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ABSTRACT

Codes and Iterative Receivers for Wireless Communication Systems

by
Andrew Porter Worthen

Chair:  Wayne E. Stark

Future wireless communication systems will need sophisticated techniques to op-
erate reliably under typical radio propagation and interference conditions. Emerging
multi-media applications demand high data rates with low delay, and limited battery
capacity makes it essential to communicate extremely efficiently. Optimum receivers
for unknown, time-varying channels encountered by wireless communication systems
must jointly estimate the channel properties and decode the transmitted data. This
is typically too computationally complex to implement. We propose a unified frame-
work based on factor graphs for designing iterative receivers which approximate joint
channel estimation and decoding using iterative algorithms. Once the appropriate
graphical model for the receiver has been constructed, deriving the details of the
algorithm is quite straightforward. In order to handle the problems introduced by
continuous variables, we suggest canonical distributions, a general approach to sim-
plifying the algorithms that allows their key features to be retained. Several receiver
design examples illustrate our approach for common channel models.

Given the possibility of approximating joint channel estimation and decoding using
iterative receivers, we would like to estimate the potential performance of the tech-
niques in various situations. For channels with block memory, which are relatively
easy to analyze and model a variety of frequency-hopping spread spectrum systems,

we obtain bounds based on the channel reliability function, or error exponent. Both



theoretical and numerical results confirm that the bounds behave qualitatively very
much like iterative receivers with low-density parity check codes. Our results provide
insight into the behavior of high-performance systems that use iterative receivers,

especially considering the effects of channel memory on performance.
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CHAPTER 1

Wireless Communication: Unknown,

Time-Varying Channels and Techniques

Future wireless communication systems will require substantial improvements over
current technologies. Emerging multi-media applications demand data rates at least
ten times larger than current voice networks, and still have strict delay requirements.
Limited battery capacity and the ever increasing number of users mean that com-
munication must be extremely efficient with respect to both power consumption and
bandwidth. One way to get the best performance from a given physical channel is
to use as much of the channel structure as possible. Simple, elegant approaches that
capture the fundamental features of the wireless channel will be essential for creating
ubiquitous connectivity. To realize the next generation of high-performance wireless
devices, we will need effective, flexible design techniques for iterative algorithms and
convenient analytical tools for system modeling. Our work addresses both of these
problems by proposing a unified framework for designing receivers for channels with
memory, and demonstrating that a well-known bounding technique can be applied to
examine the performance of these systems.

This chapter begins with a very brief survey of relevant background material from
digital communication and coding theory. An excellent introductory reference is [55].
We then describe some specific models of interest, motivate our contributions, and

outline some core themes.
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Figure 1.1: System model

1.1 The Communication Problem

The fundamental problem of communication theory is to transmit a message,
usually in binary form, from one place to another over a channel which corrupts
the message in various ways. We model a communication system as consisting of
three components as shown in Fig. 1.1. We design the transmitter and receiver,
and the channel is dictated by the application. The transmitter encodes a block of
K information bits into a block of N encoded symbols x from the channel input
alphabet X. The channel performs some random operations on x to produce the
channel output sequence y, taken from the channel output alphabet )} and related
to z according to the channel transition probability density function p(y|z). The
transition probability function completely defines the channel. The receiver’s task is
to reconstruct the message with the smallest possible probability of error given only
the channel output y and knowledge of the system model.

The transmitter uses an error control code to introduce structured redundancy
into the data which will allow the receiver to recover the message from the corrupted
channel output. Formally, an error control code is a set C C XN of 2% vectors
called codewords selected from the possible channel input sequences of length N.
The transmitter uses a one-to-one mapping called the encoder between the messages
and the codewords to select the vector z € C to transmit across the channel. If the
encoder is such that each codeword contains its corresponding K information bits in
some fixed set of positions, then we say that the encoder is systematic. The code
rate R, a measure of transmission efficiency, is K/N bits/channel use. The weight, or
Hamming weight, of a codeword is equal to the number of non-zero elements in the
codeword. The Hamming distance between two codewords is the Hamming weight of
their element-by-element difference.

The receiver must estimate the transmitted message, which is equivalent, given



knowledge of the encoder, to determining the transmitted codeword with minimum
probability of making an error. It can be shown that the optimal decision rule is to

maximize the a posteriori probability of the transmitted vector
i = arg max p(z[y) (1.1)
P J

where Z is the estimate of the transmitted codeword and y is the observed channel
output. This is the maximum a posteriori (MAP) decoding rule. Using Bayes’ rule

we can change this to

& =arg mgxp(glz) p(z) (1.2)

where the normalizing factor 1/ p(y) has been dropped because it does not affect the
maximization. Note that this depends on the prior probability of the channel input
vectors x which we often take to be uniform over the codewords. This gives the
maximum likelihood (ML) rule

& = arg max p(y|z) (1.3)
TE -

which is often used for convenience even when the codewords are not known to be
equally likely. Note that for more than 30 or 40 information bits, the number of
possible codewords 2X is extremely large so a brute force implementation of the max-
imum likelihood decoder is rarely possible. The probability of error is the probability
that the codeword selected by the receiver is not the codeword that was transmitted.
We can also consider failures, where the decoder is unable to select a viable code-
word. Typically, failures are preferable to errors because then the receiver can take
appropriate action such as requesting a retransmission of the corrupted data.

We could also minimize the probability that a bit in the received message is in
error, instead of minimizing the message error probability. In this case, the optimal

decision rule for the i*" bit x; is
T; = arg max p(zily)

= argmax Z p(z|y)
£

T:r=



This symbol-by-symbol MAP rule is slightly different from the sequence MAP rule
described above and, of course, has better performance when the bit error rate is
considered. It may not have a smaller probability of block error than the sequence
MAP rule because the sequence MAP rule achieves the minimum possible block error
rate.

An important class of codes are linear block codes, which are defined by
1eCeHz=0 (1.5)

where H is a matrix called the parity check matrix of the code, and the operations
are carried out over the appropriate finite field. For binary codes, all operations are
performed modulo 2. All linear block codes contain the all zeros word and have the
property that the sum of any two codewords is also a codeword. Although these
codes have significant structure, efficient decoding algorithms only are known for a
relatively small number of specific constructions. The rate of a linear block code is
equal to the rank of the parity check matrix divided by the block length of the code.
Thus, if the parity check matrix has full rank, its size is N — K rows by N columns.

Thus, the central problem of communication theory is reduced to building a code
C that achieves very small error probabilities using an implementable receiver. In
1948, Claude Shannon showed that there exist codes such that for rates less than
the channel capacity C' reliable communication is possible, i.e. for sufficiently long
codewords, the probability of error for an optimal receiver can be made as small as
desired [58]. Clearly, by simply transmitting the same message over and over again,
we can achieve reliable communication, but only in the limit as the rate goes to 0.
The surprise is that C' is usually much greater than 0. Unfortunately, Shannon’s
proof provides little insight into how to find codes that operate close to the capacity
using implementable receivers. We can also use the bound to find the worst channel
conditions that allow reliable communication at a particular transmission rate.

An important channel model is the discrete-time additive white Gaussian noise
(AWGN) channel. The output values y; are related to the input values x; according

to



where n; is a sequence of independent Gaussian random variables with mean 0 and
variance Ny/2. We often characterize this channel by its signal to noise ratio (SNR).
The signal energy per symbol is E, = E{z?}. However, in order to fairly compare
systems operating at different rates R in bits per channel use, we will define the SNR
as E,/Ny where E, = E;/R is the energy per information bit. It is important to
note the distinction between the SNR Ej, /Ny, and the “channel SNR” E;/N,. The
SNR is usually expressed in decibels (dB), 10log,, Eb/Ny. We will often compare
performance in terms of the difference in SNR, expressed in dB, required for systems
achieving the same error probability. Almost all channels have an AWGN component

because of thermal noise in the electronics at the front-end of the receiver.

1.2 High Performance Codes

The best practical codes known for large block lengths are turbo codes and low-
density parity check (LDPC) codes. The receiver algorithms described later are appli-
cable to both of these. Turbo codes, first described in [10], consist of a concatenation,
or combination, of two recursive systematic convolutional codes (RSCC’s), called the
component codes. The encoder, shown in Fig. 1.2, takes a block of information bits
and produces three blocks of encoded bits. The first of these is a copy of the informa-
tion bits, the systematic part. The second is a collection of parity check bits which
are generated by the first recursive convolutional encoder. The third block is the se-
quence of parity check bits generated by the second recursive convolutional encoder,
which operates on an interleaved copy of the data bits. The interleaver, labeled 7 in
the figure, simply reorders the bits so that the second component encoder sees the
same data but in a different order. The recursive convolutional encoders contain shift
registers where modified data is shifted in from the left and a linear combination of
the shift register elements is produced as the output. The encoders are recursive be-
cause the data is combined with elements from the shift register before being shifted
in. Note that all additions are modulo 2. Turbo codes, as described here, are often
called parallel concatenated convolutional codes (PCCC’s) where “parallel” refers to

the fact that the encoders operate on the same data, instead of one operating on



Figure 1.2: Turbo code encoder. d is the information sequence, p, is the sequence
of parity checks from the first component encoder, and pg is the sequence of parity
checks from the second component encoder.

the other’s output. Numerous variations including serial concatenated convolutional
codes (SCCC’s), where the second encoder does operate on the first encoder’s output,
have been proposed. A good survey of turbo codes is given in [26].

A key feature of turbo codes is the existence of an effective, sub-optimal iterative
decoding algorithm. The decoder block diagram is shown in Fig. 1.3. The data and
the parity check bits from the first component encoder are decoded considering just
the first component code. Estimated bit likelihoods for the information bits are then
interleaved and used as prior probabilities by the second decoder, which uses the
interleaved received data and the parity check bits from the second component en-
coder to decode the second component code. The estimated bit likelihoods from this
second decoder are then deinterleaved (to get them back in the original order) and
passed back to the first decoder as new prior probabilities. The process is repeated
several times and the final information bit decisions are taken from the second com-
ponent code. The component decoders are based on the Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [9] for bit-wise MAP decoding of convolutional codes. The decoder
must be slightly modified so that the incoming prior probabilities are not included
in the outgoing bit likelihoods; otherwise, the resulting positive feedback makes the
algorithm ineffective. Although no comprehensive analysis of the turbo decoding al-

gorithm is available, numerous simulation studies have shown that it gives excellent
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Figure 1.3: Turbo code decoder. d is the sequence of channel outputs corresponding
to the systematic bits, p4 corresponds to the parity checks from encoder A, and pp
corresponds to the parity checks from encoder B. m matches the encoder interleaver,
while 7! is the deinterleaver for 7.

performance.

Low-density parity check codes, invented by Gallager [17,18] in 1962, are linear
block codes with very sparse parity check matrices. Each column or row of the parity
check matrix contains at most a small fixed number of ones, regardless of the block
length of the code. An LDPC code is regular if the Hamming weights of its rows
are the same and the Hamming weights of its columns are the same, i.e. if it has
the same number of non-zero elements in each row and the same number of non-
zero elements in each column. Irregular LDPC codes may have varying row and
column weights, but the weights are still bounded independent of the block length.
Gallager proposed an approximate iterative decoding algorithm based on the idea
that each row is essentially an even parity check code, which, because of the low row
weight, involves a small number of bits. Because this algorithm is best described
using graphical models, we will delay the details until Chapter 2.

Probably due to computational complexity concerns, LDPC codes received very
little attention until the mid-1990’s, when MacKay and Neal [42] found that for long
block lengths, on the order of 1000 or more, LDPC codes have extraordinarily good
performance, very close to that of turbo codes. Expander codes [59] are a class of
low-density parity check codes with provably good performance for a simple iterative
decoding algorithm. Recently developed asymptotic analysis techniques [57] for iter-
ative decoding of LDPC codes have yielded irregular LDPC codes with performance

very close the channel capacity. For the erasure channel, code constructions and linear



complexity decoders are known that operate reliably arbitrarily close to the channel
capacity for asymptotically large block lengths [41]. On the AWGN channel, codes
and decoders have been found that operate within 0.1 dB of the capacity bound [56].

1.3 Wireless Communication Channels

We will be most interested in radio-frequency communication channels. In or-
der to understand the phenomena encountered in these channels, we need to delve a
bit more deeply into how the discrete-time channels that we introduced above relate
to real signals. A modulator is used to convert the discrete-time symbols into real
continuous-time signals that will propagate well as electromagnetic waves. A demod-
ulator converts the received electromagnetic signals back into discrete-time samples,
which may be continuous or discrete-valued. Under some conditions, this process
can done without losing any useful information. Typically, the modulator takes T
seconds to transmit each symbol in sequence, where 7' is called the symbol duration
and the time slot used is called the symbol interval. For discrete symbol alphabets,
the complex baseband signal in each symbol interval z(t) is selected from a collection
of approximately low-pass, complex-valued, continuous-time signals s;(¢), defined on
the interval ¢t € [0,7). Here, we almost always consider binary phase shift keying
(BPSK) where there are two signals ¢g(t) and —g(¢) and we take g(t) to be real. A
common choice is the rectangular pulse, g(t) = 1 for 0 < ¢ < T and g(¢) = 0. Usually,
we map a bit z; € {0,1} to the signal set {g(t), —g(t)} as z; — (—1)"¢g(t). Because
low-pass signals do not propagate well in space, and in order to make more efficient
use of the radio spectrum, we shift our baseband signal in frequency, which produces

an approximately band-pass signal
2! (t) = R{x(t)e?* et} (1.7)

where f. is the carrier frequency in hertz and ${-} indicates that we take the real
part. At the demodulator, we receive some corrupted version y'(¢) of the transmitted

bandpass signal. We convert it back to baseband by

y(t) =y (t)e™7*fet — double frequency terms, (1.8)



pass y(t) through a filter matched to the transmitted pulse g¢(¢), and sample its
output at the end of each symbol interval to recover the discrete-time channel output.
Variations on this scheme are required for some situations, but the basic idea of
obtaining a discrete-time decision statistic from the continuous received signal still
applies.

An important issue in the demodulation process is how precisely we can synchro-
nize the receiver. The signal is delayed during transmission by some unknown time,
which results in an unknown phase factor e/’ appearing in the baseband signal along
with some uncertainty in the timing of the symbol intervals. The symbol timing can
usually be recovered without difficulty. Recovery of the phase depends largely on
the phase offset being stable for long periods of time. If we assume that the phase
offset is exactly known, then the channel is coherent. Otherwise, the channel is non-
coherent, and typically we assume that the phase offset # is uniformly distributed
over the interval [0,27). Channel effects particular to wireless channels often make
phase synchronization difficult.

The most important effect in wireless communication channels is fading due to
multi-path propagation. When the transmitted signal reflects off of various objects in
the environment, the reflections arrive with different delays. If the delays are multiples
of the period of the carrier signal, then the signals add constructively, otherwise they
may interfere destructively, drastically reducing the received signal energy. Different
carrier frequencies traveling over the same paths experience different attenuations
because their periods are different. The largest difference between the delays of
different received signals is called the delay spread. If the delay spread is very small
with respect to the symbol duration, then each symbol remains mostly confined to its
own interval and we say that the channel is frequency non-selective. Otherwise, inter-
symbol interference (ISI) occurs and we say that the channel is frequency-selective
because the fading amplitude will depend significantly on frequency even within the
bandwidth of the signal. When there is no dominant line-of-sight path, the fading
amplitude is distributed approximately according to the Rayleigh distribution, and
the fading is referred to as Rayleigh fading. As the environment changes, especially

when the transmitter or receiver is moving, the fading amplitude also changes. This



unknown time-varying path gain or transfer function (for frequency-selective fading)
is one of the key challenges of wireless communication.

Fading is bad because when the channel is in a deep fade the received SNR is
very low, and the signal is almost completely corrupted. We can recover from this
using error-control codes if deep fades are relatively infrequent and short-lived. Thus,
memory becomes an issue. If the channel is highly correlated over time, it will tend
to stay bad for long periods of time making it impossible to communicate. Therefore,
memory is generally considered bad. However, longer channel memory means that
there are more observations from which to estimate the channel state and a better
estimate of the channel state improves performance. It is quite well-known that
memory usually increases the capacity. We treat this issue in more detail below.

Spread spectrum techniques avoid the problem of getting stuck in a deep fade by
using a larger signal bandwidth so that when some parts of the band are deeply faded,
others will be unfaded. Direct sequence spread spectrum uses the entire bandwidth
at once, along with careful signal processing to recover as much of the signal as
possible. Frequency-hopping spread spectrum manages the duration of deep fades
by periodically changing, or hopping, the carrier frequency. This results in a new
realization of the fading level. With error control coding across many hops, the bits
lost during deeply faded hops can be recovered from those sent during unfaded hops.

Spread spectrum techniques have been popular for military applications because
they are quite robust to hostile interference, or jamming. If the jammer does not know
the carrier frequency sequence for a frequency-hopping spread spectrum system, it
must spread its power over a wide bandwidth in hopes of interfering with as many
hops as possible. The partial band jammer tries to jam just enough of the bandwidth,
and therefore to interfere with enough hops, that decoding will be unsuccessful. Hops
that fall in the jammed bandwidth experience high power additive Gaussian noise
from the jammer, while those that fall outside the jammed bandwidth are affected
only by background thermal noise. There is a trade-off between impacting many
hops by jamming a large bandwidth, and achieving a high jamming power spectral
density by jamming a small bandwidth. Direct sequence spread spectrum systems

are also robust to jamming because the transmitted signal has a particular signature,

10



and interference that does not match the signature can be largely filtered out by the
receiver.

Spread spectrum can also be used to allow multiple users to share the same channel
and bandwidth. To some extent, this makes up for the fact that it uses significantly
more bandwidth than a regular signal at the same data rate. With frequency-hopping
spread spectrum, users have different hopping patterns so they usually use different
sections of the bandwidth. When two users do choose the same carrier frequency at
the same time, this results in a collision and typically their mutual interference means
that both of their messages are corrupted. Just as when a hop is lost to a deep fade,
error control coding can be used to recover the corrupted bits. Direct sequence spread
spectrum can also be used for multiple access by assigning users different signature
sequences. Then a receiver listening to a particular user can treat the other users as
undesirable interference and filter them out because they do not match the signature
sequence of the desired user. Sophisticated multi-user detection techniques, which
jointly estimate signals from several users, can be employed in both direct sequence
and frequency-hopping systems to improve performance.

More conventional multiple access techniques include frequency-division multiple
access (FDMA) and time-division multiple access (TDMA), which divide frequency
and time respectively into exclusive slots and allocate these slots to different users.
These both require strict coordination between the users to prevent conflicts. FDMA
also has the disadvantage that if a user’s signal is deeply faded in its assigned frequency

slot, the user will be unable to communicate and the slot wasted.

1.4 Conventional Wisdom — Eliminate Memory

Until recently, most wireless communication systems have tried to eliminate mem-
ory so that the channel outputs processed by the decoder are independent. This was
motivated largely by the fact that common codes are designed to correct random,
independent errors, and receivers that use the channel memory are often difficult
to implement. Interleaving across hops in frequency-hopping, time slots in TDMA,

and time in direct sequence spread spectrum, has been used with the idea that suc-
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cessive bits in the codeword, because they are transmitted at different frequencies,
or separated times, will experience roughly independent fading or interference. In
block interleaving, we combine several codewords by transmitting the first bit of each
codeword, followed by the second bit of each codeword and so on, so that bits from
a particular codeword are separated by the number of codewords being interleaved.
This is often implemented by reading the symbols into an array row-by-row, and out
column-by-column. At the receiver, the bits from each codeword are extracted and
the codeword is decoded independently of the other codewords. This makes the sys-
tem robust to lost blocks of bits because they produce only one or two errors in each
codeword, which are easily corrected. A classic coding scheme for frequency-hopping
spread spectrum consists of Reed-Solomon codewords interleaved so that one symbol
from each codeword is transmitted on each hop [60,61].

Interleaving has two significant disadvantages. The first is that, unless we apply
channel estimation before deinterleaving, the channel estimation capability created
by the channel memory is lost. The second is that, for fixed total delay, using several
codewords with small block length is inferior to using a single codeword from a much
longer code. Note that the class of longer codes contains the class of codes which
can be separated into independent component codewords, thus the best long code
must be at least as good as the collection of interleaved short codewords. In gener-
ally, the additional connections possible in a single large codeword lead to improved
performance. Part of the original motivation for interleaving several Reed-Solomon
codewords was that very long Reed-Solomon codes are known to have poor perfor-
mance. Also, the decoding complexity of Reed-Solomon codes runs as approximately
O(t3) where t is the number of errors to be corrected. Reed-Solomon codes correct a
fraction of errors roughly proportional to the code rate so the total number of errors
that can be corrected is about the same for several interleaved short codes or one
long code. However, the complexity grows linearly with the number of short code-
words but as the cube of the length of the long code. Thus, complexity may have
been a concern in designing the Reed-Solomon code system. Turbo codes and LDPC
codes have complexity that grows linearly in the block length, and thus interleaving

multiple codewords does not make sense for these codes.
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1.5 Optimum Receivers: Joint Channel
Estimation and Decoding

If interleaving over multiple codewords is not used to produce effectively inde-
pendent output symbols, the receiver should use the channel memory to improve de-
coding. Unfortunately, the optimal receiver in this case needs to consider the entire
output sequence as a unit and simplifications possible for decoding with independent
channel outputs no longer apply. The decoder complexity becomes roughly expo-
nential in the block length and thus it cannot be implemented for reasonable block
lengths. However, the optimal decoder is easy to write—the MAP rule continues to
apply—but the channel memory must be included in the conditional density. We

have the same formula,
& = argmax p(z|y), (1.9)

except that p(z|y) may be quite complicated. Often, the channel memory can be

modeled by a channel state that evolves over time,
p(zly) = plz, uly) (1.10)

where u is the channel state sequence. Substituting in the optimum decision rule

(1.9), we find that the best decision for the transmitted codeword is
i = argmngp(ng). (1.11)
u
If we approximate the sum with its largest term, we get
& = arg max max p(z, uly). (1.12)

which corresponds to jointly choosing the best estimates of the channel state sequence
and the transmitted codeword. Note that both this expression and the optimal rule

(1.11) are symmetric, so that interchanging x and u gives estimators for u.

1.6 Effective Diversity vs. Channel Estimation

For fixed codeword length, channel memory affects performance in two ways.

Longer channel memory leads to fewer independent, or approximately independent,
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realizations of the channel state during the codeword. We refer to the number of
approximately independent realizations of the channel state as the effective diversity
seen by the code. For frequency-hopping spread spectrum when the channel remains
fixed throughout a hop and is independent from hop to hop, the effective diversity
is the codeword length N divided by the hop length m, both in symbols, which is
the number of hops per codeword. For other channels, it is not clear how to quantify
the effective diversity, but clearly a similar measure exists. If the effective diversity
is large, then, by the law of large numbers, the average channel behavior within a
codeword is almost always close to the statistically expected channel behavior. If the
code performs well under the expected channel behavior, then catastrophically bad
channel realizations will be rare and the error probability will be low. On the other
hand, if the effective diversity is small, there will be a significant chance of experi-
encing bad channel conditions, which will lead to poor performance. Shorter channel
memory leads to greater effective diversity and therefore improves performance.

If the channel state is available to the receiver somehow, then effective diversity
is the only memory effect and shorter memory is always better. However, in the
much more common case when the channel state is not available to the receiver,
we must estimate the channel state in addition to decoding the data. In general,
longer memory allows more observations of the same or similar channel conditions
and therefore improves channel estimation accuracy. Thus, we are faced with a trade-
off between long channel memory for channel estimation accuracy and short memory
to produce large effective diversity. This trade-off is an important theme throughout

our work.

1.7 Overview

Motivated by the success of iterative decoding algorithms and the similarity of
some channel models to simple codes, we consider iterative approaches to joint chan-
nel estimation and decoding. Various researchers [30,65,68] have also suggested that
perhaps channel estimation could be added to the framework of graphical models

for iterative decoding. Hagenauer [24] proposed that the sort of iterated processing
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of constituent codes used in turbo decoding could be extended to more complicated
problems such as joint equalization and decoding and joint decoding of multiple users.
Unfortunately, his approach does not provide the details of how the individual soft-
input, soft-output (SISO) processing modules should be implemented. Anastasopou-
los and Chugg [6,7] derive adaptive SISO algorithms for decoding component codes
in the presence of unknown channels.

After reviewing the factor graph approach to graphical modeling, and the sum-
product iterative algorithm in Chapter 2, we propose a unified approach to designing
iterative receivers in Chapter 3. Iterative receivers approximate joint channel esti-
mation and decoding by using iterative algorithms on graphical models. Once the
graphical model has been constructed, deriving the details of the algorithm is quite
straightforward. We propose canonical distributions to address the problem of han-
dling continuous variables, such as the channel state, in the sum-product algorithm.
Our technique includes many previous approaches as special cases, depending on the
canonical distributions chosen and other decisions made during the derivation. Re-
ceiver design examples for some common channels with LDPC codes are given in
Chapter 4.

Encouraged by the performance of iterative receivers, we investigate the behavior
of some bounds on ideal joint channel estimation and decoding for channels with
block memory in Chapter 5. Of special interest is the effect of memory length on
performance and the trade-off between effective diversity and channel estimation.

Chapter 6 summarizes our results.

15



CHAPTER 2

Factor Graphs and the Sum-Product Algorithm

Factor graphs are a type of graphical model for multiplicative factorizations of
functions. Simple algorithms based on the graphical model can be used to compute
some important operations on the function. Under some conditions, the algorithms
are exact, while more commonly they produce useful approximations to the desired
results.

Factor graphs are closely related to a number of other graphical models used
in computer science, statistics, and coding theory. Gallager’s original work on low-
density parity check (LDPC) codes in 1962 [17] was one of the first mentions of
graphical models in coding. In 1981, Tanner [65] formalized design of codes using
graphical models. Pearl [53] introduced belief propagation as an algorithm for statis-
tical inference in an artificial intelligence context. In his dissertation, Wiberg [68,69]
generalized Tanner’s work and noted the connection between graphical models and
turbo decoding. The connection between belief propagation and turbo decoding was
also noted by others [37,47]. Junction trees [49] and the generalized distributive
law [4,5] are alternate formulations and generalizations of the same basic class of
algorithms. Markov random fields studied in statistics use similar concepts as well.

Factor graphs were proposed by Frey, Kschischang, Loeliger, and Wiberg [16,
38] to unify many of these ideas in a simple, general framework. One of their key
contributions was the realization that the graphical models were related directly to
a factorization of a global objective function. Once the factorization is available, the

graph and its associated algorithms are immediate. They also show that a wide variety
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of algorithms from coding theory and statistical inference can be derived in the factor
graph framework. In this chapter, the key concepts of factor graphs are described
following their basic approach and notation, with minor variations for convenience in

later chapters. Notation introduced here will be used throughout.

2.1 Factor Graphs

We begin with some notation. Let uppercase letters specify nodes in the factor
graph. Lowercase letters will be used for values of variables and dummy variables in
functions, so A is a node and a represents some value that the variable associated
with A takes. Sets will typically be represented by script capital letters. If v is a
vector of values associated with some variables, vy is the value from the vector that is
associated with variable node X. Similarly, vs is the vector of values from v associated
with the set of variables S. One can think of this as a “slice” of v containing only
the values for the variables in S. [S] is the set of vectors representing all possible
combinations of values of the variables in the set S. For example, if S = { X7, X5, X3}
and z; € Ayx,, 1o € Ay,, and x3 € Ay,, then [§] = Ax, x Ax, X Ax,. The Ne()
operator produces the set of neighbors of a node in the factor graph. The indicator
function I {statement} is 1 if statement is true and 0 otherwise.

A factor graph is a graph representing a particular factorization of a function g(-)

of many variables z1, o, ..., z,. Consider the factorization
g(x17x27"'7xn):Hfj(ij) (2]‘)
J

where 7o, is a vector of elements from 1, s, ..., z,. The factor graph corresponding
to the factorization consists of a wariable node for each variable x;, a factor node
for each function f;, and edges connecting each factor node to the variable nodes
associated with its arguments. Thus, the factor graph is an undirected, bipartite
graph where edges only connect variable nodes to factor nodes. In drawing factor
graphs, we typically use filled circles for factor nodes and open circles for variable

nodes.
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Figure 2.1: Example factor graph. Fy £ fi(a,c), Fy = fy(c,e), F3 = fs(c,d,e), and
F4 é f4(b, C).

For example, if

g(a,b,c,d,e) = fi(a,c)fac, e) fs(e, d, e) f4(b, c) (2.2)

then the factor nodes correspond to fi(+), f2(+), f3(), and f4(-) and the variable nodes
correspond to a, b, ¢, d, and e. The factor graph is shown in Fig. 2.1 where we have
indicated which functions the factor nodes represent in the caption. As described
above, the variable nodes are labeled by their names in uppercase letters.

There are some simple operations that can be performed on a factor graph without
changing its global function. Any variable nodes X and Y with alphabets Ay and
Ay can be combined into a new variable node Z = (X,Y") whose alphabet is A, =
Ax x Ay and whose neighbors are all the factor nodes that were connected to X or
Y, Ne(Z) = Ne(X)UNe(Y"). The factor functions for the nodes Ne(Z) simply extract
the components of Z that they need. Similarly, any factor nodes F; and F, with
factor functions fi(-) and f5(-) can be combined into a new factor node F' with factor
function f(-) = fi(-) f2(-) and neighbors Ne(F') = Ne(F}) U Ne(F3). These operations
are often helpful if the graph has undesirable cycles. We will see that although these
operations can be used to modify the graph, they typically increase the complexity
of the sum-product algorithm substantially.

Another common operation is to introduce additional hidden variables whose val-
ues do not interest us, but which somehow improve or simplify the graph structure.

We usually draw these using double open circles. Formally, we are creating a new
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global function ¢'(+) which in addition to the variables of interest xi, zs,. .., x, also

depends on some hidden variables hy, ho, ..., hg. If

> ¢zh) =g (2.3)

h€[H1,Ha,...,Hy]

then we say that the graphs represent equivalent functions. A common example of
this is when a function depends on the current variable and several past variables. If
we add hidden variables to represent the vector of past values at each time, it turns
out that the algorithm often performs better. Of course, these hidden vectors may
have very large state spaces if there are many past variables or the past variables have
large state spaces themselves.

We will often be considering particular sub-structures in factor graphs. In these
cases, we draw the factor graph fragments with a dotted line to represent where
edges would connect to the rest of the complete factor graph. Nodes that would be
connected to other portions of the graph are shown with edges going to this dotted
line. We will often reuse particular factorizations of functions, and thus particular
factor graph fragments, in different derivations and it will sometimes be convenient

to be able to look at each portion in isolation.

2.2 The Sum-Product Algorithm

We are often interested in computing the marginal functions g,,(x;) of the global

function ¢(-) which are defined according to

9ui (7:) = > 92", x;) (2.4)

(M e[{X1,X2,.... Xn 1\ X;]

where z(® contains all variables but z; and the sum is over all possible values of
the variables other than z;, which takes the value given as the argument to g, (x;).

When ¢(-) is a probability mass function, then the marginal functions are the marginal
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probabilities of the variables. In our example, the marginal functions are

ga(a) = Z g(a,b,c,d,e),

b,c,d,e

gb(b) = Z g(a7 b7c7d7 6)7
a,c,d,e

gC(C) = Z g(aa ba &) da 6)7
a,b,d,e

and so on.

The sum-product algorithm is described as message passing on the graph. Every
node stores a message “going to” each of its neighbors and can access a message
“coming from” each of its neighbors. The message from node X to node Y is a
function denoted px_,y(x) where we have assumed X is the variable node. Because
of the graph structure, either X or Y (but not both) is a variable node. Beginning
with all messages equal to 1, the algorithm updates the outgoing messages for each
node according to a schedule that specifies the sequence in which the nodes are to
be processed. We will say that the algorithm has completed when any node can be
updated and its new outgoing messages will be the same as the old ones.

The new outgoing messages are computed in terms of the current incoming mes-
sages. For a variable node X; and one of its neighboring factor nodes F}, the general
update is

HUX;—F; (z:) = H HQ—X; (i) (2.5)

QENe(X;)\F;

where Ne(X;) is the set of neighbors of the node X; in the graph, i.e. nodes corre-
sponding to all the factor functions fj for which z; is an argument. Ne(X;) \ Fj is
the set of all neighbors of X; except Fj. So the variable update simply multiplies
incoming messages for all the edges adjacent to X; except the one associated with the
outgoing message being computed. If x; only takes on a small finite set of values, we
can compute and store the product for each value separately. The factor node update
is a bit more involved. For a factor node F}; and one of its neighboring variable nodes
X, the general update is

- x, (7)) = Z fi(2) H 1o—r;(29)- (2.6)

2€[Ne(Fy)]: QENe(F;)\X;

2i=x;
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[Ne(F})] denotes the vector of all possible configurations, or combinations of values,
of the variables adjacent to Fj. The condition restricts our attention to the set of
configurations where the i*" component is z;. The messages MQ%F]-(') are evaluated
at the corresponding values from the dummy vector of summation z. When the state
spaces of the variables are continuous-valued, we replace the sums with integrals and
the updates remain valid.

Returning to our previous example, assume that the variables each have two pos-
sible values, so a can be ag or aj, b can be by or b; and so on. Then, for example, we

can compute the update for the variable node C' as

pe—r, (Co) = pr—c(o) - pp—c(co) - piry—c(co) (2.7)
pe—r (c1) = pr—c(cr) - prsc(c) - pr-clc) (2.8)
fe—ry(co) = pr—c(Co) - frs—c(co) - fr—c(co) (2.9)
fo—r (1) = pr—c(cr) - prsc(c) - pr-clc) (2.10)

and so on. For the factor node Fi, we get

1tr—4(a0) = fi(ao, co)pto—r (co) + filao, c1)pc—r (c1) (2.11)
pr—alar) = fi(as, co)po—r (o) + filar, e pesr (1) (2.12)
p1r—c(co) = filao, co)pra—r (ao) + fi(ar, co)pasr (ar) (2.13)
pr—cler) = filao, ¢1)pasr (ao) + fi(ar, er)pasr (a1)- (2.14)

It is well-known [38] that when the graph is finite and has no cycles, i.e. it is a
tree (or a forest), the sum-product algorithm completes in finitely many node updates
and the marginal functions that it produces are exact. On the other hand, when the
graph has cycles, the marginal functions are generally not exact, but it turns out that
when we use them to make decisions, as in a decoder, the results are usually quite
good.

This framework can be generalized by replacing the addition and multiplication
operations throughout with other operations that have the same algebraic properties.
This leads to cousins of the sum-product algorithm with different update complexity
and performance on graphs with cycles. Note that all these algorithms are exact on

trees for marginal functions taken with respect to the chosen sum operation. The
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min-sum algorithm, where multiplication is replaced with arithmetic addition and
addition is replaced with minimization, is the most common example. The BCJR
algorithm [9] and the Viterbi algorithm are related through this type of change of

operations.

2.3 Low-Density Parity Check Codes

In Chapter 1, we defined a low-density parity check (LDPC) code as a linear block
code whose parity check matrix H is low-density in that it has a very small number
of ones in each row and column. The membership function for a low-density parity

check code is I{H z = 0} which can be factored row by row as
r—1
I{Hz=0}=][]1{n; -z =0} (2.15)
=0

where h; is the §*™ row of the parity check matrix for C, and 7 is the number of rows in
the parity check matrix. Each of these row constraints I { hj-x= 0} is an even parity
code involving a very small subset of the elements of z. For example, consider the
regular block length 10, rate 1/2 low-density parity check code with column weight 2
and row weight 4 described by the following parity check matrix

(100101100 0
0100010011
H=/0110100001 (2.16)
0011001100
10001001710

We can draw a factor graph for the factorization (2.15) by connecting each even-parity
constraint to the bits that it checks. In our example, the first constraint checks the
first, fourth, sixth, and seventh bits, so its factor node is connected to those variable
nodes in the factor graph. The complete factor graph is shown in Fig. 2.2.

We build an iterative decoder graph for this code on a memoryless channel by
attaching factor nodes T; for the functions p(y;|x;) to the variable nodes z; and

applying the sum-product algorithm (see Fig. 2.3). The variables y; do not appear in
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Figure 2.2: Factor graph for the example low-density parity check code. C =
I {ﬁj -z =0}.

the factor graph because they are known parameters observed by the receiver. The
node updates are easy to write using the general update equations described above.
The message pr. - x, (z;) = p(yi|x;) and does not need to be updated. For the variable

node Xy, we have
Pxo—co (@) = P(Yo|Zo) - ey x,(T0) (2.17)
xo—ca (To) = P(Yo|To) - fey—xo (T0) (2.18)

and similarly for the other variable nodes. For the constraint node Cy, we have

MCO—)XO(J"O) = Z I{JIO + T3+ T5 + T = 0} .
[1133,1135,1136}6{071}3
[1xy 0o (T3) x50 (T5) pixsosco (T6)  (2.19)
/LC0—>X3(1‘3) = Z I{JIO + T3+ T5 +xg = 0} .

[1170,1135,1136}6{071}3
1x0-Co (T0) 11506 (T5) p1x5- 00 (T6) (2.20)

MCO%X5(‘T5) = Z I{l‘o + X3+ 5+ Tg = O} .

[zo,73,x6]€{0,1}3

[1x0—Co (T0) Hxs—co (T3) fixsscn(Ts)  (2.21)
MCO%X()‘(‘TG) = Z I{l‘o + T3+ T5 +Tg = O} .
[1170,1133,1135}6{071}3
11X Co (T0) Hxs—o (T3) xsmscn (T5)  (2.22)

where addition of variables is performed modulo 2. Similar formulas hold for the

other constraint nodes. Note that these updates can be rewritten as, for example,

Hco—Xo (xU) = Z Hx3—Co (1‘3) HX5—Co (:U5) HX6—Co (xﬁ) (2'23)

[z3,x5,76]€Z(20)
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Figure 2.3: Factor graph for an LDPC code on a memoryless channel. C; £
I{h; -z =0}, T; = p(yi|z;).

where
Z(IL‘O) = {[1‘3,1‘5,1'6] S {0, 1}3 T+ T3+ T5+Tg = 0}

so we sum over the values that give even parity overall.

2.4 Efficient Updates and Complexity

The sum-product algorithm updates are of manageable complexity if the node
degrees, or numbers of neighbors, are small. Furthermore, the updates can often be
simplified by various tricks.

As written above, the update for a variable node X; with a finite state space and
degree L requires L(L — 2) multiplications for each of its possible values. Inspired by
the BCJR algorithm [9], an efficient recursion to compute the outgoing messages for
all the neighbors of a variable node X; places an arbitrary order on the elements of
Ne(X;) and computes the forward and backward partial products a4 and ;. These

are defined according to

i<k
By = H/LQ]-%XZ- (z;) (2.25)
>k

where ag = 1 and (;,_; = 1, and can be computed according to the recursions

Qg = Qo1+ HQy_y—x, (T3) (2.26)

Br = Brt1 HQui—X; (25). (2.27)
This requires 2(L — 1) multiplications for each value of z;. The outgoing messages
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forall j =0,1,...,L — 1 can be computed in an additional L multiplications

1x,-q; (%) = o - B (2.28)

for a total cost of 3L — 2 multiplications for each value of x;.

The update for a factor node with degree L and common neighbor alphabet size
M, if computed for each neighbor individually, requires (L—1)x M%“~! multiplications,
M™~1 evaluations of the factor function, and M*~!—1 additions for each neighbor, for
each value. In the sequel, we will find that our factor nodes either have small degrees
or the factor functions have properties that allow us to greatly simplify the updates. A
neat trick is to find a small cycle-free factor graph that represents the factor function.
If this is done carefully, applying the sum-product algorithm sometimes yields very
low-complexity updates, which, because the small factor graph is a tree, are exact.
For the low-density parity check code constraint node update, we can form a trellis
representation of the even parity code, and then use the BCJR algorithm to perform
the node update with effort linear in the node degree. This is equivalent to introducing
a hidden state that stores the parity of the bits already processed. We start and end

in the even parity state and the sum from (2.3) is over all the paths in between.
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CHAPTER 3

Unified Design of Iterative Receivers

In this chapter, we describe a unified approach to designing iterative receivers for a
wide range of channel models with memory. Beginning with basic principles of optimal
reception, we develop graphical models that lead directly to iterative algorithms for
joint channel estimation and decoding.

Recall our overall system model. The information bits are encoded into a codeword
x which passes through the channel with state vector u. The channel output y is
processed by the iterative receiver, which does not know u, to produce the message
estimates. We assume that the encoder is systematic so that the message estimate
is a subset of the codeword bit estimates. The channel is specified by its transition
probability p(y|z, u) conditioned on the state and the prior probability for the channel
state p(u) which we assume is independent of the channel input z. As described above,
we can either perform optimal sequence detection or optimal symbol detection. For
iterative receivers, we choose to consider minimum symbol error probability decisions.

Thus, the optimal decision rule for symbol z; is
Z; = arg max p(x;|y). (3.1)
Ty -

Rewrite this as

(3.2)



using Bayes’ rule and noting that p(y) does not depend on z or £. Using the channel

state,
7 = argmax / p(ylz, w) p(w) p(z) du. (3.3)

Since we assume that the codewords are equally likely,

1

p(z) = H I[{zxeC}. (3.4)

Because 1/|C| does not depend on z, we find the decision rule
b —argmax 37 [ plylw) plu) Hz € €} du. (35
¢ T:wi=¢ gy
Conveniently, z; is the maximizing value of the marginal that the sum-product algo-

rithm computes. The global function that the factor graph should represent is

G(z,u) = p(ylz, u) p(u) I {z € C} (3.6)

where we treat y as a parameter because it is known to the decoder. Thus, our goal is
to find a factorization of G(z,u) that leads to a realizable and hopefully also effective
decoder. Once the factorization has been chosen, the process is essentially deductive—
very few conceptual problems need to be solved. We draw the factor graph, apply
the sum-product algorithm, and then use canonical distributions to obtain realizable
updates. At each point, different choices lead to receivers of varying complexity and
performance.

The rest of this chapter explains general techniques for factoring the objective
function and choosing canonical distributions. It also includes a discussion of how
these iterative receivers relate to other proposed algorithms and gives some tricks
for finding useful receiver designs. The next chapter includes several specific receiver
design examples with simulation results comparing the performance of various tech-

niques.

3.1 Factoring the Objective Function G(z,u)

In order to obtain realizable algorithms, we must find a factorization of G(z,u)

that leads to sum-product node update operations that are realizable. Typically, this
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Figure 3.1: Factor graph fragment from (3.7) for a channel with no ISI. T; £ p(y;|z;, u)

means that the degrees of the factor nodes in the factor graph must be small. Usually,
we would like the overall algorithm complexity to be roughly O(N) which requires that
each node update have complexity bounded independent of N. Fortunately, useful
factorizations are often easy to find. Since G(z,u) consists of three parts p(y|z,u),
p(u), and I {z € C}, we will consider these parts one at a time.

Because we assume that the channel memory is encapsulated by the channel state,
the channel likelihood p(y|z,u) factors easily. For channel models with no inter-
symbol interference (ISI), the channel output is conditionally independent of all but

the current input given the channel state

N-1
y|$ u = H p yz|1‘za (37)
=0

This leads to the straightforward factor graph structure in Fig. 3.1.
If the channel has IST of length L, the channel output is conditionally independent
of all but the last L inputs given the channel state

p(ylz, u) H P(ilw, T4, Ti1, . Tip) (3.8)

where we take

p(yim, Ty LTj—1y e ,xi—L) = p(yim, Liy Li—1y - - - ,xo)

if i < L. A factor graph fragment for this expression is displayed in Fig. 3.2a.
Alternately, we could combine the L immediately past x; values to create modulation
state variables h; = [z; 1,%; o, ...,x; 1] representing the past channel inputs exactly

as is done in the Viterbi algorithm for equalization. This leads to the factorization

N-1

p(ylz, u) =T {ho = 0} H p(yilu, zi, hy) - T{hiy1 = [xl,ﬁz]} (3.9)

=0
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j—

Figure 3.2: Factor graph fragments for a channel with ISI L = 2. (a) d

rect from (3.8) T; = p(Yilw, 2, T 1, ..., 2, 1); (b) hidden states from (3.9) T; £
p(yilw, mi, hi)  T{hir = [z, hi]}; (c) reduced state from (3.10) J = 2 T; =
p(Yilw, i hiy Tigy o wir) T{hipr = [w,hi]}, Ao = 1{ho = 0}.

where h; = [hio,hit,- .., hir—2] is the vector containing the first L — 1 elements

of h; (see Fig. 3.2b). The factor I{h;s1 = [x;, h;]} enforces the consistency of the
state sequence. A hybrid, reduced state approach, reminiscent of decision-feedback
sequence estimation [15], reduces the state dimension from L + 1 to J + 1, so h; =
(i 1,%i_2,...,7;_s], by only forcing state consistency for the J + 1 immediate past
values of x. This gives the factorization

N-1

p(ylz, u) =1{hy = 0} H P(yilte, i, Py i1, @i g2, - i) - T{higa = [2i, hil}

i=0
(3.10)
(see Fig. 3.2¢). A fundamental problem of (3.8), (3.9), and (3.10) is that the factor
node updates have complexity exponential in L. Fortunately, previous work on re-
duced complexity equalization in iterative algorithms suggests that simplified updates
using decision feedback work well [71].
Useful factorizations for the channel prior function p(u) exist for many common
channel memory models. We will focus primarily on channels without ISI. Often, the
channel functions p(y;|x;, u) do not actually depend on the whole channel state vector

u. Bach symbol depends only on a relatively low-dimensional channel state u; which
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Figure 3.3: Factor graph fragment from (3.14) for a channel with block memory
m = 3. Il £ p(ur), T; £ p(yilai, wy,).

could be considered to be a small sub-vector of the overall channel state sequence u.

In this case,

p(yilzi, u) = p(yilzs, u;)- (3.11)

The time-variation and memory effects in the channel state are captured by the prior
probability p(u).

For a block-memory channel, the channel state is fixed for each block of m symbols
and then changes to a new independent value. Here the channel prior is just the
product of the priors for the blocks,

Ny

p(ﬂ) = H p(gmk) -1 {Qm-k =Uppyp1 =" = —m-k+(m71)} (312)
k=0

where the indicator function reflects the fact that the state is fixed for each block of
m symbols. Using this structure, we can reduce the number of u, state vectors by
having all the symbols in a block refer to the same state

p(yil@i, u) = p(yi|xiaﬂtij) (3.13)

m

where u, is now the channel state for all m symbols in the k™ block so u ;  is the

3

channel state when the i*" symbol is sent. For this case, the channel prior factors as

p(w) = [ plw)- (3.14)

k=0
A factor graph fragment for block memory channels is shown in Fig. 3.3.
For a Markov-memory channel, the state sequence {ug,u,...,uy_q} has the

Markov property
pu;lug, - - ;) = pluslu; o). (3.15)
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Figure 3.4: Factor graph fragment from (3.17) for a channel with Markov memory.
I, £ p(uglur—r), o = pluo), T; = p(yslai, us).

Any arbitrary p(u) can be factored according to

p(u) = p(UN—1|UN—2a Un_gy---Ug) " P(Uy_as-- -, Uyp)
(3.16)
p(uyg) Hp Wi g, Ui g,y Uyp).
Using the Markov property (3.15), we get
N-1
u) = plu) - [ plty ;) (3.17)
j=1

A factor graph fragment for this channel is shown in Fig. 3.4.

Suppose that the channel state evolves according to a 2nd order Markov model.
Some research indicates that accurate modeling of realistic fading channels requires
a 2nd order model unless the fading is extremely slow [13]. In this case, we have the

second-order Markov property

P(U; [ty -5 1) = DUyl g, u5_5)- (3.18)

There are two approaches to factoring p(u) in this case. If we substitute directly in

(3.16), we get

N—1
p(u) = p(ug) p(uy|yy) - Hp ]|U] 10 U5 2)- (3.19)
71=2

The factor graph fragment for this case is shown in Fig. 3.5. We could also create a
hidden state h; = [u; ,,u,; 5] as we did for the ISI channel. With the hidden state,

N—

—

puylhy) T{hj1 = [u, by} . (3.20)

j=2
where p(ho) = p(uo) p(uo|u1). The factor graph using hidden states is displayed in
Fig. 3.6.
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Figure 3.5: Factor graph fragment from (3.19) for a channel with 2°¢ order Markov

memory. Il £ pu;lu; 1, u; o), T; £ p(yilzi,).

Figure 3.6: Factor graph fragment from (3.20) for a channel with 2" order Markov
memory. 11, p(u;lhy) 1 {hj+1 = [u;, hj]}, T; = plyilwa,).

The final portion of G(z,u) to be considered is the code membership function
I[{z € C}. Some of the best known systems use codes with well-known graphical
models and iterative decoding, including low-density parity check codes and turbo
codes. Factor graph models for low-density parity codes were discussed in detail in
section 2.3. For turbo codes, let gx(-) and ¢x(-) map the encoder state and the
encoder input into the parity symbol and next state respectively for encoder X, so

the membership function factors as

N/3-1
I{zx € C} =1{hap=0} H IH{za; =qalha,zpi)} T{hait1i =ta(hai xp,)}-
i=0
N/3-1
H{hpo =0} [[ Heps =ap(hsizp)} H{hsin =ts(hpi,;)}  (3:21)
i=0

where h4 and hp are the state sequences for the two constituent encoders, x4 and xpg
are the two parity check output sequences, xp is the information bit sequence and i
indicates the i'" element of the permuted information bits. A turbo code factor graph
fragment is shown in Fig. 3.7.

By replacing the parts of G(z,u) with their factorizations, we find a complete
factorization and thus, a complete factor graph for the objective function G(z,u).

We can apply the sum-product algorithm to this factor graph directly. Although the
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Figure 3.7: Factor graph fragment for a turbo code. The factor nodes in the A row
represent [{z4; = qa(ha;,xp;i)} 1{hait1 =ta(ha;,xp;)} and those in the B row
represent [{zp; = qp(hp, 2p;)} {hpir1 =ts(hpi, Tp;)}-

factor graph will almost always have loops, the resulting algorithm often still works
well. In the factorizations given above, the maximum degree of any factor node is
asymptotically less than m and N so the algorithm should scale with manageable
complexity to long block lengths and even to long hop lengths. Although there
are variable nodes with degree m, such as the state nodes for channels with block
memory, these can be processed with complexity linear in m and therefore are not
a concern. Because some factor node degrees depend on the ISI length L, long ISI
can potentially require computationally costly node updates. Hybrid factorizations
such as (3.10) and simplified updates, using decision feedback for example, allow us

to manage complexity for these nodes as well.

3.2 Canonical Distributions

The update equations given by the sum-product algorithm often include messages
that are functions of real-valued arguments. Manipulating these is difficult because
their functional form rarely allows systematic simplification. Important exceptions
include Kalman filtering and some other situations with Gaussian densities. In order
to create manageable updates for cases where the update equations do not simplify,
we suggest representing the message functions px_,y(-) with parameterized canoni-
cal distributions (CD’s). Instead of manipulating the actual functional form of the
message, we instead compute the parameters of the canonical distribution. Typi-

cal approaches to channel estimation for continuous-valued channels in the “turbo”
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framework can often be expressed using our canonical distributions approach.

Consider a variable node V' and one of its neighboring factor nodes F'. There is
a message [y, p(v) from V to F' and another pup_,(v) from F' to V. The canonical
distributions approach is to replace a priori the nominal message py_,r(v) calcu-
lated using the usual sum-product update equations with a parameterized function
Wy p(v) called the canonical distribution for py_,r(v). The functional form for the
canonical distribution p,_, »(v) is chosen so that the update for F'is easy to compute
in terms of the parameters for the canonical distribution. Thus, V' passes the parame-
ters of pt,_, p(v) to F which F' uses to compute its outgoing messages with reasonable
effort. Often, the nominal message v (v) has a simple parametric form that we
can use directly, especially when the other incoming messages for F' are approximated
using canonical distributions. Otherwise, we select a canonical distribution g/, (v)
for pp_v(v) as well. This process of approximating the nominal messages involving
continuous variable nodes continues until all the messages can be represented with
fixed parametric forms and all the updates can be computed using reasonable pa-
rameter computations. The goal is to prevent the functional forms of the messages
from growing more complicated as the nodes are repeatedly updated. Although this
sounds difficult, usually the updates involve at most a few continuous-valued vari-
ables. The task is made easier by the fact that the approximation is local; we need
only compute the nominal messages and choose a simple function to represent their
general behavior.

A common technique in the SISO algorithm approach is to estimate the channel
using standard estimation techniques and then use the estimate as if it were true in
the SISO algorithm. In our unified approach, this is equivalent to using a canonical

distribution that is a delta function at the estimated value

px oy (@) =6(z — 2) (3.22)
where X is the variable node, Y is the factor node, and  is our estimate of the variable
x. As we will see below, this approach is sometimes not very effective because it looses
all reliability information about the estimate.

Another common choice is to discretize the message according to some fixed grid.

This is essentially assuming that the value is quantized. There are two natural ap-
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proaches to choosing a discretized canonical distribution. One approach considers the

distribution to be a series of weighted delta functions

o) = 3 ad(o - i) (3.23)

where there are L possible levels, 0y, 01, ...,0;_1, with weights ag, ay,...,ar_1. The
weights a; might be samples of the nominal message. Another approach supposes that
the message function is piece-wise constant, i.e. its value is fixed over some intervals
(01, yg1]. Let r(v) = 1if 0, < v < 941 and ry(v) = 0 otherwise, for some fixed set of
v, [ =0,...,L. For a set of levels ag, ay,...,ar_; corresponding to the intervals, we

have

oy (v) = 2 a7y (v). (3.24)

We could choose the levels to be samples of the nominal message function or we could
take the average of the nominal message function over each interval,

Uy41
a, = ﬁ / pr—y(v) dv. (3.25)
Uy
Clearly, if the nominal message is continuous, the two approaches give the same
weights a; as the 9; values get closer together.

The real power of canonical distributions is the possibility of choosing functions
specifically matched to the form of the nominal message. For example, in the case
of an unknown phase channel with phase-shift-keyed inputs, we know that the dis-
tribution will be multi-modal, with a peak corresponding to each possible input. As
we will see below, selecting a canonical distribution that captures this multi-modal

character is essential for realizing the performance benefits of iterative reception.

3.3 Discussion

Previously proposed algorithms can often be derived by choosing a specific fac-
torization and canonical distributions. One technique for joint channel estimation

and decoding applies to codes and channels that are easily represented by trellises,
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such as convolutional codes or the inner code of SCCC’s, and channels with Markov
memory. The channel is discretized and then a new super-trellis is generated whose
states come from the product space of the channel states and the code states. Clearly,
this can yield very high complexity if either of the state spaces is large. A simple
variant of the BCJR algorithm operates on the super-trellis to produce soft-decisions
for other component SISO algorithms. A receiver of this type for turbo codes in
time-correlated Rayleigh fading is given in [35]. Approaches based on per-survivor
processing [7] are related except that instead of operating on the super-trellis, they
store a single channel estimate for each current stage in the code trellis. We can
derive the super-trellis receiver in our framework by simply combining stage-by-stage
the code state nodes and channel state nodes, and the code factor nodes and channel
factor nodes in the factor graph. When we derive the sum-product updates for this
new factor graph we arrive at the exact modified BCJR algorithm that the super-
trellis receiver uses. An important disadvantage of the super-trellis and per-survivor
processing-based receivers is that the code trellis and the channel trellis must align
stage-by-stage. This eliminates the possibility of interleaving between the code and
the channel, which is necessary because convolutional codes are extremely susceptible
to burst errors produced by correlated channel fades.

It is also important to consider carefully how the (soft) channel estimation portion
of the factor graph interacts with the received data and code. Consider a blind

equalization problem where the observation is of the form

L-1
Y; = Z ulbi—l +n, (326)
=0

where u; are the multi-path propagation coefficients, n; is additive white Gaussian
noise, and b; = (—1)% for ¢ > 0 and b; = 0 for 7 < 0. We assume that the multi-path
propagation u; coefficients are unknown, but remain fixed for the entire codeword.
Further suppose that they are zero-mean, independent complex Gaussian random

variables with known variance. We can factor the likelihood function for this ISI
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Figure 3.8: Factor graph for the multi-path fading channel. C 21{zeC,, T, &
p(yilw, zi, hi) T{his1 = [zi, hi]}, TT 2 p(w), Ao = I {hg all zero}.

channel as
N-1 )
G(z,u) =1{z € C}-1{hy all zero} - H p(Yilw, zi, hi) T{hiy1 = [xi, hi]} - p(uw)
i=0

(3.27)

which gives the factor graph shown in Fig. 3.8.

The nominal messages p7,_,;y turn out to be Gaussian mixtures with 2L+ terms
corresponding to the 2! possible values for [x;, h;]. Using the nominal messages
directly, it turns out that the distribution for each coefficient after the first iteration
has symmetry representing a 180° phase ambiguity due to the unknown data. By
comparison, a blind adaptive equalizer, like the constant modulus algorithm, can
use the shift properties of the data sequence to determine the channel u up to a
single overall phase factor. The factor graph technique seems to loose this because
the messages coming from the 7T nodes are treated as independent when actually
messages from successive T nodes are related through their mutually adjacent hidden
state.

If we estimate the conditional channel outputs given the current and past inputs
v(x;, i1, ..., xi_p) as originally suggested in [8] instead of the channel response u,
we can reduce the ambiguity to a single common phase factor. In our approach, this

leads to the following factorization, shown in Fig. 3.9,

N-1

G(z,v) =1{z € C} -I{hg all zero} - H Pl i, hiy ) T{hisy = [z, ha]}  (3.28)

i=0
where each element of v is associated with a particular value [z;, h;] or equivalently

a particular edge in the trellis. We assume no prior information is available about v,
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Figure 3.9: Factor graph for the multi-path fading channel using output estimates
instead of coefficient estimates. C = 1{z € C}, T; = p(y;|zi, hi, v) T{hiy1 = [i, hi]},
Ao = 1{hg all zero}.

and note that, for given z; and h;, p(y;|x;, hs,v) only depends on one element of v.
The algorithm proposed for blind equalization and turbo decoding in [21] uses this
structure with an estimate canonical distribution for the conditional channel outputs
combined with a channel estimator based on the Baum-Welch algorithm. It is also
possible to further constrain the v to correspond to a valid combination of outputs
for the channel model (3.26) as mentioned in [8].

Another interesting result from this analysis is the notion that the Baum-Welch
algorithm, which is a realization of the expectation-maximization (EM) algorithm
[14], can be derived in the factor graph framework. We believe that further study of
the connection between the EM algorithm and factor graph-based iterative receivers

might provide insight into the behavior of iterative receivers.
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CHAPTER 4

Case Studies in Receiver Design

This chapter gives detailed receiver design examples for a number of specific sys-
tems. Usually, we present the design, perhaps with several variations, and then use
simulation results to show how the design tradeoffs affect the performance. We also
compare our designs to existing algorithms and briefly discuss code design issues for

the specific receivers described.

4.1 Two-State Jamming Channel with Block
Memory

This channel model typically arises when frequency-hopping spread spectrum is
used in a partial band jamming environment. The jammer uses a fixed total power
which it transmits as white Gaussian noise over a fraction p; of our communication
band. Because the carrier frequency is changing for each hop, some hops fall in
jammed portions of the bandwidth while others are unjammed. We assume that each
hop is either entirely jammed or entirely unjammed and that the hopping pattern is
random and independent from the jammed bands. Thus, the probability of a hop
being jammed is p;. Further, we assume that each time we return to the same carrier
frequency, there is a new, independent jamming state for that carrier. Let the channel
state for the k™ hop be u;, € {G, B} where G is the “good” or unjammed state and B

is the “bad” or jammed state. As usual, the channel input at each time is z; € {0, 1}.
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The channel output y; at time ¢ is then

p = VE (<) 4ol (11)

m

where m is the hop length, /E, is the transmitted signal energy per code symbol,
o%(ug) is the noise variance in state uy and n; is a zero-mean, unit-variance Gaussian
random variable. The noise variance o2 (uy,) is Ny/2 for uxy = G and Ny/2+ N;/(2p7)
for u, = B. We parameterize the jammer power by the full-band equivalent jammer
power spectral density N;/2 in order to take into account the fact that the jammer
has a fixed total power.

Some closely related channels could be treated with minor adaptation. In the
frequency-hopping multiple access case, collisions, which occur when different users
use the same carrier frequency for a particular hop, could be modeled as partial-band
jamming if we assume that the interfering user’s signal is Gaussian noise. A single
user in a time division multiple access (TDMA) system with pulsed jamming also can

be modeled using a channel whose noise variance changes block by block.

4.1.1 Receiver Design

Consider our generic system when the code is a low-density parity check code and
the channel is the two-state jamming channel. To design an iterative receiver, we
begin by factoring the likelihood function G(z,u) from (3.6). Using the factorization
techniques described in Chapter 3 for no-ISI channels with block memory and low-

density parity check codes, we find

—_

r—

N
N— m L
Gz,u) = || T{h; - z=0 H (Yilzs w5 ) - )- ] plw) (4.2)

j=0 ]

where h; is the 7*" row of the parity check matrix. From the channel model,

L (L By

22 )
a(uL J)

i T, U i) =
p(yil LRJ) T
and

1—p] 1fuk:G

p(ug) = (4.4)
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Figure 4.1: Factor graph for the two-state jamming channel with block memory and
LDPC code m =4. T, & p(yi|xi,uLL~J), I, = pluyg), C; 27 {ﬁj Lz = 0}.

The factor graph is shown in Fig. 4.1. The T; node updates are easy to realize directly
and the IT; node messages do not need to updated at all. As described in Chapter 2,
there is also an efficient way to update the C; nodes.

A practical schedule begins by setting the messages for the IT nodes, then updates
groups of nodes repeatedly in the order: T, U, T, X, C', X. After each round of
updates, the receiver checks to see if the bit-wise decisions for the X variables form
a codeword. If they do, the algorithm stops and outputs the systematic bits of the
codeword; otherwise it continues until some maximum number of iterations has been
reached at which point it declares a failure and outputs the estimates for the bits. A
possible variation would be to repeat the bit and code constraint updates X, C, X,
more than once before adjusting the channel state estimate (7', U, T'). Although this
does not seem to make much difference here, in other cases it sometimes improves
the performance even when the total number of code constraint updates is fixed [40].

Kang and Stark [31] have derived a similar receiver using more traditional methods
for turbo codes on the frequency-hopping channel with partial band jamming. They
divide the channel state estimation into separate components for the two component
codes, but the overall effect is the same as the receiver above with an alternate update
schedule. Their decoder equivalently updates the first component code, updates all
the T and U nodes using that new information, decodes the second component codes,
updates all the 7" and U nodes, and so on. We prefer to update all the code elements

before updating the channel states.
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4.1.2 Simulation Results

In order to evaluate the performance of the proposed receiver, we will compare it
to perfect channel state information (CSI) and prior-only decoders. The perfect CSI

decoder uses the objective function

G(z) = p(ylz, u) p(z) (4.5)

factored as

N-1
= ] pwilwi, w) - H {h; z = (4.6)
=0

5=0
where h; is the ™ row of the parity check matrix for the code C, and wu; is the
known channel state for the i*® symbol. p(y;|z;, u;) is as given in (4.3). The prior-

only receiver ignores the fact that the symbols in each hop all have the same channel

state. It uses the objective function

G(z) = p(ylz) p(z) (4.7)
factored as
G(o) = [T plosken) - [Tt 2 =0} (43)

where p(y;|z;) is the transition density based on the prior of the channel state

p(yilz:) = Y plyilwi, us) p(us)
u; EU (49)

= (1= ps) p(yilzi, G) + ps p(yilzi, B).

These decoders both have the factor graph shown in Fig. 4.2 except that the functions
for the T; nodes depend on what information is available to the receiver. For both
cases, we adopt a natural LDPC decoder update schedule, where the 7" nodes are
updated once and then the X and C' nodes are alternately updated until the X
decisions form a codeword or the maximum number of iterations is reached.

For hop length m = 16, the performance of the proposed receiver is essentially
identical to that of the perfect CSI decoder indicating that the proposed receiver

realizes most of the gain available for channel estimation. For hop length m = 8, Fig.
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Figure 4.2: Factor graph for alternate receivers for the two-state jamming channel
with block memory. C; £ I{ﬁj = 0}; CSI T; = p(yi|w;,u,); prior-only T; =
p(yilz:).
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Figure 4.3: Receiver performance comparison for the two-state jamming channel with
block memory. '[1" side information; ‘o’ channel estimation; ’A’ no channel estimation.
This is a block length 1024, rate 1/2 LDPC code on a channel with jamming fraction
ps = 0.75, hop length m = 8, and unjammed SNR, 10 dB.

4.3 shows the block error rate of the receivers as a function of the signal-to-jamming
noise ratio (SJNR) Ey/N, for a fixed SNR (E}/Ny) of 10 dB. The channel estimation
receiver looses about 0.1 dB relative to the perfect side information case. Because soft
outputs are available and the channel information only provides improved reliability
estimates and thus is not essential to the decoding process, the prior-only decoder
only looses an additional 0.4 dB relative to the proposed receiver.

As expected, there is a clear trade-off between channel estimation and effective
diversity. The perfect side information receiver performs best for hop length m =1

and its performance decreases with the effective diversity as the hop length increases.
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Figure 4.4: Required SINR E},/N; as a function of hop length m for the two-state
jamming channel with block memory. ’[1’ side information; *x’ channel estimation.
This is a block length 2520, rate 1/2 LDPC code on a channel with jamming fraction
ps = 0.75 and unjammed SNR 10 dB.

The channel estimation receiver suffers from poor channel estimation at small hop
lengths and at larger hop lengths tracks the performance of the perfect CSI receiver.
Figure 4.4 shows the required SJNR for 1073 block error rate as a function of the
hop length m. The gap between the perfect side information receiver and proposed
channel estimation receiver is largest for m = 1. The occasional crossing of the curves
is due to statistical uncertainty in the simulation results. For hop lengths larger than
m = 15, the performance is actually essentially the same for the channel estimation
and side information receivers.

It would be interesting to know directly how well the channel estimation works. An
important question is whether the channel estimation improves as iterations update
the channel estimate values. If the estimate is essentially perfect after only one round
of channel estimation, then further computation is unnecessary. Figure 4.5 shows
two sample profiles of the number of channel estimation errors at each stage for
different individual runs. Runs where the correct codeword was found at different
total numbers of iterations are shown for comparison. Note that most trials find the

correct codeword in less than 15 iterations. We plot both the number of incorrect
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Figure 4.5: Channel estimation error as a function of iteration for two typical trials.
‘o’ soft errors, 'x’ hard errors. The runs take different numbers of iterations to
converge to a valid codeword. This is a block length 2520, rate 1/2 LDPC code on
a channel with jamming fraction p; = 0.75, SINR 2 dB, hop length m = 8 and
unjammed SNR 10 dB.

channel estimates and, because the channel estimates are actually soft, the total
normalized likelihood of all the incorrect channel values. This gives some idea of
whether the estimates are decisive or ambiguous. If all the estimates were decisive
(i.e. either 0 or 1 likelihoods), then we would get the same result for the soft values
as for counting errors. The difference shows that even when further iterations seem
to increase the number of errors, usually the soft estimates are actually improving.
In general, the initial number of estimation errors, before the code is used to
compute bit likelihoods, is quite large-about one third of the hops. After one iteration,
the bit likelihoods are incorporated and the number of errors drops dramatically. Even
when a valid codeword has been found, some channel estimation errors often remain.
This behavior indicates that including the soft channel estimation in the iteration is
valuable, but that correct channel estimates are not essential for good performance.
Although it is not our primary focus, it is interesting to look at how the number of
bit errors in a codeword varies as the algorithm proceeds. Figure 4.6 shows the number
of hard bit errors and the total soft likelihood for the incorrect values after each
iteration. The number of errors tends to decrease rapidly in the first few iterations,
then after some slow progress, the last few errors are eliminated quickly. From the

soft information, we see that in the end, all the bits have quite high certainty, and
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Figure 4.6: Bit errors as a function of the number of iterations for three typical
trials. ’o” soft errors, '+’ hard errors. The runs take different numbers of iterations
to converge to a valid codeword. This is a block length 2520, rate 1/2 LDPC code
on a channel with jamming fraction p; = 0.75, SJNR 2 dB, hop length m = 8 and
unjammed SNR 10 dB.

the algorithm is basically flipping bits that cause problems. Note that neither the
hard error count, nor the soft information is monotonically decreasing.

Although this example is quite simple, it behaves entirely as expected. In partic-
ular, the trade-off between effective diversity and channel estimation is immediately
evident and it is clear that as the hop length gets larger, the performance of the joint
channel estimation and decoding receiver approaches that of the perfect CSI receiver.
We will see this same basic behavior repeatedly as we consider more complex channel

models.

4.2 Two-State Jamming Channel with Markov
Memory

The two-state channel with Markov memory was first proposed to model bursty
errors [23] in telephone networks. The concept of memory was defined and more
detailed analysis of the channel capacity presented in [52]. We consider a pulsed

jamming model for comparison with the partial band jamming model considered
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above. Here the jamming fraction p; represents the average fraction of time that a
pulsed jammer is active and assumes that the jammer follows some Markov model.
Although it is unlikely that a hostile jammer would adopt such a predictable strategy,
unintentional interferers might have this behavior. Also, a close cousin of this channel,
the fading channel with Markov memory, occurs frequently in mobile communication
systems.

Just as for the two-state jamming channel with block memory, there are two pos-

sible channel states corresponding to either jammed or unjammed symbols. Precisely,

Yi = \/E (—=1)% + o (us)n; (4.10)

where y; is the channel output at time ¢, z; is the unknown channel input bit at time
7, 02(ui) is the noise variance for channel state u;, and n; is an additive Gaussian noise
sample with mean 0 and variance 1. As for the two-state jamming channel, the noise
variance o2 (u;) in the good (unjammed) state is Ny/2 and in the bad (jammed) state
is 2(Ns/ps+No). Instead of the channel state being fixed for blocks of m symbols, the
channel state can change between any two symbols and the state process is modeled
as a Markov chain. We parameterize the channel according to the jamming fraction
ps and the memory p =1 — g — b, originally defined in [52]. The desired steady state
distribution is p(B) = p; and p(G) = 1 — p;. In order to make the Markov chain
stationary, we choose p(ug) equal to the steady state distribution. The transition

probabilities are

p(u; = Blujoy = G) =b=p;(1—p) (4.11)
p(u; = Glui-y = B) =g = (1—ps)(1 — p) (4.12)
p(ui = Glui s = G) = 1—b (4.13)
p(ui = Blui 1= B)=1—g (4.14)

Our primary motivation in considering this channel is to compare it to the two-state
jamming channel with block memory in order to relate the hop length and the memory

parameter u.
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Figure 4.7: Factor graph for the two-state jamming channel with Markov memory.
1T, £ p(uklug—1), o = p(uo), T; = p(ys|ws, wi), C; =1 {hj cx =0}

4.2.1 Receiver Design

Suppose we communicate over this channel with a LDPC code and an iterative

receiver. The objective function G(z,u) can be factored as

o 1T g (- "“’i_zis”’“*)

p uk|uk 1 (4-15)
k=1

r—1
G(z,u) = [[1{h;-z=
j=0

which has the associated factor graph shown in Fig. 4.7. The updates for all the
nodes are straightforward using the standard formulas. The schedule is similar to
that described for the two-state jamming channel with block memory, except that
the state nodes U; are updated as a chain. That is, we begin with Uy, propagate its
new state information to U; by updating II;, then update U;, and so on. The II and
U nodes are updated alternately down the chain until we get to the last U node. We
then reverse the process, starting from the last U node and updating the nodes along
the chain until we reach Uy. This update schedule is equivalent to using the BCJR
algorithm to estimate the channel state Markov chain.

Various researchers have considered similar channels with turbo codes and de-
signed receivers using the traditional SISO algorithm approach. In [32], turbo de-
coders modified to operate on a two-state jamming model with Markov memory are
presented. The approach effectively adds an additional trellis-type channel estimator
and thus is similar to the receiver presented here. However, we believe that the factor

graph development makes the design more transparent and suggests scheduling varia-
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Eb/NJ for 10'3 block error rate
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Figure 4.8: Required SINR E,/N; vs. memory p for the two-state jamming channel
with Markov memory. 'o’ proposed receiver, '[1" perfect CSI. This was a block length
2520, rate 1/2 LDPC code on a channel with unjammed SNR FE,/N, = 10 dB, and
jamming fraction p; = 0.75.

tions that might improve performance. A receiver for turbo codes on a fading channel
with Markov memory based on the super-trellis approach mentioned in section 3.3 is
presented in [20]. Garcia-Frias and Villasenor [22] have also proposed an alternate
receiver that uses a separate soft channel estimator more like our proposed receiver.

Previous work has not considered the effects of memory length on performance.

4.2.2 Simulation Results

When we plot the required SJNR vs. the memory parameter p in Fig. 4.8, we get
quite a different picture than we did for the channel block memory. However, after
some consideration, we see that it has the same basic properties. As expected, the
required SJNR for the perfect CSI receiver increases with the memory. The required
SJNR for the proposed receiver decreases slightly as the channel estimation improves
and then increases as the decrease in effective diversity due to longer memory takes
its toll. Both the perfect CSI and proposed receiver curves increase sharply as the
memory gets close to 1 because this represents the maximum possible memory.

In order to compare the Markov memory and block memory cases, we need a
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3.4

Eb/N | for 10~ block error rate
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Memory parameter 2/(1—u) or m

Figure 4.9: Required SJINR E}/N; vs. memory length 2/(1 — u) or m for two-state
jamming channels. ’o’ proposed receivers, '[1" perfect CSI. Solid lines denote Markov
memory; dash-dotted lines are for block memory. The block length 2520, rate 1/2
LDPC code, unjammed SNR, E,/Ny = 10 dB, and jamming fraction p; = 0.75 were
the same for both channels.

compatible way to express the memory length. We propose to use the hop length
for the block memory case. Since the memory parameter p varies between 0 and 1
(for persistent memory), and the maximum memory occurs when py = 1, it seems
reasonable that the memory for the Markov case should be related to 1/(1 — p).
Empirically, we find that 2/(1 — ) works well. More theoretical justification for this
result is a topic for further study. When we plot the required SJNR vs. the memory
in terms of 2/(1 — p), the perfect CSI curves for block and Markov line up very nicely
as shown in Fig. 4.9. The optimal hop length (again in terms of 2/(1 — p)) for the
iterative receiver on the Markov memory channel, about 16 symbols, is a little larger
than the optimum hop length for the block memory channel. At the optimal hop
lengths, the iterative receiver does more than 0.2 dB worse than it did on the block
memory channel. This makes sense because, with block memory, the receiver knew
that the state could only change at the end of each block. With Markov memory, the

channel state can change at any time which makes state estimation more difficult.
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4.3 Coherent Rayleigh Fading Channel with
Block Memory

Frequency-hopping spread spectrum is often applied to combat frequency-selective
fading that changes very slowly with time. By changing frequently to different carrier
frequencies, the technique avoids getting stuck with a severely faded channel. If the
coherence bandwidth is larger than the signal bandwidth for any particular hop, then
each hop experiences a flat Rayleigh fading level. We assume that the coherence time
of the channel is much longer than the hop duration, so the fade level is approximately
fixed throughout each hop. Thus, each hop experiences an independent Rayleigh fade
level for its entire duration.

The same channel model applies to time-division multiple access (TDMA) in a
slow time-selective Rayleigh fading channel. If the time-variation of the channel is
much slower than the TDMA burst duration, but much faster than the time between
a particular user’s bursts, then the fade level is fixed during the burst and essentially
independent from burst to burst. This duality allows us to use the same strategies for
both channels by dealing with the underlying, more abstract, block fading channel
model.

Suppose that the channel hop length is m symbols and that we use BPSK signal-

ing. The channel output is

Y = ULLJ (=1)*\/Es +n; (4.16)

where /E; is the average signal energy, and n; is a real white Gaussian random
sequence with mean 0 and variance Ny/2. The fading levels u; are a sequence of

independent Rayleigh random variables with pdf’s

pug) = 2upe ™. (4.17)

4.3.1 Receiver Design

The receiver structure for LDPC codes is essentially the same as for the two-state

jamming channel with block memory above. We factor G(z,u) as
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r—1 N-1
Glz,u)=[]1{n,-z=0} ]] p(Yilziu i) I plw)
j=0 i=0 m k=0
r—1 N-1 (yi — ULLJ(_l)xi\/E)2 el )
ocHI{Qj-gzo}-Hexp - mN HQuke’“k
=0 i=0 0 k=0

(4.18)

where we have taken the normalizing terms for p(y;|z;, ULLJ) as the constant of pro-
m
portionality which does not affect the optimization. The factor graph for this is the

same as Fig. 4.1 except that now nodes 7} represent the functions

(4 — w2 () VI

m

exp | — N
0

and nodes II; represent the functions

a2
2ue Uk,

Because the channel state space is continuous, the node updates involving the
channel state nodes become problematic. To find realizable node updates for the T;
and Uy, nodes, we start with the nominal node updates. Beginning with p7,_y, , we

have

i — U/ Es 2 i +u V Es 2
/LTiﬁUk(Uk) = exp <— (y ]\]; ) ) /LXHTi(O) + exp <— (y ]\]; ) ) /LXi—>Ti(1)-
0 0

(4.19)

This could easily be represented in terms of the parameters y;, px, 1, (0), and px, 7, (1).
The other two variables, Ey and Ny, are the same for all 7+ and are known. Unfortu-

nately, if we take this approach, the message pp, 7, becomes

km+m—1
oo (we) = po (we) - [ oo (w)
i=km
i
km+m—1 2
. 2 (yi — urV L)
omet ] Je (T YED 0
iy

exp (—(yi - ZL\],“O\/EV) uxﬁn(l)] (4.20)
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which is not particularly difficult to compute for any fixed value of uy, but is very
unwieldy to use in later update equations. To underscore this point, note that

o () = / exp <— (i = “’“(]_Vi)ximV) it () du (4.21)

which is very complicated if py, 7, is not a relatively simple function.
To solve this problem, we introduce two simple canonical distributions for y, -1,
One possibility is to discretize the fading level to one of L preselected levels 4,

L-1

Wi () =Y a6 (ug — ). (4.22)
=0

A natural way to choose the weights a; is to sample the nominal message py, 7
as given in (4.20) at the discretization levels @,. The parameters to be passed are
just the weights a; since the levels 4; are fixed and known in advance. This update
could be realized by passing samples of the messages 17,7, at the points 4; and
then multiplying them just as if U, were a discrete variable with L states. With the
canonical distribution (4.22), the update for pr,_, x, becomes

i (@) = S aresp (o=l /E

(4.23)

which is quite practical to compute.

A second possibility is to simply estimate the fade level. Because small changes
in the fade level do not have a drastic effect on the reliabilities and the fade level is
known to be positive, this works well. In the canonical distribution framework, using

an estimate corresponds to choosing the canonical distribution

:“IU,C—>TJ- (ug) = 6(up — Uy ) (4.24)

where 1, j is the estimate for u;, to be used by Tj. A simple approach is to begin with
the nominal message py, 7;, assume that the hard decisions on the bits are correct,

and then use a maximum likelihood estimator. The resulting estimate, obtained by
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applying the assumptions to the nominal message and setting its derivative to 0, is

1 1 km+m—1
Upj = = lyil +
T2 | VE(m—-1+12) %g;n
i#]
2
km+m—1
1 2
i + 4.25
\/Es(m—1+g—g) l%;n s (l—i-(m—l)]b;—;) (4.25)
i#j
which is approximately
km+m—1
1
- - ; 4.26
k,j (m—l)\/E ng;n |y| ( )
1#£]

when the average SNR FE /N is large. Without the effect of the Rayleigh prior
distribution, this result holds independent of the average SNR.
We use the same update schedule as for the two-state jamming channel with block

memory above.

4.3.2 Simulation Results

For comparison, we again consider a perfect channel side information receiver.
The structure is the same as in (4.6) except that now the conditional probability

p(yz|$z,uz) is

p(yilws, us) = \/;—No exp (—(yi — Uz(zvt)mx/EV) . (4.27)

Note that the perfect CSI receiver has the exact continuous-valued fading levels wu;
for each channel output provided clairvoyantly by the channel.

The Rayleigh fading channel with block memory repeats the now familiar pattern
of trading channel estimation against effective diversity. In Fig. 4.10, we see that for
this case the optimal hop length is somewhat shorter than for the two-state jamming
channel. For the quantized canonical distribution, the optimal hop length is about 4
symbols. For the estimate canonical distribution it is a little longer-about 8 symbols.
Because fading affects the mean output magnitude and not just the variance as for

jamming, estimating the fading state is easier. Also, severe fading is in some sense
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Figure 4.10: Performance vs. hop length for coherent Rayleigh fading with different
canonical distributions

accounted for symbol-by-symbol in the conditional distribution. For example, a very
small output value must be due to either a small fade level or a very severe noise
sample. In either case, the resulting bit likelihood will reflect a low reliability. The
quantized canonical distribution (CD) does uniformly better than the estimate CD,
presumably because maintaining more soft information improves performance. The
extremely poor performance of the estimate CD receiver for small hop lengths is due
to the fact that the estimator is very sensitive to noise when it has few observations
to work with. This suggests that if complexity demands that a simple estimation
scheme be used, some bias towards smaller, or more pessimistic, estimates of the
fading level should be used. For example, a minimum mean square error estimator,
which is biased toward zero depending on the observation noise variance and number
of observations, might be more suitable. Note, however, that these estimators do
not use the information provided by the code, and therefore remove the possibility of
iterative improvement between the channel estimator and the decoder.

Comparing the channel estimation errors for the receivers as a function of block
length adds some further insights. We consider the mean squared estimation error

between the actual fade level and the estimated fade level for the estimate CD. For
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Figure 4.11: Channel estimation error for coherent Rayleigh fading with different
canonical distributions. 'x’ quantized CD, '’ estimate CD. (a) shows the error as
a function of the hop length for the SNR that gives a block error rate of 1072, (b)
shows the error vs. the SNR where the curves are parametric in the hop length. The
numbers near the curves are the hop lengths for the adjacent points. This is a block
length 2520, rate 1/2 LDPC code on a Rayleigh fading channel.

the quantized CD, we take as the squared error the weighted average of the squared
error between the actual fade level and the quantization points where the weights are
the distribution parameters q,

e=Y au—i)’ (4.28)

!

The final mean squared error for both receivers is plotted in two ways in Fig. 4.11.
In Fig. 4.11a, it is shown as a function of the hop length and in Fig. 4.11b it is shown
as a function of the SNR where the curves are parametric in the hop length. The
data points all correspond to block error rates of 1072. As the hop length increases,
the estimate CD data has a significantly smaller mean-squared error. The fact that
the performance differs substantially for the same SNR with different hop lengths
indicates that hop length is more significant in determining the channel estimation
error. For the lower halves of the curves, where the hop length is large, it is especially
clear that even when the SNR is the same, the estimate CD has a smaller mean
square error and accomplishes this with a smaller hop length. Since the quantized
CD receiver still performs better, we conclude that the channel estimation error, at

least as we have defined it, is not particularly important to performance. Maintaining
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good soft information contributes much more to good performance.

4.4 Non-Coherent Flat Rayleigh Fading Channel
with Block Memory

In our discussion of the flat Rayleigh fading channel with block memory above,
we assumed that the carrier phase was known to the receiver. In real systems, this
is often not true because the short hop duration makes phase acquisition difficult.
Furthermore, phase acquisition overhead becomes significant when the hop length is
of the same order as the acquisition time. To account for this issue, we consider
a non-coherent flat Rayleigh fading channel with block memory, where the receiver
must estimate the fixed, unknown phase offset for each hop in addition to the fade

magnitude. This gives a block memory channel with complex output

Y= (—1)*/E, +n; (4.29)
where uy, is complex Gaussian with mean 0 and variance 1/2 and n; is complex Gaus-
sian with mean 0 and variance Ny/2 in each dimension. It is well-known that a
complex Gaussian random variable with iid real and imaginary parts has a Rayleigh-
distributed magnitude and a uniformly-distributed phase. Thus, the channel is es-
sentially the same as in the coherent flat Rayleigh fading case above except that the

phase is unknown and uniformly distributed.

4.4.1 Receiver Design

Receiving messages on the non-coherent Rayleigh fading channel is fundamen-
tally more difficult than the previous cases that we have considered because the bit
decisions depend completely on the channel estimate. Without an estimate of the
channel, the bits are all equally likely. Furthermore, with a very bad phase estimate,
all the bit decisions will be wrong and yet their supposed reliabilities may still be
high.

Although a true maximum likelihood decoder can use the correlation of the code-
word bits directly for decoding on the non-coherent channel, iterative receivers need

some way to get the first round of channel estimates to start the decoding. Therefore,
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for this example we use an LDPC code with pilot symbols. For some original LDPC
code C' and channel hop length m, the code with pilot symbols C is constructed by
inserting a “0” pilot symbol before every m — 1 symbols in each codeword from C'.
These a priori known bits help form an initial phase estimate for each hop. The value
is chosen to be 0 so that the code C is still linear, although this is not necessary for
the receiver derivation.

The objective function factors much as in (4.18) except that we split the fade level

into amplitude and phase components u, ; and g to get

N
m L r—1 N—

= HI{IElmZO} HI{EJEZO H yz|xla a’ _J)uaLLJ)
=0 i=0 i=0 meem

T pees) TT vlues) (430)

where h; is the ™ row of the parity check matrix for the LDPC code C' and the
I {x},, = 0} factors account for the pilot symbols. Substituting the exact distributions

and dropping constant factors

%_1 r—1
u) = H I{xlm:O}HI{Qj-gzo}-
1=0 =0
N-1
H exp (—
i=0

| exp(, i) (= )"/ E,

N N

L

2)
-1 ——1
m

[T 2uawe "+ T T{uox € 0,27)}. (4.31)
k=0 k=0

The factor graph corresponding to this factorization is shown in Fig. 4.12.

We could also have separated the complex fade level into its real and imaginary
components. In this case, we would have ambiguity in the sign of both the real and
imaginary parts, so both would be multi-modal. The product distribution that would
be assumed by the 7" nodes would often have four peaks instead of the two that
we will find for the magnitude and phase approach. In some sense, there are too
many degrees of freedom in the real and imaginary model. When we estimate the

real and imaginary parts, both can be either positive or negative. For the magnitude
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Figure 4.12: Factor graph for the non-coherent Rayleigh fading channel with block
A A A A
memory. Iy = plugg), ok = Pluar), Ti = plyilziu, ), b =

I{pm = 0}, C; 2 T{h; - z = 0}

1Lyt L

and phase, the magnitude should always be positive. Another issue is that, for the
real and imaginary parts, the coupling between the two is essential to get the phase.
In the magnitude and phase approach, the two are less strongly connected. We use
magnitude and phase in the sequel.

The updates for the U,, Uy, and T nodes, which correspond to the magnitude and
phase variables and the channel conditional probability factors, are difficult because
both U, and Uy are continuous-valued and they both affect the 7" node update in a
relatively complex way. Our approach is to select a very simple canonical distribution
and parameter selection scheme for the outgoing messages from the U, nodes. This
will allow us to use the nominal 7" node messages and a variety of canonical distribu-
tions for the phase node messages. Some choices were made specifically so that the
receivers would have channel state node update complexities that are roughly linear
in the hop length m.

Therefore, we choose an estimate canonical distribution as in (4.24) for Py T
The parameter estimation scheme (4.26) for the fade level in the coherent flat Rayleigh
fading case still makes sense because taking the magnitude of y; eliminates the effect
of both the unknown phase and the data.

To design canonical distributions for the phase node messages, we begin with the

nominal message [y, , -7 (upr). Presuming the estimate canonical distribution for
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KU, ,—T;, We get

km+m—1
HUg 1, —T; (Uok) = H MTHUQ,,C(Ua,k)
i—=km
i#£]
_ . . 2
kmﬁn ' ( |Yi — G, exp(jug ) vVE|
= exp | —
No

) /‘LXi—>Ti(0) + (4'32)
&

N . 2
‘yi + U ki €XP(JUg k) V Es‘
exp | — N px;-7: (1)
0

so each i1, v, , (ug,) contributes two terms with peaks at phases 180° apart. The
relative heights of the peaks depend on the bit likelihoods px,,7,. Because the
underlying phase is actually fixed for the whole block, p, , 7, should also have two
peaks roughly 180° apart. A key strength of canonical distributions is that they can

capture this qualitative behavior. The bimodal canonical distribution

1, o1y (o) = a10(ug g — o) + asd(ugp — gk +7) (4.33)

captures the ambiguity in the phase estimate in a simple way. Although the phase
estimate parameter g4 could depend on the destination node 7;, computational cost
motivates us to use only a single estimate for all the messages leaving Uy . Given
the phase estimate iy, the weights a; and as can be computed by sampling the
nominal messages at ug = g and ugr = g + 7. This can be accomplished for all
m outgoing messages in a total of O(m) operations by breaking (4.32) into forward
and backward partial product recursions as described previously for general variable
nodes.

To find the estimate g, we begin by splitting y; into its real and imaginary parts

yr; and yr,; and rewriting the nominal message (4.32) as a sum of products

gty (o) = Y Cy(v) - exp[A;(v) cos(ug) + Bj(v)sin(ugy)]  (4.34)

ve{0,1}m—1
with
9 km+m—1
Aj(v) = N, VEs > (1) iy (4.35)
i=km
1]
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km+m—1

2 i)
Bi(v) = 5 Vs > )Wy (4.36)
T
km+m—1
Ciw) = [ mxion(v@). (4.37)
i=km
i

We would like to use the ug ) that maximizes this message for the phase estimate but
this is too computationally difficult due to the large number of terms. Fortunately,
a small number of the terms usually dominate the message value. Thus, the phase
can be estimated by choosing the term, or equivalently the vector v, whose maximum
over ug, is largest and using that maximizing wuy; as the estimate.

We would like to compute
b; = argmax C; () exp(D; (v)), (4.38)

where

Dj(v) = \/43(v) + B (v),

but for computational reasons will settle for a common estimate for all outgoing

messages. This corresponds to finding
0 =argmaxC _;(v)exp(D_1(v)) (4.39)

where the —1 subscript means that no values are left out of the summations over
¢t for the A, B, C', and D expressions. To approximate ¥, we propose a simple bit
flipping algorithm. Begin with a v that maximizes C'_;(v). For each bit in order,
flip the bit if this increases C_;(v) exp(D_;(v)). Repeat this process until no bit in
v is flipped. At the end of each iteration, we also try the closest vector v’ to —v
for which C_;(v") > 0, accepting it only if it increases the objective function. This
algorithm may not find the global maximum, but it seems to work well enough and
its complexity is still roughly linear in m. To find the shared phase estimate g for

the bimodal CD, we compute the parameters A_;(0) and B_;(v) and take

tgp = Z(A (D) + B_1(0)vV—1). (4.40)
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Figure 4.13: Comparison of canonical distributions for the phase message. ’'o’-
bimodal CD, "+’and dashed-two-term exponential CD, solid-nominal message. These
are for a typical realization of 16 bits, assuming low reliability bit estimates with error
rate 0.1, and F;/Ny = 1 dB. The actual phase is 7/2 = 1.57 so none of the estimates
are particularly good.

[t turns out that there are usually two large terms in (4.34), one corresponding
to © and the other to ¥’ close to —0 as in the v’ step above. The alternate bits ¢’ are
not exactly equal to —v because the first element needs to match the pilot symbol so
C_1(v) is not too small. Using just the two terms corresponding to © and ' for the

canonical distribution gives the two-term exponential CD

u'Uo,k_ﬂvj (ugr) = Cyexp(A; cos(ugr) + Bysin(ug)) +
Cy exp(Ag cos(ugi) + Besin(ugy)) (4.41)

where we compute the A, B, and C parameters from ¢ and 9’ using the equations
(4.35)-(4.37) above. There is a common estimate for the vector v, but the parameters
are all computed individually for the outgoing messages. Figure 4.13 shows the nom-
inal message, the bimodal CD, and the two-term exponential CD for a representative
trial.

Both of these canonical distributions result in realizable updates for the message
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i1 x,. With the bimodal CD,

~ N X 2
|yi — da ki exp(jig ) (1) VE]
K- X; (xz) =a1exp | — N +
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The two-term exponential CD gives a little more complicated result
p-x, (i) = Cilo(Ki () + Colo(Ka(w:)) (4.43)

where I(+) is the modified Bessel function of order 0 and

Ki(x;) = \/[Nloaa,k,i(_l)miy&i + A+ (5l ki(—1)%yr; + Bi?

forl =1,2.
We could also consider more conventional canonical distributions. The estimate

canonical distribution

//L,UG,k‘)Tj(ugzk) = 6(ugr — U ) (4.44)

depends only on the phase estimate g ;. We compute gy ; by finding a common
estimate v for all the outgoing messages as described above and computing phase

estimates individually using
g kg = £(A;(2) + B;(0)vV—1). (4.45)

There are at least two possible approaches to discretization. The quantized CD
uses

L-1

’LLIUB,Ic‘)Tj (u‘g,k) = Z al(s(uﬂ,k - @l) (446)
=0

where the u; values are selected in advance. The a; values are easily computed by

sampling the original message at the values ug; = 4;. The piece-wise constant CD

L—-1
’LLIIJB,IC‘)E (u9,k) = Z alrl(uﬁ,k) (447)
=0
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with r/(z) = 1 if 2nl/L < x < 27(l + 1)/L, and r;(z) = 0 otherwise, preserves more
of the ambiguity in the phase estimate. The a;, parameters could be computed by

integrating the incoming messages jir, v, , and then multiplying them in the usual

way
kmtm—1 2n(l4+1)/L
“ = H / 1Ty U, (o) dugye | - (4.48)
lTJZJm 2rl/L

Although this appears computationally difficult, the integrals of iz, ,y,, can be com-
puted relatively easily using tabulated functions. The resulting receiver is equivalent
to a design proposed by Komninakis and Wesel [36]. This scheme could also be used
to compute the a; parameters for the quantized CD. The message pr,_, x, is straight-
forward to compute with the estimate CD or quantized CD for ug, , 1;- With the
piece-wise constant CD, some approximation to the integrals is needed, but this is
not too difficult.

This channel and its relatives with Markov memory or other time-correlated fading
processes have been widely studied. Differentially encoded phase shift keying (DPSK)
reduces the impact of phase variation by encoding the data in the phase difference
between successive transmitted symbols. If the phase is slowly varying then the
difference between successive symbols will be maintained even though the absolute
phase is unknown. This technique requires that a reference symbol be transmitted
to provide the phase difference for the first symbol, and thus requires an additional
symbol in each hop just as with pilot symbols. Numerous iterative receivers for
DPSK on non-coherent fading channels have been proposed [27,43,44,54]. Most
of them use some variant of multiple-symbol differential detection for the DPSK
modulation combined with a typical SISO decoder for the error-control code. The
DPSK portion is decoded, the results are interleaved and passed to the error-control
code decoder, and this process is iterated. A few researchers have also considered
using pilot symbols for non-coherent channels with time-correlated fading [64,67,72].
These proposed designs rarely include soft estimation of the channel phase process,
as ours do. Incorporating a DPSK inner code in receiver designs based on factor
graphs is straightforward. The same canonical distributions for the channel phase

state suggested above can still be used.
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4.4.2 Simulation Results

Perfect knowledge of the channel phase offset allows us to compensate for it, effec-
tively reducing the channel to the coherent Rayleigh channel discussed in the previous
section. Therefore, we compare our proposed receivers with the simulation results for
the coherent Rayleigh channel with perfect knowledge of the fade level. However,
an important difference between this case and the coherent Rayleigh fading system
is that this system uses pilot symbols to help in acquiring the phase. To show how
the pilot symbols affect the performance, we also include the perfect side information
results when pilot symbols are used. The pilot symbols simply add an energy penalty;
the error probabilities stay exactly the same since there is no advantage to using pilot
symbols if the channel is known. Throughout this section Ej/Ny refers to the average
signal to noise ratio in the Rayleigh fading, which is equal to the SNR when the fade
level is one because of the way we have defined the fade level distribution.

We begin with a comparison of receivers based on the various proposed canonical
distributions at a hop length of 21 symbols, which is approximately the optimum
hop length. Figure 4.14 compares the bit error rate curves for receivers using the
quantized, two-term exponential, bimodal, and estimate canonical distributions. The
perfect CSI performance both with and without pilot symbols is also shown. The
bimodal CD receiver is within about 0.2 dB of the quantized CD, with the two-term
exponential CD receiver falling in between. It makes sense that the two-term expo-
nential CD receiver would do a little better because it includes more of the uncertainty
in the phase distribution. Significantly, the estimate CD receiver does very poorly,
losing more than 1.5 dB relative to the bimodal CD receiver. This indicates that
maintaining soft information, especially for the phase, is very important.

The required SNR as a function of the hop length, shown in Fig. 4.15, is mostly
as expected. The optimum hop length for both the bimodal and quantized canonical
distributions is about 21 symbols. Unlike our previous examples, the gap between
the perfect side information case and the iterative receivers is still about 1 dB for
relatively large hop lengths, even when the loss due to the pilot symbols is accounted
for. This suggests that significant problems estimating the phase still exist even for

a hop length of 57 symbols. The only the reason that the optimum hop length is
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Figure 4.14: Comparison of receivers for the non-coherent Rayleigh fading channel.
"X’ quantized CD, '+’ two-term exponential CD, ’o’ bimodal CD, 'A’ estimate CD,
"0 perfect CSI (dash-dotted includes pilot symbols). This was a block length 2520,
rate 1/2 LDPC code (before pilot symbols) with one pilot symbol per hop on a non-
coherent Rayleigh fading channel with hop length m = 21.
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Figure 4.15: Performance vs. hop length for the non-coherent Rayleigh fading chan-
nel. "x’ quantized CD, ’o’ bimodal CD, '007" perfect CSI (dash-dotted includes pilot

symbols). This was a block length 2520, rate 1/2 (before pilot symbols) LDPC code
with one pilot symbol per hop on a non-coherent Rayleigh fading channel.
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so much less than that is that we need quite a lot of effective diversity in order to
combat the Rayleigh fading of the magnitude. If the fading statistics were less severe
than the Rayleigh distribution, the optimum hop length could be significantly larger.
The quantized CD receiver gains more than 1 dB over the bimodal CD receiver for
small hop lengths which suggests that soft information is especially important in that

case.

4.5 General Discussion

Although these examples have all used LDPC codes, the factor graph technique
readily allows those to be replaced by turbo codes, or nearly any other codes for
which iterative decoding based on their graphical representations works well. Note
however that most codes should use interleaving between the encoder and the channel
in order to prevent related bits from experiencing correlated channel effects, such as
fading. In general, this interleaving does not need to be random, but care must be
taken to spread related bits from different component codes. While our technique can
handle this interleaving without significant modifications, other approaches based on
combining the channel and code trellises, often referred to as super-trellis techniques,
are ineffective when the code is interleaved before the channel.

Note that interleaving was not necessary for LDPC codes because all randomly
interleaved versions of an LDPC code are members of the same class. Typically,
interleaving does not make any systematic difference in the structure of an LDPC
code. Further research might address how to construct LDPC codes that are especially
robust to certain correlated error patterns.

Implementation of these receivers should not be too difficult. Their complexity
is on the same order as that for turbo decoding, which has been successfully imple-
mented even at high data rates. All our algorithms are of roughly linear complexity
in the codeword length and the hop length. Furthermore, unlike turbo decoding,
which typically requires sequential processing for each of the component codes, these
algorithms are highly parallelizable. Within each group, the updates may often be

done simultaneously. For example, all the C' nodes can be updated simultaneously or
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in any order.

The capability of these structures to handle a wide variety of channel and code
scenarios makes this attractive when radios must function in different environments
with different signaling schemes. This is exactly the task faced by software radios.
Factor graph techniques are especially attractive for software radios because they can
represent a variety of channels and codes in a consistent format. The similarity of the
node update operations means that hardware accelerators that could easily be used
for almost all cases should be possible.

We believe that these examples have demonstrated that the technique is extremely
flexible, relatively straightforward, and results in clear, precise descriptions of the
algorithms. As the approach is applied to more complicated scenarios, we expect

that the limitations and capabilities of iterative receivers will become more clear.
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CHAPTER 5

Coding Theory for Channels with Block Memory

In the previous chapters, we have seen that iterative receivers provide the possibil-
ity of approximating optimal joint channel estimation and decoding with manageable
complexity. Given this capability, we would like to find the fundamental performance
limits of joint channel estimation and decoding and determine when it works well.
Because analysis of iterative receivers is extremely difficult, we consider information
theoretic bounds on the performance of optimal maximum likelihood receivers. Exper-
iments show that iterative receivers behave very much like the bounds for reasonably
long block lengths. We will be especially interested in how the trade-off between
channel estimation and effective diversity is reflected in the bounds.

Our principal tool in this chapter will be Gallager’s random coding error exponent

bound [19, Ch. 5], which bounds the probability of a codeword error P, as
P, < ¢ NEA(R) (5.1)

where E,(R) is the channel reliability function which depends on the code rate R and
N is the codeword length. This bound is attractive because it includes the effect of the
codeword length, which is essential to see how effective diversity affects performance.
The channel capacity, a purely asymptotic measure, is not sufficient to capture this
effect because it essentially assumes infinite effective diversity regardless of the hop
length.

Previous research has often considered capacity for channels with block memory.

The capacity for fading channels with and without side information has been exten-
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sively studied [11]. Marzetta and Hochwald [45,46] give an especially nice treatment
of the capacity for the general case of non-coherent Rayleigh fading channels with
block memory and multiple transmit and receive antennas. The mismatch capac-
ity [62,63], which gives the capacity when the channel model used for reception does
not match the actual channel, has been widely used for analyzing systems with incom-
plete side information [39,51]. In these analyses, it is assumed that the channel state
is estimated using some ad hoc technique and that the receiver uses this estimate as
if it is exact. Another approach allows the receiver to use the statistics of the channel
estimate as well as the channel outputs and their statistics [12,50]. These techniques
effectively assume that the channel estimator can use the channel memory, but the
decoder cannot. Furthermore, they consider only the capacity and therefore provide
no information about the trade-off between effective diversity and channel estima-
tion. Our approach also allows us to bypass the issue of channel estimator design by
assuming optimal processing using the joint channel transition probability.

Some work has considered the reliability function for the Rayleigh fading chan-
nel [1-3,33]. The emphasis tends to be on techniques for calculating the error ex-
ponent in the continuous input, continuous output case rather than the effect of
channel memory. The concept of diversity in channels with memory has been consid-
ered in [66]. Error exponent bounds on channel state estimation performance with
joint channel estimation and decoding have also been studied [28,29]. Our simula-
tion results show that good decoding performance is possible even when the channel
estimation is relatively poor, so these results are not particularly helpful for our work.

We consider channels with block memory, which, as described above, are especially
well suited to modeling frequency-hopping spread spectrum communication systems.
These channels can be thought of as memoryless super-channels with vector inputs
and outputs of length m. Channel behavior is completely specified by the transition
probability density function p(y|z) for the super-channel, which depends on the spe-
cific details of the channel model. For the channels of interest, the correlation within
each block is captured by the channel state u € U so that

m—1

p(ylz) = / p(u) [T ol u) du, (5.2)

U =0
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and thus the channel outputs are conditionally independent and identically dis-
tributed given the inputs and the channel state. The channel state is unknown to
the receiver except through its observation of the channel outputs y. Because the
error exponent bound is difficult to manipulate or even compute in general for hop
lengths larger than two or three, we will often consider simplified channel models that
capture the important effects in more realistic scenarios.

The chapter begins with derivations of the bounds for discrete input and output
alphabets. We then prove some properties predicted during our previous discussions
about the trade-off between effective diversity and channel estimation. The second
part of the chapter presents numerical results and specific characteristics for some

simple, but relevant, examples.

5.1 General Bounds and Properties

The random coding error exponent is described in general in [19, Ch. 5]. Briefly,
consider a discrete-time channel with arbitrary finite input and output alphabets X’
and Y respectively. Select a code C of rate R bits per channel use by drawing e#Vn2
vectors of length N from X" according to the probability density

N-1

p(z) =[] Q=) (5.3)

=0
where Q)(-) is the channel input probability mass function. Let P,(C) be the codeword
error probability, assuming equally likely messages, if code C is used. An exponential
bound on the average codeword error probability P. = E{P,(C)} for this case is given
by

Pe S e—NEr(R)

E,(R) = max max Ey(p,Q) — pRIn2

0<p<l Q . (5.4)
Ey(p, Q) =~-In)_ (Z Q(z) p(yla) ™ dx)
yeY \zeX

where Q stands for the particular channel input probability mass function. Some code

must perform as well as the average over all codes, so there exists a code that achieves
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the bound. The bound extends directly to continuous input and output alphabets,
except that in this case the input distribution must meet some further constraint to
eliminate the unrealistic possibility of transmitting at infinite power to overwhelm
the channel noise.

We can derive the error exponent for channels with block memory by considering
a super-channel where each block of m symbols from the original channel forms a
single input. This super-channel is a memoryless channel with input alphabet A,
output alphabet ™, and transition probabilities p(y|z). Applying the bound to the
super-channel, but letting the parameters continue to refer to the original channel,

gives

P, < e*%E’T(R)

!
E/(R) = [nax mng 0(p, Q) — pRmIn2 6.5

1+p
EpQ=-mY | Y Q@ byl

yeY™ \zexm

which is equivalent to the usual formulation (5.4) if we slightly modify the Gallager

function
14p
1
E = —— 1 .
o(p,Qm) = ——In 3" | 3 Qo) p(yla) ™ (5.6)
yeY™ \zexm
to get
E.(R,m) = orgggxl rn(gx Eos(p,Q,m) — pRIn 2. (5.7)
Including the channel state gives
1 14p

m—1 I+p

Ea(p.Qm) =~ - |30 Q@) | [ o) [] k) - (58)
EA = u

=0

The reliability function E,.(R) has some well-known general properties [19, Ch.
5]. These all apply to E,.(R, m) with fixed m because they hold for the memoryless
super-channel that we used to derive E,.(R,m). The reliability function E,(R,m) is
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E(R,m)

Figure 5.1: Sketch of E,(R, m) vs. R for fixed m. Solid lines—E, (R, m), dashed lines—
Eo(p, Q,m) for several values of p. Note that E,(R,m) =0 for R > C,,.

convex U and decreasing with respect to R. Let C,, be the channel capacity in bits

per symbol for a channel with memory length m

Cm = max i[(Xm;zm) (5.9)

m

where I(X, ;Y ) is the mutual information between the inputs X, and outputs Y,

Z Z (y|2)Q(z) log, IE%?LQ)) (5.10)

YyeY™ zeX™

where X, and Y, are vectors of length m. Then the reliability function E, (R, m) > 0
if and only if R < C},, otherwise E,(R,m) = 0. We can interpret E,(R, m) for fixed
m as the upper envelope of a collection of lines with slopes —p and R = 0 intercepts

maxq Ey(p, Q, m) as shown in Fig. 5.1.

5.1.1 Channel Classes

In order to design communication systems, we would like to choose the best chan-
nel memory for joint channel estimation and decoding. This is particularly feasible
in frequency-hopping spread spectrum systems where we can select the hop length.
We begin with the idea that a hop length m* is optimal for a particular set of fixed
channel parameters, such as signal-to-noise ratio (SNR), and communication rate R,
if E.(R,m*) > E.(R,m) for all m. This implies that under these conditions, hop
length m* gives the smallest codeword error probability bound. We propose to clas-

sify channels according to how their optimal hop lengths depend on R. If hop length
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Figure 5.2: Example diversity dominated channel. In state 0, outputs 1 and 2 are
possible and the cross-over probability is py. In state 1, outputs 0 and 3 are possible
and the cross-over probability is p;.

m* = 1 is optimal regardless of R, then we say that the channel is diversity dom-
inated. These channels are not of much interest here because the bound suggests
that at most minor performance improvements are possible by using channel mem-
ory with joint estimation and decoding. If hop length m* = N, the largest possible
hop length, is optimal, then we say that the channel is estimation dominated. So-
phisticated joint channel estimation and decoding techniques may provide significant
performance gains for these channels. We will show that most channels are neither
diversity dominated nor estimation dominated, and in these cases, the optimum hop
length depends on the code rate.

First, we provide an example of each class of channel. We first consider a two-state
channel with two inputs, and four outputs, which is shown in Fig. 5.2. The channel
states have probabilities Py and P;. Two of the outputs are possible in state 0 and
two are possible in state 1. Because the channel state can be perfectly estimated from
a single channel output, there is no estimation advantage to using long hops. On the
contrary, longer hops increase the probability that the channel with the higher error
probability will occur more than would be expected. Thus, the channel is diversity
dominated.

Consider a channel with two equally likely states. In state 0, it is a binary symmet-
ric channel with cross-over probability p; in state 1, it is a binary symmetric channel
with cross-over probability 1 — p. Clearly, if we have a good estimate of the channel
state, the block length does not matter since we can simply flip our observations when

necessary and recover a channel with uniform error probability min(p,1 — p), inde-
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pendent of the hop length. For hop length 1, this channel (without side information)
is useless since both outputs have equal probability irrespective of the inputs. Longer
hop lengths allow better estimation of the channel state so this channel is estimation
dominated.

Finally, suppose that given the state, the channel is a binary symmetric channel
with cross-over probability p, which depends on the channel state and that p, < %
for all u. Because the cross-over probability depends on u and p, # 1 — p,, smaller
hop lengths improve performance by increasing the effective diversity. On the other
hand, knowledge of the state gives better reliability information for the bits which
also improves performance. Thus, the described trade-off of channel estimation vs. ef-
fective diversity applies and the channel is neither diversity dominated nor estimation

dominated.

5.1.2 Properties of the Reliability Function

We begin by showing that for most channels of interest, the optimal input dis-
tribution Q is uniform. Recall that the transition matrix for a discrete, memoryless
channel contains as its elements the transition probabilities p(y|z) from the input
associated with each row, to the output associated with each column. Our channel
models have transition probabilities that depend on the channel state u. These chan-
nels are completely specified by the transition probabilities p(y|z,u) conditioned on
the state. Thus, we think of the transition matrix as containing functions of w. This

leads to the following generalization of the usual definition for a symmetric channel.

Definition 5.1 A discrete memoryless channel with state u and transition probabil-
ities p(y|x,u) is symmetric if the columns of its transition probability matriz can be
partitioned so that the rows of each partition are permutations of each other and the

columns of each partition are permutations of each other.

Note that because the elements of the transition matrix are functions of u, the same

permutation must hold for all u. We begin with the following lemma.
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Lemma 5.1 Ifthe channel p(y|z, u) is symmetric, then the memoryless super-channel

m—1
p(ylz, u) = H p(vilzi, u) (5.11)
i=0
1S symmetric.
Proof: Since p(y|z,u) is symmetric, there exists a partition Vi,..., YV, of Y,

which by definition has |J;V; = Y and Y, NY; = 0 for all i # j, such that for any
v,y € Vi

{p(ylz,u) : x € X} ={p(¥|z,u) : x € X} (5.12)
and for any x, 2’ € X
{p(ylz,u) 1y € Vi} = {p(ylz',u) 1 y € Y;}. (5.13)

Now consider the super-channel with output set Y™ and take the partition Vi, . .., Yym
formed by taking products of the partitions of the elements so that Y; = Yie X Vi, X
- X Y;,, for some indices 7, i1, ..., %,—1 between 1 and n. From this construction,

it is clear that for any y,y’ € Y

m—1 m—1
{H p(yilxi,u) 1z € )C'm} = {H p(yi|zi,u) : z € Xm} (5.14)
i=0 '
and for any z,2' € X™

{prz|xza yeyz}:{ﬁp(yi|x;7u):g€yi}‘ (5.15)

where the elements of the sets are still functions of u. Thus, p(y|z, u) is symmetric.

Theorem 5.1 If the channel with state p(y|z,u) is symmetric, then the mazimizing

distribution Q for Ey(p, Q,m) is uniform over X™.

Proof: Suppose

m—1
p(ylz,u) = [ p(wilzi,w), (5.16)
=0
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and note that by Lemma 5.1 above, the channel p(y|z,u) is symmetric. Then, the

channel

p(ylz) = /Mp(U) p(ylz, u) du, (5.17)

has the property that for the partition Vi,
{p(ylz) :z € X"} = {pyx) :z € X"} ; y,y €V (5.18)

and

{pylz) :ye Vit ={plyle) 1y eV} ; z,2 €x™ (5.19)

It is well-known that the optimal input distribution with respect to both the error
exponent and the capacity is uniform for channels with the above symmetry property.
We include the details here for completeness. By Gallager’s Theorem 5.6.5 [19], Q is
a maximizing distribution for Ey(p, Q, m) if, and only if,

T+ > e g e AT 5.20
p(ylz) ™ 0y (Q)” = >  y(Q) ; Vz € (5.20)
yeym yeym

with equality for all z such that Q(z) > 0 where

yeym™ yey™
1 \* 1 [ / L-I '
E] dopyln) | Y plyl) | =
yeym™ [x'@’\’m J
1\ ) e
<m p(ylaz’) e
yeym [z'exm
- 9P 1+ﬂ
1 m 1 1
> p(lz) ™ X | Y pyle) | = p(ylz')™
yeym™ _g’e/’\’m i yeYym™ | z'exm
m—1 i 1° m—1 +e
1 1
p(ylz) e [X™] plyle) e | =" p(ylz') T+
i=0 yey; _I’EXm i =0 ge)}l z'exm
(5.21)
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for all . Now, let Y, be any element of );. By the symmetry of the channel, for any
ye Vi

{Z P(yfv')llf’} = {Z p(yix')llﬂ} (5.22)

Q’GXW Q,Exm’

which means that we only need to show that

5| 5 o | a5 o S |
i=0 \ﬁ’e/\m J yeYi =0 ye); [g’eé\’m J

for any x. Now, for any z, 2’ € X'™,

> plylz) ™ =) plylz') . (5.24)
QE)}i yeY;
Therefore
1 1
XY plyle) ™ = > > plylz) (5.25)
% ZEX™ 4T,

Interchanging the order of the summations and substituting, we find

mz{z (1,12 } 27 plgla) e =

1=0 z'exm™ ge)/z
m—1 r
SN Y pwla)e | | D plyla) e | (5.26)
i=0 QE)}Z rexm z'exm
which satisfies (5.23) to complete the proof. |

Note that the theorem holds independent of p so this distribution is the capacity
achieving distribution as well.
Channels with block memory have an important property which is summarized in

the following lemma.

Lemma 5.2 Consider a block memory channel with any hop length m. Let

X9=1x, X; ... Xooy Xt oo X
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andY =Yy, Y7 ... Y,_1|, then
H(Xi|X().Y,,) = H(X;| X)), Y,,) (5.27)
for anyi,j € {0,1,...,m— 1}.

Proof: The proof is based on symmetry in the channel model.

HXGIXQ, Y, == > > > plaiagal? y)logyp(ailzs, 209, y)

T;€X 2;€EX xgril,j)exm—Q yeym

(5.28)
m—1
YD Z/ﬁpwnp(yimu)du-
TiEX BIEX (i) ¢ ym—2 yeY™ YU i=0
(5.29)

~1
Ju ﬁ p(u) [Ti%y p(yilzs, u) du
1
2y Zzg-eX 2 yeym Ju ﬁ p(u) IT%, p(yilef, ) du

=->. > X Z/Mﬁpw)ﬂp(wlxuwdu'

T;€X “"J‘e“"xﬁ,i’j)e)(m” yeym

log,

(5.30)
log Sy e p(@) T (il w) du
2 p—
2ol em-2 Duglex Duyeym Ju W p(u) Ty Py}, v) du
= H(X;|X$),Y,,) (5.31)
|

Conventional wisdom is that memory increases the channel capacity. We make

this concrete with the following theorem

Theorem 5.2 For a symmetric channel with block memory, the capacity of the asso-
ciated block memory channel is either increasing in the hop length m or independent

of m.

Proof: We need to show that either C',.; > C,, for all m, or C,,,; = C,, for all

m. Consider the following sequence of equivalent statements where if one holds with
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equality, all hold with equality,

1 1
m 1I(Km+1;zm+1) > RT(Xm;Xm) (5.33)
1
m

H(X ) = HX V) 2 (4 H(X,) — (14 H(X,IY,)  (5.39)

Since the optimal channel inputs for a symmetric channel are equally likely by the

lemma above,

H(X,,..) = (m+1)log|X|

— H(X,,) + H(X) (5.36)
1
=(1+—)H(X,).
(1+)H(X,)
Using the chain rule for entropy, we find
H(XWH»I |Xm+1) = H(Xm+1 |1m7 Ym+17 Xm) + H(£m|Ym+17 Xm) (537)

Using the fact that conditioning decreases entropy, we get
H(Km—l—l |Xm+1) S H(Xm+1 |Xm7 Ym+17 Xm) + H(£m|£m) (538)

By another application of the chain rule for entropy,

m—1

1
—H (X, |Y0) = — D H(Xi|Xip, X, Xo, X). (5.39)

m -
=0

and conditioning on all of the X values except X, instead of just the first ¢ of them

-1

3

1 )
=0

Combining (5.35) and (5.36), it is sufficient to show that
1
H(Xp 1 [Yonir) < (L ) H(X, |Y), (5.41)

which, using (5.38), and (5.40), reduces to

H( X1 X, Vg1, Yop) < H(Xi|X(i)7Zm)‘ (5.42)

1
m
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Using Lemma 5.2,

1
m m <= (5.43)
= H(X,|X9,Y,,)
Applying Lemma 5.2 again,
H(X 1| X s Vi1, Yo) = H(Xo| X1, X0 Vii1, Y0, (5.44)
and
H(Xo| X1, X0 V00, Y,) < HX| X9 Y,) (5.45)

which, combined with (5.43), proves (5.42). Since all of the inequalities either hold
with equality or do not, independent of m, this completes the proof. [ |

For most interesting channels, the capacity is increasing in m from the above
theorem. One of our core results is that this implies that, for high enough rates, a

large block length is optimal.

Theorem 5.3 For a channel with C,, increasing in m, there is a sequence of rates

R, with R; < C} such that the optimal hop length m* > | when R > R;.

Proof: Using the properties of the reliability function, E,.(R,l) = 0 for R > C,
and E,.(R,m) > 0 for R < C,,. This implies that for any m > [ and C; < R < Cp,,
E.(R,m) > E,(R,l). Therefore, there must be some rate R, < C; such that for
R > R; the optimal hop length m* > [. [ |

A graphical representation of this theorem is shown in Fig. 5.3. This means that if
(), is increasing, the channel is not diversity dominated. Note also that the theorem
only provides a lower bound on the optimal hop length. There is no guarantee that
any particular hop length is ever optimal although typically there is a series of rates
R} such that R ; < R < R; implies that the optimal hop length m* equals [. At this
point, all we can say is that, if this is true, R < (j. Clearly, estimation dominated
channels do not have this property.

The effects of channel estimation can be eliminated by providing the receiver with

a perfect observation of the channel state. As in our receiver performance results,
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Figure 5.3: Sketch illustrating Theorem 5.3.

many interesting observations will come from comparing the bounds for the channel
with perfect channel state information (CSI) to the channel with no side information.
We will mark functions for the channel with perfect side information with a bar. To
find the Gallager function when the receiver has a perfect observation of the channel
state, we augment the channel output with a copy of the channel state

14p

Ey(p, Q,m) = —%m/ S I Y 0wty uly)™ du. (5.46)

Using the fact that the channel state v and the channel input x are independent,

p(y, ulz) = p(ylz, u) p(u). (5.47)
Substituting, we get
_1 N\ Ll+p
B 1 m—1 1+p
Eo(p,Q,m) = ——ln/p(u) Z Z Q(z) [H p(yi|x,~,u)] du. (5.48)
m U YyeEY™ \zEAX™ =0

E,.(R,m) is easily obtained by inserting Fy(p, Q, m) in (5.4).
The properties of the reliability function also apply to the reliability function with
channel state information. For R < C,,,, E.(R,m) > 0, and for R > C,,, E.(R,m) =0

where C,, is the capacity with side-information

1
Cpp =max —I(X, ;Y U) (5.49)
Q m
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and

10,000 = [ 305 bl (e o, L2 g,

U yeym gexm 2 )

Even with side-information, the optimal input distribution is uniform. In fact,
although we do not prove it here, a less strict definition of symmetry for channels

with state is sufficient.

Theorem 5.4 For a symmetric channel p(y|z,u), the input distribution Q that maz-

imizes Ey(p, Q, m) is uniform over X™.

Proof: Consider the channel p(y|z,u). Since for any fixed u, the channel is
symmetric, the integrand in (5.48) is minimized when Q is uniform, regardless of u.
Therefore, the uniform input distribution minimizes the integral, which maximizes
the function Ey(p, Q, m). [ |

Now, we would like to prove a few theorems about the capacity and error exponent
with side information and their relationship to the error exponent for joint channel
estimation and decoding. These are generally intuitively clear, but it is useful to
show that the bounds behave according to our expectations. If we are given the
channel state, then there is no need to have longer block lengths to improve channel
estimation. Also, we know that the capacity does not depend on the effective diversity.
Thus, we expect that the capacity with side information is independent of the hop

length.

Theorem 5.5 For symmetric channels, the capacity with side information C,, is

independent of the hop length.

Proof: We show that C,, = C,. The capacity achieving input distribution is
Q) =
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H(X|Y,U) = /Z > p(

yeY™ zeX™

1 m—1
i=0
ﬁnz 0 p( |x7«7 )

log, du

D wexm \X\m Hz o Dyile},u)

7 P(ilwi, )
[ I3
yz|1‘za 10g du
/ yez)i:mx;:m zl_g |X| : H % (yils, u)
S 7 P(ilwi, )
[X] iU
T yz|xz; 10g du
/ yezy:mx;v:mg X Z P e i Pl u)
(S mp(yz‘|xuu)
== [ 0 323 el o T d
i=0 “ yeY wEX X Zl"ieX mp(yi|$i’“)
=-—mH(X|Y,U).
(5.50)
Then,
= 1
Cn = —(HX) -HX|)Y,U
max —(H(X) — H(X|Y, U))
1l |xX|™ 1H(X|Y U)
= — 10 —_
m e m T (5.51)
= log, [X] — H(X[Y,U)
=C,
|

This theorem was also proved in [48] and in a different context in [70]. It is also
known that C,, < C [48]. If we know the channel, then longer hop lengths can
only decrease the effective diversity. Thus, the error exponent with side information
is either decreasing in the hop length or independent of the memory. This is also

supported by analysis.

Theorem 5.6 For symmetric channels, the reliability function with side information

E,(R,m) is either decreasing in m or independent of m.
Proof: We begin by showing that
EO(paQam) > E'O(paQam+ ]-) (552)
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for all p where equality for any m implies equality for all m. Since the channel is

symmetric, the optimizing input distribution is uniform and

1+p
_ 1 1 1
Ey(p,Q,m) = ——ln/p(U) Y W(p(g@, w)) i+ du.  (5.53)
m u yeym™ \zexm
Now consider the sums
1+p el 1+p
1 1 1 1

o> W(D(QILU))W = ﬁ(p(yilxi,U))”f’
YyeY™ \zeaxm yeym \zeam™ i=0

( ( THm@um»%>
yeY \z€eX
(5.54)

Let

gw) =Y (Z ﬁ(p(ymu))lip) , (5.55)

yeY \zeX

then

Ememnz—%m/QwMAMWdu (5.56)

So the claim (5.52) is equivalent to

Ly / p(u)(g(u))"™ du > ———n / p(w)(g(w)™ du  (557)

U nl+_ U
/ p(u)(g(u)™ du | < / (1) (g(u)™" du (5.58)

This is a well-known fact about norms in function spaces, which we prove as follows.

The function f(z) = z" is convex U so

i / p(u)(g(u))™ du | < / p(u) £ ((g(u)™) du (5.59)
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by Jensen’s inequality. Simplifying,

[pis@yman) < [ o) d (5.0
[patyman) < { [pigy (5.61)

with equality for all m if and only if g(u) is independent of u. This proves the claim

(5.52) for all p, so
Eo(p,Q,m) — pRIn2 > Ey(p,Q,m + 1) — pRIn 2. (5.62)

Now suppose that p* maximizes Fy(p, Q,m + 1) — pRIn 2, which gives

E.(R,m+1)=Ey(p*,Q,m+1) — p*RIn2 <
Eo(p*,Q,m) — p*RIn2 < ax Eo(p,Q,m) — pRIn2 = E,.(R,m) (5.63)
<p<

where again, if equality holds for any m, then g(u) is independent of u and equality
holds for all m. u
Before we prove the next theorem, we need the following lemma [25, p. 31], which

is a variant of Minkowski’s inequality,

Lemma 5.3 Foraq,as,...,a, and by, by, ..., b, non-negative numbers and 0 < p <1
1 1 1
n P n P n D
(Z(ak + bk)p> > (Z a§> + (Z bﬁ) (5.64)
k=1 k=1 k=1
with equality if ay,as,...,a, and by, bs, ..., b, are proportional or p = 1.

We expect that the performance with perfect knowledge of the channel state should
always be at least as good as the performance without channel state information.
Intuitively, we could just throw away the channel state information and return to the

no channel state information case. This is supported by the following theorem.

Theorem 5.7 For any symmetric channel p(y|z,u) and all m,

E,(R,m) < E.(R,m). (5.65)
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Proof: We prove that

EO(paQam) < EO(paQam) (566)

for any p from which we can conclude, as in the previous theorem, that F,(R, m) <
E,.(R,m).
Let

1+p

fo=1{> P (5.67)

TEX™

where p, is a vector indexed by 2 and may depend on y and u. Then the claim (5.66)

is equivalent to

o Y s (BA) €~ 3 e B W) (569)

yeym™ yeym™

and thus, we need only show that

f(Efp}) =2 ELf(p)} (5.69)

for all y. The result follows immediately from Jensen’s inequality provided that f(p)
is convex N which we now show. Let A\; and Ay be two non-negative vectors and let

0 <0 <1. Then

1+p
FOMA+ A =0)X) = | > (Ohig+ (1—0)Aoy )T+ (5.70)
reX™
1+p 1+p
> S )™ |+ Y (-0 (5.71)
zex™ zexm
1+p 1+p
>0 > MY 0= ) Ny (5.72)
zexm zexm
where we use the inequality from Lemma 5.3. Thus, f(p) is convex N. |

5.1.3 An Alternate Approach to the Optimal Hop Length

For typical parameters, the rate R; above which some hop length greater than 1

is optimal is quite close to C, the capacity with side information, which is an upper
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bound on the capacity without side information for any m. Therefore, the range of
rates where hop lengths larger than 1 are interesting appears to be quite small. This
motivates us to consider an alternate approach to optimality. Often, we would like
to minimize the average signal-to-noise ratio or similar parameter, given a codeword
length specified by the tolerable delay, a desired signaling rate, and a target codeword
error rate. Together the codeword length N and error rate P, fix the required error

exponent, E,. Precisely,
- In P,
E, =— . 5.73
= (573)

In this case, we need the hop length m that minimizes the SNR required to achieve

that error exponent for the given rate R. If we plot the reliability function for fixed R
and various values of m versus the channel signal to noise ratio, the desired optimal
hop length can be determined from the upper envelope of the curves and depends
on the combination of the target error probability bound and the codeword length.
For reasonably large codeword lengths, this often leads to hop lengths significantly
greater than 1. Intuitively, this makes sense because, for larger codeword lengths, we
expect to operate quite close to the capacity and larger hop lengths should improve

performance in that region.

5.2 Approaches for Wireless Channels

We would like to apply reliability function techniques to analyzing more realis-
tic wireless channel models. As for iterative receiver design, fading and jamming
channels encountered in frequency-hopping spread spectrum are of particular interest
because the channel memory is well-defined and is at least somewhat under our con-
trol. Typically, these channels allow continuous inputs, usually with an average or
peak power constraint, and produce continuous, sometimes complex-valued, outputs.
Unfortunately, for hop lengths more than 1 or 2 symbols, computing the error expo-
nent for these channels leads to high dimensional integrals which are computationally
infeasible. To obtain results, we consider simple models which exhibit characteristics
similar to the channels of interest. By considering binary-input, binary-output mod-

els with various state dependencies, we can obtain much simpler expressions for the
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error exponent which have computational complexity linear in the hop length.
We begin by specializing our general expression for the Gallager function (5.8), to
the binary-input, binary-output case

1 1+p
m—1 1+p

1
Eo(p,Q,m) =~ In > /p p(Yilzi, u)
u

ye{0,1}m :1:6{0 l}m i=0

(5.74)

Now let d or d(z,y) be the number of places where x and y differ (the Hamming
distance) and p, be the channel transition probability associated with state u. Sub-

stituting, we find

1y L+p
= 1 e |
E()(P,Q,m) = —Eln Z _m /p m d(g,g)pu z,y du
ye{o,1}m :1:6{0 1}m 7
(5.75)

where we have used the fact that the optimum input distribution Q is uniform. Since
the inner set of parentheses only depends on d(z, g), we can fix some particular y and
then take the sum over z. Since all possible binary vectors of length m are included

in the sum over z, it does not matter what vector y is chosen. This gives

1 1+p

T+

! m=m m—d(z d(z,
Ey(p.Qum) = w2700 | 57 )1 = o=

ze{0,1}™ | i

(5.76)

for any fixed y. There are (’Z) binary vectors at distance d from any fixed vector, so

we can change the sum over x into a sum over the distance

1 1+p

Eo(p,Q,m) = —%m i <T§) {/p(U)(lpu)m “piy dU} " + pln2.

d=0

(5.77)
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Similarly, for the channel with perfect side information, we have

Eo(p.Qum) =~ [ pla) (i(i}) [(1—pu>“p;i]¢p>l+p du + pln2.

U d=0

(5.78)

5.2.1 Coherent Jamming and Fading Channels

We start with the two-state jamming channel discussed in section 4.1 above. Be-
cause it is too difficult to compute the reliability function for the continuous output
case, we consider the related binary-output or hard decision channel. The chan-
nel still has two states corresponding to jammed and unjammed hops and occurring
with probabilities p; and (1 — p;) respectively. In the jammed state, the cross-over
probability is

2F
Peb = Q ( m) (5.79)

where )(-) is the complementary cumulative distribution function of a standard nor-

mal random variable. In the unjammed state, the cross-over probability is

Peg = Q (\/ 2]5[%) . (580)

These cross-over probabilities correspond to coherent reception of BPSK on additive

noise channels with the noise variances for their respective channel states.

Using these probabilities in the Gallager function expression gives

m 1+P
1 m ) i
——In (Z <d> (1= ps) - (1= peg)™ gy + ps - (1= pet)™ "Dy +f’> +pln2.
(5.81)

This is computationally tractable, allowing us to calculate the reliability function by
numerically optimizing the free parameter p. Figure 5.4a shows the error exponent
as a function of the rate for several values of the hop length m. In this figure, we

have fixed Ey/N;, and not E,/Ny, in order to show the classic shape of the curves.
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Figure 5.4: Reliability function E, (R, m) vs. rate R for the two-state jamming chan-
nel. (b) expands the boxed portion of (a). The hop lengths for the curves, in order
down the ordinates, are 1, 2, 5, 10, and 20 as labeled. The channel parameters are
E,/N, =7 dB, E,/N; = —1.5 dB, p; = 0.4.

For p; = 0.75 and E,;/Ny = 10 dB, the capacity with CSI C is 0.682 bits/channel use
and R, the rate at which hop lengths longer than 1 become optimal, is about 0.43
bits/channel use. The interesting region is expanded in Fig. 5.4b. Note that there
is quite a large region (about 0.51 to 0.68 bits/channel use) where hop lengths of at
least 20 are optimal. However, in this region, the reliability function is small, so very
long codeword lengths would be needed to achieve reasonable block error rates.

If we consider the alternate definition of optimality based on the error exponent
as a function of the channel parameters, we can get an idea of what kind of gains
might be achieved by choosing the hop length carefully. Here we fix the channel
signal to noise ratio E,/Ny and consider how the reliability function depends on the
signal-to-jamming power ratio E,/N;. This is a measure of how robust the system
would be to interference. For a target block error rate bound of 1073 and a block
length of 2520, we find that the error exponent target E, = 0.0027. Figure 5.5 shows
the curves for several hop lengths. The horizontal line corresponds to E,. Thus, for
the target error rate and block length, the optimal hop length is the one whose curve
crosses the Er line furthest to the left. From the picture it is clear that if E, were
smaller, perhaps because of a larger codeword length, the optimal hop length would

be larger and the gain over hop length m = 1 would also increase. Note that because
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Figure 5.5: Reliability function E,(R,m) vs. SINR E,/N; for two-state jamming
channels. The curves are labeled on the right with their hop lengths. This data has
fixed SNR E,/Ny = 12 dB, and p; = 0.4. The horizontal line is the target error
exponent for block length 2520 and error probability 1073.

the bound may be off by some constant factor, the exact numbers are less important
than the general behavior.

We can obtain a plot of required E,/N; vs. hop length similar to the ones in
Chapter 4 by extracting the intersections between the E, (R, m) curves and the target
error exponent. This produces the curve shown in Fig. 5.6. Although it shows the
same general trends, this curve is not directly comparable to the ones in Chapter 4
because it is for a hard decision decoder and the decoders described previously use
continuous (soft) channel outputs.

The bounding technique seems to provide useful results for LDPC codes operating
on these hard decision channels. Although the predicted SJINR values are not very
close, the relative performance of receivers with different hop lengths is predicted
quite well. Figure 5.7 shows performance bounds and LDPC code simulation results
for a block length 2048, rate 1/2 code on the two-state jamming channel. As the
bounds predict, hop length m = 8 gives the least required SJNR for block error
probability 1073, For m = 64, the iterative receiver performs almost as well as the

iterative decoder with perfect CSI, just as the bounds suggest. The gaps between the
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Figure 5.6: Required Ej,/N; for block error rate 102 vs. hop length for the two-state
jamming channel. ’o’ joint estimation and decoding, '[1" perfect CSI. This is for fixed
SNR E},/Ny = 12 dB, and p; = 0.4.

perfect CSI and joint estimation and decoding curves are larger for the bounds, and
the LDPC codes without CSI loose about 2.2 dB relative to the bounds for short hop
lengths and less for longer hop lengths. We expect that better code constructions
than the simple regular LDPC codes that we have used would come substantially
closer to the error-exponent bounds.

A key application of these bounds is exploring the parameter space for a class
of channels. A classic problem of this type is determining optimum strategies for
jammers, transmitters, and receivers in frequency-hopping spread spectrum commu-
nication systems. As described previously, we can model these systems as two-state
channels with block memory. Here we will be concerned with the jammer’s selection
of the partial-band jamming fraction p; and the communicators’ selection of the hop
length m. The objective function or payoff, which the communicator would like to
minimize and the jammer maximize, is the communicator’s transmitted energy per
bit to achieve its desired probability of block error. We assume that the background
noise power is fixed, the channel attenuation is fixed, and the jammer has chosen what
equivalent full band power spectral density N;/2 it will use. The objective function

is plotted as a function of the two game parameters in Fig. 5.8. Figure 5.9 shows
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block error bound
block error rate

Figure 5.7: Performance from bounds and simulation for the two-state jamming chan-
nel. ’o>m =1, 'x’ m =8, '’ m = 64. solid—joint channel estimation and decoding,
dash-dotted—perfect CSI. (a) bounds from the error exponent, (b) simulation results
for a LDPC code. This was for block length 2048 codes with SNR, E,/Ny = 10 dB

and p;y = 0.4.

the same data as several required Fj vs. hop length m curves for different jamming
fractions.

The communicator must choose m so that no matter what the jammer’s choice
of ps, Ey will be as small as possible. Looking at the surface plot (Fig. 5.8), we see
that the communicator should choose m = 1 since this is the optimum hop length
if the jammer chooses p; =~ 1 to maximize the communicator’s potential required
Ey. Presumably, the jammer will choose p; =~ 1 because this gives the worst possible
performance for the communicator. However, it might be difficult for the jammer to
generate a signal that covers the entire hopping bandwidth with sufficient power and
therefore the jammer might settle for a smaller jamming fraction. Since using a hop
length of about 12 gives very little loss for the large jamming fractions, and has the
potential to gain 14 dB or more if the jamming fraction is smaller, we might choose
to use a hop length of 12 symbols.

We can also apply the bounding technique to Rayleigh fading channels, such as the
coherent Rayleigh fading channel described in section 4.3 except with binary outputs.

The channel state is the fade level which can be any non-negative real number. The

94



204

Required Eb for block error rate 107

hop length m

0.5

30 40 0 jamming fraction P,

Figure 5.8: Objective function for partial-band jamming game, required transmitter
energy Fj vs. jamming fraction p; and hop length m. The required E, is given in
dB relative to the background noise power spectral density. The jammer’s equivalent
full-band power spectral density is N;/2 = 25 dB relative to the background noise.
This data is from the random coding bound with block length 2520 and rate 1/2.
Contours of the surface are drawn on the p;-m plane.
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Figure 5.9: Required bit energy Fj vs. hop length for the two-state jamming channel.
The required Fj is given in dB relative to the background noise power spectral density.
The curves are for increasing p; starting at the bottom. The jammer’s equivalent full-
band power spectral density is N;/2 = 25 dB relative to the background noise.
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Figure 5.10: Reliability function E,.(R,m) vs. average SNR E} /Ny for the coherent
Rayleigh fading channel. The hop lengths are labeled on the right side. The horizontal
line is the target error exponent for block length 5040 and error probability 1073,

level is Rayleigh distributed

2

p(u) = 2ue (5.82)

and the channel cross-over probability p, is a function of the fade level

2u2E
Pu = @ ( N, ) . (5.83)

Substituting this in (5.77), and computing the integrals numerically, it is possible

to approximate E,.(R,m). Fig. 5.10 shows the reliability function plotted against
the average signal to noise ratio Ej/N, for several hop lengths. As in the previous
cases, this can be converted into a plot of required average SNR vs. hop length (see
Fig. 5.11). Compared to the coherent Rayleigh fading simulations in Chapter 4, the
gap between perfect side information and estimation is larger for the binary output
bounds. The optimal hop length, about 10 symbols, is also slightly larger for the
binary output bounds, although the performance does not depend very much on hop
length for these SNR’s. Both of these effects are well-explained by the fact that the
hard channel outputs provide less information about the fading than the soft outputs

considered in Chapter 4.
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Figure 5.11: Required average SNR, Ej /Ny vs. hop length for the coherent Rayleigh
fading channel. ’o’ joint estimation and decoding, '[1" perfect CSI. This assumes a
block length 5040, rate 1/2 code.

5.2.2 Non-Coherent Fading Channels

Non-coherent channels, where the receiver does not know the phase of the complex
fading factor, pose a difficult problem for joint estimation and decoding because no
bit estimates can be formed without either an estimate of the phase offset or some
knowledge about the structure of the codewords. The flip channel, used above as an
example of an estimation dominated channel, was designed as a very rough model for
a binary-input, binary-output non-coherent channel with block memory. It has two
equally likely states. In one state, it flips the values of the bits before passing them
through a binary symmetric channel, and in the other it does not. The cross-over

probability of the binary symmetric channel is taken to be

p=Q (\/ 2]5) : (5.84)

If a typical Costas loop-type phase estimation algorithm were used for BPSK in a

frequency-hopping spread spectrum system with AWGN, the phase would be roughly
correct up to a factor of 180° that is lost when the data is squared. This gives the

behavior of the flip channel if hard decisions are made after the phase recovery loop.
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Figure 5.12: Reliability function E,(R,m) vs. rate R for the flip channel. The
curves are labeled with their corresponding hop lengths. This assumes a channel
SNR E;/N, =5 dB. Note that we have fixed E;/Ny, not Ej,/N, as usual.

As expected for an estimation dominated channel, the error exponent is larger for
larger hop lengths m regardless of the code rate. Figure 5.12 shows that the relia-
bility function is 0 for all rates when the hop length is 1, and increases quite quickly
toward the reliability function with side information, which is independent of the hop
length. This confirms numerically that the channel is estimation dominated, as we
had claimed by heuristic arguments above. Figure 5.13 shows that the required SNR
decreases monotonically toward the fixed value needed by the perfect CSI receiver.
The difference in required SNR between 5 and 20 symbols per hop is over 1.75 dB.
This behavior is dramatically different from what we observed for coherent fading
channels, and suggests that there are realistic cases where proper choice of the hop
length and effective joint channel estimation and decoding can produce large gains
over more naive techniques.

We would like to apply this approach to learn more about the non-coherent
Rayleigh fading channel with block memory described in section 4.4. As mentioned
above, the error exponent with soft outputs is too computationally difficult. We can,
however, prove the following interesting result which supports using “pilot symbols”

on non-coherent channels. Consider channel models with block memory where the
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Figure 5.13: Required SNR E}/N, for block error rate 10~% vs. hop length for the flip
channel. ’o’ joint channel estimation and decoding, 'TJ" perfect CSI. This assumes a
block length 2520, rate 1/2 code.

complex output y; depends on the complex input x; and the complex channel state

u; according to

Yi = U T; +ny (585)

L=
where n; is complex additive Gaussian noise with variance Ny/2 per dimension. Sup-
pose that the fading factor can be separated into a statistically independent amplitude
and phase, and that the phase is uniformly distributed. We will call this a separable
non-coherent channel. Note that if we elect to use M-ary phase shift keying (MPSK)

symbols as inputs, x € X C C is of the form
z = Al w0 (5.86)
where A and 6 are real constants and [ is an integer.

Theorem 5.8 For a separable non-coherent channel and MPSK signaling, further
constraining the signals to have a fixed symbol at the beginning of each hop, i.e. a

pilot symbol, does not affect the error exponent.

Proof: Let z; € {c} x X™ ! be a vector whose first element is ¢ € X. Then X;

is the set of vectors 2’ s.t. 2’ = e/, for some real # € [0,27). The sets X; form
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a partition of X™ because, for any vector z, there exists # = Zxy — Zc such that

ez € {c} x X™ ! and if z € X and 2’ € X, then 2’ # €’z for any 0 € [0,27). To

verify this last point, suppose that 2’ = e/?z for § € [0, 27), and note that 2’ = ejalgl

and z = e/’z; implies that z; = e/’z; for some 0 € [0,27). This is a contradiction

because z;9 = ¢ and z; = ¢, but z; # z;.

Consider the Gallager function for a separable non-coherent channel

EO(pa Q7 m) =

o [ | X @@ | [ o) [ o plke v w) dug du dy

ym TEX™ Uy 0

Partitioning X™, we find

1
T+p

L/ p(uq /—p(y|x Ug, Ug) dug dua}

xeXm
1
2 1 T+p
=3 3w | [ plua) [ 5 (ke e, w) dug
1 ZEX; N 0
1
2m 14+p
1
=3 20w | | o) [ g vloles ) dus
] TEX; U, 0

because for z,2’ € X;

1 1 m—1
= —_— - E _ Jug 2
p(g|£7 U‘Cw UG) (W)m eXp ( 0_2 — |yl u € xl| )

0
1 1=
= ——exXp _ Y — Ug 6] UG—H)xIQ
( /7'('0'2)m ( 0-2 e | l|
= p(yl2’, ua, ug — 0)

and p(y|z, uq, ug) is periodic in ugy, so

2w 2w
1 1

/2—p(g|£, Uq, Ug) duig = /—P(y@l,uaaua) duyg.
s 2

0 0

100

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)



Choose Q' so that

Q'z;) =) Q) (5.93)

TEX;

and @'(z) = 0 for z not in {c} x X™~'. Using (5.88),

Eo(p,Q,m) = EO(pa Qlam) (594)

which implies that the reliability function is the same for the two sets of inputs,
proving the theorem. [ |

Note that this theorem actually holds for a larger class of signals that have the
right rotational invariance. Because, from a random coding perspective, using DPSK
with a reference symbol at the beginning of each hop is equivalent to putting a pilot
symbol at the beginning of each hop, this theorem indicates that DPSK does not
incur any inherent performance loss. Although it was known that DPSK with an
outer code achieves capacity asymptotically in the block length for fixed unknown
phase [34], we believe that this result on the error exponent for DPSK with finite
memory is new.

Although we cannot compute the reliability function for non-coherent Rayleigh
fading with soft outputs, we propose a simple modification of the flip channel that is
both tractable and retains the key features. Suppose that the channel either passes
the input bits through a binary symmetric channel with cross-over probability p,
which depends on the fading state u, or flips the bits and then passes them through a
binary symmetric channel with cross-over probability p,. The channel state consists
of a Bernoulli random variable with probability 1/2 of taking each of its two possible
values to determine whether or not to flip the bits, and an independent Rayleigh

random variable u for the fading level. As for the coherent Rayleigh fading channel

2u2E,
puZQ( 5 ) (595)

with hard outputs above,

and

p(u) = 2ue™™. (5.96)
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Figure 5.14: Required average SNR Ej, /Ny vs. hop length for the Rayleigh fading flip
channel. ’o’ joint channel estimation and decoding, 'TJ" perfect CSI. This assumes a
block length 2520, rate 1/2 code.

The Gallager function for this case with no channel state information is

Ey(p, Q) :_%ln(i (i}) [%/p(um—pu)m i du+

1 lJlrp e
§/p(U)(1—pu) 24 ddU] ) +pln2

u

1

5 [ P = p)™ o (=) du}

1 " Im
= ()

+pln2. (5.97)

Figure 5.14 shows the required average SNR E,/N, for this channel model. The
optimal hop length, m = 25 symbols, gains about 3 dB over hop length m = 5.
This behavior is similar to that observed for iterative reception on the non-coherent
Rayleigh fading channel. The remaining discrepancy can be attributed to two dif-
ferences: the hard-outputs provided by this channel make channel estimation more
difficult, and the code rate for the previous example decreases for small hop lengths

because of the pilot symbols.
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We have demonstrated that the bounds behave, theoretically and numerically,
as predicted by our intuition about effective diversity and channel estimation. The
qualitative similarity of the bound results to the simulated performance of the iterative
receivers presented in Chapter 4 suggests that the bounds can be used to gain insight

for system design.
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CHAPTER 6

Iterative Reception: Solutions and Challenges

This thesis has addressed two fundamental questions: “How do we design im-
plementable approximations to joint channel estimation and decoding for arbitrary
systems combining multiple coding and modulation techniques?” and “If we could
build optimal joint estimation and decoding receivers, how well would they perform?”
The effect of channel memory on performance has been key in our discussion.

For the first question, we have proposed a unified framework for designing iterative
receivers using factor graphs. Our approach easily provides implementable receivers
for a range of common channel models and provides additional insight into previously
proposed receivers. It is especially helpful for elucidating the relationship between
various designs. The resulting joint channel estimation and decoding algorithms have
good performance relative to decoders provided with clairvoyant knowledge of the
channel states. We hope that future researchers will use the compactness and precision
of factor graphs to document their iterative receiver designs.

Because analysis of iterative receivers remains largely an open problem, we instead
considered bounds on the performance of optimal joint estimation and decoding. We
suggested an approach based on the reliability function and show analytically and
numerically that the bounds follow our intuition about effective diversity and channel
estimation accuracy. Most channels exhibit a trade-off between the two that leads to
an optimal memory length that increases as we operate at longer codeword lengths.
Very simple models can capture the key features of the more complicated channels

for which we designed iterative receivers.

104



A very interesting topic for future work on iterative algorithms is the design of
codes especially suited to iterative reception on channels with memory. Nearly all
practical channels exhibit time-variation and memory while almost all existing codes
are designed for memoryless channels with fixed transition probabilities. Iterative
reception poses extra problems for code design because special code properties are
needed to start the process, as we saw for non-coherent channels. A theoretical char-
acterization of these code properties and their relationship to the receiver structure
would be very interesting.

It would be interesting to extend the techniques of Chapter 5 to channels with
Markov memory. This would allow us to treat a number of practically important
models for fading channels. It would also provide for a theoretical comparison between
the effects of block and Markov memory, much like the experimental one in section
4.2. Extensions to channels that better capture the behavior of continuous channel
outputs and techniques for quantitatively predicting the performance of LDPC or
turbo codes from the bounds would also be practically useful.

Although the problem of communicating at capacity on the AWGN channel has
essentially been solved [56], next generation wireless networks still present a menagerie

of challenges. ITterative receivers will be key to taming these problems.
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APPENDIX A

Update Formulas for Example Receivers

This appendix contains the detailed update formulas for the receivers described

in Chapter 4. The update formulas for the LDPC code constraint nodes are given in
section 2.3.

A.1 Two-State Jamming Channel with Block
Memory

Recall the factorization,

Glaw) = [[1{t, 2 =0} [T twlru s ) [T ptw) (A1)

where h; is the 7*" row of the parity check matrix. From the channel model,

Y 1 (yi — VE(=1)")?
p(y,|xl,utij) = 27T0'2(ULLJ) exp ( 202(ULLJ) (A.2)
and
() = (A.3)

The factor graph is shown in Fig. A.1. The updates for the various factor nodes are
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Figure A.1: Factor graph for two-state jamming channel with block memory and
LDPC code m = 4. T, & p(yi|xi,uLL~J), I, = pluyg), C; 21 {ﬁj Lz = 0}.

1 oxo [ — (vi — VE)?
ooy (ur) o (ur) p ( T2 (un) > px,-1;(0) +
1 oxp [ — (vi + VE,)?
O'(uk) p < 20-2(uk) > /‘LXi_>Ti(]‘) (A4)
HT;—X; (l‘z) = u;e;/l O—(ik) exp <_ (yz — 2\2_5_(515]:)1) l) > MUL%J—)Ti (uk) (A5)
1— J if U; = G
/LHi%Ui(ui) = ’ (A6)

A.2 Two-State Jamming Channel with Markov
Memory

Recall the factorization

r_1 N— - — VEL(—1)%)?2
Glz,u) = [[01 hy-z= 11 V2702 (u;) o <_ . ;{72_(1(%) - ) -
p(uy) 1:[ p(uglu,_1) (A7)

which has the associated factor graph shown in Fig. A.2.
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Figure A.2: Factor graph for two-state jamming channel with Markov memory. IT, £
p(urlug—1), o = p(uo), T; £ p(yilws, wi), C; £ 1{h; -z =0}

The update equations for the factor nodes with appropriate simplifications are

VoL (B VE)
-, (i) = o () p ( 202 (u) > px,—1:(0) +
L (it V)
o (u;) b < 202 (u;) > fix, 1, (1) (A.8)

1 <_ — \/E(_I)IZV) pv;—r; (ui) (A.9)

prsx; (i) = 1% m exp 207 ()

]._pJ lf’LLOZG

H1lo—Ug (UO) = (AIO)
PJ if Uy = B
pr o, () = Y pluwiluiy)p, o, (1) (A.11)
u;—1€EU
psv, s (i) = ) p(uslus 1) po o, (us) (A.12)
u; EU

A.3 Coherent Rayleigh Fading Channel with
Block Memory

Recall the factorization

r—1 N-1 (y; — Ui (—=1)*/E)*\ m~! ,
Glz,u) = [[1{h;-z=0}-[Jexp |- N, [T 2ure
=0 i=0 k=0

which has the factor graph shown in Fig. A.3.

We roll the I, node messages into the updates for the Uy nodes because these use
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Figure A.3: Factor graph for the Rayleigh fading channel with block memory and
LDPC code m =4. T, & p(yi|xi,uLL~J), I, = pluyg), C; 27 {ﬁj Lz = 0}.

canonical distributions. With the discretized canonical distribution

L—1
Wi, (k) = ad(ug — i), (A.14)
1=0
and the weights a; are samples of the nominal message at the values 1,

km+m—1 R 9
52 i — U \/Es
" H [eXp <_M> lu’Xi—>Ti(0)+

a; = 2’&16_
No

i=km

i#j

exp <—%> ,VLXHTia)} © (A15)

The parameters y;, jx, 1, (0), and x, 7, (1) are passed to the node Uy, in the messages
p1,—v,- The remaining update is

o) = Sy (DR, (A16)

With the estimate canonical distribution, we again neglect the II; messages. We

have

//Uk—ﬂy (ug) = 0(up — ;) (A.17)

where we select the estimate 4, ; according to

1 km+m—1
U S A18
Uk,j (m—l)\/E Z:zk;n |y| ( )
i#£]

The y; parameters are passed in the messages 7y, The remaining update is

= CEN'

X (A.19)

U1 —Xx; (ﬂﬁz) = exp <—
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Figure A.4: Factor graph for the non-coherent Rayleigh fading channel with block

A A A A

memory. Iy = plugg), ok = pluar), Ti = plyilziu, ENLR LLJ)’ b =
m m

I{pm = 0}, C; 2 T{h; - z = 0}

A.4 Non-Coherent Rayleigh Fading Channel with
Block Memory

The factorization is

N
E_l r—1
G(z,u) = H Hzm :O}HI{Q] z=0}
1=0 =0
N-1 1 2
1 exp (_ﬁo Yi—u ,L%J eXP(JUG,L%J)( )"/ E; ) :
N N

~_q
m m

T 2uane == T] T{uox € [0,27)}. (A.20)
k=0

The factor graph corresponding to this factorization is shown in Fig. A.4.

The effects of the I1, and IIy nodes are included in the canonical distribution up-

dates for the U, and Uy nodes. For U, , we use an estimate canonical distribution
//Ua,zﬁTj (ur) = 6(tak — Uak,;) (A.21)

where we select estimate i, ; according to

km+m—1
1

ﬂa,k,j:m > luil- (A.22)

i=km

i#]
The y; parameters are passed in the messages I U, and |y;| is the magnitude of

the complex observation y;.
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We proposed several canonical distributions for p, , 7, (ug). For the bimodal

canonical distribution,
//Ug,,ﬁTj (ugr) = a10(ugy — tgx) + a0 (ugy — tgy, + ), (A.23)
we estimate the phase ug} as
g = Z(A_1 (D) + B_1(2)V-1) (A.24)

where the expressions for A ;(v), B_1(v), and an algorithm for finding ¢ are given in
section 4.4.1. The weights a; and a, are computed by sampling the nominal message

at ugr = uy and ug = ug respectively, where u; = gy and uy = g, + 7, SO

_ N . 2
i |yi — fia,k, exp(ju) VEs)|
a; = H exp | — N,

) luxi_),li (C)
i=km

. 2
Yi + Uk, exp(Jju) vV Es
exp <_‘ N, ( ) ‘ )/’LXi‘)Ti(l) (A25)
0

for [ = 1,2. The message UT,—U,, contains the parameters ta i, ¥i, tx,—1;(0), and

px; -7, (1). The update for pr,_,x, is

N N = 2

|yi — G exp(jiig ) (—1)% VB | )

N +
0

. 2

z'_Aoz 7 L + —1)% Es

- (_\y e, exp(J(uj\,;c ) )\/_\>' A26)
0

M1 — X; (%) = a1 €Xp (—

For the two-term exponential CD,

“,Ue,;ﬁTj (ugr) = Cyexp(A; cos(ugr) + Bysin(ug)) +
Cy exp(Ag cos(ug i) + Basin(ugy)) (A.27)

where we compute the A, B, and C' parameters as follows. We select © and 9’ using

the algorithm in section 4.4.1. We then compute the parameters for :“IUQ,,C%T]- as

Ar = A4;(0)  Ax= A;(2) (A.28)
By = Bj(d)  By= B;(¥) (A.29)
Cr=Cj(0) Gy =Cy(@). (A.30)
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As for the bimodal CD, the message jir,_,y,, contains the parameters dqp;, i,

/’LXi‘)Ti(O% and /LXi%Ti(l)' The update for KTy — X, is
pri—x; (i) = Crlo(Ki(z;)) + Colo(Ka(2:)) (A.31)

where I(+) is the modified Bessel function of order 0 and

Ki(v;) = \/[Nloaa,k,i(_l)miyR,i + Al + [N%@a,k,z‘(—l)“yl,z‘ + ByJ?
forl =1,2.
For the estimate CD, we use
115, 1, (o) = O (ugy, — o ;) (A.32)

and compute the estimate g ; by finding a common ¢ as described above and com-

puting phase estimates for each outgoing message using
gk = £(A;(0) + B;(2)V—1). (A.33)

The remaining message pr,_,x, is

1

~— |Yi — U 3 1)* E;
Ny |V 7 Ty XPUT, 1) )L™

2) L (A34)

s x; (i) = exp (—
For the quantized CD, we have
M st (0,5) Zaz ug, — iir) (A.35)

where the quantization points ; are fixed in advance and the weights a; are computed

by sampling the nominal message

km+m—1 N R 2
Yi — Uk, eXP(JUZ)v E
ap = H exp (— ‘ N ‘ ,U/XiﬁTi(O) +
0

~ N 2
( |Yi + Qo exp(jin) vV E|
exp | —

i=km
i#]

N, ) ILLXi—>Ti(]‘)‘ (A36)

This gives the update

Py x; Z ap exp (

=iy 1 espi) (1) VE,

2) . (A37)

113



BIBLIOGRAPHY

114



[1]

[10]

BIBLIOGRAPHY

W. K. M. Ahmed, Information Theoretic Reliability Function for Flat Fading
Channels, PhD thesis, Queen’s University, Kingston, Ontario, Canada, Septem-
ber 1997.

W. K. M. Ahmed and P. J. McLane, “Random coding error exponents for flat
fading channels,” in Proceedings of the IEEE International Symposium on Infor-
mation Theory ISIT 98, p. 394, Cambridge, MA, USA, August 1998.

W. K. M. Ahmed and P. J. McLane, “Random coding error exponents for flat
fading channels with realistic channel estimation,” IEFE Journal on Selected
Areas in Communications, vol. 18, no. 3, pp. 369-379, March 2000.

S. M. Aji and R. J. McEliece, “A general algorithm for distributing information in
a graph,” in Proceedings of the International Symposium on Information Theory
ISIT’97, p. 6, June 1997.

S. M. Aji and R. J. McEliece, “The generalized distributive law,” IEEE Trans-
actions on Information Theory, vol. 46, no. 2, pp. 325-349, March 2000.

A. Anastasopoulos and K. M. Chugg, “Adaptive SISO algorithms for iterative
detection with parametric uncertainty,” in Proceedings of the IEEFE International
Conference on Communication 1CC°99, Vancouver, Canada, June 1999.

A. Anastasopoulos and K. M. Chugg, “Adaptive soft-input soft-output algo-
rithms for iterative detection with parametric uncertainty,” IEEE Transactions
on Communications, vol. 48, no. 10, pp. 1638-1649, October 2000.

C. Anton-Haro, J. A. R. Fonollosa, and J. R. Fonollosa, “Blind channel estima-
tion and data detection using hidden Markov models,” IEEE Transactions on
Signal Processing, vol. 45, no. 1, pp. 241-247, January 1997.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Transactions on Information Theory,
pp. 284-287, March 1974.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding,” in Proceedings of the International Commu-
nications Conference ICC’°93, pp. 1064-1070, May 1993.

115



[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-theoretic
and communications aspects,” IEEE Transactions on Information Theory, vol.
44, no. 6, pp. 2619-2692, October 1998.

G. Caire and S. Shamai, “On the capacity of some channels with channel state
information,” IEEE Transactions on Information Theory, vol. 45, no. 6, pp.
2007-2019, September 1999.

M. J. Chu, D. L. Goeckel, and W. E. Stark, “On the design of Markov models for
fading channels,” in Proceedings of the IEEE Vehicular Technology Conference
VTC Fall ’99, Amsterdam, The Netherlands, September 1999.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 39, no. 1, pp. 1-38, 1977.

A. Duel-Hallen and C. Heegard, “Delayed decision-feedback sequence estima-
tion,” IEEE Transactions on Communications, vol. 37, no. 5, pp. 428436, May
1989.

B. J. Frey, F. R. Kschischang, H.-A. Loeliger, and N. Wiberg, “Factor graphs
and algorithms,” in Proceedings of the 35th Annual Allerton Conference on Com-
munication, Control and Computing, pp. 666—680, September 1997.

R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Infor-
mation Theory, vol. IT-8, no. 1, pp. 21-28, January 1962.

R. G. Gallager, Low-Density Parity-Check Codes, M.I.T. Press, Cambridge, MA,
1963.

R. G. Gallager, Information Theory and Reliable Communication, John Wiley
& Sons, New York, 1968.

J. Garcia-Frias and J. D. Villasenor, “Exploiting binary Markov channels with
unknown parameters in turbo decoding,” in Proceedings of the IEEE Global Com-
munications Conference GLOBECOM’98, pp. 3244-3249, Sydney, Australia,
November 1998.

J. Garcia-Frias and J. D. Villasenor, “Blind turbo decoding and equalization,”
in Proceedings of the IEEE Vehicular Technology Conference VTC Spring ’99,
volume 3, pp. 1881-1885, Houston, TX, May 1999.

J. Garcia-Frias and J. D. Villasenor, “Simplified methods for combining hidden
Markov models and turbo codes,” in Proceedings of the 50th IEEE Vehicular
Technology Conference VTC Fall °99, pp. 1580-1584, Amsterdam, The Nether-
lands, September 1999.

E. N. Gilbert, “Capacity of a burst-noise channel,” Bell System Technical Jour-
nal, vol. XXXIX, no. 5, pp. 1253-1265, Sept. 1960.

116



[24]

[25]

[26]

[27]

28]

[30]

[31]

32]

33]

[36]

J. Hagenauer, “The Turbo principle: Tutorial introduction and state of the art,”
in Proceedings of the International Symposium on Turbo Codes, pp. 1-11, Brest,
France, September 1997.

G. H. Hardy, J. E. Littlewood, and G. Pélya, Inequalities, Cambridge University
Press, London, 1934.

C. Heegard and S. B. Wicker, Turbo Coding, Kluwer Academic Publisher, Boston,
1999.

P. Hoeher and J. Lodge, ““Turbo DPSK"’: Iterative differential PSK demodulation
and channel decoding,” IEEFE Transactions on Communications, vol. 47, no. 6,
pp- 837-843, June 1999.

S. Jayaraman and H. Viswanathan, “Optimal detection of a jammed channel,” in
Proceedings of the 1996 IEEE Global Telecommunications Conference GLOBE-
COM’96, pp. 87-91, November 1996.

S. Jayaraman and H. Viswanathan, “Simultaneous communication and detection
over compound channels,” in Proceedings of the 1998 International Symposium
on Information Theory ISIT 98, p. 40, August 1998.

A. Jimenez, Soft Iterative Decoding of Low-Density Convolutional Codes, Engi-
neering licenciate thesis, Lund University, October 1997.

J. H. Kang and W. E. Stark, “Turbo codes for noncoherent FH-SS with partial
band interference,” IEEE Transactions on Communications, vol. 46, no. 11, pp.
1451-1458, November 1998.

J. H. Kang, W. E. Stark, and A. O. Hero, “Turbo codes for fading and burst chan-
nels,” in Proceedings of the IEEE Global Communications Conference GLOBE-
COM’98: Communication Theory Mini-Conference, pp. 40-45, November 1998.

G. Kaplan and S. Shamai, “Error exponents and outage probabilities for the
block-fading Gaussian channel,” in Proceedings of the IEEE International Sym-
posium on Personal, Indoor, and Mobile Radio Communications PIMRC’91, pp.
329-334, September 1991.

G. Kaplan and S. Shamai, “On the achievable information rates of DPSK,” IEE
Proceedings-1, vol. 139, no. 3, pp. 311-318, June 1992.

C. Komninakis and R. D. Wesel, “Iterative joint channel estimation and decod-
ing in flat correlated Rayleigh fading,” in Proceedings of the 7" International
Conference on Advances in Communications and Control, Athens, Greece, June
1999.

C. Komninakis and R. D. Wesel, “Pilot-aided joint data and channel estimation
in flat correlated Rayleigh fading,” in Proceedings of the IEEE Global Commu-
nications Conference GLOBECOM’99, 1999.

117



[37]

[38]

[40]

[41]

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes by
probability propagation in graphical models,” IEEE Journal on Selected Areas
in Commaunications, vol. 16, no. 2, pp. 219-230, February 1998.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp- 498-519, February 2001.

A. Lapidoth and S. Shamai, “Fading channels: How perfect need “perfect side
information” be?,” in Proceedings of the 1999 IEEE Information Theory Work-
shop, pp- 36-38, Kruger National Park, South Africa, June 1999.

C. P. Liang, Resource Allocation and System Optimization for Spread Spectrum
and OFDM Networks with Multi-User Detection, PhD thesis, University of Michi-
gan, Ann Arbor, MI, 2001.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient
erasure correcting codes,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 569-584, February 2001.

D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,”
IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 399-431, March
1999.

I[. D. Marsland and P. T. Mathiopoulos, “Multiple differential detection of parallel
concatenated convolutional (turbo) codes in correlated fast Rayleigh fading,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 2, pp. 265274,
February 1998.

[. D. Marsland and P. T. Mathiopoulos, “On the performance of iterative non-
coherent detection of coded M-PSK signals,” IEEE Transactions on Communi-
cations, vol. 48, no. 4, pp. 588-596, April 2000.

T. L. Marzetta and B. M. Hochwald, “Multiple-antenna communciations when
nobody knows the Rayleigh fading coefficients,” in Proceedings of the 35" Aller-
ton Conference on Communication, Control, and Computing, pp. 1033-1042,
September 1997.

T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antenna
communication link in flat rayleigh fading,” IEEE Transactions on Information
Theory, vol. 45, no. 1, pp. 139-157, January 1999.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of Pearl’s ‘belief propagation’ algorithm,” IEEFE Journal on Selected
Areas in Communications, vol. 16, no. 2, pp. 140-152, February 1998.

R. J. McEliece and W. E. Stark, “Channels with block interference,” IEEE Trans-
actions on Information Theory, vol. I'T-30, no. 1, pp. 44-53, January 1984.

118



[49]

[50]

[55]

[56]

R. J. McEliece and M. Xu, “Junction tree representations for linear block codes,”

in Proceedings of the 1998 International Symposium on Information Theory
ISIT’98, p. 253, August 1998.

M. Medard, “The effect upon channel capacity in wireless communications of
perfect and imperfect knowledge of the channel,” IEEE Transactions on Infor-
mation Theory, vol. 46, no. 3, pp. 933-946, May 2000.

N. Merhav, G. Kaplan, A. Lapidoth, and S. Shamai, “On information rates for

mismatched decoders,” IEEE Transactions on Information Theory, vol. 40, no.
6, pp. 1953-1967, Nov. 1994.

M. Mushkin and I. Bar-David, “Capacity and coding for the Gilbert-Elliott chan-
nels,” IEEE Transactions on Information Theory, vol. 35, no. 6, pp. 1277-1290,
November 1989.

J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, 1988.

M. Peleg and S. Shamai, “Iterative decoding of coded and interleaved noncoher-
ent multiple symbol detected DPSK,” FElectronics Letters, vol. 33, no. 12, pp.
1018-1020, June 1997.

J. G. Proakis, Digital Communications, McGraw-Hill, Inc., New York, 3rd edi-
tion, 1995.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching low-density parity check codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 619-637, February 2001.

T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity check
codes under message-passing decoding,” IEEFE Transactions on Information The-
ory, vol. 47, no. 2, pp. 599-618, February 2001.

C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 27, pp. 623656, October 1948.

M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions on Infor-
mation Theory, vol. 42, no. 6, pp. 1710-1722, Nov. 1996.

W. E. Stark, “Coding for frequency-hopped spread-spectrum communication
with partial-band interference—part I: Capacity and cutoff rate,” IEFE Transac-
tions on Communications, vol. COM-33, no. 10, pp. 1036-1044, October 1985.

W. E. Stark, “Coding for frequency-hopped spread-spectrum communication
with partial-band interference—part II: Coded performance,” IEEFE Transactions
on Communications, vol. COM-33, no. 10, pp. 1045-1057, October 1985.

119



[62]

[63]

[64]

[65]

[66]

[68]

[69]

[72]

. G. Stiglitz, “Coding for a class of unknown channels,” IEEE Transactions on
Information Theory, vol. IT-12, no. 2, pp. 189-195, April 1966.

I. G. Stiglitz, “A coding theorem for a class of unknown channels,” IEEE Trans-
actions on Information Theory, vol. IT-13, no. 2, pp. 217-220, April 1967.

H.-J. Su and E. Geraniotis, “Improved performance of a PSAM system with it-
erative filtering and decoding,” in Proceedings of the 36th Annual Allerton Con-
ference on Communication, Control, and Computing, pp. 156-166, September
1998.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Transac-
tions on Information Theory, vol. IT-27, no. 5, pp. 533547, September 1981.

E. Uysal and R. G. Gallager, “Observations on diversity limitation in slow
frequency hopping,” http://www.stanford.edu/"elif/SFH.pdf, September
2000.

M. C. Valenti and B. D. Woerner, “A bandwidth efficient pilot symbol technique
for coherent detection of turbo codes over fading channels,” in Proceedings of the
1999 Military Communications Conference MILCOM’99, October 1999. paper
3.4.

N. Wiberg, Codes and Decoding on General Graphs, PhD thesis, Linképing Uni-
versity, Linképing, Sweden, 1996.

N. Wiberg, H.-A. Loeliger, and R. Koetter, “Codes and iterative decoding on
general graphs,” Furopean Transactions on Telecommunications, vol. 6, no. 5,
pp. 513-525, Sept.—Oct. 1995.

J. Wolfowitz, Coding Theorems of Information Theory, Springer-Verlag, Berlin,
3rd edition, 1978.

Z.-N. Wu and J. M. Cioffi, “Turbo decision aided equalization for magnetic
recording channels,” in Proceedings of the IEEE Global Telecommunications Con-
ference GLOBECOM’99, pp. 733-738, 1999.

Y. Xu, H.-J. Su, and E. Geraniotis, “Pilot symbol assisted QAM with iterative
filtering and turbo decoding over Raleigh flat fading channels (sic),” in Proceed-
ings of the 1999 Military Communications Conference MILCOM’99, Oct. 1999.
paper 3.5.

120



