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Preface

We introduce parameters called normalized mean square covariance (NMS'V), normal-
ized mean square correlation (NMSR), re-centered normalized mean square correlation
(RC-NMSR), and stochastic degree of freedom (SDF) to efficiently characterize the cor-
relation properties of L? stochastic processes. We show that these parameters are very
useful to characterize wireless communication channels. In particular, we show that
there are very close relationships between the parameters and the performance of var-
ious wireless communication systems. Due to such close relationship, the parameters
are very useful to evaluate the quality of wireless communication channels. We show
that the parameters are very effective in wireless communication system design. In
particular, we can obtain direct relations between the quality of channel and the per-
formance of various wireless communication systems. Due to the fundamental nature
of the parameters, we believe that they will be very helpful in other branches of science

and engineering in which stochastic modeling is useful.
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Chapter 1

Introduction

The invention of personal computers has led us to a revolutionary state of transition
to an information age. Strong demand for fast exchange of information is driving the
rapid developments of high-speed communication networks. Currently, most informa-
tion is transmitted over wired networks. However, because of the portability, the role
of wireless communications is growing very rapidly. While increasing demand in wired
networks can be satisfied by installing new wires, this is fundamentally impossible in
wireless communications where the same physical medium has to be shared by many
users. Consequently, it is particularly important to develop various technologies for
optimal utilization of the limited resources in wireless communications. Since the
performance depends fundamentally on the channels under consideration, a commu-
nication system design must be preceded by the study of channel characteristics. In
Section 1.1, we discuss various previous and current efforts to characterize radio prop-
agation channels and the motivation for the research in this report. Then we briefly
describe the major contributions of this report in Section 1.2. In the final section, we

outline the organization of the report.

1.1 Radio Propagation Channel Characterization

In modern wireless communications, digital information signals are divided into small
size packets and then transmitted. Each packet is usually encoded (by source and
channel encoders), modulated, amplified and then carried by high-frequency electro-
magnetic waves over a radio link. At the receiver side, the reverse processes are done
by a receiver antenna with a radio frequency tuner, a demodulator, a channel decoder
and a source decoder. In this report, we are primarily interested in the character-

ization of radio links between the transmitter and the receiver antennae that will
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be modeled by randomly time-variant linear systems. The major purpose of channel
characterization is in the design and planning of communication systems. Wireless
communication channels are usually described by considering three separable phe-
nomena, namely, path loss, shadowing, and multipath fading. In the following, we
briefly overview various efforts to characterize such aspects of wireless communica-
tion channels and describe why we are interested in parametric characterizations of

multipath fading.

The estimation of signal decay due to propagation loss is very important in the de-
termination of the necessary transmission power and the coverage area. There have
been various efforts to effectively estimate the propagation loss in various environ-
ments for wide-range of carrier frequency. The propagation loss can be predicted in
principle by considering various fundamental propagation mechanisms such as reflec-
tion, diffraction and scattering given enough information about the topographical sit-
uations. The sufficiency of the information depends primarily on the complexity of the
terrain structures, the wavelength of the carrier, and the height of the antenna. The
computational requirements in most practical situations are usually prohibitively high
for purely analytical methods. Such high computational requirements can generally
be reduced by judicious use of empirical results. Some of the most well-known prop-
agation loss prediction models are the Longley-Rice and its modified models [1, 2, 3],
Empirical Propagation Model-73 (EPM-73) [4], the Okumura model [5], and the Hata
model [6].

Although propagation loss models are sometimes quite accurate, it generally fails
to predict signal fluctuations due to the effect of the terrain near the antenna. Such
a phenomenon of signal fluctuations is usually called shadowing. In modern wire-
less communications, the effect of shadowing is usually compensated in the network
layer by power control and/or rate adjustment. For the evaluation of such technolo-
gies, statistical description of the shadowing loss by a log-normal distribution provides
useful insights and effective analytical channel models. In such a model, the severity
of shadowing is characterized by the logarithmic standard deviation, which depends

on the size of the obstacles relative to the carrier wavelength.

The result of propagation loss or shadowing can be represented by a single pa-
rameter, namely by the loss of power. Consequently, it is relatively easy to determine
appropriate strategy to employ to counteract the effect of propagation loss or shadow-
ing. For example, we can either increase the transmitted power or shrink the coverage
area with increased propagation loss. However, the effect of multipath fading is gener-

ally more complex because it not only changes in time but also varies over frequency.
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Hence, a time-variant linear system model [7] is generally employed to describe mul-

tipath fading.

One of the most salient characteristics of multipath fading is the unpredictability.
Due to the frequency and time selectivity, multipath fading directly affects the effec-
tiveness of packet design techniques such as modulation, interleaving, and channel
coding. Not only because of the practical unpredictability but also because of the use-
fulness in performance evaluations, multipath fading channels are usually modeled as
randomly time-variant linear systems [8]. For such stochastic models, the first and
the second order statistics play fundamental roles in the channel characterizations.
However, such statistics are generally complicated two dimensional functions in most
situations. Consequently, unlike the characterization of propagation loss or shadow-
ing, characterization of multipath fading requires an infinite degree of freedom in the
stochastic description of multipath fading channel. This can be a severe burden to
system design. This is one reason why various simple secondary statistics such as root
mean square (rms) delay spread are often used to characterize the quality of multipath

fading channels.

To be useful, parameters that attempt to characterize a channel should be closely
related to the system performance. The rms delay spread is meaningful not only be-
cause it concisely summarizes the physical situations but also because it is related to
the frequency selectivity of a channel. Due to convexity of the error function, the per-
formance of a communication system generally depends heavily on the amount of sig-
nal strength fluctuations. To reduce the signal strength variations, various diversity
combining schemes are widely adopted that exploit the frequency and time selectiv-
ity of the fading stochastic process. Consequently, the performance of such a system

depends fundamentally on the amount of frequency and time selectivity.

Other parameters such as coherence bandwidth or correlation time are also widely
used to characterize channel frequency or time selectivity. However, as will be seen,
all these existing parameters are poorly related to the performance of various exist-
ing communication systems. This is because the parameters are local in nature. For
example, correlation time characterizes the correlation property in the neighborhood
of the time of interest. However, if the correlation time is relatively small compared
to the packet length, it fails to represent the overall time selectivity of the channel
over the packet duration. In this report, we propose parameters that effectively char-
acterize the overall frequency and/or time selectivity of fading stochastic process in a

frequency and/or time region of interest.
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1.2 Report Overview

In this section, we briefly summarize the the main contributions of this report. In Sec-
tion 1.2.1, we describe the fundamental ideas of normalized mean square covariance
(NMSYV) and stochastic degree of freedom (SDF). These parameters are used to charac-
terize wide-sense stationary uncorrelated scattering (WSSUS) channels. We describe
how we characterize non-WSSUS channels with simple parameters in Section 1.2.2. In
Section 1.2.3, we discuss the importance of the proposed parameters in system design.

Next, we describe our contribution to multiuser detection researches in Section 1.2.4.

1.2.1 Characterization of WSSUS Channels

When the direct line of sight is blocked by obstacles in wireless communications, the
channel can often be modeled effectively as a wide-sense stationary uncorrelated scat-
tering channel [8, 9]. Because of the lack of a reliable line of sight signal path, such
channels usually represent the worst case situation. To guarantee desired quality of
service under all situations, it is particular important to study such adverse situations.
Consequently, we first study WSSUS channels.

As noted in the previous section, we start from the fact that most existing channel
parameters are local in nature. For example, the coherence bandwidth measures the
extent over which the channel frequency response is essentially constant from a par-
ticular reference point and hence tends to lose its validity as a measure of frequency
selectivity as the total system bandwidth increases. We define a simple parameter
called the normalized frequency mean square covariance (NFMSV) that characterizes
the overall frequency selectivity of a fading stochastic process in a frequency region of
interest. Similarly, we define the normalized time mean square covariance (NTMSV)
and the normalized frequency-time mean square covariance (NFTMSV) for the time
selectivity and the combined frequency-time selectivity, respectively. We refer to these
parameters collectively as the normalized mean square covariance (NMSV).

To see the meaning of the NMSV, consider a set {X1, X2, -+, X,} of real random
variables with zero mean. Then, the NMSV V of the set of random variables is defined
by

y = kel . (1.1)

It is shown in Appendix 2.4 that the number 1/V is closely related to the effective
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number of distinguishable random variables in the set. For example, if the n random
variables are uncorrelated and have the same variance, V = 1/n while if all n random
variables are perfectly correlated, V = 1. Based on the result, we define the stochastic
degree of freedom (SDF) F of the set {X1, X3, -, X, } of random variables by

1

F = v (1.2)
The NMSV of a channel is defined by the NMSV of the time-variant frequency
response of the channel. We show that there are very close relationships between the
NMSYV and the performances of diversity combining schemes. From the analysis of
simple diversity combining scheme, we interpret SDF of a channel as the degree of
freedom available for various diversity combining schemes. Since diversity combining
plays fundamental roles in communication system design over WSSUS channels, we
can regard the NMSV and hence the SDF are among the most important parameters

of WSSUS channels.

1.2.2 Characterization of Non-WSSUS Channels

Characterization of such non-WSSUS channels is generally more complex. In par-
ticular, it is evident that the NMSV does not provide sufficient characterizations of
non-WSSUS channels due to the presence of the line of sight signal path. The sys-
tem functions of non-WSSUS channels are divided into the specular components and
the scattering components (or diffuse components). We usually model the scattering
components as WSSUS channels. Consequently, we will assume regard a non-WSSUS
channel as a sum of a (deterministic) specular component and a WSSUS component.
Since the specular components are mostly due to the line of sight signals, they consists
of single strong path and a set of small often negligible paths. Consequently, the line of
sight components can essentially be characterized by finding the fractions of the power
in the specular components.

As in the case of WSSUS channels, the characterization of the scattering compo-
nents is generally more difficult. For WSSUS channels, we started from the obser-
vation that existing parameters are local parameters, defined the NMSV'’s, and then
showed that the new parameters are closely related to the system performances. Then
we noted that the parameters are directly related to the idea of diversity combining.
However, as will be shown in Chapter 5, the NMSV’s do not provide a satisfactory
characterization of non-WSSUS channels. For non-WSSUS, we start from the obser-

vation that the NMSV’s are directly related to diversity combining techniques, define
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parameters called the re-centered (RC) normalized mean square correlation (NMSR),
and show that the parameters are closely related to the performance of the simple
diversity combining schemes.

Consequently, we propose to characterize a non-WSSUS channel by specifying the
fraction of power contained in the specular component and the RC-NMSR of the dif-
fuse component. Sometimes the specular component of a non-WSSUS channel consists
of many small strength paths rather than a single strong line of sight path. Such a
situation happens when there is no line of sight path but the signals arriving at each
particular delay come from some specific direction. We define the normalized arith-
metic variance (NAV) to characterize the specular components in such cases. Hence,
for the most general situations, we propose to use three parameters, namely, the frac-
tion of power in the specular component, the NAV of the specular component, and the
RC-NMSR of the diffuse components. We show how successful this specification is by

simulation results for the simple diversity combining scheme.

1.2.3 Applications in Communication System Design

Since there exist very close relations between the parameters we defined and the per-
formance of systems, the parameters are very useful in system design. First of all, the
parameters are very useful in performance evaluation and comparison. Since the pa-
rameters are highly related to system performance, we can characterize the “goodness”
or “badness” of the channel by the parameters. Consequently, it is possible to study
the relation between the system performance and the degree of adversity of the chan-
nel through the parameters. This is particularly important since we can understand
the effectiveness of a particular communication system design for multipath fading
channels. For example, we study the problem of choosing suitable rate of frequency
hopping in a FHSS system. It is well-known that more diversity gain is expected if we
increase the rate of hopping. However, increasing hopping rate involves burdens such
as synchronization and channel estimation. So we expect that there exists an optimal
hopping rate, which depends on the channel characteristics. We demonstrate how we
can use the parameters to determine optimal hopping rate.

More importantly the parameters can be used in resource allocation problems. As
an example, we consider the problem of bandwidth allocation of a FHSS system under
a WSSUS channel. In a frequency hopping system, a given band of frequency is divided
into a number of slots. We show that we can exploit more SDF with the same amount
of total bandwidth by separating the slots and assigning the bandwidth between slots

to other systems. As the slot separation grows, we tend to have more SDF. Since it
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is not possible to increase the slot separation indefinitely, it is important to find the
optimal slot spacing. We demonstrate that the NMSYV is very useful in solving this
problem. Similar idea of frequency separation can be used for orthogonal frequency
division multiplexing (OFDM) systems. We propose carrier-separated OFDM systems
to support multiple access with OFDM technology. We show that we can achieve huge

diversity gain with low complexity by judicious choice of carrier separation.

1.2.4 Multiple Access Interference Treatment

Another very important issue in current commercial wireless communications is the
treatment of the multiple access interference (MAI). There have been great efforts to
mitigate MAI by employing various interference treatment algorithms. The area of
multiuser detection is so active and broad that it is not easy to list even the most im-
portant works. Sergio Verdu collected and summarized some of the most important
multiuser algorithms for DS-CDMA systems in his recent book [10]. There are several
ways to categorize multiuser detection. One way is to divide it into linear and non-
linear schemes. Another is to group it into decision directed or non-decision directed
algorithms.

In this report, we consider various decision directed algorithms in realistic multi-
path fading environments. We first derive an Ungerboeck-type maximum likelihood
sequence estimation algorithm for asynchronous DS-CDMA systems under frequency-
time selective multipath fading. We then examine the matched-filter decision feed-
back sequence estimation (MFDFSE) algorithm and propose a bias-compensated (BC)
MFDFSE algorithm [11, 12]. It is shown that BCMFDFSE achieves huge a perfor-
mance gain with relatively negligible increase in the system complexity compared to
MFDFSE. However, we also observe that multistage successive interference cancel-
lation can achieve a significant performance gain with minimal complexity increase
from the conventional receiver. We study the effectiveness of single and multiple stage
successive interference cancellation (SIC) and parallel interference cancellation (PIC)
algorithms under multirate DS-CDMA environment. It is shown that multistage SIC

performs very well under multirate environment.

1.3 Report Organization

The remainder of this report is organized as follows. In Chapter 2, we define vari-
ous parameters for general stochastic processes and study their properties. We start

the chapter with brief remarks on the mathematical descriptions. Next we summa-
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rize terminologies in probability and statistics. In particular, various notations are
introduced to be used consistently throughout this report. We then define various pa-
rameters called normalized arithmetic variance (NAV), normalized mean square mean
(NMSM), normalized mean square covariance (NMSV), normalized mean square cor-
relation (NMSR), and re-centered normalized mean square correlation (RC-NMSR). In
the last section, we study the meaning of the NMSV and define the concept of stochas-
tic degree of freedom (SDF).

In Chapter 3, we describe wireless communication channels that we study in this
report. In this report, we confine ourselves to the phenomenon of multipath fading. In
the first two sections, we discuss why multipath fading happens and why we can treat
it separately from the path loss and the shadowing. Then, we introduce various ter-
minologies to describe randomly time-variant linear systems which we use to describe

multipath fading channels.

In Chapter 4, we demonstrate how effective the NMSV is for the characterization
of WSSUS channels. We first define the normalized frequency mean square covariance
(NFMSV), the normalized time mean square covariance (NTMSV), and the normalized
frequency-time mean square covariance (NFTMSV) to characterize the frequency, the
time and the frequency and time selectivities of WSSUS channels. Next, we show how
they are related to the correlation functions of WSSUS channels. Then, we provide
various analytical and simulational results to show how closely they are related to the

performance of various communication systems.

In Chapter 5, we consider channels that are not WSSUS. In this case, the NMSV
does not provide a satisfactory relationship with system performance. From the analy-
sis of the simple diversity combining scheme, we define a variant of the re-centered nor-
malized mean square correlation (RC-NMSR) of the time-variant frequency response.
We also define variants of normalized arithmetic variance (NAV) to characterize the
shape of the specular component of the frequency response. Then, we show how well
these parameters are related to the performance of the simple diversity combining
scheme. Since diversity combining is fundamentally related to many communication
techniques, we expect these parameters provide measures of “goodness” or “badness” of
given channels for many systems. More importantly, the logical procedures introduced

here can be adopted analogously in entirely different systems.

In Chapter 6, we provide examples to show how the parameters can be used in sys-
tem design. We first consider a frequency resource allocation problem in a FHSS sys-
tem. Next we study the effect of frequency hopping rate on the performance of FHSS

systems. Then, using similar ideas, we propose carrier-separated orthogonal frequency
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division multiplexing (CS-OFDM) systems for multirate multiple access wireless com-
munications.

In Chapter 7, we study and compare various decision directed multiuser detec-
tion algorithms under realistic multipath fading environments. In particular, we con-
sider maximum likelihood sequence estimation (MLSE) and its variant such as de-
cision feedback sequence estimation (DFSE) and bias-compensated decision feedback
sequence estimation (BC-DFSE). We also study the performance of single and multi-
ple stage successive and parallel interference cancellation algorithms under various
situations.

We conclude this report in Chapter 8.






Chapter 2

Statistics of L? Processes

In this chapter, we introduce simple parameters to extract useful information effi-
ciently from the first and the second order statistics of stochastic processes. In Section
2.1, we briefly discuss the arithmetic mean of a given function that is the underlying
concept for various parameters introduced in this report. Since the theory of measure
and integration used in this chapter can be unfamiliar to many readers, we start the
section with brief remarks on possible easy interpretation of general integrals. In Sec-
tion 2.2, we collect a series of definitions and notational conventions used throughout
this report. In Section 2.3, we define a set of first and second order statistics of L?
processes. We first define the normalized mean square mean (NMSM) to characterize
the relative significance of the mean of an L? process compared to the deviation from
it. We then define the normalized mean square covariance (NMSYV), the normalized
mean square correlation (NMSR), and the re-centered normalized mean square corre-
lation (RC-NMSR) to characterize the overall correlation properties of an L? process.
In particular, we show that the NMSYV is related to the effective number of uncorre-
lated random variables to describe the process, which we will call the stochastic degree
of freedom of the process in the last section. To define and study the parameters with
generality, we need some degree of mathematical rigor. Since the background mathe-
matical theories are not treated in a usual engineering curriculum, we briefly overview

the theories in Appendix A.

2.1 Introduction

The concept of mean is often useful to characterize the overall characteristics of a set
of observed data. The parameters we introduce in this report are in fact some kind

of mean values of various functions with proper normalization. In this section, we
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define the concept of arithmetic mean for measurable functions in a general context
of measure theory. For readers unfamiliar to the concepts of measure and integration,
we first give alternative perspectives of various formulae of this chapter without using

concepts of the general theory of measure.

2.1.1 Measure and Integration

We believe that readers who need quick references to the theory of measure and inte-
gration will find Appendix A helpful. For those readers who are not mathematically
oriented, we recommend to regard an integration as a weighted summation. For ex-

ample, we recommend to regard the following integration

/ Fdu @.1)
X

of a function f over a measurable space X with respect to a measure y as the following

summation
N
> f(@n)pn 2.2)
n=1
by assuming X = {Xy,---,X,}. Here, p1,--- , un are weighting factors that are related

to the measure u. In many cases, the underlying measurable space X is an Euclidean
space and the measure p is a Lebesque measure. In such cases, the corresponding
weighting factors u, are assumed to be 1. However, for a more general measure u,
the weighting factors u, are not necessarily 1, which is a power of the introduction of
a general measure. We believe that a choice of proper weighting factors (or a proper

measure) can extend the applicability of the concepts introduced in this report.

2.1.2 Arithmetic Mean

Assume that p is a non-zero finite measure on a measurable space (X, X). Then, we

define the arithmetic mean (AM) (h)x of an integrable function h: X — C by

1
(h)x = 755 /X hdp. 2.3)

Now assume that y is o-finite and that p(X) = co. Then, we define the arithmetic
mean (h) x to be zero if h is integrable. More generally, if » : X — R is measurable and

if h is integrable over X,, for each n and the sequence

1
h)y =—5= hd 2.4
(hx, M(Xn)/n Z (2.4)
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converges to a unique number M as n goes to oo for any sequence {X,}>° ; of measur-
able sets such that 0 < u(X,) < oo and X, C X, for each n and that | J;7 ; X, = X,
then we define the arithmetic mean (h)x by the number M. In the following, we will
often write the right hand side of (2.3) even when p(X) = oo as the meaning defined in

this paragraph.

2.2 Stochastic Process

Probability is a special kind of measure. In particular, it is a finite measure taking
values in [0, 1]. Hence, the theory of probability can be regarded as a special theory
of finite measures. However, for conceptual reasons, we associate various terminolo-
gies of general measure theory with other names in probability theory. First of all,
measurable mappings defined on probability space are called random elements. Ran-
dom elements taking numbers as the values are called random variables. We call the
arithmetic mean of a random variable the expected value or the mean of the random
variable. In many practical situations, we are interested in a collection of random el-
ements which may be related one another. Generally, an indexed collection of random
elements are called a stochastic process or a process in short. Among all stochastic
processes, we are particularly interested in L? processes for which we define the first
and the second order statistic functions. In this section, we summarize the formal

definitions of these concepts. More thorough treatments can be found in [13, 14, 15].

2.2.1 Probability Space

In probability theory, upper case letters such X, Y, and Z are used, in general, to
stand for measurable mappings and the values these mappings take are usually de-
noted by lower case letters z, y, and z. The measurable space in probability theory is
often denoted by (£2,§). A measure P on a measurable space ({2, F) is called a proba-
bility measure if P(¢) = 0 and P(?) = 1. If P is a probability measure on (€2, §), the
triplet (2, 3§, P) is called a probability space. Here, the set (2 is called the sample space
and elements of the o-field § are called events of the probability space. For example,
the Lebesque measure A on I = (0,1] is a probability measure and (I,B(I), ) is a
probability space. In the remainder of this section, let (2, F, P) be a given probability
space.

Let (S, S) be a measurable space. Then, a mapping X : Q& — S is said to be a (6-5)
random element if X 1(A) € § for any A € &. Consequently, a measurable mapping

defined on a probability space is called a random element. Given a random element
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X : Q — S, we define a set function px : & — [0, 1] called the (probability) distribution
of X by
px(E)=P(X '(E)), Ec6. (2.5)

It is easy to verify that the distribution px of X is a probability measure on (S, S).
Consequently, a random element maps a probability space into another probability
space possibly for ease of interpretation or manipulation.

If S = R and & = B(R), then X is said to be a real random variable. If § = R
and & = B(R), then X is said to be an extended (real) random variable. If S = C and
S = B(C), then X is said to be a complex random variable. If X is a complex random
variable, then the functions defined by the real and the imaginary parts of X are real
random variables. If S = R” and & = B(R*) or if S = C* and & = B(C"), then X is
said to be an n-dimensional real or complex random variable, respectively. If § = R*®
or § = C*, the set of all sequences of real or complex numbers, respectively, then X is
said to be a real or complex random sequence.

Let I be any non-empty set and let {(.5;, ;) }ic1 be a collection of measurable spaces.
Then, a collection {X; : Q@ — S;};cs of random elements is said to be independent if

P(X: (B 00 X (E)) = P(X5H(B) -+ P(X;H(Bm) (2.6)

im 11 im

for any E; € &;,,--- , Ep, € G, and for any finite members 41, - - - , %y, of I.

2.2.2 Distribution Functions and Density Functions

Let X be a real random variable. Then, the probability distribution ux of X is defined
by
u(B)=P(X '(B)), Be B[R (2.7)

and is a probability measure on (R, B(RR)). Consequently, a real random variable trans-
forms a probability space into an another probability space in which the sample space
is the set of real numbers and the events are the Borel sets of real numbers. We define

the (probability) distribution function Fx : R — [0, 1] of X by

Fx(z) = pux ((—oo,:c]), z e R. (2.8)

A non-negative measurable function fxy : R — R is said to be a (probability) density

function of X with respect to the Lebesque measure A if

Fx(z) = /( ]fx dX, (2.9)
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for all z € R.

Let X = (Xy,---,X,,) be an m-dimensional real random vector. The (probability)

distribution px : B(R™) — § of X is similarly defined by
u(B)=P(X'(B)), BeBER™). (2.10)
Also the (probability) distribution function Fx : R™ — [0,1] is defined by
Fx(z1,-- ,2Zm) = px ((—oo,:cl] X e X (—oo,xm]). (2.11)

A non-negative function fx : R™ — R is called the (probability) density function if
Fx(z1, - ,Zm) :/ fxd(Ax---xA), (2.12)
(—oo,a:l]><~~-><(—oo,wm}

for any z1,--- ,z, € R. We often call ux the joint (probability) distribution, F'x the
Jjoint (probability) distribution function, and fx the joint (probability) density function

of the real random variables X1, --- , X,,.

2.2.3 Expected Values

Let X be an (extended) real or complex random variable. If the arithmetic mean (X)q
(see Section 2.1) is well-defined, we call it the expected value or the mean of X. In
probability theory, we write E[X] instead of (X)q. Often we also write m(X) for E[X].
If the mean m(X) is finite, we define an (extended) random variable Dx called the
deviation of X by

Dx =X —m(X). (2.13)

A deviation of an (extended) random variable always has zero mean.

The expected value E[|X|?] of the (extended) real random variable | X |? is called the
power of X and is denoted by P(X). If the deviation Dy is well-defined, the power of
the deviation Dy is called the variance of X and the non-negative square root of it is
called the (standard) deviation of X. The standard deviation of X is denoted by o(X).
It is easy to see that

o(X)? = P(X) — |m(X)|?. (2.14)

Let X and Y be two (extended) real or complex random variables defined on the

same probability space. The expected value E[XY™*] is called the correlation between
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X and Y and denoted by R(X,Y) if it exists. If R(X,Y’) exists, then we have
|R(X,Y)|* < P(X)P(Y). (2.15)

which is a Cauchy-Schwarz inequality. If both m(X) and m(Y") exist and are finite, and
if R(Dx, Dy) exists, then the covariance V(X,Y) between X and Y is defined by

V(X,Y) = R(Dx, Dy) = R(X,Y) — m(X)m*(Y). (2.16)

It follows from (2.15) that
V(X,Y)[? < o*(X)o*(Y). (2.17)

The random variables X and Y are said to be uncorrelated if R(X,Y) = 0.

Assume that X and Y are L? random variables. Then, since |X| < |X|? + 1 and
Y| < |Y|> +1, X and Y are integrable so that the deviations Dx and Dy are well-
defined. It immediately follows that E[|Dx|?] < co and E[|Dy |?] < co. Consequently, X
and Y have finite variances and standard deviations. It also follows that both R(X,Y’)
and V(X,Y) exist and are finite.

2.2.4 L2 Processes

Let (S, &) be a measurable space and T be a nonempty set. Then, an indexed fam-
ily {X(¢),t € T} of (6-§F) random elements X(¢) : @ — S, ¢t € T is said to be a
stochastic process with state space (S,8). We often write X (¢) to denote the process
{X(t),t € T} if there is no cause of confusion. Now let T" be a set of numbers. Then,
a stochastic process {X(t),t € T} is said to be (strictly) stationary if the two random
elements (X (t1), -, X(tm)) and (X (¢1 +0), -+, X(tm + J)) have the same probability
distribution for any finite number of indices t1,-- - ,t, € T and any number ¢ such that
t1+9,-- ,tm + 0 € T. A stochastic process {X(t),t € T} with state space (C,B(C)) is
said to be an L? process if E[|X (t)|?] < oo for any t € T. As noted in Section 2.2.3, we
can define the first and the second order statistics for L? processes. In the remainder

of this section, we assume that {X(t),t € T} is a given L? process.

First we define the mean function mx : T' — C of the process by
mx(t) = E[X(¢t)], teT. (2.18)

Then, we define an another stochastic process {Dx(t),t € T} called the deviation of
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the stochastic process {X (t),t € T} by
Dx(t) = X(t) —mx(t), teT. (2.19)
It is easy to see that the deviation is also an L? process and has zero mean function.
Next we define the power function Px : T — C of the process X () by
Px(t) = E[|X(t)[’]. (2.20)

The power function Pp, of the deviation Dx is called the variance function of the
process X (¢). The positive square root of the variance function is called the standard

deviation function and is denoted by ox. Hence, it turns out that

0% (t) = BIX(8) - mx(®)P] = Px(t) - Imx (8)]". 221)

The correlation function Rx : T x T — C of the process X (t) is defined by
Rx(t,t') = E[X(#)X*()], t, t €T. (2.22)

The correlation function Rp, of the deviation Dx(¢) is usually called the covariance

function of the process X (t) and is denoted by Vx. Consequently, it follows that

Vx(t,t) = E[(X(t) —mx()(X"(t) - mx(t))] (2.23)
= Rx(t,t') —mx(t)mx(t') (2.24)

for t,t' € T. The L? process X (t) is said to be uncorrelated if Rx(t,t') = 0 for any
t, ¢ € T witht £¢'.

Let T be a set of numbers. Then, the L? process {X(t),t € T} is said to be wide-
sense stationary (WSS)if mx(t) = mx(t') and Rx(¢,t') = Rx(t+0,t'+0) forany ¢, t' € T
and any number ¢ such that ¢t + 4, ' + § € T. Consequently, X (t) is WSS if and only if

there exist a constant ¢ and a function rx such that
mx(t) =c (2.25)

and
Rx(t,t —0) = rx(0) (2.26)

forany ¢t € T and any § witht —§ € T.
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2.3 Statistics of L2 Processes

In this section, we define various parameters to characterize stochastic processes.
Throughout this section, we assume that a measure space (T, %, 1) and an L? process
{X(t),t € T} are given. We assume that y is o-finite. We first define the normalized
mean square mean (NMSM) to quantify the relative significance of the mean compared
to the deviation. Next, we define, in turn, the normalized mean square covariance
(NMSYV), the normalized mean square correlation (NMSR), and the re-centered nor-
malized mean square correlation (RC-NMSR) of the process. Throughout this section,
we assume that the functions myx, Rx, and Vx are well-behaved so that the integrals of
them are well-defined. Note that the parameters we define depend on the choice of the
measure u. However, for notational convenience, we will not mention the dependence

explicitly in the definition.

2.3.1 Normalized Arithmetic Variance of Mean Function

In this subsection, we define parameters to characterize effectively the mean function
mx of the process. First we consider the arithmetic mean (mx)r and arithmetic vari-
ance (lmx — (m X>T|2>T of the mean function mx. These parameters are among the
most simplest parameters and are usually very effective for the characterization of the
mean function myx. In many cases, we are interested in the overall shape of the mean
function mx rather than the scale. For such cases, we define the normalized arithmetic

mean (NAM) v,,(mx) and the normalized arithmetic variance (NAV) v,(mx) by

_ (mx)r
)= T mr 227
and
(Jmx — (mx)r[")
vy(mx) = 5 T (2.28)
(Imx[")r
respectively, assuming that (|m,|?),, # 0. It immediately follows that
vw(mx)=1- |1/m(mX)|2. (2.29)

Consequently, it follows that 0 < v,(mx) < 1 and hence that 0 < |v,,(mx)| < 1. Often
multiplying mx by a unit magnitude complex number does not make any difference in
the situation. In such a case, v,(mx) becomes the primary parameter for the shape of

the mean function.
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2.3.2 Normalized Mean Square Mean

We are often interested in characterizing the amount of energy contained in the mean
relative to that in the deviation. For example, consider a random variable Y. Assume
that 0 < E[|Y|?] < co. Then, we define the normalized square mean (NSM) of the

random variable Y by
m(Y)[?
2.30
to quantify the fraction of energy is stored in the mean. If the NSM is close to 1,
the deviation is negligible so that we can approximate the random variable Y with a

number m(Y) without severe loss of accuracy.

For the L? process X (t), we define similar quantity called the normalized mean
square mean (NMSM) M{X} by

/ mx|? dps
M{X}="L (2.31)

/PXdu
T

Note that we can write (2.31) similarly to (2.28) to appreciate the meaning of NMSM
more clearly. In other words, we can rewrite the NMSM as <|mX|2>T / <PX>T. With
this expression, we see that NMSM is an arithmetic mean of the square of the mean
function with a normalization. From now on, we will not use the notation of arithmetic
mean again for direct mathematical expression. When the numerator is oo, the right-

hand side of (2.31) will be understood to be the common limit of the sequences

[t d
Tn

Px du

(2.32)
Tn

for any sequences {T},}2° ; of measurable subsets of T" such that T,, C T;,;; and 0 <
an Px dy < oo for each n. If the sequence (2.32) does not converge or if it converges
to different limits depending on the choice of sequence of subsets {7}, }, the NMSM is
not defined. In all following definitions, we will mean by similar fractions the limiting

values when the numerators are co.

As a corresponding quantity to the standard deviation, we define the normalized



20 Chapter 2. Statistics of L? Processes

mean square deviation (NMSD) D{X} by

/agfdu
T

D{X}=20 . (2.33)
/ PX dﬂ
T
Since Px = |mx|? + 0%, it follows that
M{X}+D{X} =1 (2.34)

and that 0 < M{X}, D{X} < 1.

2.3.3 Normalized Mean Square Covariance

In many problems, two random variables Y and Z can be regarded to be essentially the
same if Z = Y + ¢ for some real or complex number c. Consequently, in studying the
similarity between two random variables Y and Z, we are often more interested in the
correlation between the deviations Dy and Dyz. Intuitively speaking, we often want
to determine if Y and Z have the tendency of coincident increase or decrease in their
values, which is usually determined by the covariance V (Y, Z). Here, we note that the
scaling of a random variable by a real or complex number affect the value of covariance.
However, as in the addition of constant, we often regard two random variables Y and
Z the same if Z = cY for some non-zero real or complex number c. In other words,
the tendency of simultaneous increase or decrease are often more important than the
amount of increase or decrease. Consequently, to characterize the similarity between
random variables Y and Z, we usually use the absolute value or the absolute square
of the correlation coefficient p(Y, Z) defined by
(Y, Z) = % (2.35)

if the deviations o(Y') and o(Z) are not zero.

For the given L? process, we define the normalized mean square covariance (NMSV)
V{X} by
[ Wl )P d x (et

TxT

[t du(t)r

to characterize the degree of freedom among the random variables in the process. Since

V{X}= (2.36)
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|Vx (t,t)|* < Vx(t,t)Vx(t',t') for any t, t' € T,
0<V{X}<L (2.37)

If V{X} is very close to 1, the random variables in the process are highly correlated. As
the NMSYV decreases, there are more degree of freedom among the random variables

in the process.

2.3.4 Normalized Mean Square Correlation

In Section 2.3.3, we considered the situation when the addition of constant is not im-
portant. However, sometimes the values the random variables take are important. In
this case, we use correlation rather than covariance to compare two random variables.
As a corresponding quantity to the NMSV of the given process X (t), we define the
normalized mean square correlation (NMSR) R{X } by

/T IRx( O e ) (1)

R{X} = 5 (2.38)
| [ Rxtt.0duto)
T
Since |Rx(t,t')|* < Rx(t,t)Rx(t',t') forany t, t' € T,
0<R{X}<L (2.39)

We define an another related quantity called the re-centered normalized mean
square correlation (RC-NMSR) C{X} of the process X (t) by

| {IRx @R =~ pmx@Pimic @)F } o x w)(e.t)
TXT

[ rxte du(t)r

c{X} = (2.40)

It immediately follows that
C{X}=R{X} - M*{X]}. (2.41)

Consequently, it follows that C{X} < 1. However, it is not evident what the lower
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bound is. To find it out, note that

(V)R (Ve e () + OV (6 (6 e ) 1.2)

[ rxte du(t)r

C{X} =

(2.42)

Here, it can be shown that
/ e (Vi (, ) ma (£) d(i x ) (t,t) > 0. (2.43)
TxT

In fact, Vx is said to be positive semi-definite. A function K : T' x T' — C is said to be a

positive semi-definite or non-negative definite if

FrO)K (@, ) f(E) d(p x w)(t,t) (2.44)
TxT

for any f € L*(T, T, ). Consequently, it follows that

0<Cc{X}<1. (2.45)

2.4 Stochastic Degree of Freedom

In this section, we study the meaning of the NMSV and define the concept of the
stochastic degree of freedom of an L? process. We need the Mercer's theorem and the
Karhuenen-Loéve expansion theorem for such a purpose. Since we need a bit more
general versions than usually available ones, we briefly study the theorems in the first
subsection. Then, we study the relation between the NMSV and the effect degree of

freedom in the process.

2.4.1 Mercer’s Theorem and Karhuenen-Loéve Expansion

We first study bilinear expansions of kernel functions. Although there is a more gen-
eral theorem (refer to Chapter 10 in [16]), we consider the Mercer's thoerem, which
is sufficient for our purpose. Although they are not integral parts of the theorem, we

include (2.47) and (2.48) since they are needed in the next subsection.

Theorem 2.1 (Mercer’s Theorem).
Let (T, %) be a compact topological space and let i1 be a finite measure on (T,B(%)) such
that u(E) > 0 for any E € ¥. Assume that K : T x T — C is continuous, (p x p)-almost
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everywhere nonzero, and positive semi-definite. Then, there are a sequence {\;};cr of
positive real numbers and a sequence {¢; : T — C};cy of continuous orthonormal func-

tions such that

K(t,5) = > Nthi(t)97 (s)- (2.46)
el
Here, I = {1, 2, --- , N} for some finite natural number N, orI = N, the set of all natural

numbers. If I = N, by the equality in (2.46), we mean that the series on the right-hand
side converges absolutely and uniformly to K.

In particular; we have

2 L w
| IRk () = 3 (2.47)

i€l

and

/ K(t,t)dpt) = ) A (2.48)
T iel
To understand the background of the above theorem, we introduce the Hilbert-

Schmidt operator A : L*(T,B(%),u) — L*(T,B(T),un) associated with the kernel K
that is defined by

A(z)(t) = /TK(t, s)x(s)du(s), teT. (2.49)

Then, ); is an eigenvalue and 1); is a corresponding eigenfunction of the operator A for
each i € I. It is well-known that {¢; };c; spans L*(T,B(%), u) — Ker(A).! Moreover, for
any given positive real number ¢, only finite members of {);};c; can exceed ¢, regard-
less of the cardinality of I. The proof of this form of the Mercer theorem can be found
in Chapter 10 of [16].

In short, Mercer’s theorem states that a well-behaved kernel function has a bilinear
expansion in terms of positive eigenvalues and orthonormal eigenfunctions. We can
apply this theorem to the covariance function of a stochastic process and deduce the
Karhuenen-Loéve expansion. For example, Chapter 1 of [15] describes the Karhuenen-
Loéve expansion of an L? stochastic process with a compact interval as the index set.
In many cases, we want to consider a more general index set T' than just a compact
interval such as a finite union of disjoint rectangles. So we restate the Karhuenen-
Loéve expansion in a little bit more general form that is suitable for our purpose, which

can be proved following the same lines of reasoning as in [15] with a few modifications.

Theorem 2.2 (Karhuenen-Loéve Expansion).

'The kernel Ker(A) of a linear map A : X — Y is defined to be the set {x € X|Az = 0}.
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Let{X(t), t € T} be a complex valued stochastic process defined on a compact rectifiable
subset T of a Euclidean space. Assume that p is the Lebesque measure restricted to the
Borel subsets of T. Assume that the covariance function Vx of X is continuous and ({1 x
w)-almost everywhere nonzero. Then, by Mercer's theorem, there exist a sequence {\; }icr
of positive real numbers and a sequence {; : T — C};cr of orthonormal functions such
that (2.46) holds with K replaced by Vx. If we define a sequence {X;};cr of random

variables by 2

X; = / P37 (£) X (¢) dt, (2.50)
T
then
E[X;X;] - E[X;|E[X]] = Nidij Vi, j 2.51)
and
X(t) —mx(t) = Y _(Xi — E[Xi])oi(?) (2.52)
el

where mx (t) denotes the mean function of X (t). If I = N, then the equality in (2.52)
means that the summation in the right-hand side converges in mean square to X (t),

uniformly in t.

This theorem states that a well-behaved stochastic process can be expanded in
terms of a sequence of random variables and orthonormal functions. We can regard
each random variable as an orthonormal projection of the stochastic process. In some
sense, we can regard each projection as a degree of freedom. The eigenvalues (of the
Hilbert-Schmidt operator associated with the covariance function) are the variances of
the random variables and determine the relative significance of the random variables.
We note that random variables with small variances will have small effects on the
random process (except perhaps on the mean function). In the next subsection, we

study how the NMSYV is related to the eigenvalues.

2.4.2 Definition of Stochastic Degree of Freedom

Let {X(t), t € T'} be a well-behaved stochastic process that satisfies all the conditions
of the Karhuenen-Loéve expansion theorem. Let {\;};cr and {¢;};cr be the sequences

of positive scalars (or eigenvalues) and orthonormal functions in the bilinear expansion

2If T is a compact rectifiable subset of a Euclidean space, {X (t),t € T} is an L* stochastic process with
continuous covariance function, and g : T — C is continuous, then the Riemann integral [, g(t)X (t)dt is
well defined and converges to a complex random variable in the L? sense. Note that we have to consider
the limit of the Riemann sum instead of considering the lower limit or the upper limit because of the lack
of order property in this case [15].
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of the covariance function Kx. Since K x is continuous on a compact set 7', it is bounded
so that [ Kx(t,t) du(t) < oo. Also, [ Kx(t,t)du(t) > 0 since A;'s are positive. Hence,
the NMSV V{X} of X is well defined and is given by

PR
V{X}=-"L (2.53)

5

el
which follows from (2.47) and (2.48).

To appreciate the meaning, consider two positive real numbers x and y with z < y
and choose any positive real numbers z’ and ¢/ such thatz < z' < ¢ <y withz' + 3 =
z + y. Then, we have

2 +y? < 2?4y (2.54)

This implies that the NMSV becomes smaller as the the s become more evenly dis-
tributed. As shown in the previous subsection, not all the )\;'s are equally significant.
In particular, for any given positive real number ¢, we can choose an integer N such
that Y, v A; < € (which implies that ),y A\? < £?). Since a function y/z of real vari-
ables z and y is continuous in both z and y except at z = 0, this implies that we can
choose N so that VIV){ X} defined by

ZV

YN xy = izt (2.55)

)

becomes arbitrarily close to V{X}, by making ) .. » A; and hence ZD ~ A2 very small.
Now assume that Aj, ---, Ay are chosen so that Z]\Ll Ais ZZ (A2, and VIM{X} are

close enough to 3,7 Ai, 3.7 A7, and V{X}, respectively. Then,

N 1 Ka 1)\?
V{X} ~ W ){X}:NJFZ(A _N> (2.56)
=1

where Ay = Zfi 1 Ai- This shows more clearly that NMSV indicates how evenly the
non-negligible eigenvalues are distributed. Note that NMSV takes the smallest value
1/N when all the N eigenvalues happen to be the same. So if we have N roughly
equally strong random variables with all other eigenvalues negligible in the Karhuenen-

Loéve expansion, then NMSV of the given stochastic process is approximately 1/N.
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Regardless of the distribution of the eigenvalues, the NMSV characterizes the overall
covariance of a given stochastic process. If 1/V is close to a natural number N, then it
is possible to say that the overall covariance of the stochastic process is similar to that
of a stochastic process with equal N non-zero eigenvalues, which we regard to have N
degree of freedom. Observing this we define the stochastic degree of freedom F{X} of

an L? process X by .

VixX}

Consequently, by saying that a stochastic process has d stochastic degree of freedom,

F{X} = (2.57)

we mean that it has the same overall covariance property as a stochastic process has
with d equal non-zero eigenvalues. We note that the stochastic degree of freedom is

not necessarily an integer but that it is never less than 1.



Chapter 3

Wireless Communication

Channels

In this chapter, we describe randomly time-variant linear channels to be studied through-
out this report. In most wireless communications, narrow-band or wide-band informa-
tion signals are modulated by high frequency carriers and then transmitted over a
radio link. A radio link can be modeled accurately as a linear time-variant system.
Due to various reasons, it is necessary and useful to regard a given radio link chan-
nel as randomly time-variant. Consequently, we will regard a wireless communication
channel as a randomly time-variant linear system. Since a linear system can be effec-
tively described by it's system functions, we describe a linear channel by the system
functions. In particular, we will regard the system functions as stochastic processes,
which will be assumed to be Gaussian random processes in many situations. In the
following, we briefly describe the physical and mathematical backgrounds of wireless
communication channel characterizations. In Section 3.1, we briefly introduce basic
electromagnetic propagation mechanisms to understand various aspects of wireless
communications. In Section 3.2, we discuss the usual paradigm of hierarchical channel
description. In particular, we discuss why multipath fading effect is usually discussed
independently from that of shadowing and multipath fading. Then, we provide def-
initions of various terminologies and theoretical backgrounds for linear time-variant
channel modeling with complex base-band representation in Section 3.3. Finally, in
Section 3.4, we describe the stochastic channel models we employ throughout in this

report.
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3.1 Electromagnetic Wave Propagation

In this section, we discuss various mechanisms of electromagnetic wave propagation.
Although electromagnetic waves are described accurately by Maxwell equations [17,
18], itis generally a very demanding job to solve them in practical wireless communica-
tion environments. Consequently, the behaviours of electromagnetic waves in practical
environments are analyzed and understood as combined effects of various well-known
phenomena such as scattering, reflection, refraction, and diffraction, which are re-

garded as basic propagation mechanisms in wireless communications.

3.1.1 Free Space Propagation

It is well-known that electromagnetic wave and light are the same physical entity with
different interpretation. In general, we call it light if the frequency is very high (> 10
Hz). Consequently, they exhibit fundamentally the same behaviors with difference in
the scale. Since the light is visible, it is often helpful to recall the behavior of the
light in the study of electromagnetic wave propagation. Assume that there is a point
light source in a free space emitting P joules per second isotropically. Let's consider
a sphere of radius r with center at the light source. Due to conservation of energy,
the power passing through the sphere is still P. Since the area of the sphere is 4772,

2. Consequently, the power

the power per area passing through the sphere is P/4nr
per unit area is decreasing according to the inverse square law. Exactly the same law
of attenuation happens with electromagnetic wave if the distance between the source
and the observer is much larger than the dimension of the source. If the transmitter

and receiver are well separated in free space, the received power P, is given by

2
p _ PGGA

) SIEre 3.1
16 Lm2r? G.D

where P, is the transmitted power, G; the transmitter antenna gain, G, the receiver
antenna gain, r the distance between the transmitter and the receiver in meters, L the

system losses (L > 1), and A the wavelength in meters [19].

3.1.2 Scattering, Reflection, and Diffraction

Most wireless communication environments are usually much more complex than free
space. In usual urban wireless communications, there are various trees, cars, and
buildings that block, scatter, reflect, and diffract electromagnetic waves. Even in satel-

lite to ground mobile, we often have to consider the atmospheric effects. Generally,
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when electromagnetic waves interact with an object with dimension comparable to the
wavelength, we observe the phenomenon of scattering. On the other hand, we observe
reflection, refraction, and diffraction when the object is significantly larger than the
wavelength. Reflection and refraction are observed when the wave impinges on the
middle of the surface, while diffraction happens when the wave meets the edge of the

object.

Sometimes we can observe electromagnetic waves away from the transmitted di-
rection due to scattering. One of the most popular example of electromagnetic wave
scattering is Rayleigh scattering which explains why the sky becomes blue or red [17].
According to the Rayleigh scattering theory, blue color is scattered more than the red
color. Consequently, the light away from the incident direction is heavily weighted on
the blue color range. Generally, when electromagnetic wave is incident on an object, it
is partly passed and partly scattered. Also some of the energy can be absorbed by the
object. Water vapors in the atmosphere often absorb significant portion of transmitted

electromagnetic waves and thus attenuate the signal strength greatly.

When electromagnetic waves are incident on an object with dimension much larger
than the wavelength, we can observe the phenomena of reflection and diffraction. If
the surface of the object has irregularity of size comparable to the wavelength, the
scattering effect is also observable. In fact, it is possible to describe the effects of re-
flection and diffraction as the cumulative effect of scatterings [20]. When the surface is
smooth, the strengths of the reflected and diffracted wave depends on the electromag-
netic property of the materials, the angle of incident, and the frequency and the polar-
ization of the electromagnetic wave according to the Fresnel's formulas [17]. However,

if the surface is irregular, the reflected wave is further attenuated [21, 22, 19].

Consequently, even when the direct path between transmitter and receiver is ob-
structed, it is often possible to receive the electromagnetic wave signals due to various
objects that cause scattering and reflection objects. The effect of diffraction also con-
tributes to signal transmission over a geometrically obstructed area. The phenomenon
of diffraction can be explained using Huygen's principle, which states that all points
on a wavefront can be considered as point sources for the production of secondary
wavelets, and that these wavelets are combined to produce a new wavefront in the di-
rection of propagation. Diffraction is caused by the propagation of secondary wavelets
into the shadowed region. The amount of diffracted energy depends fundamentally
on the point of observation and the frequency. Generally, the diffracted energy be-
comes smaller as the observer approaches the obstacles in the shadowed region and

the frequency becomes larger. Consequently, it is generally better to choose low carrier
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frequency to allow signals to propagate to the shadowed areas.

3.2 Channel Modeling in Wireless Communications

In this section, we briefly describe the roles of path loss, shadowing, and multipath
fading in the characterization of wireless communication channels. The effect of path
loss and shadowing can be described by the amount of signal attenuation. Moreover, it
generally lasts much longer than the duration of a packet in a usual wireless commu-
nications. Unlike path loss and shadowing, multipath fading generally results in more
complex effects. In the following, we describe the relations among multipath fading,
shadowing, and path loss and discuss why multipath fading is described separately

from path loss and shadowing.

3.2.1 Multipath Fading, Shadowing, and Path Loss

In usual indoor or outdoor environments where there are various scatterers and reflec-
tors such as trees, mountains, cars, and buildings, the channel response fluctuates in
an unpredictable manner, while the transmitter or the receiver moves over a distance
on the order of a carrier wavelength. This fluctuation happens because of the phase
change of various signal components arriving at the receiver due to scatterers and re-
flectors. Movement of the receiver by a distance equal to a fraction of the wavelength
can make changes in the phases of the signal components by a similar fraction. As a
result, the signals can interfere with one another constructively or destructively over a
distance on the order of a wavelength. This is the reason why such a rapid fluctuation
happens. This phenomenon is known as the multipath fading in wireless communi-
cations because severe signal attenuation can happen due to the presence of multiple
routes of signal transmission.

By averaging over an area within a radius of several carrier wavelengths, we can
get the local or small-scale average power of the received signal. Consequently, by a
local or small-scale area, we mean a neighborhood within a distance of several car-
rier wavelengths. When there exists an obstacle near the receiver, this local average
power of the received signal changes when the receiver moves a distance of tens or
hundreds of the carrier wavelength depending on the size of the obstacle and the dis-
tance between the receiver and the obstacle. Such a fluctuation of local average power
is called shadowing. By averaging out the shadowing fluctuations, we obtain the aver-
age received power, which is determined by the (larger-scale or long-range) path-loss

and the transmitted power. Consequently, given the transmitted power, the received
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signal strength is determined by the addition of signal losses due to (large-scale) path
loss, (medium-scale) shadowing and (small-scale) multipath fading. The determina-
tion of any of the three losses in practical situations is a mathematically demanding
job. Because of the analytical simplicity and the effectiveness in performance analysis,

stochastic propagation models are widely adapted.

3.2.2 Multipath Fading and Hierarchical Channel Description

Most digital wireless communication systems are packet-based and the packet size is
usually kept small so that the effect of shadowing remains constant over each packet
duration. Moreover, if the bandwidth of the system is much smaller than the carrier
frequency of the signal, the frequency selectivity due to path-loss and shadowing can
usually be neglected. Consequently, path loss and shadowing effect do not involve any
signal distortion in usual wideband communications, although it affects the receiver
signal-to-noise ratio. Hence, in packet design, we generally treat multipath fading
separately from that of path loss and shadowing. To evaluate a particular system,
we first study the performance of the packet design considering only multipath fading
over a range of received signal-to-noise ratio. Based on the results, the performance
of the network layer strategies such as power control or retransmission techniques is
studied for given path loss and transmitted power level. Then, the results are used to
determine the link budget.

To illustrate the point more concretely, consider the problem of determining the
probability Pg(X) of error as a function of global average X of the signal-to-noise ratio
that is determined by the path-loss, the transmitted power and the noise power level.
Since the shadowing is constant over a packet duration and does not involve any fre-
quency selectivity, the local mean z of the signal-to-noise ratio for a given packet can
be written as £ = sX with the parameter s representing the shadowing loss. Because
the effect of shadowing on a packet is no more than a scaling of the signal-to-noise ra-
tio, it is possible to define the probability Pr(z) of symbol or packet error as a function
of the local average signal to noise ratio z. If the probability density function fg(s) of
the shadowing is given, then the probability Pg(X) of error as a function of the global

average X of the signal-to-noise ratio is given by
Pg(X) = / Pr(sX)fs(s)ds (3.2)
0

Here, we assume that the random variable S is properly normalized so that the expec-

tation value E[S] is unity. As stated previously, S is usually regarded as a log-normal
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distributed random variable with a suitable choice of variance.

3.3 Linear Time-Variant Channel Model

In the remainder of this report, we will confine ourselves on multipath fading. Conse-
quently, we will mean multipath fading channels by wireless communication channels.
In this report, we will model multipath fading channels as randomly time-variant lin-
ear systems. The linear system modeling of a radio link is generally very accurate
unless the carrier frequency becomes extremely high to reach the optical range. Be-
fore proceeding with the stochastic modeling, we first introduce some backgrounds and
terminologies to describe linear time-variant (LTV) channels. First, we introduce var-
ious system functions for LTV channels. Then, we study the complex representations

of signals and LTV channels.

3.3.1 System Functions

As 1s well-known, time-variant or time-invariant linear channels can be characterized
effectively by various system functions such as impulse responses [7]. Let h(7,t) denote
the channel response at time ¢ due to a unit impulse input at time ¢ — 7. Then, the

output y(t) of the channel due to an input signal z(t) is given by

y(t) = / " R bt — 1) dr. (3.3)
—o0
We call h(r,t) the time-variant impulse response of the channel. If the function h(r,t)
is independent of ¢, we call the channel time-invariant, in which case h(7,t) represents
the usual channel impulse response. However, if the channel is time-variant, h(7,t) is
not the channel response due to a unit input impulse at time ¢. Note that the channel
response at time ¢ + 7 due to a unit input impulse at time ¢ is h(7,t + 7).

For studying time variation of the gain h(7,t) at a particular delay time 7, it is

useful to consider the delay Doppler spread function k(t,v) defined by

o0
k(T,v) = / h(r,t) e 72 dt, (3.4)
—00
Consequently, the Doppler spread function k(7,v) characterizes the frequency content
of h(7,t) with respect to t at a given delay .

Since a signal can usually be represented as a sum of complex sinusoids, it is very

useful to consider the output of a linear channel due to complex sinusoids. Let ys(t) be
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the channel output due to the complex sinusoid z(t) = e/*7#t. Then,

ys(t) = /00 h(T,t)eﬂ”f(t*T)dT (3.5)
= H(f,t)zs(t) (3.6)

where H(f,t) is the time-variant transfer function of the channel defined by

H(f,t) = / ” h(r,t) e I¥I7 dr. (3.7)

—0o0

From linearity, it follows that the output y(t) due to a general input signal z(t) is
y(t) = / X(H)H(f,t) " df. (3.8)
where X (f) is the Fourier transform of z(t) defined by

X(f) = / ” x(t) 22 It df. (3.9)

— 00

If the channel is time-invariant, (3.6) implies that the output y(t) is also a monocro-
matic signal of the same frequency with possible change only in the amplitude and the
phase which are characterized by H(f,t). However, if the channel is time-variant,
then the transfer function H(f,t) involves time variation so that the output y;(¢) is no
longer monocromatic. To describe this phenomenon mathematically, we introduce the

Doppler spread function K (f,v) of the channel defined by
oo -
K(f,v) = / H(f,t)e 2™t 4t (3.10)
—0o0
Using the inverse Fourier transform relation
oo .
H(f,1) =/ K(f,v) ™™ du, 3.11)
—00

we can rewrite (3.6) as -
Ys (t) = / K(f, 1/) ej27r(f+y)t dv. (3.12)

From (3.10), we see that the output signal may contain signal component at frequency
f + v. In particular, the Doppler spread function K(f,v) represents the amplitude
and the phase of the output signal component at frequency f + v due to unit complex

sinusoid e/2"ft of frequency f.
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More generally, when the channel is time invariant, it follows from (3.10) that the

Fourier transform Y (f) of y(¢) is given by

Y(f) = H(f,6)X(f)- (3.13)

For time variant systems, by substituting (3.11) into (3.8), we obtain

y(t) = / N / T K(f,0)X(f) Uy df (3.14)
= /oo [/oo K(f —v,v)X(f —v)dv| 2™t df (3.15)

so that -
Y(f):/ K(f—v,v)X(f—v)dv. (3.16)

3.3.2 Canonical Complex Representation

A real-valued narrowband or wideband signal s(¢) can be represented by
s(t) = Re[z(t)e*™ /] (3.17)

where z(t) is a complex-valued signal with no spectral components outside frequency
region [—B, B] for some B and f. with 0 < B < f.. Here, f. is usually chosen to be the
carrier frequency of the signal. In this representation, the complex signal z(t) is called
the (complex) envelope of the signal s(t) and the complex signal 3(t) = z(t)e?2"f¢t is gen-
erally called the (complex) pre-envelope of s(t) with respect to e?fet. The pre-envelope
or the envelope of the real signal s(¢) is not defined uniquely by (3.17). However, for
physical and mathematical reasons [23], we define the canonical complex representa-

tion 5(t) of a real signal s(t) by
5(t) = s(t) + 75(¢) (3.18)
where §(t) is the Hilbert transform of s(¢) defined by

i(t) = lP/Oo ) g, (3.19)

s
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Here the letter P indicates that the improper integral is in the sense of Cauchy Princi-

pal Value. In other words,

P/oo 2(7) dT:lim{/tooﬂdT—i-/t_éﬁdT]. (3.20)

o t—T 510 4st—T oo T

The complex canonical representation is a special type of pre-envelope that is also

called an analytic signal [23, 24].

Some of the most important properties of Hilbert transform and analytic signal
representation are given in [25], which we summarize here.
1) Let
s(t) =) An cos(2m fut + 6r) (3.21)

where A,, and 0,, are constants. Then,
(t) =) Apsin(2mfut + 6p) (3.22)

and
§(t) =) Apelfned®mint, (3.23)

2) If S(f), 8(f), and S(f) are the Fourier transforms of s(t), 5(t), 5(t), respectively, then

—-3iS(f)  f>0
S(f)=4 o f=0 (3.24)
+jS(f) f<o.
and hence
25(f) f>0
S(f)=4 S(f) f=0 (3.25)
0 f<o.

3) Let z(t) be any complex-valued function with Fourier transform Z(f) vanishing for
all f < 0. Then, the signal z(t) is the pre-envelope of its real part.
4) Let

r(t) = h(t) * s(t) = /OO h(r)s(t —7)dr (3.26)

— 00
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where h(t) is either a real- or a complex-valued function. Then,

7(t) = h(t) * 5(¢) (3.27)
and hence
7(t) = h(t) * 5(t) (3.28)
so that
2H(f)S(f) f>0
R(f)=H(H)S(f) =4 H(FS() f=0, (3.29)
0 f<O0

if R(f), H(f). S(f). and S(f) are the Fourier transforms of #(t), h(t), s(t), and 3(t),
respectively.

5) For any two waveforms z and y, we define their cross correlation R,y by

T
Ryy(7) = lim — / z(t)y*(t —7)dt (3.30)
and their cross-power spectrum W, by

Way(f) = /oo Ry (7)e 9217 dr. (3.31)

—Oo0

We usually denote by R, the autocorrelation R, of . Then,

Roy(1) = Ry(-7) (3.32)
Ros(t) = Rao(7) (3.33)
Ry(—7) = —Ru(r) (3.34)
Rs(r) = Ru(r) (3.35)

(3.36)

3.3.3 Baseband Representations of Linear Time-Variant Systems

In this subsection, we briefly discuss equivalent complex baseband representation of
bandpass linear time-variant channels. The following theorem provides the necessary

mathematical backgrounds.

Theorem 3.1 (Equivalent Complex Baseband Representation).

Consider a channel with time variant impulse response h(t,t). Let y be the output due
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to the input signal z. We assume that all Fourier transforms of h and y exist and are
well-behaved. Assume that there exists a positive real number A such that X (f) = 0 if
|f| < A and that K(f,v) =0 for all f € R if |v| > A. Then,

y(t) = /00 h(r,t)Z(t — ) dr. (3.37)

—0o0

Moreover; for any f. € R, if we define ¢, yg, and hg by

zp(t) = Z(t)e I2Set (3.38)
yp(t) = y(t)e >, (3.39)
and
hp(7,t) = h(r,t)e 2mfeT, (3.40)
then -
uB(t) = / hi(r, )z s(t — 7) dr. (3.41)

Proof. Since the second part of the theorem is immediate from the first part, we prove

only the first part. To prove (3.37), we start from the relation
Y(f) = / K(f—v,v)X(f —v)dv (3.42)
A
= / K(f—v,v)X(f —v)dv. (3.43)
A

From the hypothesis, it follows that

A
Y (0) = /A K(—v,v)X(—v)dv =0. (3.44)
and that
Y(f) = ) >0, (3.45)
0 if f<O0.
Now we have
oo A .
g(t) = 2 [/ K(f —v,v)X(f —v) dy] eI It gf (3.46)
0 -A
) A
= [/ K(f—V,V))Z(f—z/)dlx]ejzrftdf (3.47)
A

o0

A
[/ K(f —v,0)X(f —v) du] eI It gf, (3.48)
—A

—00
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since X (f —v) = 0if f < 0and v > —A. Consequently, it follows that

gt) = /OO [/Oo K(f —v,v)X(f — v)dv|e? Tt df (3.49)
= /00 h(r,t)Z(t — ) dr. (3.50)
O

The above theorem implies that the channel can be described by zp, yp, and hp.
Since the signals z and y and the time-variant impulse response h can be recovered
from zp, yp, and hp and vice versa, the two representations of the channel are equiv-
alent. In the above theorem, f. can be chosen arbitrarily. However, in practical nar-
rowband or wideband communication systems, we usually choose as f. the carrier
frequency. In this case, there exists a positive real number W with W < f, such that
X(f) = 0for f > W, which implies that Y (f) = 0 for f > W + A. Because the spectra
of the input and the output signals are localized around 0, we call the resultant rep-
resentation by xp, yg, and hp an (equivalent) complex baseband representation of the

system.

3.4 Randomly Time-Variant Linear Channels

Throughout this report, we will assume that a wireless communication channel is a
randomly time-variant linear system. More concretely, we will assume the wireless
communication channels are linear time-variant systems with sample functions of
some stochastic processes as the system functions. The channels are thus specified
by the stochastic processes for the system functions, which we will just call the system
functions from now on. For example, the time-variant frequency response H(f,t) of a
channel will be assumed to be a stochastic process. In this section, we introduce vari-
ous terminologies to describe randomly time-variant linear channels. First, we briefly
discuss the backgrounds of randomly time-variant linear channel models. Next we de-
fine the specular and the diffuse components of the channel system functions. Then, we
provide notations for the correlation functions and the covariance functions. We define
various concepts to characterize the time and the frequency dispersions of a channel.
Throughout this report, we will assume that the time-variant frequency responses are
L? processes with well-behaved first and second order moments. In particular, we will
assume that the diffuse component of a time-variant frequency response is wide-sense

stationary in both frequency and time variables. Also we will assume that all system
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functions are complex representations, namely, either pre-envelop or envelop repre-

sentations of the channel system functions.

3.4.1 Introduction

In usual digital communications, a short duration packet is transmitted and treated in-
dependently from other packets. Consequently, the effectiveness of a particular packet
design depends solely on the channel characteristics during a packet duration. Since
the channel characteristics change unpredictably from packet to packet and since we
are mostly interested in the average system performance, we model a multipath fad-
ing channel as a randomly time-varying system. In real situations, the average system
performance can be defined to be the average of the system performance over a long
period of time. However, in most wireless communication researches, we consider the
ensemble average of the system performance by regarding the channel response as a
stochastic process. In particular, we will assume, in the remainder of this report, that
channels are randomly time-variant linear systems [8]. Such randomly time-variant
linear channels will be described by regarding the system functions as stochastic pro-
cesses. Consequently, wireless communication channels will be described by specifying
the characteristics of (randomly time-variant) system functions. In many cases, we will
assume the system functions are complex Gaussian stochastic processes. Gaussian
stochastic processes are completely specified by the mean and the correlation func-
tions. The first and the second order statistics are usually regarded to be among the
most important characteristics for other stochastic processes, too. Consequently, a ran-
domly time-variant linear channel is usually specified by the first and the second order

statistics.

3.4.2 Specular and Diffuse Components

The means of the channel responses are called the specular components while the de-
viations are referred to as the diffuse or scattering components of the responses. We
will follow the conventions of Section 2.2.4 in denoting various first and second order
statistics. In particular, m, R, and V will stand for the mean, the correlation, and
the covariance functions, respectively. The letter D will stand for the diffuse compo-
nent. For example, we will write mg(f,t) and Dg(f,t) for the specular and diffuse

components of the time-variant frequency response H (f,t), respectively, so that

mH(f’t) :E[H(fat)] (3.51)
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and
DH(fat) :H(f’t)_mH(fat)' (352)

Also we will write, for example, Rg(f,t; f',t') and Vg(f,t; f',t') for the correlation and

the covariance functions of H(f,t) so that

and
Vu(f,t; f',t') = E[Du(f,t) Dy (f',¢)] = Ru(f,t; f,t') — mu(f,t)my(f,t).  (3.54)

3.4.3 Wide-Sense Stationary Uncorrelated Scattering Hypothesis

Throughout this report, we will assume the following two conditions. First of all, we
will assume that
E[Dy(7,t)Dp(r',t)] =0 (3.55)

for all f,¢t and f’,t'. Secondly, we will assume that there exists a function p(r,t) called

delay cross-power spectral density such that
E[Dy(7,t) Dy (7', t)] = p(r,t — )6 (7 — 7). (3.56)

Consequently, the stochastic process Dy(7,t) is wide-sense stationary in ¢ variable and
uncorrelated in 7 variable. Such conditions are applicable to a wide range of channels.
If a channel has a zero specular component and satisfies the above two relations,
then we call it a wide-sense stationary uncorrelated scattering (WSSUS) channel. Con-
sequently, we will assume that a general channel system function consists of the spec-
ular component and the WSSUS diffuse component. For more theoretical justifications
and investigations, please refer to [8, 9, 26, 27, 28]. Note that p(r,0) is the delay power
profile of the diffuse component. The delay power profile describes how the average re-
ceived power is distributed with respect to the time delay and hence characterizes the
time dispersion of the diffuse component. We note that the baseband representation
hp(r,t) = h(, t)eﬂ”fCT also has the same delay cross-power spectral density, namely,

that
Vig (T, t;5 7, ') = p(r,t — t)o(r — 7). (3.57)

It is easy to see that

Vu(f,t; f',t) =P(f - f,t—1t) (3.58)
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where P(f,t) is the time-frequency correlation function defined by
P(f,t) = / p(r,t)e 927 dr, (3.59)
R

Note that the uncorrelatedness in the delay 7 implies the wide-sense stationarity in
the frequency f. The converse is also true, since the Fourier transform is invertible.
Note that Dg(f,t) is wide-sense stationary in both time and frequency.
Similarly, the Doppler delay spread function k(7,v) has the covariance function Vj
satisfying
V(v 7', V") = q(r,v)d (v — V')o(7 — ') (3.60)

where q(v, 7) is the scattering function defined by

q(T, V):/p(T,t)e_jm’tdt. (3.61)
R

We see the wide-sense stationarity of Dp(7,t) in time ¢ implies the uncorrelatedness of
Dy (7,v) in frequency v. Since Dg(7,v) is the weight of the mode of time variation of
the diffuse component, for a given delay 7, the scattering function ¢(v,7) defines the
average power distribution over the modes of time variation of the diffuse component.

Finally, we see that the Doppler-spread function K ( f,v) satisfies

Vi(f,v; f',V) = Q(f — flv)d(v — ) (3.62)

where Q(f,v) is the Doppler cross-power spectral density defined by

Q(f,v) = /R q(r,v)e ¥ dr, (3.63)

Note that
P(f,t) = / /R ] q(r,)e U™ dr dy (3.64)
= /R Q(f,v)e’>™ du. (3.65)

3.4.4 Time Selectivity and Correlation Time

We often say that a channel is time non-selective if it is time-invariant. Similarly, if a
channel is time-variant, we say that it is time selective. To characterize how fast the
channel changes, we often use the concept of correlation time. For simplicity, we first

consider the case in which all reflected, diffracted, and scattered signals arrive at the
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same time (without distortion). In such a case, we can represent the impulse response
h(t,t) as
h(7,t) = a(t)o(7). (3.66)

In this case, the channel is said to be frequency flat and acts as a time varying multi-

plier. Mathematically, we define the correlation time T.(k,t) of level k € (0,1) at timet

by
_ _ [Ela(t)a(t + 2)]] .
Te(k,t) = sup {5 >0 ‘(Vw € [—9, 6]) (\/E[|a(t)|2]E[|a*(t o > )} (3.67)
and the correlation time T.(k) of level k by
Te(k) = inf {Te(k,t) | t}. (3.68)

Intuitively, the correlation time T¢(k,t) of level k at time ¢ is the largest time duration
over which the channel gain remains correlated higher than s around time ¢ and the
correlation time T¢(x) is the largest time duration over which the channel gain remains
correlated higher than x around any time instant. We see that T.(k,t) = T.(k) for any
t and k, if the channel is wide-sense stationary. Usually, k is chosen to be close to 1,
in which case the channel can be regarded to be roughly the same over the duration of

correlation time.

For time dispersive channels, we can consider the time selectivity of the impulse
response h(7,t) at each delay 7 as in the above description. Certainly, the situation is
more complex because we have correlation time at each delay 7. It is not evident that
there is a way to efficiently define the overall correlation time of the channel in this
case because channel gains at a particular delay may or may not dominate the whole

channel.

3.4.5 Frequency Selectivity, Coherence Bandwidth, and Delay Spread

In addition to the time selectivity, multipath fading also exhibits frequency selectivity.
A channel is said to be frequency selective if it exhibits time dispersion. Again for
simplicity, we first consider a frequency selective but time non-selective channel with
impulse response k(7). Similarly to the case of time selectivity, we define the coherence
bandwidth B.(k, f) of level k € (0,1) at frequency f by

Bu(x, f) = sup {5 ‘(Vw e [-6,3)) BHOE(f+o)l n)}

3.69
VEHPIENE(F + oF ~ (3:69
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and the coherence bandwidth B.(k) of level k by
Be(k) = inf{Be(k, f) | f} (3.70)

Again, T,(k, f) = Tc(k) for any k and f if H(f) is wide-sense stationary.

Since the amount of frequency selectivity is generally inversely related to that of
time dispersion, we often use measures of time dispersion as measures of frequency
selectivity. Maximum delay spread and root mean square (rms) delay spread are often
used as measures of time dispersion. To define these parameters, we first consider the

power function Py (7) of h(7), which is defined by
Pi(7) = B[|A(7)[] (3.71)

The power function P is also called the delay power profile or power delay profile of

the channel. We define the maximum delay spread Ty, (1) with thresholdn € (0,1) by

b [es)
Tmaz (1) = inf {b —a / Py(r)dr >n- / Py(7) dT}. (3.72)

The threshold 7 is usually chosen to be very small so that 7,,4,(7) actually means the
relative time delay between the first arriving and the last arriving signal components.
Although maximum delay spread captures some aspects of the delay profile, it fails
to characterize the detailed structure between the first arriving and the last arriving

signal components. As a more compelling measure, the rms delay spread T, is defined

by
fe’e) 0o 2
/ T2Ph(7') dr / TPy(7)dT

Trms = —O;Jo - _%(C)) : (3.73)

/ ~Pr)dr / Pdr

Since the delay profile P,(7) is a non-negative real valued function, we can regard it as

a probability density function by suitable normalization. With this identification, we
can interpret the 7,,,s; as the variance of the time delay with respect to power spread.

Consequently, 7,4, indicates the width of the time dispersion.

By definition, the coherence bandwidth depends on the choice of the level k. Con-
sequently, it is often more simple and convenient to use the rms delay spread as the
measure of frequency selectivity. Moreover, there have been various efforts to relate

the coherence bandwidth and the rms dely spread. Due to the inverse relation, the
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coherence bandwidth B, of a channel is often defined by

B, - F (3.74)

Trms

with a suitably chosen constant k. Typical value of k is 1/8 [29]. However, there are

several other choices for k£ depending on the situations [30].



Chapter 4

Characterization of WSSUS

Channels

The performance of wireless communication systems are generally bad for channels
without any direct line of sight path. Performance evaluation under such an adverse
situation is important not only because it is important to guarantee quality of service
but also because such a situation is typical in wireless communications. As discussed
in the previous chapter, such a channel will be assumed to be a WSSUS channel.
In this chapter, we define a set of parameters, collectively called, normalized mean
square covariance (NMSV). We define the normalized frequency mean square covari-
ance (NFMSV) and the normalized time mean square covariance (NTMSV) to char-
acterize the frequency selectivity and the time selectivity of a channel, respectively.
Normalized frequency-time mean square covariance (NFTMSV) is defined to charac-
terize the combined frequency and time selectivity of a channel. We show how these
parameters can be computed from the scattering function of a channel and we define
the effective number of resolvable paths and the effective Doppler spread by reinter-
preting the concept of stochastic degree of freedom. We then show how closely these

parameters are related to the system performance.

4.1 Definitions

In this section, we define parameters for linear stochastic channels with well-behaved
time varying frequency response H(f,t). We first define the normalized frequency
mean square covariance (NFMSV) to characterize the frequency selectivity. Then, nor-
malized time mean square covariance (NTMSV) is defined to characterize the time

selectivity. For the combined frequency and time selectivity, we define normalized
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frequency-time mean square covariance (NFTMSV). In the following, we denote by

Vi (f,t; f',t') the covariance function of the frequency response, i.e.,

Vu(f,t f',t') = BE[H(f,0)H*(f',t')] — BE[H(f, )| E[H"(f',1)]. 4.1

4.1.1 Normalized Frequency Mean Square Covariance

Let O represent a frequency region of interest. Then, we define the normalized fre-
quency mean square covariance (NFMSV) V¢(0©;t) of the channel over the frequency

region © at time ¢ by

J[ watsssropaar
Vi (©;t) = T8x0 . (4.2)

[/@VH(f,t;f, t) dfr

According to the definition of Appendix 2.3.3, V¢(©;t) is the NMSV of the stochas-
tic process {H(f,t), f € ©} where t is a given constant and © is an index set. Con-
sequently, it follows that V¢(©;t) lies in [0,1] and measures the stochastic degree of
freedom inherent in the channel frequency selectivity over the frequency region ©.
Later we define the effective number of resolvable paths by 1/NFMSV for a WSSUS
channel. In (4.2), we assume a limiting process discussed in Appendix 2.3.2 if the

numerator is oo as usual, which we will no longer mention.

4.1.2 Normalized Time Mean Square Covariance

Let T be a time region of interest. Then, the normalized time mean-square covariance
(NTMSV) Vi(f;T) of the channel over the time region T at frequency f is defined by

// \Va(f,t; f,t))|? dt dt’
_ TxT
— I
[ [ vatst55,0 dt]
T

Similarly to NFMSV, V,(f;T) belongs to [0,1] and measures the stochastic degree of

Vi(f;T) 4.3)

freedom in the channel time selectivity over the time region 7. Later we define the
effective Doppler spread by 1/NTMSV for a WSSUS channel.
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4.1.3 Normalized Frequency-Time Mean Square Covariance

Let €2 be a frequency time region of interest. Then, we define the normalized frequency-

time mean square covariance NFTMSV) V(1) of the channel over the region {2 by

/// Vi (f 65 1, t)|2dfdtdf dt'

[/ Vu(f,t; f, )dfdt

(4.4)

The NFTMSV Vy,(9) is the NMSV of the process {H(f,t),(f,t) € Q} where Q is the
two dimensional index set. Hence, it follows that V() is in [0, 1] and measures the

stochastic degree of freedom in the channel selectivity in the frequency-time region ().

Before preceding, consider the case of 2 = © x T. If Vg(f,t; f',t') does not change
appreciably for times in T or frequencies in ©, then V(1) is approximately the same
as V¢(05t) (t € T) or Vi(f;T) (f € ©), respectively. In particular, we have

limV;i{© x (£ = 6,¢+6)} = V(0,1) 4.5)

and

L Vyel(F = 6,5 +8) x T} = (). (4.6)

4.2 NMSYV for WSSUS Channels

Although we defined the parameters for any well-behaved stochastic process in Section
4.1, we are only interested in wide-sense stationary uncorrelated scattering (WSSUS)
channels in the remainder of this chapter. Consequently, all channels in the remainder
of this chapters will be assumed to be WSSUS channels. In this section, we show how
to compute the parameters from the scattering function of a given channel. Then, we
associate physical meanings with the stochastic degrees of freedom defined from the
parameters. For notations and relations of various scattering functions, please refer to
Section 3.4.

4.2.1 NMSYV and Time-Frequency Correlation Function

In this subsection, we show how we express V¢(0;t), Vi(f;T), and V() in terms of

various channel correlation functions. First of all, since Vg (f,t; f',t') = P(f — f',t —t'),
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we have
S roray
o o
. //TXT|P(0,t—t’)|22dtdt’ s
[P(0,0) /T dt]
and
//// |P(f—f,t—1t) | df dt df' dt’ o)

oo [ os]

Since the channel is wide-sense stationary in both time and frequency, NFMSV and
NTMSYV are independent of the time ¢ and the frequency f, respectively. Consequently,
we write V(0©) and V,(T') instead of V¢(0;t) and V,(f; T), respectively.

4.2.2 NMSYV and Scattering Function

It is not difficult to rewrite (4.7) - (4.9) in terms of p(7,t), ¢(7,v) or Q(f,v). Of these vari-
ations, the formulae with the scattering function ¢(7, v) are the most useful because of
the ease of physical interpretation and evident duality. To manifest the symmetry and

the role of the scattering function, we define a set of kernel functions K;(©;7), K;(v;T)

and K7(Q;v,7) by
‘/eJZWfT

(4.10)
2
‘/e]?m/tdt
Ky(v;T) = L . 4.11)
‘ [ a
T
and
‘// 6]27T(fT vt) dfdt
K¢ (5 v,7) 4.12)

‘// it

Note that if 2 = © x T, then K(Q;v,7) = K¢(0;7)Ky(v; T).
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As shown in Appendix B, we have

© //R2 p*(1,0)K¢(O, T — p(7',0) dr dr’
V#(©) =

5 4.13)
{/p(T, 0) dT]
R
// Q*(0,v)Ki(v — V; T)Q(0,v) dv dv'
Vi(T) = =% : (4.14)
[/ Q(0,v) dy]
R
and
//// a(r,v)Kpe(Qv — v, 7 — 7)q(r', V) dr dvdr' 4/
Vi (Q) = R? . (4.15)

([ drmara]

Note that [, ¢(7,v) dv = p(r,0) is the delay power profile of the channel. Consequently,
NFMSYV can be easily obtained from the delay power profile. Similarly, fR g(r,v)dr =
Q(0,v) is the Doppler Power Spectrum of the channel and hence NTMSV can be ob-
tained from the Doppler Power Spectrum of the channel.

From (4.13) - (4.15), we see that the NMSV’s are dependent not only on the scatter-
ing function but also on the regions of interest through the kernel functions. Although
the kernel functions can be calculated in principle for any well-shaped regions, we
are mostly interested in rectangular shaped regions. Consider a frequency region ©,
defined by

K-1
0, = [J[A+kw+w), A+ k(v +w) +w. (4.16)
k=0

where A, v and w are non-negative real numbers. So O, is a finite union of finite
intervals. The meaning of the choice of these regions will be apparent in the later
sections. It is not difficult to show (see Appendix C)

sin{rK (w + v)7} 1?

. _ s o2
K¢(©p;7) = K sin{r(w + o)} sinc”(rwT). 4.17)

In particular,
K;([A, B];7) = sinc*{n(B — A)T}. (4.18)

From the definition, we see that NFMSV and NTMSV are properties at a specific

time and at a specific frequency, respectively, while NFTMSYV is an overall channel
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property. Normally there is not a simple relation between these three parameters.
However, one simple case is worth mentioning in which we can factorize the scattering
function ¢(7,v) into the delay power profile p(7) and the Doppler power spectrum Q(v)

as

q(t,v) = p(T)Q(v). (4.19)

Delay power profile is a function of the distribution of the signal travel distance, while
Doppler power spectrum is related to the angular distribution of the received signal
power. Consequently, such a factorization is possible only if the angular distribution of

the scatters is independent of the signal travel distance. In this case, it follows that

/ K:(©;7 — p(T)p*(7') dr’ dr
Vi (0) = TR (4.20)

[/RP(T) dTr
Vi(T) = /R2 Ki(v = v T)Q(v)Q" (V) dv' dv

Jooe]

V(O x T) = Vi(©)V(T). (4.22)

4.21)

and

Although this factorization is usually not applicable to practical channels, this shows
product relationship between NFMSV, NTMSV and NFTMSV. This implies that a
channel has higher frequency-time selectivity when it exhibits both frequency and

time selectivities.

4.2.3 NFMSYV and Delay Power Profile

As pointed out previously, NFMSV can be obtained from the delay power profile of the
channel. In this subsection, we investigate the intuitive meaning of NFMSYV in relation
to the delay power profile. Consider a frequency region © = [A, B] of a WSSUS channel
with delay power profile

L—-1
p(,0) =Y pid(r — 7). (4.23)
=0

where the delay times 7;'s are chosen to be equally spaced. Assume that the delay

power profile is properly normalized so that ) p; = 1. Then, the NFMSV V¢([4, B]) is
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given by
L-1L-1

Vi([A,B]) =YY sinc®{n(B — A)(n — ) }pipr- (4.24)

=0 I'=0
Often we employ a tapped delay-line channel model choosing 7; = /(B — A) for each [
in (4.23). In this case, the NFMSYV has the form

L-1
1=0
which can be rewritten as
1 -1 1\2
== - =) . 4.26
Vf I + (pz L) ( )

We clearly see from (4.26) that V; is directly related to the fluctuation of p; over [.
Since the NFMSYV is smaller for more evenly distributed power profile, we can see the
channel has smaller NFMSYV if it has more non-negligible paths. Hence we regard
1/V4(0©) as the effective number of dominant paths and define the effective number L.
of resolvable paths of a WSSUS channel in the frequency region © by

L. — , (4.27)

Of course, the number L. is not necessarily an integer. However, this number gives a

simple and intuitive view of the frequency selectivity in the context of time dispersion.

4.2.4 NFMSYV and rms Delay Spread

To contrast NFMSV with the rms delay spread and the coherence bandwidth as an in-
dex of frequency selectivity, we consider a frequency band [A, B] of a WSSUS channel.

Assume that the delay power profile of the channel is given by
p(7,0) = p16(7) + p2d(7 — 108) + p3d (T — 20) (4.28)
where 8 = 1/(B — A). Now consider two simple cases :

Case-1: p; =05, p2=0.5 and p3=0 (4.29)
Case-2: p;=0.5, pop=0 and p3=0.5 (4.30)

We can immediately tell that, with Case-1, the rms delay spread is smaller and the

coherence bandwidth is larger. To see the situation more closely, let's plot
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Figure 4.1: Squared Correlation |E[H (t, f)H*(t, f')]|* versus the fractional frequency
separationy = (f— f')/(B—A). A channel with two equal strength paths is considered.
The separation between the two paths in the case 2 is twice as much as that in the case
1. In the case 2, we have larger rms delay spread and smaller coherence bandwidth.
However, the NFMSYV is the same for the two cases.

| [H(t, f)H*(¢t, f' )]|2 |P(f—f',0)|? as a function of the fractional frequency separation
= (f — f")/(B — A). It is easy to show

2
P(f— fLO) = cos”(107y), Case-1, @31
cos?(20my), Case-2.

Note the periodicity of the correlation. We see that Case-1 gives larger coherence
bandwidth. However, because the correlation is not monotonic, it is not easy to tell
which case exhibits more overall correlation. This is the reason why the coherence
bandwidth or the rms delay spread is not a suitable parameter for describing the over-
all frequency selectivity when the bandwidth is relatively large. In fact, the NFMSV
is 0.5 for both cases.

4.2.5 NTMSYV and Doppler Spectrum

In the previous subsection, we studied how the NFMSV is related to the delay power
profile of a channel. Because of the duality between NFMSV and NTMSYV, which is
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evident in (4.7) and (4.8) or in (4.13) and (4.14), we can draw a completely similar
conclusion about the NTMSV. We define the effective Doppler spread B, of a WSSUS

channel in the time region 1" by
1

B, = .
R
Similarly to NFMSYV, the NTMSYV is related to the flatness of the Doppler power spec-

(4.32)

trum. With more flat Doppler power spectrum, we have smaller NTMSV and hence ex-
pect more time selectivity. However, there are subtle physical differences between the
delay power profile and Doppler power spectrum. The delay power profile is basically
determined by the surrounding environments. However, not only the environments
but also the movements of the transmitter or the receiver are crucial factors determin-
ing the Doppler power spectrum. More specifically, the speed of the movement affects
the width of the Doppler power spectrum, while the direction alters the shape. More-
over, the properties of transmitter and receiver antennae play fundamental roles in
the determination of the Doppler power spectrum. Consequently, the Doppler power

spectrum is not a function only of the surrounding environments.

4.3 Performance of Simple Diversity Combining

In the previous sections, we have shown conceptually how closely the NMSV is related
to the selectivity and the degrees of freedom of a WSSUS channel. So it is natural to
expect close relationship between the NMSV and the performance of systems designed
to exploit the selectivity. Since diversity combining plays fundamental role in most
practical systems designed to exploit the channel selectivity, we first consider the re-
lationship between the NFMSYV and the performance of a simple diversity combining
scheme for frequency selective fading channels. The system we consider can be de-
scribed as a multicarrier communication system with a repetition code. The receiver
detects the symbol with a decision statistic formed by the maximum ratio combining
scheme. We show through analysis that there exists close relationship between the
NFMSYV and the system performance. In particular, we show that the variance of the
decision statistic is directly related to the NFMSV. This is important because the fluc-
tuation or the variance of the decision statistic should depend fundamentally on the
degrees of freedom available for diversity combining.

In the remainder of this chapter, we will confine ourselves only to discrete-time
circularly symmetric complex Gaussian WSSUS channels with a finite number of re-
solvable paths. The fading levels at different times for a given path are realizations

of a zero mean circularly symmetric complex Gaussian random variable and are cor-
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related according to the Doppler power spectrum corresponding to the path. All the
systems considered are packet-based and the fading levels corresponding to different

packets are assumed to be independent throughout this section.

4.3.1 System Description

We assume that a frequency selective Rayleigh fading channel is given and consider a
diversity combining scheme using a repetition code. In this scheme, a binary informa-
tion symbol is modulated by binary phase shift keying (BPSK) and is transmitted K
times over K different narrow-band frequency regions. We assume the fading is con-
stant over each of the narrow-band regions. If the fading levels of the K regions are
independent and identically distributed, the diversity order combined by the repetition
code is defined to be K. In actual situations, the fading levels are correlated so that the
amount of diversity is decreased. We show through system performance analysis that
the amount of diversity exploited by the system can be characterized by the NFMSV of
the channel. We denote by Hy, - - - , Hg the fading levels of the K narrow-band regions.
The receiver is assumed to have all channel information such as symbol timing and the
channel gains Hy, -, Hg. If the symbol +1 (after BPSK modulation) is transmitted
and additive Gaussian noise {n;} is added at the receiver, the decision statistic .S can

be written as

K
S = Re[ZH}c‘(\/E,Hk + ng) (4.33)
k=1

where Ej is the received energy per information bit. We assume, as usual, that the
noises are independent and circularly symmetric with mean zero and variance Ny so
that E[n;*n;| = Nod;; and E[n;n;] = 0. The receiver decides +1 is transmitted if S > 0
and —1 otherwise. Note that Hi,--- , Hg are correlated complex Gaussian random
variables with zero mean. Let C denote the correlation matrix of the random vector
H = [H,---,Hg]t, namely, let C = E[HH']. ' We assume that E[HH'| = 0, which
is the case when the channel is an uncorrelated scattering channel. Consequently,
we are considering a complex Gaussian wide-sense stationary uncorrelated scattering
channel, which is a widely adopted channel model for a mobile communication system
evaluation. The fading levels Hy's are normalized so that tr{C} = Zle E[|H?] = 1.

The normalized frequency mean square covariance V¢(©) over the region © consisting

'By M* and M we denote the transpose and the Hermitian conjugate of a complex-valued matrix M.



4.3. Performance of Simple Diversity Combining 55

of the K narrow-bands is given by

K K
=3 [Cul®. (4.34)

k=11=1

4.3.2 Decision Statistic and NFMSV

We first show that the variance of the decision statistic is directly related to the

NFMSYV over the region. We will assume that b = +1 is transmitted.

Lemma 4.1.

The mean m(S) and the variance V (S) of the decision statistics S are given by

m(S) =+ Ep (4.35)
and
No
V(S) = Ey-Vf(©) + 35 (4.36)
Proof. It is easy to see that
K
E[S|=VE, Y E[H*| = VE 4.37)
k=1
and that
K 2
k=1
Since E[ngn;] = 0 for any k and I, the second term of the righthand side of (4.38)
reduces to
] KX
10> B| (Hine + Henf) (Hir + Hini)| (4.39)
k=11=1
1 KK
= 3 ; ; { BIH; H)Elngni] + B[HH; Bl } (4.40)
N,
= 20 (4.41)

2
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Since E[HH;] = 0 for any k and [/, we have

K 9 K K
E[{ > 1H2} ] = E[H}H,H} H) (4.42)

k=1 1=1
K , K K

= {ZE[|Hk|2]} +) ) ICul (4.44)
k=1 k=1 1=1

= 14+ Vf(@) 4.45)

where we used the fact that
E[ABCD] = E[ABJE[CD| + E[AC|E[BD] + E[AD]E[BC] (4.46)

for zero mean jointly Gaussian random variables A, B, C, and D [31]. Consequently,

it follows
No

V(S) = E[S?] — E*[S] = Ey- V4(©) + 5 (4.47)

O

The performance of the system depends on how often the decision statistic falls
below 0, which is generally closely related to the variance of the decision statistic S.
Consequently, given the energy Ep and the noise level Ny, the performance of the sys-
tem will depend heavily on the NMSV. As a special case, consider the asymptotic case
when S can be approximated as a Gaussian random variable. Such a situation hap-
pens when there is a large degree of freedom in H which implies small NFMSV. Since

S is assumed to be a Gaussian random variable, the probability of error P, is given by

m(S) 1
P = _— = _— 4.48
b Q(U(5)> Q( vf(@)+—évﬁb> -

where the function Q(z), which we shall call the Standard Normal Error Function, rep-

resents the complimentary distribution function of a standard normal random variable

that is defined by
[e.e]
142
T) = e 2" dt. 4.49
Q) /a: Ver (49)

This shows that the probability P, of bit error is monotonically increasing with V¢(0©).

In particular, the performance approaches that under an additive white Gaussian
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noise channel as V;(0©) approaches 0, which is anticipated.

4.3.3 Exact Probability Decision Error

The validity of Gaussian assumption of S depends on the signal-to-noise ratio (SNR)
as well as the NFMSV. Smaller NFMSYV is required with higher SNR. This means
that (4.48) becomes invalid as SNR become larger. More precisely, it is valid only if
V¢(©) < No/Eyp. In fact, it is possible to derive the exact bit error rate. As shown in
Appendix D, the exact bit error probability P, is given by

Yr(B)

1 o0
Pb:2—/ Re
FO*Jﬂ*\/m(m”ﬂ

where 9 () is the characteristic function of the random variable R = Zszl |Hy|2. The

] dp (4.50)

characteristics function ¥ g(f) is given by [32]

K
1
Yr(B) = || ———~ 4.51)
() 191:[1 1 —jpAe
where Aq, -, Ak are the eigenvalues of the correlation matrix C.

Although (4.50) is exact, it is not evident from this formula how closely P; is re-
lated to V¢(©). To illustrate the relationship, we evaluate the (4.50) for some practical
channels. We consider 71 discrete-time delay power profiles obtained from actual mea-
surements. 41 of them have 240 taps, 3 have 300 taps and remaining 27 have 400 taps.
For all 71 profiles, the tap-spacing is 31.25 nsec. We assume that the system uses a
contiguous 10.375 MHz bandwidth with 332 equally sliced regions.> We assume that
the length K of the repetition code used is 332 and each coded symbol is transmitted
once over one of the 332 narrow-band regions. Consequently, the whole 10.375 MHz
frequency band is utilized for the single information bit transmission. The frequency
region O of interest is the whole frequency band of 10.375 MHz.

We tend to expect less overall correlation with larger rms delay spread. However,
the relation is generally poor for wide-band channels as illustrated in Figure 4.2, in
which each dark circle corresponds to one of 71 delay profiles. In particular, rms delay
spread is a parameter independent of the bandwidth of the frequency region under

consideration. We will show that there exists very close relationship between NFMSV

2Since we assume that the channel is a WSSUS channel, the situation does not depend on the carrier
frequency.
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Figure 4.2: Relation between NFMSV and rms delay spread. Each point corresponds to
the (rms delay spread, NFMSV) pair for one of 71 frequency selective fading channels.
There is not a close relation between rms delay spread and NFMSV.

and the performance of various systems. Consequently, such very poor relationship
between rms delay spread and NFMSV implies similarly poor relationship between
rms delay spread and system performance. To obtain the probability P, of decision
error, we first compute the correlation matrix C from the Fourier transform of the
delay power profile. Then, we compute the eigenvalues and the characteristic function

in turn. Finally, the probability of error is computed by (4.50).

Figure 4.3 shows some of the simulation results for various signal-to-noise ratios
(SNR’s). Again, each dark circle corresponds to the simulation results for one of 71
channels at a particular SNR. We see that the relation between NFMSV and the prob-
ability of error is impressive for relatively low SNR. As the SNR grows, the diversity
gain differentiates one channel from another in system performance and the relation
becomes less ideal. In particular, the relation is relatively weak for channels with rel-
atively mild diversity. As the NFMSV become larger, the channel becomes more like a
flat Rayleigh fading channel, while it becomes more close to Gaussian as the NFMSV
becomes smaller. Consequently, we usually expect more ideal NFMSV versus perfor-
mance relationship for extreme values of NFMSV. However, as we see in the figure,

the relation is still good for most cases.
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Figure 4.3: BER vs NFMSYV for a simple diversity combining scheme. Each point
corresponds to the (NFMSYV, BER) pair for one of 71 frequency selective fading channel
at By /Ny =6, 9 or 12 dB. We observe a roughly monotonic relation between the NFMSV
and the BER.

4.4 Peformance of Frequency Hopping Spread Spectrum

Systems

In the previous section, we considered the relation between NFMSV and the perfor-
mance of a simple diversity combining scheme. In this and the next section, we con-
sider more practical systems exploiting the diversity in a fading channel. First, we
study the relations between NFMSV and the performance of frequency hopping spread
spectrum (FHSS) systems through simulations.

We again consider the 71 WSSUS Rayleigh fading channels considered in the later
part of the previous section. We assume that during a packet duration the carrier hops
many times among the 332 narrow-band regions comprising the contiguous 10.375 MHz
band considered previously. In particular, a pseudo-randomly generated frequency
hopping pattern is used. We assume that the system uses BPSK as the modulation.
We assume that the frequency selectivity in each of the narrowband regions is negli-
gible. Since frequency hopping alone cannot exploit the frequency diversity, we also
consider channel coding schemes. A (31,15) Reed-Solomon (RS) code and a rate 1/2

convolutional code are used as examples of block and trellis codes, respectively. In the
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Figure 4.4: BER vs NFMSYV for an FHSS system with a (31, 15) RS code. Each point
corresponds to the (NFMSYV, BER) pair for one of 71 frequency selective fading channel
at E,/Ny = 10, 12 or 14 dB. We observe a roughly monotonic relation between the
NFMSYV and the BER.

following, we describe the detailed coding and packet design schemes and provide the

simulation results.

4.4.1 Reed-Solomon Code

First, we consider a (31,15) RS code [33] as an example of a block coding scheme. In
this coding scheme, 15 32-ary symbols are encoded to 31 32-ary symbols. Consequently,
each codeword consists of 155 coded bits for each 75 information bits. We assume that
each packet consists of 20 codewords so that there are 3100 coded bits in a packet,
which is RS-symbol interleaved by a block interleaver of size 62 by 10. The coded
symbols are written column-wise and are read row-wise. Each row of coded symbols
is transmitted over the same frequency slot but different rows are transmitted over
randomly and independently chosen frequency slots. This implies the hopping rate is
62 hops/packet and that the hopping pattern is random. Again, we assume that the
receiver has full knowledge of the channel. We use, for simplicity, a bounded distance
decoding algorithm. In our simulations, we transmit all zero information bits and the

receiver makes a hard-decision on each coded bit. We count the number of symbol
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Figure 4.5: BER vs NFMSV for an FHSS system with a (r=1/2, K=5) convolutional
code. Each point corresponds to the (BER, NFMSV) pair for one of 71 frequency selec-
tive fading channel at E,/Ny = 5, 7 or 9 dB.We observe a roughly monotonic relation
between the NFMSV and the BER.

errors and assume the errors are not corrected by the decoder if the number of symbol
errors exceeds the error correcting capability. We generate at least 20, 000 packets, that
is, at least 20, 000 realizations of channel fading levels, and then proceed to generate
more until we count 1,000 bit errors.

Figure 4.4 depicts the relationship between NFMSV and BER of the system. Again,
each point corresponds to the (NFMSYV, BER) pair for one of the 71 channels at a par-
ticular signal-to-noise ratio. We clearly see that there is also very a close relationship
between NFMSV and BER performance.

4.4.2 Convolutional Code

In this subsection, as an example of trellis codes, we consider the rate 1/2, constraint
length 5 convolutional code with 23 and 35 as the generators in octal from [26]. Each
packet is again assumed to have 3100 coded bits which correspond to 1550 information
bits, and the output of the convolutional encoder is bit interleaved by a block inter-
leaver of size 62 by 50. Coded bits are written column-wise and are read row-wise.

Again each row of coded bits is transmitted over the same frequency slot and differ-
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ent rows will be transmitted over randomly and independently chosen frequency slots.
Because our goal is not performance optimization, no attempt is made for the trellis
termination. Consequently, the receiver chooses the most probable sequence consid-
ering all memory states at the end because the trellis does not terminate at a specific
memory state. The receiver is assumed to have all information about the channel and
uses the soft-decision Viterbi decoding algorithm.

Figure 4.5 shows the simulation results. Each point corresponds to the (NFMSYV,
BER) pair for one of the 71 channels at a particular signal-to-noise ratio. Again we find

there is also very a strong relation between NFMSV and the BER performance.

4.5 Performance of a Direct Sequence Spread Spectrum

System

In this section, we investigate, through simulations, the relationship between the
NFTMSYV and the performance of a direct sequence spread spectrum (DSSS) system
with successive interference cancellation (SIC). By spreading, DSSS systems obtain
more resolvable paths for rake reception. This is how DSSS benefits from the fre-
quency selectivity of a fading channel. However, frequency selectivity implies inter-
symbol interference, too. To mitigate the intersymbol interference, we use multi-stage
successive interference cancellation. In the simulations, each packet consists of 2,000
binary symbols with spreading gain 25. Each set of 2,000 binary symbols are inter-
leaved by a random interleaver and then spread by random spreading code. The packet
of 50,000 chips is then modulated by binary phase shift keying. The signaling rate is
assumed to be 5 mega-chips per second. Each packet is then passed to the receiver
through a complex Gaussian WSSUS fading channel. At the receiver, additive white
Gaussian noise is added to the signal received from the fading channel. The receiver is
assumed to have all the channel state information and employs rake reception. After
detecting the first symbol using the usual threshold test, its (estimated) contribution
is canceled from the received signal (assuming the decision on the first symbol is cor-
rect) and then the second symbol is detected. After detecting the second symbol, its
contribution is canceled similarly and then detection is made for the third symbol and
so on. This is the first stage of the SIC employed in our system. After detecting the
last (i.e. 2000*") symbol and subtracting its contribution, we obtain noise estimates
which equals the actual noise if all symbols were correctly detected. With this noise
estimate, we start the second stage SIC. In the second stage, we first add to the noise

estimate the contribution due to the first symbol assuming that the detection in the
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first stage is correct. Then we have noise estimates plus the signals due to the first
symbol regardless whether the decision for the first symbol in the first stage is correct
or not. Now, assuming this signal as the received signal, the rake receiver detects the
first symbol and subtracts its contribution again. Then we have new noise estimate
to which we add the contribution due to the second symbol and proceed similarly. By
repeating this process, we can perform as many stages of SIC as we want. In this

2nd

work, we stop at the end of the stage and calculate the bit error rate (BER) as the

performance measure of the system under a given channel.

For simulations, we consider 200 discrete-time complex Gaussian WSSUS channels,
for which we randomly generate 200 scattering functions. The number of resolvable
paths are chosen between 1 and 30 and the delay spreads are chosen between 0 and 20
microseconds. The separations between adjacent paths are chosen not to be uniform
but random. The relative amplitude gain and Doppler spectrum are also chosen ran-
domly for each path. To generate the Doppler spectrum, we first consider the Jakes'’
spectrum [34] of uniformly distributed scatters with Doppler frequency f,, = 200 Hz
and randomly choose a scale factor s between O and 1. Then, we truncate from the
Jakes’ spectrum the region outside the frequencies between —sf,, and sf,, which is

then properly normalized. The resultant Doppler Spectrum S(f) is

2 arcsin s for [f — fo| < $fm

S(f)y =4 VIA—(F—f)? (4.52)

0 otherwise,

where f. is the carrier frequency of the signal. When the carrier frequency is 2 GHz,
the Doppler frequency 200 Hz corresponds to the vehicular speed 30 m/s. Among
the 200 channels, 50 are chosen to be time non-selective and 50 are frequency non-
selective. And 100 channels are chosen to have both frequency and time selectivities.
For these 200 channels, we calculate the NFTMSYV using the (4.15) assuming the sys-
tem occupies exactly 5 MHz bandwidth. To calculate the BER of the system under each
of the 200 channels, we perform Monte Carlo simulations. We calculate the number of
symbol errors in the first 1000 packets received. If the number of errors exceeds 1000,
then we calculate the BER. Otherwise we proceed to generate more packets until we

count at least 1000 symbol errors and then calculate the BER.

The results of the simulations are depicted in Figure 4.6. Simulations are per-
formed for three different signal-to-noise ratios (SNR'’s). In the figure, E; stands for the
energy per bit and Ny for the one-sided noise power spectral density (PSD) of the ad-

ditive white Gaussian noise at the receiver. Each point corresponds to the (NFTMSY,
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Figure 4.6: BER vs NFTMSYV for a DSSS system with 2-stage SIC. Each point cor-
responds to the (NFTMSYV, BER) pair for one of 200 channels at E,/Ny = 3, 8 or 13
dB. Circles correspond to the channels with time selectivity only, while x-mark to the
channels with frequency selectivity only. The solid dots are results for the channels
with both frequency and time selectivities. We observe a roughly monotonic relation
between the NFTMSYV and the BER

BER) pair for each of the 200 channel at E,/Ny = 3,8, or 13 dB. We observe that the
BER does not depend heavily on the detailed shape of the scattering functions if the
NFTMSV's are the same. In particular, the performance does not depend much on
whether the channel has time or frequency selectivity if the NFTMSV is the same.
We can also see there exists a roughly monotonically increasing relationship between
the NFTMSYV and the BER. This supports the claim that the NFTMSYV represents the
diversity of a fading channel and the system exploits the diversity. As a minor point,
we note that the BER is slightly higher with the channel with time selectivity only.
As mentioned earlier the system exploits the time selectivity by the interleaver and
the repetition. Hence, the results imply the random interleaver considered is not ef-
fective. In contrast, we can conclude that the 2-stage SIC is quite effective in treating

the intersymbol interference.
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4.6 Summary and Conclusion

In this chapter, we defined three parameters called normalized frequency mean square
covariance (NFMSV), normalized time mean square covariance (NTMSV), and normal-
ized frequency-time mean square covariance (NFTMSYV) for multipath fading chan-
nels. It is not difficult to see directly from the definitions that these parameters char-
acterize the overall frequency and/or time selectivities of a channel.

As is well known, many communication systems such as spread spectrum systems
exploit the selectivity to combat the effect of multipath fading. We showed that there
exist very close relationship between the NMSV’s and the performance of such sys-
tems. First we illustrated the NFMSYV is directly related to the variance of the deci-
sion statistic of a simple diversity combing scheme under frequency selective fading
channels. Since the fluctuations of the decision statistic of the diversity combining
scheme should fundamentally depend on the amount of stochastic degree of freedom
available, the relation shows how well the NFMSV quantifies the degrees of freedom
in frequency selective multipath fading. We also verified that there exists very close
relationship between NMSV and the performance of more practical communications

systems such as FHSS or DSSS systems.






Chapter 5

Characterization of Non-WSSUS

Channels

In the previous chapter, we defined a set of parameters to characterize wide-sense
stationary uncorrelated scattering (WSSUS) channels. Although there exist a close
relationship between the parameters and the performance of a system under WSSUS
channels, they don't exhibit such close relationship under more general channels. In
this chapter, by studying the diversity combining schemes, we propose a set of sec-
ond order statistics collectively called re-centered normalized mean square correlation
(RC-NMSR) to summarize the fading characteristics. We illustrate that the system
performance is strongly related to the RC-NMSR for channels with identical specular
components. Since the specular component consists usually of the direct line of sight
path, this implies that RC-NMSR effectively characterizes a multipath fading chan-
nel. In the cases when the specular component is more complicated, we use another
set of parameters collectively called, normalized arithmetic variance (NAV) in addition
to the RC-NMSR.

5.1 Definition

In this section, we define two sets of parameters collectively called re-centered normal-
ized mean square correlation (RC-NMSR) and normalized arithmetic variance (NAV).
For channels with the same specular component, RC-NMSR'’s effectively characterize
multipath fading channels. It is natural to expect that the performance of systems is
not appreciably different under two channels with similar specular components and
fading characteristics. As the RC-NMSR'’s provide measures of similarities of fading

characteristics, the NAV’s are defined to quantify the similarity among specular com-
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ponents.

Throughout this section, we assume a stochastic channel is given with well behaved
time-variant frequency response H(f,t). We denote by my(f,t) and Ry(f,t; f',t') the

mean function and the correlation function of H(f,t), respectively. Consequently,

H(f’t):E[H(fat)] (5.1)

and

Ru(f,t f',t') = E[H(f,t)H*(f',t)]. (5.2)

5.1.1 Re-Centered Normalized Frequency Mean Square Correlation

Let O denote a frequency region of interest. We define the re-centered normalized
frequency mean square correlation (RC-NFMSR) C¢(©,t) of the channel over the fre-

quency region O at time ¢ by

[ [ {Rats.t: .08 = (7.0 mis (7, dpa
Cs(O,t) =

(5.3)
[ /@ Ru(f,t; f, )df]

Note that the RC-NFMSR coincides with the normalized frequency mean square co-

variance (NFMSYV) if the specular component is zero.

When the specular component is given, the RC-NFMSR characterizes the frequency
selectivity of the channel over the frequency region © at time ¢. In many important
cases, the specular component represents just the direct line of sight path, in which
case we don't need any further specification for the specular component. When the
specular component is more complicated, we attempt to characterize its frequency se-
lectivity by normalized frequency arithmetic variance. We define the normalized fre-
quency arithmetic variance (NFAV) v¢(0©,t) of the specular component over © at time ¢
by

vi(©,t) = <‘mH(f’t)_<mH(f’t)>®‘ >® (5.4)

<‘mH f’t)‘2>®

‘/me,
/df/\mH ,t\ df"

(5.5)
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From Sections 2.3.1 and 2.3.4, it follows that
0 <vf(0,t), Cf(O,t) < 1. (5.6)

If C4(©,t) or v(©,t) doesn't depend on time ¢, then we suppress the time index and
write Cf(0©) or v¢(0O).

5.1.2 Re-Centered Normalized Time Mean Square Correlation

Let T denote a time region of interest. Then, we define the re-centered time mean

square correlation (RC-NTMSR) C,(f,T) of the channel over the time region T at fre-
quency f by

( ) /T/T{|RH(f’t;f;t,)|2_|mH(f7t)|2|m}{(f,t,)|2}dtdt'
Ct f’T =

[ | Ratrti.0 dt]2

Note that the RC-NTMSR coincides with the normalized time mean square covariance

(5.7)

(NTMSYV) when the specular component is zero.

If the specular component is given, the RC-NTMSR characterizes the time selec-
tivity of the channel over the time region 1" at frequency f. To characterize the time
selectivity of the specular component, we define the normalized time arithmetic vari-
ance (NTAV). We define the normalized time arithmetic variance (NTAV) v(f,T) of the

specular component over the time region 1" at frequency f by

2

ve(f,T)=1— r — (5.8)
/ dt / img(f,t)|" dt’
T T
From Sections 2.3.1 and 2.3.4, it follows that
0 < Vt(fvT)v Ct(fa T) < 1. (59)

If Ci(f,T) or vy (f,T) doesn’t depend on frequency f, then we suppress the time index
and write C¢(T) or v(T).
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5.1.3 Re-Centered Normalized Frequency-Time Mean Square Corre-
lation

Let Q denote a frequency-time region of interest. Then, we define the re-centered nor-
malized frequency-time mean square correlation (RC-NFTMSR) C:(2) of the channel

over the frequency time region () by

[ [ Airats.0,6)8 = lnu(s. 0P mi(s' )} a dear ae
Cpi(Q) = S1L270 5 :
[ Rutt i

(5.10)

Note that the RC-NFTMSR coincides with the normalized frequency-time mean square

correlation (NFTMSV) when the specular component is zero.

If the specular component is given, the RC-NFTMSR characterizes the combined
frequency and time selectivity of the channel over the frequency-time region 2. To
characterize the frequency and time selectivity of the specular component, we de-
fine the normalized frequency-time arithmetic variance (NFTAV) v(2) of the specular

component over {2 by

2

‘ J[ mauts.varas
vi(Q) =1 - 2 - . (5.11)
// df dt // img(f,t)|" df dt’
Q Q
From Sections 2.3.1 and 2.3.4, it follows that
0 < v(R), Cre(Q) < 1. (5.12)

5.2 Complex Guassian WSSUS Deviation

Although the definitions in the previous section are applicable for any randomly time-
variant linear channel, we study the relations between the parameters and the system
performance for practically most important channels. In the remainder of this chap-
ter, we shall assume the diffuse component satisfies the circularly symmetric complex
Gaussian wide-sense stationary uncorrelated scattering channel model. The justifica-
tions of these assumptions can be found in many books. For example, refer to Chapter

2 of [9]. More precisely we assume that the diffuse component Dp(7,t) of the time
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variant impulse response h(,t) satisfies
E[Dp(r,t)Dp(7',t)] = 0 (5.13)

and that there is a function p(7,t) called the delay cross-power spectral density of the

scattering part such that
E[Dy(7,t)Dy(7', )] = p(,t — )6 (7 — 7). (5.14)

Finally, we assume that both the real and imaginary parts of the diffuse component
are Gaussian random processes.

For channels satisfying these assumptions, it is possible to express RC-NMSR'’s in
terms of the specular component and the delay cross-power spectral density of the dif-
fuse component. In particular, C¢(©,t) can be obtained from the deterministic part and
the delay power profile p(7) = p(7,0) of the diffuse component. However, C;(f,T) can
be expressed most conveniently by the Doppler power spectrum Q(f) of the scattering
part. To derive such relations, we first express C¢(€2) using the scattering function

q(7,v) of the diffuse component defined by

q(t,v) = / - p(T,t)e ™2™t dt. (5.15)

—0o0

In Appendix E, we show that !

//// (1, V) K (5 v Vi —1)q(7' V) dr dvdr dv'

o (5.16)
i ]
Re[//// Vi (v, 7, ) a(r ,V)Uft(ﬂ;I/,T,T")dudeT’dT”]
[ atrrarar s |
R2
where
‘// eJ2W(fT Vt)dfdt
Frenn (5.17)

‘// it

'R (C) denotes the set of all real (complex) numbers. For any set S and any positive integer ¢, S?
means the Cartesian product S x --- S (g times).
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and

// mh(T,, t)e—j27r(f‘r’—|—ut)ej27rf‘r dfdt
_ Q

v (v, 7,7') =
// df dt
Q

(5.18)

To calculate C¢(0©,t), we set Q = © x (t — J,t + J) in (5.16) and take the limit § — 0

noting
o0

p(1) = p(7,0) = / q(r,v)dv (5.19)

— 00

Then, we have

_ //Rz P (1)K (0,7 — 7)p(r) dr dr’

Cr(0,1) - (5.20)
[+ ()|
Re [ v} (05T, T')p(T)vf(G; T, 7" dr" dr' dT:|
UL 2
| [+ (mal)
where )
/ejZﬂ'def
Ki(©;7)=12— L (5.21)

o

mh(T',t)/ eI2m(r=")f df
vp(0;7,7) = © . (5.22)

o

and

Similarly, we put Q@ = (f — §, f + ) x T in (5.16) and take the limit § — 0 noting

Q) = /Oo q(r,v)dr. (5.23)

—00
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Then, we obtain

/R2 Q*(v)Ki(v — V;T)Q(V) dvdy/

o : (5.24)
[/RQ(V) dv + <|mH|2>T]
Re| [[[, it rimI@yntn iy ar av]
-2 R3 2
|:/]RQ(V) dv + <|mH|2>T]
where |
‘/ej%rutdt
e = (5.25)
I
T
and
€_j27rfT/mh(T,t)e—j2wvtdt
v(v,m;T) = T e

[ at
T

5.3 RC-NMSR and Diversity Combining

Normalized mean square covariances (NMSV’s) are useful to characterize WSSUS
channels because they have close relations with system performance as shown in
Chapter 4. However, it is not evident if they exhibit such relations under channels
with non-zero specular component. In fact, they don't exhibit a satisfactory relation
with system performance as will be illustrated below. In this section, we study the
performance of a simple diversity combining scheme, which motivates the definition
of RC-NMSR. Diversity combining is probably the most important scheme to combat
multipath fading (ref. Chapter 14 of [35]). Direct sequence (DS) or frequency hopping
(FH) spread spectrum systems or antenna diversity schemes are among the most pop-
ular examples of diversity combing schemes. In a direct sequence spread spectrum, a
rake receiver can be used to combine multiple signal components resolved by the wide
bandwidth. In a frequency-hopped-spread-spectrum system, the diversity is achieved
by using error correction coding. Basically these schemes combine redundant signals
to combat multipath fading. This is the motivation for considering the diversity com-

bining scheme with a simple repetition code.
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5.3.1 System Description

We consider basically the same diversity combining scheme as in Section 4.3.1. But,
this time the channel is assumed to be Ricean. In the following, we assume that a
BPSK-modulated signal is transmitted K times over K different carriers. The signal-
ing rate is assumed to be low enough so that each of the K carriers undergoes flat
fading and is high enough to assume that the fading is time non-selective. Then the
fading levels of the K carriers are described by K complex numbers Hy,--- , Hgx which
are assumed to be K circularly symmetric complex Gaussian random variables. The
receiver is assumed to have enough knowledge about the fading levels to combine the
K redundant signals using a maximal ratio combining rule. In this case, the decision

statistic S, when the modulated symbol +1 is transmitted, is given by

K
S = Re[z H; (VEyHy +ny) | (5.27)
k=1

where Ej is the average received energy per information bit and nj is the complex
representation of the additive noises at the receiver for the k! carrier. We assume that
{nt} are independent identically distributed circularly symmetric complex Gaussian

random variables with variance N so that
E[ngn[] = Nobgi, Elngny] =0 (5.28)

for any k£ and [. For proper normalization, we assume that ZkK:1 E[|Hi|?] =

The receiver decides +1 is transmitted if S > 0, —1 otherwise. The basic idea of this
(or any diversity combining) scheme lies in the law of large numbers. In other words,
the system attempts to get more reliable (or more deterministic) decision variables by
combining multiple signal components with diverse fading levels. Consequently, the
performance of such a system tends to depend heavily on the variance of the decision

statistic.

Let © be the frequency region occupied by the K carriers. Then, the RC-NFMSR
C¢(©) over the frequency region © is given by

K K
= ZZ{|EHkHz — |E(m]))’|E(H)| } (5.29)
k=11=1

Because the channel is assumed to be time non-selective, we suppress the time index
tin C f(@, t).
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5.3.2 Decision Statistic and RC-NFMSR

In this subsection, we show that the variance of the decision statistic S is directly
related to the RC-NFMSR.

Lemma 5.1.

The mean m(S) and the variance V (S) of the decision statistic S are given by

and N
V(S) = Ey-C4(0) + 7" (5.31)
Proof. First, we rewrite the decision statistic S as
1
S = /Ey|[H||* + 5 {H'n + n'H} (5.32)

where H = (Hy,--- ,Hg) and n = (ng,--- ,ng)t 2.

Before proceeding, we define M = E[H] and D = H — M. Since H and n are

independent with E[||H||?] = 1 and E[n] =0,
E[S] = VE,E[|H|]*] = V/Eb. (5.33)
and )
E[S% = E, E[||H|*] + ZE[{HTn +n'H}] (5.34)

Since E[ngn;] = 0 for any k and [, the second term of (5.34) is given by

K K
1
1 22> Bl(Him + Hynp) (Hyny + Hyn})] (5.35)
k=11=1
1 K K
= 72> ABHH)Elmn;] + B[HH;|Elnim]} (5.36)
k=11[1=1
- % (5.37)

*For a row vector v = (a, - - -, b), ||v|| and ||v!|| shall denote \/]a|2 4 - - - 4 |b|2
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Before manipulating the first term of (5.34), note that

E[||D|] (5.38)
K K
= ) ) E[DiDD;Dj] (5.39)
k=11=1
K K
— % { Wi DI DI + BIDLDEDDI + EDDIEDIDY} (540)
k=11=1
9 K K
= {BUDIA} + 3> 1wl (5.41)
k=11=1

where we used the fact that
E[ABCD] = E[AB]E[CD] + E[AC|E[BD] + E[AD]E[BC] (5.42)

for zero mean jointly Gaussian random variables A, B, C, and D [31]. Now we have

E[H|] = E[(IM+D|*? (5.43)
= E[(MM+D'D+M'D+D'M)?| (5.44)
= E[(M'M +D'D)?] + E[((M'D + D'M)?] (5.45)
= {M'M)? + 2M'ME[D'D] + E[(D'D)?]} + 2M'E[DD'|M  (5.46)
K K
= {M'M+EDD]} +> > {|Cul* + 2M;; Cry M} (5.47)
k=11=1
= E[lH[]’] + (). (5.48)

Consequently, the variance of S is given by

No

V(S) = By C(©) + 7 (5.49)

5.3.3 RC-NFMSR, NFAY, and Probability of Decision Error

Lemma 5.1 shows that the variance of the decision statistic depends on the RC-NFMSR
rather than the NFMSV. Consequently, we expect that the performance of the receiver
will depend heavily on the RC-NFMSR Cf(©). This is particularly true when the C¢(©)

is very close to 0 or 1 — 4, |E[H})] ‘2. To see this more clearly, we represent the detec-
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tion error probability P, of the receiver by

i © 2Eb7‘
Pe—/0 fR(r)Q< No >dr (5.50)

where R = Zle |Hy|?, fr(r) is the probability density function of the random vari-
able R, and Q(-) denotes the standard normal error function ?. This shows that the
probability of error is directly related to the random variable R, which has a 2K di-
mensional chi-square distribution. Since small C;(©) means large degree of freedom
in Hy,---,Hg, we can expect R to become closer to a Gaussian random variable. In
other words, for two channels with the same small C;(©), the distribution functions
of R under the two channels are expected to be similar, which is not generally true
when C;(©) is not small. If C;(©) = 1 — Y5 | |E[Hy)

central chi-square random variable that is completely determined by Zi{:l |E[I—I k) ‘2.

2 . . .
, R is a one-dimensional non-

Consequently, as C;(©) approaches either extremal values, we can expect stronger

performance vs. RC-NFMSR relation.

To analyze further, let H denote the column vector (Hy,- -+ , Hi)! * and define M and
D by M = E[H] and as before D = H — M, respectively. Let C denote the correlation
matrix of D, i.e.,let C = FE [DDT]. Then, C is a positive semi-definite matrix so that

there exist a unitary matrix U such that

UCU' = diag(Ay, - -+, Ak) (5.52)
where diag(a,--- ,b) denotes a diagonal matrix with diagonal elements a,--- ,b. Here
A1, -+, A are eigenvalues of C and are non-negative real numbers. Now, we define

M' = UM and D' = UD so that E[D'(D')T] = diag(\1, - ,Akx). Moreover, (5.13)
implies E[D'D't] = 0. These two correlation properties imply that the 2K Gaussian
random variables Re[D]],--- ,Re[D%]| and Im[Dj],--- ,Im[D)%] are independent with

zero mean and variance

E[(Re[Dy))?] = E[(Im[D])?] = ° (5.53)

>The function Q(z), which we shall call the Standard Normal Error Function, represents the compli-
mentary distribution function of a standard normal random variable that is defined by

Q(w):/w L -3 q (5.51)

*For a matrix M, M* and M' denote the transpose and the adjoint matrices, respectively.
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for each k. Now we observe that

K
R=>|M;+ D> (5.54)

k=1
Consequently, R is a sum of 2K independent chi-square random variables. When the
specular component, M’, is zero, the random variable R depends solely on the eigen-
values A1,---,Ag. However, when the specular component is not zero, the specular
component also affects the distribution of the random variable R. Consequently, we
not only have to observe the distribution of the eigenvalues but also have to take into

account the specular component. In fact, as shown in Section 4.3.3, P, can be expressed

as
1 o0
P, = —/ Re[ ¥r(5) ] dB. (5.55)
o Do 1 g @(&%ﬁ)
Ny Y No\No 7
Here ¢r(8) is the characteristic function of R and is given by
K 12
1 .M °B
8) {7 eJl‘j‘”k] (5.56)
Yr(B) 191:[1 1= M

as shown in the Appendix F. Note that | M| (and not | My|) appear in (5.56).

In many cases, the specular component consists of a single strong line of sight
path. In such a case, if the ratio of the powers between the specular and the dif-
fuse components is given, the probability of error is usually very closely related to the
RC-NFMSR. In other words, if we test the system under two channels with similar RC-
NFMSR’s and with similar specular v.s. diffuse parts power ratios, then similar system
performances are expected. The situation is more complex when the specular compo-
nent is more complicated. Generally speaking, if the specular component is given, then
the system performance is generally very closely related to the RC-NFMSR. If this is
true, it is natural to expect similar performances under two channels with the same
or similar RC-NFMSR if they have similar looking specular component. So our next
job is to characterize the similarity between two specular components. We attempt to
do this by observing the numerical distribution of Mj, -, Mg. The first order statis-
tic for these numbers is the arithmetic average, which is dependent upon the overall
phase change of M, .-, Mg. In other words, if we multiply Mi,--- , Mg by a unit
amplitude complex number e? where @ is a real number, then the arithmetic average
is multiplied by €. However, it is not difficult to see that this phase change does not

affect the system performance. The similarity of distribution is usually characterized
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by the variance rather than the mean value. Consequently, we attempt to use the
normalized frequency arithmetic variance (NFAV) in Section 5.1.1 to characterize the
similiarity of the numerical distribution. Because we are more interested in the shape
of distribution, we normalize the variance by average power. Note that the normalized
arithmetic variance is directly related to the magnitude of the normalized arithmetic
average given the average power.

Consequently, we attempt to describe a multipath fading channel by three param-
eters, namely, the average power of the specular component >, the normalized arith-
metic variances, and the re-centered normalized mean square correlations. T he NFAV
v§(©) of My,--- , Mg is given by

1 & 2

= 1M, — (M)o? |
k=1

K
homn
N k=1

vp(©) = — =1 - (5.57)
DA LS IITAC
k=1 k=1
where (M)g denote the arithmetic mean of Mj,--- , Mg defined by
1 X
(Mg = = ;Mk. (5.58)

Consequently, NFAV measures the frequency selectivity of the specular component of

the channel.

5.3.4 Performance Simulations

It is not yet evident how closely the system performance depends on the second order
statistics defined in this paper, although they provide a low order conceptually mean-
ingful characterization for multipath fading channels as described above. We attempt
to verify through simulations that the parameters capture essential characteristics of
fading channels. For the simulations, we have chosen K = 64 and generated 400 de-
lay power profiles from which we have obtained 400 (normalized) correlation matrices
denoted by Cy. Also we have obtained 20 arbitrarily generated (normalized) specular
components Mjs with diverse NFAV. From these, we obtain a fading channel by choos-
ing a scale factor a € {0.25, 0.5, 0.75}, a (normalized) specular component My and a

(normalized) correlation matrix Cy. A realization of the fading level vector H is then

SNote that this determines the average power of the diffuse component since we assume that
S EllH*] =1
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Figure 5.1: The probability P, of bit error vs. the normalized frequency mean square
covariance (NFMSYV). Each dot corresponds to the (NFMSV, P,) pair under one of 400
channels with single line of sight components (a = 0.5).
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Figure 5.2: The probability P. of bit error vs. the re-centered normalized frequency
mean square correlation (RC-NFMSR). Each dot corresponds to the (NFMSV, P,) pair
under one of 400 channels with single line of sight components (o = 0.5).
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0.6

0.4 .
RC-NFMSR i : NFAV

Figure 5.3: The probability P, of bit error vs. (NFAV,RC-NFMSR). for multipath fading
channels a = 0.25. Each dot corresponds to the (NFAV,RC-NFMSR, P,) pair under one
of 20 x 400 = 8,000 channels.

obtained by
H=+aMy++v1—-aDg (5.59)

where Dy is a realization of a circularly symmetric complex Gaussian random vector
with zero mean and covariance matrix Cy. Consequently, we consider total of 3 x 20 x
400 = 24,000 different multipath fading channels.

First, Figure 5.1 depicts the relation between normalized frequency mean square
covariance (NFMSV) and the probability error P, for channels with the same specular
component with a = 0.5, while Figure 5.2 describes the relation between RC-NFMSR
and the system performance. The particular specular component chosen consists of
single line of sight path so that M; = --- = Mg so that v¢(©) = 0. In these and the
following figures, each point corresponds to the probability of error under one of the
24,000 fading channels. The error probability P, of each of the channels is obtained
by numerical evaluation of (5.55). We see the relation is relatively poor with NFMSV
compared to that with RC-NFMSR. For this case, we observe there is a very close
relationship between RC-NFMSR and the system performance.

Figures 5.3 - 5.5 shows the performance vs. (NFAV,RC-NFMSR) relations for a =

0.25, 0.50 and 0.75, respectively. Although there are some fluctuations, we observe very
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RC-NFMSR NFAV

Figure 5.4: The probability P, of bit error vs. (NFAV,RC-NFMSR). for multipath fading
channels a = 0.50. Each dot corresponds to the (NFAV,RC-NFMSR, P,) pair under one
of 20 x 400 = 8,000 channels.

0.2

RC-NFMSR ’ 00 - NFAV

Figure 5.5: The probability P, of bit error vs. (NFAV,RC-NFMSR). for multipath fading
channels a = 0.75. Each dot corresponds to the (NFAV,RC-NFMSR, P,) pair under one
of 202400 = 80,000 channels.
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Figure 5.6: The probability P, of bit error vs. the the re-centered normalized frequency
mean square correlation (RC-NFMSR). Each dot corresponds to the (RC-NFMSR, FP,)
pair for a channel with a = 0.25.
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Figure 5.7: The probability P, of bit error vs. the the re-centered normalized frequency
mean square correlation (RC-NFMSR). Each dot corresponds to the (RC-NFMSR,P,)
pair for a channel with a = 0.50.
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Figure 5.8: The probability P, of bit error vs. the the re-centered normalized frequency
mean square correlation (RC-NFMSR). Each dot corresponds to the (RC-NFMSR,P,)
pair for a channel with a = 0.75.

close relation which makes the parameters meaningful. We observe that the effect of
NFAYV becomes more salient as « increases, which is not surprising. In Figure 5.6 - 5.8,
we plot the P, vs. RC-NFMSR relation for a = 0.25, 0.50, and 0.75, respectively. We
can still observe there is close relationship between P, and RC-NFMSR even without
specification of NFAV for each choice of a. In particular, we see the relation becomes

stronger as RC-NFMSR approaches either of the extremal values.

5.4 Conclusion

In this chapter, we defined statistics that characterize multipath fading channels effec-
tively in relation to the system performance by considering a simple diversity combin-
ing scheme. In Section 5.1, we provided formal mathematical definition of the parame-
ters called re-centered (RC) normalized mean square correlation (NMSR) and normal-
ized arithmetic variance (NAV). Re-centered normalized mean square correlation was
defined to genearalize the applicability of normalized mean square covariance to non-
WSSUS channels. Normalized arithmetic variance was defined to measure similarity

or the difference between the shape of the specular part of the frequency response.
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We provided theoretical arguments and simulation results to justify those parameters
in Section 5.3. We found that there are very close relations between the system per-
formance and the parameters for the simple diversity combining system. Although
such results were obtained with a simple and ideal scheme, we can still expect that
the parameters will provide meaning characterizations for multipath fading channels
because many practical systems designed to combat multipath fading are very closely
related to the simple diversity coming scheme in this chapter. We also expect that
the line of reasoning itself will provide an exemplary role in studying systems which
don’t have conceptual similarity with the simple diversity combing scheme considered

in this chapter.






Chapter 6

NMSYV and System Design

In this chapter, we discuss the use of NMSV in wireless communication system design.
In wireless communications, the frequency and the time selectivities of the channel
fading are widely exploited in the system design. Spread spectrum technologies are
among the most popular examples. We have shown that the performance of such sys-
tems are very closely related to the NMSV of the channel in question. Such a close
relationship between the NMSYV and the system performance is very useful in system
design and planning. In Section 6.1, we consider the frequency allocation problem for
a FHSS system. We show that we can improve system performance by separating
the frequency slots with the same total bandwidth. In Section 6.2, we show how the
NMSYV can be used in choosing the optimal frequency hopping rate. In particular, we
show that it is not necessary to evaluate the performance of a FHSS system under
realistic situations. In Section 6.3, we propose carrier-separated (CS) orthogonal fre-
quency division multiplexing (OFDM) systems for multirate multiple access wireless
communications. Motivated from the result of Section 6.1, we consider carrier separa-
tion to achieve more frequency selectivity. We also show that it is possible to reduce

the system complexity by judicious choice of carrier separation.

6.1 Frequency Allocation for a FHSS System

In this section, we consider the problem of frequency band allocation to an FHSS sys-
tem. In Section 4.4, we assumed that the 332 frequency slots allocated to the system
constitute a contiguous interval of frequency band of size 10.375MHz. Now we con-

sider the possibility of allocating 332 non-contiguous frequency slots to the system.
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Figure 6.1: The usage of NFMSV in the frequency allocation. We see that we can
lower the overall NFMSV of the channel by separating each hop slot by inserting
some amount of guard band. However, the NFMSYV does not decrease dramatically as
the separation bandwidth become greater than the bandwidth of each hop slot. In this
figure, the horizontal axis means nothing more than the order of the 71 channels.

Consider the frequency region 0, given by

K-1
O, = [ J[A+kw+w), A+ k(v +w) +w] 6.1)
k=0

where A, v, and w are non-negative real numbers. Then, ©, is a union of K intervals
of length w with a space of length v between adjacent intervals. We assume that each
interval represents a frequency hop slot. Consequently, as the space v grows larger,
the system tends to hop more space with the same frequency pattern and can gener-
ally achieve more diversity gain. The NFMSV V(©,) can be calculated from (4.13)
with (4.17). By calculating V;(0,) for the 71 channels introduced in Section 4.4, we
obtain Figure 6.1. Here, we assume that K = 332 and w = 31.25kHz. From the figure,
we can tell that we have smaller NFMSV with larger v, namely, with larger spacing.
Since the BER performance is closely related to NFMSYV, we can also tell, from the
BER v.s. NFMSV curves (in Section 4.4), how much gain is obtained by introducing
space between slots. The space between slots can be allocated to other systems. For
example, if we choose v = w, then we can allocate slots to uplink and downlink systems

alternately. We can allow more space by considering neighboring cells together in the
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Figure 6.2: Block diagram of an FHSS system with (255,127) Reed-Solomon code.

allocation of frequency slots without wasting frequency resources. However, increas-
ing v larger than 5w does not decrease V¢(©,) appreciably. Consequently, we expect

saturation of performance enhancement after v becomes larger than 5w.

6.2 Determination of Frequency Hopping Rate

Typically, a frequency hopping system is allowed to hop from one frequency to another
within a given region of the frequency band of a physical channel. It is natural to
expect an increasing diversity gain with higher hopping rate. However, the actual di-
versity gain fundamentally depends on the frequency selectivity in the frequency band
of the channel allocated to the system. In this section, we investigate the relationship
between the NFMSYV of the given frequency band and the diversity gain by increasing
the frequency hopping rate, which is helpful in determining optimal frequency hopping

rate.

6.2.1 NFMSV and the Performance of a FHSS system with a Reed-
Solomon Code

To illustrate the relationship between the NFMSYV of a channel and possible diversity
gain by frequency hopping, we consider a frequency hopping system using a (255, 127)

Reed-Solomon code [33] depicted in Figure 6.2. Assume that each packet consists of
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one codeword, namely, 2040 coded bits that are modulated by a BPSK modulator before
transmitted by a frequency hopping transmitter. The total bandwidth of the channel
is assumed to be 10.24MHz which is divided into N = 255 slots of bandwidth 40kHz.
For definiteness, we assume the system is allocated with the frequency region between
A = 1.0GHz and B = 1.01024GHz. The channel is assumed to be frequency selective
but time non-selective. The number of frequency hopping per packet, which we shall
denote by K, is chosen between 1 and 255. The hopping is roughly uniformly spaced.
For example, if K = 7, the 1%, the 37", the 73", the 110", the 146", the 183", and the
219" slots are used for transmission. The 255 symbols are divided roughly equally so
that the symbols 1 ~ 36 are transmitted over the 1°¢ slot, the symbols 37 ~ 72 over the

37th slot and so on.

As a performance measure, we consider the bit error rate (BER) of the system. For
simulations, we use a systematic (255,127) Reed Solomon code and assume that the
all zero information bits are transmitted. The receiver first makes a hard-decision on
each coded symbol. Then, it counts the number of coded-symbol errors and assume the
errors are not corrected by the decoder if the number of symbol errors exceeds the error
correcting capability, in which case the number of information bit errors in the system-
atic parts are counted toward the total errors. For the simulations, we consider 300
randomly generated delay profiles and calculated the NFMSYV of the frequency band
between 1000MHz and 1010.24MHz. Among the randomly generated delay profiles,

we select 4 models for illustration. We call them channel 1 - 4.

In Figures 6.3 and 6.5, the delay power profiles of the four channels are depicted.
As shown in Figure 6.3, channel 1 and channel 2 have quite different delay profiles.
In particular, the rms delay spread of channel 1 is 0.28usec, while that of channel 2
is 1.26usec. However, both channel 1 and channel 2 have the same NFMSV, namely,
0.2. Roughly speaking, channels with NFMSV = 0.2 can be thought to have 5 well
separated, equal strength paths. We can regard such a channel to have a fair amount
of degree of freedom or frequency selectivity. A channel with this amount of degree of
freedom is not rare but there are many channels that have smaller amounts of degree
of freedom. However, channels with smaller amount of degree of freedom are not very
interesting in relation to the frequency hopping rate choice. Consequently, we have
chosen NFMSV 0.2 for channels with a small amount of frequency selectivity in our
simulations. As an another choice, we have selected NFMSYV of 0.06. We see channels
3 and 4 exhibit much more time dispersion than channels 1 and 2. While they have
the same NFMSYV, channel 4 has larger rms delay spread than channel 3: 4.12usec vs.

3.16usec. As the delay profiles indicate these four channels are chosen to show how
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Figure 6.3: Delay power profiles of two different channels with NFMSV=0.2. Channel
1 has rms delay spread 0.28 psec while channel 2 has 1.26 usec.
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Figure 6.5: Delay power profiles of two different channels with NFMSV=0.06. Channel
3 has rms delay spread 3.16 psec while channel 4 has 4.12 usec.
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6.2. Determination of Frequency Hopping Rate 93

different two channels can be with the same NFMSV. Channels 3 and 4 are examples
of channels with high frequency selectivity.

Figure 6.4 shows the performances versus the hopping rates in channel 1 and chan-
nel 2 at signal to noise ratio E,/Ny = 18 dB where Ej is the energy per information bit
and Nj is the one sided noise power spectral density of the additive white Gaussian
noise at the receiver. We see that the performance of the system is slightly better un-
der channel 2. As discussed in Chapter 4, the performance versus NFMSYV relation is
relatively loose when the channel has relatively moderate degree of freedom. In fact,
channels 1 and 2 are chosen to illustrate extremes cases of performance difference with
the same NFMSV. Under both channels, we observe noticeable performance enhance-
ments as we increase the hopping rates upto 20 hops per packet. Under channel 2, we
have mild increases in the performance with higher hopping rates.

The simulations results for channel 3 and channel 4 are given in Figure 6.6. In this
case, we observe that the performances under the two channels are closer. This is in
fact a general tendency. In other words, the performance is more closely related with
NFMSY for channels with smaller NFMSV. So under two different channels with very
small NFMSYV, the performance of a frequency hopping system are usually quite close.
From the Figure 6.6, it is not easy to determine the point of saturation. However, we
observe that the performance enhancements are not great by increasing the hopping

rate from 50 to 100 hops per packet.

6.2.2 NFMSYV of Frequency Region and System Performance

In the previous subsection, we showed that the diversity gain by frequency hopping de-
pends heavily on the channel characteristics, especially on the NFMSYV of the channel
by considering a particular coding schemes. Although it is intuitively not unreason-
able to expect similar tendency with different coding technology, we give some more
justifications by considering the NFMSV of the frequency region of interest. As dis-
cussed in Chapter 4, the performance of the system is directly related to the NFMSV
of the particular frequency region over which the signals are actually transmitted. In
other words, the performance gain should parallel the increase in the stochastic de-
gree of freedom by increasing the frequency hopping rate. Again we consider the same
frequency band between 1000MHz and 1010.24MHz with 255 frequency slots and the
particular hopping pattern discussed in the previous subsection. Consequently, the
hopping pattern is chosen to be as uniform as possible. Let O be the frequency region
experienced by the signals when the hopping rate is chosen to be K hops per packet.

If the system does not hop during a packet duration, the region ©1 of interest con-
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sists of just one slot and the NFMSV V;(0©,) is 1. If the system hops once during a
packet duration, then the system utilizes a region Oy consisting of two slots and the
NFMSYV will be V¢(02). This implies that the system performance will generally get
better if the system hops once. Continuing this way, we consider the case when the sys-
tem hops K — 1 times and uses a region Ok consisting of K slots where K is between
1 and 255.

In Figure 6.7 and 6.8, we plot 1/V¢(Ok) as a function of K instead of V¢(©f) for
better visualization. We truncated the plot after K = 100 because the NFMSV’s satu-
rates at K=100. First consider channel 1. It is not evident from the figure but V¢(0©)
decreases until K = 16 and then becomes practically saturated. This tendency is re-
flected in the BER performance in Figure 6.4. In the case of channel 2, V(0©) fluctuates
until around K = 40, which is also reflected in the second part of Figure 6.4. In inter-
preting the relation between the NFMSV and the system performance, it is important
to note the fact that the system performance can be affected by a slight decrease in
the NFMSV. For example, doubling NFMSV can imply a change of several orders of
magnitude in BER. By comparing Figure 6.8 and 6.6, we can observe similar matches
for channel 3 and channel 4. From these observations, we see that the performance
gain by a higher hopping rate actually comes from the enhanced diversity which is ef-
fectively characterized by the NFMSYV of the region of interest. Consequently, we can

expect similar diversity gain with different encoding and decoding schemes.

6.3 Carrier Separated OFDM System

6.3.1 Introduction

Most wireless communication systems are based on single carrier spread spectrum
technology. For a single carrier system, high rate communication can be achieved ei-
ther by a high symbol rate or by a complex signal constellation with many bits per
symbol [35, 36]. Using a dense signal constellation is undesirable for a wireless sys-
tem since fading makes it difficult to reliably detect which constellation point was
sent. Signaling at a high symbol rate is equally undesirable because the intersymbol
interference due to the time dispersion of a multipath fading channel would require a
complex high-speed equalizer or a similar device. For these reasons, OFDM (orthog-
onal frequency division multiplexing) is used to provide acceptable performance in a
multipath fading environment promising high peak data rates [37, 38]. OFDM tech-
niques have been used in high-speed wireless LANs, digital audio broadcast systems

and wireline high-speed data communications systems. Recently, OFDM is considered
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Figure 6.9: Multiaccess communications using M subcarriers. Each user uses K sub-
carriers. This paper assumes M = 1024 and K = 16.

for 4** generation wireless communication systems.

As usual in wireless communications, multiple access support is an important issue
in the future generation wireless communications. There are various ways to support
multiple access with OFDM technology. Frequency division multiple access (FDMA)
method is probably the most simple and natural way to support multiple access with
OFDM technology. For illustration, consider a base-station with 10.24 MHz bandwidth
allocated for multiple users. Assume the 10.24 MHz frequency band is divided into
1024 carriers of 10kHz bandwidth and that each user is allowed to use 16 carriers at
a time. Hence, the base-station allocates 160kHz for each user. In the usual FDMA-
OFDM, each user is allocated a continuous 160kHz frequency band. At the mobile
receiver side, the desired signal looks just like a 16-carrier OFDM signal instead of a
1024-carrier OFDM signal.

However, the usual FDMA-OFDM system is subject to severe performance degra-
dation in a fading channel. An immediate remedy for this drawback is to exploit the
diversity of the frequency selectivity in multipath fading by employing frequency hop-
ping. However, there are several drawbacks with frequency hopping. First, to be
useful, the frequency hopping should be made fast enough. In such a system, the
synchronization and the channel estimation are difficult and the computational over-
head is not negligible especially because of the multiple carrier usage. Secondly, for an
uplink system, collisions between users give rise to non-negligible performance degra-
dation. An alternative that can achieve similar performance with moderate increase
in computational requirements is a carrier-separated (CS) OFDM system we propose.
For example, we allocate the 1%, the 65th, - .., and the 961" carriers to the first user,
the 2"?, the 66", ..., and the 962" to the second user, and so on. In this case, the
16 carriers allocated to each user are separated by 64 other carriers. Because carri-

ers are uniformly separated, we call this type of system a uniformly carrier-separated
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Figure 6.10: Transmitter model of a carrier-separated multiaccess OFDM wireless
communication system.

(UCS) OFDM system. In particular, in our example, the maximum possible separation
for all users is 64 and hence the system will be called a uniformly-maximum carrier-
separated (UMCS) OFDM system.

6.3.2 Fourier Coefficients Computation

Figure 6.10 illustrates the transmitter model of a carrier separated OFDM communi-
cation system with total of M subcarriers where K subcarriers are reserved for each
user. We have assumed that M = 1024 and K = 16 throughout this section. The trans-
mitter model consists of a serial-to-parallel (S/P) converter, an inverse FFT (IFFT),
and a parallel-to-serial (P/S) converter. For a specific user n out of M /K possible users
at any given time k, real-valued binary symbols dj € {1, —1} is mapped to form a com-
plex sequence ap = ai + ag. These complex sequences are then mapped to K < M
subcarriers and combined with the sequences of the other users for the transmission.
We denote by ay ym the complex symbol of user n at time k and at carrier location m.
Each user transmits 32 real-valued binary symbols (16 complex-valued samples) at
the same time. Thus, for 1024 carrier system, the total number of real samples is 2048
which equivalent to 1024 complex samples. The aggregated complex samples {ag » m }
for user n at time k are processed by M-point inverse Fourier transform (IFFT) and

converted to serial sequences constituting the following OFDM baseband signal

[ay

M
wk,n(t) = Z ak,n,meﬂﬂ-mfot 0<t<T, (62)
m=0

where M is the size of IFFT corresponding to the number of subcarriers, fj is the
frequency spacing between adjacent carriers, and T, = 1/fy is the time duration of a
frame. (i.e., for 1024 subcarriers occupying 10.24MHz bandwidth, fo = 10K Hz and
T. = 0.1msec).
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Figure 6.11: The decimation-in-frequency Split radix FFT algorithm based receiver
model of a multiaccess OFDM wireless communication system.

Figure 6.11 depicts the receiver model of a uniformly-maximum carrier-separated
multiaccess OFDM communication system with total of M subcarriers. Only K subcar-
riers are demodulated at the receiver for a user. The basic building blocks consists of a
serial-to-parallel converter (S/P), a decimation-in-frequency split-radix FFT (SRFFT)
module, and a parallel-to-serial converter (P/S). The received signal y(t) after the car-
rier frequency down-conversion and the low-pass filtering is equal to the transmitted
signal z(t) attenuated by multipath fading and then corrupted by some unknown de-
lay 7, local oscillator frequency offset A f., and local oscillator phase offset 8 as well as
the thermal noise. For simplicity, we assume that the thermal noise is negligible in
the following. If we denote by {X,,} the transmitted complex symbols attenuated by

multipath fading, the received signal y(¢) can be written as

M-1

y(t) _ Z Xme_ﬂﬂ'mfo(t—T)e]27rAfc(t—T)e]9 + n(t) (6.3)
\/M m=0

in the continuous time domain and

oi0 M1
Z X et 2r(mtAfe/fo) /M) —s2n(mfotAfe)T | g () (6.4)

y(l) = y(T./M) =

in the discrete sampled time domain sampled at ¢t = [T,./M. After the Fourier transfor-

mation, the FFT coefficients recovered at the receiver are given by

1 M-1
Y, = — y(l)eijTrlm/M (6.5)
VM =0
jO—327 A fer M-1 . Afc
_ GT Z quJZW{(qu)p/MJr p/M—qfor} (6.6)

P, q=0
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Figure 6.12: Illustration of active computational complexity of the decimation-in-
frequency SRFFT algorithm employed in the carrier separated multiaccess OFDM sys-
tem. Shaded portion represents actual required computation for demodulation. The
horizontal axis represents the stages of FFT.

that can be further simplified to
Ym — Xme—jZﬂ'mfoTe—jZﬂ'Achejo (67)

by assuming that Af./fp is very small. The minimum required sampling rate at the
receiver is twice the Nyquist rate (I = 2) to eliminate the aliasing during the analog
to digital conversion. Thus, the size of FFT at the receiver is equal to 2048 assuming
Nyquist sampling rate for the carrier separated multiaccess OFDM system employing

1024 carriers.

The computational complexity of the FFT can be reduced significantly if a decimation-
in-frequency algorithm is employed in the demodulation. There are many different
ways to implement the FFT. Radix-2, radix-4, and split-radix algorithms are by far the
most widely used in practice and hence are good candidates for the implementation
of the demodulator. Among these algorithms, the SRFFT is computationally more ef-
ficient than the radix-2 or the radix-4 FFT in terms of the total number of necessary
multiplications and additions. However, the main drawback of the SRFFT implemen-
tation is that its computational flow is highly irregular when compared to the other
radix FFT. For DSP processors, radix-2 or radix-4 decimation-in-frequency FFT algo-
rithms are preferable in terms of speed and accuracy. The irregular structure of the
SRFFT may render it less suitable for implementation on a digital signal processor.
Thus, when SRFFT is adopted for low-power and low-complexity implementation in

an ASIC, and its execution timing must be precisely controlled for correct operation.

Since each user uses 16 carriers for data transmission, not all of Y7,--- ,Yy/_1 are
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needed to be demodulated at the receiver. When demodulating a signal that consists
of only 16 uniformly-maximum separated carriers that were assigned to a user at the
transmitter, the active computation needed at the receiver is much less than the com-
plete FFT computation (approximately 18% of total computation complexity or compa-
rable to 128 FFT). The actual computations required by the decimation-in-frequency
SRFFT is illustrated as a shaded portion as shown in Figure 6.12 (i.e., processing 2048
samples on the first stage, 1024 samples on the second stage, ..., down to 16 sam-
ples on the last stage). In the figure, the 16 carriers correspond to the output of the
decimation-in-frequency SRFFT are the 1%, the 65t",..., the 961", whereas the complete
FFT operation generates 2048 outputs (i.e., because of Nyquist sampling rate) where
half of those outputs correspond to the carriers located between the carriers which is
not needed for proper demodulation. Thus, approximately one half of total computa-
tion is not necessary. Moreover, only the first 16 outputs actually corresponds to the
transmitted 16 carriers. This simplification cannot be achieved if decimation-in-time
FFT algorithms are incorporated for demodulation.

Due to frequency hopping operation or assignment of different set of carriers at the
transmitter, it is possible that the actual received carriers for the user may correspond
to the carriers located at 274, 66t", ...,962t*. In this case, the frequency of the local
oscillator at the receiver is shifted by fy which is equal to 10KHz such that the total
amount of computation remains the same regardless of the set of carriers chosen at the
transmitter. Even though only 16 outputs are required, it is also possible to compute

more carriers with for accurate synchronization purpose.

6.3.3 Performance of a Carrier Separated OFDM System

In the previous subsection, we showed that the carrier separation involves just a
mild increase in the computational complexity compared to FDMA OFDM if we em-
ply uniformly-maximum carrier-separation. In this subsection, we study the diversity
gain achievable by the uniformly-maximum carrier-separation. It is not hard to see
that the performance of the system should be comparable to that of a frequency hop-
ping OFDM system with 16 hops per packet with uniform frequency hopping pattern.

To study the possible performance gain with carrier separation, we need to specify
the other parts of the system design such as encoding and decoding methods. How-
ever, the performance of a diversity combining scheme should depend fundamentally
on the degree of freedom inherent in the multipath fading channel. Or more precisely,
it depends on the amount of degree of freedom it exploits out of the total degree of

freedom in the channel. For example, in a direct sequence spread spectrum system,
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the performance of a rake receiver fundamentally depends on the method of diversity
combining. Consequently, selection combining usually underperforms a hybrid selec-
tion combining or the maximal ratio combining that exploits more degree of freedom

in the multipath fading than the selection combing.

As discussed in Section 4.2, given a channel, the NFMSV V((0) is a function of the
frequency region © of interest. For the evaluation of the diversity gain by a particular
system design, we consider the NFMSV V¢(0©) of the particular frequency region © over
which signals are actually transmitted. In particular, in a carrier separated OFDM
system, it is very important to design the carrier separation to allocate to each user
a region with small NFMSV. However, the maximum achievable diversity gain by a
judicious choice of the frequency region depends fundamentally on the diversity of the
given fading channel. Consequently, it is necessary to investigate the diversity gains

of the carrier separation over wide variety of fading channels.

To study the relation between achievable diversity gain by carrier separation and
the NFMSYV of the whole frequency band of 10.24MHz, we have generated 300 delay
power profiles randomly and have selected, among them, 100 practically shaped power
profiles with varying amount of time dispersion. While some of the 100 channels have
sub-usec rms (root mean square) delay spread, some channels have 3—4usec of rms de-
lay spread. The NFMSV V((0©) of the region © of interest can be calculated from (4.13)
and (4.17) in Chapter 4. The regions of our interest are the whole frequency region
0, allocated to the 1024 carriers, a region ©,, consisting of 16 uniformly maximum

separated carriers and a region ©,, consisting of 16 adjacent carriers.

The NFMSV's for the 100 selected channels are plotted in Figure 6.13. For bet-
ter visualization, we plot V]? 1((9), the stochastic degree of freedom (SDF), instead of
V¢(©). The NFMSV V(0,,) of the whole frequency band ranges from 0.035 to 0.407.
Consequently, the SDF available in the whole frequency band ranges from 2 to 30. The
NEMSV V¢(©,) of 16 adjacent carriers are from 0.373 to 0.997. Consequently, with-
out carrier separation, the SDF is no greater than 3. In contrast, the NFMSV V{(0,,)
of the 16 uniformly-maximum separated carriers is between 0.077 and 0.439. Conse-
quently, uniformly-maximum carrier separation achieves SDF from 2 to 13 depending
on the SDF of the whole allocated frequency band. Note from the Figure 6.13, that
the gain in SDF by 16 uniformly maximum separated carriers generally depends on
the NFMSYV of the whole band. However, the SDF with any 16 carriers cannot exceed
16. Consequently, we observe there is a large gap between V¢(0,) and V¢(0,,) for
channels with small V¢(©,,). In such a case, increasing the number of carriers to 32

or 64 can achieve higher SDF gain. However, increasing the number of carriers does
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Figure 6.13: NFMSV’s of various regions of interest are computed for 100 randomly
generated frequency selective fading channels. The diversity gain achieved by the car-
rier separation is bounded above by the number of carrier and depends on the NFMSV
of the whole allocated frequency region. However, it is generally much higher than
that by system without carrier separation.

involve problems such as an increased peak to average envelope ratio. Consequently,
there are tradeoffs in increasing the number of carriers. The performance enhance-
ments by increased amount of SDF by employing carrier separation depends on the
detailed specification of the system. However, doubling the diversity easily makes sev-
eral orders of magnitude change in the bit error rate at reasonably high signal to noise

ratios.



Chapter 7

Multiple Access Interference

Cancellation

Multiple access interference (MAI) treatment is one of the most important problem in
direct-sequence (DS) code-division multiple access (CDMA) communication systems.
In this chapter, we study and compare various multiple access interference treatment
algorithms under multipath fading channels in which inter-symbol interference (ISI)
exists in addition to MAI. There have been very diverse efforts [10] to reduce MAI
and ISI. In Section 7.1, we briefly summarize some of the most important multiuser
detection algorithms. Then, in Section 7.2, we consider various multiuser detection al-
gorithms for single-rate asynchronous DS-CDMA systrems under frequency selective
fading channels. We first derive maximum likelihood sequence estimation (MLSE) al-
gorithm, which is optimal in the sense of minimum multiuser packet error rate. Based
on the MLSE, we consider matched-filter (MF) decision feedback sequence estimation
(DFSE) algorithm to reduce the computational complexity. The most significant draw-
back of MF-DFSE is the performance degradation due to the untreated anti-causal
interference due to the reduction of treated memory size. Noting this, an algorithm
called bias-compensated (BC) MF-DFSE is considered that compensates the estimate
of the untreated interference in the decision stages. These algorithms were compared
with other more simple interference cancellation algorithms such as single- and multi-
stage successive interference cancellation (SIC) and parallel interference cancellation
(PIC) algorithms. Multi-stage SIC is especially notable because of its high performance
and low complexity. Moreover, it is very easy to apply SIC algorithms to multi-rate sys-
tems. In Section 7.3, we consider SIC and PIC for multi-rate asynchronous DS-CDMA
systems under frequency selective fading channels. We compare the performance of

multi-stage SIC and PIC for variable-spreading gain and multi-code multi-rate sys-
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tems.

7.1 Introduction

Maximum likelihood sequence estimation (MLSE) algorithms are optimal in the sense
of the lowest packet error rate. There are two MLSE algorithms, one by Forney [39]
and the other by Ungerboeck [40]. Forney’s algorithm requires a noise-whitening filter
that have to adapt to the channel variations. This can be a severe computational
burden for DS-CDMA systems with long spreading codes. Consequently, the systems
based on Forney's MLSE are not desirable in mobile communications. In contrast,
Ungerboeck’s MLSE algorithm does not require whitening process. We generalize the
Ungerboeck’s algorithm to asynchronous DS-CDMA systems under frequency and time
selective multipath fading channels.

The complexity of MLSE can be reduced greatly by employing Viterbi algorithm
[39]. However, it is still too huge in practical wireless communication environments.
Consequently, various suboptimal algorithms are considered. Decision feedback se-
quence estimation (DFSE) algorithms [41, 42, 43, 44] are among the most natural
variations of the MLSE algorithm. In DFSE, the number of state in the Viterbi algo-
rithm is reduced and the effect of interference not considered is compensated by deci-
sion feedback. Although DFSE based on Forney's MLSE algorithm performs very well
under causal channels, it is not desirable due to the whitening process. DFSE based
on Ungerboeck’s formulation, which we call matched-filter (MF) DFSE, is computa-
tionally less complex but is poor in performance. Hafeez and Stark [11] observed that
such a poor performance stems from the fact that there exist untreated anti-causal
interference due to the reduction of state. The modified algorithm with the compensa-
tion of the anti-causal interference with rudimentary interference estimation is called
bias-compensated (BC) MFDFSE. We compare MFDFSE and BCMFDFSE for asyn-
chronous frequency selective fading channels.

Algorithms that utilize previous decisions in the current or the future decision
stages are generally called decision directed algorithms. DFSE is one of the most
important decision direct algorithms. Other more ad-hoc decision direct algorithms
are successive interference cancellation (SIC) and parallel interference cancellation
algorithms. These two algorithms are easy to implement and computationally simple
compared to other algorithms. In SIC [45, 46, 47, 48], signal is detected from the most
reliable ones and then the estimated contribution is subtracted. If the detection is

correct, then the cancellation removes the contribution of the interferer. Otherwise,
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the interference is doubled. In PIC, tentative decisions by conventional single user
detectors are made first and then the interference due to all other users are canceled
before the detection. For a single-stage implementation, PIC generally outperforms
SIC. However, for multi-stage realizations, SIC is better than PIC, which is also shown
in our performance evaluations.

There are many other multiuser detection algorithms including various variations
of aforementioned algorithms. Linear decorrelators [49, 50] and linear minimum mean
square error (MMSE) detectors [51, 52, 53] are among the most important multiuser
algorithms not considered in this work. Linear decorrelators demands the inversion of
correlation matrix, which is not desirable in practical asynchronous DS-CDMA sys-
tems under frequency and/or time selective multipath fading environments due to
computational complexity. By employing adaptive algorithms [54, 55], it is possible
to reduce the complexity of matrix inversion greatly with maintaining excellent per-
formance. Least square criterion is usually employed as the objective criterion in adap-
tive algorithms [56]. Adaptive detectors minimizing the expected squared estimation
error are called adaptive minimum mean square error detectors [52, 57, 58]. Such
adaptive algorithms often exhibits nice performance versus complexity tradeoff with
and without the knowledge of various information about other users. Consequently,
adaptive algorithms are useful in achieving good performance without severe compu-

tational burdens.

7.2 Multiuser Detection for Single-Rate Systems

In this section, we consider a single-rate asynchronous DS-CDMA system under fre-
quency selective multipath fading channels. After describing the system model, we
derive maximum likelihood sequence estimation (MLSE) based on Ungerboeck’s al-
gorithm [40]. Then, we introduce the matched-filter decision feedback sequence esti-
mation (MFDFSE) and bias-compensated (BC) MFDFSE algorithms. After describing
these algorithms, we compare the performance of various systems under realistic fre-

quency selective multipath fading channels.

7.2.1 System Model

We consider a BPSK-modulated multiuser asynchronous direct sequence CDMA (DS-
CDMA) system. Since the arrivals of symbols of different users are not synchronized,
received symbols can be reordered linearly in terms of the beginning of the arrivals

at the receiver. By doing this, the system can be described as a single user system in
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which another symbol is being transmitted before the end of the transmissions of the

previous symbols.

Let h(t,7) be the baseband representation of the time varying impulse response of
the overall system between symbol generator and receiver. To make the discussion
simple, let's assume that there is no delay between transmitter and receiver. Then,
b- h(t, ) is the received signal at time ¢ + 7 (except for the noise) when symbol b is gen-
erated at the transmitter at time ¢. Then, the baseband representation of the received

signal r(¢) due to N consecutive data symbols is

N

r(t) = Y _bih(Ti,t — T;) + n(t) (7.1)
i=1

where b; is it" transmitted symbol, T} is the time of the beginning of i** symbol re-
ception and n(t) is zero mean additive white complex Gaussian noise with two sided
spectral density Ny/2. Note that 7; may not be replaced by id with some § because
the timing of the transmitted symbols of different users may not be equally separated.
This formula gives a system model for the most general intersymbol interference chan-

nel including multiple access system.

7.2.2 MLSE

Maximum likelihood decision rule is an optimal rule for the detection of equally prob-
able symbols that minimizes packet error probability. For the system described in the

previous section, the maximum likelihood decision rule is to choose the set of symbols

b) = (by,--- ,by) that maximizes the metric M (b(Y)) defined by
N 2
MBMN) = [[r(@)|2 — ||r(®) = Y bih(Tit — T) 72
i=1
where ||z(t)||> means
el = [ le(o)lat 7.3)

In Appendix G, this is proved using Karhuenen-Loéve expansion. Manipulating the

integrations, we get the simplification for the metric

N

N N
M®dM) = (biyi +biyl) = D > biSigb; (7.4)

i=1 i=1 j=1
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where

W (T;,t — Ty)r(t) dt (7.5)

S = [ BTt - TRt - Ty)dt 7.6)

70
— 00
Z
Here, we observe that S; ; does not depend on the transmitted symbols and depends
only on the system characteristics. So the set of matched filter outputs {y;} forms

sufficient statistics for the detection. Here, we note that the matched filter output y;

depends on the future symbols in the presence of intersymbol interference.

By observing the fact that Sj;; = 5;;, we can rewrite the metric M (b(N )) as
N
M®BM) =3 "m; (7.7)
i=1
where
m; = Re{b; (245 — Siibi —2 si,jbj)} (7.8)

j<i
We assume that there exist a number [ such that S;; = 0 for all 7+ and j such that
|i — j| > I. The smallest such number L is called the memory of the system. In the
case of multiuser access system under a frequency non-selective channel, the memory

is the number of users minus 1.

Now since the metric M (b)) to be maximized is represented as a summation of
m; involving only the current statistic y;, we can use Viterbi algorithm using m; as
our branch metric. Since the information of the previous L symbols is required for the

evaluation of m;, the number of states in the Viterbi algorithm is 2%.

In m;, the last term ) ._; S; ;b; represents the interference between the i" and the

j<i
previous symbols. Note tilat E]- <iSijbj in Zé-:l m; cancels the interference of b; on
the previous symbols only, while y; introduces an anticausal interference component.
In MLSE, this anticausal interference is eventually accounted for when a decision
is made. However, in MFDFSE described below, this interference is only partially

accounted for in the conditional decision of transmitted symbol.
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7.2.3 DFSE

Decision feedback sequence estimation (DFSE) is a sub-optimal reduced-complexity
detection scheme derived from MLSE. In DFSE, only the most recent J(J < L) symbols
are hypothesized in the Viterbi algorithm yielding M states. In other words, when the
ith symbol is received, the (i —J)* symbol is decided conditionally on the most recent .J
symbols. The number J is called the memory order of DFSE. Traditionally DFSE was
applied to whitened statistics. Hence, in our discussion, a similar algorithm applied
directly to matched filter outputs is called matched filter decision-feedback sequence
estimation (MFDFSE).

MFDFSE

In the MFDFSE algorithm, the branch metric u; is defined by

i1 i—J—1

ui(bi, fi—1,7) = Re{b}‘ (2y¢ - Sii— 2 Z S;jbj —2 Z Si,jbj(ﬁifl,(]))} (7.9)
j=i—J j=i—L

where §;_1, s represents the previous state (b;_1,- - ,b;—s) in the Viterbi algorithm and

IA)i,j (Bi,s) is the tentative decisions on the symbols conditionally on the state j; ;. Let
Ui_l(,Bi—l,J) be the accumulated metric for the previous state 3;_1 ;. Then, the tenta-

tive conditional decision b;_ 7(Bi,7) is given by

bi_(Big) = argmaxbi,J{U(IBifl,J) + Ui(bi,ﬁifl,J)} (7.10)

and the accumulated metric U;(8;,s) is calculated by

Ui(Big) = Ui 1(Bi-1,9) + uwi(bi_5(Bi.y), Bi-1.7) (7.11)

BCMFDFSE

MFDFSE has two merits. First of all it does not involve computationally expensive
whitening process. Secondly the performance of MFDFSE does not depend on the
channel phase unlike the case of the original DFSE based on Forney’s algorithm. How-
ever, MFDFSE generally does not perform as well as the original DFSE. This is be-
cause of the fact that the anticausal inference introduced by y; fork =i—J,i—J—1,---

is only partially compensated by 22:1 Zf;ilf 1, b Sk,1b; upon the conditional decision of
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b;—y. The uncompensated component is

i+L
Z Re{2b* JZ S]kbk} (7.12)
j=i—L+1 k=i+1

where b;;1, ++ ,b;—j4+1 are yet to appear. In the BCMFDFSE proposed by Hafeez and
Stark [11], these future symbols are estimated using conventional detector outputs
b, = sign(yx) and the estimation of the uncompensated component using these con-
ventional detector outputs is included in the decision step. So the modified decision

rule becomes

bi—y(Big) = argmaxbi_J{U(ﬂi—l,J) + ui(bi, Bi—1,9) — biaS(ﬂi—l,J)}

where
Jj+L
bias(S_1.7) Z Re{2b* Y s kbk} (7.13)
j=i—L+1 k=i+1

Note that the bias term is not included in the accumulated metric, because the anti-
causal interference part is eventually contributed after the decision. The bias may be

simplified by maintaining only the term involving b;_j, i.e.,

i—J+L

bias(8;_1,7) ~ bias(bi_s) =2b]_; > Si_skbr (7.14)
k=i+1

The simplified bias, bias(b;—;), does not depend on the state because the terms l;k for
k=i1—L+1,---,4—J —1 are ignored.

The computational complexity of BCMFDFSE is comparable to that of MFDFSE
and is roughly the same as that of MFDFSE when the approximate bias is used.
BCMFDEFSE can also be used in a multistage approach by feeding back the decisions

of the previous stage for the calculation of the bias term.

7.2.4 Performance Evaluation

It is not easy to derive analytical performance results under complicated channel mod-
els. So our method of performance evaluation is simulation. First we describe the

testing environments and then give simulation results.
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Figure 7.1: Average delay profile of ALD and PS

Testing Environments

Our simulation environments are based on the recently developed ETSI WCDMA stan-
dard. We assume the carrier frequency is 2GHz and that the chip rate is 4.096Mcps.
For the uplink communication, the frame duration is 10 ms and each frame is divided
into 16 power control slots. For each power control slot, the channel fading levels are
virtually constant for any terrestrial vehicular speed at the carrier frequency of 2GHz.
We tested our system under two different fading channels called American Legion
Drive (ALD) and Pine Street (PS). D. C. Cox [59, 60] performed channel measurements
at ALD and PS, from which we derived simplified channel models. ALD is a suburban
area in New Jersey and PS is a street next to Wall street in New York. We simplified
ALD and PS as 5- and 12-path models where the delays are multiples of chip duration
and the fading levels of the paths are independent, complex and Gaussian distributed.
The average delay profiles of ALD and PS are shown in Fig. 7.1.

In our simulations, we assumed 8 users with spreading gain 32 having the same
average strength. We used random spreading codes for chip sequences of the users.
Users are assumed to be symbol asynchronous but chip-synchronized and symbols of
the (i + 1) (i = 1,--- ,7) user are 4i — 1 chips delayed compared to the corresponding
symbol of the first user. We assumed that each packet consists of 100 symbols and did
not attempt any power control. We assumed that the channel fading levels are con-
stant over a packet duration but independent from packet to packet and user to user.

The channel memory of ALD and PS under these settings are 13 and 18. Because the
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chip rate is fast enough compared to the change of the baseband signal and everything
is assumed to be chip synchronized, we sampled, for discrete time representation, the
signal once per each chip duration. And we assume that the receiver has an estimate
of the chip-sampled version of h(¢, 7).

We compared BCMFDFSE with conventional matched filter detection, MFDFSE,
m-stage parallel interference cancellation (PIC) and m-stage successive interference
cancellation (SIC) for m = 1,2, and 4. For an asynchronous DS-CDMA system, there
are many different ways to implement PIC and SIC. Some of them are discussed in
[61] and [62]. For PIC, we first have to define which symbols are to be considered to
correspond to the same symbol interval and we should cancel all interference from
the past and future symbols as well as the current symbols. For example, for the
single stage PIC, we first make tentative decisions on the symbols using conventional
detector and use them to cancel the interference. For subsequent stages, decisions
from the previous stage are used for the cancellation.

In the case of SIC, it first orders the users according to the average power of the
matched filter outputs over the entire packet. Let's say that user 1 has the highest
average powetr, user 2 has the next and so on. Now the SIC makes a (conventional hard)
decision on the 1t symbol of user 1 and cancels the contribution of that symbol from the
received signal. It then detects the 2"¢ symbol of user 1 and cancels the contribution of
that symbol from the received signal. If there is interference between the 3"¢ symbol
of user 1 and the 1% symbol of user 2, then the SIC detects the 3"¢ symbol of user
1 and cancels the contribution as well. After cancelling all interference between the
symbols of user 1 and the 1% symbol of user 2, the SIC proceeds to detect the 1%¢
symbol of user 2 and so on. Higher stage SIC starts with the cancelled received signal
which is just the noise component if all decisions in the previous stage are correct.
The canceled component corresponding to the symbol in decision is added back to the
canceled signal to make a decision by matched filter output. The newly estimated

contribution is cancelled again before proceeding to the next symbol.

Simulation Results

First we obtained the bit error rates (BER) for ALD and PS with the assumption that
the receiver has perfect channel estimation. Figures 7.2 and 7.3 show the results.
For various decision feedback sequence estimation algorithms, we denote by (J, D) the
memory order J and decision lag D. For ALD, we obtained the BER for MLSE while it
was not possible for PS due to complexity. The single stage BCMFDFSE algorithm out-

performs all other single stage detection algorithms except for the MLSE algorithm.
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Figure 7.2: BER Performances under ALD channel with Perfect Channel Side Infor-
mation
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Figure 7.3: BER Performances under PS channel with Perfect Channel Side Informa-
tion
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In ALD channel, we see that the performance of BCMFDFSE is very close to that
of MLSE up to the BER of 10~%. Except for PIC, all multistage algorithms, in ALD
channel, show near optimal performances upto the BER of 10~%. The multistage SIC
is especially notable because of the excellent performance and the minimal computa-
tional requirements. The excellent performance of a multistage SIC stems from the
fact that the false interference cancellation is always compensated in the next-stage of
the decision process.

We considered the effect of imperfect channel estimation on the algorithms. To
simulate this situation, we multiplied the sampled system response by a Gaussian
random variable with mean 1.0 and standard deviation ¢ = 0.20 and ¢ = 0.05. For
o = 0.05, the performance is almost the same as with perfect channel estimation, while
we have small degradation of performance with o = 0.20, which is shown in Figures 7.4
and 7.5. It was observed that the performance degradation due to imperfect channel

information is roughly the same for all considered algorithms.

7.3 Interference Cancellation for Multi-Rate Systems

In this section, we examine the effectiveness of SIC and PIC in multirate environ-
ments. We first discuss the current research activities for multiuser detection under
multirate DS-CDMA environments. Next we describe the system model and interfer-
ence cancellation algorithms we consider. Then, we provide simulation results for the

system.

7.3.1 Introduction

The advent of the third generation wireless communications initiated investigations
of multiuser detection for multirate systems [63, 64]. The study of multiuser detec-
tion algorithms for multirate systems should be preceded by the specification of the
access methods. There are many ways to support multirate transmission in a CDMA
system. The two most widely considered schemes are variable spreading gain and mul-
ticode systems. With variable spreading gain, high rate is supported by choosing small
spreading gain while keeping the chip rate the same. High rate service in a multicode
scheme is supported by assigning multiple spreading codes to a single user. Varying
the chip rate or assigning multiple carriers can also be considered. In this work, we
consider variable spreading gain and multicode schemes for multi-rate support.
Recently, various decorrelators [65, 66] and decision feedback detectors [67] have

been studied for multirate systems. In [65, 66], variable spreading gain schemes are
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considered, while in [67] a comparison is made between variable spreading gain and
multicode schemes with decision feedback detectors. In this work, we consider in-
terference cancellation (IC) algorithms for the two access schemes in asynchronous
DS-CDMA systems. There are various reasons for choosing simple IC algorithms for
multirate systems. First of all, IC algorithms can easily be integrated with other com-
munication technologies such as error correction coding or channel estimation. Sec-
ondly, when applied iteratively, they achieve very high performance in many cases.
Thirdly, the computational complexity of IC schemes are relatively low compared to
other systems. Fourthly, IC algorithms are easily applicable to multirate systems.

Moreover, they are very robust under various non-idealistic situations.

7.3.2 System Model

We consider a dual-rate asynchronous DS-CDMA system under a frequency selective
but time non-selective wide-sense stationary uncorrelated scattering Rayleigh fading
channel. We assume the system is uncoded and that the signaling rate is fixed to be
W chips per second for all users. There are K users accessing a common base-station
at Ry, bits per second. Each of these K users transmit signals with a single spreading
code of processing gain G, = W/R. In addition, we assume that there is one more
user who accesses the base-station at Ry bits per second where Ry is much higher
than Ry. We assume for ease of discussion that Ry /Ry, is an integer.

We are interested in the multiuser detection algorithm at the base-station. The re-
ceived signals from the K + 1 users are assumed to be chip-synchronous but not to be
symbol synchronous. The K + 1 users are assumed to transmit signals over indepen-
dent multipath channels which have the same statistical properties, namely, the same
delay power profile. Typically, high rate service requires high quality of service and
hence, we assume that transmitted power is maintained so that the average received
power is high enough compared to that of low rate users to guarantee the quality of
service.

We consider two schemes of multirate provision. In the first scheme, the high rate
user uses a spreading gain Gg = W/Rg. In this case, all K + 1 users are assumed
to be assigned random spreading codes. In the second scheme, the high rate user
uses K' = Ry /Ry different spreading codes. Again the spreading codes for the low
rate users are assumed to be random spreading codes. As for the K’ spreading codes
assigned, they are assumed to be orthogonal one another.

We assume that all the low rate users maintain the transmitted signals so that

their expected received signal strength are the same. The high rate user is assumed to
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maintain higher average received signal strength level. Consequently, the situation is
one strong high rate user and K weak low-rate users. We shall also consider various
power control schemes, namely, perfect power control, imperfect power control, and no

power control.

7.3.3 SIC and PIC

As usual, IC algorithms are preceded by a conventional matched filter detection. We
assume that the receiver has perfect or imperfect knowledge about the channel state.

Multi-stage SIC starts with power ranking algorithms. We call this stage the 0t?

stage
of the SIC. During the 0" stage, the receiver evaluates the matched filter outputs of a
conventional rake filter with maximal ratio combining over the whole packet and then
ranks users according to the average of the square of the matched filter output. From
now on, we call user 1 the user with highest average squared matched filter output.
Similarly user K + 1 is the one with lowest average squared matched filter output.
The first stage starts with the decision on the first symbol of the first user by the
usual rake receiver. After detection, the contribution to the received signal due to that
particular symbol is estimated and then canceled. Now, the receiver makes a similar
decision on the second bit of the first user and cancels the estimated contribution. The
receiver continues until the last symbol of the first user is detected and then canceled.
Then, the receiver starts with the first bit of the second user. After completing the last
symbol of the second user, the receiver starts with the first symbol of the third user.
After the receiver detects and cancels the last symbol of the last user, we are left with
a noise estimation and the first stage of SIC is complete.

The second stage starts with adding back to the noise estimation the estimated
contribution of the first stage due to the first symbol of the first user. In other words,
the canceled component is added back to the noise estimation. Even if the decision at
the first stage is wrong, this newly constructed signal contains the signal component
due to that particular symbol. Now the receiver makes a decision on the first symbol
with this new signal and cancels the newly estimated contribution due to the first
symbol of the first user. Then, it proceeds in a similar way to the second symbol of the
first user. After finishing with the last symbol of the first user, the receiver proceeds
toward the first symbol of the second user. Continuing this way, the receiver completes
its second stage when it decides the last symbol of the last user. The third and higher
stages are similarly done. Obviously the receiver algorithm described above is overly
demanding in terms of delay and hardware requirements such as memory. There are

many ways to reduce the complexity without having any difference in the performance
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by judiciously choosing a windowing operation of the suggested algorithm.

The zeroth stage of our PIC algorithm is the conventional matched filter detection.
After the decisions on all the symbols of the K + 1 users by the conventional receiver,
the receiver obtains the noise estimation by canceling the estimated contributions due
to the detected symbols. The situation is similar to the first stage of the SIC. The
difference lies in the fact the receiver in this case proceeds detecting all the symbols
of the system without canceling any contributions of other symbols. This difference
stems from the parallelism in the application of the matched filter. The second stage
is similar. To make a decision on a symbol of a user, the receiver just adds to the
noise estimation of the first stage the previously canceled estimated contribution of the
particular symbol of the particular user and then makes a decision using the matched
filter. Note that the same noise estimation is used for all users and for all symbols.
After completing the last symbol of the last user, the receiver recalculates the noise
estimation by reconstructing the received signal used at the 0" stage and then by
canceling the newly obtained estimated contributions of all users as in the 0" stage.
This completes the first stage of the PIC. The second and third stages are similarly

done.

7.3.4 Simulations

Rather than considering mathematical analysis under idealistic situations, we study
the performance by simulations under more realistic situations. For the simulations,
we have chosen the chip rate W = 2.4Mcps (mega chips per second). We assume that
there are K = 8 low rate users with spreading gain Gy, = 24. The spreading codes of
the low rate users are random spreading codes. The packet duration of each users are
chosen to be 10msec so that each packet consists of 1000 binary symbols. Both variable
spreading gain and multicode schemes are considered. In the variable spreading gain
scheme, the high rate user is assigned a spreading gain Gy = 3 with random spreading
code. Again the packet duration is assumed to be 10ms and so the packet of the high
rate user consists of 8000 bits. In the multicode scheme, the high rate user is assigned
K' = 8 spreading codes. The 8 spreading codes are constructed as follows. First a
master random spreading code is constructed and then 8 orthogonal spreading codes
are obtained by multiplying by the Walsh Hadamard spreading code of period 8 which
are the spreading codes constructed by repeating the rows of 8 x 8 Hadamard matrix.
The high rate user is assumed to maintain the orthogonality between codes by keeping
the synchronization, which is perfectly feasible. Because the 8 codes are mixed at the

modulation stage of the high rate user, they are transmitted over the same fading
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channel.

The modulated signals of the users are transmitted over independent WSSUS
Rayleigh fading channels, all of which have the same delay power profile given in the
following table. The channel is assumed to have 8 equally spaced taps with roughly

exponentially decaying amplitude.

Relative Delay (usec) || O 1 2 3 4 5 6 7
Relative Amplitude 1.0/09|08 07|06 |05|04]0.3

In our simulations, the average signal to noise ratio of the high rate user is assumed
to be 5dB above that of the low rate users. In the figures, E, denotes the average energy
(per bit) of low rate users and Ny the one sided noise power spectral density. We assume
that the power control against the shadowing loss is perfect. However, we consider the
case in which power control cannot match multipath fading loss effectively. Figure
7.6 to Figure 7.9 are obtained with perfect power control and perfect channel side
information. Figure 7.10 to Figure 7.13 are obtained with imperfect power control
and imperfect channel side information. In this case, to simulate imperfect power
control, we first randomly generate (following Rayleigh fading statistics and the delay
power profile) the channel impulse response of each user and calculate the power by
summing the squared fading levels at all delays, which we denote by P. In a perfect
power control scheme, we re-scale the impulse response by multiplying by 1/ VP. In
an imperfect power control situation, the re-scaling factor (0.8 + 0.2v/P)/+/P is chosen
instead of 1/ V/P. To simulate, the imperfect channel side information, for each delay,
we multiply the fading level by a complex Random number 14+ X +5Y (j = /—1) where
X and Y are zero mean real Gaussian random variable with variance 0.1. By this
process, we generate imprecise channel information supplied to the receiver. Figure
7.14 to Figure 7.17 are obtained without power control but with perfect channel side
information. By without power control, we mean no power control for multipath fading.
In all cases, the single user performance is obtained assuming single user transmission
with 4-stage SIC for ISI cancellation. For all cases, the performance of 4-stage SIC is
the best. Moreover, we find that it is roughly the same for both variable spreading gain
and multicode schemes. However, the performance of 4-stage PIC is heavily dependent
upon what access method is used. We see 4-stage PIC is far better with the multicode
scheme, which is expected. In particular, we observe that PIC performs worse under
no power control. As a side observation, we verify again that power control does still

contribute to the performance enhancements.
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Figure 7.10: High rate user, Imperfect power control, Imperfect channel information,
Variable spreading gain
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Figure 7.12: Low rate user, Imperfect power control, Imperfect channel information,
Variable spreading gain
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Figure 7.14: High rate user, No power control, Perfect channel information, Variable

spreading gain
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Figure 7.16: Low rate user, No power control, Perfect channel information, Variable
spreading gain
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Figure 7.17: Low rate user, No power control, Perfect channel information, Multicode
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7.4 Conclusion

In this chapter, we studied and compared various multiuser detection algorithms.
We first derived a MLSE algorithm and introduced MFDFSE and BCMFDFSE. We
found that BCMFDEFSE achieve large performance gain compared with MFDFSE un-
der various situations. We also considered simple IC algorithms. In particular, it was
found that multi-stage SIC provides esepecially excellent performance versus com-
plexity tradeoff. Observing this, we applied the multi-stage IC algorithms to multirate
environments. We verified the multistage SIC performans very well under various
situations. We found that the performance of multi-stage SIC is nearly the same for
variable spreading gain and multicode schemes supporting the analysis by Ramakr-
ishna and Holtzman [68]. Also it was found that power control is still desirable for the

systems.






Chapter 8

Conclusion and Future Reseach

In this chapter, we conclude this report by summarizing the content of this report and

discussing possible future research directions.

8.1 Summary of Contributions

The most important contribution of this report is the introduction of the normalized
mean square covariance (NMSV) and the stochastic degree of freedom (SDF). The pa-
rameters are defined for general L? stochastic processes and studied in the context
of wide-sense stationary uncorrelated scattering (WSSUS) channel characterization.
By various analytical and experimental investigations, we verified very close relation-
ship between the parameters and the performance of various communication systems.
Due to such strong relationship, the parameters are very useful in characterizing the
quality of a WSSUS channel.

The existence of such parameters are certainly beneficial to system design. Perfor-
mance evaluation can be speculated directly in terms of the quality of channels, which
makes the system design much more economical. As an example, we studied the di-
versity gain variation by frequency hopping rate change. We also provided an example
to show that the parameters play important roles in optimal channel resource allo-
cation. We showed that resource allocation problem can be studied by obtaining the
relation between the parameters and particular resource allocation schemes without
actual performance evaluations of underlying systems.

To generalize the validity of the parameters to non-WSSUS channels, we defined
the re-centered normalized mean square correlation (RC-NMSR) which is the same as
NMSYV for WSSUS channels. The RC-NMSR was defined from the analysis of a simple
diversity combining scheme. It was illustrated that the RC-NMSR also exhibits very
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close relations with system performance for practical non-WSSUS channels. For most
practical non-WSSUS channels, the specular components consist of a single strong
impulse due to the line of sight path. However, supplementary parameters called
normalized arithmetic variance (NAV) were defined to characterize the shape of the
specular components of non-WSSUS channels. We showed that NAV is very effective
in characterizing the specular components by verifying a strong relation with system
performance.

We also studied and compared various multiple access interference (MAI) treat-
ment algorithms. In particular, we derived Ungerboeck-type maximum likelihood
sequence estimation algorithm (MLSE) for general asynchronous DS-CDMA systems
under frequency and time selective multipath fading. Based on MLSE algorithm, we
obtained matched filter decision feedback sequence estimation (MFDFSE) and bias-
compensated (BC) MFDFSE. BC-MFDFSE was found to achieve large performance
gain over MFDFSE without much increase in the system complexity. Single and mul-
tiple stage successive interference cancellation (SIC) and parallel interference cancel-
lation (PIC) algorithms are also studied. Multiple stage SIC was especially impressive

in achieving excellent performance with minimal computational complexity.

8.2 Future Research Direction

Due to the fundamental nature of the research presented in this report, it is possible
to continue the research in various directions. First of all, the investigations of the
information theoretic significance of the NMSV is among the most impending research
topics. We will investigate the relations between NMSV and channel capacity and/or
cutoff rate under various circumstances. Another important topic is the generalization
of NMSV to multiple input multiple output (MIMO) channels, which is very closely
related to information theoretic investigations. It will also be important to find out
applications of the parameters in other branches of science and engineering.

The continuation of the research on the carrier-separated (CS) orthogonal frequency
division multiplexing (OFDM) systems has a special important of practice. We believe
they are very strong contenders for the next generation wireless communications due
to its high performance, simplicity, and flexibility. Detailed specifications of adaptive
coding and modulation schemes and dynamic resource allocation schemes should be
followed.

The research on multiuser detection algorithms can be directed toward wide areas

of equalization including cancellation of intersymbol interference under severely time-
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dispersive channels or applications in spacetime decoder. In realistic applications,
estimation and adaptation algorithms are especially important because the validity of
the various algorithms depends on the knowledge of the channel status. Introduction

of power control to the training sequences might result in an interesting topic.






Appendix A

Measure and Integration

The theory of measure and integration lies on the heart of the mathematical theory of
probability and statistics. In this section, we review definitions and necessary math-
ematical terminologies in measure and integration, most of which can be found in
standard analysis and probability textbooks [69, 13, 14]. We start with a brief intro-
duction to the historical background for quick motivation of the theory of measure and
integration. At the end of this section, we introduce the concept of the arithmetic mean
for general measurable functions. The symbols R, R*, R and C will stand for the sets of
all real numbers, all positive real numbers, all extended real numbers, and all complex

numbers, respectively.

A.1 Introduction

Around the beginning of the twentieth century, it was one of the most important top-
ics in mathematics to generalize the Riemann integral. Among various attempts,
Lebesque’s approach turned out to be the most successful [69]. To illustrate the idea,
consider a function f : [0,1] — [0, 00). Roughly speaking, the Riemann integral fol f(t)dt

is a limiting value of the sum
f(al)(tl — to) + f(az)(tg — tl) + -+ f(an)(tn — tn—l) (A.1)

where 0 =g < a1 <ti1 <as <tsg < -+ <tp 1< a, <t, =1 In other words, to de-
fine Riemann integral, we first divide the domain [0, 1] into disjoint sub-intervals and
choose a point in each interval. Then consider the sum of the form (A.1). If the sum con-
verges to some unique number as we divide the sub-intervals into sub-intervals again

and again, then we define the Riemann integral fol f(¢) dt by the number. For example,



132 Appendix A. Measure and Integration

it is well-known that the sums converge if the function f is piecewise continuous in
which case the value f(ag) tends to represent the function over the interval [tg_1, tg]
well enough in the limiting process. However, if the function f is not well-behaved, the

Riemann integral is not defined in general.

In Lebesque’s theory, more general partitions of the domain are considered rather
than partitions into sub-intervals. Intuitively speaking, the idea starts from the divi-
sion of the image of f into sub-intervals [70]. For example, partition the image of f
into n disjoint sub-intervals I, I3,-+- , I, and let E, = f }(I}) for k = 1,2,--- ,n. We

then consider the sum
BIA(EL) + baA(Bs) + -+ + buA(En) (A-2)

where b, € I and A(Ej) is some measure of the size of the set Ej for each k. We
note that the value b;’s represent typical values of I;’s as the intervals become narrow,
regardless of the continuity of f. The Lebesque integral denoted by fol f(t) dA(t) is de-
fined by judiciously limiting the above sum with proper definition of the set function
A. Note that the set function A appears in the notation of the integral since the value
of the integral depends fundamentally on the choice of the set function A. To quantify
the sizes of sets properly, the set function must satisfy some conditions. A set function
satisfying those conditions will be called a measure. However, it is often not possible to
define a measure on all subsets of [0, 1] (see for example, Chapter 3 in [71]). Hence, we
have to restrict the domain of a measure to special collections of subsets of [0,1]. Gen-
erally, a measure is defined on a o-field of subsets. We note that A\(f~1(I;)) should be
defined for each interval I}, for the sum (A.2) to be defined. We will define measurable

functions to satisfy this condition.

Lebesque defined the function A on the o-field generated by all open sets in [0, 1] to
satisfy that A([a,b]) = b — a for any real numbers a and b with a < b. Consequently, the
measure A is a generalization of the length function ! defined on intervals by I([a, b]) =
b — a. The measure A is usually called the Lebesque measure (in [0, 1]). If the Riemann

integral of f exists, then the Lebesque integral also exists and satisfies that

1
F()dA(t) = / F(t)dt. (A.3)
[0,1] 0

Lebesque measure and integral can be defined on more general subsets of Euclidean
spaces [13]. Lebesque measure defined in the ¢g-dimensional Euclidean space will be
denoted by A9.
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A.2 Measurable Spaces and Measurable Functions

Mathematical theories often become the most obvious in abstract settings. The theory
of measure and integration is probably one such example. We consider a general non-
empty set X. Similarly to the Lebesque measure A\, we want to define a set function g
called a measure on the subsets of X. As remarked previously, the measure cannot be
defined suitably for all subsets of X in general. Instead we consider a collection X of
subsets of X such that

1. Ee€X.
2. X-EecXifEcX.
3. Uzo:]_Enex,ifEl,Eb,... ,E.’f

We call such a collection X a o-field or o-algebra in X. If X is a o-field in X, then we call
the pair (X, X) a measurable space. The elements of X are called measurable sets in
(X, X) or X-sets. Often we write X to stand for (X, X) if it does not cause any confusion.
For example, the power set 2%, namely, the class of all subsets of X is a o-field in X.
Let € be any collection of subsets of X. Then, always there exists a unique o-field in
X denoted by ox(€) such that € C ox(€) and ox(€) C Q) for any o-field ) with € C 9).
The o-field ox(€) is called the o-field in X generated by €.

We call the pair of a set X and a o-field X a measurable space because we can define
a reasonably good set function called measure on X. A set function p : X — R is called

a measure on (X, X) if
1. p(0) =o0.
2. u(E) > 0 for each E € X.
3. w(Up2y En) =300 1 w(Ey), if Eq, Ey, - - - are disjoint sets in X.

If 1 is a measure on (X, X), then we call the triplet (X, X, u) a measure space. Some-
times, a measure is called a positive measure to emphasize that it takes only non-
negative values. If p(X) is finite, then p is said to be finite. If there exists a countable
collection {E,}7°; of sets in X such that pu(E,) is finite for each n and |J;-, E, = X,
then p is said to be o-finite. For example, the Lebesque measure defined in a compact
set [a, b] is a finite measure while the Lebesque measure defined in R is o-finite.

Let (X, X, 1) be a measure space. Let p(z) be a propositional function defined for all
z in X. If p(z) is true for all z in some E (€ X) with pu(X — E) = 0, then p(z) is said to

hold almost everywhere in X with respect to the measure pu, for which we often write
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‘p(z) a.e. ' or ‘p a.e’ For example, consider two real valued functions f,g : X — R
and let E be a X-set with (X — E) = 0. If f(z) < g(x) for any z in E, then we say
‘f(z) < g(x) almost everywhere (in X with respect to p)' and write ‘f < g a.e’

Let (X, X) and (Y,2)) be measurable spaces. Let ¢ = {Ax B: A€ X and B € 9}.
The elements of € are called measurable rectangles in X x ). We usually write X ® 9
for the o-field in X x ) generated by €. Now let u and v be o-finite measures on (X, X)
and (Y,9), respectively. Then, there exists a unique o-finite measure 7 on X ® 2) such
that

7(A x B) = u(A)v(B), (A4)

for any A € X and B € ). We usually write p X v for 7 and call it the product measure
of p and v.

Let X be any set. Then, a collection ¥ of subsets of X is called a topology in X if

1. pc Tand X € 7.

2. ENFeTifE Feq.

3. Ujer Bi € T for any collection {E;};cr of sets in T.

If T is a topology in X, we call the pair (X, ¥) a topological space. The elements of T
are called open sets (in X relative to T) or T-open sets. If X — E € T, then FE is called
a closed set. A subset C of X is said to be compact if we can find a finite sub-collection
Ei ,---,E;, of {E;}icr such that C C |J;-_, E;, for any collection {E;};cr of open sets in
X such that C C |J;; E;.

If (X, %) is a topological space, then the o-field ox(7) in X generated by the topology
7 is called the collection of Borel set in (X, ¥) and is also denoted by B(X, T). We often
write B(X) for B(X,T) if there is no risk of confusion. If X = R or X = C", the
topology is usually defined by open-balls and is called the usual topology. Hence, when
we write R", for example, the topology is understood to be the usual topology studied

in advanced calculus level [72].

Let (X, X) and (Y,92)) be measurable spaces. Then, a mapping f : X — Y is said to
be (2)-X) measurable if f~1(A) € X for any A € 9 [13, 14]. Let Y be R, R, or C. Then,
f is said to be a measurable function if it is (B(Y)-X) measurable. Let (W,20) and
(Z, 3) be an topological spaces. Then, a mapping g : W — Z is said to be continuous if
g 1(A) € W for any A € 3.
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A.3 Definition of Integrals

As discussed in Section A.1, the theory of measure was motivated by theory of integra-
tion. In this subsection, we briefly review how the integrals of measurable functions
are defined. Throughout this subsection we assume that (X, X, u) is a measure space.
Let f : X — R be a measurable function. We first consider the case in which f > 0.
Let A, As,--- , A, be nonempty disjoint X-sets such that |J;_,; Ay = X and consider

the sum

zn:{ inf f(z } (Ayp). (A.5)

cA
k=1 Sk

Such a class {A;}}_, of measurable subsets is called a measurable partition of X.
We define the supremum of the sum over all measurable partitions as the integral of
f with respect to p and write [y fdu, [y f(z)du(z), or [y f(z)u(dz). Note that the
supremum and hence the integral | x fdp always exists, although it may be oo, if f
is a non-negative measure function. Hence, we define, for a non-negative measurable

function f : X — R,

n

f du = sup {Z{ inf f(z )}u(Ak)]- (A.6)
k=1

x {Ax} Ak

Now we consider more general case in which f > 0 does not hold. We first define

the positive part f* of f

() = f(z) if f(z) =0, A7)

0 if otherwise,

and the negative part f~ of f by

F(2) = —f(z) if f(z) <0, A8

0 if otherwise.

Then, f = ft — f~.If [, fTdp < oo or [y f~du < oo, then we define [, fdu by

/deuz/xﬁdu—/deu. (A.9)

If [ « fdp is finite, then we call f integrable. If f is measurable, then |f| is also mea-
surable and f is integrable if and only if [ |f|dp < oco.

Now consider a complex-valued measurable function h : X — C. Let f and g be the
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real and imaginary parts of h. We call h integrable if [ x |hldp < oo. Both the functions

f and g are integrable if and only if A is integrable. If A is integrable, we define

/hduz/ fdu+j/gdu- (A.10)
X X X

Let E be a measurable subset of X and let 15 : X — R be the characteristic function of
E defined by
1 if ze€eFE,
lg(z) = (A.11)
0 if z¢ E.
Then, 1 and h-1g are measurable for any measurable function h. If f x h-1g dup exists,
then we write [, hdp for [, h-1gdpu.
For each integer p, we denote by LP(X, X, ) the set of all measurable functions
f: X — C such that

/ |fIP dp < o0 (A.12)
X

and call it the LP-space in (X, X, p1).

A.4 Properties of Integrals

The integrals defined in Section A.3 are more general and flexible than Riemann in-
tegrals. In this subsection, we summarize various useful properties of the integrals.
Throughout this subsection, we assume that a measure space (X, X, p) is given. We will
denote by § the collection of all extended real valued measurable functions f : X — R
and by F1 the collection of all non-negative functions in §. Also we will denote by &

the set of all complex-valued measurable functions on X.

Theorem A.1 (Integrals for Functions in ).
We first remark that the integral is defined in Section A.3 for any non-negative measur-
able function. In this theorem, we collect various important properties of integrals for

non-negative measurable functions.

1. For f,g e 3, if f < g a.e., then

/fduﬁ/gdu- (A.13)
X X

2. (Monotone Convergence Theorem) Let f, fi, fo,+-- € §. Assume that f, < fni1
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a.e. for each n and that lim,, f, = f a.e. Then,
nlLI{:o . fndp = /X fdu. (A.14)
3. Letfi1, -, fm €3  and letay -+ -,y € [0,00]. Then, a1 fi + -+ + amfm € " and
/X(alfl + ot amfm) dp = Oél/Xf1dN+---+am/Xfmdu- (A.15)

4. Let f1, f2,--- € 1. Then, Y > | fn € § and

/X(gf”) d“=i</andﬂ>- (A.16)

n=1

5. (Fatou’s Lemma) Let fy, fa,-+- € §*. Then,

/ (lim inf fn) dp < liminf f, du. (A.17)
.X n—oo

n—oo

In particular; if there exists a function f € §* such that lim,, f,, = f a.e., then
/ fdp < liminf f, du. (A.18)
X n—oo

Theorem A.2 (Integrals for Functions in §).
Integrals in Section A.3 are not defined for all measurable functions. In this theorem,

we collect various important properties of integrals of general measurable functions.

1. Let f,ge 3. If f < g a.e, then

/fdué/gdu (A.19)
X X

if the integrals are defined.

2. Assume that f € § anda € Rorthat f € ® and a € C. IffX fdu is defined, then
[x(af)dp is defined and

/X (af)dp=a /X fdp. (A.20)

3. Assume that fi,---,fm € § and a3, -+ ,a., € R or that fy,---,fn € & and
ai, o, € C. If fy,- -+, fm are integrable, then a1 fi + -+ - + o fm 1S integrable
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and

/(a1f1+---+amfm)du=a1/fldu+---+am/ fm dp. (A.21)
X X X

4. Let f e For f € &. Then, |f| € §'. If [y f du is defined, then

\/deu\ S/leldu- (A.22)

5. (Dominated Convergence Theorem) Let f, f1, fa,--- € § or f, f1, f2, - € &. Assume

that there exists an integrable function g € §+ such that |fnl < g a.e. for alln and

that f =lim, f, a.e. Then, f and f, are integrable for all n and

lim (/ fndu> :/ fdup. (A.23)

Theorem A.3 (Fubini’s Theorem).
Let (X,X,u) and (Y,2),v) be measure spaces. Assume that y and v are o-finite. Let f be

an extended real-valued measurable function or a complex valued measurable function
on X xY.

1.

Assume that f > 0 and define F : X — R by

F(z) = /Y £ (@) dv(y). (A24)

Then, F' is a measurable function on X and

/ Fdu = / fd(pxv). (A.25)
X XxY

Assume that f is integrable (with respect to u X v). Then, there exists a set E € X
with u(E) = 0 such that [, f(z,y)dv(y) exists for all x € X — E. If we define a
function F on X by

fyf(:v,y)d,u(y), xGX—E,
0, zeE,

F(z) = (A.26)

then F' is a measurable function on X with well-defined integral fX F du such that

/ Fdu= / fd(pxv). (A.27)
X XxY
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NMSV’s in terms of Scattering

Function

In this section, we derive the formulae in Section 4.2.1 for a type-2 restriction of the
WSSUS channel of Section 4.2. From the defintion of P(f,t) in (3.59), we have

/// P(f - f',t =t )P*(f — f',t — t') df dt df" dt’ (B.1)

// // //// e—32n(f—")(r ="y i2n(v—v')(t-) (B.2)
R4

-q(1,v)q (T V) drdvdr' dv' df dtdf' dt’  (B.3)
- J/IL.

// —ji2nf(r—1")+52m(v—1") df dt

q(r,v)g* (7', V) drdvdr' dv'  (B.4)

and
P(0,0) = // q(t,v)drdv. (B.5)
R2
Consequently,
////|Pf f' t —t")|? df dt df' dt’
V() = (B.6)

[P(o,o) // dfdt]
) / / / /R ) / IS (=) (e ”)tdfdt a(r,v)q" (T,,l/’)deI/dTldl/’.(Bj)

[//Rz q(T,V)del///Q dfdtr

For V¢(0;t) and Vy(f;T), choose 2 = © x (t —6,t+6) and Q = (f — d,f +6) x T and
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take the limit § — 0 in (B.7).



Appendix C

Calculations of a Kernel

Let I, = [A+ k(v + w), A+ k(v + w) + w]. Then,

2 K-1K-1
/ ej27TfT df — Z / e*j27TfT df 67‘7-277‘7”7- dfl
© k=1 k'=17 1k Ly
K-1K-1
_ w2sinc2 (Ww,r)efj27rr(w+v)(kfk’)
k=1 k'=1
K1 2
= w?sinc®(mwr) Z gl2rT(wtv)k
k=0
= w?sinc®(mwr) [SiI.l{KW(w T U)T}] 2.
sin{m(w + v)7}

Since [ df = Kw, we have (4.17).

(C.1)

(C2)

(C.3)

(C4)
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BER for Simple Diversity

Combining

Let Hy, = HE + jHE, ny, = nff + jnl. Then,

M=

s=VEe Y [(H + (H)] +
k=1

£
Il

1

Here, given all H,?’s and H,ﬁ’s, Ele [H,?ng + Héni] is a Gaussian random variable
. . No K R)2 12
with mean zero and variance 52 >;t,; [(HF)? + (H{)?] so that

2E.||h||?
P(s<0H=h) = Q( M) (D.2)
No
where H denotes the 2K —dimensional random vector (Hf%, HlI, e ,H}?, HII{) and h de-

notes a 2K — dimensional vector realization of H. Consequently, we can write

2
P(s < 0) /f (,/2E]|Jh”>dh (D.3)
0

where fy is the probability density function of H. Here, observing that Q(4/ %)
depends only on ||h||2, define R = ||H||2. Then, we have

P, = / Fr(r 1/2ECT>dr (D.4)

where fg is the probability density function of the random variable R.
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Now from the relation between fr and the characteristic function ¥ g, namely, from

fr(r) = % /0 Yr(B)e P"dp, (D.5)
we get
1 g 2E,r
~5r [ enie) [ e Q(y2RE) aras (D.6)
in which

© ) 2Eb7° © BNOwZ N()
e~ IBr dr = / ~I3E, </ dt> zdzx D.7
t
. 0 __t2 7‘7%1:2
= — e 2 re "2B 7 dx)dt (D.8)
V 27TEC /0 (/0 >

7 T raeBeye 1
= e T2 —e 2 dt D.9
3 ] (D.9)
1
= . (D.10)
2E, (2E )
N, Y No \' N,

Here, (D.7) follows from the change of variables (z = \/m) and the definition
of Q(-). Then, the Fubini's theorem with two different representations of the same
domain of integration provides (D.8). By performing the integration in the parenthesis
of (D.8), we obtain (D.9), which yields (D.10) after direct evaluations of the integrations
and rearrangement. Finally, after substituting (D.10) into (D.5), we can obtain (4.50)

by rearranging the real and imaginary parts.
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Various Expressions for
RC-NMSR'’s

In this section, we derive (5.16) - (5.24). To make the descriptions concise, we define

the frequency-time correlation function P(f,t) by
0 .
P(f,t) = / p(r, t)e 357 dr.
— 00

Then, we have
Vu(f.t; f,t) = P(f - f,it =)
and

P(f,t)= //]R2 q(r,v)e 72U gr du.

First note
Ru(f,t; f,t') = P(f — f',0) + mu(f, t)ymy (f',t')

and hence that

|Ru(f,t: f,0) 1 — [ma (f,6)Plmy (£, ¢)
= |P(f — 't =t)? + 2Re[P(f — f',t — t)my(f, O)ymu(f',1')]

where Re[] denotes the real part of a complex number -.

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)
(E.6)
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Consequently,

// Ry(f,t'; f,t)dfdt = // [P(0,0) +|D(f,t)|?] dfdt (E.7)
Q Q

= //Rz q(T,u)dmly//Q dfdt+/Q|D(f,t)|2dfdt (E.8)
- //ﬂ dfdt-(//R2 q(T,V)deu+<|mH|2>Q> (E.9)

/// P(f = f,t=t)P*(f - f',t — t) df'dt'df dt (E.10)

// // //// e~ 32 (f—f")(r—7")+j2n(v—v")(t-t") (E.11)
R4

ar () ' drdvdf ddfde (B12)
- JIIL.

/ / —j2mf (r=7)+j2m (v~ V)tdfdt q(r,v)g* (7', V) dr'dv/drdv (B.13)

// / P(f — f',t —t)D*(f,t)D(f,t) df dt df' dt' (E.14)
Q Q

= // // //// q(r, V)e*j%{(f*f’)ff(tft’)v}d*(T/’t)ejznfT' (E.15)
Q Q R4

-d(’r”, t/)efj27rf'7’" dr dv dr' dr" df dt df’ dt' (E.16)

_ / // /R 4q(T,V)[ / /Q //Q & (' )d(", ) (E.17)

LI (T =tV g g af! de | dvdr dr' dr”. (E.18)

By plugging (E.9-E.18) into (5.10), we obtain (5.16). To obtain (5.20) and (5.24), we set
N=0x(t—-6t+6)and Q= (f—46,f+J) x T in (5.16) and take the limit § — 0.
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The Characteristic Function of R

To obtain the expression (5.56), we start from (5.54) with the definition R = |D§c +
S;|%. Then we have ¥g(8) = Hle YR, (B) since Ry, -- , Rk are independent and R =
Zle Ry. Here ¥R, denotes the characteristic function of R;. By the way, R, = RkR—l—Ri
where

RE = {Re[D}c] + Re[S;c]}2 (E1)

and )
Rl = {Im[D}c] +Im[s,;]} . (F2)

Note RkR and Ri are independent non-central chi-square random variables so that
YR, = wRﬁdei' Now by direct computation of the characteristic functions ¥ RE and

Ygi, we can show
1 jl‘D;?‘QB
R ——" O Y TPV E3
1= B )

The characteristic function of a non-central chi-square random variable can also be
found from (2.1-116) of [35]. Note that we need to use (5.53).

(T (,3 )






Appendix G

Maximum Likelithood Sequence

Estimation

Assume that a signal r(t) starts at ¢; and ends at ¢y at the receiver. Let {¢;}7>, be
a complete set of orthonormal functions on the compact interval [t;,tf]. Then, r(t),
h(T;,t — T;), and n(t) can be expanded as

o0

r(t) = Y redk(t) (G.1)
k=1

WTut—T) = > hirdn(t) (G.2)
k=1

n(t) = Y mgr(t) (G.3)
k=1

Here, {n;}7°, is a sequence of independent identically distributed complex Gaussian

random variables with mean zero and variance Ny/2.

Let p(r(™) and p(r(® |b(¥)) be the probability density functions of the random vector

n)

r(® = (r1,--+,7m,) when nothing is transmitted and b(®) are transmitted, respectively.

Then the likelihood ratio A, (b(¥)) defined by

(n) 1 (N)
An(b(N)):p(r b))

S G.4
p(r™) ©4



150 Appendix G. Maximum Likelihood Sequence Estimation

is given by

An (b)) = = (G.5)

so that

An(b(N)) = exp {Nio Z (|rk|2 —

n
k=1

e — g: bihi 2) } (G.6)
i=1

Now let A(b®) = lim,, o A,,(bY)). Then the maximum likelihood decision rule is

to choose b(N) that maximizes A(b(")). But, since

(e}

AB™) = exp {13 (el -
k

=1

2) } (G.7)

the maximum likelihood decision rule is to choose b(Y) that maximizes the metric
M (b)) defined by

N
T — § bih;
i—1

MB™) = 37 (Il -

k=1

2) (G.8)

N
TR — E bih;
i—1

o N

_ /°° |r(t)|2dt—/ ‘r(t)—Zbih(Ti,t—T—i—i)zdt. (G.9)
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