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Abstract

We investigate a time-invariant network routing problem where a probabilistic local broad-
cast model for wireless transmission is used. We discuss this model’s key features. We present
results showing that an index policy is optimal for the time-invariant routing problem. We
extend the time-invariant model to allow for control of transmission type, and prove that the
index nature of the optimal routing policy remains unchanged. We then allow time-varying
system parameters in the original model, and discover conditions under which a time-varying
index routing policy or a time-varying priority routing policy is optimal. Finally, we present
three distributed implementations of an optimal routing policy for the time-invariant problem

and provide results on their convergence properties.



1 Introduction

As communication networks become ever more prevalent, research to improve their design has
become both more encompassing and more application specific. Protocol (policy) issues such as
service priority, retransmission schemes, flow control, and routing are now studied for large dis-
tributed systems and for a variety of communication channel types. Further, it has long been
recognized that integrating various source types, such as voice, video, email, web access, and
business transaction data into one seamless transparent network results in both the highest ef-
ficiency and ease of use. In such networks the ability to provide appropriate Quality of Service
(QoS) to each service type becomes paramount. A further challenge is posed by wireless networks,
where these service goals must be achieved with unreliable and time-varying channels, and where
new concerns, such as energy consumption and multi-user channel interference, impose additional
constraints.

The ubiquitous TCP/IP protocol suite, originally developed for non-realtime data for a relatively
fixed network with mostly reliable communication links, is not always easily adapted to satisfy the
new conditions. For example, once Quality of Service (QoS) requirements, such as timeliness, are
added, major design changes become necessary (e.g. [Diff 99]). Another concern is that unreliable
links may cause havoc on routing and retransmission protocols designed without this concern in
mind. Hence, much recent research has focussed on changes to the IP protocol to handle these new
environments. Also, routing protocols for wireless networks must be able to adapt to relatively
rapid changes in the node topology, making the dynamics of route computation an important
issue.

The term ad hoc is often now applied to networks in which there is no central network controller,
each node can itself act as a store-and-forward router, and in which the connectivity topology
is time-varying (e.g. see [Haas 99]). Such a network is in contrast to, for example, a cellular
network where each cell has a central base station through which all data is transmitted. We
think of the network as having a number of packets, each of which is destined for some set of
destinations. The general routing problem in an ad hoc network is to define a policy which, given
the trajectory histories of all the packets, chooses which nodes should next transmit which packet.
It is also desired that this policy be implementable in a distributed fashion in the network, so the
transmission decisions can be decided locally without knowledge of other parts of the network.

Many approaches can be taken to network routing optimization. A typical one is maximizing

the overall throughput the network achieves. But in many cases for the wireless environment other



considerations are at least as important. For example, often in a wireless network the energy source
is locally stored in a battery at each node, and the major design goal is to achieve satisfactory
communication while using up as little energy as possible. Or there may be other costs associated
with each transmission, such as a penalty for signal interference, that need to be incorporated into
the optimization criterion. Also, there may be QoS issues, such as delivery timeliness and packet
priority, which should have an effect on the service policy.

This paper explores the abovementioned design issues in network routing algorithms for ad hoc
wireless networks, and provides a novel system model which allows for optimal design in a number
of realistic situations. It is organized as follows. In the remainder of Section 1 we present modeling
and routing algorithm issues in ad hoc wireless networks that need to be taken into account in
our problem. We also present briefly a discussion of the literature available on routing in ad hoc
wireless networks, and a summary of the contributions of this paper. In Section 2 we present a
qualitative description of our model. In Section 3 we define and solve a routing problem with time-
invariant parameters. In Section 4 we extend this time-invariant routing problem to include choice
of transmission type. In Section 5 we define a routing problem with time-varying parameters,
and present two solutions valid only under restricted conditions. In Section 6, we present three
distributed algorithms which compute the optimal routing policy of Section 3. Section 7 provides

conclusions and ideas for future work.

1.1 Ad Hoc Wireless Network Modelling Issues

For our purposes, the model chosen to reflect the reality of a situation should embody the important
pertinent truths while still allowing analytic insight. We list here some of the important modeling

issues for an ad hoc wireless network, and also mention some of our modeling choices.

1.1.1 Level of Abstraction

It is important to distinguish between a high-level protocol definition and the detailed description
necessary for its implementation. Generally, a high-level description does not make too many
assumptions about what communications technology the protocol will be run on. For the routing
problem, this means an appropriate link-level protocol is assumed, subject to the routing algorithm
requirements. These requirements take the form of a model of link-level behavior assumed by the
routing algorithm.

Our goal here is to define such a high-level routing protocol, and hence we specify a model for



how the link-level behaves. We then describe a routing protocol optimal for this system model,
and present an algorithm which computes this protocol for any given system. The algorithm is
designed to be implementable in a real distributed system. But there are many implementation
details, such as how local control and information flow is transmitted, and communication channel
allocation to each node, which we do not specify here. These aspects of the design are dependent
on the communication technology used (which could be CDMA, frequency hop, FDMA, and so
on). It is a topic for further study how such implementation details affect the actual performance

of our protocol.

1.1.2 Channel Model

Wireless transmission is always somewhat uncertain. Channel noise over a changing distance,
multipath fading, signal blockage or scatter, and interchannel interference can all adversely affect
data reception. Routing researchers typically model these channels in a deterministic way, either
as some kind of power threshold indicating communication is possible (e.g. [Rodo 99], [Wies 00)),
or with a numeric link quality indicator which includes channel quality information, which is then
used in a deterministic algorithm (e.g. [Purs 93],[Purs 99]). We take another approach, allowing
for a probabilistic structure on transmission success, and allowing for routing decisions to be based
on transmission result signaling from potential receivers. We then study how routing performance
can be better optimized under this model. In this scheme, the local probabilistic structure must

be continuously estimated by each node as the network functions.

1.1.3 Antenna Model

The majority of wireless applications involve mobility in the network. Given the uncertain nature
of such a topology, it is standard for the radios to incorporate omnidirectional antennas, which
effectively provide a local broadcast to all neighboring nodes. It is widely recognized that the
omnidirectional nature of these wireless transmissions is a limiting factor in the performance of
the network. This is due to the interference one transmitting mobile generates, affecting reception
of other mobiles that are nearby. But it is also important to recognize that an omnidirectional
transmission, potentially reaching multiple neighbors at once, can actually be used to advantage
even by a unicast routing protocol, given the stochastic nature of wireless transmission. Our model

will assume omnidirectional antennas, and use this local broadcast effect in the protocol.



1.1.4 Interchannel Interference

Assuming node motion to be outside the control of the routing protocol, there is only one source
of channel disturbance which is actually under routing protocol control. This is the interference
transmissions cause each other, and hence these disturbances merit special consideration. There
is a rich research literature on the topic of power control for systems like cellular networks where
network information and control flow is centralized. The problem is far more difficult in ad
hoc networks, where a routing choice in one part of the network can produce a down-the-road
interference effect far elsewhere, and where control decisions usually need to be made locally
without knowledge of what other nodes are doing.

One approach to this difficulty is to assume that interference from other nodes is a phenomenon
not unlike channel noise, in that it cannot be precisely predicted at each node given what the
node knows. The idea is that from the point of view of each node, transmission in the network
is random, so that the best that can be hoped for is to make some statistical model for the effect
locally. Hence, interference effects get folded into the probabilistic transmission structure, which
the node then estimates. This is the approach taken in this paper, though it is recognized that
the detrimental effect of a transmission on neighbor performance is not adequately reflected in the

cost structure being optimized.

1.1.5 Packet Size

The network is packet switched, and the allowed packet sizes is an important part of the system
definition. In TCP/IP a wide variety of packet sizes is allowed. To achieve QoS requirements,
some protocol designs, such as ATM, restrict packet size to a small fixed value and accept the
resulting transmission overhead. It is a network modeling issue whether or not a routing algorithm
is faced with sending packets of different sizes.

In our model the packet size will be fixed. This is due to the fact that we restrict attention
to the problem of transmitting one packet from its source to its destination, and hence the same
packet is transmitted at each time step. In Section 2.5 we justify our focus on this one problem

in this paper.

1.1.6 Destination Description

A routing problem can be categorized as unicast, multicast, broadcast, or anycast. In unicast,

the destination is one particular node. In multicast, it is a set of nodes, and the packet should be



sent to all of them. In broadcast, the packet should be sent to all nodes in the network. Though
unicast and broadcast can be thought of as special cases of multicast, usually quite different routing
algorithms exist for each case. Hence, it is convenient to consider each as a separate problem. In
anycast, the destination is a set of nodes, and the packet should be sent to any node in the set.

In this paper, we concentrate exclusively on an anycast problem. However, we specify our
problem a little more generally, in that we allow the reward to vary depending on the destination
node. Once some destination node has been reached, a decision can be made whether to continue
transmitting to reach a node of higher reward, or to stop and take the current reward. It is

important to emphasize that only a single node’s reward is ever received.

1.1.7 Quality of Service

The performance of a given routing algorithm may depend on multiple factors. For example, energy
expended on getting to the destination might be a concern which competes with QoS requirements,
such as how quickly the destination is reached. To handle these situations, we include in our most
general system model time-varying parameters which capture message priority and the need for

delivery timeliness.

1.2 Ad Hoc Wireless Network Routing Algorithm Issues

A number of issues arise when designing a routing algorithm for ad hoc wireless networks, some of
them particular to this problem. Of course, the decisions made in designing the algorithm reflect
the system model under consideration. In this section we summarize some of these issues, and

briefly discuss our own approach.

1.2.1 Hierarchical vs. Flat

One way to deal with the complexity of an ad hoc network is to divide it into hierarchical groupings
(often called clusters) (e.g. [McDo 99]). Communication then always goes up and down the
hierarchy through cluster heads. Part of the design problem then becomes to define these clusters
based on the known details of the network’s information flow.

Another approach is to give each node the same routing responsibility with no such groupings.
This is perhaps appropriate when little is known ahead of time of the relations among the nodes.
Also, even in the cluster approach the routing of information within clusters can be considered a

flat routing problem to the cluster head.



Our work considers optimal routing problems within a flat node hierarchy.

1.2.2 Distributed Implementation

An ad hoc network consists of a group of nodes distributed in space, each running its own local
controller. As such, it is desirable that the routing protocol not require any centralization of
information or control. That is, we desire our protocol to run at each node and only use information
locally available, in a sense to be made precise. One approach is to only consider policies that
have this character, and find the optimal one within this class. However, it is often convenient to
think of the routing problem in the context of fully centralized information and control, to derive
the optimal protocol for the centralized problem, and then to see if a distributed implementation

can be made of it. We will take the latter point of view in this paper.

1.2.3 On Demand vs. Route Maintenance

In a highly dynamic network where packets are rare compared to motion, it might be wasteful
to constantly update the network topology, since most of the time no packets are transmitted.
Instead, it may be better for the protocol to compute the route for a packet only when the packet
itself appears, discovering the route in the current topology. Such protocols are often called “on
demand” or “reactive” (e.g. [Cors 95]).

The other approach is to always maintain a set of routes in the network. Protocols with this
feature are described as “route maintenance” or “proactive”. In a network with a sufficient quantity
of traffic, the overhead to accomplish this might be relatively small. Also, often the routing
information can be efficiently piggybacked on data packets.

We develop our algorithm using the route maintenance approach, but it is important to keep in

mind the conditions under which this approach makes sense.

1.2.4 Optimization vs. Sufficiency

The criterion used to determine a route affects the algorithm design. Possibly it is desired to
optimize some system variable, such as energy expenditure or average route delay, for each route. It
might then be worthwhile to spend the effort to find the best route for this variable. Alternatively,
for example in a high dynamic and low traffic situation, the effort to find a best route might
outweigh the benefit from actually using it. In these situations it is better to just guarantee that

some route is found, and do so with minimal effort.



In this paper we take the former approach, and focus on algorithms which minimize a system
variable, which for simplicity of exposition we take to be energy expenditure. This is consistent
with our assumption of sufficient traffic to justify route maintenance, and is appropriate for a

number of potential applications, such as battery-powered independent mobile units.

1.2.5 Link State Detection

Routing algorithms must make decisions about the status of different links in the network. For
example, in typical on-demand protocols link status, either up or down, throughout the network
is used to find a path to the destination. The method for determining the link state plays a key
role in how a routing algorithm functions. In many protocols, information from the link layer, or
Medium Access Control (MAC) layer, is fed up to the routing protocol for this purpose.

In our model the link state information is incorporated into the transmission probability struc-
ture, which suits our stochastic channel model. It might be possible to include MAC information
in the estimation of these transmission probabilities. It is interesting to investigate how well other

algorithms determine link state in the stochastic environment.

1.2.6 Link State vs. Distance Vector

Optimal routing algorithms can generally be classified as either link-state or distance vector.
In link-state, network topology information is transmitted to each node, which can then choose
routes accordingly. As a typical example, the TCP/IP routing protocol OSPF (Open Shortest
Path First) [Moy 91] is a link-state protocol. In distance vector, each node stores a best next hop
and resulting cost for each destination, and neighbors share this information. From the neighbors’
values, a node can set its own value for each destination. A typical example of a distance vector
protocol is TCP/IP’s RIP [Malk 93]

If each node in the network transmits local topology information to all other nodes, this requires
O(N?) packet deliveries ([Kuro 00] p.243). For even a moderate sized network in a dynamic
environment, which has a need for constant updating of such information, this control flow is
unwieldy. An implementation of a proactive routing algorithm in a flat ad hoc network will need
to be more like a distance vector than a link state algorithm.

Though our initial analysis assumes a central controller and hence appears more like a link
state algorithm, later we present an implementable distributed distance vector style algorithm.

But distance vector algorithms have some well-known limitations, such as convergence rate, the



counting to infinity problem, and packet looping ([Kuro 00] p.252). The extent to which these
limitations also exist in the distributed algorithms we present in Section 6 is a topic for future

research, as we briefly discuss in Section 7.

1.3 Ad Hoc Wireless Network Routing Literature

A lot of research work on routing for ad hoc wireless networks has been published in recent years.
Most of this work includes simulation results, comparing the proposed protocol with a generic link-
state or distance vector protocol, or comparing specific algorithms against each other. A minority
of the published papers include analytic results, such as proofs of convergence or convergence rates.
The work on routing for ad hoc wireless networks can perhaps most conveniently be categorized

as either on-demand or route maintenance.

1.3.1 On-Demand Protocols

On-demand protocols are the algorithms which only update routing tables when a new packet
arrives. On-demand protocols usually store old routing information and use it as long as packets
still get to their destination. When a given path fails, there is some mechanism for probing the
network to find a new path, which often involves flooding the network. Usually the path found
is not optimal in any sense, and no QoS guarantees are made. Link detection used to decide
path failure generally uses information from the wireless Medium Access Control (MAC) layer.
The value of an on-demand protocol is that the communication requirement to set up a route is
minimized. Hence, these protocols can be valuable when network dynamics are high compared to
packet transmission frequency.

A number of on-demand routing protocols have recently been proposed for ad hoc wireless
networks. The Temporally-Ordered Routing Algorithm (TORA) ([Cors 95|, [Park 97]) is based
on work originally in [Gafn 81]. TORA tries to quickly establish routes on demand using a path
reversal method which is guaranteed to find some route (this is proved in [Gafn 81]). The resulting
route is generally non-optimal. Dynamic Source Routing (DSR) ([John 94], [Malt 99]) uses source
routing, where each packet header contains the entire route for the packet. Existing routes are used
without update until one fails. When one fails, a Route Discovery is executed, during which Route
Request packets flood the network until any route is found. The Ad Hoc On-Demand Distance
Vector (AODV) protocol ([Perk 97]) is a kind of hybrid of on-demand and route maintenance

protocols. The link status between a node and its neighbors is maintained through periodic



beacon signals between nodes. But routes are only updated when a packet routing fails, and then
this link status information is used. The route chosen by AODYV is the one with the minimum
number of hops. The Zone Routing Protocol (ZRP) ([Pear 99]) is another hybrid of on-demand
and route maintenance. The network is grouped into zones, which are groups of nodes. As in
route maintenance, each node maintains a continuous knowledge of the topology of all the nodes
within its own zone. However, routes to nodes outside a node’s zone are determined on-demand

in a Route Discovery process.

1.3.2 Route Maintenance Protocols

Given their wide acceptance, the benchmarks for route maintenance protocols are often the
TCP/IP standards RIP [Malk 93] and OSPF [Moy 91]. However, as discussed above, the Internet
implementations of these algorithms are not well-suited to the wireless ad hoc network environ-
ment (e.g. see [Graf 98]). In highly mobile environments, communication overhead to implement
a full link-state algorithm is prohibitively costly. Alternatively, much research has been performed
to adapt distance vector type algorithms to the mobile environment. In these approaches, it is
common to use a Distributed Bellman-Ford (DBF) type algorithm [Bert 92] to update the routes
and cost estimates. A common theme in the research, then, is to address the weaknesses of this
type of algorithm in a highly mobile and uncertain environment.

An early effort along these lines is [Merl 79], which endeavors to provide loop-free routing
in a quasi-static environment. In the Destination-Sequenced Distance Vector (DSDV) proto-
col ([Perk 94]), routes are tagged with sequence numbers. This allows the most up-to-date route
information to be included, as well as providing a quick means for propagating link breakage infor-
mation. In this way, loop-free routing is achieved. In Least Resistance Routing (LRR) ([Purs 93],
[Purs 99]), the link quality between nodes and the current buffer length of the receiving node are
used to define a link resistance value. A DBF type algorithm is then used to find a least resistance
path for such a network. The Loop-free Path-finding algorithm (LPA) ([Garc 97]) eliminates the
counting-to-infinity and packet looping problems with the DBF algorithm by using predecessor
information and loop-detection at each router.

A minimum energy approach to routing in ad hoc wireless networks is taken in [Rodo 99].
The most striking difference to our work is in the channel model. In [Rodo 99] communication
is peer-to-peer, and the stochastic nature of the channel is modeled as a threshold value for

transmission power that ensures reliable communication. This threshold value is computed from

10



a signal transmission model requiring knowledge of node positions (via global positioning system
(GPS) fixes). Once energy requirements to transmit to each node are determined, a DPF algorithm
is run to compute minimum energy routes.

There has been growing interest in providing QoS guarantees for transmission in many networks.
The QoS problem in wireless ad hoc networks is made especially challenging by their dynamic and
uncertain nature. Some recent examples of research along these lines are [Chen 99], [Iwat 99], and
[Siva 99].

An interesting approach to the multicast problem is developed in [Wies 98] and [Wies 00]. A
deterministic local broadcast model for the wireless link, with a power threshold determining the
availability of a link, is used to set up a problem to find the minimum energy to span a given set
of destination nodes. An optimal solution to this problem is computationally infeasible, but the
satisfactory performance of heuristic algorithms is studied using simulation. This circuit-switched
multicast problem with deterministic local broadcast model is quite different from the problems
we define in this paper.

In many situations where the relations among nodes are well established (e.g. nodes grouped
by affiliation), it makes sense to think in terms of hierarchical groupings. Some recent work
along these lines include [McDo 99], which uses motion estimates of node clusters to optimize
the routing protocol, and [Joa 99], a zone based system using GPS that is derived from the Zone
Routing Protocol ([Pear 99]).

A detailed comparison via simulation of a few different routing protocols for ad hoc wireless
networks is described in [Broc 98]. It is clear that to truly understand the tradeoffs involved
among the wide variety of available algorithms, more work along these lines is necessary. And of
course it would be even better if progress in our conceptual understanding led to better methods

for critiquing different techniques.

1.4 Contribution

In this work we present what is, to the best of our knowledge, the first network routing protocol
which uses a probabilistic local broadcast model for wireless transmission. This model captures
(i) the coupling between network layers, and (ii) the wireless channel’s key characteristics, and it
allows for routing decisions to be made based on immediate feedback from actual transmissions.
In contrast to most of the existing literature, where link-level communication is point-to-point, we

fully utilize the result of each local broadcast and use the information provided by the immediate
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feedback to construct an optimal routing protocol. Such a protocol is well suited for a distributed
implementation, as it is based only on information local to a node. We present a method describing
how the protocol is updated when topological changes occur in a distributed mobile network, and
this demonstrates the protocol’s practicality.

We extend the model to allow for control of transmission type at each node, and show how
the fundamental nature of this optimal protocol doesn’t change. In the particular case of power
control, an optimal protocol effectively resolves the tradeoffs between fewer long hops vs. more
short hops. Finally, we analyze a time-varying network, where reward for packet delivery depends
on time, and present conditions under which we can specify an optimal protocol. This model
captures the important tradeoff between QoS requirements, such as delivery timeliness, and other

criteria, such as energy efficiency.

2 Model Description

In this section, we expound on the modeling issues introduced in Section 1.1, and discuss our own
modeling choices in more detail. The discussions here are qualitative and descriptive, intended to
provide insight into the thinking behind the model we have chosen. We point out that there is
no “proof” of correctness of our model, or of any model. A model’s value depends on how well
it captures important aspects of reality, and how cooperative it is under analysis or simulation.
Indeed, finding the right level of model description for a problem is one of the key advances
necessary for achieving useful results. Our model should be judged by the utility of the results we
obtain with it. A precise mathematical description of our model, Model (M), is given in Section 3.

Throughout this paper, we will refer to the data bits to be transmitted from a network node
as a message. This is not meant to preclude the possibility that this data is a data packet in a
packet network protocol suite. As defined in the ISO standard (see [Kuro 00]), the function of the
network layer in such a protocol is to transmit packets from one network node to another. As we
discuss below, our model is defined for use at the network layer, though modeling of some link
and physical layer behavior is included. Our optimal routing algorithm performs the function of

routing at the network layer, and can be implemented to support any transport layer protocol.
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2.1 Motivation

Our goal in this work is to find practical routing algorithms well suited to the ad hoc wireless

environment. To achieve this, we need a model satisfying two key points:

1. Model essential aspects of the wireless channel and the wireless ad hoc network

e The simple models used for wired networks can be improved upon, at the cost of

additional complexity.

e The model needs to allow for analysis and simple implementation.

2. Obey appropriate informational constraints

e An ad hoc network is a flat space of nodes with no central control.

e Each node exchanges information with its neighbors only.

Point 1. leads us to define a probabilistic local broadcast model for node transmission, which we
describe in detail below. We find that indeed a relatively simple stochastic model captures far more
than standard deterministic models, yet still allows for analysis and a feasible implementation.
We desire local exchange of information in Point 2. to avoid the need for network flooding, as is
used, for example, in OSPF ([Moy 91]). We handle Point 2. as follows: we begin with a centralized
model where full information is available to a central controller. That is, we assume the central
controller knows all events in the system, and at each time instant can use this information to
make optimal decisions. We determine an optimal centralized policy, and then show two separate

facts about it:

1. The policy can be implemented at each node using only information local to that node,
satisfying the network’s information constraints (Section 3.3.3). Because the policy is optimal
for the problem with full information, it is also optimal for any problem with restrictive

information constraints.

2. The optimal policy can be determined by a distributed algorithm (of distance vector style)

which also satisfies the network’s information constraints (Section 6).

Thus in the following modeling discussions, we focus on a problem of centralized information,
and the term controller refers to a decision-maker which has access to all network information.
We desire for our model to capture: i) the coupling among model layers, and ii) the wireless

channel’s key characteristics. These features are described below.
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Figure 1: Lower Layers of ISO Network Model

2.2 Coupling Among Model Layers

A novel feature of our modeling approach is the close interplay of what traditionally are separate
physical, link, and network layer functions. See Figure 1 as a reference for the lower layers of the
standard ISO network model. In typical network routing algorithms, the information used at the
network layer to determine best routes is usually very terse. Often, each link between connected
nodes is given a number which indicates the point-to-point link cost, and a shortest path routing
algorithm is implemented (for example, see discussions of OSPF or RIP in [Kuro 00], in which
each hop is given a cost of 1). The nature of the physical channel is completely subsumed in this
straightforward approach.

Our goal is to model link behavior in a manner more suited to wireless transmission. The special
nature of wireless communication may not fit well into a simple point-to-point link cost model,

primarily due to four interacting effects:

1. Due to the omnidirectional nature of mobile antennas, each message transmission can po-

tentially be received by multiple neighbors.
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2. Given the uncertain nature of many wireless links, message reception events are best modeled

as random events.
3. Each transmission in the wireless system consumes energy, or some other limited resource.

4. The topology of the network, meaning link quality to neighbors, may be a function of choices

made at the transmitter, such as power level, bit rate, modulation, and coding.

Points 1. , 2. , and 3. affect how the link layer should be modeled by the routing algorithm at
the network layer. Point 4. requires some understanding about how choices at the physical layer
affect the probabilistic transmission events. When these choices are available at the transmitter,
they can be taken into account by the routing algorithm when making optimal routing choices. A
typical example of this situation is transmission power control.

Points 1. and 2. lead to a natural modeling choice as follows. When a node is chosen for
transmission, a random event occurs which is the set of neighbors which receive the message
from that transmission. Each such event is given its own probability. After the transmission,
the resulting event is made known to the controller as information to be used for the next node
transmit decision. This point is very important: the routing algorithm uses feedback from actual
transmission events to determine the optimal next action. Such a possibility is important only
in the context of stochastic transmission events. In effect, we have discarded the point-to-point
communication function of the link layer, and replaced it with a link model which 1) reflects
mobile radio’s local broadcast behavior and 2) allows reaction to the random nature of wireless
transmission. As we will show, the optimal control of this more complicated model requires a close
coupling between the routing algorithm and the link function.

Note that reception events can be coupled among neighbors. That is, independence of the events
of individual neighbors receiving the message is not required. This allows modeling of situations
such as where the same interferer affects transmission to all neighbors, or neighbors in physical
proximity have the same random blockage.

To capture Point 3., we take a straightforward approach by incorporating into our model the
cost of each transmission. This is simply to accrue a cost, specific to that node, for each node
transmission. We allow this cost to vary over all the nodes, but at first we assume it is fixed for
each node. Later, we modify the model to allow this cost to vary with choice of transmission type,
as next discussed.

We model the functionality of Point 4. as follows. Once the controller learns the result of

15



the last transmission, it chooses a node for the next transmission, and it also chooses a type of
transmission for that node. Transmission types might include power, coding, modulation, or even
antenna directionality. To each choice of type is associated a cost, and a probability of success for
each transmission event.

By this point we have discussed the basic notion of a transmission model where reception events
can include multiple neighbors, and where these events are stochastic. Before completing the
discussion of our link model, we introduce some well-known wireless transmission impairment

types, and then discuss how we can interpret our model in their context.

2.3 Channel Models

Because of its clear importance for improving system design, the detailed character of the wireless
transmission channel has been studied for many years, and in a variety of environments. We
very briefly summarize here the work most relevant to our problem, focussing on the relation
of theoretical and empirical studies to the development of our own model. For a more detailed
description of the wireless channel and the typical models used for system analysis and design,
see, for example, [Rapp 96], [Samp 97], or [Garg 96], and the references therein.

One approach to channel modeling begins with detailed models of hardware operation, including
amplifier and antenna, as well as coding and modulation type. Then as much actual environmental
information as possible is incorporated, including the physical layout of the mobiles and terrain,
as well as the quality of the signal environment. Mathematical models of channel behavior are
then developed, including diffraction, reflection, and scattering models, from which link quality
can be determined among the nodes given their arrangement in the environment. Often the link
quality is specified in terms such as signal-to-noise ratio or probability of error.

Another approach is, prior to system deployment, to map the signal transmission quality through-
out the operational environment by taking extensive measurements. A database containing this
data is then available for making network routing decisions, given a current configuration of the
nodes in the network.

Perhaps needless to say, each of these approaches is very difficult, if not prohibitive. There are a
few reasons for this: 1) the complexity of the computations for determining link quality, including
signal propagation effects, 2) the difficulty in gathering the requisite data from the environment,
and 3) the time-varying nature of the operational environment. Hence, it is usually necessary

to create more tractable channel models by considering the general effects of the environment
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on the transmitted signal, and then lumping these effects into just a few descriptive categories.
Typically both analytic reasoning and empirical data are used to justify these categories. The
relative importance of the different categories is a strong function of the operational environment,
which can be as diverse as urban canyon, dense forest, or open field.

The model we now discuss is a typical representative of the approach to wireless channel modeling
which does not use specific terrain data. The effect of the environment on the transmitted signal

is divided into four categories:

1. Average Path Loss

2. Log-Normal Shadowing
3. Multipath Fading
4.

Interference

We discuss each of these in turn.

2.3.1 Average Path Loss

It is observed (e.g. see [Rapp 96] Ch. 3) that the long-term average path loss (PL) between a

transmitting and receiving node separated by a distance d roughly follows the equation
PL(d) ~ d" (1)

where h is a constant called the path loss exponent, whose value depends on environmental con-
ditions. The typical range for h outdoors is h = 2 to 5, where h = 2 is the theoretical value
for free space, and h = 5 is at the extreme of a cluttered urban environment. The idea is that
obstacles in the environment cause increased signal degradation over the path length, and for a
given environment there is an average rate of degradation with distance.

Another approach to average path loss is to take a lot of measurements in a particular envi-
ronment, and then create curves of average path loss plotted as a function of d and transmitter
frequency. A well-known model of this type is described in [Okum 68]. In [Hata 90] some simple
formulas are found to fit Okumura’s empirical curves.

The average path loss concept abstracts out the local and transient phenomena which affect
signal power. In free space, it should give a consistently good estimate of PL as a function of d.
In a cluttered environment with a properly determined A, it should give a good estimate of PL for

each d, but only in a very long-term averaged sense. At a given instant, the actual power received
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might be very different from the average power, perhaps due to blockage, or unusual shadowing
or interference. These relatively short-term fluctuations are not captured by the simple equation

(1), or any of the other average path loss approaches.

2.3.2 Log-Normal Shadowing

Because the information in the average path loss (1) is very limited, researchers have developed
an empirical model of how path loss varies when the transmission distance is fixed at d, but
measurements are taken at different times and/or locations in the environment. Through extensive
testing it has been determined that this path loss often tends to fit a log-normal distribution
reasonably well, and this phenomenon has come to be called log-normal shadowing. A typical

formulation is ([Rapp 96] p.104)

PL(d) = PL(dp) + 10hlog (%) + X, (2)

where PL(d) is given in dB, dy is a reference distance, PL(dy) is the average path loss at distance
do, and X, is a zero-mean Gaussian random variable (in dB) with standard deviation o (also
in dB). Note that the average path loss model, and its path loss exponent A, is included in this
formulation. In this section for convenience, we separate these loss effects into the average path
loss and the variation of path loss, and we use the term log-normal shadowing for the variation,
represented by X, in (2). The idea, then, is to decide upon dy, and then take sufficient field
measurements in a particular operating environment to accurately estimate the values h, X, and
PL(dy).

The log-normal distribution of (2) at a given d can be interpreted as the probability distribution
for path loss taken over all possible paths of a given d in the system. A major limitation of this
log-normal shadowing concept is the lack of information on how path loss is correlated in time
or place. For example, if we take a power measurement at a certain spot and time, how will this
received power change over time at the same spot, or if we move at a fixed rate? Recognition of
the importance of this limitation has led to recent field work measuring these correlations. For
example, see [Gudm 91], in which a simple exponential correlation model is proposed and fitted

to urban data.
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2.3.3 Multipath Fading

In many environments, due to reflection, scattering, and doppler effects, the signal at the receiver
consists of the sum of many components, each a version of the transmitted signal time delayed
by some random amount. These many components arise when there is no one dominant trans-
mission path for the signal, and many paths of comparable path loss are available. The net effect
of this phenomenon is that the received signal fluctuates in usable power rather rapidly, as the
different signal components add and subtract in various ways. Without serious efforts to incor-
porate countermeasures in the system design, multipath fading can lead to serious performance
degradation.

Fortunately, the effect of multipath fading on the receiver signal is a well-understood phe-
nomenon, and it turns out there are a variety of receiver design techniques which greatly mitigate,
though not entirely remove, its deleterious effect. General models for multipath fading require a
parameter which in some way specifies the rate of signal amplitude variation, which is related to the
correlation over time of this amplitude (for example, see [Rapp 96] Sec. 4.7.2, and the multipath

fading simulation parameter T' = Aif, which defines the time duration of a fading waveform).

2.3.4 Interference

Through Point 1., we use the local broadcast nature of radio transmission to advantage. But
omnidirectionality is a two-edged sword. As is well known, we must also take into account the
interference neighboring nodes have on each other’s signal reception. In CDMA cellular systems,
this effect is in fact the primary limitation to system capacity, giving rise to the fundamental
near/far problem, whose solution requires careful power control. This kind of coordinated power
control can only be accomplished in systems under centralized control from a base station.

Our goal is to develop a routing protocol for an ad hoc network with no centralized control. It is
certainly possible to define a problem model which incorporates full interference effects, but analy-
sis for the ad hoc network is enormously difficult. We aim for minimum-cost routing, not maximal
system capacity. Hence, we assume sufficient messages in the system to justify Route Maintenance
operation, but not so many that neighbor interference is the dominant channel impairment. Under
these conditions, and given the difficulty of more complex interference models, we choose to model
neighbor transmission interference as another unpredictable channel impairment, included in the

probabilistic transmission structure.
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2.4 Model Assumptions
2.4.1 Basic Assumption

Based on our previous discussion, we plan to use a probabilistic model describing, via probabilis-
tic transitions, successful local broadcast communication. As pointed out before, these transitions
capture the coupling of the physical, link, and network layers, and they account for signal degrada-
tion due to path loss, log-normal shadowing, multipath fading, as well as the interference created
by other transmitting nodes. To complete the model we must specify the statistical properties of
the aforementioned transition probabilities over time. Many modeling formalisms exist, each with
its own salient features and degree of realism. The main model of this paper, Model (M) defined

in Section 3, is based on the following assumption.

Assumption 2.1 Transmission events at a given node are iid, and transmission events are inde-

pendent among all nodes.

In Section 5 we define a problem which relaxes this assumption, and study how the structure of
the optimal policy changes. Our goal here is to clarify the meaning of Assumption 2.1 in terms of

the channel model of Section 2.3, and the network model.

2.4.2 Characteristic Times of the Network

Assumption 2.1 is the fundamental assumption we require for most of the analysis in this paper
(that is, for all except that of Section 5). We now proceed to clarify what this assumption means
in terms of the channel model of Section 2.3 and the overall network model.

We can think of the time evolution of the network in terms of characteristic times of the different
on-going processes. By characteristic time we mean a time period, specified as 7, which approx-
imates the length of time the process requires for its transitions. For example, the characteristic
time of a node transmission is the time it takes to transmit the message. The characteristic time
of network topology change is roughly the amount of time it takes, both through node relative
motion and through time-varying disturbances in the environment, for the topology to be altered
in a significant way. We do not precisely specify, that is, we do not specify quantitatively, the
system characteristic times, as they are only meant to be used for very rough comparisons among
themselves. We use them as a means to succinctly summarize the meaning of the iid nature of

transmission specified in Assumption 2.1.
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We define the following characteristic times of three fundamental network processes.

Tn, = characteristic time of significant network topology variation
¢ := characteristic time of message transit from source to destination
Tm = characteristic time of one node message transmission

We also define the characteristic times of the different channel effects on the received signal.

Ts := characteristic time of average path loss
7; := characteristic time of log-normal shadowing
7, = characteristic time of multipath fading

It is immediate that

Tm < Ty (3)

because at least one transmission is necessary to reach the destination.

The iid assumption of Assumption 2.1 has two requirements: 1) independent, and 2) identically
distributed. The latter requirement imposes a time-homogeneity on transmission probabilities,
and fundamentally says that the topology of the network is not varying at all. However, we can
satisfy this requirement with the less rigid assumption that the time it takes to get the message to
its destination is far less than the time it takes for the topology to change in any significant way.
The optimal routing policy for a particular message need not concern itself with this very slowly
time-varying topology, so long as the transition probabilities used accurately reflect the topology
at the time the message is to be routed. Under this condition, the assumption of identically

distributed transition probabilities is justified. We can state this assumption as

Condition 1
Tt KL Ty, (4)

The average path loss is assumed fixed at each point, but it is a time-varying quantity due to
node mobility. The rate of its change is thus intimately tied to the rate of change of the node

topology, and we have

Ts R T, (5)

Perhaps the most uncertain time parameter is 7;. Log-normal shadowing relates to both mobile
motion and the motion of clutter in the environment. Without more detailed models of the

correlation of this kind of path loss, both spatial and over time, it is not possible to fully justify
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any assumptions we might make. The iid requirement of Assumption 2.1 implies that transmissions
are independent over time at a given node, which in turn requires that channel disturbances which
affect transition probabilities are either much slower or much faster than a message transmission

time. Using this as a guide, we thus simply require that

Condition 2
n>T or 1<K Ty (6)

Multipath fading relates to mobile motion and the distribution of clutter in the environment.
Though its effects can be alleviated by good system design, including diversity reception and signal
design, it still will have some effect on transmission probability. The multipath fading effect on
the received signal occurs much more quickly than that due to log-normal fading. We will assume

that rate of multipath fading is uniformly faster than a message transmission, and hence we have

Condition 3
Tp K Ty (7)

As discussed in Section 2.3.4, we model neighbor interference as just another factor affecting
a node’s transmission probabilities. This is justified in the context of iid transmission and Sec-

tion 2.3.4, under
Condition 4 At any node, neighbor transmissions are iid events.

One very rough way to think about Condition 4 is that, given what a node knows, transmissions
at other nodes appear iid. It is out of the scope of this work to make this notion more precise.

We note in passing another important meaning of the parameter 7,,. In Section 6 we investigate
distributed algorithms which compute an optimal routing policy for the ad hoc network. Such an
optimal routing policy will only be valid for a static network, where the transition probabilities
are fixed. For many real networks, the topology of the network will be slowly varying. The
parameter 7, is a measure of the rate of change of the network topology, and hence gives a rough
measure of the speed at which the distributed algorithms must track topological changes. This
raises many questions about the convergence rate of these distributed algorithms. We will not
study convergence rate in this paper, but it is an issue of great interest.

We summarize the requirements of Condition 1-Condition 4 on characteristic times as follows.

One of the following two relations must be true.
Tpy I K Ty ST L T,y Ts (8)

Tp L Ty < Ty L TY, T,y Ts (9)
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We can interpret (8) and (9) by noting that 1) degradation effects much slower than 7, can be
considered constant over the entire time it takes the message to reach its destination, whereas
2) degradation effects much faster than 7, look random at the transmitting node. We call type 1
degradations “slow” effects, and type 2 degradations “fast” effects. Relations (8) and (9) reflect
the possibilities for the degradation categories we consider. Of course, both categories affect the
transmission probabilities. For Assumption 2.1 to be true, we require that all effects degrading the
signal transmission be either “slow” or “fast”. Under Condition 1-Condition 4, Assumption 2.1
can be justified as a good model for the network.

Based on the proposed model, we proceed to formulate the routing problem we intend to inves-

tigate in this paper.

2.5 The Anycast Routing Problem

Our model requires the specification of node transmission event probabilities and costs at each
node. For this kind of information to be available, link quality information must be consistently
collected in the network. Hence, we consider the Route Maintenance approach to the routing
problem (see Section 1.2.3). This means we keep updated routing tables which reflect the current
best routing estimates.

We will set up our routing problem as one of routing policy optimization for a stochastic transi-
tion model. To accomplish this, we define time-independent rewards for reaching certain destina-
tion nodes, and time-independent costs for each node transmission. Our goal will be to maximize
the difference between expected reward and expected cost. The costs incurred are generally inter-
preted as energy consumption, though their meaning can be more general.

Typically a routing problem is classified as either unicast, multicast, broadcast, or anycast. These
types are distinguished by the nature of the set of destination nodes. In unicast the destination is
just one node. In multicast the destination is a set of nodes, and the message must be delivered
to every node in the destination set. In broadcast the message must be delivered to every node in
the network. Finally, in anycast the destination is a set of nodes, but the message only needs to
reach one of the nodes in the destination set.

Because we set up our routing problem as a routing policy optimization, we are able to be
somewhat more general than any one of the above four problems. We assign a reward to each
destination node, and then let the control policy decide at what point it should stop transmitting

and take its reward. When the reward at all destination nodes is the same, this problem reduces
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to an anycast problem, so this is the term we use.

We consider a general anycast problem as follows. There is an ad hoc network with multiple
nodes. Messages randomly arrive at nodes, each with its own destination set. A controller must
allocate communication channels in some optimal way to maximize expected reward.

Careful use of our model allows us to simplify this problem considerably. There are two key
points: 1) the system is time-invariant, so delays in transmission do not affect the optimal policy,
and 2) interference from neighbors is incorporated in the model. These two properties, which are
a consequence of all the modeling assumptions made so far, allow us to approximately compute
optimal routing strategies by decoupling the general problem of multiple messages into multiple
problems, each of one message.

Even within the context of our modeling assumptions this decoupling is only an approximation,
because transmission probabilities are considered fixed for each individual message. But in reality,
once an optimal policy is computed for a given message, this impacts the transition probabilities of
the other messages through interference. That is, the optimal routing policy for message A must
use transition probabilities affected by the optimal policies of the other messages, whose optimal
policies can only be computed using transition probabilities affected by the routing of message A.
Rather than try to simultaneously solve the optimal policies for all the messages, we simply ignore
this coupling. Effectively, we assume that the policies of the other neighbors are fixed, and then
optimize the routing policy for one message.

Hence, in this paper we focus on solving only the problem of one message with its set of desti-

nations, and all the routing problems we define in Section 3 are for one message only.

2.6 Transmission Probability Estimation

As discussed in Section 2.3, there are two basic approaches to channel modeling, the analytic and
the measurement-based. This same fact also applies to how we might go about estimating the
transmission probabilities which our model requires from the network. And as before, it is likely
that the pure analytic approach will be much too difficult for most applications. The measurement-
based approach has the advantage that it is bottom-line oriented and relatively easy to do. The
method itself is generally independent of system details, such as coding and modulation, terrain
maps, and types of signal disturbance.

We do not delve deeply here into how to find the best method for transmission probability

estimation. It remains, however, an important aspect of our model which deserves further study.
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For our purposes, a natural idea is to use a running time average of the proportion of recent
transmissions that have been successful to each neighbor node. Such an approach requires the
definition of some heuristic averaging window length, which should be related to 7,, the rate of
change of network topology. There is some precedence for time-averaging to estimate the status
of a link. For example, in [Rapp 96] Ch. 2, it is stated that this is done in some cellular systems
to estimate power in order to decide when a handover should occur.

Note that it might be possible to use some kind of hybrid approach, both an analytic model
of signal transmission and empirical measurements of actual transmissions, to improve upon the
simple moving average method. Also, information gathered at the link level, for example received
power, might be used to improve transmission probability estimation.

Throughout the rest of this paper, we assume that the transmission probabilities are given to
us. In Section 6, we discuss distributed algorithms to compute an optimal policy which are able
to adapt the policy to slowly-varying topology changes, as reflected in slowly-varying transmission

probabilities.

2.7 Discussion

We end this section with some final comments about our model.

2.7.1 Further Clarifications of the Model

First, we list some further clarifications of the proposed model.

e Cost only accrues when a node transmits the message. Of course, in a real system there
are also energy costs associated with control signaling, such as neighbor acknowledgements,
and message decoding. We can interpret our model in two ways: 1) These other costs are
insignificant compared to the transmission cost, or 2) These costs are included as part of the

cost for transmission.

e The transmission event is the set of nodes that receive the message when a node transmits.
What we really mean by this is the set of nodes that receive the message and successfully
acknowledge this fact back to the node that transmitted. This fact will become pertinent

when we discuss distributed implementation of an optimal routing policy (Section 3.3.3).

e In our discussion of characteristic times, the message transmission time 7,,, was taken as

fixed. This is reasonable, because the same message is transmitted each time. It is possible,
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however, that these transmission times are not the same, due to different transmission types
at different nodes, or even at the same node. For example, we might allow control of the bit
rate, slowing it down when transmission quality is poor. Nothing in the above assumptions
fundamentally changes in this case: the characteristic time of an impairment is assumed fast

compared to whatever transmission rate it is affecting.

e A limitation of our model is that degradation effects of duration comparable to 7, or 7
cannot be modeled. In Section 7 we briefly discuss the topic of Markov Channels as a topic
for future research. With a Markov Channel model these more general degradation effects

can be properly modeled, though the optimal policy grows much more complex.

e Real messages have finite time horizons over which delivery is useful to the system. Our
time-invariant reward assumption can be considered a reasonable approximation to the case
where the useful life of a message is long compared to the typical trip time in the network, 7;.

In Section 5.2 we consider the case of time-varying system parameters, including rewards.

e Our model can be considered a generalization of the standard deterministic model used in
many routing algorithms, such as OSPF or RIP. When each node has a number of transmis-
sion choices equal to its number of neighbors, and each choice corresponds to transmission,
at a certain cost, to exactly one of its neighbors with probability 1, then our model reverts
to the standard one with fixed deterministic link cost. In Section 4.4, we show that for this
problem of deterministic channel transitions our main result for the centralized controller

(Algorithm 1) reverts to the standard Dijkstra Algorithm (as used, for example, in OSPF).

e Our channel model creates a significant difference, from what is typical, in how the network
and link layers must communicate. The typical network layer command to the link layer
is: send the message to the following node, and let me know when you’re done. Because of
the stochastic broadcast nature of transmission in our link model, this simple interface is no
longer viable. The link layer must react to stochastic events. Hence, the instructions from
the network layer to the link layer need to be more nuanced, involving alternative courses of

action depending on these events. We discuss this issue in more detail in Section 3.3.3.

2.7.2 Advantages of our Model

Next, we list what we believe are some of the advantages of our model.
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e In an operating environment which matches our model assumptions, the routing policy
maximizing expected reward is determined. We expect that in an operating environment
close to our assumptions, our routing policy remains close to optimal. In Section 7, we briefly
discuss an approach to quantifying some aspect of this problem in terms of a parameter

sensitivity analysis.

e The omnidirectional nature of wireless transmission is usually seen as detrimental, as it leads
to interference among the nodes. While recognizing interference as a problem, our model

also tries to use omnidirectional transmission to some advantage where this is possible.

— Node transmissions are always local broadcasts, which attempt transmission to all

neighbor nodes. This creates the best chance of message forwarding.

— A related point is that alternate routes are used when available in the routing policy
as natural behavior of the optimal routing. If the link to a neighbor suddenly ceases to
function, though the optimal routing algorithm will eventually catch this and update
itself, in the meantime the transmission to the remaining neighbors continues as before.
This provides built-in redundancy and resistance to the damaging effect of total failure

at a link.

e Routing decisions are made using immediate feedback from stochastic events, allowing timely
reaction to actual system behavior. This feature only makes sense in the context of a

stochastic transmission model.

e In many routing algorithms, link state between nodes affects routing only through the de-
termination of whether a connection exists at all between the nodes. That is, some link test
is performed, usually at the link layer, and the result is binary: either the link is usable or it
is not usable. For wired networks, where IP is typically used, this approach is reasonable, as
the key question is whether there is a wire between the nodes at all. For wireless networks,
often some kind of threshold for received signal power is used to determine whether a link
between two nodes is “up” or “down” (e.g. see [Perk 97], [Cors 95], or [Malt 99]). In many
ad hoc wireless network routing algorithms, this link state determination plays a key role.
Often when a link state changes, many control messages are sent throughout the network to
update routing tables (for example, see [Cors 95] or [Malt 99]). The method for determining

the link states is thus a critical design issue for these routing algorithms.
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In a wireless network with highly mobile nodes, instantaneous link quality can vary over
enormous ranges in a relatively short time, due to the types of signal degradation effects we
discussed in Section 2.3. For example, a link might go down very momentarily, perhaps due
to a short fade or temporary shadowing effect. For many routing algorithms, it is critical
to determine at what point signal loss should trigger rerouting. The detection algorithm
used to determine link state must filter these effects in some way, and the relation of the
bandwidth of this filter to the functioning of the routing algorithm is a matter which must

be given much care in the design.

Our model deals with these kinds of effects in a much different way. As long as these
signal degradations occur more rapidly than 7,,, the degradation is incorporated into the
transmission probability. Rather than make a binary “up” or “down” detection necessary
as the channel quality wavers, the transmission probability acts as a kind of numeric quality

measure, and optimal behavior based on this quality measure can then be determined.

e When transmission probability estimates are measurement-based, our model is very bottom-
line oriented. That is, routing decisions are based directly on transmission results, and we
do not need to predict these results from signal effects of the operating environment. This
means that the enormous complexity of the signal transmission can be subsumed into just
the relatively simple transmission probabilities, which are based on actual measured system

behavior.

e If it is feasible in the system implementation, our model allows for optimal choice of trans-
mission type at each node. This might include choosing the best power or best data rate at
which to transmit.

2.7.3 Limitations of our Model

We end with a brief description of some potential limitations of our model.

e The routing algorithm must run in Route Maintenance mode, which can be expensive in

energy. There must be enough messages on average in the system to justify this.

e Estimation of transmission probabilities is a difficult problem. Probability estimation when
there are different transmission types and message lengths is an even harder problem. How

our optimal routing algorithms behave when the probability estimates have errors is an
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important topic for further study (see the brief discussion about sensitivity analysis in Sec-

tion 7).

e Channel degradations with rate in the range of message transmission to the typical lifetime of
a message in the network do not fit the model as stated. As we mention briefly in Section 7,
the extent to which the performance of our routing policy degrades as our model assumptions

are violated is an interesting question for further study.

e Expected reward, which is closely related to expected total energy cost, may be too simple
as a measure of system performance. For example, where energy is expended and when may

be important in some problem instances.

e Our model does not well suit situations where transmission probability is always very near
either 1 or 0. In this situation, the local broadcast/stochastic transmission model simplifies
to a standard deterministic model, and the optimal algorithm for that problem is somewhat
simpler than our optimal algorithm. However, there shouldn’t be any harm in implementing

our model, either.

3 The Time-Invariant Stochastic Routing Problem

3.1 Notation and Preliminaries

We begin by briefly defining notation and stating definitions for the system model under con-
sideration, which we refer to as Model (M). As discussed in Section 2, in Model (M) control is
centralized, meaning the controller has access to all information in the network. Also, Model (M)

is probabilistic, with transitions described by P(S|i), and is based on Assumption 2.1.

N is the number of nodes in the network.

Q={1,...,N}, the set of all nodes. So || = N.

S C Q refers to a state of the system, defined as the set of nodes which have received the message.
S; refers to the state at time ¢.

R :2% — R is the reward function, and R; := R({i}). Also Ryaz := max;cq R;.

7 is a Markov policy. We write 7(S) = i to indicate policy 7 transmits at node ¢ when in state

S.
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We write 7(S) = r to indicate policy 7 retires and receives reward R(S) when in state S. For
convenience we write m(S) = r; as shorthand that policy 7 retires and receives R;,i € S. In this
case, we say that policy 7 retires and receives the reward of node .

By 7(S) # i,7i, we mean both 7(S) # i and w(S) # r;.

By #(S) = 7(S), we mean either 7(S) = 7(S) =i, or 7(S) = 7(S) = r;, for some 3.

V7™(S) is the expected reward when starting in state S under policy m. We often write V™ for
V™({i}). We use V™(-) to indicate the optimal value function.

We write P?(S’|S) to indicate the probability of reaching state S’ from state S when choosing i
for transmission, i € S. We write P!(S|i) as shorthand for P*(S|{i}).

We define Pjj =Yg, icg P'(Si).

J is called a neighbor of i if Pj; > 0. N (7) is the set of all neighbors of i, together with i itself.
Note that P;; # Pj; is permitted.

By argmaz;csf(i), we mean the set of values of ¢ from the finite set S which maximizes f(7).

Definition 3.1 (Increasing Property) Model (M) is said to be increasing if for any system
realization under any policy we have Sy, O S, Vit1,Viys > ;.

Definition 3.2 (Decoupling Property) Model (M) is said to be decoupled if transmission suc-
cess to a set of neighbors from a node at a given time is unaffected by which other nodes already

have the message.
Definition 3.3 A function f :2? — R is an index function on Q if f satisfies

£(8) = max f({i}) vScQ (10)

We next formulate the centralized version of the stochastic routing problem with time-invariant
parameters.
3.2 Statement of Problem

Problem (Py)
We consider the transmission of a single message, from a given initial state S, (i.e. a given set

of nodes) to a set of destination states, in a wireless ad hoc network of N nodes described by

Model (M). Transmission instances occur at discrete time points. Each transmission from a given
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node 7 incurs a fixed cost ¢; > 0. According to Model (M): (i) at each transmission instance
the transmitting node is chosen by a central controller that always knows the current state of the
system (i.e. the set of nodes that have the message); (ii) node transmissions are local broadcasts,
that is, multiple neighbor nodes may all simultaneously receive the message; (iii) given the node
chosen to transmit, the probability that a given set of nodes receives the message is known and
fixed; (iv) The central controller is informed, without any cost, as to which nodes receive the
message. In general, control information flow between the nodes and the controller is considered
free in energy and instantaneous in time; and (v) each transmission event is assumed independent
of those before and after. We assume Model (M) is increasing and decoupled. A reward function
R is specified, where R is an index function. At any instance, the central controller can terminate
the transmission process or choose to continue transmitting. The objective is to choose: (i) the
node to transmit at each transmission instance, and (ii) the instance to terminate the transmission
process, to maximize :
—
E{R(Sf) —Z%)} (11)
t=1
where 7 is the time when the transmission process is terminated, Sy is the state at 7, and i(t) is

the node chosen by the transmission policy at time ¢.

3.3 Analysis of Problem (P;)

We analyze Problem (P7) and discuss the character of an optimal policy 7. The system of Problem
(P1) is a time-homogeneous Markov chain, hence we are faced with a finite-state Markovian
Decision Problem with perfect information. We can thus restrict attention to Markov policies on
29 and we are guaranteed that such an optimal Markov policy exists (cf. [Ross 83] Ch.3 p.51).
We seek an optimal Markov policy 7 : 2 — (1,..., N) which minimizes (11).

To solve Problem (Py), we could directly apply stochastic dynamic programming. But since the
number of states is 2V, the complexity of such an approach is at least O(2"), and generally higher

(see [Gare 79]). Instead, we use the special structure of this problem to find a better algorithm.

3.3.1 Structure of an Optimal Policy for Problem (P;)

We begin with some definitions.
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Definition 3.4 A Markov policy 7 is a priority policy if there is a strict priority ordering of the
nodes s.t. Vi € Q we have (S U {i}) = n({i}) =i or r;, VS C Q;, where Q; is the set of nodes of

priority lower than 1.
Definition 3.5 For priority policy w, we write i>,j when i has higher priority than j under .
Definition 3.6 A priority policy 7 is called an index policy if V7 (-) is an index function on Q.

Note that a priority policy need not be an index policy.
Our main goal in this section is to prove that there exists an index policy which is an optimal

Markov policy for Problem (P1). We state this result in the following theorem.

Theorem 3.1 (Index Policy) There is an optimal Markov policy w for Problem (P1) which is

an index policy.

We develop a series of lemmas which are used to prove Theorem 3.1. In the first lemma we show

that the definition of an index function is equivalent to requiring two properties on f.

Lemma 3.1 Function f is an index function on Q if and only if the following two properties (12)
and (13) both hold.

FISUL}) > £(S), ¥SC QieQ (12)
f9) #f{i}) = f(S)=f(S—-{i}), V§CQ,ies (13)

Proof.Assume f is an index function on 2. Then f can be written in the form (10). We have
VS CQie

f(SUfi}) = max f({j}) = maxf({j}) = f(5) (14)
JESU{i} jeSs
and (14) establishes (12). To establish (13), assume we have an i € S where f(S) # ¢. Then
F(8) = max f({7}) = jggﬁi{ii}f({j}) = f(5—={i}) (15)

Together (14) and (15) establish that if f is an index function, then (12) and (13) both must hold.

Conversely, assume (12) and (13) hold. We proceed by induction on the number of elements in
S. When [S| = 1, for any S it is clear that f({i}) = max;cg;) f({j}), so the induction base step
is established. Now assume f(S) can be written in the form of (10) VS C Q s.t. |S| = K. Let
S" CQbes.t. |S'| =K+ 1. We consider two cases.
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Case 1 f({i}) = f({s}) Vi,j e &

Assume there is an i € S" s.t. f(S’) # f({i}). Then by (13) and using the fact that |S'—{i}| = K
with the inductive hypothesis, we have f(S') = f(S' — {i}) = max;jcg.;2 f({7}) = f({i}), which
is a contradiction. So we must have f(S") = f({i}) = max;jcg f({j}), and (10) holds for this case.

Case 2 3Fi,5 € 8 s.t. f({i}) < f({7})

By (12), f(S) > f({s}) > f({i}). Then by (13), and using the fact that |S" — {i}| = K with the
inductive hypothesis, we have
Sl — Sl I — . — . 16
FS) = (8" = (i) = max F({7}) = max f({7}) (16)
and (10) holds for this case.
In both cases f has the form of (10) for S’, and this completes the induction step. So by

induction f must be an index function on 2. O

Next, we use the decoupling and increasing properties of Problem (P1) to show that the optimal

value function for Problem (P;1) possesses a monotonicity property.

Lemma 3.2 (Monotonicity) In Problem (P1), let m be an optimal Markov policy, and let Sy, Ss C
Q and Sy C Sy. Then V™(Sy) < V™(Sy).

Proof.Given m and Sy C S, we define a new policy 7 acting on state S; as follows. Let i = 7(S3),
and let Sy be the state resulting if at first 7 were to choose i. At the first step, @ chooses i from
S1, which is possible since Sy C S7. 7 learns the result of the transmission, and hence knows the
new actual state of the system, which we call S3. Furthermore, since 7# knows which nodes receive
the message even if they already have it, it also knows what the new state would be if the previous
state were Sy instead of S;. By the decoupling property, this new state is S4. This fact together
with the increasing property also imply that Sy C Ss3, since Sy C 5.

At the next step 7 acts on S3 by choosing the same node as m would use on Sy; this is possible
because 7 knows Sy, and Sy C S3. The process continues in this way until 7 retires at the same
time at which 7 would retire. Policy 7 knows n’s retirement time because it knows the state w
“sees” at each time. Let Sy; and Sy be the states at retirement for # and m, respectively. By

the above argument, we know Sy C Syi. At retirement, 7 has incurred the same cost as m, since
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7 and 7 use the same nodes to transmit. Because R is an index function, by Lemma 3.1 (12) we

have
VT(S1) — V™(S2) = R(Sp1) — R(Sp2) > 0 (17)

Because 7 is optimal and 7 is suboptimal, we conclude from (17) that
VT(S1) > V(1) > V7™ (Se) (18)

This completes the proof. O

In the next lemma, we use the increasing property of Problem (P1) to show that a Markov policy
which is optimal for all states that are a superset of some S; C €2, and that takes an optimal action

when in Sy, is also optimal when in state S;.

Lemma 3.3 Let 7 be an optimal Markov policy for Problem (Py1). Suppose we are given Sy, and

let m be a Markov policy which has the following two properties.

VT(S) = VT(S), V§DS8 (19)
m(S1) = 7w(S1) (20)

Then
V™(S1) = VT(S)) (21)

Proof.If w(S1) = 7(S1) = ry, for some i € Sy, then (21) holds.
Suppose m(S1) = 7(S1) # r. We compare m and 7 when both transmit in state S;. Let Sy and

Sy be the state after transmitting when in Sy for 7 and m, respectively. Due to (20), we have

Sy =S, (22)
Due to the increasing property, we have
Sy =25,28; (23)
By (19), we have
VT(Sy) = V™(Ss), So=85D5 (24)

Equations (22)-(24) mean that 7 and 7 choose the same node from S; for transmission, and either

reach the same state Sy D S1, which has the same value function for both policies, or both stay in
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Sy = S1, at which point they again both play the same node for transmission. Hence, (21) follows.

|

In the next lemma we construct a Markov policy for Problem (P;) which has many characteristics
necessary for an index policy, and then use the lemmas presented above to show that this policy

is optimal. The result of this lemma is instrumental in proving Theorem 3.1.

Lemma 3.4 Let 7 be an optimal Markov policy for Problem (Py). Then there exists a Markov
policy ™ which has the following three properties.

1. For all S C Q where |S| > 2,

1(S)=i = n(S—{j})=i VjeS j£i (25)
7(S)=r = n(S—{j})=r V€S jti (26)

2. For all S C Q where |S| > 2, and 7 (S)=i,
VIS —{j}) =VT(S) =V (S) =VT(S—{j}) Vj€S5,j#i (27)
3. mw is an optimal Markov policy.

Proof.We define 7 using the following rules:

Q) = 7(Q) (28)
(S —{j}) = =(9), VS C Q,Vj:m(S) # j,7; (29)
(S —{j}) = 7(S—{}), VS CQ,j:m(S) =4,r; (30)

If |2 = N =1, by (28) the lemma is true. Assume || =N > 2.

It follows directly from (28)-(30) that = satisfies (25) and (26).

We prove (27) by backward induction on the cardinality of S. We know that 7(Q2) = r; for
some i € argmaz;cqR;. By (28) and (29) we have 7(Q) = n(Q — {j}) = r;, Vj € Q,j # 4. That
is, m acting on both © and Q — {j} immediately retires and receives reward R;. We also have
VT(Q) = R; = VF(Q — {j}), because 7 is optimal and 4 is available for retirement in Q — {j}.

Hence, when () = 1,
VIQ={j}) =VT(Q) =VT(Q) =VT(Q-{j}) =R, Yj € Q,j #i (31)
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Equality (31) proves (27) for m when S = 2, and the basis for induction is established.

If N =2, the argument of (31) completes the proof of (27). We now assume N > 2 and prove
the induction step. Assume (27) is true for any state S where |S| > L+ 1,2 < L < N. Consider
any state S; where |S;| = L.

We first prove that

VT(S1) = V($) (32)

If there exists j € Q2 — Sy such that 7(S1U{j}) # j,rj, then by (29) we have 7(S1) = 7(S1U{j}).
By the induction hypothesis, equation (27) is true for S = S; U {j}, because |S1 U {j}| = L + 1.
We thus have

VA(S1u{s} —{i}) =V (S1u {5} - {j}) (33)
Equation (32) follows from (33).

If no such j exists, then by (30) we have 7(S1) = 7(S1). Because 7(S1) = 7(S1), and V7(S) =

V7(S),¥S D S; (because of the induction hypothesis), the conditions (19) and (20) of Lemma 3.3

are satisfied by m and 7 for S;. Hence
VT(S)) = VA(S) (34)

We have shown that (32) holds for any S; where |S;| = L. We use (32) to show that (27)
holds for all S; where |S;| = L. For the remainder of the proof, assume that either 7(S;) =4 or
w(S1) =1, and let j € S1,7 # 1.

Consider first the case where 7(S1) = r;. By (29), n(S1 — {j}) = i, so that

VT(S1—{3}) = V7 (51) = R; (35)
By Lemma 3.2 and the optimality of 7, we have
VE(S1 —{j}) <V7(S1) (36)

By (32),
V(S1) =V™(S)) = R; (37)

But i € S; — {j}, and 7 is an optimal policy, so
V(S —{j}) > R; (38)
Relations (36), (37), and (38) together imply that
VT(S1 = {j}) = V7(S1) = R, (39)
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Equations (32), (35), and (39) imply that
VI(S1 = {5}) = V(81) = V7(81) = V(51 = {j}) = V7 (S1 — {5}) (40)

and the induction step for (27) is proved when 7 (S;) = r;.
Now consider the case where
w(S1) =1 (41)
We claim that
m(S) #4,r; VS 281 —{j} (42)

We prove (42) as follows. Let S be any state where S O S — {j}. If j ¢ S, then 7n(S) # j,rj,
and (42) follows. Assume j € S. Then S O S; and |S| > L. If |S| = L, then S = S; and
m(S) =14 # j,rj. Assume |S| > L. If 7(S) = j, then by successively removing nodes k €  — S
and using (29) we obtain m(S;) = j, which contradicts (41). If w(S) = r;, then by successively
removing nodes k € 2 — S} and using (29), we obtain 7(S1) = r;, which contradicts (41). Hence
(42) is true in all cases.

By the decoupling property and (42), we have V™(S; — {j}) = V™ (S1). Using V™(S; — {j}) =
V7™(S1) with (32), Lemma 3.2, and noting the optimality of 7, we have

VT(S1 = {5}) = V7(81) = V7(S1) > V(81 — {j}) > V™ (S1 — {5}) (43)

Relation (43) proves the induction step for (27) for 7(S;) = 1.

This completes the induction step for (27). By induction, we have proved that (27) is true for
7 for all S C Q where |S| > 2.

Finally, we prove that m is an optimal policy. First, note that by (27),

V™(S) =V7(S), VS,|S|>2 (44)
Relation (27) also implies that
VT({j}) = VT({j}), Vje st n({i} U{j}) =7, for some i€ Q (45)

We are left to consider V™ ({j}) when no such i as in (45) exists. By (30) we have 7({j}) = 7({s})
when 7({j} U {i}) = i,Vi € Q. Under this condition and (27), and identifying S; = {j}, 7 and 7
satisfy the requirements of Lemma 3.3 (19) and (20). Lemma 3.3 (21) then implies that

VT({7}) = VT({5}), Vi€ st n({j}U{i}) =i, VieQ (46)
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Equations (44), (45), and (46) prove the optimality of 7. The proof of the lemma is complete. O

Besides Lemma 3.4, we need one more result to prove Theorem 3.1, which is that the value

function for Problem (Py) is always an index function. We present this lemma next.
Lemma 3.5 For any optimal Markov policy 7, V™ is an index function on €.

Proof.First note that Lemma 3.2 implies Lemma 3.1 (12) is satisfied for V7 on Q.

Next, let m be the Markov policy satisfying (25) and (26) as constructed in Lemma 3.4. Consider
any state S and 7 € § s.t. V™(S) # V™ ({i}). If 7(S) = 4, then by removing all nodes except i
from S via repeated application of Lemma 3.4 we would get V™(S) = V™({i}), a contradiction.
Hence, m(S) # 4. So by Lemma 3.4 (27), we have V7(S) = V7 (S — {i}). Thus the requirement
(13) of Lemma 3.1 is satisfied for V™ on €.

Since both requirements of Lemma 3.1 are satisfied, we have shown that V7™ is an index function
on (2. O

We now use Lemma 3.1-Lemma 3.5 to prove Theorem 3.1.

Proof of Theorem 3.1
Let 7 be the Markov policy satisfying (25) and (26) as constructed in Lemma 3.4. By Lemma 3.4
(3.), 7 is an optimal Markov policy. Hence, Lemma 3.5 indicates that V™ is an index function.

We next show that 7 is a priority policy. By (25) and (26) we have

7(S) =i — n(S)=i, V§'CS,ieS (47)
w(S)=r, = w(S)=mr, V' CS, ied (48)

Properties (47) and (48) show that 7 is a is a priority policy (cf. Definition 3.4), with node priority
as follows. For any S where 7(S) =i or 7(S) = r;, 7 has priority higher than all other nodes of S.
We have shown that 7 is a priority policy with index function V. Hence 7 satisfies Definition 3.6,

and is an index policy. O

Note that (47) and (48) imply that 7(S1) = i and 7(S2) = r; cannot both occur for a given 7 for
any S1,S3. That is, for a given system for Problem (P;) and an optimal index policy 7, if there

is a state where 7 transmits from node 4, then there is no state where 7 retires and receives the
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reward from 7. Similarly, if there is a state where 7 retires and receives the reward from node %,
then there is no state where 7 transmits at <. We henceforth use this fact when we write the node
priority list for an index policy m, where exactly one of ¢ and r; is listed for each ¢ € 2. When r;
occurs in the list, this means that for states which include ¢ and no nodes of higher priority than
1, the optimal action is is to retire. The reward received at retirement will be R;.

It is interesting to note that the total number of stationary Markov policies for Problem (Pq)
with N nodes is N (QN), whereas the total number of priority policies is N!. Based on the result
of Theorem 3.1, we develop an algorithm which is able to compute an optimal index policy for

Problem (P;) with computational complexity of only O(N?).

3.3.2 Description of Centralized Algorithm

We present an algorithm which computes the optimal index policy. As stated in Section 3.1, we
use the notation V;™ := V7™ ({i}).

Algorithm 1 (A Digkstra-Type Algorithm for an Index Policy)

Define the sets A and X as follows.

Initially: A contains the nodes of highest reward in arbitrary order (there must be at least one
such node); the action taken by the optimal index policy ™ on these nodes is r;. X is the unordered
complement (w.r.t. Q) of the set of nodes of highest reward.

During the construction of optimal policy 7: A contains a priority list of a set S of nodes,
S C Q, together with the action specified by w on each node in S. X is the unordered complement
(w.r.t. ) of A.

The algorithm proceeds as follows.

1. For each i € X, let m; be an index policy with the same priority list as © for the nodes of A,
with i as the next highest priority node after A, and with the priority of the nodes X — {i}

arbitrary, but lower than i. Compute V;"* from

—c; + a2 PUS DV
Vo = max d 25 {iymi(9)# i |_ () p
D8 ibm(s)2i P (S]t)

(49)

2. Choose i € X with the highest value of V™, with ties broken arbitrarily. Append this node

to the list A as the next priority node, together with the action specified by (49). Remove i
from X.
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3. If X is empty, stop. If not, go to step 1.

Remark: In Step 1 the right-hand-side of (49) computes the best expected reward for node i,
assuming ¢ is the node of next highest index in 7. This computation is feasible because 7 is a

priority policy.

We now establish a relation between (49) and the optimality equation for Problem (P1). Such a
relation allows us to prove that Algorithm 1 indeed computes an optimal index policy. Theorem 3.1
states that there is an optimal index policy for Problem (P1). Hence the Dynamic Programming

equation for Problem (P71) can be written

V7™ = max { max { —c; + Z Pi(5|73)v7~rﬁ(s) Rip, VieQ (50)
" $2{i}

where the inner maximum is taken over all index policies 7. In the following lemma we use the

existence of optimal index policy 7 to put the computation of V;™ into a more convenient form.

Lemma 3.6 Assume 7 is an optimal index policy for Problem (Py1). Then

—Ci + i iy Sl
V" = max < max EN( )24 A(5)7 - PiShY #(5) JR; », VieQ (51)
7 DN G) 25 {i}A(8) L (S]0)

where the inner maximum is taken over all index policies 7.

Proof.Let 1 € Q, and let ™ be any index policy with the property that 7 transmits when in state
{i}. We have for 7

Vi = —ca+ Y PUSIV,
SD{i}
= —+ Y, PSIVis+ Y PUSIVis (52)
SO{i}:(S)#i SD{i}:(S)=i

Solving (52) for V™ we obtain

. —¢i+ g iprs)z P (SIOVE
’ DS {i1#(S) zPl(S| )

Consequently, for optimal index policy m we have

—Ci + D51 (s iPi(SmVﬁﬁ
T SO{i}:#(S) i ¢
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Because (54) is true for any ¢ € Q, this proves (51). O

In the following corollary we show an important property of the update (49) and its relation to
(50).

Corollary 3.1 Assume 7 is an optimal index policy for Problem (Py). Let m; be as defined in
Algorithm 1, that is, m; is the same as w for the set of highest priority nodes A of w, and node i
is the node of highest priority in X according to w;. Assume i is also the node of highest priority

in X according to w. If V™ is computed as in (49), then
V=V (55)

Proof.Corollary 3.1 follows from the fact that (49) computes (51) with the policy 7 = m;, which is

optimal for all nodes of priority ¢ or higher. O

Algorithm 1 also resembles Klimov’s algorithm [Klim 74] and has the following feature.
Theorem 3.2 For Problem (Pq), Algorithm 1 produces an optimal index policy.

Proof.We prove the theorem by induction on the number of nodes in the set A defined in the de-
scription of Algorithm 1. Recall that for a Markov decision problem, the optimal policy maximizes
the value function for each state.

Let m be an optimal index policy. Suppose Algorithm 1 has run to the point that |A| = L. Let
i € X be the node with the actual (L + 1)’th highest priority according to m, whether retiring or
not. Let 7 € X,7 # i. Let m; denote the priority policy that has the same priority as 7 in the
first L nodes, gives j the (L + 1)’th node priority, retiring or not as optimal, and arbitrarily gives
priority lower than L + 1 to the remaining nodes.

Then we claim that

Vo= VT 2 v oz v (56)

The equality of (56) follows from Corollary 3.1, because 7 is assumed to be the actual (L 4 1)’th
priority node of w. The first inequality of (56) follows because by assumption i is higher priority
than j in . The second inequality follows because 7 is an optimal policy.

Relation (56) implies that any node j € X maximizing Vjﬂj may optimally be made the (L+1)’th
priority node. Note that this j is not necessarily unique. This is the procedure used to find the

node of next highest priority in Step 2 of Algorithm 1.
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This completes the proof of the induction step. Hence, by induction Algorithm 1 produces an

optimal index policy. O

3.3.3 Remarks

1. The index policy result of Theorem 3.1 is very general. It says that no matter what the actual
values of (P,¢, R); are at each node, an index policy is always one possible optimal policy
structure. There might be errors in knowledge of (P, ¢, R);, and this affects the indices of
the computed optimal index policy. But the fact that some index policy is optimal is always

true.

2. We have shown that Algorithm 1 computes an optimal index policy for Problem (Py). It
is important to understand that Algorithm 1 uses all of the network parameters, meaning
the (P,c, R); values at each node. To run this algorithm, all of this information must be
available at the same location. In this sense, Algorithm 1 is a centralized algorithm. It
shares this property with, for example, the standard Dijkstra algorithm used in OSPF (see
[Kuro 00] Ch. 4), which assumes that, through flooding, full network topology information
has been transmitted to every network node. Each node can then run its own centralized

Dijkstra algorithm.

3. Assuming the necessary network topology information is available in one location, the com-
putational complexity of Algorithm 1 is O(N?). This follows directly from the similarity in
procedure of Algorithm 1 to the standard Dijkstra algorithm.

4. As discussed in Section 2.7.1, in most network models the network layer requests point-to-
point communication from the link layer. However, the stochastic local broadcast nature of
our link model requires a more nuanced control, one describing alternative courses of action
depending on feedback from random transmission events. In light of Theorem 3.1, we can
now state precisely what this means for Problem (P1). The instructions for transmission
at a node consist of a priority list of neighbors and the transmitting node itself. The node
transmits until a node of higher priority successfully receives the message. This is the link
layer function. Note that the network layer does not dictate the route, and in fact there is
no one route. The actual route a message takes between source and destination is sample

path dependent.
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3.3.4 Distributed Implementation of an Optimal Index Policy

We note an interesting feature of an index policy used for Problem (P1). The indices of the
network nodes are fixed, and at each transmission a node of highest index which has the message

is chosen to transmit. This leads to the following property.

Property 3.1 In an index policy for Problem (P1), the only nodes of index higher than the

transmitting node which can receive the message are neighbors of the transmitting node.

Property 3.1 allows for a natural disributed implementation of the index policy, as follows. Imagine
there is a token associated with the message that begins with the message at the node of origin.
The token indicates which node is to transmit next. After a node transmits, it passes the token to a
neighbor (that depends on the outcome of the transmission), or keeps the token for retransmission.
By Property 3.1, an optimal index policy can be implemented in this way, as the optimal next
node is always a neighbor. Note that there is no central control of this token passing mechanism.
All decisions are made locally, and involve only neighboring nodes.

It is important to distinguish distributed optimal routing policy implementation from distributed
computation of an optimal index policy itself. For policy implementation, it is assumed that the
index policy has already been determined. We consider the problem of distributed index policy

computation in Section 6.

4 The Time-Invariant Transmission Control Problem

In this section we extend the model of Problem (P7) to allow for control of transmission type at
each node. That is, at each time step the controller may choose a node for transmission, and also
a type of transmission at that node. Transmission type may be used to model various physical
layer features, such as multiple transmission power levels, modulation/coding scheme, antenna

directionality, and destination addressing. We begin with some notation and definitions.

4.1 Notation and Definitions
Definition 4.1 W; refers to the number of transmission types available at node 1.

Definition 4.2 We write ©(S) = (i, k) to mean that when in state S, policy © chooses node i and
transmission type k, i € Q,k € 1...W;. The expression w(S) = (i,*) means policy © chooses i at

some unspecified transmission type. The notation for retirement 7(S) = r; is retained unchanged.
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Definition 4.3 When in state S for which w(S) = (i, k), a cost c(; i) is incurred, and the transition
probabilities are written PUF)(5|S).

4.2 Statement of Problem

Problem (P3)

We consider Problem (Py), with the following addition. At each time step the central controller
chooses a node for transmission, from among the nodes with the message, and a transmission type
from among the allowable types for that node. To each node and transmission type is associated
a transmission cost and a probability that a given set of nodes receives the message. We seek a

policy which maximizes (11) under the conditions of Problem (P) and the above addition.

4.3 Analysis of Problem (P;)

The time-homogenous Markov nature of Problem (Pj) is not altered by adding in a choice of
transmission type. We find that with an appropriate mapping to a new larger space (each trans-
mission type becomes a node), we can apply the result of Problem (P;) directly. To demonstrate
this, we define a new problem, Problem (P3), show its relation to Problem (P2), and then show

that it is equivalent to Problem (Py).

4.3.1 Notation and Definitions for Problem (P3)

We define a new space of nodes Qp as follows. As in Definition 4.2, we list possible control choices
for Problem (P2) as (i,k), where i € 2 and k € 1... W;. Every node of p corresponds to exactly

one such control choice of Problem (P2). Defining Np to be the cardinality of Qp, we then have

N
i=1
where as before N := |Q2]. We write j € Qp to refer to a node from Qp. We can also refer to the

(i, k) pair of a node j € Qp, which is the associated i and transmission type & € W; in the original
space (2. We say that the group of nodes in Qp which corresponds to 7 € Q0 is the family of 4, so
that the family of ¢ has W; members. The family of S C €2 is the set of all nodes in Qp which are

in the family of any one of the nodes of §.
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The cost to transmit from a node j with (i, k) pair is defined to be c(; ), the cost for transmission
type k at i in Problem (P3).

Transmissions in the Qp space are based on the corresponding events in the 2 space, as follows.
Say a node j with (7, k) pair is chosen for transmission. This incurs a cost c(; ). On 2, transmission
from ¢ with transmission type k£ leads to a set of nodes, say S1 C (), receiving the message.
Correspondingly, on Qp by definition a node j € Qp with (I, k) pair receives the message if and
only if [ receives the message on €2, [ € §;. That is, nodes in Qp in the family of [ receive the
message precisely when [ does. Note that this means that message reception for nodes of Qp in
the same family are deterministically coupled, in that they all receive or all do not receive it. This
strongly restricts the kinds of transitions that can occur in Qp.

Each member of the family of ¢ € 2 gets the same reward as ¢. That is, let Rp be the reward
function on Qp, an index function on Qp. If j € Qp is in the family of 4, then Rp({j}) = R({i}).

Because Rp is an index function, this fully defines Rp on Qp.

4.3.2 Formulation of Problem (P3)
Problem (P3)

Problem (Pg3) is a formulation of Problem (Py) for the space Qp, with the transition probabili-
ties, cost, and reward described above. The starting state is the family of S,, the initial state for
Problem (P3).

At each time point the controller either chooses a node from Qp for transmission, or retires. We

seek a policy which maximizes (11) under the conditions of Problem (P1) defined on Qp.

4.3.3 Relation of Problem (P3) to Problem (P53)

We show the relation of Problem (P3) to Problem (P2). There is a one-to-one mapping from the
states of {2-space to the states of Qp-space, as follows. Let S; C € be a state of Problem (Py3).
The state of Problem (Pg) corresponding to Sp is the set of all nodes j € Qp such that j is in
the family of some node i € S;. There are states of Problem (Pg3) which do not correspond to
any state in Problem (Pg2). To see this, let j,k € Qp both be in the family of i € 2. Consider a
state S C Qp where j € S,k ¢ S; this state S is not the mapping from any state S; C Q. The

one-to-one mapping from € to Qp is not in general an onto mapping, because |Q2p| > |Q2|. Those
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states S C Qp that are not the image of any state S C € under the above-mentioned mapping
are not reachable under the state transition mechanism of Problem (P3), and play no role in the
analysis.

A control action for Problem (Pg) has a a corresponding action in Problem (P3), as follows.
A node j € Qp, with associated (7, k), chosen for transmission in Problem (P3) corresponds to
transmission at node i of type k in Problem (P2). The cost c(; ) incurred for this transmission
is the same in both problems, and the state reached by the transmission in 2 maps to the state
reached in Qp. When retirement is chosen for Problem (Pg3), this corresponds to retirement
for Problem (P3), and the same reward is received, because corresponding states have the same
reward.

Hence, Problem (P2) and Problem (P3) are entirely equivalent, in that to each decision policy
for Problem (Pg) there is a corresponding decision policy for Problem (P3) which results in exactly
the same behavior, and hence expected reward, for both systems. We can thus solve Problem (P3)

by finding an optimal policy for Problem (P3). We proceed to solve Problem (Pg).

4.3.4 Analysis of Problem (P3)

We show that the system of Problem (Pg3) satisfies the requirements of Problem (P1), and hence is
a special case of that system. Specifically, we show that the increasing and decoupling properties
(cf. Definition 3.1 and Definition 3.2) are satisfied, and that the reward function is an index
function.

The increasing property on 2p follows directly from the fact that the increasing property holds
on the underlying space (2, together with the way states of {2 map to Qp. That is, transmissions
only lead to an increasing state in €2, leading to an increasing state in Qp.

The decoupling property holds for Problem (Pg) because it holds for Problem (P2). The nodes
that receive transmissions in Problem (P3) are unaffected by what other nodes have the message.

Note that transmission events in {2p can be highly correlated, in that nodes of Q2p in the same
family either all have the message, or none have it. However, such event correlations are allowed
by Model (M).

Finally, Rp satisfies the definition of an index function on Qp, because R is an index function
on 2 and Rp gives the same reward for the associated states of Qp.

Hence, an index policy is optimal for Problem (P3), and Algorithm 1 can be used to determine

such a policy. This policy is also optimal for Problem (P2). Thus, Algorithm 1 is effectively used
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to solve Problem (P2).

Note that in the resulting priority list of an optimal index policy 7, nodes from the same family
in Qp will appear in some relative order. Since nodes in a given family either all have the message
or none have it, it is clear that only one node from each family will ever be used for transmission
by the algorithm. Hence, all the nodes that are not of the highest priority within their family can
be removed from the priority list for simplicity. In the terms of Problem (P3), this means that
only one transmission type at each node is ever used for transmission.

Algorithm 1 when applied to Problem (P2) in this manner is O(N3) in complexity, that is, of

complexity O <<Zf\;1 WZ)2>

4.4 Reversion of Algorithm 1 to Dijkstra’s Algorithm

We demonstrate that Algorithm 1 can be interpreted as a generalization of Dikstra’s Algorithm
([Kuro 00] Ch. 4) to the case of stochastic local broadcast transmissions. Assume we have a system
for Problem (P3), and the corresponding system of Problem (Pg) with nodes labeled (7, k). These
problems are equivalent, and we use either system as appropriate to simplify notation. We begin

with two definitions.

Definition 4.4 For Problem (P3), we say the system is deterministic if
POR(SIy =0  or  POR(SI) =1, VSCN(G),VieQkel...W; (58)

Definition 4.5 For Problem (P2), we say a deterministic system is wired if for each node i € €,

to each k € 1...W; there corresponds a unique by € N(4), and

PUR({by,i}l)) = 1 (59)
POR(SE) = 0,VS # {by,i} (60)

We show that the Stochastic Dijkstra Algorithm (Algorithm 1) reverts to the standard Dijkstra
Algorithm in a wired system.

Assume we have a wired system with one destination node, node j, of sufficiently large reward
that optimally no node retires except 7. Suppose Algorithm 1 has run on the wired system
formulated as Problem (Pg), and an optimal index policy 7 has been computed. Consider the

nodes of Problem (Pg3), each with label (i, k). Algorithm 1 without retirement gives
—C(ik) + Lo piym(syzi PP (816, 0) Vg

Vi, = - . ) (61)
0 > so(ipm(s)i PR (S](2, %))
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Furthermore, for the wired system (59) and (60) give

PUR({(bg, %), (6, k) (5, %) = 1 (62)

Due to the nature of the index policy, when the set of nodes (b, *) is reached, the node of highest
index in (b, *) determines the value function. Using this fact with (62), and letting (bk,[) be the

node of highest value function in (b, %), Equation (61) becomes
Vi = =<k T Vi (63)

Equation (63) can be interpreted as follows. As Algorithm 1 runs on the wired system in the form
of Problem (P3), the largest value, over k£ € W; and | € W, , for the RHS of (63) is chosen as
the value function for each non-destination node. Because the destination reward is fixed, this is
effectively the same value function chosen by the deterministic Dijkstra Algorithm, where c(; z) is
the link cost and k& represents which link is chosen for transmission.

In this way, with deterministic transitions and choice of which point-to-point link to transmit on,
Problem (Pg3) (and the equivalent Problem (P2)) reverts to the standard deterministic shortest

path problem, and Algorithm 1 performs the same function as the Dijkstra Algorithm.

5 The Time-Varying Stochastic Routing Problem

In this section we formulate and analyze a time-varying stochastic routing problem. We consider a
time-varying version of Model (M) and the associated stochastic optimal routing problem. Such
a model and problem, formulated precisely in Problem (P4) below, capture various aspects of

Quality of Service (QoS) requirements, such as timeliness and delivery quality, in ad hoc networks.

5.1 Statement of Problem

Problem (Py)

We consider Problem (P;), with the following modifications. We allow the parameters in Model
(M) to be time-varying. That is, at node 7 the transmission cost is ¢;; (¢ > 0,Vt, i), the
transition probability is Pti, and the reward function is R; ;. The overall reward function is written
R;, and is an index function on 2 at each ¢. We further assume the existence of a time 7 such

that R;; =0, V¢t > 7,Vi. We seek a policy which maximizes (11) under the above conditions.
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5.2 Analysis of Problem (P,)

Without any loss of optimality we restrict attention to Markov policies. Recall that for Problem
(P4) there is a time 7 such that R;; =0, Vt > 7,Vi. We refer to 7 as the stop time. Throughout
this section we define w as the time-to-go until 7, so that w := 7 —t. We notate a time-varying
Markov policy defined over a backward time interval 1,2,...,w as 7V := (m,m2,...,Ty), where
my refers to the Markov policy at time-to-go w.

We call 7% a time-varying priority or index policy when 7, is a priority or index policy, respec-
tively, at each w (cf. Definition 3.4 and Definition 3.6). We say 7V is of time-invariant priority
when the node priorities do not change over time according to 7%. Time-invariant priority includes
the case where the node priorities do not change, but the optimal action at some nodes changes
(e.g. transmits become retires, or vice versa).

There are instances of Problem (P4) for which no time-invariant priority policy is optimal. For
example, high priority sources that are multiple hops from a reward node must lose priority as
time 7 approaches. More interestingly, there are instances of Problem (P4) for which no time-
varying index or priority policy is optimal. In this section we provide conditions under which
a time-varying index or time-varying priority policy is optimal for Problem (P4). We begin by

investigating conditions under which a time-varying index policy is optimal.

5.2.1 Conditions for Time-Varying Index Policy Optimality

We find a necessary and sufficient condition for optimality of a time-varying index policy for
Problem (Py).

To model the idle action, we add a node Qg to 2, for which ¢y = 0, Ry = 0, P2(S|S) =1VS C
Q,Vt. Also, we always assume that Q)y € S,, so that the idle action is always available by choosing
Qo- In the subsequent analysis, we need only include this node in the system to include the idling
action.

Note that in general the value functions are functions of time. Let V™" (S) be the value function

when in state S at time 7 — w under 7©%.

Definition 5.1 We write 7" to denote a policy which chooses i € Q for transmission at w, and

then is identical to ™~ thereafter.

We present an algorithm that computes an optimal time-varying index policy for Problem (Py4)

whenever such a policy exists.
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Algorithm 2 The algorithm is defined inductively on the time-to-go w.

When w = 1, the optimal policy m 1is to retire and obtain the reward of the node which has
received the message and has the largest R; r_1. This w1 is an index policy.

Assume that for some arbitrary w — 1 < 7 we have defined T, an optimal time-varying
index policy. We show how an optimal index policy m, is computed, assuming a certain system
condition (specified below) is satisfied at each node computation. If the condition is not satisfied,
the algorithm halts, and an optimal time-varying index policy does not exist.

To compute the policy at w, we start with two sets A and X that are defined in precisely the
same way as in Algorithm 1.

The algorithm proceeds in three steps.

1. Let RY := max;cxy R . Let ™Y be as in Definition 5.1. Compute V™ (X) for each node
1 € X using

V(X)) = —cirw + Y PL,(S|X)VTT(S) (64)
Sox

Define H = max;ey V™ (X).
2. Consider two cases.

Case 1: RY < H

Define D = {i € X : V™ (X) = H}. Suppose there exists i € D that satisfies either
Condition 1 or Condition 2 stated below. Set m,(S) =1, VS C X such that i € S, append i

to A and remove it from X.

If there exists no © € D that satisfies either Condition 1 or Condition 2, halt. A time-varying

optimal policy does not exist.

Condition 1 and Condition 2 are the following:

Letj = '/Tw—l(X)-

Condition 1 1=

Condition 2 i # j and 3B C ) such that both of the following relations hold.

k) > V™ ({G)) VkeB (65)
D, P8 =1 (66)

5D{i}:BNS#D

50



Case 2: RY > H

Set m,(S) = 1, VS C X such that i € S, where i is any node such that RY = R —w;

append r; to A (indicating retirement for node i) and remove i from X.

3. If X is empty, an optimal index policy ™ for time w has been completely specified. Other-
wise, go to Step 1.

Relations (65) and (66) mean the following: when node i transmits at w (i.e. with w time units
to go), a node that is at least as good as j at w — 1 is reached with probability 1.

The following theorem summarizes the main result about how Algorithm 2 relates to Problem
(Py).

Theorem 5.1 A time-varying index policy is optimal for Problem (Py4) if and only if Algorithm 2

terminates with w = 7.

Proof. Necessity. First, assume there is a X and w < 7 where Algorithm 2 halts. We show that no
time-varying index policy is optimal. Because Algorithm 2 halts before 7, this means that at X
1) there is no retirement, and 2) for any ¢ € D we have i # j, and there is no B C ) satisfying
(65) and (66). Hence for each such i € D there exists B C Q and k € B (k =i is possible), where
Tw—1(B) =k, and

verTNB) = VT R < VT ({5)) (67)
P! ,(Bli)>0 (68)

1

where the equality in (67) follows since 7%~ " is an index policy at w — 1. In words, (67) and (68)

mean that there is a positive probability when transmitting at ¢ at w to end up in a state whose
best node is strictly worse than j under 7% 1. Since 7%~! is an index policy at w — 1 with j as
the highest priority node in &, recalling that m,(X) = ¢ and using (67) and (68) it then follows
from (64) that

VT ({i}) < VT(X) (69)

Since any optimal time-varying index policy must play a node ¢ € D, # j at time w, and because
(69) follows for each 7 € D,i # j, no time-varying index policy is optimal.
Sufficiency. Now assume that Algorithm 2 runs to completion until w = 7. We will show that

at each step of the algorithm, as long as the algorithm does not halt, the node 7 added to A
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dominates the remaining nodes in X in the appropriate sense for an index policy. Assume that
the algorithm has successfully run up to w, at which time we have currently defined A and X,
where |X| > 2. Let 7} be defined as in Algorithm 2.

First, assume Case 1 is satisfied. Assume 7 has been chosen satisfying Condition 1, so that 7 = j.
Let SC X, j,k € S. We then have

VTI(S) = VT(X) (70)
> VT (X) (71)
= V() (72)

Equation (70) follows from the decoupling property, and the facts that V™" is an index function,
and that m,_1(X) =7, j € S C X. Inequality (71) follows because j € D. Equation (72) follows
from the decoupling property, and the facts that V™" is an index function, that m,_1(X) =

j, 7 € 8§ C X, and that k € S. Because retirement is not chosen in Case 1, we also have

w

VI(X) =VT(S) = VT ({j}) > RY (73)

Hence m}" is as good as all other policies for all S C X,j € S, and j can thus be appended to A.

Now assume Condition 2 is satisfied, so that i # j, but there is a B C Q satisfying (65) and
(66). Let S C X, i,k € S. We then have

VT(S) = VT(X) (74)
> VT (X) (75)
— yT(S) (76)

Equation (74) follows from the decoupling property, (65) and (66), and the fact that V™" ' is an
index function. (75) follows because ¢ € D. (76) is by the decoupling property, S C X, and the

fact that V™ ' is an index function. Because retirement is not chosen in Case 1, we also have
VT(S) = VT (X) > RY (77)

Hence 7Y is as good as all other policies for all S C X,7 € S, and ¢ can thus be appended to A.

Finally, assume Case 2 is satisfied, so that retirement is chosen, receiving reward R; r_,,, where
possibly i = j. Let S C X, i,k € S. By (70) and (74) and the choice of retirement in Step 1, we
then have

w

Rir > V™ (X)=V™ (S) >V (S) (78)
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Hence, retirement receiving reward R;;_, is optimal for all § C X, € S, and r; can thus be

appended to A. O

Remarks

1. As mentioned, relations (65) and (66) in Step 2 of Algorithm 2 mean that when node i
transmits with w time units to go, a node that is at least as good as 5 at w — 1 is reached
with probability 1. That this condition is both necessary and sufficient when i # j follows
from the observation that for a time-varying index policy which plays ¢ at w to be optimal,
the question of whether or not node j # i, j € X has the message can have no effect on V7 .
Hence, if j is a best node in X at w — 1, one of the best nodes of w — 1 must be reached with
probability 1. Otherwise, whether or not j has the message at w affects the value function
yar.

2. We allow idling as a control action because in a time-varying system to idle might in fact
be the optimal action. This was not true for Problem (P), due to its time-homogeneous
nature. Idling might be optimal if, for example, transition probabilities are improving with
time, which could occur due to temporary network congestion. Another possibility is that
R(t) is non-monotonic in time, due to, say, congestion at the destination making delayed
delivery more desirable. Inclusion of the idling option allows for optimal behavior in these

types of situations.

3. Time-varying transition probabilities can be thought of as communication channels varying
in time in a known way. For example, there might be kind of model for each channel,
where the state determines probability of successful transmission. For the results of this
section, we assume that the time evolution of the transition probabilities are entirely known
when the optimal routing policy is computed. In Section 7, we briefly mention a model for
time-varying channels, a Markov channel model, where future evolution of the channels is
described with a stochastic model and imperfect channel state observations. This is a topic

for future research.

4. In general, the expected reward for a priority policy can be a different value for each state.
This means there are 2V different values (each corresponding to a different state in the state

space) that must be computed at each time. When Algorithm 2 terminates at w = 7, only N
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V’s have been computed at each time. This reduced complexity is a major benefit in those
systems where Condition 1 or Condition 2 is always satisfied. In Section 5.2.2 we consider
more general conditions under which we can compute an optimal time-varying priority policy

without computing all 2V possible V’s at each time.

5. We conjecture that if we remove Condition 2 from Algorithm 2, require Condition 1 at each
step that RY < H, and keep all other steps the same, we create an algorithm which computes

the time-invariant index policy if and only if one exists.

We illustrate the result of Theorem 5.1 with the following examples. Example 1 presents a
system for which a time-invariant index policy is optimal. Using the same node layout as in
Example 1, but with different transmission probabilities, Example 2 presents a system for which

a time-varying index policy, but not a time-invariant index policy, is optimal.
Example 1 Index Policy with Time-Invariant Priority

Consider the system of Figure 2, where Q = {1,2,3,4,5}. We assume transition success is
independent among all receiving nodes, with probability given by the time-independent values
notated on each arc (i.e. Py, Py, P3, Py, or 1). Assume each node has time-invariant transmission
cost ¢; = 1,Vi € 2. Rewards are zero over all time, except for that of Q5. The reward of Q5 is
time-varying, defined as R5; = 100, < 7, Rs; = 0,t > 7. Before specifying particular values, we

present some useful relations in terms of general Py, P», Py, and Py. We assume that

1
P> —
1= 700 (79)

We define % for this system as follows. 7; and w9 are index policies, with priority lists 7y =

{rs,r4,73,72,71}, and mo = {rs,4,3,7r2,71}. We compute for w = 1 that

Vi =0, YieQ,i#5 (80)
Vi& = Rs,1 =100 (81)

For a set of transition probabilities Pj, Py, P3, Py, and under (79), the time-invariant index policy
7% = (my,m) for 7 = 3 is optimal. To see this, consider that with only one transmission left,

nodes 1 and 2 just retire, as node 5 cannot be reached. Node 5 always retires. Node 4 takes
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1 P4

Figure 2: System for Time-Varying Examples

precedence over node 3 because Py < 1. To demonstrate that neither node 3 nor node 4 retires,

we compute for w = 2 that
Vi =0, ie{1,2} (82)
V5" = Rs;—2 =100 (83)

For nodes 3 and 4, we use (64) and (83) to get

Vit o= 14V =99 (84)
Vi = 14 PV
= 100P; — 1 (85)
Under (79) we have using (85) that
Vit >0 (86)

By (84) and (86), transmission for nodes 3 and 4 is optimal. Hence 72 is optimal.
Now consider 7 = 4, and let P, = P, = Py = Py = 1. Let w3 = {r5,4,3,2,1}. Then the index

policy with time-invariant priority 72 = (7, m2, m3) is optimal.

Example 2 Time-Varying Index Policy

95



We consider the same system as Example 1, but now let P, = P, = .1, P, = .9,P;3 = 1. Let
73 = {rs,4,2,3,1}. We show that 72 is an optimal time-varying index policy.

Using (85) and Py = .1, we obtain

Vit = —1+4.1-100 =9 (87)
We show that the conditions of Algorithm 2 are satisfied by m3. When w = 3, the algorithm
starts with A = {rs}, X = {1,2,3,4}, and V7"° = Rs,_3 = 100.
We list the result of each algorithm iteration.
Iteration 1 A= {rs}, X ={1,2,3,4}
We have
H=V"({1,2,3,4}) = -1+ V& =99 (88)

Because H > RY = 0, we use Case 1. Then Condition 1 is satisfied, because i = 4 = m(X).

Hence, 4 is appended to A.
Iteration 2 A = {r5,4}, X = {1,2,3}
Using (87) and (84) we have

2

H=V"({1,2,3}) = -1+9V +1V
= —14+.9-99+.1-9=89 (89)

Because H > RY = 0, we use Case 1. Condition 1 is not satisfied, because i = 2 # m(X) = 3.
But letting B = {3}, Condition 2 is satisfied. Hence, 2 is appended to A.

Iteration 3 A ={rs,4,2},X ={1,3}
We have

H=VS3{1,3}) = —1+.1V" +.9V
= —1+.1-1004.9-9=17.1 (90)

Because H > RY = 0, we use Case 1. Then Condition 1 is satisfied, because i = 3 = m(X).
Hence, 3 is appended to A.

Iteration 4/ A ={r5,4,2,3}, X = {1}
We have

H=v"?({1}) = —1+1V7 +.9V"
- —14+.1-100+.9-0=9 (91)
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Because H > RY = 0, we use Case 1. Then Condition 1 is satisfied, because i = 1 = m(X).
Hence, 1 is appended to A.

At this point, Algorithm 2 terminates at w = 3 with X empty. Hence, from the specification of
71 and 79, the fact that 72 = (7, my) is optimal for 7 = 3, and Theorem 5.1, 73 is an optimal

time-varying index policy. O

5.2.2 Conditions for Time-Varying Priority Policy Optimality

We now determine a condition sufficient to guarantee the optimality of a time-varying priority
policy for Problem (P4). We develop an algorithm that uses this sufficient condition to compute

an optimal time-varying priority policy for Problem (Py).

Definition 5.2 We write QF to indicate the set of nodes of equal or less priority than i in priority

policy .

Algorithm 3 In the following discussion, LY and U}*(X) are variables specific to this algorithm,
updated by (92) and (93), which are used to determine sufficiency conditions below.

The algorithm is defined inductively on the time-to-go w. When w = 1, the optimal policy
w1 is to retire and receive the reward of the node with the largest R; ;1 which has received the
message. This m, is a priority policy. Note that V™ ({i}) = VWI(QZ”) =Ri; 1, Vi € Q. We
define Lz1 = Ui1 = R; .1, Vi € Q. This completes the induction basis.

w—1

Now assume that for some arbitrary w — 1 < 7 we have defined 7 , an optimal time-varying

priority policy, and assume we have determined V”wjl({i}) and V”wjl(Q?“”l), Vi e Q. We
show how priority policy m, is computed, assuming a certain system condition, specified below,
is satisfied at each node computation. If the condition is not satisfied, the algorithm halts; a
time-varying priority policy still may or may not exist, as the required condition is only sufficient.

Compute L}’ for each node i € Q using
L=, 0+ Y. Y P (SHihL (92)
JERX So{i}imy-1(5)=j

To compute the policy at w, we start with two sets A and X that are defined in precisely the same
way as in Algorithm 1.

The algorithm proceeds in three steps.

o7



1. Let RY := max;cy R;;_w. Let ™V be as in Definition 5.1.

Compute U (X) for each node i € X using

UP@X) = =i+ Y Y PLSIOUPTHE) (93)
JEQ SDX:imy_1(S)=j

Define L := max;cx LY.
Define U := max;cy U’ (X).
2. Consider three cases.

Case 1: R* <L

Define D = {i € X : L’ = L}. Suppose there ezists i € D that satisfies Condition 1 stated
below. Set m,(S) =1 for all S C X such that i € S; append i to A and remove it from X.

If there exists no i € D that satisfies Condition 1, halt. The algorithm fails to determine an
optimal priority policy.

Condition 1 is the following:

Condition 1 L > maxjcy_(i U}U(X)

Case 2: RY >U

Set my(S) = 1, ¥S C X such that i € S, where i is any node such that RY = R; ;_y;

append r; to A and remove i from X.

Case 3: L<RY < U

Halt. The algorithm fails to determine an optimal priority policy.

3. If X is empty, an optimal priority policy ™™ for time w has been completely specified. Oth-
erwise, go to Step 1.

This completes the induction step for algorithm definition.

We prove in Lemma 5.2 below that the variable L}’ is a lower bound on the expected reward

for transmitting at node ¢ when in state {¢}. Similarly, we show U’(S) is an upper bound on the

expected reward for transmitting at node 4 when in state S C Q™.
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We may interpret the variables L’ and U;(S) as follows. The expression for L in (92) uses the
previously computed lower bounds L;"*l and computes the expected reward when transmitting
at node 4, and assuming that no other node has the message. From a monotonicity property of
the value function, which we develop in Lemma 5.1 below, the case when no node other than i
has the message is, in value function terms, a worst case. Thus, L}’ is a lower bound on the value
function of state {i} at w.

Similarly, the expression for U/”(X) in (93) uses the previously computed upper bounds, at
Tw—1
J

transmitting at node i, assuming that all other nodes of X have the message. As before, from the

their maximum value U;-” “HQ ) for each node j, and computes the expected reward when
monotonicity property of the value function, the case when all other nodes in X have the message
is, in value function terms, a best case. Thus, U}*(X) is an upper bound on the value function of
state X at w.

We may now interpret Condition 1 of Algorithm 3 as follows. Condition 1 is true when there
is a node i € X such that the value function of state {i}, lower bounded by L}, is larger than
the upper bound on the value function of state X when a node other than 7 transmits. When
Condition 1 is true, then transmission at ¢ is optimal for all subsets of state X. Hence, node i
takes priority over all other nodes of X.

We make these ideas concrete in the proof of Theorem 5.2 below. First, we present a series of

lemmas needed for the proof of Theorem 5.2. We begin with Lemma 5.1.
Lemma 5.1 Let © be an optimal policy for Problem (P4). Then
V™(S1) > VT (Sy) VS, C S CQ (94)

Proof.We use induction on w. Equation (94) clearly holds for w = 1. Now assume (94) holds for
w — 1. Let S1,S2 C Q be such that Sy C S;. Let i = 7, (S2). We claim that

V™ (S1) > VT (Sy) > VT (o) (95)

The first inequality in (95) follows from the optimality of 7%. The second inequality follows from
the decoupling and increasing properties, and the induction hypothesis.

Since (95) is true for any such S and So, this completes the induction step. O
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Corollary 5.1 Let 7V~ be an optimal policy for Problem (P4). Let m¥ be as in Definition 5.1.
Then
VT (S1) > VT (S,) VS €51 CQ (96)

Proof.Inequality (96) follows immediately from the decoupling and increasing properties and

Lemma 5.1. O

Lemma 5.2 If Algorithm 3 halts with w = 7, then Vw,1 < w < 7 and Vi € Q we have

VT©({i}) > LY (97)
VT (QTY) < UR(QTY), VkeQr (98)

Proof.We proceed by induction. When w = 1, we have V™ ({i}) = V”l(Q?l) =Ri,_1, Vi€
and L} = U}l := R, ;_1, Vi € Q. Hence, (97) and (98) follow.

Now assume the lemma, is true for w — 1, so that Vi € Q

vy > e (99)
Vi@ < oEti @), vk e o (100)

Consider 7 € . Then we have

1

V(i) = —Cirwt Y Pl (SIEHV™(S) (101)
SD{i}
= —Gowty, D, PLSHHVTS) (102)
JEQ SD{itimy—1(S)=j
> Cirwt Y S PGSV ({5 (103)
J€Q SO{itmw-1(S)=j
> —Cipewt Y R N 11635 (104)
JEQ SD{i}my—1(S)=j
= LY (105)

Equation (101) is a special case of (64). In (102) the sum is written in a different way. Application
of Lemma 5.1 then leads to (103). Inequality (104) follows from (99) (the induction hypothesis).
And (105) is direct from (92).
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We also have Vk € Q7"

VIE(Q") = —chrw+ D, PR (SIQP)VT(S) (106)
soqrv
= —oewtd, YL PLLSIOMVTTS) (107)
JEQ 8SDQTW:imy-1(S)=j
S —Ck,'rfw + Z Z Pf*w(S|Q?w)V7rW71 (Q;Tw_l) (108)
JEQ SDQTW:imy—1(S)=j
< et Y . PLusIop U@ (109)
JEQ SDQTVW:imy, 1(S)=j
- o) (o)

Equation (106) is a special case of (64). In (107) the sum is written in a different way. Application

of Lemma 5.1 then leads to (108), because m,_1(S) = j means that S C Q;-r“”l. Inequality (109)

follows from (100) (the induction hypothesis), with 7,k = 5. And (110) is direct from (93).
Inequalities (105) and (110) complete the induction step. O

The following theorem summarizes the main result about how Algorithm 3 relates to Problem
(P4).

Theorem 5.2 If Algorithm 8 halts with w = 7, then the time-varying priority policy ™™ which
Algorithm 3 has determined is optimal for Problem (Pg).

Proof.By construction 7% is a priority policy. We show that 7% is an optimal priority policy.
Assume Algorithm 3 halts with w = 7.

Now let w be any value 1 < w < 7. Consider any node ¢ € 2. Consider two cases.
Case 1: m,(S) =14, VS C Q™
Because m,, transmits at node i, it must be that Case 1 in Step 2. was chosen in Algorithm 3

for ¢. Hence
V™ (S) > R(S), VS C QM (111)

We also have VS C Q7™

w

VT(S) = VI(S)

Y

VT ({i}) (112)
LY (113)

)

AV
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> UPQ™)  VkeESk#i (114)
> v () (115)
> V() (116)

Inequality (112) follows from Corollary 5.1. From Lemma 5.2 (97) we obtain inequality (113).
Inequality (114) follows because of Condition 1 in Algorithm 3, which is satisfied for all 2] when
i is added to the A list for transmission. Inequality (115) follows from Lemma 5.2 (98). Finally,
inequality (116) follows from Corollary 5.1.

Inequalities (111) and (116) show that for Case 1, choosing ¢ for transmission is optimal when
in state S,VS C Q™.

Case 2: m,(S) =r;, VS C Q™

Because 7, retires, it must be that Case 2 in Step 2. was chosen in Algorithm 3 for ;. Hence we
have VS C Q7™

R, > UP(Q™) VkeS (117)
> VTE(Q) (118)
> VT(S) (119)

Inequality (117) follows because of Case 2 in Algorithm 3, satisfied when 7 is added to the A list
for retiring. As before, inequality (118) follows from Lemma 5.2 (98). Finally, inequality (119)
follows from Corollary 5.1.

In both Case 1 and Case 2, m,, produces the optimal action VS C Q7. Because both i € Q and

w

w are arbitrary, 7% is an optimal priority policy V1 <w < 7. O

Discussion
In general, a priority policy can have 2V different values (each corresponding to a different state
in the state space) at each time. The complexity to compute all of these value functions is high.
Instead, we have used monotonicity to retain upper and lower bounds for V at each node. This
has allowed us to determine sufficient conditions to guarantee the optimality of a time-varying
priority policy, without explicitly computing the value function for each of the 2V states.

Algorithm 3 has some additional interesting properties which are presented below.
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Lemma 5.3 If 7% is an optimal time-varying index policy for Problem (Py), then in Algorithm 3
we have

=UY Q) =V, YieQ (120)

)

Proof.-We proceed by induction. For the induction base step, note that (120) is true when w =1,
by the definition of L} and U} in Algorithm 3.

Now assume (120) is true for w — 1. We have

LY = —cieutY, S PLLSHiHLY! (121)

JEQ SD{i}:mw—1(S)=j

= —Cirwt Y S P sty (122)
jeQ SD{i}-ww 1(9)=j

= —Cir—w T Z T w S|{Z ™ (S) (123)
SD{i}

- v (124)

Equation (121) is a restatement of (92). Equation (122) follows from the induction hypothesis.
Equation (123) follows from the decoupling property and the fact that 7% is an optimal time-
varying index policy. And (124) is the dynamic programming equation for V™" .

Also, we have

UP(Q) = —Cig—wt ) > P, (S| UF~H Q) (125)
JEQ SQQ:w:ﬂ'wfl(S):j
= —Cirwt Y S PRSIV (126)
JEQ S0, 1(S)=j
= —Cir—w T Z —w S|{Z VTF (S) (127)
SD{i}
- v (128)

Equation (125) is a restatement of (93). Equation (126) follows from the induction hypothesis.
Equation (127) follows from the decoupling property and the fact that 7% is an optimal time-
varying index policy. And (128) is the dynamic programming equation for Vi“w.

Equations (124) and (128) together prove the lemma. O
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Corollary 5.2 If there exists an optimal time-varying index policy for Problem (Pg4), then Algo-
rithm 8 will determine an optimal time-varying priority policy, which will in fact be an optimal

time-varying index policy.

Proof.This follows directly from Lemma 5.3 and the conditions of Algorithm 3. O

Corollary 5.2 shows that Algorithm 3 finds an optimal time-varying index policy when one
exists, just as Algorithm 2 does. Of course, Algorithm 3 achieves this with substantially more
computational burden. However, there are instances where Algorithm 3 finds an optimal time-
varying priority policy, for which Algorithm 2 only terminates indicating failure to find an optimal

time-varying index policy. We present such an instance via the following example.
Example 3 Time-Varying Priority Policy

We consider the system of Example 1, and again define 7% for this system as m; = {r5,74,73,72,71},
and mo = {r5,4,3,72,71}.

Let P, =Py =.1, P, = Py = .9, 13 = {r5,4,2,3,1}. We show that 73 is an optimal time-varying
priority policy, but not a time-varying index policy.

First, we show that the conditions of Algorithm 2 are not satisfied by m3. As before, when w = 3,
the algorithm starts with A = {r5}, X ={1,2,3,4}, and Vgrs = R5 r_3 = 100.

Iteration 1 A ={rs},X ={1,2,3,4}
This iteration is the same as for Example 2, again giving (88).

Iteration 2 A = {r5,4}, X = {1,2,3}
The H computation is precisely the same as that of (89). Because H > RY = 0, we use Case 1.
Condition 1 is not satisfied, because 1 = 2 # wo(X) = 3. Also, there is no B satisfying Condition 2.
The difference between Example 2 and Example 3 is that the probability of reaching 3 from 2 is
no longer 1, so whether or not 3 has the message matters when transmitting at 2 when w = 3.

We have shown that the conditions of Algorithm 2 are not satisfied in Example 3. Hence by

Theorem 5.1 no optimal time-varying index policy exists for Example 2.

We now use Algorithm 3 to show that an optimal time-varying priority policy exists for Exam-
ple 3. We show that the conditions of Algorithm 3 are satisfied by m3. When w = 3, the algorithm
starts with A = {r5}, X = {1,2,3,4}, and V57r3 = R5 3 = 100.
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By Lemma 5.3 and the fact that 72 is an optimal time-varying index policy, we have

L2=U2QP) =V, VieQ (129)

)

We list the result of each algorithm iteration.
Iteration 1 A ={rs},X ={1,2,3,4}
We have
L=U=L}=U}X)=V"({1,2,3,4}) = -1+ V& =99 (130)

Because L > RY = 0, we use Case 1. Then Condition 1 is satisfied, because L = U. Hence, 4 is

appended to A.
Iteration 2 A ={rs,4},X ={1,2,3}

L=1§ = -1+ > PHSH2HIL3 (131)
JEQ SD{2}:ma(S)=j

= -1+Y S PSS (132)
JEQ SD{2}:ma(S)=j

= 149V +(1—99VF +1—(1-.9.9VF (133)

= —1+4+.9-99+(1-.9.9-9+1—(1-.9).9-0=88.91 (134)

Equation (131) is from (92). Equation (132) follows from (129). Equation (133) follows from the
specification of transition probabilities in Example 3, and (134) follows from (82), (87), and (84).

max U7({1,2,3}) = U3({1,2,3}) = U5 ({3})

Je{1,3}
= 1+ > PSI3hUi(e)) (135)
JEQ SD{3}:ma(S)=j
- 1+ Y Py (136)
JEQ S2{3}ima(S)=j
= —14+.1 V57r2 +.9 V37T2 (137)
— 1+.1-100+.9-9=17.1 (138)

Equation (135) is from (93). Equation (136) follows from (129). Equation (137) follows from the
specifications of transition probabilities in Example 3, and (138) follows from (83) and (87).
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Because I > RY = 0, we are in Case 1. From (134) and (138), we obtain

L> max U}({1,2,3}) = U3 ({1,2,3}) (139)
Jje{1,3}

Because of (139), Condition 1 is satisfied. Hence, 2 is appended to A.
Iteration 3 A = {rs,4,2},X = {1,3}
We have

L=U=VS3{L3}) = —1+.1V5 +.9V
= —1+.1-1004+.9-9=17.1 (140)

Because L > RY = 0, we are in Case 1. Condition 1 is satisfied, because L = U. Hence, 3 is
appended to A.

Iteration 4 A ={r5,4,2,3},X = {1}
We have

L=U=V"{1}) = —1+1V +9V"
= —14+.1-100+.9-0=9 (141)
Because L > RY = 0, we are in Case 1. Condition 1 is satisfied, because L = U. Hence, 3 is
appended to A.

At this point, Algorithm 3 terminates with X empty. Hence, by Theorem 5.2 72 is an optimal

time-varying priority policy. O

5.2.3 A System With No Optimal Time-Varying Priority Policy

We provide an example of a system which does not satisfy the conditions of either Algorithm 2
or Algorithm 3, and, in fact, cannot be optimally solved with a policy classified as a time-varying

index or priority policy.
Example 4 Unclassified Policy

We consider the system of Example 1, and let P, = .9, = 89,P3 = 1,P, = .5. Let
m3({1,2,3}) = 1. But m3({1,2}) = 2 is optimal. For this problem no time-varying priority

policy is optimal.
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The problem in Example 4 is that (04 is having an effect on whether to use Q1 or Q5 to transmit
at w = 3. This phenomenon, that a possibly distant node can affect the relative priority of two
neighboring nodes, is the essential difficulty with the general time-varying problem, and reveals
why the simple time-varying index or priority policy is not always optimal. Similar situations can
also be created with time-varying transition probabilities or node transmission costs.

The results we have presented in Theorem 5.1 and Theorem 5.2 do not specify how to determine
an optimal policy for Example 4. It is a matter for further investigation to decide how best to

handle cases like Example 4.

6 Distributed Algorithms for Problem (Py)

6.1 Definitions and Notation

A general Markov policy can be written

{mmg...m...} (142)

where the subscript of 7 indexes time. Since Problem (P;) is a time-homogeneous Markov decision

problem, we know there exists an optimal stationary policy of the form
{mm...m...} (143)

Further, from Theorem 3.1 we know that there exists a stationary optimal policy of the form (143)
where 7 is an index policy.
When describing distributed algorithms to compute an optimal policy for Problem (Pq), we

need to consider a more general type of policy.

Definition 6.1 A local index ranking or local index policy for node i at t is written wi, and
defines a node ordering of N (i), i € Q, with retirement for node i indicated by r; if desired. A
distributed index policy at t is written II; = {m}7?... 7}, where 7} is a local index policy for
node i. A distributed index policy is written II = {IL; ... II;...}.

A distributed index policy functions by transmitting at the current node, say i, at t, then using

the node ordering wi to choose the next node for transmission.

For local index policy 7%, we write j >7T§k when j has higher priority than k under ¢, 5,k € N (i)
(cf. Definition 3.5).
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Definition 6.2 Consider nodes i and j, local index policies 7} and wz, and let k,l € N (i) NN (j).
If either 1) k> il and k>7r{l or 2) k<l and k<7r{l’ then we say ! and m match on k and 1.

Definition 6.3 If 7} and W{ match on k and | Vi,j € Q,Vk,l € N (i) "N (j), we say distributed

indez policy II; is uniform at ¢.

When I, is uniform at t, a global order of the nodes is induced. We call the index policy which

has this global node ordering the associated index policy of II;.

6.2

A Distributed Algorithm for Problem (P;)

We present an algorithm (Algorithm 4 described below) which computes the optimal solution for

Problem (P7), and has the characteristic that computations at each node use only information

directly from neighbor nodes. This property is critical to the distributed implementation of an

optimal policy in an ad hoc wireless network. We claim convergence of the algorithm to the

optimal node ordering and value function under the following constraints.

1.

Each node i keeps a current estimate, denoted by V;, of its own optimal expected reward
value. Each node 7 also stores the most recently received estimate of each of its neighbors’

optimal expected reward values, denoted V; j, where j € N (i).

. Information transfer among neighboring nodes consists only of the current V; value of the

transmitting node.

. Each node’s V; information is transmitted asynchronously.
. A node’s V; update, defined below, is also asynchronous.

. It is assumed that each node has knowledge of its own P(S]i) update structure. For example,

1 estimates P(S |i) based on all its communications, both control signals and messages, as

well as its channel measurement.

. The energy required to run the algorithm is not included in finding the optimal solution for

Problem (Pq).

The algorithm is as follows.

Algorithm 4 At each event time, any number of the following two events can occur.

Event 1 A node i receives V; from a neighbor j, j € N (i).
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Event 2 A node i recomputes V; using the current V; j values, as follows.

—C; + i i} iPiSiVinfr
V7 = max {mgx{ s> DSl (S)},RZ} (144)

¢ 3

ZN(i)gSg{i};ﬁ(S);éiP (S14)
The mazimization in (144) is over all local priority orderings © of i and its neighbors.

It is assumed that events 1 and 2 occur infinitely often at each node i.

Note that we require no a prior: time ordering on the above events, nor on the nodes where
they are occurring. At times when neither of the above events is taking place, the system is in
a frozen state, with all system parameters remaining unchanged. An event which occurs at some
event time can have no effect on other events at the same time. Hence, we can choose an arbitrary
order for all events occurring at a given time without affecting the outcome. In this way, we can
talk sensibly about the n’th event in the system since the start. We use this convention hereafter.

The local policy which optimizes (144) for node i at event n is a local index policy at i, m} .
For convenience we will notate this as 7', where the context prevents ambiguity. The distributed
index policy after event n will be denoted by IT,.

Let V;" be the expected reward for node ¢ just after event n in the above system, so that ViO is
this value at the start of the algorithm, where the allowed range is 0 < VZ-0 < Ryae- Let V[S be
the value after event n of the last transmitted ij received at ¢z, where m < n is the event index
of this transmission. At the start, the Vi?j values do not need to match the neighbor’s Vj0 values,
we only require that 0 < Vi?j < Riyaz-

The computation of (144) is based on (49). Given the nature of this update equation, finding

the maximum in (144) is easier than it might first appear.
A Method for Finding the Maximum Over 7 in (144)

Method 1 Let event n be i’s computation of V;". Our goal is to compute

—ci+ ; nir(sy PHSI VI
H = max DN ()28 {iy# (5)#i Z_( |.) 5 (9) (145)
T ZN(i)gSg{i};ﬁ(S);éiP (Sli)
When i has no neighbors, we define H = —oo, and we have V;" = R;. If node i has at least one

neighbor, proceed as follows.

1. Rank order the values VZZ that i has most recently received from its neighbors.
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Let &1, &9, ..., & indicate the subscripts of i’s neighbors in rank order, where [ is the number
of i’s neighbors. That is, &; is the subscript of the j’th best neighbor of i according to
the ranking of Vi;. Ties are decided arbitrarily. Denote by k the rank of node © w.r.t. its
neighbors. Denote by 7 the priority policy which ranks the k highest neighbors of node 1

above i. Initially set k = 2. (k is a dummy variable in this computation).

2. Compute
— 2sentymns)zi POIViG, ) (146)
doscn(y(s)i P (S
3. If Vie, , >W >V, then set H =W and halt (we have found the rank of node i w.r.t.

its neighbors).

4. If k <l, modify 7, by moving neighbor & to higher priority than i, leaving all else in 7
unchanged. Set k =k + 1, and go to 2.

5. If k > 1, then node i is the worst node of all the neighbors. Set H = W and halt.

The process continues until either the condition of step 3. or step 5. is satisfied. Termination is
guaranteed, since the condition of step 5. must eventually be satisfied.

Note that the denominator in (146) is not zero as long as 7 has at least one neighbor.
Lemma 6.1 Method 1 finds a local policy T which mazimizes (145).

Proof.Method 1 can be viewed as an implementation of Algorithm 1 for Q = N () where R; =
—o00, and where for all nodes j,k € N(7),j # 4, we have

1. Py =0

2. R; =V,
Under these conditions, each V computation (given by (144)) for node j # i gives V', and
Algorithm 1 reduces to Method 1. Since Algorithm 1 finds the optimal policy for all nodes, this
policy maximizes (145). O

Comments

1. Using Method 1 to compute (145) is in the worst case O(I?) whereas an exhaustive search

over all local policies 7 (i.e. local node rankings) would be O(I!).
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2. In a practical implementation, there may be ways to speed up Method 1 by changing the
order in which the neighbor nodes are put into or removed from the list of better nodes. For
example, we might want to always try the order which worked at the last update, and then

add or remove nodes sequentially from there.

We proceed with the analysis of Algorithm 4. The following theorem is our main result concern-

ing Algorithm 4, summarizing its convergence properties.

Theorem 6.1 For Algorithm / with any initial state s.t. 0 < Vio < Rpaz and 0 < Vi?j < Rias
for allv,5 € Q, we have

1.
lim V" = V", Vi € Q (147)

n—oo
2. There exists an event n, < 0o s.t. II = {an IL,, 1 Iy o - .} is an optimal distributed
policy
3. If
VT #£ Vj”,‘v’i €N, jeN(®) (148)

then there exists an event n, < 0o s.t.

(a) V" =V7,¥n >nyVieQ

(b) IL = {I1,,, I1,,, ;1 I, 12 ...} has an associated index policy that is optimal

Before proving Theorem 6.1, we present a series of lemmas which we make use of in the proof.
We begin with a simple proof of an important property of the node update procedure which is

fundamental for the analysis.

Lemma 6.2 (Update Monotonicity) Consider two cases of a node recomputation fori at event
n using (144). In case 1, the neighbor values are sz and the updated node value is f/l" In case 2
the neighbor values are V;"; and the updated node value is V;". Assume V], > V.. Vj € N (7).
Then

7> v (149)

Proof.For a given 7, (146) is monotonic in each V;;. Let 7 be the policy chosen in (145) for

case 1, and let 7 be the policy chosen in (145) for case 2. Let H be the value in (146) when case 2’s
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policy 7 is used with case 1’s values f/Z”J Then
H<H<H (150)

where the final inequality follows because 7 is optimal in (145).
Equation (144) and inequality (150) imply (149). O

We say that the monotonicity property holds for a node update due to the result of Lemma 6.2.
T

We now define two random sequences, D} and D,

which we use to provide bounds on node
updates. Noting that at the start of Algorithm 4 each node has a V value between 0 and Ry, and
aiming at a kind of worst case initial state in light of the monotonicity property just demonstrated,

we define D? and D, as follows.
Definition 6.4 We define Vi € Q such that R; # Rpyax

D! := Computed value for i after event n when V> = Vi?j =0

E? = Computed value for i after event n when Vio = Vi?j = Rz

For i such that R; = Rz, define

D =D

1 7

= Rz, VN

This last definition results from the fact that a node which can retire and receive R,,q; should
always do so.

In the following, we assume 7 is an optimal policy, and that V;" is the optimal value function
for 4.

In the next lemma, we demonstrate that D} is a monotonically non-decreasing sequence which
lower bounds V;", and in turn is upper bounded by V;*. Similarly, we demonstrate that 5? is a
monotonically non-increasing sequence which upper bounds V;", and in turn is lower bounded by
V™. Once these facts are proved, it will remain to show that D;' converges to V;" from below, and

that E? converges to V;" from above, to obtain covergence of V" to V™.

Lemma 6.3 We have

m
70

1. D" <D} <V <D; <D;', Vijn, m<n

2. D' < V7 <D, Vi,n
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Proof.We proceed by induction on event number. Consider the following set of equations at

some event n.

(i).
(i)

=y —l .
D <D <V/" <D <Dy, Vi, [<m<mn

D} <V7 <Dy, Vi

At n = 0, we have the starting values DY = 0 and E? = Rpaz- Hence (ii) is true. Also, the

starting value for the actual system must be between these extreme values 0 < Vio < Rypaq for

any node i, so (i) is true at n = 0 also.

Assume that after event n (i) and (ii) are true. We want to prove that (i) and (ii) are true after

event n 4+ 1. We consider the two possible event types at n + 1, as follows.

(1).

2).

A node transmits its V value. This has no effect on (i) and (ii) above, and they remain valid

for n + 1.

A node (call it i) recomputes its V value. Since all nodes other than i are unaffected, we
can focus on 4 at n + 1. The last time i’'s V value was computed, some estimate of each
neighbor’s V value was used. Consider neighbor j, and let [ be the past event at which j
computed the V value which was used by ¢ for j at its last V value computation. Similarly,
let m be the past event at which 5 computed its value which is being used by ¢ for the current
computation at n 4+ 1. Then clearly [ < m < n, and by (i) and the induction hypothesis we
have

D\ <Dy <V <D} <D (151)
Since (151) is true for all neighbors of 7, by the monotonicity property we have

Dy <D <V <D <D (152)

Equation (152) and our assumption of (i) at n together imply that (i) is also valid for 7 at

n+ 1.

Next, by inductive assumption (ii) we have for any neighbor j at event m, where m is as
above,
-—m
D < Vf <D (153)
By Lemma 3.6, if each neighbor j has its correct optimal value V", then (144) for i gives

V™, the optimal value for i. So again monotonicity (Lemma 6.2) implies that

Dyt <vr <D (154)
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and (ii) is also true at n + 1.

Hence for both types of events (i) and (ii) remain true at n+ 1, and the induction step is complete
O

Comment: In Lemma 6.3, the first part follows directly from the monotonicity property, and
in fact is true for any function that is computed at each node that has this property. The second
part further requires the property that when all neighbors are correct, the correct value function

gets computed.

Corollary 6.1 We have
1. D} =V = D" =V",Vm >n
2. D; =V =D, =VF,Ym>n

Proof. These two results follow directly from Lemma 6.3. O

In the following lemma, we demonstrate convergence of D;' to the optimal value V;™ in a finite

number of steps (we remind the reader that m denotes an optimal policy).
Lemma 6.4 There ezists n, < oo s.t. Yn > n,, D} =V, Vi € Q.

Proof.By Corollary 6.1, we only need to show existence of an event n where D,equals V;",Vi € (2.
By Corollary 6.1, once a node reaches V., it does not change thereafter. Define G' to be the set
of nodes at event n for which (i) Di' = V7,7 € G, and (ii) each ¢ € G has successfully transmitted
its optimal value V;" to all of its neighbors.

We proceed by induction. At n = 0, the destination nodes of highest reward have the correct
V’s (i.e. Rpaz). Because transmission occurs infinitely often, there is an event at which these
nodes have transmitted their values to their neighbors. This proves the induction basis step.

Now assume that at event n — 1 set G includes the g > 0 best nodes according to 7, but not
the (g + 1)’th best node. Let ¢ be the (¢ + 1)’th best node according to m. Also assume that i
recomputes its V value at event n. Event n exists because node recomputations occur infinitely
often. By Lemma 6.3 (2.), the monotonicity property, and the form of the actual optimal value

for 7 given in Lemma 3.6, the above algorithm computing the right-hand-side of (146) will give
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V™. This is because neighbors not better than ¢ according to 7 will have current V’s (expressed by
the corresponding D’s) less than or equal to their optimal values, which are less than i’s. Hence
computation (146) in Method 1 will produce the optimal value for i. Once i successfully transmits
its value after event n to all its neighbors, which occurs in finite time because tranmissions occur
infinitely often, node 7 will enter G.

By induction all nodes ¢ € 2 enter G in this way. Let n, < oo be the event at which the last

node enters GG. This n, satisfies the requirement of the lemma. O

Unfortunately, finite time convergence does not hold in general for 5?, as the following example

demonstrates.

Example

Consider the system of Figure 3 with parameters 0 < p < 1, 0 < ¢ < 1, ¢ = ¢ = 1, and
Ry = Ry = 0,R3 = R. That is, Q3 is the destination node. Assume that R > %, so the system
has a non-trivial optimal policy. Transmission success from either ()1 or ()2 to the other two
nodes is independent, with probabilities p and ¢ respectively. Assume Algorithm 4 begins with
Vo0 = Vi?j = R,Vi,j.

As Algorithm 4 runs, the node value computations in ; and @) ping-pong back and forth, as
the update of one is transmitted to be used in the other’s update. Letting V" denote the update
value at Q1 at the nth such update (i.e. the nth update where V; actually changes value), it can
be shown that

N ey O w1, PR=1D(+2(1-p)g)
T artopr U T pra—pe? =

= A V"4 B (155)

where V? = R, and A and B are defined by (155). Since 0 < A < 1, standard difference equation
methods [Wilf 94] yield the closed form solution
B B
"=(R-—— A"+ — 1

\% (R 1—A> +1—A (156)
1
p?
which is the correct value function. But because A > 0, this value is never reached in finite time.

a

A similar equation holds for V3'. Since A < 1 and % =R-— zl)’ we obtain lim,, o V" = R —
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Q1 9 Q2

Figure 3: System which takes infinite time to converge

Below we will discuss the sense in which an optimal distributed policy is reached in finite time
in the above example.

Comment: The key fact in the preceding example is that nodes 1 and 2 have identical value
functions. As a result, the V;" values of these two nodes converge to the same value, and hence
interact in each computation at each event n, preventing convergence in finite time. When limit
values are different at each node, a result similar to Lemma 6.4 for the 5? sequence follows easily,

as shown in the following lemma.

Lemma 6.5 For Algorithm 1,
1. Vi, there exists W; € R s.t. E? I W;.

2. Assume W; # W;,Vj #i. Then 3In, < oo s.t. Vn > np,ﬁ? =V, Vi.

Proof.By Lemma 6.3 we have that 5? is monotonically non-increasing and lower bounded by
V™, Vi. Hence, for each 7 there is a limit point of the sequence, which we label W;. This proves 1.
To prove 2., let € = min;«;{|W; — W;|}. By the definition of sequence convergence, there exists
an event m s.t. E? —W; < e,¥n > m,Vi € Q. This means at every node the node ranking
(i.e. their relative priority) is fixed Vn > m. Call 7 the policy that uses this node ranking. As
the nodes compute their values in the order of 7, and successfully transmit them afterwards, the

expected reward value Vf is computed at each node ¢. This computation of Vfr at each node 7 € Q
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occurs in finite time because computations and communication occur infinitely often. The value
Vf corresponds to the expected reward at node 7 under 7, a viable, possibly sub-optimal, priority.
At a node ¢ once Vfr is computed this value is fixed thereafter, so we must have Vf = W;. We
thus have

Vi =W >V, Vi (157)

The inequality in (157) follows from Lemma 6.3, 2. Since 7 is an optimal policy, V;* > V;*. Hence

7 is also an optimal policy, which is determined in finite time. O

We are able to prove asymptotic convergence for the 5? sequence in general. To accomplish this,
we define a new system, which we refer to as the round-robin (r-r) system. In the r-r system, node
update and transmission events follow a fixed pre-defined order. The r-r system is more analytically
tractable than the general asynchronous system of Algorithm 4. Using the monotonicity property
(Lemma 6.2), we are able to prove that E? is bounded above by a corresponding value in the r-r
system (specified in Definition 6.6), and then show that they both must converge to V;". We begin

with the basic definitions.

Definition 6.5 The round-robin (r-r) system is defined as the system of Problem (Pq) restricted
to the following order of events. For each 1 < i < N, node i computes V;, successfully transmits
Vi to its neighbors, and then these events are repeated at (i + 1)mod N. For consistency in the

following, we assume the system starts at i = 1.

Definition 6.6 For the r-r system:

- Define ul, to be the event number of the nth computation of the V wvalue of i.

- Let WZ-”C be the V wvalue at ul, for i with initial state Ryae for all nodes in the system.
For the actual system:

- Define v!, to be the event number of the first computation of the V wvalue at i after each
node j, 7 <1 has completed the nth computation of its V walue, and each node j, j > 1 has
completed the (n — 1)th computation of its V wvalue.

Note that the u!’s and v’ ’s are all finite, since we have assumed that each of these events occurs

infinitely often. From the above definitions, we immediately infer that

vl > b, Vi,n (158)

n?
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We now show that WZ% bounds E;J;’.

Lemma 6.6 We have
D < W/, Vi,n (159)

That is, the nth computation of the V' wvalue at i in the actual system is bounded above by that for

the r-r system, when both start all nodes at Ry,qz, for all i and number of computations n.

Proof.We use induction on ¢ and n. First is induction on n. Since both systems start at the
same values, we have EZ—JO = Wiuo,Vz'.

Now assume for a given n we have
D™ < Wi ¥m < n,Vi (160)

1
We now use induction on 7. When Wlu " is computed, all neighbor values used are of the form
—pl —
W;-L"’l, j # 1. When Di” is computed, all neighbor values used are of the form D?, j # 1,
where k > v)_, (i.e. more computations beyond the (n — 1)’st might have occured in the actual
oy i .
(asynchronous) system). Now Lemma 6.3 and (160) imply that D? < D;]”_l < W;”_I,Vk >0l .

—pl 1
Hence, the monotonocity property gives that Di” < W;™. This is the first induction step on 4.

Assume next that for a given ¢ we have
—! ul A
D" <W/ ™Vl <i (161)

When Wiu% is computed, all neighbor values used are one of the two forms WJ%, j < 4 and

W;i"l ,j > 1. When EZ-J;‘ is computed, all neighbor values used are one of the two forms 5?, Jj <,
where k > v, and E;C, j > 1, where k > ”£—1 (again more computations beyond the (n — 1)’st or
n’th might have occured in the asynchronous system). We have by Lemma 6.3 and the inductive
assumptions (both (160) and (161))

—k
D;

—k
D;

IN

] j .
D" < W™ Vk >wv),j <i

AVn-1 ul, J SN
< Dj SWJ- NVE> vy 1,5 >0

So again the monotonicity property gives Ez}” < Wl%. This completes the induction step for 4, so
we have that 5;5‘ < Wiuz’,Vi. And this completes the induction step for n, which completes the

proof of the lemma. O

78



Since Lemma 6.3 is valid for any event order, the results there are also valid for the r-r system.
Hence for each 1, Wz-k is a non-increasing sequence which is bounded below by V;™. Hence it

converges down to a limit (see [Rudi 76] Thm 3.14). We will show that this limit must be V", so
that in general Wi]’C L V7T, Vi

Definition 6.7 We write the update equation for ¢ in the r-r system, and define the update func-
tion f; as follows.

WikJrl —

7 - k+1 i .
Hax —c; + ZSD{i}:ﬂk+1(S)<i P (S|Z)Wm::_1(5) + ESD{i}:ﬂ'k+1(S)>i P (S|Z)W7fk+1(5) R
D5 {ibmess (8)i £ H(S]E) ’

= max{fi(Wlk'H, S W WE L .,W}@),Ri} (162)

For convenience, we will not notate the k’s in (162) when writing the formula for f;, since they
are fized. Define

W™ = (Wi, Wa,..., Wi, Wit1,...,Wn)
W9 = (W, Wa,.. W, Wi, .., Wiiy, Wiga,..., W)

where we have assumed that j < i. Hence we can write (162) as
Wit = max{f;(W"), R;} (163)

Note the policy used at each step 71 is itself varying with time, but is only a function of the
neighbor nodes of ¢ at k. Also note that though in general f; is a function of all nodes in the
system other than 4, often only some subset of these nodes are actually neighbors of 7 and affect

the update computation.

Lemma 6.7 For every i, f;(W"'") is component-wise continuous and piecewise linear, of non-

negative monotonically non-decreasing slope.
Proof.The proof of Lemma, 6.7 is in Appendix A. O
We pick an arbitrary node from which to observe the update of all the nodes in the r-r system.

For notational convenience, and without loss of generality, we consider node N. Let W™ be the

node values after the nth computation and transmission of W.
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Definition 6.8 We define the mapping T : RN — RN as
W = T(W")
where

W1n+1 = max{fi(Wy,...,Wyx),Ri}
Wath = max{fo(W", W3,...,Wg), R}

Wt = max{fy_1 (W], ..., WL, WR), Rv-1}

Wit = max{fy(W]", ..., W), Ry} (164)

Note that T is fixed for all n. The fact that this T mapping is fixed is the reason we have
introduced this notion of a r-r system. It allows for a fixed-point argument which we now develop.
Our procedure is to demonstrate the continuity of the mapping 7', show that V7 is a unique fixed
point of T', and then use continuity of 7' to show that the limit point of W™ is a fixed point of T

We can then conclude that this limit point is the value function.
Lemma 6.8 The mapping T is component-wise continuous for each output.

Proof.The assertion of Lemma 6.8 follows from (164), Lemma 6.7, the fact that max{-,-} is
continuous in its arguments, and the fact that composition of continuous functions results in a

continuous function. O

Lemma 6.9 V™ =T(V™), and there are no other fixed points of T

Proof.By Corollary 6.1, V™ is a fixed point of T'.
Now assume there exists W # V7™ s.t. W = T(W). Let

i € argmar,cjn{W;: W; #V]} (165)

This 7 may not be unique (there may be a tie), but if so, the following still holds for any one of

the maxima. By Lemma 6.3 and Lemma 6.4 we have W; > V™. This fact and (165) give
W; > VT (166)
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Let S:={j € Q: W; > W;}. Then by (165) we have
W; = V7, VieS (167)

This fact, the definition of T'(-), and (146) imply that 7'(W) uses only V" values in the computation
of W; = T(W)|;. Let © be the local policy for i determined by Method 1, and note that 7¢ ranks
only the nodes of S above i. Then we have by Lemma 3.6 that

W; = T(W)|; = Vi <V (168)

The final inequality of (168) follows because of (167) and the fact that 7 has an optimal local
ordering.
Relation (168) contradicts (166). Hence, no such 7 can exist, and this completes the proof of the

lemma. O

Lemma 6.10 W} := limy_,o, W} = V", Vi
Proof.We have
W* = lim WFH!

k— o0

= lim T(WF)

k— 00
= T(lim WF)
k—o00
= T(WY)

where the third equality holds because of Lemma 6.7, Lemma 6.8, and Theorem 4.10 of [Rudi 76].
Hence any limit point of W* must be a fixed point of 7. But by Lemma. 6.9, the only fixed point
of T is V™, and the result follows. O

Based on Lemma 6.2-Lemma 6.10 we prove Theorem 6.1.
Proof of Theorem 6.1
Proof of 1. By Lemma, 6.3 and Lemma 6.4, after finite time n, we have
Vit >V, Vn>n,,VieQ (169)
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Combining Lemma 6.6 and Lemma 6.10, we have

lim D" < lim W' = lim WF =V, Vi€ Q (170)
n—00 n—00 k—00

Lemma 6.3 (1) and (170) ensure that

lim V" < lim D" < V7, Vi€ Q (171)

n—00 n— 00

Inequalities (169) and (171) imply that lim,,_,, V;" = V™.

Proof of 2. Because of (147) there exists n, after which the node values at each node ¢ and
its neighbors N (i) are in the order of some local index policy that coincides with the order of an
optimal index policy. At each event n > n,, this local ordering can change, but the new local order
coincides with the order of an optimal index policy. Hence, at each node i an optimal action is
taken at each event n > n,. Consequently, the distributed policy is optimal.

Proof of 3. Because of (147), (148), and Lemma 6.3, there exists n, after which node values for
each node 7 and its neighbors A/ (i) are in the order of the unique optimal local index policy and
there are no subsequent changes in this order. After n,, once a full round of node updates occurs,
each node has its correct V;™ and its correct local index policy, which subsequently do not change.
O

We give an example where Algorithm 1 does not converge to an optimal index policy, but still

converges to an optimal distributed policy.

Example

Consider the system of Figure 4 with parameters 0 <p < 1,0<g<1,¢; = =c¢4 =1, and
Ry = Ry = R4y = 0,R3 = R. Assume node recomputations and successful value transmissions
occur in the order [1,4,2,4,1,4,2,4,...]. Then node 1 and 2 updates are still represented by
(156). The policy at node 1 is fixed at m} = (3,2,1),Vt, and the policy at node 2 is fixed at
77 = (3,1,2),Vt. But at each update of node 4, the policy changes, as the ranking of the values
of nodes 1 and 2 alternate. That is, the policy computed at node 4 is

wt = {(1,2,4) (2,1,4) (1,2,4) (2,1.4) (1,2,4)...} (172)

Of course, 7} = r3. The overall policy is IT; = (r} 77 } 7}), which is not a stationary policy, due

to m}. It is, however, an optimal distributed policy.
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Ql C| Q2

Figure 4: System with optimal distributed policy

6.3 Distributed Dynamic Programming Formulation

We develop a distributed algorithm, different from but related to Algorithm 4, using the method-
ology of Distributed Dynamic Programming (DDP) [Bert 82]. We first present briefly the model,

key assumptions, and key results in [Bert 82].

6.3.1 Summary of Distributed Dynamic Programming [Bert 82]

Distributed Dynamic Programming [Bert 82] is a technique for solving dynamic programming
problems using distributed computation. The technique may only be used for problems formulated
so that a standard dynamic programming equation applies, and for which a suitable partitioning of
the state space among processors (“computation centers”) can be made. Two advantages of using
distributed computation for solving dynamic programming problems are adduced: 1) Computation
of a solution can be accomplished in less time, as work is performed in parallel, and 2) Some
problems, such as those involving communication networks, possess a natural decentralization of
data. Rather than gather all of this data into one place to perform the computation, it can be

more efficient to leave the data distributed throughout the network, and then use a distributed
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algorithm like DDP to compute the value function and optimal policy.

In this section we summarize the key results of [Bert 82], using the paper’s own notation. The
dynamic programming problem is formulated as follows. The state space is S, and the control
action space is C. For each x € S there is a given subset U(x) C C which is the control action
constraint set at z. F is the set of all extended real-valued functions J : § — [—00,00] on S. The

following notation is used for any two functions Ji, Jo € F"
J1 < Jy ile(ZE) SJQ(.’,U), Ve e S
J1 = Jy ile(J?) :JQ(J?), Ve e S

Let H:S x C x F — [—00,00] be a mapping which is monotone in the sense that for all x € S

and u € U(z), we have
H(:L‘,u, Jl) < H(:L‘,u, Jg), VJi,Jo € F with J; < Jy (173)
Given a subset F' C F the problem is to find a function J* € F such that

J(z) = inf H(z,u,J*), Vz eS8 (174)
uelU(x)

By considering the mapping 7' : F' — F' defined by

T(J)(z) = ueigfx)H(w,u, J) (175)

the problem is alternately stated as one of finding a fixed point of T within F, i.e., a function
J* € F such that

J=T(J%) (176)

The DDP algorithm is described as follows. It is assumed there are n computation centers, also

called nodes. The state space S is partitioned into n disjoint sets denoted S1,...,S,. Each node ¢

is assigned the responsibility of computing the values of the solution function J* at all states

in the corresponding set S;. A node j is said to be a neighbor of node 7 if j # ¢ and there exist a

state z; € S; and two functions Ji, J, € F such that

Ji(z) = Jo(z), Yo &S; (177)
T(J1)(z:) # T(J2)(z:) (178)

The set of neighbors of i is denoted N (z).
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At each time instant, node i can be in one of three possible states - compute, transmit, or idle.
In the compute state node i computes a new estimate of the values of the solution function J*
for all states z € S;. In the transmit state node ¢ communicates the estimate obtained from the
latest compute phase to one or more nodes m for which i € N(m). In the idle state node 7 does
nothing related to the solution of the problem. No assumption is made on the length, timing, and

sequencing of computation and transmission intervals, other than the following.

Assumption 1: There exists a positive scalar P such that, for every node i, every time interval
of length P contains at least one computation interval for i and at least one transmission interval

from i to each node j with i € N(j).

At time t, the last value node ¢ received from node j is denoted ij, j € N(i). Node 7’s own
value is denoted J%. The rules according to which the functions ij are updated are as follows.

1)If [¢1,t2] is a transmission interval for node j to node ¢ with ¢ € N(j), then
JE=Jh (179)
2)If [t1, 2] is a computation interval for node i, we have

J2 (@) =T (J") (z) = 1rU1f )H (z,u, J{'), Vz €S; (180)
uelU(x

One more assumption, Assumption 2, is necessary for the two important propositions of the

paper, Propositions 1 and 3, which we state below.

Assumption 2: There exist two functions J and J in F such that the set of all functions J € F
with J < J < J belongs to F and furthermore

J>T(J), T(J)>J (181)

and
Jim TH(J)(z) = J*(z), Vz € S (182)
Jim TF(J)(z) = J*(z), Yo € S (183)

Three propositions are presented in [Bert 82], of which two are fundamental results, and one is

specific to the examples presented in the paper. We state the two fundamental propositions here.
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Proposition 1: Let Assumptions 1 and 2 hold and assume that for allt € 1,...,n
J(z) < Jj(x) < J(z), Yz € Sj,j =1 or N(i) (184)
Then for allt=1,....,n
lim Jf;(z) = J*(z), Yz € Sj,5 =1 or N(i) (185)

t—oo W

The next proposition, Proposition 3, deals with the question of whether at time ¢ control laws

pt S — O satisfying

p(z) €U(x), Vz €S (186)
and
Hlz, pl (), J] = mUi%l)H(x,u, JY, Vz € S;i=1,...,n (187)
uelU(x

converge in some sense to an optimal control law.

Proposition 3: Let the assumptions of Proposition 1 hold. Assume also that for every x € S,
u € U(z) and sequence {J*} C F for which limy_,o J*(z) = J*(x) for all z € S we have

lim H(z,u,J*) = H(z,u, J*) (188)
k—o00

Then for each state x € S for which U(x) is a finite set there exists t; > 0 such that for all t > t,
if ut(s) satisfies (186), (187) then

Hlz,p'(z), J* ] = min H(z,u,J*), (189)
ueU(z)

Proposition 1 proves asymptotic convergence to the value function under appropriate conditions.
Proposition 3 provides conditions under which an optimal policy is reached in finite time.

We now proceed to solve Problem (P1) using DDP as presented above.

6.3.2 Solution of Problem (P;) Using DDP

The model of Problem (P;) is a standard controlled Markov chain with finite state space 2@ and
action space 7 € . Dynamic programming can be directly applied to Problem (P1) on state
space 22, but this approach is inefficient and does not lead to a direct application of DDP. This

is because it is not possible to define useful computation centers as in [Bert 82] satisfying (177)
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and (178) through partition of S = 29 (on this state space, to define computation centers in a
way that leads to the application of DDP, we would need to know a priori the optimal priority list
of nodes as dictated by Theorem 3.1). Our approach is to use the index structure of an optimal
policy demonstrated in Theorem 3.1 to define a new state space on which DDP can be applied.

To solve Problem (P7) using DDP, we proceed in three steps.

1. Formulate a new problem, Problem (F;) below

2. Show that an optimal policy for Problem (F;) can be mapped to an optimal distributed
policy for Problem (P)

3. Apply DDP to Problem (Fy)

Below we present the details of each of the steps above.

Formulation of Problem (Fq)
We formulate Problem (Fy).

Problem (Fp)

The state space is €, the set of nodes. The policy space is the set of all local index policies 7* for
all 4 € Q. When transmitting in state 7, a cost ¢; is incurred and transition to a new state j € ()
occurs. Define P;]TZ to be the probability of transition from state 7 to state 7, 7 € N (i), under
policy n*. Then,
Py =3 P(Sli) (190)
St (S)=jyrj
When we retire in state ¢, the process terminates and a reward R; is received. The objective is to

choose for each state i the local index policy 7’ to maximize

T—1
E {Ri(f) - Zci(t)} (191)

t=1

where 7 is the time when the transmission process is terminated, and i(¢) is the state at time ¢.

Mapping of Optimal Policy from Problem (F;) to Problem (P;)

We define a mapping of policies for Problem (F1) to policies for Problem (Py).
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Mapping 1 A general (possibly time-varying) policy for Problem (F1) consists of a sequence of

local index policies for each i € ). For each t we define
I, = {n/n}...7)} (192)
A policy for Problem (F1) is then specified as
I = {ILIL...1,...} (193)

We map a policy for Problem (Fq) represented as (193) into a distributed index policy for Problem
(P1) (cf. Definition 6.1) in the obvious way. That is, at each time t the local index policy i at
each node i € Q is the same for Problem (P1) as for Problem (F1).

We show that mapping an optimal policy of Problem (F;) by Mapping 1 leads to an optimal
policy for Problem (Pq).

Lemma 6.11 IfII is an optimal policy for Problem (F1), then II mapped to a policy for Problem
(P1)using Mapping 1 is an optimal distributed policy for Problem (Pq).

Proof. The assertion of Lemma 6.11 follows from Mapping 1 and the fact that an optimal policy
for Problem (Pq) is of the index type. O

A Distributed Dynamic Programming Implementation for Problem (F;)

We formulate a DDP solution of Problem (F;) by translating the notation of [Bert 82] into our
notation. We use our own notation where appropriate. Each node 7 in our model is a computation

center for itself alone, so that 5; = 4,Vi € ). We associate:

S Q

C = {Set of all priority orderings of N(i),Vi € Q}
U(i) = {Set of all priority orderings of N (%)}

F = F

We also note the notational correspondences V «» J, and V;" «» J!, which are equivalent assuming

event n occurs at time t.
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A neighbor of a node in the sense of [Bert 82], defined in (177) and (178), corresponds to our
notion of neighbor. That is, the neighbors of node 7 are those nodes with positive marginal
probability of receiving the message when ¢ transmits. These are precisely the nodes whose values
can affect node i’s update. However, the notation for the neighbors of 7 used in [Bert 82], N(7),
does not include i, whereas for our notation 7 € N (7).

For Problem (F1) we define the H function of [Bert 82] as

H(i,n',V) = —max{ —¢;+ Y P(S[i)V(x'(S)), R Vie Q7' e U(i) (194)
SCN(3)
The negative sign in the RHS of (194) is used to conform to the convention of [Bert 82] that the
goal is to minimize cost. Thus, the dynamic programming equation for Problem (Fy) is
V" = min H (i, ", V™) (195)
7[-1
Note that H is monotone in V' in the sense of (173).
The update for state i € Q by (180) at event n is
V" = min H (i, x, V™) (196)
7rl
We suppose that Assumption 1 of [Bert 82] is true for node updates and transmissions. We show

that the functions

V, = —Rmaa, VieQ (197)
Vi =0 (198)

satisfy Assumption 2 of [Bert 82] as follows. Relation (181) follows from the update definition
(194) and (196). Relations (182) and (183) follow from (195) and the standard result on value
iteration for a dynamic program. We require that, when running DDP for Problem (F;), we start
with a value between V and V at each node.

This completes the DDP formulation of Problem (F1). We now briefly state the results from
[Bert 82] which apply to Problem (Fj1). Assumption 1, Assumption 2, and (184) are satisfied.
Hence, the requirements of Proposition 1 in [Bert 82] are satisfied. From (185) of Proposition 1,
translating into our notation, we obtain

lim V" =V, VieQ (199)

n— 00
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Because for fixed 7* update (194) is continuous in the components of V , Equation (188) of
Proposition 3 is satisfied for H. Hence, the requirements of Proposition 3 of [Bert 82] are also
satisfied. Translating to our notation, we obtain from (189) that there exists a 7; > 0 such that

for all n > f;, if a local index policy 7' satisfies

H(i,m,, V") = min H (i, =", V"), VieQ (200)
then
H(i, 7w}, V™) = min H (i, 7", V™) (201)

7rl
Equation (201) states that 7, takes an optimal action for state i at event n.
Thus, we have shown how Problem (Fj) can be solved with the DDP methodology of [Bert 82]
using update (196).

6.3.3 Relation Between DDP Solution to Problem (F;) and Algorithm 4

Event 1 of Algorithm 4 corresponds precisely to the transmit state, which is update 1) of [Bert 82],
described by equation (179). Event 2 of Algorithm 4 is related to update 2) of [Bert 82], described
by equation (180). However, the update equations (144) for Algorithm 4 and (196) for DDP are not
the same. For an update at node 7 € Q at event n + 1, the key difference is that in (196) the value
V" affects the updated value V"™ whereas in (144) it does not. Another difference, relatively
minor, between the DDP formulation and Algorithm 4 is that where Algorithm 4 assumes Events 1
and 2 occur infinitely often, the DDP formulation of Problem (F1) requires the somewhat more
restrictive Assumption 1.

Though Algorithm 4 and the DDP formulation differ in the ways just mentioned, the results
proved for each algorithm are quite similar. As remarked in (199), Proposition 1 in [Bert 82]
implies that

lim V" = V7 Vi € Q (202)

n—oo
Equation (202) shows asymptotic convergence to the value function for Problem (Fy), and hence
for Problem (P1), and is similar to our result Theorem 6.1, (1.). The result of Proposition 3 (201)
is similar to our Theorem 6.1, (2.). No results similar to Theorem 6.1, (3.) for Problem (Pq)

under the DDP formulation follow directly from a result of [Bert 82].
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As these results show, once Theorem 3.1 is proved for Problem (Pq), application of Distributed
Dynamic Programming on an appropriate state space provides a new distributed algorithm for

Problem (P1) with certain properties nearly equivalent to those of Algorithm 4.

6.4 Distributed Rank Method

We define a third distributed algorithm for Problem (P;), which is similar in spirit to Algorithm 4,

except that a different method is used to update the node value function. We define the following

Algorithm 5 At each event time, any number of the following two events can occur.
Event 1 A node i receives V; from a neighbor j, j € N ().

Event 2 A node i recomputes V; using the current V; ; values, as follows.

1. The set of V;j and V; values are ranked, high-to-low. A local index policy 7 for i is
created which uses this ranking (ties are broken arbitrarily). If V; > V;; Vj € N(3),
then T uses any ranking of the neighbors, so long as i is given a ranking below at least

one neighbor.
2. The following is computed.

{ i+ sty LS Vi) R}
9 (3

_ (203)
DN G) 25 {iyA(8) 2 LH(S]0)

V" = max

Events 1 and 2 occur infinitely often at each node 1.

Before we proceed with the analysis of the convergence properties of Algorithm 5, we define

certain types of events associated with the execution of Algorithm 5.

Definition 6.9 We call a node reset the event where V; is equal to or larger than all neighbors
in Step (a) of Algorithm 5, at which point the algorithm sets i’s rank somewhere lower than the

highest neighbor, and the left-hand term using 7 is the larger term in (203) in Step (b).

When a node reset occurs for node 4, the new ranking used for 7 is an implementation decision.
All of the following results for Algorithm 5 are valid for any choice of © when resetting, so long
as node ¢ is not ranked highest. Of course, the choice of 7 affects the convergence properties of
Algorithm 5. An example of this choice would be to always make ¢ the node of lowest rank among
neighbors when resetting. Another choice would be to always make 7 the second highest ranked

node among the neighbors when resetting.
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Definition 6.10 When a node value recomputation using (203) occurs at node i which is not a

node reset, we say o standard update has occurred.

Definition 6.11 When o standard update occurs without the retirement value R; being the optimal

choice, so that the left term in the RHS of (203) is chosen, we say a rank update has occurred.

We state our main results for Algorithm 5 in the following theorem.

Theorem 6.2 For Algorithm 5 with any initial state s.t. 0 < Vi0 < Rpar and 0 < Vi?j < Rz
for alli,5 € Q, we have

1. limy 0 V" = VT, Vi€ Q

2. There exists an event n, < 0o s.t. II = {an IL,, 1 Iy o - .} is an optimal distributed

policy

3. If
Vi # VI Vi€ Q,5 € N(5) (204)

then there exists an event n, < 0o s.t.

(a) V" =V7,¥n >nyVieQ

(b) IL = {I1,,, I1,,, ;1 I, 12 ...} has an associated index policy that is optimal

Before proving Theorem 6.2, we present a series of lemmas which will be used in the proof. But
first we note that the monotonicity property in the sense of Lemma 6.2 does not hold in general

for the update of Algorithm 5. We show this by the following example.

Example

Consider the system of Figure 5. Given Rz, V3, V3[31, and V3[32, assume at time 1 there is a node
update using (203) for node 3. We consider the following two cases. The values used in the update
are: Case 1) R, V2, V3(21, and V3(22, and Case 2) R3, V3, V?Sp and 173(22. Assume R3 = 0 and that

V0 < VR < VP, < _703 + VY (205)
3 —ca+pVy +(1-p)pVy
Case 1 From (203) we have 73 = (1,2,3). Then V3 = pﬁgh_p)p 3.2
Case 2 From (203) we have 7} = (1,3,2). Then Vj = %.

92



Figure 5: System Demonstrating Violation of Monotonicity for Rank Update

Noting that V3072 <R+ V30,1, we find that V3! < Vi'. But since V3072 > 1730,2 and all else is equal
in the two cases, update monotonicity is violated.
To make the example concrete, let V30 =95,V31 = 10,p = .5,c3 = 1. Let 17332 = 3, so 1731 =

—2 410 = 8. Let V3072 =6, 50 V3l = W = 7% < V4!, violating monotonicity. O

Because the update monotonicity property does not hold for Algorithm 5, we must take a very
different approach to proving its convergence than what we used for Algorithm 4. In the following
lemma we prove what may appear as a technical result of unclear utility, but which proves crucial
in the approach we take. It says that when two index policies share the top of a priority list, but

differ further down, then their updated values can be usefully related.

Lemma 6.12 Assume we are given two local non-retiring index policies ™ and & and a full set of
neighbor values {V; ;} for node i. Let A C N (i) be the nodes which 7 ranks above node i. Assume
that policy & uses this same ranking for the nodes in A, but that there is also a set B C N(i) — A,
B # 0, each member of which 7t ranks above node i and below the nodes of A.

Deﬁne Y1 ‘= maX;cp V;-’j,

and Ys := minjep V” Then there exists 0 < a < 1 such that
(1 —a)V +aYy <VF < (1—a)V +aV; (206)

Proof.There is no requirement that the node rankings of ©# and 7 reflect the actual current

ranking of neighbor values {V; ;}.
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The update computation of (203) at node i for local policy 7 is

TGt i iya(s)zi P81 Vig
. DN ()25 {i}#(S)# Z_( |.) A(S) (207)
ZN(i);Sg{i};ﬁ(S);ﬁiP (Sli)

where to ensure (207) is well defined we assume that

> P(Sli) #0 (208)

N(i)DS>{i}:#(S)#i

A similar computation holds for local policy 7.

—Ci + S priyosoiiyas)zi P S1)Vias)

Vi = — (209)
DN G) D5 {i}i(s) L (S10)
Equation (209) is well defined because (208) also ensures its denominator is non-zero.
Write (209) as
o ZGt Snvapsomaen PEVias) + Envapsotases P SV (210)
' 2N G)oso{ika(s)ea LS + XN iyosotiyas)en PHSI)
Using the definition of Y7 and (210) we have
V;_fr < —Ci+ ZN(i)gS;{i}:fr(S)eA Pi(5|73)Vi,fr(S) + Z/\/’(i)QSD{i}:fr(S)eB Pi(5|73)YI (211)

2N ()28 {ii(s)ea PHS1) + X niosoqiyacs)en DS
Note that since both 7 and © make A the highest priority nodes with the same ranking, we have

{N(i) DS D {i}:7(S) e A} = {N(i) D8 D {i} : @(S) € A} (212)

and

#(S) =7(S), N(GE)DS>O{i}:#(S)eA (213)

For simplicity define

by = > Pi(S|i) = > Pi(Si) (214)
N@@)DSO{i}:#(S)eA N(@)DSD{i}:7(S)eA
by = > Pi(S]i) (215)

N (@) DSD{i}:#(S)eB

where the equality in (214) follows from (212).
Because of (208), by > 0; furthermore

0<b;+b<1 and by >0 (216)
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Because of (213) and (214), (211) gives

—C + Z/\/’(i)QSD{i}:fr(S)EA Pi(SV)Vi,fr(S) + bV

V<
b by + by
Write (217) as
Vi < ( by ) —Ci + n(iyaso(iyas)ea P S Vias) ( by ) v,

b1 + by by b1 + by

_ ( by ) —¢i+ 2@ osofiyas)ea P (S10)Vizs) N ( by )Y
bl + b2 bl b1 + b2 !

_ b1 T 2

- (b1+bz> ¢ +(b1+bg> !

Equation (218) follows from (213), and (219) follows from (207).

Define
by

¢ b1 + b2

Since b; > 0 and by > 0, we have
0<axl1

Inequality (219) is then
Vi<(l-a) V7 +a¥y

A similar argument using Y5 gives

VE > (1—a) Vi 4 aYs

(217)

(218)

(219)

(220)

(221)

(222)

(223)

In the next lemma, we prove a straightforward fact about a rank update, which is that the

updated value is upper bounded by the highest neighbor value minus the cost c;.

Lemma 6.13 Suppose there is a rank update for node i at event n, with neighbor node values

Viffl,j € N (i), and neighbor ranking . Define Vinae = MaX;jcpr(i)y>qi V;

n
v

V;'n < Vinaz — Gi
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Proof.We have

—ci + () osofiya(s)z P (S1)Viks)

|
Vit = —— (225)
2N G) 25 {iyA(S) 2 L (S]0)
—ci + ; o=y PUS|)V,
< i Z/\/’(z)QSD{z}.n(S);éz Z( |) max (226)
EN(i)QS’D{i}:fr(S);éiP (Sl
.,
= Vinaz — : o (227)
DN ()28 {iy(s)2i P (S)
< Vinae — G (228)

where (228) follows because Y \r(;5g5{i1:7(s)2i P(S]i) < 1 and ¢; > 0. Inequality (228) completes
the the proof of the lemma. O

As before, we use V™ to denote the optimal value function for Problem (Py).
In the following lemma, we use use a continuity property of the Algorithm 5 update to translate

bounds on neighbor values into bounds on the updated value.

Lemma 6.14 Suppose 7; is an optimal local policy for node j, and let B := {k € N(j) : k>r,5}.
Then for any € > 0 there is 6 > 0 such that

Vig 2V —6Vk€eB= V" > V] —e¢ (229)

Suppose 7; is a local policy (possibly suboptimal) for node j, let B := {k e N(j) : k>7;5}, and
assume that B C B. Then for any € > 0 there is § > 0 such that

Vig SVI+0Vke B= V" <V +e (230)
Proof.Because 7; is optimal, when
Vie = Vi, VkeN() (231)
by Lemma 3.6 (51) we have that

—¢j + YNy (8)25 P (S10)Vims(s) .
YN (G285} ()25 £ (S]7) T

VT = max

f (232)

Hence, under (231) the update (203) using m; computes the value function V7. By [Rudi 76]

Section 4.11, every rational function f : RV — R is continuous. Because: 1) Update (203) is a
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composition of a rational function of the values Vipk e N(7), with the function max{-,-}; 2) the
function max{-, -} is continuous in its arguments, 3) the composition of continuous functions results
in a continuous function, and 4) only node values VikkeB affect the (203) update using m;, we
conclude that update (203) using 7; is a continuous function mapping Rl — R, where [ := |B|.
Since (203) is monotonic in V; ;, the result (229) follows.

To obtain (230), we note that under (231) for any local policy 7; we have
ﬁ-.
Vi< v (233)

By the same argument given above, for fixed 7; the update (203) using 7; is a continuous function
mapping R' — R, where [ := |B|, and where only node values Viphk € B affect the update.
Because (203) is monotonic in V ;, the result (230) follows. O

The fact that Lemma 6.12 guarantees the existence of an 0 < a < 1 satisfying (206) is key to
the arguments we develop in this section. We simplify the use of this fact by defining a maximum

over all such a’s.

Definition 6.12 For a given node i € Q and a pair of local index policies 7 and 7, let a(i, 7, 7)
be given by (214), (215), and (220). Define

(mag = max a(i, T, T) (234)

Note that 0 < amer < 1.
The following lemma is our main substantive result for the rank algorithm, and leads directly

to Theorem 6.2.
Lemma 6.15 For Algorithm 5 we have lim,,_, V;* = V;™, Vi € Q

Proof.We proceed by induction on the number of nodes. Assume we have a set of nodes D C

Q, D # () with the following properties:

lim V" = V7, VieD (235)

7
n— 00

Vi > VI, YieD,jeD (236)

where D :=Q — D.

97



Furthermore, because of (235) there exists an event my and ¢ > 0 such that
V"<V +06, VYn>my,VieD (237)

For the induction basis we let D = {i € Q: R; = R4z}, and argue as follows. Equation (235) is
satisfed because V" = R4z, V0, i € D; inequality (236) is true because ¢; > 0,Vj € Q and hence
V' < Ryaz,Jj € D.

We proceed with the induction step. Define

E = argmaz;cpVi" (238)

2

Note that F is a non-empty set of nodes. Let node 7 € E.

Claim 1
limsup V;" < V™ (239)
n—00
Proof of Claim 1: See Appendix B. «
Claim 2
M : n T
minfV;* > V; (240)

Proof of Claim 2: See Appendix C. «

From Claim 1 and Claim 2 it follows that

lim V)" = V" (241)

n—o0

The arguments leading to (241) can be made for any element : € E. Hence we have shown that

lim V" =V/, VieE (242)

n—o0

We now complete the induction step. Let D' := DU E and D' := Q — D'. We show that (235)
and (236) are satisfied for D' and D'.

Relation (242) and the induction assumption together mean that (235) is true for all nodes of
D'. The definition of E in (238) with the induction assumption directly implies that (236) is true
for D'.

This completes the induction argument, and the lemma is proved. O
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We are now ready to present the proof of Theorem 6.2.

Proof of Theorem 6.2

Proof of 1. Relation 1. follows directly from Lemma 6.15.

Proof of 2. Because of 1. there exists n, after which the node values at each node 4 and its
N (i) are in the order of some local index policy with an optimal associated index policy. At each
event n > n, this local ordering can change, but it always corresponds to some optimal associated
index policy. Hence, at each node 4 an optimal action is taken at each event n > n,. Hence, the
distributed policy is optimal.

Proof of 3. Because of 1. and Lemma 6.15, there exists n, after which node values for each
node 4 and its N () are in the order of the unique optimal local index policy. and there are no
subsequent changes in this order. Subsequent to n,, once a full round of node updates occurs,
each node has its correct V;™ and its correct local index policy, which subsequently do not change.
O

Discussion

It is interesting to note the relation of Algorithm 5 to the results in [Gafn 81]. Major differences
include the on-going nature of the node updates in Algorithm 5, and that node values are inter-
preted as the expected reward at a given node, whose estimates are constantly being updated by
(203). The direction flipping action of [Gafn 81] corresponds to resetting in Algorithm 5. The
proof of Theorem 6.2 is more difficult than the analogous result in [Gafn 81], due to the fact that in
Algorithm 5 node values can change not just when being reset but also when normally computing

updated estimates.

7 Conclusion

7.1 Summary

We have presented a network routing problem which uses a probabilistic local broadcast model
for wireless transmission. We then presented results showing that an index policy is optimal for
this problem. We extended the model to allow for transmission control, and showed that the
index nature of the optimal policy remains unchanged. We then allowed time-varying system

parameters in the model, and discussed conditions under which a time-varying index policy and a
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time-varying priority policy are optimal. Finally, we presented three distributed implementations
of the optimal routing policy for the original problem, and provided results on their convergence

properties.

7.2 Future Research Directions

Future work in this area can take many forms. We summarize potential research on routing in ad

hoc networks beyond that presented above.

Extensions to Analysis of Problem (Pj5), the Time-Varying System
The results achieved in Section 5.2 for Problem (Pj5) are partial results and limited to special
classes of policies. A fuller accounting of optimal policies for the time-varying problem needs to
be made. It would be interesting to consider what classes of policies are worth considering. Also
study of special restrictions on the time-varying system (such as only time-varying reward) might

lead to useful results.

Estimation of Channel Transmission Probabilities
The models of Section 3 assumed knowledge of the transmission probabilities. To actually im-
plement the algorithms, methods to estimate these probabilities must be investigated. There is
a complex interaction between the behavior of these estimation methods and how the resulting
probabilities are used in the network. Numerous relevant questions arise, such as the dynamic
behavior of the estimation procedure, and to what extent physical modeling of the transmission
system should be incorporated into the estimation technique (as opposed to purely measurement-
based approaches). Given the complex way the probability estimates affect the behavior of the
specific distributed algorithm in use, formulation of criteria for a tractable probability estimation

problem is very difficult.

Parameter Sensitivity Analysis
Because channel transmission probabilities must be estimated, there is always some error in the
values. Other system parameters may also be only estimates, such as transmission energy cost or
message reward value. We know from Theorem 3.1 that the optimal policy for Problem (Pq) is
an index policy for any value of these system parameters. But the node indices computed using
system parameters in error will be different from the actual optimal indices. It is of great practical

interest to determine how sensitive node indices are to errors in these system parameters.
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Model Violation
We made a greatly simplifying assumption in Assumption 2.1 by assuming iid transmission. But
even in the many cases where this assumption is mostly justified, there can be small violations.
Successive channel transmissions can be almost independent, or network parameters can be slightly
time-varying. It would be useful to know just how much the performance of the “optimal” index

policy degrades when the iid assumption is violated in a minor way.

Markov Chain Channel
It is interesting to ask what happens when the channel model is no longer a fixed iid transition
probability structure, but is modeled instead by a Markov Chain. This allows for correlation in
time of transition events at the same node, relaxing the strict constraints of (8) or (9). In this
way, more realistic channel models can be accommodated.
The Markov Chain channel model in general leads to a more complicated optimal policy than
our Index Policy of Section 3.3. Further research is necessary into the nature of the optimal policy,

and into what simplifying assumptions are useful.

General Distributed Algorithms
Algorithm 4, the DDP formulation, and Algorithm 5 are three different ways to compute the
optimal policy for Problem (P3) in a distributed fashion. There exist other ways, each with
particular strengths and weaknesses. It would be useful to relate this to a general theory of

convergence for algorithms of this type.

Convergence Rate Analysis for Distributed Algorithms
To understand how algorithms like Algorithm 4 and Algorithm 5 behave in dynamic environments,
it is necessary to have some understanding of their convergence rates. Analytic work in this area
would be beneficial, especially work performed from a statistical viewpoint, and might have general

applicability to distributed algorithm research.

Distributed Algorithm Limitations
Distance vector algorithms have some well-known limitations, such as convergence rate, the count-
ing to infinity problem, and packet looping ([Kuro 00] p.252). We would like to determine the
extent to which these limitations also exist in the distributed algorithms we presented in Sec-
tion 6, and what algorithm modifications are possible to mitigate these effects. Distance vector
algorithms have undergone a long development to deal with these problems, and we should mine

the previous work for ideas where applicable.
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Transmission Interference
Research into other methods for handling transmission interference in a distributed wireless net-
work is also important. Our method in this paper has the merit of being amenable to analysis,
but counting the penalty of interference as a fixed cost is simplistic. It would be a major achieve-
ment to find an analytic approach with a realistic transmission interference model that leads to a

distributed optimal policy.

Multidestination
Problem (Pg) defines the destination to be any one node from a set of nodes, the anycast problem.
Another important problem is the multicast problem, which is to send the message to all the nodes

in a given destination set. It would be interesting to determine the optimal multicast algorithm
for our local broadcast model, Model (M).

Random Cost
There may be cases where the message reception energy at each mobile is significant compared to
transmission energy. In these cases it is useful to allow local neighbor addressing. But neighbor
reception of a message transmission is random, so energy consumption, or cost, is random. To
accommodate this, we would like to extend the model to allow for the cost of transmission to be

a random variable.

On Demand Systems
We might try to find out if the stochastic local broadcast model we have considered in this paper
can be used to any advantage in those ad hoc networks in which messages are rare relative to
network topology change. To adequately analyze these networks, the cost of control messages

must be included in the network model.

Simulation
It would be of great interest to see how the algorithms discussed here perform in a realistic ad
hoc wireless simulation. Of particular interest is the range of system parameters, such as rate of
network topology change, rate of message arrival, and operating environment, over which different

algorithms perform better than others.

102



References

[Bert 82]

[Bert 89]

[Bert 92]

[Bert 95]

[Broc 98]

[Chen 99]

[Cors 95]

[Diff 99

[Gafn 81]

[Garc 97]

[Gare 79]

D. BERTSEKAS, “Distributed Dynamic Programming”, IEEE Transactions on Au-
tomatic Control 27:3, p.610-616, June 1982

D. BERTSEKAS AND J. TSITSIKLIS, Parallel and Distributed Computation, Prentice-
Hall, 1989

D. BERTSEKAS AND R. GALLAGER, Data Networks, Prentice-Hall, 1992

D. BERTSEKAS, Dynamic Programming and Optimal Control, Athena Scientific,
1995

J. BRocH, D. MavrTz, D. B. JonNsoN, Y. C. Hu, J. JETCHEvA, “A Perfor-
mance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols”,
Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile
Computing and Networking, October 25-30, 1998

S. CHEN AND K. NAHRSTEDT “Distributed Quality-of-Service Routing in Ad Hoc
Networks”, IEEE Journal on Selected Areas in Communications 17:8, p.1488-1505,
August 1999

M. CORSON AND A. EPHREMIDES, “A Distributed Routing Algorithm for Mobile
Wireless Networks”, Wireless Networks 1, p. 61-81, 1995

The IETF Differentiated Services Working Group homepage,
http://www.ietf.org/html.charters/diffserv-charter.html

E. GAFNI AND D. BERTSEKAS “Distributed Algorithms for Generating Loop-Free
Routes in Networks with Frequently Changing Topology”, IEEE Transactions on
Communications 29:1, p.11-18, 1981

J. GARCIA-LUNA-ACEVES AND S. MURTHY “A Path-Finding Algorithm for Loop-
Free Routing”, IEEE/ACM Transactions on Networking, v 5 n 1, p.148-160, Feb
1997

M. GAREY AND D. JOHNSON Computers and Intractability : a Guide to the Theory
of NP-Completeness, W. H. Freeman, 1979

103



[Garg 96]

[Graf 98]

[Gudm 91]

[Haas 99]

[Hata 90]

[Twat 99]

[Joa 99]

[John 94]

[Klim 74]

[Kuma 86]

[Kuro 00]

[Kush 71]

V. GARG AND J. WILKES, Wireless and Personal Communications Systems,
Prentice-Hall, New Jersey, 1996

C. GRAFF, M. BERESCHINSKY, M. PATEL “Application of Mobile IP to Tactical
Mobile Internetworking”, Proceedings of the 1998 IEEE Military Communications
Conference, v2, p.409-414, 1998

M. GUDMUNDSON “Correlation Model for Shadow Fading in Mobile Radio Sys-
tems”, Electronics Letters, p.2145-6, Nov. 7, 1991

7. HAAs “Guest Editorial, Wireless Ad Hoc Networks”, IEEE Journal on Selected
Areas in Communications 17:8, p.1329-1330, August 1999

M. HATA “Empirical Formula for Propagation Loss in Land Mobile Radio Services”,
IEEE Transactions on Vehicular Technology, Vol. VT-29, No. 3, pp. 317-325, August
1980

A. IwaTa, C. CHIANG, G. PEI, M. GERLA, T. CHEN “Scalable Routing Strategies
for Ad Hoc Wireless Networks”, IEEE Journal on Selected Areas in Communications
17:8, p.1369-1379, August 1999

M. Joa-Na AND I. Lu “A Peer-to-Peer Zone-Based Two-Level Link State Routing
for Mobile Ad Hoc Networks”, IEEE Journal on Selected Areas in Communications
17:8, p.1415-1425, August 1999

D. B. JoHNSON, “Routing in Ad Hoc Networks of Mobile Hosts”, Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications, p.158-163,
December 1994

G. KrLimMov, “Time Sharing Service Systems 17, Theory of Probability and its Ap-
plications, 19, p.532-551, 1974

P. KuMAR AND P. VARAIYA, Stochastic Systems: FEstimation, Identification, and
Adaptive Control, Prentice-Hall, 1986

J. KUROSE AND K. Ross, Computer Networking, Addison-Wesley, 2000

H. KUSHNER, Introduction to Stochastic Control, Holt, Rinehart and Winston, Inc.
1971

104



[Malk 93]

[Malt 99]

[McDo 99]

[Merl 79

[Moy 91]

[Okum 68]

[Park 97]

[Pear 99]

[Perk 94]

[Perk 97]

[Purs 93]

G. S. MALKIN, “RIP Version 2: Carrying Additional Information”, RFC 1388 Jan,
1993

D. Mavrz, J. BROCH, J. JETCHEVA, D. JOHNSON “The Effects of On-Demand
Behavior in Routing Protocols for Multihop Wireless Ad Hoc Networks”, IEFE
Journal on Selected Areas in Communications 17:8, p.1439-1453, August 1999

A. McDonNALD AND T. ZNATI “A Mobility-Based Framework for Adaptive Clus-
tering in Wireless Ad Hoc Networks”, IEEE Journal on Selected Areas in Commu-
nications 17:8, p.1466-1487, August 1999

P. MERLIN AND A. SEGALL “A Failsafe Distributed Routing Protocol”, IFEE
Transactions on Communications 27:9, p.1280-1287, September 1979

J. Moy, “OSPF Version 27, RFC 1247 July, 1991

T. OKUMURA, E. OHMORI, AND K. FUKUDA, “Field Strength and Its Variability in
VHF and UHF Land Mobile Service”, Review FElectrical Communication Laboratory,
Vol. 16, No. 9-10, pp. 825-873, September-October 1968

V. PARK AND M. CORSON, “A Highly Adaptive Distributed Routing Algorithm for
Mobile Wireless Networks”, Proceedings of INFOCOM 97, p.1405-1413, April 1997

M. PEARLMAN AND Z. HAAS “Determining the Optimal Configuration for the
Zone Routing Protocol”, IEEE Journal on Selected Areas in Communications 17:8,
p-1395-1414, August 1999

C. PERKINS AND P. BHAGWAT “Highly Dynamic Destination-Sequenced Distance-
Vector Routing (DSDV) for Mobile Computers”, Proceedings of the SIGCOMM ’9)
Conference on Communications Architectures, Protocols and Applications, p. 234-
244, August 1994

C. PERkINs, E. ROYER, S. DAs, “Ad Hoc On-Demand Distance Vector (AODV)
Routing”, IETF MANET Working Group, March 2000.

M. PURSLEY AND H. RUSSELL “Network Protocols for Frequency-Hop Packet Ra-

dios with Decoder Side Information”, IEEE Journal on Selected Areas in Commu-
nications, p.612-621, May 1994

105



[Purs 99]

[Rapp 96]

[Rodo 99]

[Ross 83]
[Rudi 76]

[Samp 97]

[Siva 99

[Wies 98]

[Wies 00]

[Wilf 94]

M. PURSLEY, H. RUSSELL, P. STAPLES “Routing for Multimedia Traffic in Wire-

less Frequency-Hop Communication Networks”, IEEE Journal on Selected Areas in
Communications 17:5, p.784-792, May 1999

S. RAPPAPORT, Wireless Communications: Principles and Practice, Prentice-Hall,
New Jersey, 1996

V. RopoprLu AND T. MENG “Minimum Energy Mobile Wireless Networks”, IEFE
Journal on Selected Areas in Communications 17:8, p.1333-1344, August 1999

S. Ross, Introduction to Stochastic Dynamic Programming, Academic Press, 1983
W. RUDIN, Principles of Mathematical Analysis, McGraw-Hill, 1976

S. SAMPEL, Applications of Digital Wireless Technologies to Global Wireless Com-

munications, Prentice-Hall, New Jersey, 1997

R. SIVAKUMAR, P. SINHA, V. BHARGHAVAN “CEDAR: A Core-Extraction Dis-
tributed Ad Hoc Routing Algorithm”, IEEE Journal on Selected Areas in Commu-
nications 17:8, p.1454-1465, August 1999

J. WIESELTHIER, G. NGUYEN, A. EPHREMIDES, “Multicasting in Energy-Limited
Ad-Hoc Wireless Networks” Proceedings of the 1998 IEEE Military Communications
Conference, v.3, p.723-729, 1998

J. WIESELTHIER, G. NGUYEN, A. EPHREMIDES, “Algorithms for Bandwidth-
Limited Energy-Efficient Wireless Broadcasting and Multicasting”, Proceedings of
the 2000 IEEE Military Communications Conference, Los Angeles, October 2000

H. WILF, Generatingfunctionology, 2nd ed, Academic Press, 1994

Appendix A

Proof of Lemma 6.7

Proof.Let j be any neighbor of i. Fix all the components of W'~ except for that of j, where

for ease of notation we assume j < 4. The following arguments with the obvious notation change

prove the result for j > i as well. Since the components of W~ are assumed fixed except for j,
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we can think of f; as being parameterized by W%~ with only one argument W; as a free variable.

We then write this function as fZ-WiF (W;). Note then that we can write (162) as
ivvij_ (WJ) = Awi- + Bwi- - W (243)

where Awi- and Byyi— are defined as

—Ci + D g fiym(s)2ig P (S Wa(s)

Awe = (S (244)
" 2iso{ipn(s)z TSN
By = Z2S2kibm(e)= (S -
Y55 (iyen(s)i P (S10)

Note that implicit in the definitions of Avwyi- and Byyi- is the local policy 7, which is also a
function of W'~ (which includes W;). But over any range of values of W; for which = doesn’t
change, Awi- and Bwyi- are constant. Thus, over such a range fiW e (W;) is a linear function of
W;. Further, from (245) and the fact that

{S2{i}:m(5) =4} € {SD{i}:7(S) # i}, (246)

we have that

0 < Bwi- <1 (247)

As W; varies at values for which W) < FAM ijf(Wj), node j is given lower priority than 7 by

7, and hence the value of W, has no effect on fW ijf(Wj). As W; varies at values for which

W; > FAM e (W;), policy 7 can change at only two types of points.
1. W; = WV (w5).
2. W; = Wy, for some k # 4,7, and not type 1
A type 1 point is where node j flips priority with node i. Type 2 points are where node j flips

priority with node k, but not with node 1.

We first examine type 1. Let W* = fZ.Wij (—o0). W* is the value when 7 ranks j lower than i.
We then have that

—Ci + Y g (iyn(s)zig P (S| Wa(s)
D8 {itin(8)#i,j L (S])

and so the function is constant (i.e. the slope is 0).

W W) = W = , VW, < W* (248)
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Consider a point Wj in a linear region, as in (243) above with a fixed 7. We then have
Wi (W;) = Awi- + Bwi- - Wj. Let U* be any point on this curve such that fiwif (U*) =U*,

2

if such a point exists. We thus have A i- + Bwi- - U* = U*, which simplifies to
Awi—
1— Bwi—
—Ci + Do {iyin(S)iy L (S| W (s)
D8 ibm()2i,j PH(S]E)
- W (249)

U*

where the final equality follows from (248). That is, a point of type 1 occurs when W; = W*, the
value function for 4 when j is of lower priority than 4 in 7. From (248) and (249) we conclude
that such a U™ exists and is the unique point where a line of the form (243) intersects the line of
slope 0 at W*. Hence, continuity and piecewise linearity with non-decreasing slope is maintained
in this case.

Now we examine a point of type 2. We only need to consider nodes k of priority higher than
under the current 7 (i.e. k>i) since j is assumed to be at a higher priority than i. Let A'WZ-, and
B;Ni— be the intercept and slope of (243) for the case where W; = WJ’ is slightly less than Wy,
wi— and B;'Ni,
where W; = W]'.' is slightly greater than Wy, and let 7 be this policy. We need to show that the
two lines, described by (243), Ay._, B and (243), A B
W; = Wy

Since 7, k>4, we have

"

and let m be the policy in this case. Similarly, let A be these values for the case

"

Wi—» intersect at the point where

" "
Wi—> wWi—»

o PUSl)y= > Pi(Sl)=G (250)
So{i}y:r’ (S)#i So{i}y:r" (S)#i

Relation (250) is valid because 7 and 7 differ only in that they switch the respective priorities
of 7 and k. Hence, the set of states above ¢ in priority remain identical.
We can then write (243) as

’

ij— 1 I
FYW5) = Gl=et Eospa sign T (SDWor () +
ZS'D{i}:?r’(S):j Pl(S|7’)WJI +
> s iy’ (5)k P (SI0) W) (251)

and similarly for WJ,-’.
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From the definitions of 7 and 7, we have

> Pi(Si) = > Pi(S|5) (252)

So{i}:r (S)#£i,5,k So{iy” (S)H#i, g,k

Hence,

W) = 1w =

J ? J
& oy (5)=5 PSIOW, + Y65 1y (5= P (SI W —
> oo iyen (5)=5 PUSIOW] = g5 (iyen (5= PL(SID) W) (253)

When W]' = W]'.' = Wi, (253) becomes

ij— " ij— ! W i . i i
YT =Yy = g0 Y PUsE Y Pl -
So{i}:r' (S)=3 S>{i}:' (S)=k
> PUSl—- Y PSI)
So{i}:r" (S)=j So{i}:" (S)=k
=0 (254)

where the terms in parenthesis sum to 0 because 7 and 7 are identical except for the switching
of the adjacent priorities of j and k, so that the sum over all states where either of these two nodes
are the highest priority is the same for both 7 and 7 .

Because the linear functions described by (243), A’WZ-,, B'\',VZ-,, and (243), Aq,vi,, B,{,VZ-,,
at W]' = W]'-' =Wy, fV v (W;) is piecewise linear over the region of W; where 7 and © are used.
Furthermore, By, > B’Wi_ ;INi—
has a larger numerator than B,WZ-,, because j> »k and j<_rk. Hence the slope is monotonically

intersect

"

because the denominators are the same in both cases, and B

non-decreasing in this region. O

Appendix B
Proof of Claim 1

Proof.To prove (239) it suffices to show that

limsup Z, < V" (255)

n— 00
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where

Z, = max {max V', max V]”k} (256)
je€D jkeD "
To prove (255) we show that for any € > 0 there is an event m such that
Zn <V +e€ Vn>m (257)
Consider a node update at event n for any j € D. Define

AV :={ke NG ND: V' >V}, jeD (258)

A;-L is the set of neighbor nodes in D which are ranked at higher priority than j in the update at

n. A;-L may or may not be empty. Define

= {jeD: A% # 0} (259)

Fy
F, = {jeD:A} =0} (260)
We first establish the following fact (recall that m; is defined in (237)).

Fact 1 When Z,_1 <V +¢€,0 <€ <1, then at event n > my,

Zn < Z,1 if event n is a node transmission (261)
Vit < Zna if event n is an update at node j, j € F), (262)
Vit < Vi"+e  if event n is an update at node j, j € F, (263)

Proof of Fact I: If event n is a node transmission, then (261) follows from the definition of Z,.

If event n is an update at node j, j € F,, we consider three cases:

1. If the update gives

Vi'=R; (264)
then
V=R <V '<Z,, (265)
2. If the update is a reset for j € F,,, then
VIt 2 Vi VR EN() (266)
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Upon resetting, by the specification of Algorithm 5 node j is ranked lower than at least one

neighbor, say k € N (j). Then by Lemma 6.13 we obtain

VISV = SV = <1 — ¢ < Zy (267)

3. If the update is a rank update, then from the definitions of F;, Z,, and Lemma 6.13 it
follows that

VP < max VA l—g¢; 268
J keDNN() TF J (268)
< Zp1—¢ < Zy (269)

From (265), (267) and (269) it follows that (262) is true.
If event n is an update at node j, j € F),, then A;-L # () and the update is not a node reset.
Let 77 be the index ranking local to j which ranks the nodes of A7 in the order of their value

functions V;T, k € A%, and ranks j next. Since A} C D because of (237), we get
T SVE+6, Vn>my,Vk € AY,0 >0 (270)
Hence by Lemma 6.14 (inequality (230)) we get
VSV e <V e (271)

We use (271) together with Lemma 6.12 to prove (263). We let A =A%, & ==, B C N(G)ND
in Lemma 6.12. Then Lemma 6.12 and (271) give

Vi< (1-a)V;? +aY) (272)
< (1—a)V,7 +aZyy (273)
< M=-a)(Vi"+e)+aZ,y (274)
< VZ-7r + €1 (275)
where
o n—1
Y = max Vi (276)

and « is defined by relations similar to (214), (215), and (220).
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The inequality in (272) follows from Lemma 6.12. The inequality in (273) follows from the
definitions of Y7 and Z,_;. The inequality in (274) follows from (271). The inequality in (275)
follows from the assumption Z,_; < V;" + ¢; made in Fact 1.

Inequalities (272)-(275) prove (263). The proof of Fact 1 is now complete. «

We proceed with the proof of Claim 1 by establishing the following fact.

Fact 2 When Z,_1 > V™ + €1, 0 < €1 <e¢, then at event n > mq,
(2

Zn < Zp-. if event n is a node transmission (277)
V' < max{Z,_1—cj,R;} if eventn is an update at node j, j € F, (278)
an < max{(l — amaac)(ViTr + 61) + GmazLn—1, Rj}

if event n is an update at node j, j € F), (279)

Proof of Fact 2: If event n is a node transmission, then (277) follows from the definition of Z,

If event n is an update at node j, j € F,, we consider three cases:

1. The update gives
V=R, (280)

2. The update is a reset for j € F,,. Then by the same arguments as those leading to (267) we
obtain
Vi' < Zn1—c (281)

3. The update is a rank update for node j € F,. Then by arguments that are the same as
those leading to (269) we obtain
VP < T (282)

From (280)-(282) it follows that
an < max {Zn—l — Gy, Rj} (283)

which is precisely (278).
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If event n is an update at node j, j € F),, then if the optimal action is not to retire, by arguments

that are the same as those leading to (274) we obtain
Vir< (1 —a)(Vi" +e)+aZp

where a is again defined by relations similar to (214), (215), and (220).
Furthermore,

(mag = max a(i,7,7) > a
1EQ,T,T

and
Din—1 > VZ-7r + €1

by assumption.
Because of (285) and (286), (284) gives

Vit < (1=a)(V]" +e)+aZn

< (1 - a'maa:)(vi7T + 61) + UmazZn—1

If the optimal action is to retire, then
V=R,

Combining (287) and (288), we obtain
an < maX{(l — Clmaac)(ViTr + 61) + GmazZn—1, Rj}

which is precisely (279).
This completes the proof of Fact 2. «

We use Fact 1 and Fact 2 to complete the proof of Claim 1. We consider two cases.

Case 1  There is an event [ > my where Z; < V)™ + €.

Under Case 1, relations (261), (262), and (263) together imply that

ZnSViW-l-El Vn >1

(284)

(285)

(286)

(287)

(288)

(289)

(290)

Because inequality (257) follows from (290), we have shown that Claim 1 is true under Case 1.

113



Case2 Z,>V+e Vn>my

We claim that under Case 2 the following inequality (291) is true for any event, update or

transmission, of any node j € D at any n > m;.
‘/jn <Zp1, n>my (291)
We prove (291) as follows.

1. Suppose there is an update at j € F,,. Then

(a) If max{Z,—1 —¢j, R;} = R;, then from (278) we have V* < R;. Since V* > R; by its
definition, it follows that

V' = R, (292)
And since R; < Z,,_1, (291) follows.

(b) f max{Z,_1 —c¢j,R;} = Z,,—1 — ¢j, then from (278) we have
V}n <Zn1-— ¢ < Zn—1 (293)

2. Suppose there is an update at j € Fj,. Then

(a) Ifmax {(1 — amaz)(Vi" + €1) + @maz Zn—1, Rj} = Rj, then from (279) we have V* < R;.
Since V;* > R; by its definition, it follows that

V' =R, (294)

And since R; < Z,,_1, (291) follows.

(b) If max {(1 — amaz)(Vi™ + €1) + @mazZn—1, Rj} = (1 = @maz) (V" + €1) + @maz Zn—1, then
from (279) we have

an < (1-— am,n)(Vi7r + 61) + @maz Zn—1
< (]- - amaw)anl + GmazZn—1 (295)
= Zn1 (296)

Inequality (295) follows because Z,, > V;™ 4+ €1,Vn > m;.

114



3. Suppose there is a transmission from j € D. Then (291) follows from (277). This completes
the proof of (291).

From (291) it follows that
In < Zip_1, N >my (297)

From (297) we also have
Zn—1 < Zmy, n>my (298)

We complete the proof of Claim 1 under Case 2 by establishing the following two facts.
Fact 3 For all n > m; and j € D we have
an <max {(1 = amaz)(V;" + €1) + @mazZm,, Zm, — ¢} (299)
Proof of Fact 3: Using (298) in (279), we have for an update at j € F), that
V' <max {(1 — amaz) (V" + €1) + @maz Zmy, Bj} s n>ma (300)
Because Zp,, > V" + € > R;j,Vj € D, we can write (300) as
VI < (1 = tmae) (Vi + €1) + tmag Zmys 1> (301)
Using (298) in (278), we obtain for n > my
Vit <max{Znm, —cj, R;} (302)

Using (301), (302) and the fact that R; < V" < (1 —amaz)(V;" +€1) + amaz Zm, , we have for j € D
and n > mq that

an < maz{(1 = amaz)(Vi" + €1) + amaz Zm,, Zm, — ¢j} (303)

Fact 4 There is an event mo > mq where

Zm2 < (1 - amcwc)(vi7r + 61) + amamela (304)
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Proof of Fact 4: We prove (304) by contradiction. Assume (304) is not true, which means that
Zn > (1 = amaz) (V" + €1) + mas Zm,, Y0 >my (305)

By the definition of Z,, (299), (305) and the fact that node transmissions and updates occur
infinitely often (so that for all 5,k € D, V' satisfying (299) becomes Vk’f; at some n' > n) there
exists [ > my such that

7y < Zpy,, —ming; (306)
j€D

By repeating the argument leading to (306), we conclude that for large enough n, Z,, can become

arbitrarily small, and this contradicts (305). «

Repeating the argument leading to (304), and noting that a,.; < 1, we conclude that there is
an event m, such that
Zn <V +e€+e, Yn>m, (307)

Relation (307) proves (257) and hence Claim 1 under Case 2.
We have proved Claim 1 under both Case 1 and Case 2, and this completes the proof of Claim 1.
O

Appendix C
Proof of Claim 2

Proof. To prove (240) we show that for any e > 0 there is an event m such that
VP>V —e Yn>m (i € E) (308)

If V™ = R;, then (308) holds. Henceforth, assume V;™ > R;.

Define A; := N (i) N D. A; is not empty, reasoned as follows. Because V" > R;, a rank update
with correct neighbor values and optimal local policy gives V;". Lemma 6.13 and the fact that
ci > 0 ensure that V7 < V[ for some j € NV(i). Because of (236) and (238), j € D. Hence, j € 4;.

Let m; be the index policy local to ¢ which ranks the nodes of A; in the order of their value
functions V", j € A;, and then ranks i next. Note that due to (238), m; is the optimal local policy
for node 7. We write V"*|,, to indicate the update value computed at node i under local policy ;.

Let € > 0, and choose any ¢; and €y such that e; > 0,65 > 0 and € = €1 + €.

We establish the following fact.
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Fact 5 There is an event mo > my such that for n > msy we have
V> (1= an) (V7 —e1) +anV" ! (309)
where 0 < ap < Amaz, N > Mo, my is defined in (237), and apmqz 18 given by (234).

Proof of Fact 5: By Lemma 6.14 (229) there is a § > 0 such that when Vi?fl > VI —4,Vj € A,
we have

Vile 2 Vi — e (310)
Let m' > mj be an event such that
>V =6, Yn>m'keD (311)

Event m’ exists because of (235) and because transmissions occur infinitely often. Hence (310)
holds for n > m'.
By Claim 1, (235) and (236), there is an event m” > m’ such that Vj € D we have

Vi<V, Yn>m" VkeD (312)

Because of (312) and the fact that transmissions occur infinitely often, there is an event mgy > m”
such that Vj € D we have

Vit <V[},VYn > my,Vk € D (313)
Consider a node update at event n > mo at node ¢. To apply Lemma 6.12, we note that due to
(313) an update at ¢ will rank the nodes of A; highest, then possibly rank other neighbors above
i. We identify A = Aj and let B = {j € D : V7' > V/""'}. Define Y := minjep V", '. By

Lemma 6.12, at each update n > mo there exists 0 < a,, < @mqe such that

‘/Z_n > (1 - an)v;jn|7ri +a,Ys (314)
> (1- an)Vin|7ri + anvin_l (315)
> (1—ap) (V" =€) + a, V" (316)

Relation (315) follows from and the definitions of B and Y. Relation (316) follows from (310). <«
We use Fact 5 to prove Claim 2 by considering two cases.

Case 1 There is an event [ > m9 where Vil >V —e.
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When at some update event n > ms we have Vin_1 > V™ — €, from (316) we obtain
VRV -6 (317)
Relation (317) implies that if the Case 1 condition is met at [ > meg, it follows by (316) that
VS VT e, Vo> (318)

Relation (318) proves (308). Hence Claim 2 is proved for Case 1.

Case2 V"<V —¢€, Vn>my

Under Case 2, we use the facts that Vinf1 <V —e€e,¥n>mo+1, 0<ay < amag, V0 > mo
and (316) to obtain

V;'n Z (]- - 017710.:1:)(‘/;'7T - 61) + amaanila Vn > Mg + 1 (319)

)

Let #7' be defined as follows.

$m2+1 _ V*Z_m2+1 (320)

Lovn>my+1 (321)

$:L = (]- - 017710.:1:)(‘/1'7T - 61) + amaw$?7

Using (319), (320), and (321), and the fact that ap,e; > 0 with an inductive argument, we have
that
V>, Yn>mg+1 (322)

From (321) and the fact that 0 < a4, < 1, we have that

nhﬂnolo zp=V"—¢ (323)
From (322) and (323), we conclude that

lim V" > V7™ — ¢ (324)

n—0o0
Relation (324) implies that there exists an event ms > mg + 1 such that

V">V —€ —€e, VYn>mg (325)

Relation (325) proves (308). Hence Claim 2 is proved for Case 2. O
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