However, if we focus on only one single bit [12]
(e.g. by) among all by, by, bs, by, bs, then the optimal decision under MAP rule of b is to
compare the likelihood of by = 0 and b; = 1 given r, i.e., to compare p(r|b; = 0)Pr(b; = 0)
and p(r|by = 1)Pr(by = 1). We know that

p(£|bl = 0) = Z p(£|bl = 0,62,63,64,[)5)PT(61 = 0,62,63,[)4,65) (31)
b2,ba,ba b5

p(£|bl = 1) = Z p(£|bl = 1762763764765)Pr(bl = 1762763764765)‘ (32)
b2,ba,ba b5

Assuming by, by, b3, by, by are equally likely, the optimal decision on by is thus to compare

15
> p(r|by = 0,b3,b5,b4,05) = > p(rlv;) (33)
b2 ,b3,b4,bs i=0
and
31
Z p(£|bl = 17 b?v b37 b47 b5) = Z p(£|22) (34)
52763754,[)5 =16

The above indicates that by is optimally demodulated by the probability density func-
tions (p.d.f.) of two disjoint cosets in BO(16,5),{vg, vy, ..., 015} and {vy6, 017, ..., U3 }-
Obviously from (33) and (34) the log-likelihood Uy = In(p(r|by = 0)Pr(by = 0)),U; =
In(p(r|by = 1)Pr(by = 1)) of by can be equivalently written as

Uo = In(Q_p(rle)) (35)

Up = In()_ plrly)). (36)

=16

In addition, a sub-optimal algorithm, dual-max, is to look at the maximum log-likelihood
only in the two cosets. Then Uy, Uy of by can be rewritten as

Uy = In(max{p(rle;)}) = max{In(p(rlv:))} (37)
Uy = In(max{p(z|o;)}) = max{In(p(r]e;))}. (38)
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This dual-max algorithm can significantly reduce complexity while its error performance is
only marginally worse than that of the optimal algorithm. Throughout, we assume dual-
max demodulation unless otherwise specified. The above demodulation can be applied on
by through bs as well. The error performance of all the five bits by, b, b3, by, b5 1s identical
because of the symmetry of BO(16,5).

3.3 Orthogonal Code

Four bits by, by, bs, by are transmitted in a 16-ary orthogonal code of length 16, O(16,4),
with 16 codewords vy, vy, ...,vy5. Following the similar procedure in Subsection 3.2.1,
under optimal demodulation the log-likelihood Uy, U of by is as follows:

Uo = (Y pleler) (39)

Ur = In(xplrlu) (40)
and under dual-max demodulation

Uo = max{In(p(z|o;))} (41)

Uy = max{In(p(zlw)}- (42)

Again, parallel demodulation can be also applied on by through by. The error performance
of all the four bits by, bs, bs, by is identical because of the symmetry of O(16,4).

3.4 Nonorthogonal Code

If we start with biorthogonal code BO(16,5), we can increase the number of codewords
by adding seven carefully selected translates of BO(16,5), with the number of code-
words increasing from 32 to 256 while the minimum distance decreasing from 8 to 6.
By doing so we get the nonlinear Nordstrom-Robinson code NR(16,8) [11]. Eight bits
by, by, b3, by, bs, b, b7, by are transmitted in the NR(16,8). Following the similar proce-
dure in Subsection 3.2.1, the log-likelihood Uy, U; of by under optimal demodulation is as
follows:

127

Uo = 1ﬂ(; plrle;)) (43)

255

U = In( ) p(rlu)) (44)
i=128
and under dual-max demodulation
Uo = max{In(p(r|;))} (45)
Uy = maxfn(p(rle))}. (46)
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Again, parallel demodulation can also be applied on by through bs. However, the per-
formance of the eight bits in NR(16,8) is almost but not exactly identical with each
other. To be more specific, by, by, b3 have same error behavior while the other five bits
by, bs, bg, b7, bg have the same behavior, and the former is slightly worse than the latter.
Biorthogonal code cannot be employed in a noncoherent demodulator. If only the
orthogonal subcode of the BO(16,5) and its seven translates in N R(16,8) are used, we
have a modified Nordstrom-Robinson code NR*(16,7) with 128 codewords. Seven bits
by, by, b3, by, bs, bg, by are transmitted in the NR*(16,7). The log-likelihood Uy, Uy of by

under optimal demodulation is as follows:

Up = 1H(ZP(£|&'>) (47)

127
Uy = () p(rly)) (48)
1=64
and under dual-max demodulation
Uo = miax{In(p(r|v:))} (49)
Ur = max{ln(p(re:)}. (50)

Again, parallel demodulation can also be applied on by through b7. Similar to N R(16,8),
by, by, bs of NR*(16,7) have same error behavior while by, bs, b, by have the same behavior,
and the former is slightly worse than the latter.

The number of vectors can be expanded from 256 to 2048 to obtain the linear Reed-
Muller code of order 2 and of length 16, RM(16,11). Here the distance decreases further
from 6 to 4. The number of vectors can be expanded from 2048 to 32768 to obtain the
Reed-Muller code of order 3 and of length 16, RM(16,15). Here the distance decreases
further from 4 to 2 [11]. Following a similar procedure as above, we obtain modified Reed-
Muller code of order 2, RM*(16, 10), as a subcode of RM(16,11) with half the codewords,
and modified Reed-Muller code of order 3, RM*(16,14), as a subcode of RM(16,15) with
half the codewords. The relationships between all the orthogonal and nonorthogonal codes
mentioned so far is [11]

BO(16,5) C NR(16,8) C RM(16,11) C RM(16,15) (51)
0(16,4) C NR*(16,7) C RM*(16,10) C RM*(16,14). (52)

Similar demodulation scheme can be also used on RM(16,11), RM*(16,10), RM(16,15),
and RM~*(16,14). However, complexity increase is expected due to large numbers of
codewords.

NR(16,8) is actually one example of the Kerdock code of length 16 [11]. At length
64, we can also find biorthogonal code BO(64,7), orthogonal code O(64,6), Kerdock code
of length 64, K R(64,12), and modified Kerdock code of length 64, K R*(64,11). Similar

modulation/demodulation can also be applied on all these codes of length 64.

36



3.5 Coding

In this section the modulation schemes in Section 3.2 are concatenated with convolutional
coding. When a convolutional code with minimum Hamming distance d,,;, is followed by
a very long interleaver and then followed by O(16,4) modulation of rate 1/4, the overall
squared Euclidean distance is 32d,,;,. The overall rate of communication in bits/chip is
1/4n where 1/n is the rate of the convolutional code. In practice a rate 1/2 convolutional
code is used making the overall rate 1/8. Following this idea we can combine a rate
2/5,2/7, or 1/4 convolutional code with BO(16,5), NR*(16,7), or NR(16,8) whose rate
is 5/16, 7/16, or 1/2 to make overall rate also 1/8, and thus a fair comparison can be
made. The constraint length of the convolutional code in this research is assumed 5 unless
otherwise specified. Here we need to point out that most numerical results in this section
are mainly based on simulations.

As has been stated in Section 3.2, O(16,4), BO(16,5) has distance 8, NR*(16,7), N R(16,8)
has distance 6, RM*(16,10), RM(16,11) has distance 4, and RM*(16,14), RM (16, 15) has
distance 2. As an example we consider the N R*(16,7) code with a low rate convolutional
code which is a rate 1/4 code punctured appropriately to make the rate 2/7. The com-
bination then has rate (2/7) x (7/16) = 1/8 which is the same as the O(16,4) scheme
with a rate 1/2 convolutional code. The distance of the scheme is calculated as follows.
The NR*(16,7) has squared Euclidean distance of 6 x 4 = 24 while O(16,4) has squared
Fuclidean distance of 8 x 4 = 32. The rate 2/7 punctured convolutional code has dis-
tance 13 while the rate 1/2 convolutional code with distance 7. Thus, with sufficient
interleaving the convolutionally coded NR*(16,7) has overall distance 24 x 13 = 312
while the convolutionally coded O(16,4) has overall distance 32 x 7 = 224. This would
correspond to a 1.44dB gain in AWGN channel at high SNR. The following table shows
the various combinations of coding and modulation and the overall distance achieved of
convolutionally coded O(16,4), NR*(16,7),0(64,6) (with distance 32), and K R*(64,11)
(with distance 28) [13]. For length 16 modulation vectors, the optimum combination for
memory 7 is NR*(16,7) followed by a rate 2/7 convolutional code. This has coding gain
of 10logo((4 x 114)/(4 x 80)) = 1.54dB in AWGN. For length 64 and convolutional codes
with memory 7, K R*(64,11) show a 10log,,((4 x 868)/(4 x 512)) = 2.3dB gain in overall
distance over O(64,6). However, we must point out that the above again is merely in
the aspect of minimum overall distance with no consideration of number of neighbors in
codewords or paths in the trellis, which dominate error performance at low or medium

SNR.
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Length Rate Distance/4 Memory Rate Distance Overall Rate Overall Distance
16 4/16 8 4 1/2 7 1/8 56
16 7/16 6 4 2/7 13 1/8 78
16 10/16 4 4 1/5 20 1/8 80
16 14/16 2 4 1/7 28 1/8 56
16 4/16 8 5 1/2 8 1/8 64
16 7/16 6 5 2/7 15 1/8 90
16 10/16 4 5 1/5 22 1/8 88
16 14/16 2 5 1/7 32 1/8 64
16 4/16 8 6 1/2 10 1/8 80
16 7/16 6 6 2/7 16 1/8 96
16 10/16 4 6 1/5 25 1/8 100
16 14/16 2 6 1/7 36 1/8 72
16 4/16 8 7 1/2 10 1/8 80
16 7/16 6 7 2/7 19 1/8 114
16 10/16 4 7 1/5 28 1/8 112
16 14/16 2 7 1/7 40 1/8 80
64 6/64 32 4 1/3 12 1/32 384
64 11/64 28 4 2/11 21 1/32 588
64 6/64 32 5 1/3 13 1/32 416
64 11/64 28 5 2/11 24 1/32 672
64 6/64 32 6 1/3 15 1/32 480
64 11/64 28 6 2/11 28 1/32 784
64 6/64 32 7 1/3 16 1/32 512
64 11/64 28 7 2/11 31 1/32 868

Table: Code and modulation parameters and overall distance.

In general, under the same overall rate, the error rate of convolutionally coded BO(16,5)
is lower than that of convolutionally coded O(16,4), and the error rate of convolutionally
coded NR(16,8) is lower than that of convolutionally coded N R*(16,7). This is because
BO(16,5) and O(16,4) have the same minimum distance, or NR(16,8) and N R*(16,7)
have the same minimum distance, but the former can always be combined with a lower rate
convolutional code and thus higher error correcting capability. This suggests BO(16,5)
or NR(16,8) should be employed whenever coherent demodulation is possible.

The performance can be further improved by concatenating the convolutional code
with an outer Reed-Solomon (RS) code, if extra complexity is allowed. A symbol inter-
leaver of the coded RS symbols should be provided, if possible, to overcome the effect of
bursty errors of the convolutional code.

3.6 Results of Coded Modulation Schemes

In this section we show simulation results of different coding and channel conditions. The
bandwidth is 10MHz(33-43 MHz), the chip rate is 160 kbps, and the channel is divided

into 62 subchannels, and assumed frequency hopped. In the simulation we assume the
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coded modulation scheme is BO(16,5), the signal is with power P, and there is Gaussian-
like jamming with power J but no background noise. The jamming strategy is always
all-band unless otherwise specified.

In Figure 12 we show the error performance of input rate 256/30 bps over a slow
Rayleigh faded frequency-hopped channel with ideal channel interleaving.

Figure 12: Slow Rayleigh Fading Channel. Solid Line: RS(31,25) Code Total Number
of Information Bits: 250 Pre-Spreading Factor: 2363 Hopping Rate: 10kHz(left) and
4.23Hz(right) Dashed Line: RS(63,43) Code Total Number of Information Bits: 258 Pre-
Spreading Factor: 2000 Hopping Rate: 10kHz(left) and 5Hz(right)

In Figure 13 we show the error performance of input rate 256/30 bps over a realistic
fading channel with vehicle velocity 30 m/s.

In Figure 14 we show the bit error rate of input rate 256/30 bps coded with RS(31,25)
code over a realistic fading channel with different vehicle velocities 30 m/s and 0.

In Figure 15 we compare the input rate 256/30 bps coded with RS codes under realistic
fading channel at vehicle velocity 30m/s, and under slow Rayleigh fading channel with
ideal channel interleaving. The hopping rate is 10kHz.

In Figure 16 we show the bit error rate of input rate 9600 bps coded with RS(62,24)
code over a realistic fading channel with different vehicle velocities 30 m/s and 0. The
hopping rate is 10kHz. No pre-spreading for this high input rate.

In Figure 17 we show the effect a partial-band jamming channel on input rate 9600 bps
coded with RS(63,25) code over a realistic fading channel with different vehicle velocities
0. The channel is either being jammed at probability p by Gaussian interference with
power spectrum density Ny/p, or with negligible background noise at probability (1 — p).
Although we find out that p has little effect on the code with low input rate and high
pre-spreading factor, for a high input rate with no or low pre-spreading, e.g. 9600bits/s,
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Figure 13: Realistic Fast Fading Channel. Solid Line: RS(31,25) Code Total Number
of Information Bits: 250 Pre-Spreading Factor: 2363 Hopping Rate: 10kHz(left) and
4.23Hz(right) Dashed Line: RS(63,43) Code Total Number of Information Bits: 258 Pre-
Spreading Factor: 2000 Hopping Rate: 10kHz(left) and 5Hz(right)

p = 1, full-band jamming, is always the best strategy of the jammer.

3.7 Multicast Schemes

Input data streams of different rates can be transmitted simultaneously through the above
coded modulation scheme. One way of doing this multicast scheme is to jointly modulate
data of different rates after a proper pre-spreading on the low rate data. The other way
is to encode data of different rates separately and combine the output with a multiplexer.
Adaptive coding for the multicast schemes can be applied at the receiver side based on
channel condition.

3.8 Multiplexing

Input data of two different rates can be combined through a multiplexer as illustrated
in Figure 18. In this multiplexing scheme, each date stream is coded and modulated
separately and then combined through a multiplexer with a pre-spreading on the lower
rate data.
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Figure 14: Realistic Fading Channel with Different Vehicle Velocities. Solid Line: Vehicle
Velocity: 30m/s Hopping Rate: 10kHz(left) and 4.23 Hz(right) Dashed Line: Vehicle
Velocity: 0 Hopping Rate: 10kHz(left) and 4.23 Hz(right)

For example, under BO(16,5) modulation and r; = 10bps, ry = 10kbps, R. =
160kbps, n is 2000 when Ry = 1/2 and Ry = 1(uncoded) and n is 500 when Ry = 1/2
and Ry = 1/4. This large number of pre-spreading length n indicates a significant gain in
signal-to-interference ratio for the 10bps stream over 10kbps stream. In these two cases,
the low rate stream occupies 80% of the channel chips when n = 2000, and 20% of the
channel chips when n = 500.

3.9 Joint Modulation

Instead of multiplexing, another way to combine data streams is bit allocation in the
log, (M) bits in the M-ary modulation as illustrated in Figure 19. Multiplexer is substi-
tuted by a modulator, whose input is decided jointly by the two coded date streams.

Given that both modulators Figure 19 are BO(16,5), if 4 of the 5 bits in BO(16,5)
are allocated to rate ry data and 1 bit to rate ry data, r1, 79, Ry, Re,n have the following
relationship

4R,

(ri/R1)(16/5)n = G (53)
R.
ro/ Ry = 16 (54)
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Figure 15: Comparison of Slow Rayleigh Fading Channel and Realistic Channel Solid
Line: RS(31,25)(left) and RS(63,43)(right) Code Realistic Fading Channel Dashed Line:
RS(31,25)(left) and RS(63,43)(right) Code Slow Rayleigh Fading Channel

and the following relationship if 1 bit to rate r; data and 4 bits to rate ry data,

(rl/Rl)(16/5)n = % (55)
v/ R Aféc (56)

For example, for ;1 = 10bps, ro = 10kbps, and R. = 160kbps, n = 625 in (53) when
Ry =1/2 and Ry = 1(uncoded), and n ~ 156 in (55) when Ry = 1/2 and Ry = 1/4. A
significant gain in signal-to-interference ratio is also observed for the 10bps stream over
10kbps stream in the joint modulation scheme.

3.10 Results

In Figure 20 we show the performance of the two input streams at different data rates
ry = 10bps, r2 = 10kbps, and R, = 160kbps under BO(16,5) modulation with power P
over a full-band Gaussian jamming channel with jamming power .J. The convolutional
code is of memory 4, and the size of the interleaver is assumed very large. Both multicast
schemes of multiplexing and joint modulation are shown and compared. We can see that
multiplexing works better than joint modulation on low data rate, while joint modulation
works better on high data rate.
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Figure 16: Realistic Fading Channel with Different Vehicle Velocities. Solid Line: Vehicle
Velocity: 30m/s Dashed Line: Vehicle Velocity: 0 Total Number of Information Bits:
9600

3.11 Conclusion

A new approach to M-ary orthogonal, biorthogonal, and nonorthogonal modulation schemes
has been examined. The new modulation scheme can provide good distance properties
when combined with orthogonal coding. Besides, since in the new scheme each bit in the
M-ary modulation is decided individually, the new scheme can be regarded as binary,
memoryless, if interleaving of very large size is provided when necessary. This new coded
modulation can also be applied on multicast schemes.
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Figure 17: Partial-band Jamming Channel

Low Rate(r;) —>{ Encoder(R;) —>| Interleaver|—>| Modulator |—> Pre-Spreading(n) —

Multiplexer
High Rate(r;) —>| Encoder(R;) —>| Interleaver|—>| Modulatorl A
Figure 18: Block Diagram of Multiplexing Scheme
r1 = Encoder(Ry) —>| Interleaver |—>| Modulator |—> Pre-Spreading(n) lnterleaver
ry = Encoder(R;) —>| Interleaverl IJoint Modulatorl

Figure 19: Block Diagram of Joint Modulation Scheme
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—_— Multiplexin:
- == Joint Modulation

(A1) : Ry =1/2,n = 2000; Ry = 1
(A2) : Ry =1/2,n=500; Ry =1/4
(B1) : Ri=1/2,n=625Ry =1

(B2) : Ry=1/2,n~156; Ry = 1/4
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4 Turbo codes for FH-SS with partial-band jamming

Turbo codes are an exciting new channel coding scheme that achieve data communication
at signal-to-noise ratios close to the Shannon limit. The results published in the inaugural
paper by Berrou (Berrou et al, 1993) were so good that they were met with much skepti-
cism by the coding community. Since then, however, these results have been reproduced
and even improved. Consequently, much of the present research is focused on applying
turbo codes to different systems.

The encoder is a parallel concatenation of two or more systematic constituent codes
separated by interleavers. The key element of the encoder are the interleavers which yield
improved performance for larger interleaver lengths. This phenomena is called interleaver
gain. The turbo decoder uses an iterative decoding algorithm which makes use of MAP
decoders matched to each of the constituent encoders. Essentially, each MAP decoder
computes likelihood estimates, Ly, of the data bits.

pldy, = 1ly)

L. =
© 7 pldy = 0ly)

where y represents the vector of channel outputs.

Each MAP decoder generates these likelihoods and then passes this information to the
next MAP decoder. These likelihood estimates are used as a priori information by which
new likelihood estimates are computed. This process is iterated several times, eventually
converging to some low bit error rate.

Our research has focused on the application of turbo codes to slow frequency-hopped
spread-sprectrum (FH-SS) with partial-band interference. We also consider FH-SS with
partial-band interference and slow Rayleigh fading. Our approach is to exploit the mem-
ory of the channel by estimating which hops have been jammed and in the case with
fading, what the faded amplitudes are. It was mentioned above that the turbo decoder
iteratively improves log-likelihood ratios. An alternative way to view this is that the
turbo decoder iteratively improves p(di|y), the information bit estimates. In our work,
the memory in the channel is used to estimate unknown channel parameters. If these
channel estimates are computed using an iterative structure similar to that of the turbo
decoder, perhaps these estimates can also be improved. Thus in our work, iterative esti-
mation and decoding is performed.

In order to gauge the accuracy of these estimation procedures, we compare their results
to cases where side information is available. By side information (SI), we refer to the
perfect knowledge of which hops have been jammed (jamming SI — J SI) and the exact
values of the fade amplitudes (fading SI — F SI).

For our simulations, we consider coherent (BPSK modulation) and noncoherent reception
(BFSK modulation); variable number of bits per hop (1 bit per hop case is called "T1ID’,

46



multiple bits per hop cases are called "Memory’); and cases with varying levels of side in-
formation. For all simulations, each constituent code was a rate 1/2, memory 4 recursive
systematic convolutional code and each packet contained 1760 information bits.

Figure 21 shows the performance of turbo codes in coherently received FH-SS with partial-
band interference. Plotted is the minimum signal-to-noise ratio (SNR) required to achieve

a packet error rate (PER) of 1072. The 'Memory’ case had 3 bits per hop (BPH).
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Figure 21: Coherent Reception of Turbo Codes in FH-SS with Partial-Band Jamming

Figure 22 shows turbo codes in noncoherently received FH-SS with partial-band interfer-
ence. Plotted is the minimum signal-to-noise ratio (SNR) required to achieve a PER of
1072, In the legend, the acronym "NSI” denotes "No Side Information”.

The primary result of Figures 21 and 22 is exhibited by noticing the tradeoff in per-
formance as the number of bits per hop is varied. Because channel state estimates will
improve if the number of bits per hop increases, performance differences between cor-
responding SI and no SI cases become smaller as the number of bits per hop increase.
Notice, however, that the performance of SI cases degrades as the channel memory in-
creases. This occurs because a fewer total number of hops are used.

Figures 23 and 24 show the performance of turbo codes in FH-SS with both partial-band
interference and Rayleigh fading. Figure 23 shows the simulation results for coherent
reception; Figure 24 has the results for noncoherent reception. The desired PER is 1072,
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Figure 22: Noncoherent Reception of Turbo Codes in FH-SS with Partial-Band Jamming
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When estimating the fade amplitudes (for cases where fading SI is unavailable), we opti-
mally quantized the amplitudes to Q levels. The results shown below have similar form
to the ones discussed above.

—x 1 BPH: F NSI, J NSI
o —% 1BPH: FNSI, J SI 4
G—=a 1BPH: F SI, JNSI
o — 1BPH:F SI,J SI

x — —x 160 BPH F NSI, J NSI (Q=8)
& --0 160BPHFNSI,J SI(Q=8)

7|« x 160 BPH F NSI, J NSI (Q=4) 1
o0 160BPHFNSI,J SI(Q=4)

6| - -0 160BPHF SI, JNSI E
*--% 160BPHF SI,J SI ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 23: Turbo Codes in Coherent FH-SS with Partial-Band Jamming and Rayleigh
Fading

In previous sections, we spoke of the the fundamental limit on performance with the best
code. This limit is called capacity. Looking at Figures 22 and 24, we can compare the
coding results of turbo codes with capacity. In the absence of fading, turbo codes are
a little more than 2 dB from capacity. With fading, turbo codes are less than 3 dB
from capacity. Note, however, that due to interleaver gain, this gap can be narrowed
significantly with the use of larger interleaver lengths.
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Figure 24: Turbo Codes in Noncoherent FH-S5 with Partial-Band Jamming and Rayleigh

Fading

30




5 Performance of Reed-Solomon Codes in AWGN
and Rayleigh Fading

In this section we consider a system which transmits all of its information in a single data
stream. The stream can be modulated in a number of different ways, but the data rate of
the stream comes from only one source, at only one rate. We consider different channel
conditions that impair detection of the transmitted data, and we employ different coding
and modulation schemes to combat these impairments.

We consider a very low rate data source, one that generates only 250 bits every 30
seconds. It is desired to transmit this data over a wireless data link in a reliable fashion.
More specifically we answer the question of what transmit power is required to achieve
a 107® packet error probability for various coding and modulation schemes in different
channel conditions.

The source data is grouped into K groups of log,(M) bit symbols and redundancy
is added by encoding this data using (N,K) Reed-Solomon (RS) with error correcting
power of t = LN;—I‘J The encoded symbols are then transmitted using an M-ary mod-
ulation scheme. The transmitted symbols are corrupted by channel noise (either addi-
tive, multiplicative or both) and demodulated at the receiver. The receiver uses a hard
symbol-by-symbol detection scheme and passes its best guess to the decoding section.
The decoder evaluates the possibly corrupted received data and makes a decision as to
which K" symbols were originally sent.

Error Correcting

Data Source — — Modulation
Encoder \

Channel

) Error Correcting )
Data Sink - ~&— Demodulation

Decoder

Figure 25: System block diagram

5.1 Biorthogonal Modulation

For the following two subsections we examine the system from Figure 25, with biorthog-
onal modulation and a singly extended ? RS code for the error correcting code . The
biorthogonal signal set consists of M signals in % dimensional space. The first % sig-
nals in this set are orthogonal, while the remaining signals are each a signed opposite of

ZA singly extended RS code is an RS code where N = M. It is still a maximum distance separable
(MDS) code whose distance and error correcting power can be computed in the same fashion as a standard

RS code.
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a signal from the first % Because the transmission of this data requires knowledge of
the sign of the transmitted signal, coherent reception is used. The RS decoder has three
possible outputs: correct decoding, incorrect decoding, or decoding failure. We treat a
packet error as the union of the incorrect and failure events. Thus the probability of a
packet error is the probability that we do not decode correctly. For independent noise,
efficient expressions for this probability measure can be found in [14], and only require
knowledge of the symbol transition probability in the channel.

5.1.1 Biorthogonal Modulation in AWGN

The first channel model under consideration is the AWGN channel with two sided noise
power density % We assume independent noise between symbols and coherent, hard
symbol-by-symbol demodulation. Thus, the expression for the symbol error probability

for this set can be expressed as:

o0 2K M 1
Pro=(M=2) [T 0(z = |22 (20() - 1) ¥
5= )@l v, (20() = 1) Nr
where F' is the energy in one symbol and F' is the lower tail Gaussian integral func-
tion. Once the transition probability for each symbol is obtained, we obtain packet error

probabilities from [14] and show the results in Figure 26.

622_2d2 (61)
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Figure 26: Packet error probability of biorthogonal RS symbols in AWGN.

To examine the bit error probability (BER) of the system, we must examine what
happens when a vector of received symbols fails to decode. If we use the bad received
vector as our decoded vector we are assured of at least ¢ symbol errors. There are two
different types of symbol error: one that errors to an adjacent orthogonal symbol (with
probability P.;) and one that errors to an antipodal signal (probability P.;). Without
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loss of generality, we can concentrate on the first bit of the first symbol. We make a bit

error every time we error to an antipodal symbol (€2), and a fraction @ of the time
when we make an error of the first kind (el). We can see that Py = Pe],\z—_2627 and the
overall bit error probability is derived as follows:
P.p, = P{First bit in error N at least ¢ symbols of remaining n — 1 in error},
= Py, P{t of nn—_l lin error}, (62)
N> = R [EEIEY NI
where
be :PBS(%PBI+P62)7
7 Pe,s P.o (63)
- PS,S(T + T)
The expression for P,y for the biorthogonal signal set is as follows:
Po=(M— 2)/0 Fo(—r)[Fu(r) — Fn(—r)]¥_2fn(r)dr, (64)

with

o fi(z)=— ¢~ 507 (e=VE)

o/ 21 ’

o F(s)=1—Q(=YE),

[

o fle) = et

o [u(x)=1-Q(7).

This analysis allows us to examine the bit error probability for the considered system, as
shown in Figure 27.

We note that at the desired 107® BER, the best code is one that transmits all the data,
bits in a single codeword. While the single transmission may be the best scheme for our
error requirement, we must also note that the lines for the scheme that transmits 2 (64,21)
codewords and the scheme that transmits a single (64,42) codeword are converging. In
fact they cross at an error probability that is below our range.

To make a fair comparison we must note that the above codes have different bandwidth
requirements. For a fixed bandwidth comparison we add a spreading factor, ¢, to make
the system bandwidth W, = 107Hz, and we illustrate the results in the P/.J plot of Figure
28.

We observe that for a bandwidth constrained system, the scheme which transmits a
single (64,42) codeword also has better performance than the other schemes. We note
that these traces look remarkably similar to the previous comparison. In fact they are
merely shifted by a constant. While the system of 2 (64,21) codes may have a higher

un-spread bandwidth requirement, by selecting ¢ = IWL?, where W is the un-spread signal
set bandwidth, we force the P/J modifications to merely be a constant multiplier: g =

Ew R _ Ey R _ Ey R

No We — NoWq — Ny 107 °
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Figure 27: Bit error probability for biorthogonal modulated RS symbols in AWGN.

3 X 4
Eb/NO in dB

10 T T
B e N one (64,42)
— D e two (64,21)
102l T - - two (32,25)
T two (32,13) and two (32,12)
e N
N N
107 S N il
N \\
N \
o ® A
-6 N
w10” - < N 3
N \
N \
N \
10° | N |
\ \
\ \
NS
_ NI
107 o 4
A\
\
\
A
\
10"2 L L L L L [N
-61 -60 -59 -58 -57 -56 -55 -54

Figure 28: Bit error rate for biorthogonal modulated RS symbols in AWGN (bandwidth
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5.1.2 Biorthogonal Modulation in Rayleigh Interference

The next channel model under consideration is that of a slowly fading channel, modeled
in Figure 29. This channel contains a multiplicative, fading element in addition to the
additive noise of the previous section. We assume the channel is slowly varying, that is
the fading element, a, is constant over a modulation symbol interval.

1 et
b

alpha AWGN

Figure 29: Rayleigh faded channel

For a known fading level, o, the distribution of the output is Gaussian. To derive the
average symbol error probability, we examine the output of the energy correlators in the
receiver. In the optimum receiver, there are % energy correlators, corresponding to the
possible % dimensions, where the remaining % outputs are differentiated by their sign.
We denote the output of correlator j to be r;. Thus, the decision rule is to select the signal
whose energy correlator is of largest magnitude. We choose the sign of the transmitted
signal to be the same sign as the selected energy correlator’s output. The event that we
choose correctly is the event that the output of the correct correlator is of the correct
sign and largest amplitude, averaged over the distribution of a. For our system we let «
be Rayleigh distributed, although other fading models exist the Rayleigh distribution is

perhaps the most commonly used. The probability of the incorrect event is

P=1- / - / T o) [Fu(ro) — Fu(—ro)] ¥ ldre fa(a)da, (65)

=0 0=0

where the following are defined:

o) = e

Y

o Fy(s) =1 - Q=24

Y
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Figure 30: Packet error rate for biorthogonal modulated RS symbols in Rayleigh fading.
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Figure 31: Bit error rate for biorthogonal modulated RS symbols in Rayleigh fading.
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We obtain the results in Figure 30 for our 250 information bit packet, and we do a
similar conversion as was done in the AWGN case to examine the bit error rate in the
Rayleigh channel (Figure 31).

It is interesting to note that the convergence and crossover alluded to in the AWGN only
case has occurred in this case, and the 2 (64,21) codewords have the best performance.
This phenomenon will be examined in Section 5.3. Again, if we desire a fair comparison
in a bandwidth sense, we must examine the P/J results with a fixed system bandwidth

of W, = 10"Hz, of Figure 32.

g 10° ~ - i
10° b 4
—— one (64,42) \\
oL - two (64,21) R i
--—-  two (32,25) \
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Figure 32: Bit error rate for biorthogonal modulated RS symbols in Rayleigh (bandwidth
normalized).

5.2 Orthogonal Modulation with Coherent Detection

For the next two subsections we examine the system from Figure 25, with orthogonal
modulation and singly extended RS coding for the error correcting code. Because the
transmission of this data does not require knowledge of the sign of the transmitted signal,
coherent or non-coherent reception can be used. The RS decoder has three possible
outputs: correct decoding, incorrect decoding, or decoding failure. We treat a packet
error as the union of the incorrect and failure events. Thus the probability of a packet
error is the probability that we do not decode correctly. For independent noise, expressions
for this probability measure can be found in [14], and only require knowledge of the symbol
transition probability.

5.2.1 Orthogonal Modulation with Coherent Demodulation in AWGN

We consider the case where we transmit orthogonal signals in AWGN (with 2 sided noise
power density %), demodulate coherently, and make symbol-by-symbol hard decisions.
The expression for the symbol error probability for this signal set can be expressed as:
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Pow=1= [ (B f(rr, (66)
where
o Fn(l') =1- Q(%)v
o fi(z)=— ¢ 27 (eVE)?

o/ 21 ’

FE is the energy in one symbol, and ¢} is the upper tail Gaussian probability function.
Once the transition probability for each symbol is obtained, we obtain packet error prob-
abilities from [14] and show the results in Figure 33. As in previous sections, the bit error
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Figure 33: Packet error rate for orthogonal RS modulated symbols in AWGN with coher-
ent demodulation.

conversion, shown in Figure 34, follows:

P.p, = P{First bit in error N at least ¢ symbols of remaining n — 1 in error},
= Py, P{t of n — 1 in error},

) (67)
—1
= (Pe,s 2(]\]}4—1))27;:_151 ( " . ) (P&S)e(l — Pw)”—l—@‘

For a fair comparison we spread to a bandwidth of 10"Hz, with the results in Figure 35.

5.2.2 Orthogonal Modulation with Coherent Demodulation in Rayleigh Fad-
ing

Next we examine the effects of transmitting orthogonal signals in the Rayleigh channel
with coherent demodulation. To determine the performance of the system in this case, we
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Figure 34: Bit error rate for orthogonal modulated RS symbols in AWGN with coherent
demodulation.
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Figure 35: Bit error rate for orthogonal modulated RS symbols in AWGN with coherent
demodulation (bandwidth normalized).
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note that the channel provides a Rayleigh distributed multiplier, . If we know the value
of a, the system can be analyzed as if it were AWGN with the result being averaged over
the distribution of a.

The event that the symbol is incorrect is the event that the magnitude of the output of
any of the M — 1 energy detectors for the non-transmitted signals is greater in magnitude
than the detector for the transmitted signal. The probability of this event is

Pas=1= [ [ (R () fufa)da, (68)

where the following are defined:

o fi(z)= \}_e_ﬁ(l’—oz E)*

o Fi(e)=1-Q(%).

o folx) = Fe7.

For the results of this analysis we have the packet error rate in Figure 36 and the bit
error rate in Figures 37 and 38. We also note that the scheme that transmits the data
bits in 2 (64,21) codewords is the best performer. This is the same phenomenon noted in
the discussion of biorthogonal signals in the Rayleigh channel.
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Figure 36: Packet error rate for orthogonal modulated RS symbols with coherent demod-
ulation.
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Figure 37: Bit error rate for orthogonal modulated RS symbols with coherent demodula-
tion
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Figure 38: Bit error rate for orthogonal modulated RS symbols with coherent demodula-
tion (bandwidth normalized)
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5.3 Optimum Transmission Rates in AWGN and Rayleigh Chan-
nels

In Sections 5.1.2 and 5.2.2 we noted that there was a crossover in performance curves
between a single (64,42) codeword and 2 (64,21) codewords. We can find an explana-
tion for this phenomena by examining the power required for a given BER for different
rates. By examining Figure 39, it is obvious that the best rate choice to minimize power
consumption for biorthogonal signals exists at different rates for different channels. We
can see that for the AWGN channel the choice of rate g is nearly optimal, and this rate
does not perform as well as a rate % in the Rayleigh channel. Similar results hold true
for orthogonal signals. This leads to the conclusion that it is the channel model, not the

required BER, that determines the best encoding rate.
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Figure 39: Optimum RS coding rates in AWGN and Rayleigh for biorthogonal modulation
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6 Concatenated Reed-Solomon/Convolutional Cod-
ing in DS-CDMA for Fading Channel

In this section we consider concatenated coding schemes for the reliable transmission
over a fading channel. This scheme is also employed by the U.S. NASA standard and
uses outer Reed-Solomon (RS) codes and inner convolutional codes. In this system, the
convolutional decoder outputs hard quantized code symbols with bursty errors to the RS
decoder. Though, the RS decoder is undisturbed by the burst errors within an symbol, the
concatenated system is severely degraded by correlated errors among successive symbols.
Hence the interleaving between codes needs to take place at the symbol level (not at bit
level) to improve performance.

6.1 Single Transmission Coding Schemes

We first consider transmission of a single stream of data.

6.1.1 System Model

Spreading

_| Symbol _|R12CC.| | B

Input
Interleaver| | Encoder Interleaver

ot —>(X)—>| Modulate

—| RS Code

Y
Channel

Despreading

|

RS Symbol R12C.C. Bit
" Decoder | Deinterleaver* | Decoder | | Deinterleave Q Demodulate

Figure 40: System Model

The data stream here is 256 bits/packet and has to be transmitted within 30 seconds.
The bit error rate is down to the 107%. In other words, the signal requires high reliability,
low data rate and a delay of 30 seconds is acceptable. Thus we can use very low rate
code to protect the signal. An outer (63,43)RS code and a rate 1/2 convolutional code
with constraint length 5 is employed. In this case, symbol interleaver is redundant but
bit interleaver can significantly improve the performance. Spreading is made to achieve a
10MHz chip rate and then transmit the signal through the channel.

If a (32,26)RS code and a (31,25)RS code are used for the outer code, the sym-
bol interleaver would break up the correlation between symbols and would improve the
performance compared to the one without symbol interleaver. Different rates of coding
schemes can be used as long as the total transmition bandwidth is fixed at 10MHz.
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6.1.2 Simulation Approach

Figure 41: Markov model for (2,1,3) code

The bit error probability under investigation is down to 1078, Which means that at
least 10'" bits must be transmitted through the channel. The process of generating the
fading channel variables needs two FF'Ts and also the Viterbi decoding algorithm is very
time consuming. It is almost impossible or too costly to do this kind of simulation. A
Markov model, proposed by Chao and McEliece [15], is applied to approximate the burst
error statistics of the output of the Viterbi decoder. The model proposed by Chao and
McEliece is only good for discrete memoryless channel. A modification of the model is
proposed here to make it applicable for memoryless channel, fast fading channel and slow
fading channel.

6.1.3 Markov Chain Model for the output Statistics of Viterbi Decoder

The output of the Viterbi algorithm is a maximum-likelihood path through the trellis
diagram. The Markov model developed by Chao and McEliece is a approximation of
the convolutional code’s state diagram. An example of rate 1/2 and constraint length 3
convolutional code is shown in fig 41. As we know, if A is the constraint length, this
model has the same 2% ~! states as the encoder and it grows exponentially as the memory
of the encoder increases. In our system, a rate 1/2 convolutional code of constraint length
5 is employed. This convolutional code encoder has 16 states and thus the parameters
needed for our Markov model are as follows:
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Different training sequences are needed for different Fj,/Ny. And a reasonable long
sequence of training data is necessary for the Markov model to reach saturation.

Though, this model is not strictly accurate, computer simulation result shows that
this approximation is good for concatenated coding scheme with Reed-Solomon code as
outer code.

In the fast fading channel, if the coherent time is so small that we can treat this channel
as memoryless channel. Than, this model is applicable. But, if the coherent time is large,
which is the case for slow fading channel. Both error and correct sequence come in burst.
The problem with the first order Markov model is that the transition only depends on
the present state regardless of the highly correlated channel characteristics. The model
obtained by the training sequence is the average of the error bursts and makes no effort
in describing the bursty errors caused by deep fade. The model would under estimate the
bit error rate owing to the outer Reed-Solomon have the capability to correct most of the
errors if the model fail to reflect the deep tade caused by the slow fading channel.

To preserve the deep fade effect caused by the slow fading channel. We can do some
modification by referring to the trellis diagram in fig 42. Let’s assume all zero sequence
is transmitted. Once the received sequence deviated from the all zero path, a variable
is justified to prevent it from merging back so quickly. In other word, the probability of
staying in error burst once it deviates from the correct path is larger than the previous
model. In this way, the model can more faithfully describe the slow fading channel
characteristics. And this variable is a function of the velocity between transmitter and
receiver.

6.2 Performance in AWGN and Rayleigh fading channel

Fig 43 and fig 44 are the simulation results of the AWGN channel and Rayleigh fading
channel. For AWGN channel, there is a cross over at BER=2 % 10™*, and for Rayleigh
fading channel the cross over occurs at BER=3%1073. It is obvious that the Reed Solomon
outer code has a significant effect on the Rayleigh fading channel. It brings down the bit
error rate much faster then using the convolutional code alone.
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Figure 43: Performance in AWGN Channel

6.3 Performance over frequency selective fast fading channel
with Rake receiver

The bandwidth for the DS spread spectrum is much greater than the coherence bandwidth
(Af.) of the channel. This kind of wide-band signal will have the ability to resolve the
multi-path components and, thus, provide the receiver with several independently fading
path signals. If the bandwidth of the signal is W, then, the time resolution is 1/W.
Consequently, with multipaths that have a separation of 1/W seconds would be resolvable
by the Rake receiver and thus the diversity techniques can be employed to overcome the
severe consequences of fading. This kind of frequency selective channel can be modeled
as tapped delay line model with statistically independent time-variant tap weights.

Let’s assume that we have the Lth-order diversity and perfect channel information,
i.e., we are able to estimate the fading level(tap weight) in each tap with no error. The
optimum receiver for this wide-band signal is Rake receiver with maximal ratio combining.
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Figure 44: Performance in Rayleigh fading Channel

In our simulation, two empirical channel models are used. Where ALD stands for
American Legion Drive, and it is a suburban area with 5 independent fading paths. And
PINEST stands for Pine Street in New York City, and it contains 12 independent fading
paths. The carrier frequency (f.) is 33MHz, transmition bandwidth(W) is I0MHz and the
vehicle velocity is 108 km/h. The coherence time is inversely proportional to the relative
velocity between transmitter and receiver. While the relative velocity is 108 km/h, the
coherence time is approximately 0.05 second. As you can see in fig 45, interleaving gain
for ALD channel at bit error rate 107% is about 0.5 dB. For PINEST channel at the same
error rate, a gain of 0.3 dB is observed.

In fig 46, the Rayleigh fading channel can be considered as a single path fading model.
The ALD and PINEST model can be considered as 5 and 12 paths model. From the
graph, we can see that the diversity technique does improve the performance. For the
Rayleigh fading channel, it takes less than 3.2 dB for the concatenated coding to bring
the bit error probability from 1072 to 107®. While it takes only approximately 2.1 dB
for the ALD and PINEST channel to bring down the same amount of the error rate with
diversity technique. For the PINEST 12 paths model with concatenated coding scheme,
a 0.7 dB gain is observed relative to the ALD channel model at bit error rate equal to
1078, while the ALD 5 paths channel model also has a 1.5 dB gain over the single path
model.
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6.4 Performance over frequency selective slow fading channel
with Rake receiver

In the slow fading channel, the coherence time is much larger than a symbol duration.
The fading level would remain the same for a significant long period and has a devastating
effect on the outer Reed-Solomon code. Let’s consider the extreme case where the relative
velocity between transmitter and receiver is 0 m/s. The assumption made here is that
the fading level is a constant through the whole packet duration, but is independent from
the next packet.

It is obvious from fig 47 and fig 48 that the performance of the concatenated coding in
the slow fading channel without power control is significantly worse than the performance
in the fast fading channel. This is easily understand by the diversity offered by the fast
fading which gives the receiver more information about the transmitted signal. But if we
take a careful look both in fig 47 and fig 48, we can find out that in the relative low signal
to noise ratio(SNR), the slow fading channel outperformance the fast fading channel. This
is because in the relative low SNR, if the packet happens to go through a good channel
condition, the whole packet gets through. And thus greatly improve the error probability
in the low SNR region. On the contrast, in the relative high SNR region. If the slow
fading channel jumps into a deep fade, the whole packet is gone. While for the fast fading
channel, the deep fades are scattered all over the transmition interval and thus corrected
by the outer Reed-Solomon code.

fig 47 and fig 48 are made in same scale, it is easy to tell that the PINEST channel with
12 multipaths quickly brings down the error probability even in the slow fading channel.
While the ALD channel with 5 multipaths still suffers from the deep fade effect caused
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Figure 46: Performance over multipaths fast fading channel with Rake receiver

by the slow fading effect.

Now, let’s compare the convolutional code alone with the concatenated coding. In the
PINEST channel, if the convolutional code is the only coding scheme used. We can tell
from fig 47 that the performance for the fast fading channel and slow fading channel is
almost the same. Why is that so 7 Let’s take a look at the multipath strength of this
channel.

| 1st] 2nd | 3rd | 4th | 5th [ 6th] 7th[ 8th[ 9th | 10th] 11th[ 12th
PINEST(dB)| -5.8] -11.6] -4.2 | -0.8 [ 0 | -5.5[ -9.2] -2.8] -27.7] -8.6| -16 | -36.7]
ALD (dB) ][0 |-45]-16.1 -25.3] -25.3

In the PINEST channel, the signal strength is evenly distributed among the 12 paths.
Unlike the ALD channel, only the 1st and the 2nd path dominate. Owing to this charac-
teristic, the multipath diversity has overcome the slow fading effect. In other words, it is
not likely that the twelve paths will go through the same deep fade simultaneously. Thus
the performance in slow fading channel is only slightly worse than the fast fading channel.
But for the ALD channel, this is not the case. As mentioned above, only the first path
and the second path in this channel are not enough to overcome the deep fades caused by
the slow fading effect. And thus the convolutional code in the fast fading channel has a
gain of approximately 3.5 dB over the slow fading channel at the bit error rate of 107°.

Now, let’s take a look on the concatenated coding scheme. Both fig 47 and fig 48 show
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Figure 47: PINEST channel

that the concatenated coding scheme performs well in fast fading channels but is worse
than the convolutional code alone in slow fading channel. For the PINEST channel, an
expected cross over will occur at around 107°% dB and thus results in the concatenated
coding outperform the convolutional code alone.

The Markov model proposed accurately estimated the bit error rate of both the fast
fading and slow fading channel. A slight problem arise in the slow fading model. As
shown in fig 47, the model performs well in both cases in PINEST channel. But in fig 48
shows that the analysis can’t go any further than the 107° bit error rate in slow fading
channel. The main reason for this is that the model is based on the output statistics of
the Viterbi decoder. And it is trained directly from the output sequence of the Viterbi
decoder. The advantage of this model is that while the outer Reed-Solomon code brings
down the bit error rate probability, the inner convolutional code is still in relatively high
bit error rate. Thus the model can be trained with much less data then necessary for
direct simulation. This is the case in both fast fading channels and slow fading channel
in PINEST model. But in ALD channel model, while the concatenated coding reaches
the bit error rate of 107°, the inner convolutional code also gets down to approximately
4% 107%. While the concatenated coding reaches BER of 2% 1077, the convolutional code
also reaches BER of 4+ 10~7. Because the bit error rate for the convolutional code in ALD
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Figure 48: ALD channel

channel almost goes down simultaneously with the concatenated coding scheme. Thus
not enough training data can make the model to reach the saturation point. Thus the
model can’t do any further analysis than a BER of 107°.
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7 Multicast Coding Schemes

Multicast transmission will find increased prominence in future mobile, wireless environ-
ments in which different types of data with different quality of service requirements are
efficiently transmitted while conserving the limited resources of bandwidth and energy.
One major difficulty for this system is transmitter nonlinearities. If a non-constant en-
velope signal is used, spectral regrowth, intermodulation distortion and amplifier backoff
will cause the system to be either bandwidth inefficient or power inefficient. In this re-
port, a comprehensive approach is taken in designing a communication system. Different
modulation schemes, device nonlinearities, adjacent channel interference (ACI), and inter-
modulation distortion will be considered while presenting a means of measuring the total
power needed per transmitted bit. This approach will also help determine the optimal
amplifier backoff and a bandwidth efficient modulation scheme.

In this report, a brief introduction about the multicast transmission system will be
presented in Section 7.1. Transmitter nonlinearities are then discussed in Section 8. In
Section 9, modulation schemes and transmitter nonlinearities are considered in compar-
ing total power needed per transmitted bit for a non-constant envelope and a constant
envelope system.

7.1 Multicasting

In future mobile communications, there will be various data with different requirements.
For example, control data have low data rates and tolerate delays on the order of seconds.
However, they are sensitive to errors and hence, require very low error probability. On
the other hand, voice information is delay sensitive (e.g. on the order of 20-50ms), but
can operate at fairly high error rates (e.g. 107%). Table 14 is an example of different data
types with different service requirements.

Packet Size (Bits) || 256 9600 | 8 * 10°
Bit Error Rate 1078 107% | 10~*

Packet Duration 30 sec | 1 sec | bmin
Availability (%) 99 95 90
Ry(bps) 8.5333 | 9.6k | 26.7k

Table 14: Different data with various requirements

7.2 System Design

In Fig.49, three different data, b;(t) where ¢« = {1,2,3}, are to be multicast through
the channel. Because of different quality of service requirements, individual levels of
protection (forward-error-control (FEC)) are imposed on each data string. Furthermore,
orthogonal spreading sequences (a1(t), as(t) and as(?)) are employed among the different
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Figure 49: CDMA Multicasting Model

data so that the various data strings can merge into a single carrier without interfering
with each other. After combining the different data strings, the signal is then passed
through a raised-cosine pulse-shaping filter and a nonlinear power amplifier.

Binary phase-shift keying (BPSK) modulation is chosen to simplify the problem of
combining data strings in the multicast transmission. The disadvantage of this modulation
scheme is that it is a non-constant envelope signal. Spectral regrowth and intermodulation
are expected with transmitter nonlinearities. Furthermore, the amplifier backoff will force
the transmitter to operate in a less energy efficient way. In the following section, a way
of measuring the total power needed per transmitted bit while taking into account the
device nonlinearity is proposed, where total power encompasses both the radiated power
(P,) and the power that has been converted into heat (Preqt)-

Ptotal — PT + Pheat- (69)

Before measuring the total power needed per transmitted bit, the transmitter nonlinear-
ities are introduced in the following section.

8 Transmitter Nonlinearities

Although linear amplifiers are generally not available, several different classes of amplifiers
exist among non-linear amplifiers such as A, B, AB, C, etc. Typically, the more power
efficient amplifiers posses greater nonlinearities. However, these nonlinearities distort
non-constant envelope signals, which usually have better bandwidth efficiency. Thus, if a
non-constant envelope signal is passed through a nonlinear amplifier, spectral regrowth,
intermodulation and the amplifier backoff should be considered.

Spectral regrowth is caused by the pulse shape filtering and nonlinearities of the am-
plifier. This would generate adjacent channel interference, and reduce the bandwidth
efficiency. Intermodulation produces inband interference, hence, increasing the noise floor
within the transmitted bandwidth. Backoff is introduced by the amplifier nonlinearities
while driving in the saturation region, where the amplifier usually has better power effi-
ciency. Signal degradation caused by transmitter nonlinearities while operating in a more
power efficient way forces the transmitter to "backoft” the driving range of the amplifier,
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therefore, reduces total power needed per transmitted bit. This results in a less power

efficient amplifier operation.
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Figure 50: Nonlinear Amplifier

Fig. 50 shows an example of a nonlinear amplifier. The upper left plot is the amplitude-
to-amplitude (Am-to-Am) plot for the amplifier. If the power amplifier is driven at a
region below 0.12V, the distortion introduced by the amplifier will be small because this
region is more linear. From the lower left power efficiency plot and lower right DC power
consumption plot (DC power that turned into heat), it can be seen that the amplifier is
not very efficient while operating in this more linear region. On the other hand, if the
amplifier is driven in the saturation region, the power amplifier is more power efficient, but
the degradation of the signal due to nonlinearities will be significantly large. Therefore,
the backoff of the amplifier represents a tradeoff between signal distortion and power
consumption which can be evaluated by the overall power needed per transmitted bit.

Figs. 51 and 52 show the performance of the nonlinear amplifier when operating in
different driving regions. Two data streams with different data rates, 256/30 bits per
second(bps) and 9600 bps, are combined into a single carrier and transmitted through a
bandwidth of 160kHz. In the upper plots of both figures (Figs. 51 and 52), DC power
consumption is not considered. Signal degradation introduced by transmitter nonlineari-
ties is compared with an ideal linear amplifier. In Fig. 51, the signal degradation for both
data in the driving range from —0.2V to 0.2V is about 0.5 dB at the bit error rate of
1073, while the degradation for the driving range of —0.3V to 0.3V is about 1.2 dB (see
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Figure 51: Driving Level=—0.2V to 0.2V

Fig. 52).

The lower plots of both figures (Figs. 51 and 52) take into consideration the power
that is consumed by the amplifier and transformed into heat. The relationship between
power that is drown into the amplifier and power wasted is as follows

Pin—I'Pdc:PT—I'Pheata (70)

where P, is the drain power that goes into amplifier from signal source and FPj. is the
DC power offered by outer source.

In Fig. 53, the overall power needed to transmit a bit for different driving regions are
compared for data rates of 256/30 bps. As shown in the plot, the driving range of +0.3V
has a lower total power consumption. This is because in the driving range of +0.3V/,
the amplifier is more power efficient. Although the nonlinearities increases as we increase
the driving range from +0.2V to +0.3V, signal degradation is small and power efficiency
dominates the performance.

In the following section, a way of measuring the optimal amplifier backoff and total
power needed per transmitted bit is presented.
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Figure 52: Driving Level=—0.3V to 0.3V

9 7/4-Quadratic-Phase-Shift-Keying (7/4-QPSK) vs
Minimum-Shift-Keying (MSK)

Most mobile radio products are usually designed with power efficient, nonlinear amplifiers,
and therefore, it is necessary that the signal to be amplified has a constant envelope
or as nearly so as possible. This is because the amplitude fluctuations of the input
signal would widen the bandwidth of the output signal (spectral regrowth), and hence,
cause increased ACI. Although the non-constant envelope signal has the disadvantage of
amplitude fluctuations, it is usually more spectrally efficient, i.e., narrower mainlobe and
higher rolloff sidelobes, when compared with a constant envelope signal.

7/4-QPSK is a modified version of QPSK, which provides greater compatibility with
transmitter nonlinearities due to its lower amplitude fluctuations after pulse-shape fil-
tering. In this section, a constant envelope signal structure (MSK) is compared with
a nonconstant envelope structure (7/4-QPSK with raised cosine filter). It is compared
through the total signal-to-interference ratio for both of the modulations and the bit error
rates.

9.1 7/4-QPSK

7/4-QPSK is a form of QPSK modulation in which the QPSK signal constellation is
shifted each symbol interval T' by 45°. This restricts the transitions from one symbol to
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the next to be +m/4and £37 /4. By eliminating the &7 transitions of QPSK, the signal
after filtering will avoid the origin and thus significantly reduce amplitude variation. Thus
the /4 QPSK modulation provides the bandwidth efficiency of QPSK, together with a
diminished range of amplitude fluctuations. These advantages of 7/4-QPSK led to its
adoption for the North American Digital Cellular TDMA standard, Japanese Digital
Cellular standard, and the planned new standards for Trans-European Trunked Radio
(TETRA) [16].

Fig. 54 shows the signal constellation of 7/4-QPSK. In Fig. 55, the time domain
signal (real axis) and its power spectral density are plotted. In the lower plot of Fig. 55,
the darker line represents the power spectral density before passing through a nonlinear
amplifier. As shown in the plot, the sidelobes rolloff extremely fast after pulse shape
filtering. Spectral regrowth is observed after nonlinear amplification (lighter line) which
is a major cause for ACI.
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9.2 MSK

MSK is a special type of continuous phase frequency shift keying (CPFSK) with a mini-
mum frequency separation (i.e. bandwidth) that allows orthogonal detection. It possesses
properties such as a constant envelope and spectral efficiency. These properties make
MSK modulation particularly attractive for use in mobile communication systems. For
example, Gaussian-filtered MSK (GMSK) modulation has been adopted for GSM, the
Pan-Furopean Digital Cellular Standard. Fig. 54 shows the signal constellation of MSK
modulation.

In Fig. 56, both the time domain signal (real axis) and the power spectral density are
shown. Comparing the main lobe of the 7/4-QPSK with MSK, it is obvious that 7 /4-
QPSK has a more compact spectrum then MSK before nonlinear amplification. The effects
of spectral regrowth and intermodulation distortion caused by transmitter nonlinearities
will be discussed in the following subsection.

9.3 Numerical Results

The system to be investigated is an uncoded system with either a 7 /4-QPSK non-constant
envelope signal or a MSK constant envelope signal, passing through different classes of
amplifiers and then an AWGN channel. The bit duration is one bit per second, and two
other users are simulated at the adjacent frequencies to create ACI to the desired signal.
For 7 /4-QPSK, a raised-cosine pulse shaping filter with rolloff factor 0.35 is used. This is
a typical rolloff factor that is utilized in the industry. Two types of amplifiers, class AB
and F, with different frequency spacing for the adjacent channel users are investigated.
Class AB is more linear then class F amplifiers, but it is less power efficient.

In the left plot of Fig. 57, the solid line is the ideal case with a linear amplifier that has
100 percent efficiency, i.e., no power has been converted into heat, and without any ACI.
The E,/Ny for the ideal case is approximately 7 d B at BER 1072, As can be seen from the
plot, both of the modulations are very inefficient while the driving level is low. Although
the amplifier is more linear in this region, most of the power is converted into heat instead
of radiated power. For this amplifier, the optimal driving region for = /4-QPSK is about
0.4V and 0.42V for MSK. Overall, MSK requires lower energy per transmitted bit than
7/4-QPSK for this particular amplifier.

For the right plot of Fig. 57, the adjacent channel power ratio (ACPR?) for 7 /4-QPSK
increases as the amplifier is driven harder into the saturation, while the ACPR for MSK
stays constant. This is because the MSK modulation is a constant envelope signal and the
amplifier nonlinearities will not increases the ACI. On the other hand, 7 /4-QPSK is a non-
constant envelope signal and consequently, transmitter nonlinearities increase the signal
distortion and cause spectral widening which results in increased ACI. Intermodulation
distortion is also caused by transmitter nonlinearities and results in inband interference.
Both of the effects are the main reasons that 7/4-QPSK performs worse than MSK.

3

ACPR = 10l0g—2CLpower

stgnal power
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With the same frequency spacing for adjacent channel users and an amplifier from class
F. both systems perform better in the optimal driving region but worse in the saturation
region (see Fig. 58) when compared with class AB amplifier (Fig. 57). The power efficiency
of the class F amplifier brings down the total power needed per transmitted bit, but due to
the highly nonlinearities while driving in the saturation region, signal distortion degraded
the overall system performance. In Fig. 59, adjacent channel users are brought more closer
together, and hence, the effect of the ACI is more obvious. As shown in the left plot of
Fig. 59, 7 /4-QPSK is severely degraded by ACI as the driving range increases. Although
the ACI remains the same for MSK for different driving ranges, total power needed per
transmitted bit increases after a certain point. This is because the power efficiency drops
if we overdrive the amplifier, and thus, increases the total power needed for transmission.
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10 Multiphase Modulation Schemes

In a wireless data communications network, transmitting power is designed to be large
enough to guarantee reliable communication between the transmitter and the least capable
receiver (the worst link), which is either too far away from the transmitter or under severe
shadowing. For a more capable user, the received signal power is usually more than enough
to correctly decode the information. Unbalanced QPSK(UQPSK) (Fig.60(a)) can make
more efficient use of energy by multicasting a secondary channel for the more capable
users without significant degradation of the master link quality. As shown in Fig.61(a),
the signal power of the secondary channel is usually a small fraction of the total power, and
will be considered as a source of interference by less capable users. Given certain energy
and application constraints, this modulation scheme enables the network to dynamically
allocate GPS and voice signal power.

Error performance was analyzed for uncoded system with coherent and noncoherent
unbalanced DQPSK demodulator over AWGN channel by Pursley et. al[17]. Convolu-
tionally coded system over AWGN channel was also studied under the assumption that
the master and secondary channel have the same data rate[18]. In this report we evalu-
ate the performance of convolutionally coded UQPSK with nonlinear amplifier over slow
Rayleigh fading channel. More specifically, we are considering 160 kHz channel band-
width, the basic data stream(GPS) of rate 10bps, and the secondary data stream(voice)
of rate 10Kbps.

When pulse shaping filters are used, UQPSK signals no longer have constant envelope
and will be severely distorted by nonlinearity when the envelope goes through the origin.
We suggest a modified UQPSK modulator which rotates the constellation by 7/2 every
symbol period(Fig.60(b)). Since new constellation avoids the origin, as shown in Fig.61,
signal is expected to be less distorted.

As shown in Fig.60, both voice and GPS channels are protected with forward error
control(FEC) coding, which is a constraint length 5, rate 1/2 convolutional code. Inde-
pendent random spreading sequences aq(t) and az(t) have spreading factor 6 and 6000,
respectively. Square root raised cosine filters of typical roll off factor of 0.35 are used to
reduce the inter-channel-interference. The total processing gain W/ R, for GPS channel
and voice channel are 42.1dB and 12.1dB, respectively. A solid state nonlinear ampli-
fier model is considered with fifth-order AM-AM characteristic, as described in previous
sections, and negligible AM-PM effect.

The effect of nonlinearity on uncoded multicast scheme with § = 15° over AWGN
channel is shown in Fig.62. Driving level is defined as the average amplifier input envelope.
Driving level 0.1 is in the linear amplification region for the power amplifier, and 0.3
is in the saturation region. It is indicated in Fig.62 that the GPS channel has 0.5dB
degradation due to the nonlinearity distortion, while the voice channel, surprisingly, has
1dB improvement in terms of P/J. The justification of the “nonlinearity gain” is that the
voice channel gets amplified more than the GPS channel does(about 1.9dB from actual
measurement). Since the contribution of the voice signal component is only a small
fraction, around 1/10, of the total input signal power at the input of the power amplifier,
saturation, which implies low amplification gain, always happens when the GPS channel
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Figure 62: Effect of nonlinearity on BER performance of GPS channel and voice channel

of unbalanced QPSK(8 = 15°) over AWGN Channel: drive level 0.1 and 0.3

has large input. It follows that the voice channel gets more gain for large input power,
therefore, has larger average amplification than the GPS channel does.

The performance degradation of uncoded GPS channel with UQPSK, which spends
a small fraction of power on the additional voice channel, is compared with the BPSK
system. Fig.63 shows the BER versus P/J performance curves for three different angles:
6 = 0°(BPSK), § = 15°, and 6 = 45°. The analytical BER curve for BPSK over AWGN
channel is also plotted for comparison. It is noticed that , when § = 157, there is a 0.3dB
loss in signal to noise ratio compared with the § = 0° modulator in both amplifier linear
and saturation region. When 0§ = 45°, the degradation in performance is 3dB.

Modified unbalance QPSK(MUQPSK) uses signal constellation(Fig.61(b)) that avoids
the origin, where nonlinearity severely distorts the signal. Simulation comparison of the
error performance of UQPSK and MUQPSK with § = 15° over Rayleigh fading channel
is shown in Fig.64. We assume the fading is constant over a chip period and indepen-
dent fading over each chip can be obtained with a interleaver of sufficiently large size.
Analytical error upper bounds for convolutionally coded linear DS/CDMA system over
independent Rayleigh fading with maximum ratio combining are plotted for comparison.
It is observed that for UQPSK system, the BER curves stay close to the upper bounds
for BER above 107*. It implies that for both GPS and voice channels the interference
due to nonlinearity is effectively mitigated by coding and spreading. For the MUQPSK
system, GPS channel gains an additional 0.3dB, while voice channel has 2.5dB loss. When
the modulator switches the signals on in-phase and quadrature-phase channels for every
symbol period, the voice signal, which lies in between two large GPS signals, suffers from
the large interference from the adjacent GPS symbols, which results in the 2.5dB loss in
error performance.
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11 Turbo Combining

Conventionally a data network with automatic repeat request(ARQ) protocol employs
a fixed rate forward error correcting(FEC) code and discards erroneous packets if they
contain uncorrectable errors. Modified FEC/ARQ schemes use rate adaptive coding tech-
niques, which send incremental redundancy in each retransmission and combine all re-
ceived packets to make a joint re-decoding[19, 20]. Recent advances in turbo coding
techniques, originally proposed by Berrou et. al.[21] in 1993, enable us to achieve error
performance approaching Shannon limit on AWGN channel. Application of punctured
turbo codes for redundancy retransmission in ARQ system has been studied in[22, 23].

This section determines the overall network throughput of an ARQ technique based
on turbo coding for direct sequence spread spectrum multiple access systems. Coher-
ent BPSK modulation is assumed. Both AWGN and fully interleaved Rayleigh faded
channels are considered. Concatenation of shortened error-correcting-only hard decision
Reed-Solomon(RS) codes and punctured turbo codes is employed as the FEC code. We
concentrate on the cases where the packet size for all transmissions is the same. Avoiding
small redundancy packets reduce the number of retransmissions and, therefore, the overall
delay.

One purpose of this paper is to find the optimal choice of RS codes to maximize the
network throughput. For different RS code rates, we keep the number of information bits
in a packet the same, and vary the codeword length. Two families of shortened RS codes
with symbol size 6 and 8 bits are studied for sources with 204 bits(20 ms of 9.6kbps voice
data plus 12 bits CRC) and 424 bits(standard ATM cell) information packets.

The inner turbo codes are from a family of rate compatible codes based on a rate 1/4
turbo codes with 4-states constituent code. The interleavers are designed following the S-
interleaver construction introduced by Divsalar [24]. The ARQ procedures are as follows.
The first transmission is coded with just a RS code. The systematic bits of the turbo
code, i.e., the RS codeword, is spread with a random spreading sequence and sent over
a BPSK modulated channel. If errors are detected after RS decoding, a negative ACK
is sent to the transmitter. The transmitter then sends a parity packet by puncturing
every other bit from the first and second constituent encoder parity bits, which together
with the first transmission forms a rate 1/2 turbo code block. If the FEC code decoder
still can not correct all the errors, the receiver will request the transmission of the bits
punctured in second transmission. If the overall rate 1/3 code fails, the parity bits from
a third constituent codes will be sent. If more failures occur, the transmitter will re-send
the parity packets of constituent codes until a positive ACK is received.

Preliminary results are based on the assumption that the number of users in the
network is constant and each user has duty factor 1. We assume that the systems employ
average power control and the number of users Mis large. We define the network load L
as M /G, where (G is the spreading gain. The overall normalized throughput n is defined

M Kps _ L Kpgs

as Gr s = A, where Kpg is the number of information symbols in a RS codeword,

Npgs is the length of the codeword, and T' is the average number of transmissions required

to correctly decode an information packet.
Preliminary results of the proposed system performance over AWGN channel with
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different rate of RS codes are shown in Fig.65. As indicated in Fig.65, for certain offered
network loaded, optimal choice of RS code rate can be made to maximize the throughput.
For example, when L = 0.5, the optimal code is RS(54,34) for voice frame and RS(83,53)
for ATM cell, respectively; when L = 3, turbo coding without RS coding system is the best
choice for both data sources. Comparison with average code combining(ACC)[19], which
retransmits the same information copy then averages up all received copies, and standard
ARQ, is also shown in Fig.66(a). It is observed that the proposed system quadruples the
maximum throughput of a standard FEC/ARQ system. Considerable gain over average
code combining is also obtained at the cost of more complexity. Average delays of different
systems are also shown in Fig.66(b).
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12 Code Combining for FHMA /MFSK Packet Radio
Networks

A packet radio network is a collection of terminals which can communicate with each other
via radio links [25]. The goal in designing such a network is to maximize the throughput in
the presence of multiple access interference(MAI). Many papers have treated the through-
put of frequency-hopped multiple access networks with conventional hybrid automatic-
repeat-request(ARQ) protocols [25, 26, 27, 28].

Traditional hybrid ARQ protocols employ forward-error-correcting and error-detecting
coding to correct and detect errors in the received packets. When errors are detected
in a packet after error-correction, the packet is discarded. this design strategy makes
sense when the link quality is high and there are only few errors. When a terminal is
under severe interference, however, repeated transmission of a packet does not combat the
channel effectively. Modified ARQ systems[29, 30, 31, 32] have been studied to combine
two or more copies of one information block to get better network throughput over noisy
channels.

In this section, code combining for FHMA /MFSK system is studied for two different
channel models; namely, nonfading multiple access interference (MAI) channels and slow
Rayleigh fading MAI channels. The network model of the packet radio network studied
in this report is detailed in [25]. For a network to be in the class we study in this project,
it must be homogeneous in the sense that the probability distribution of the interference
is the same at each receiver. A fully connected satellite multiple-access network is one
example in this class.

Average code combining (ACC) was analyzed and shown to achieve throughput that
is more than twice that of the conventional FHMA systems for the nonfading MAT chan-
nel by Bigloo et al.[33]. Optimal choice of codes that maximize system throughput is
suggested from simulation results on nonfading and fading MAI channels. Since average
code combining of L copies of the same packet is equivalent to a soft-decision repetition
code with rate 1/L, we propose an alternative adaptive code combining scheme, convolu-
tional code combining(CCC), which gives better gain for certain network configurations
and channel conditions. In subsection A, the performance of conventional ARQ) system
is analyzed for comparison purpose. The performance of ACC and CCC systems is then
examined in details in subsection B and C.

12.1 Conventional ARQ systems

In the FHMA /MFSK system in our mind, each (63,k) Reed-Solomon symbol is modulated
onto one 64FSK or two 8FSK signals, respectively. Each MFSK signal is transmitted on
one hop. At the receiver, a square-law detector makes hard decision on which symbol
is transmitted and then feeds demodulation output to an error-correcting Reed-Solomon
decoder. If the received Reed-Solomon word is correct or is in the error-correcting capac-
ity of the code, information bits will be decoded; otherwise, a retransmission request is
sent to the transmitter. This procedure is repeated until the information packet is de-
coded correctly. Throughout this report, we assume that the demodulator output symbol
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errors are independent and the probability of undetected error of Reed-Solomon code is
negligible. A baseline system diagram is shown in Fig.67.
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Figure 67: Block Diagram of a Frequency-Hopped Spread-Spectrum Multiple-Access Sys-

tem

The normalized throughput is defined as the average number of information symbols
per channel use. Lower bounds of the throughput of a FHMA /8FSK(64FSK) system with
100 frequency slots is shown in Fig.68 as a function of total number of users over nonfading
MAT channel. As expected, the throughput increases linearly with respect to the number
of users when the MAI is small. However, when the number of user is large enough to
cause too many errors for Reed-Solomon code to correct, system throughput starts to
decrease drastically. Fig.68(a) shows that (63,43) code achieves maximum throughput of
0.095 when 20 users are in presence, (63,27) code achieves maximum throughput of 0.122
at 34 users, and (63,23) code performs best at 37 users with throughput 0.120. Notice
that there is a tradeoff between the error correcting capacity and code rate. Optimal
code, which achieves maximum throughput given certain number of users, has low rate
when interference level is high and has high rate when interference level is low.

Fig.68(b) shows that for system with 64FSK modulation, (63,43) code achieves maxi-
mum throughput of 0.17 when there are 30 users, (63,27) code achieves maximum through-
put of 0.22 at 60 users, and (63,23) code has a peak throughput at 0.21 for a total number
of users of 65. The (63,27) code is the best in terms of maximum system throughput.
The penalty for the system with 64FSK, which can support much more users than the
system with 8FSK modulation, is a larger bandwidth expansion. For each Reed-Solomon
code symbol, a system using 64FSK needs 64 tones while with 8FSK only 16 tones are
needed.

Throughput performance with respect to the number of users in the presence of slow
Rayleigh fading is presented in Fig.69 and 70. For the case where symbol energy to
noise density ratio, vs, is 10 dB, the throughput of FHMA /8FSK systems have maximum
value of 0.045, which is achieved for (63,23) code with 20 users; for 64FSK system, the
throughput can reach at most 0.092 with (63,23) code at 40 users. This performance is not
surprising since the high symbol error rate of FSK demodulator output causes too many
Reed-5olomon code decoding failures. For the case of 7, of 20 dB, since most errors are
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Figure 69: Throughput for FHMA system with 100 subbands over Rayleigh fading MAI
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caused by multiple access interference other than background noise system throughput
is only slightly worse than that of nonfading MAI channel without background noise.
Maximum throughput for 8FSK is 0.11 and that for 64FSK is 0.2. For higher symbol

energy noise density ratio, system performance is basically the same as the 20 dB case.

12.2 Average Code Combining

In this subsection, a hybrid ARQ scheme with average code combining is described[33].
When decoding failure occurs in Reed-Solomon decoder, a retransmission request is sent
to the transmitter as in the conventional ARQ scheme. However, instead of discarding
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the erroneous packet, we keep the M outputs of the bank of square-law detectors. When
[ copies of the same packet are received, for each symbol, we average the outputs over [
copies and obtain a new set of M squared-envelope decision variables. Then the decision
logic choose jth symbol as output which corresponds to the square-law combiner that has
the largest decision value. The effect of average code combining is the same as a FHMA
system with diversity [, which is known to provide good antijamming capability.

The lower bound of throughput has been calculated based on simulations over nonfad-
ing MAI channels. Fig.71(a) shows the throughput for a system with 8FSK modulation.
Compared with the conventional ARQ) systems, the peak throughput increases from 0.12
to 0.23, which is achieved with (63,39) code at 85 users. For large number of users, e.g.,
more than 140, throughput of codes of high rate start to drop, while (63,23) codes still
maintain a throughput of 0.15 for 200 users (twice the processing gain). Fig.71(b) shows
that the throughput for a code combining system with 64FSK modulation increases lin-
early with the number of users for even more than 200 users. The highest throughput
shown is around 0.7 compared with the maximum throughput of 0.22 for uncombined
cases.

The lower bounds of throughput over fading MAI channels are obtained via the similar
approach. Fig.72(a) shows that when ~, is 5dB, the system maximum throughput is
improved by 55% to 0.07 for 8FSK modulated system. Similarly for 64FSK the best
throughput, 0.164(Fig.72(b)), has 78% improvement over uncombined system.

Fig.73(a) shows a maximum throughput of 0.11 at 30 users with (63,27) Reed-Solomon
code for 8FSK and 7, 20 dB. It is interesting to observe that the throughput doesn’t change
with the number of users and maintain a level of 0.07 in a large range of n for most of the
codes. Fig.73(b) shows that the maximum throughput of the 64FSK systems is 0.2 at 50
users with (63,27) and (63,23) codes. All codes show a dependence of throughput after
the peak around 50 users and keep a throughput of 9.14 around 100 users and throughput
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Figure 71: Throughput for FHMA/MFSK systems with 100 subbands, noncoherent de-

tection over nonfading MAI channel

0.14. The saddle-shaped curves decrease sharply after 150 users except for (63,27) and
(63,23) codes which show a longer level period. Performance for v, of 40 dB cases are
almost the same as 20 dB cases as shown in Fig.74.

Compare the performance of average code combining schemes with that of conventional
retransmission schemes over fading channels, we found that the maximum throughput for
high SNR cases does not have much improvement. The maximum number of users that
system can tolerate, however, is increased significantly. For example, the throughput of
a conventional system employing (63,39) code in 64FSK system decreases below 30% of
peak value when there are 60 users in the network and ~; is 20 dB. A similar system with
average code combining can maintain throughput of 30% of the maximum value for up
to 180 users. It means that when the networks are overloaded, the conventional systems
break down quickly after a small threshold, while ACC system decrease the effective
throughput per user gracefully for a relatively longer period.

12.3 Convolutional Code Combining

The use of feed-forward convolutional code with hard decision decoding in code combining
has been studied on BSC and Gaussian channels[34, 30, 31, 29]. In this project, we are
considering FHMA /MFSK system with RS-Convolutional concatenated coding structure
under severe MAI interference, where the communication systems are overloaded. The
convolutional code combining (CCC) system block diagram is shown in Fig.75.

Before describing the coding structure, we are going to describe a few considerations
we had in the design process. First of all, we do not want to lower the transmission rate
when there are moderate number of users, therefore we are only interested in systematic
inner codes, which encode the Reed-Solomon codeword but leave it intact, i.e., available
for uncoded transmission. As a well known fact, systematic feed-forward convolutional
code is inferior to non-systematic ones in terms of minimum distance. However, Forney[35]
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Figure 75: Convolutional code combining FHMA /MFSK system

showed that for any feed-forward code there always exist an equivalent systematic code
with feedback that can be implemented with the same number of physical states. In this
report, little effort has been made to find such equivalent codes, which is not hard for
the rate 1/n codes considered here. Instead, we assume their existence and used the best
feed-forward code to simulate the performance.

In the system we are going to describe, one Reed-Solomon codeword is modulated
with MFSK and sent through the FHMA system with one MFSK signal per hop, the
receiver attempts to decode the received word with hard-decision Reed-Solomon decoder.
It decoding failure occurs, the square-law detector output envelopes are saved for next
decoding attempt and ARQ is sent. When transmitter receives an ARQ), it encodes the
information packet with a rate 1/2 systematic convolutional code and send the parity check
copy through the channel. After receiving both information and parity check packets, a
soft-decision Viterbi and error-correcting Reed-Solomon concatenated decoder is used to
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correct errors. If there are still errors in the decoded block, both copies of the packets
are saved for future decoding, and ARQ is sent to the transmitter. Then the transmitter
sends the second parity check packet from a rate 1/3 convolutional code which contains
the rate 1/2 code. The process keeps on going with decreasing code rate until a correct
packet is decoded.

It should be noticed in Fig.75 that double interleaving is employed. Convolutional
codes are very good at correcting random errors produced by a binary memoryless channel,
but do not perform well in the presence of burst errors, which is the case of the system
we are considering. To break burst errors produced by MFSK, interleaving is necessary
between MFSK demodulator and Viterbi decoder. Since the first transmission is going
to pass through the channel without any interleaving, a double interleaving structure is
used for parity check packets.

To make use of soft decision Viterbi algorithm, we need to generate likelihood value
for each individual bit. Bit-by-bit maximum a posteriori MAP) soft-output algorithm[36]
is used with noncoherent MFSK demodulator.

Throughput lower bounds are obtained using the symbol error probability by simula-
tions. Throughput of CCC system over nonfading MAI channel is shown in 76. Fig.76(a)
shows a peak throughput of 0.32 at 140 users with (63,43) RS code and four states soft-
decision convolutional codes. It is observed that the throughput of all codes except for
(63,23) codes are still increasing when the number of users in the system exceed 140. Due
to the limited simulation time, we are unable to provide more data for the time being.
Comparison with ACC systems for 8FSK indicates that the throughput of CCC system
is always higher, especially in the cases where the number of users are larger than 100.
Fig.76(b) shows that the 32 states convolutional codes have a minor throughput improve-
ment over 4 states code. 64FSK systems are apparently inferior to the ACC systems.

Throughput of CCC systems for 20 dB and 40 dB are shown in Fig.77 and 78. Sig-
nificant gain is again observed over ACC system for 8FSK systems for both 20 dB and
40 dB cases. More important, no cutoff point is noticed in CCC systems for at least
140 users. As shown in Fig.77(c) and 77(d), CCC system with 64FSK modulation works
even worse than uncombined case for v5 =20 dB. However, since no simulation has been
conducted for rate lower than 1/5, i.e., lower bound could be loose, it would be more
fair to draw conclusion after more data have been obtained. When ~, =40dB, CCC with
64FSK works slightly better than ACC system in terms of cutoff number of users and
maximum throughput. Notice that, in CCC system, maximum throughput is mostly
achieved by high rate Reed-Solomon code, while low rate codes are usually better in ACC
and uncombined case.

12.4 Summary of Code Combining Studies of FHMA /MFSK
networks

In this report, the throughput of uncombined system and ACC system are shown for a

variety of number of users, Reed-Solomon codes, and average symbol energy noise density

ratio. Optimal choice of codes is suggested from simulation results. ACC is shown to be
a robust method to combat high background noise level in fading channel.
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Figure 76: Throughput for FHMA/MFSK systems with 100 subbands, noncoherent de-
tection over nonfading MAI channel, CCC
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Figure 77: Throughput for FHMA/MFSK systems with 100 subbands, noncoherent de-
tection over slow Rayleigh fading MAI channel, v, = 20 dB CCC
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Figure 78: Throughput for FHMA/MFSK systems with 100 subbands, noncoherent de-
tection over slow Rayleigh fading MAI channel, v, = 40 dB CCC
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A new code combining system utilizing rate 1/n systematic feed-back convolutional
codes is proposed for the channels under consideration. Significant maximum throughput
improvement is observed for systems with 8FSK modulation scheme with both channel
models. In addition, the CCC system consistently maintains high throughput for less
than 140 users (maximum number of users simulated), while the ACC system has very
few codes that can maintain a relatively large throughput when the number of users is
more than 100. The 64FSK systems which employ CCC, however, are generally inferior
to those that employ ACC.

Since 8FSK system uses only a quarter of the bandwidth used by 64FSK system, this
study indicates that CCC should be used in the situation that user suffers from fading
and bandwidth is also of concern. Another interesting observation is that the set of Reed-
Solomon codes that gives better performance in CCC system generally has larger rate
than the optimal codes in ACC systems.

For future research, in the case where Reed-Solomon code is employed in packet radio
networks, inner codes which perform well under severe interference are desired to construct
more efficient code combining system. Since interleaving spreads bit errors randomly into
Reed-Solomon code symbols, nonbinary inner codes which match Reed-Solomon symbol
size, like Dual-K codes, are of great interests in the future. Simplification of the numerical
evaluation of several key equations is desired to get more solid analysis and insight into
the desired structure of the inner codes. Since we assumed the existence of systematic
convolutional codes with feed-back that perform as well as the best feed-forward codes, it
would be interesting to actually find these codes via conversion algorithm or code search.
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13 Notes on Walsh Function Modulated Waveform

13.1 Introduction

Walsh functions are used as part of the signaling code set in IS95 code-division multiple-
access (CDMA) cellular radio. Six bits of data are used to select one of sixty-four 64-bit
Walsh-Hadamard functions. At the receiver the 64-bit symbols are converted back to 6
information bits. This procedure is equivalent to the use of a block error-correcting code
superimposed on the basic modulation [37]. It appears to be useful in some applications
to employ this scheme on 20 bits of data to select one of 22°=10485761048576-bit Walsh-
Hadamard functions to be transmitted. To do this, an efficient procedure must be found to
generate the appropriate 22°-bit Walsh-Hadamard pattern for any given 20-bit information
pattern. Two hardware variations of a simple scheme are presented in this section. An
inverse process must occur at the receiver; that is, given a 2?°-bit pattern, the receiver
must determine the most likely 20-bit information string used to select that pattern. This
task is facilitated through use of the fast Hadamard transform.

13.2 Digitally Modulated Pulse Waveforms

In this section, we show that when forming digitally modulated pulse waveforms, the
resulting spectrum factors into the product of the discrete Fourier transform (DFT) of
the digital modulation and the appropriate transform of the pulse waveform. This fac-
torization allows the effects of the choice of digital modulation and the choice of pulse
waveform to be addressed separately.

We first construct a waveform to be transmitted as a weighted sum of L shifts of a
fixed pulse waveform p(t) as

L-1

sy = 3 wlm)p(t — T2,

m=0

It can be shown that for the continuous case where p(¢) is finite duration and possesses
a Fourier transform, Pr(f), the Fourier transform of s(t) is

Sp(f) = Wr(f)Pr(f)

where
L-1

We(f) = Z w(m)e 2 e,

m=0
For the continuous case where p(t) is periodic with period T, = LT, and possesses a
Fourier series representation Ppg(k), the Fourier series representation of s(t) is

Srs(k) = LW (k) Prs(k)

where
1 L-1

W(k) = Z w(m)e‘j%km/L.



Finally, for the sampled case where the sample rate is an integer multiple, R, of the
chip rate the discrete Fourier transform Sp(k) of s(t) can be written as

Sp(k) = LW (k) Pp (k)

where
1 L-1

Wk)y=—> w(m)e 2L
L=

For the sampled case the p(t) waveform need not be periodic.

If p(t) is not periodic, then a time interval Tp is chosen to include a region of time
where p(t) has negligible energy and is of sufficiently long duration to avoid time overlap
(depending on the operations to be performed) caused by periodicity forced by use of the
DFT.

In all cases the spectrum of the constructed wavetorm factors into the product of what
is essentially the discrete Fourier transform of the weight values and the Fourier transtorm
of the chip waveform. This factoring provides advantages in both signal design and signal
processing because the selection of the weighting values and the selection of the pulse
waveform can be considered independently.

13.3 Walsh Functions

(Much of the material in this section is based on [38].) Walsh divided the unit interval
into N = 2" equal intervals and showed how to define a complete orthonormal set of two
valued (41) functions having zero crossings only at the points of division. These (Walsh)
functions are analogs to the sine and cosine functions used in a Fourier series. The values
of the Walsh functions on the sub-intervals can be written as vectors of +1 values, or in
binary form where 41 maps to 0 and 1 maps to 1. Note that multiplication using +1 on
the integers is isomorphic with binary addition modulo-2; that is, arithmetic in the Galois
field GF(2) containing only the elements 0 and 1. In the example matrices given below
the sign is a shorthand notation for a 1 value.

13.3.1 Sequency Ordered Walsh Functions

Walsh ordered his functions in terms of the number of zero crossings per interval. Harmuth
[39] defines the term sequency to be one-half the number of sign changes per interval. The
sequency, s;, of the -th Walsh function is

0 i=0,
si =14 1/2 i even,
(i+1)/2  iodd.

The Walsh functions as originally ordered are denoted wal,(¢,%). The digital repre-
sentation is written as wal,(i). The sequency ordered digital Walsh function values for
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N = 8 are

wal, ()] L1 1 1 1 1 1 1
wal,, (1) 111 1 - — — —
wal,,(2) 1 1 — = — — 1 1
wal,(3)] |1 1 — — 1 1 — —
wal,(4)| [l — — 1 1 — — 1
wal, (D) l - -1 - 1 1 -
wal,,(6) 1 -1 - - 1 - 1
|wal, (7)] -1 - 1 — 1 —]

13.3.2 Dyadic ordered Walsh Functions

Paley [40] ordered the Walsh functions in dyadic space. The Walsh functions, when
ordered in the Paley manner are denoted wal,(i). The Paley ordered Walsh functions for

N = 8 are

wal,(00] [t L 1 1 1 1 1 1
wal,(1) 11 1 1 - — — —
wal,(2) 11 - — 1 1 — =
wal,(3)] |1 1 — — — — 1 1
wal,(4)] |1 — 1 — 1 — 1 —
wal,(5) 1 - 1 — — 1 — 1
wal,(6) 1 - — 1 1 - 1
|wal,(7)] - -1 - 1 1 —]

13.4 Hadamard Ordered Walsh Functions

The set of digital Walsh function vectors for a given value of N is identical to the set
of vectors composing the N-th order Sylvester-Hadamard matrix. The digital Walsh
functions when ordered as the rows of a Sylvester-Hadamard matrix (also referred to as
a Walsh-Hadamard matrix) are sometimes said to be in natural order and are denoted at
walp(7). The natural ordered digital Walsh functions for N = 8 are

waly()] L1 1 1 1 1 1 1
walp(1) 1 -1 -— 1 - 1 -
walp(2) 11 -— =1 1 = =
wal,(3)| |1 — — 1 1 — — 1
wal, ()| (1 1 1 1 — — — —
walp(5) 1 -1 - - 1 - 1
walp(6) 11 - - - — 1 1
| waly,(7)] - -1 - 1 1 —]

13.5 Properties of the Hadamard Matrix

A Hadamard matrix H of order NV is an N x N matrix of +1 and 1 elements such that
HH? = NI where 7 denotes matrix transpose and I is the N x N identity matrix. If Hy
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is a Hadamard matrix of order N then

Hy;; Hpyye
Hyv =
N [HN/Q —Hyy/o

The matrices formed this way starting with Hy = [1] have orders that are integer
powers of two and are called Sylvester-Hadamard matrices. The first four Sylvester-
Hadamard matrices are:

N=1: H; =[] N=2: szij
11 1 1 1 1 1 1]
1 -1 -1 - 1 -
1111 11 - -1 1 - -
1 - 1 - Il — — 1 1 — — 1
1 - - 1 1 — 1 — — 1 — 1
11 - — - — 11
1 - — 1 — 1 1 -

The Sylvester-Hadamard matrix plays a major role in the generation and use of Walsh
functions, the Reed-Muller error correcting code, and binary linear maximal sequences.
As previously noted, the binary equivalent of a Hadamard matrix can be obtained by
replacing the +1 values with 0 and the 1 values with 1. Henderson [41] showed that the
binary Hadamard matrix can be written as the product of two simpler matrices using
modulo-2 arithmetic.

Let n be an integer. Construct a 2" x n matrix Ban by setting its rows equal to the
binary bits representing the integers from 0 through 2* —1. The binary Hadamard matrix
of order N = 2" is then formed as the product

Hy = ByBY

To illustrate, the binary version of Hg is formed as

00000000 [000
01010101 00 1
00110011 010/t 0001111
001 100110 |011

= 001100711
000071111 LOO o | 010101
01011010 101
00111100 110
0110100 1] |1 1 1]

13.6 Generating Walsh-Hadamard Code Words

Several methods can be used to generate the Walsh functions. For small values of N (e.g.,
N = 8) table lookup is perhaps the simplest. For larger values of N (e.g., N = 2?°) an
algorithm is the more efficient method to generate the desired bits.
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A particularly simple hardware implementation is obtained by adapting Henderson’s
factoring method. The rows of By determine the rows of Hy while the columns of B%
determine the columns of Hy. The i-th row of Hy is generated by taking the binary
representation of 7 and forming the modulo-2 dot product of that value with the contents
of a binary counter incrementing from 0 through 2" — 1 as the process progresses. The
counter values determine the bit position. A circuit for performing this task is shown in
Figure 79. The operation denoted as exclusive-or (modulo-2 addition) is also referred to
as generating parity (an even number of 1 bits yields a zero while an odd number of 1
bits yields a one). An input of n data bits outputs 2" code word bits.

n-bit n n bit

data 2 input binary
register and gates counter
l«— reset
n-bit
data —>» L ~ < L
4 ~ N 4
word n n

4

@ Y

exclusive-or @ Walsh
|

) code
(mod-2 adder) , word

Y

in

bit
serial
form

Figure 79: Hadamard matrix row generator, one bit at a time.

A simple modification of this circuit to allow generating the i-th row of Hy 2™ bits
at a time is shown in Figure 80. This circuit uses the basic logic of Figure 79 for the
most significant n — m data bits and also for the 2™ hard-wired values of the lower m
bits (0 through 2 — 1). The n — m bit result is exclusive-or’d with the individual value
results to form the desired m bits. The connection from the n — m-bit exclusive-or to
the individual exclusive-or devices on the lower right is “flow-through”. Every time the
counter is incremented, an additional 2™ bits in the Walsh-Hadamard code word are
produced. In many applications it should be feasible to replace much of the m-bit logic
with table lookup hardware, or as a minimum much of the gate level logic for the 2™ fixed
values can be combined.

13.7 The Fast Hadamard Transform

The Hadamard matrix possesses the same basic iterative structure that allows fast discrete
Fourier transform (DFT) algorithms to be written. Many, if not all, integer powers of two
DFT algorithms can be converted into fast Hadamard transforms by setting the twiddle
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Figure 80: Hadamard matrix row generator, 2™ bits at a time.

107



factor values equal to one [42]. Because all multiplications are by +1, the required hard-
ware/software is very simple in comparison to that required for the DFT. Sorrenson and
Burris write in [42] “Since there are no twiddle factors, the complexity of the Hadamard
transform, unlike that of the FFT, cannot be improved by using higher radix or split-radix
algorithms.” It is not clear what Sorenson and Burris meant by complexity. While the
computational efficiency of the FHT cannot be improved upon in terms of the number of
add/subtract operations, there is the chance for a performance increase by using a higher
radix algorithm depending on the hardware involved.

For example, the Motorola 68020 has a number of registers that can act as accumu-
lators, and since instruction fetch is pipelined, memory fetch/stores can be overlapped
with register operations. Consider taking the FHT of 2%° values. An in-place radix-2
algorithm has 20 layers and moves 2?° values to and from memory at each layer. Because
of the pipeline nature of the 68020, the required adds/subtracts take no additional pro-
cessor time. A radix-4 algorithm has only 10 layers. As before, the arithmetic can be
performed in conjunction with memory accesses. The net result is that on this computer
a radix-4 algorithm can be written that will execute in half the time required by a radix-2
algorithm.

Figure 81 shows the signal flow graph for a decimation in time FHT for N = 8.
This diagram was adapted from the decimation in time DFT signal flow graph shown in
Figure 8-8 of [42]. The dashed lines represent paths where values are multiplied by 1. The
algebraic values associated with the nodes at each stage are listed in Table 15. The table
entry positions physically match the node locations in the signal flow graph. Examining
the +1 weight values assigned to the components of the final values it is seen that the
values are in the normal Hadamard order. No additional rearrangement is necessary. The
transform is in-place.

Figure 81: Decimation in time fast Hadamard transform signal flow diagram.

As the computation proceeds from left to right, the calculated values have the potential
to increase in magnitude by a factor of 2 at each layer. Because the data of interest may
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Table 15: Values at the nodes of the N=8 FHT.

X0 | X04+X1 | X04+X14X24X3 | XO+XT+X24+X3+X44+X54+X64+X7
X1 | X0-X1 | X0-X14+X2-X3 X0-X1+4X2-X3+4X4-X5+X6-X7
X2 | X24X3 | X04X1-X2-X3 X0+X1-X2-X3+4X4+4X5-X6-X7
X3 | X2-X3 | X0-X1-X24X3 X0-X1-X24X3+X4-X5-X6+XT7
X4 | X44X5 | X44-X54+X64+XT | XO0+X1+X2+X3-X4-X5-X6-XT
X5 | X4-X5 | X4-X54X6-X7 X0-X1+X2-X3-X44X5-X64XT
X6 | X64+X7 | X44X5-X6-X7 X0+X1-X2-X3-X4-X54+X64XT7
X7 | X6-X7 | X4-X5-X64+X7 X0-X1-X24X3-X44X54+X6-XT

be buried in the noise and may be less than a quanta in magnitude, each level should
not simply be scaled by two. Doing so may result in a zero output. One possible scaling
procedure is to scale by 2 every second layer. That way the noise variance stays constant
(assuming i.i.d. noise) and the signal portion grows more slowly. In any case the number
of bits that has to be retained grows as the signal flows from input to output.

13.8 Deciding Which Hadamard Row Was Received

In this example, bit synchronization between a transmitter and receiver is assumed. The
maximum likelihood decoder is a replica cross-correlator. The matching of the basic
digit shape and of the modulating sequence can be treated separately. This section only
considers the gain from matching to the digital Hadamard code.

The following discussion assumes that Walsh functions in the Hadamard ordering are
used to transmit twenty data bits per code symbol. The code symbols each contain 2%°
bits. The reception is shifted to baseband and digitized. Samples are generated for both
the in-phase (I) and quadrature (Q) channels. The Hadamard transform of the I and Q
components is formed and the magnitude of each component calculated. The component
with the largest magnitude is determined and its index is taken as the 20 data bits that
were transmitted.

Using a radix-4 Hadamard transform, there are 10 processing layers. Each layer re-
quires 22° memory read and write operations. Suppose that the word size is sufficient so
that overflow is not a concern (8-bit samples would require a minimum of 28 bits at the
output if no scaling were done). Furthermore, assume a processor architecture that allows
the I and Q components to be processed in parallel. The total number of data moves is
220 % 2 % 10 which is approximately 21 x 10°. If 60 ns cycle time memory is used, then the
amount of time required for data movement is approximately 1.26 seconds. The bit rate
is then 10/1.26 = 15.9 bits per second. Use of a radix-16 algorithm (assuming memory
accesses completely overlap calculation times) would increase speed by a factor of 4.

Suppose that the bit SNR at the A/D converter is S dB. The SNR of the processed
waveform that is used to determine the 20 data bits is S + 60 dB, a very large SNR gain.
Of course, this accounts only for the improvement from the use of the Hadamard code.
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13.9 A Program to Generate the Walsh Hadamard Matrix

Below is a small program that generates the N-th order Walsh-Hadamard matrix using
the same process as was used in the circuit design contained in Figure 80. Following the

listing is a sample output for N = 32.
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File name: hadcalc.c

Quick demonstration program to generate the Sylvester form of the
Hadamard matrix of size 2°n by 2°n. This is also called the
Walsh-Hadamard matrix.

The procedure uses two counters. The outer counter contains the
index of the row currently being constructed. The inner counter
contains the index of the column currently being constructed. The
current element is determined by bitwise anding the contents of the
two counters and determining the parity of the result. If the number
of ones in the and is even the bit is a zero. If the number of ones
in the and is odd the bit is a one.

Values are generated a row at at time.
Using a value of n=6 generates the IS95 64-ary orthogonal symbol set.

21May98 .. initial version .. Kurt Metzger

#include <stdio.h> #include <stdlib.h>

void main() {

unsigned n, outer_counter, inner_counter, and, bit, N;

printf("enter n (log2 of the number of values per row): ");
scanf ("%d", &n);
if (n == 0) {
printf("n must be > O\n");
exit (1);
}
if (n > 32) {
printf("n must be less than 33\n");
exit (1);
}
N=1;
while(n--) N <<= 1;
printf ("Hadamard matrix with %d elements per row\n", N);
for (outer_counter = 0; outer_counter < N; outer_counter++) {
printf("%04d ", outer_counter);
for (inner_counter = O; inner_counter < N; inner_counter++) {
and = inner_counter & outer_counter; /* and the two counters */

bit = 0;
while (and !'= 0) { /* count the number of 1’s */
bit += (and & 1);
and >>= 1;
}
printf ("%01d", bit & 1); /* print bit */
¥ 111
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Hadamard matrix with 32 elements per row

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

00000000000000000000000000000000
01010101010101010101010101010101
00110011001100110011001100110011
01100110011001100110011001100110
00001111000011110000111100001111
01011010010110100101101001011010
00111100001111000011110000111100
01101001011010010110100101101001
00000000111111110000000011111111
01010101101010100101010110101010
00110011110011000011001111001100
01100110100110010110011010011001
00001111111100000000111111110000
01011010101001010101101010100101
00111100110000110011110011000011
01101001100101100110100110010110
00000000000000001111111111111111
01010101010101011010101010101010
00110011001100111100110011001100
01100110011001101001100110011001
00001111000011111111000011110000
01011010010110101010010110100101
00111100001111001100001111000011
01101001011010011001011010010110
00000000111111111111111100000000
01010101101010101010101001010101
00110011110011001100110000110011
01100110100110011001100101100110
00001111111100001111000000001111
01011010101001011010010101011010
00111100110000111100001100111100
01101001100101101001011001101001
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