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I. INTRODUCTION

Despite the continuing remarkable increase of computing speed, the belief persists that nonlinear pixel-by-pixel
kinetic images are impractical for routine use. This paper presents an efficient method for computing parametric
images. The key feature of the method is that we minimize computation per pixel by precomputing tables of QR
factorizations. We also describe an efficient algorithm for enforcing nonnegativity of the natural kinetic parameters.
For 40 planes of 64 by 64 images of 26 frames, only ? seconds are required for ?
We focus on the two-compartment model, although the general approach applies to more complicated models.
Table search also performed by [1]

II. MODEL

Let c1(t) and c2(t) represent the radioisotope concentrations in compartments 1 and 2 of Fig. 1 respectively, and let
cp(t) denote the plasma concentration (input function). Then the governing differential equation is

ċ(t) = −Ac(t) +K1

[
1
0

]

cp(t),

where

c(t) =

[
c1(t)
c2(t)

]

, andA =

[
k2 + k3 −k4
−k3 k4

]

.

Given this differential equation, we first want to obtain an expression for the total tissue concentration:

c(t) = c1(t) + c2(t).

We do this by diagonalizing the differential equation.
The eigenvalues ofA can be found by setting |A− λI| = 0, yielding:

λ± =
1

2
(k2 + k3 + k4)±

1

2

√
(k2 + k3 + k4)2 − 4k2k4.

Note that if k4 = 0, then
λ± = {(k2 + k3), 0}.
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Eigenvectors of A are found by setting (A− λ±I)v± = 0, yielding (for example):

v± =

[
k4 − λ±

k3

]

.

Let V = [v+ v−], then

AV = V Λ, where Λ =

[
λ+ 0
0 λ−

]

.

ThusA = V ΛV −1, so

ċ(t) = −V ΛV −1c(t) +K1

[
1
0

]

cp(t)

or

V −1ċ(t) = −ΛV −1c(t) +K1V
−1

[
1
0

]

cp(t).

Define w(t) = V −1c(t), then

ẇ(t) = −Λw(t) +K1V −1
[
1
0

]

cp(t). (1)

One can compute V −1 to show that

V −1
[
1
0

]

=
1

λ+ − λ−

[
−1
1

]

.

Since Λ is diagonal, (1) is a separable differential equation, whose solution is:

w(t) =
K1

λ+ − λ−

[
−e−tλ

+

e−tλ
−

]

⊗ cp(t),

where ⊗ denotes convolution.
Noting that

c(t) = [1 1] c(t) = [1 1] V w(t),

we can substitute back to show that

c(t) =
K1

λ+ − λ−
[(λ+− k3 − k4)e−tλ

+
+ (k3 + k4 − λ−)e−tλ

−
]⊗ cp(t).

In particular, if k4 = 0, then

c(t) = K1

[
k2

k2 + k3
e−(k2+k3)t +

k3
k2 + k3

e−0t
]
⊗ cp(t).

We measure the average tissue concentration c(t) over n time intervals [tLi , tRi ], i = 1, . . . , n. In addition there is a
contribution due to blood activity b(t). So the (noiseless) measured counts are proportional to:

yi =
1

tRi − t
L
i

∫ tRi

tLi

2−(t−t0)/Th[(1− β)c(t) + βb(t)] dt, (2)

where Th is the half-life of the radio-isotope, t0 is a reference time, and the 2−(t−t0)/Th factor represents the decay
of radioactivity. Assuming the time intervals are small enough relative to the tissue kinetics, one can bring the decay
factor outside of the integral and precorrect the measurements y i. In the remainder of this paper we assume the yi’s
have been precorrected for radioisotope decay, so we disregard the 2−(t−t0)/Th factor.
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Define

s0,i =
1

tRi − t
L
i

∫ tRi

tLi

b(t) dt,

s1,i(λ) =
1

tRi − t
L
i

∫ tRi
tLi

e−λt ⊗ cp(t) dt. (3)

Then we can rewrite (2) as

yi = (1− β)
K1

λ+ − λ−
[
(λ+ − k3 − k4) · s1,i(λ

+) + (k3 + k4 − λ
−) · s1,i(λ

−)
]
+ β · s0,i. (4)

Now define1

θ0 = β

θ1 = (1− β)K1(λ
+ − k3 − k4)/(λ

+− λ−)

θ2 = (1− β)K1(k3 + k4 − λ−)/(λ+− λ−)

λ = [λ+ λ−], (5)

and stack everything into vectors:

y =





y1
...
yn



 , sj =





sj,1
...
sj,n



 , j = 0, 1,

and define
Sλ = [s0 s1(λ

+) s1(λ
−)]. (6)

Then we can rewrite (4):
y = Sλ θ, (7)

where θ = [θ0 θ1 θ2]′.
After estimatingλ and θ, we can convert back to the kinetic parameters by inverting (5). In particular, if k 4 = 0 (i.e.,

λ− is fixed to 0), then

β = θ0

K1 = (θ1 + θ2)/(1− θ0).

k2 = λ+θ1/(θ1 + θ2)

k3 = λ+θ2/(θ1 + θ2)

For fitting with k4 #= 0, the formulae are:

β = θ0

K1 = (θ1 + θ2)/(1− θ0)

k2 = (λ+θ1 + λ
−θ2)/(θ1 + θ2)

k4 = λ+λ−/k2

k3 = (λ+θ2 + λ
−θ1)/(θ1 + θ2)− k4. (8)

1One can verify that since the kinetic parameters are positive and β ∈ [0,1), then λ + > λ−, and θ1 and θ2 are positive.
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cp(t) c1(t) c2(t)

K1

k2

k3

k4

Fig. 1. Two compartment model.

III. ESTIMATION

The above description focussed on a two-compartment model, but the form of the final equation (7) is applicable to
any time-invariant linear differential equation, i.e., we can generally write:

y = Sλθ + noise.

For (unweighted) kinetic fitting, we would like to minimize

‖y − Sλθ‖
2

over θ and λ, subject to the constraint that θ ≥ 0. We first consider the unconstrained case. The utility of the form
(7) is that we have transformed the estimation problem so that the nonlinear and linear components are separated. The
idea behind the QR approach is to use a brute-force table search for minimization over λ and to use the analytical
minimization over θ since that part is linear. In other words, we write the minimization as two parts:

min
λ
min
θ
‖y − Sλθ‖

2.

For the inner minimization over θ, we think of λ as being fixed. It is easily shown that the least-squares estimate for
θ is

θ̂λ = [S
′
λSλ]

−1S′λy = [R
′
λQ
′
λQλRλ]

−1R′λQ
′
λy = R

−1
λ Q

′
λy,

where ′ denotes matrix transposition, and S λ = QλRλ is the QR decomposition of Sλ [2], whereQλ is a n×3matrix
whose columns are orthonormal, and Rλ is an upper-triangular invertible 3 × 3 matrix. (The QR decomposition can
be formed using the Gram-Schmidt procedure.) The key to the efficiency of our approach is the for a set (i.e. table) of
values λ ∈ Γ, we compute Sλ using (3) and (6), and then precomputeQλ andRλ. Thus

y − Sλθ̂λ = y −QλRλR
−1
λ Q

′
λy = (I −QλQ

′
λ)y.

Therefore,
‖y − Sλθ̂λ‖

2 = ‖(I −QλQ
′
λ)y‖

2 = ‖y‖2 − ‖Q′λy‖
2.

Thus the outer minimization becomes

min
λ∈Γ

(
‖y‖2 − ‖Q′λy‖

2
)
= max
λ∈Γ
‖Q′λy‖

2.

The algorithm works as follows. In Matlab, we use kinetic1 mex() to compute Sλ using (3) and (6) for each
λ ∈ Γ, and then we precomputeQλ andR−1λ . In the C program, for each value of λ ∈ Γ, we compute ‖Q

′
λy‖

2, which
is simply 3 inner products and a sum. Let λ̂ be the value that gives the largest norm. This value is found using a table
search whose dimension is the number of unconstrained components of λ. We then form:

θ̂ = R−1
λ̂
Q′
λ̂
y.

Note that by precomputing the inverse R−1λ in Matlab, no matrix inversions are required in the C program. This
simplifies the C program. Now that we have estimates for λ and θ, we can solve back for the kinetic parameters
using (8).
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IV. NONNEGATIVITY CONSTRAINT

The method as described above does not enforce nonnegativity. In some sense this may be desirable since negative
values serve as a warning to the user that the data needs to be inspected more closely. However, since negative values
for θ are not physically meaningful, in some applications it would desirable to use a method that explicitly enforces
the nonnegativity constraint during estimation rather than simply clipping the negative values to zero after the fact.
This section describes one approach for constrained minimization that again makes use of precomputed tables. For
generality, we initially consider arbitrary equality constraints.
Consider them constraints (c ′1θ = b1), . . . , (c′mθ = bm) or

C ′θ = b, C = [c1 . . . cm].

Applying the method of Lagrange to minimize ‖y − S λθ‖2, we would like to first minimize over θ

1

2
‖y − Sλθ‖

2 +
m∑

k=1

γk(c
′
kθ − bm).

Setting the gradient to zero:
0 = −S′λy + S

′
λSλθ +Cγ, γ = [γ1 . . . γm]

′.

Thus since Sλ = QλRλ:

θ̂ = (S′λSλ)
−1(S′λy −Cγ) = (R

′
λRλ)

−1(R′λQλy −Cγ) = R
−1
λ (Qλy −Mλγ),

whereMλ = (R
′
λ)
−1C, and

y − Sλθ̂ = (I −QλQ
′
λ)y +QλMλγ.

Thus
‖y − Sλθ̂‖2 = ‖(I −QλQ

′
λ)y‖

2 + 2〈y′(I −QλQ
′
λ),QλMλγ〉+ ‖QλMλγ‖2

= ‖y‖2 − ‖Q′λy‖
2 + ‖Mλγ‖2.

Thus the minimization over λ is equivalent to maximizing

‖Q′λy‖
2 − ‖Mλγ‖

2.

Solving for γ:
b = C′θ̂ = C′R−1λ (Qλy −Mλγ),=M

′
λ(Qλy −Mλγ),

thus
γ = (M ′

λMλ)
−1(M ′

λQλy − b).

Define zλ = Q′λy and let the QR decomposition ofM λ beMλ = P λUλ, then

γ = (U ′λUλ)
−1(U ′λP

′
λzλ − b) = U

−1
λ (P

′
λzλ − (U

′
λ)
−1b).

Thus
‖Mλγ‖2 = ‖Pλ(P ′λzλ − (U

′
λ)
−1b)‖2 = ‖P ′λzλ − (U

′
λ)
−1b‖2

and
θ̂λ = R

−1
λ [(I −P

′
λP λ)Q

′
λy +P λ(U

′
λ)
−1b].

For nonnegativity constraint, we have b = 0 and the following constraint matrices:

e1, e2, e3, [e2 e3], [e1 e3], [e1 e2],

where ej is the jth standard unit vector of length 3.
To initialize the algorithm ... ?
The algorithm is to tabulate ... ?
Thus

max
λ

(
‖zλ‖2 − ‖P ′λzλ‖

2
)
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V. NONLINEAR CONSTRAINTS

One would like to be able to impose constraints on the original kinetic parameters, such as fixing k 4 to a specified
value, or fixing the ratioK1/k2.
???????????? How to do this ??????????????
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