Performance of Turbo Codes: The Finite Length

Case

by

Ali (")zgiir Yilmaz

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering : Systems)
in The University of Michigan
2003

Doctoral Committee:
Professor Wayne E. Stark, Chair
Assistant Professor Achilleas Anastasopoulos
Associate Professor Satinder Singh Baveja
Associate Professor Kim Winick

To my family.

i

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my advisor, Prof. Wayne E.
Stark. The time I spent working with him has been a great opportunity for me to
learn about various subjects in communication. His mentorship style sets a good
example and inspiration for my future professional life. Prof. Stark’s enthusiasm
and patience have cleared many of the difficulties I have had over the course of my
studies. I also thank him for his invaluable technical and editorial suggestions for this
write-up.

I would like to thank Professors Achilleas Anastasopoulos, Satinder Singh Baveja,
and Kim Winick for their constructive comments on my thesis. This final form of
the thesis wouldn’t be possible without their insightful suggestions. Their editorial
directions shaped the thesis into a more solid form.

My thanks go to the National Science Foundation (ECS-9979347) and Office of
Naval Research (N00014-03-1-0232) for their financial support during my graduate
studies. I also thank Prof. Semyon Meerkov with whom I worked as a graduate
student instructor for five terms while working on this research. His work ethics has
had a big impact on me.

I would also like to thank my colleagues John D. Choi, Roby Gupta, Tingfang
Ji, Troy Nolan, Hua Wang, Andrew Worthen, Kar-peo Yar, Ping-Cheng Yeh, Do-Sik
Yoo, and Salam Zummo with whom I worked in the Wireless Communications Lab.

I have benefited greatly from the nurturing and enjoyable environment we had in our

i

lab. All the discussions and exchange of ideas have been quite helpful and fruitful.
I especially thank Ping-Cheng Yeh for our co-work which resulted in the writing of
Chapter 4.

Finally, I would like to thank my parents, my sister, the members of the Ozgiin and
Koca families, and my beloved Bahar for their constant support and encouragement.
Nothing would be meaningful, if possible at all, without their love and caring. Many
thanks go to my friends in Ann Arbor who made each of the seven years I spent here
worthwhile. T am indebted to my friends who have provided continuous support in
the last month of my graduate studies.

Thank you all...

v

TABLE OF CONTENTS

DEDICATION i
ACKNOWLEDGEMENTS iii
LIST OF TABLES e viii
LIST OF FIGURES ix
LIST OF APPENDICES xiii
CHAPTERS
1 Introduction 1
1.1 The Communication Problem from the Channel Coding Per-
spective L L 1
1.2 Motivation and Thesis Overview 3
2 Turbo Codes 8
2.1 Imtroduction 8
2.2 The System Model 9
2.3 Convolutional Codes 10
2.4 Decoding of Convolutional Codes 13
25 TurboCodes L 15
2.6 Turbo Decoding 16
3 Convergence Characteristics and Classification 19
3.1 Introduction 19
3.2 Classification of Convergence Characteristics 20
3.3 Categories 22
3.3.1 Category 1 23
3.32 Category 2 24
3.3.3 Category 3 24
3.34 Category 4 24
3.3.5 Category 5 25

3.4 A Stopping Criterion 25
3.5 Conclusions 29
4 Error Floor Performance of Turbo Codes 32
4.1 Introduction 32
4.2 Optimal Decoding at High SNR 34
4.3 Turbo Decoding at High SNR 37
4.4 Error Rate Performance of Codes 40
4.5 Dominant Terms of Turbo Code Distance Spectrum 41
4.5.1 Error Events and Basic Input Fragments 41
4.5.2 An Approximation for Low Weight Codewords 42
4.5.3 Obtaining Basic Input Fragments 44

4.6 Numerical Results 46
4.7 Limitations of the Proposed Algorithm 50
4.8 Conclusions e 56
5 Modelling the Component Decoders 58
5.1 Introduction 58
5.2 Decoding Thresholds at Infinite Block Lengths 59
5.2.1 Density Evolution Method 59
5.2.2 A Gaussian Approximation for Belief Propagation . . 62
5.2.3 A Gaussian Approximation for Turbo Decoding . .. 63
5.2.4 Characterization of Component Decoders 67

5.3 The Nature of Extrinsic Information Sequence 71
5.4 Information Content Function 74
5.5 Probabilistic Model of the MAP Decoder 78
5.5.1 Behavior of the MAP Decoder in the Finite Length Case 79
5.5.2 Estimating I(E) 82

5.6 Conclusions 84
6 EXIT Chart Method to Approximate Probability of Decoding Failure 89
6.1 Introduction 89
6.2 The EXIT Chart Method for Infinitely Large Block Lengths . 90
6.3 EXIT Chart Method for Finite Block Lengths 96
6.4 A Markov Model of Iterative Decoding 100
6.4.1 Decoding Failure at a Given Iteration 102
6.4.2 Numeric Evaluation of Py 104

6.5 Numerical Results 106
6.5.1 Quantization 106
6.5.2 The Symmetric Case 107
6.5.3 The AsymmetricCase 111

6.6 Conclusions 114
7 Conclusions 115
7.1 Contributions oo 115

vi

7.2 Future Work

APPENDICES . .

BIBLIOGRAPHY

vil

LIST OF TABLES

Table
3.1 Categories of Iterative Decoders’ Behavior
3.2 Ratio of ML decoding errors to all packet errors

viil

Figure
1.1
2.1
2.2

2.3
2.4
2.5
2.6
2.7

3.1
3.2

3.3

3.4

3.5

3.6

LIST OF FIGURES

A generic communications system.
A convolutional code with 3 shift registers.
The special form of RSC codes used in turbo codes (Both the addition
and multiplication operations are binary.)
A recursive systematic encoder with 2 shift registers and the corre-
sponding state diagram. Lo
A trellis diagram. oL
BCJR Algorithm.
The original turbo code scheme.
Turbo decoder structure.
A generic communications system.
BER and PER comparisons of the stopping rule to the case of fixed
number of iterations for a symmetric turbo code of the memory-4 com-
ponent code with the generator matrix in (3.4).
Average number of iterations compared to the best possible stopping
rule for a symmetric turbo code of the memory-4 component code with
the generator matrix in (3.4).
BER and PER comparisons of the stopping rule to the case of fixed
number of iterations for a symmetric turbo code of the memory-3 com-
ponent code with the generator matrix in (3.5).
Average number of iterations compared to the best possible stopping
rule for a symmetric turbo code of the memory-3 component code with
the generator matrix in (3.5).
Performance of the ARQ scheme compared to the regular turbo coding
scheme for a symmetric turbo code of the memory-4 component code
with the generator matrix in (3.4) (Throughput values are not written
after E,/Ny = 0.8dB since the throughput becomes very close to 1
afterwards).

1X

13
14
15
16
18
21

27

28

28

29

41

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

5.1
5.2
5.3

5.4
5.5

5.6

5.7

5.8

€ for 74 ML-decoding errors for the turbo code with component code

generator matrix given in (4.13) at f,—’; = 1.6dB where overall PER

80
BA,060° © Tttt tototototteeeeeeeee e

¢ for 50 ML-decoding errors for the turbo code with component code

generator matrix given in (4.14) at ﬁ—’(’) = 0.8dB where overall PER

166
equals TITB85° © © c e

e for 57 ML-decoding errors for the turbo code with component code

generator matrix given in (4.14) at f,—z = 0.9dB where overall PER

86
equals TRTB05" © ° © c e

e for 51 ML-decoding errors for the turbo code with component code

generator matrix given in (4.14) at f,—g = 1.0dB where overall PER

58
TT6,8A2° * ° ° t oottt e

Comparison of the packet error probability approximation and simu-
lated packet error rates with different block length turbo codes with a
memory-3 component code. L.

equals

equals

Comparison of the bit error probability approximation and simulated
bit error rates with different block length turbo codes with a memory-3
component code.
Comparison of the error rate approximation and simulated error rates
of the turbo code with a memory-2 component code (K = 1024). . . .
Comparison of the error rate approximation and simulated error rates
of the turbo code with a memory-4 component code (K = 1024). . . .
Comparison of the error rate approximation and simulated error rates
of a symmetric turbo code of the memory-2 component code with gen-
erator matrix [1, 722] (K =4096.)
Comparison of the error rate approximation and simulated error rates
of a symmetric turbo code of the memory-2 component code with gen-
erator matrix [1, %] (K =4096.)
Graph representation of a (6,2,4) LDPCcode.
Mean and covariance estimates for extrinsic information.
Input/output relation of a MAP decoder at different SNR values. I,
and I, are I(A) and I(E) respectively.
An EXIT chart and progress of extrinsic information.
Estimates of covariance function Kz(m) for a memory-3 RSC code
when E;/Ng = —4.17dBand I;;, =0.
Estimates of covariance function Kz(m) for a memory-3 RSC code
when E;/Ng = —4.17dB and [;;,, =0.5.
Estimates of covariance function Kp(m) for a memory-3 RSC code
when E;/Ny = —4.17dBand I;;, =0.
Estimates of covariance function Kz(m) for a memory-3 RSC code
when E;/Ny = —4.17dB and I;;, =0.5.

5.9

5.10

5.11
5.12
5.13

6.1

6.2

6.3

6.4

6.5

6.6

6.7
6.8
6.9

Mutual information I,,; for each packet and the corresponding normal-
ized histogram at E;/Ny = —4.77dB which corresponds to E,/Ny =
0dB if the code has a 1/3 overall rate (The solid line is the probability
density function of a Gaussian random variable normalized with the
mean, variance and the total number of packets).
Mutual information I,,; for each packet and the corresponding normal-
ized histogram at E;/Ny = —4.07dB which corresponds to E,/Ny =
0.7dB if the code has a 1/3 overall rate(The solid line is the probability
density function of a Gaussian random variable normalized with the
mean, variance and the total number of packets).
Estimates of ur and o7 at E;/Ng = —4.27dB.
Estimates of ur and o7 at E;/Ng = —3.27dB.

IO relation for a memory-2 code at E /Ny = —4.27db (top) and
E;/Ny = —3.27dB (bottom).
Trajectories of an iterative decoder at E,/Ny = —0.2dB. The lines

marked with ‘o’ and ‘“*’ correspond to the IO relations of C; and Cs re-

spectively. The dash-dotted line shows the o-bands of the IO relations
for K =100,000. e
Trajectories of an iterative decoder at E,/Ny = —0.2dB. The lines
marked with ‘o’ and ‘*’ correspond to the IO relations of C; and Cs re-
spectively. The dash-dotted line shows the o-bands of the IO relations
for K =100,000. e
Trajectories at E,/Ny = 0.25dB on the same EXIT chart. The lines
marked with ‘o’ and ‘“*’ correspond to the IO relations of C; and Cs re-
spectively. The dash-dotted lines show the o-bands of the IO relations
for K =100,000.
Trajectory of a packet at E/Ny = 0.5dB for the asymmetric case. The
lines marked with ‘o’ and ‘*’ correspond to the IO relations of C; and
Cs respectively. L
Trajectories of 4 packets of K = 1024 at E,/Ny = 0dB (packets 1 and
2) and 0.5dB (packets 3 and 4). The lines marked with ‘o’ and ‘*’
correspond to the IO relations of C; and Cs respectively. The dash-
dotted lines show the o-bands of the IO relations for K = 1024.

Trajectories of 4 packets of K = 1024 at E,/Ny = 0dB (packets 1 and
2) and 0.5dB (packets 3 and 4). The lines marked with ‘o’ and ‘*’
correspond to the IO relations of C; and Cs respectively. The dash-
dotted lines show the o-bands of the IO relations for K = 1024.

The percentage of correctly decoded packets that obey a certain rule.
The effect of quantization on Py estimation.

Packet error rate estimates and simulation results of a turbo code (K =
1024). . .

xi

98

6.10 Packet error rate estimates and simulation results of a turbo code at
K = 128,256,512, and 1024(‘-":simulation, ‘+’:error floor estimate,

“*7: Py estimate, ‘- -:combined PER estimate). 110
6.11 Packet error rate estimates and simulation results of an asymmetric

turbo code (K =256). 112
6.12 Packet error rate estimates and simulation results of a serially concate-

nated code (K =128). 113

xii

LIST OF APPENDICES

APPENDIX
A Symbolwise MAP Decoding of Convolutional Codes
B Some Properties of Random Sequences

xiil

CHAPTER 1

Introduction

The last century witnessed a significant accumulation of knowledge in science and
technology. Particularly, the means of communication developed since the late 1800’s
have had a huge impact on the every day lives of people. Pushed by the demand
for rapid exchange of information, future communication systems will be designed to
provide substantial improvement over the current ones. Our work aims to analyze in
practical settings turbo codes, one of the prospective key components in the future

communication technologies.

1.1 The Communication Problem from the Chan-
nel Coding Perspective

The overall goal of communication is to communicate information from one point
to another. The parameters important to a communication system engineer include
signal power, noise power, reliability, bandwidth, delay, complexity, overall network
throughput, cost/complexity etc. Our work is particularly related to channel coding,
which is the area of communication that is concerned with the effects of the physical
medium (channel) on communication. The research in channel coding establishes
principles for communication. These principles help develop techniques to facilitate
communication with some desired characteristics in certain media.

The basic approach to channel coding is to add structured redundancy in order to

fight against the destructive effects which the channel might impose on the data. A
generic communication system model is shown in Fig. 1.1. The information sequence
desired to be communicated is encoded by a channel encoder. The channel encoder
maps the data sequence w into an encoded sequence ¢. The encoded sequence is
modulated to produce x in order to transfer the coded data into a form that can be
transmitted in the physical medium. Redundancy may be added during either the
encoding or the modulation operations. The channel may distort the transmitted
signal. The central communication problem is to accurately reconstruct the original

data by processing the received signal y.

u c X y u

_ Channel ‘— Demodulator:

——— Encoder Decoder ——

‘Modulator

Figure 1.1: A generic communications system.

In his pioneering work, Shannon derived some of the fundamental limits for reli-
able communication in certain channels. He determined the tradeoff between energy
efficiency and bandwidth efficiency for arbitrarily reliable communications without
regard to other parameters including delay and complexity. Shannon used a non-
constructive method to find the limits to reliable communication. After his formal-
ization, the first step taken was constructing codes of fixed data sequence lengths
(block length) with algebraic properties in order to approach the limits. Although
other classes of codes, e.g., convolutional codes, were invented later on , most research
were on finding codes with some algebraic properties. This emphasis on algebraic
structure was prevalent until the paradigm shift that came with the success of turbo
codes, which were developed without using diligent mathematical theory.

Turbo codes not only provide excellent error rate performance close to the limits
predicted by Shannon but also they achieve such good performance with reasonable
complexity. Iterative decoding techniques which is central to the turbo coding concept
have been known to the communications research community at least since the 1960’s
[1]. However, they did not attract much attention possibly due to their substantial

complexity in comparison to the state of computing at those times. It can be argued

that the introduction of parallel concatenated codes, a.k.a. turbo codes, has brought

the attention iterative techniques now have.

1.2 Motivation and Thesis Overview

Turbo codes attracted much interest in the coding research community due to their
close performance to the limits predicted by Shannon. Many turbo coding schemes
have been proposed that perform quite close to the Shannon’s limits especially in an
additive white Gaussian noise (AWGN) channel. Turbo codes are obtained by the
parallel concatenation of multiple codes [2]. In a turbo encoder there is a component
encoder corresponding to each code. Different versions of the same data sequence are
obtained by permuting the data. This permutation operation is called interleaving
and done by interleavers. The interleaved data sequences are separately fed into the
component encoders.

Optimal decoders for turbo codes may not be practical because of the complex-
ity involved. Thus decoding is performed through a suboptimal iterative decoding
algorithm. The suboptimal decoder works as follows. There are multiple component
decoders corresponding to each component code. Each component decoder produces
and exchanges likelihood information about the data. Ideally, each iteration improves
the reliability of the likelihood information. After a number of iterations an estimate
of the data can be constructed based on the generated likelihood information.

The good performance achieved by turbo codes without very high complexity
was a mystery to the coding research community in the first years following their
appearance. This initial period was marked by numerous simulation-based research
efforts to understand turbo codes and improve their performance. Further studies
revealed that their good performance is owing to the interleaver in the turbo encoder
and the iterative decoding algorithm. It was also realized that the existence of the
interleaver and the ad hoc nature of iterative decoding make analytical evaluation of
turbo code performance extremely difficult. In this thesis we will study how these

two features, interleaving and iterative decoding, affect turbo codes’ performance.

It was shown that good performance (in the high energy regime) achieved by
turbo codes is due to the interleaving operation [3,4|. It is also observed that some
interleavers are better than the others [3]. However, there have not been many studies
that attempt to analyze the performance of a turbo code with a specific interleaver.
The distance spectrum of a turbo code can be used to analytically evaluate the
performance, but interleaving in the turbo encoder makes the task of finding the
distance spectrum very hard. Yet, an estimate of the distance spectrum can be
obtained by focusing on some special data sequences. As a part of this thesis, we will
propose an efficient method to estimate the distance spectrum of a turbo code with
a specific interleaver.

Iterative decoding is a suboptimal algorithm which performs quite well for turbo
codes. It is difficult to analyze an iterative decoder due to the exchange of information.
Analysis of iterative decoding techniques has attracted much attention in the recent
years [5—7]. The common approach in iterative decoding analysis is studying the
iterative decoding process with a probabilistic model. However, all the attempts to
analyze iterative decoding are for infinitely long data sequences. Although the analysis
for infinite lengths can provide some design rules to construct turbo codes of large
block lengths, use of these codes in practice most often requires small to medium-
size block lengths for data sequences. Hence, we will focus on iterative decoding for
finite block lengths in this thesis. We will study the properties of decoding modules
in an iterative decoder. Through this study, an approximation to a turbo code’s
finite-length performance will be obtained for the low/medium energy regime.

There are many pending questions associated with iterative decoding. One of them
is whether and under what conditions iterative decoding provides optimal solutions.
Although some properties of iterative decoding are revealed [8,9], there is currently
no complete answer to this question. Research on this topic is still an open area.
Meanwhile, researchers continue to empirically investigate some features of iterative
decoding [9-11].

We will propose a classification of a turbo decoder’s convergence characteristics.

Our classification relates the convergence characteristics to whether an optimal (or

possibly optimal) solution is obtained by a turbo decoder. The information produced
by a turbo decoder has different properties when the decoder can obtain an optimal
solution and when it can not. So, there are basically two modes of a turbo decoder:
optimal solution mode and decoding failures. This bimodal behavior can also be
observed from the error rate performance. When the error rate of a turbo code is
plotted against the energy allocated for data, mainly two distinct regions of operation
are observed. One is the waterfall region where there is a rapid improvement of
error rate with increasing energy. The other one is the error floor region where the
error rate does not decrease that rapidly with increasing energy. The error floor
region corresponds to higher values of signal-to-noise power ratio (SNR), whereas the
waterfall region takes place in the low/medium SNR region.

We will study different convergence types and relate them to the two basic modes
in Chapter 3. These two modes of operation need different analysis tools since the
underlying phenomenon in each case is different. The error floor analysis is based
on the properties of the turbo code structure, whereas the analysis for the waterfall
region is related with the iterative decoding. The rest of the thesis will be devoted
to the development of tools to analyze turbo code performance in each region.

For any given code, optimal decoding rules and corresponding algorithms are de-
fined for a given entity. For example, an optimal decoder minimizes the probability of
error of wrong estimation for the whole sequence, or alternatively for the individual
bits of a sequence. By their description turbo decoders provide an approximation to
a bit-optimal decoder. However, performance of bit-optimal decoders are hard to an-
alyze. There exist efficient techniques that approximate the performance of sequence-
optimal decoders [12]. Fortunately, bit-optimal and sequence-optimal decoders are
equivalent at high values of energy per data. Hence, techniques for sequence-optimal
decoders can be utilized to study the performance of turbo decoders in the error floor
region where iterative decoding is conjectured to be optimal in the literature.

One technique used for the analysis of sequence-optimal decoders is the union
bound technique [12]. In order to apply this technique, the distance spectrum of a

code is needed. The distance spectrum of a code enumerates all the codewords of a

code with their weights. In Chapter 4 we will propose a method to obtain an estimate
to the distance spectrum of a turbo code. Our method is based on decreasing the
set of codewords to be investigated in order to obtain the most important part of the
distance spectrum of a given turbo code. We will also describe the relation between
bit-optimal and sequence-optimal decoders, the union bound technique and study
some limitations of the proposed method in Chapter 4.

Iterative decoding algorithms have been investigated with probabilistic models |5,
13]. The likelihood information exchanged between modules are regarded as random
variables and evolution of their probability densities are observed in order to gain
more insight about iterative decoding. The likelihood information passed between
the component decoders of a turbo decoder is approximated as a normally distributed
random variable [2,7]. For the case of asymptotically large block lengths, the use of
this Gaussian approximation enables to obtain a decoding threshold for a turbo code
above which the code can achieve arbitrarily small error rates.

Throughout this thesis we are interested in the performance of turbo codes of
practical block lengths for delay reasons. This is why we will investigate the effect
of finite block lengths on behavior of component decoders in Chapter 5. By focusing
on the information exchanged between the component decoders, we will explore some
properties of component decoders. In particular, we will study how the likelihood
information is correlated. The behavior of a component decoder will be modelled with
a random process. It is found out that the correlation in the likelihood information
produced by a component decoder can be used to model the component decoder.
These improved models allow us to accurately approximate the performance of turbo
codes in the waterfall region in Chapter 6. The approximation is obtained through an
extension of a method to find decoding thresholds for infinitely large block lengths [6].
A probabilistic model for the iterative decoding process will be developed to obtain
error rate approximations for turbo codes of practical block lengths. We will present
numerical results that compare the simulation results to the approximations obtained
with the proposed method in Chapter 6. This comparison shows that the error rate

performance of an iterative decoder for any given block length can be accurately

estimated by the proposed probabilistic model.

CHAPTER 2

Turbo Codes

2.1 Introduction

Turbo codes were introduced by Berrou et al. [2]. The original designs in [2]
provided performance close to the channel capacity and generated much interest in
turbo-like codes and iterative decoding in the communications community. Turbo
codes are obtained by parallel concatenation of multiple component codes. Hence,
there are multiple encoders corresponding to each component code inside a turbo
encoder. The component codes can be chosen among any type of the channel codes.
However, convolutional codes have been the choice of many researchers mainly due to
easy to implement decoding algorithms that are available for them. We also concen-
trate on convolutional codes in this study but the results are not necessarily limited
to turbo codes with convolutional component codes.

As pointed out in [8,14] the term “turbo” is actually a misnomer in reference
to the code itself. “Turbo” refers to the iterative decoding algorithm where it is
in analogy with the reutilization of output materials in some mechanical systems.
The iterative decoding algorithm of turbo codes, often referred to as turbo decoding,
exchanges information between the decoders corresponding to each component code.
It is actually the utilization of such an iterative decoding algorithm that enables the
good performance of turbo codes while the complexity is kept small.

The original design included two identical recursive systematic convolutional (RSC)

codes as the component codes. The use of RSC codes was justified in the subsequent
works [15,16]. We will also base our study on RSC codes. Using different component
codes (asymmetric turbo codes) rather than identical have recently been considered
in a number of studies [17,18]. In this study we will often concentrate on symmet-
ric turbo codes and pursue the extension to the asymmetric case in a few examples.
The system model will be described in Section 2.2. Section 2.3 will be devoted to
convolutional codes and some of their properties. In Section 2.4 MAP decoding of
convolutional codes will be explained. Encoding and decoding of turbo codes will be

described in Sections 2.5 and 2.6 respectively.

2.2 The System Model

This section is devoted to the description of modulation/demodulation and the
channel definition used in this study. We will only consider binary codes in this
study in which all the symbols in a data or coded sequence come from the set {0, 1}.
Whenever a coded sequence ¢ (Fig. 1.1) is available, this sequence is modulated to be
sent over the channel. We have used binary shift phase keying (BPSK) modulation
throughout this study. For the time duration T during which ¢;, the [** bit in sequence
¢, is transmitted the corresponding modulated signal z; (in the baseband) to be

transmitted over the channel can be written as

= v/ Ey(-1)%, (2.1)

where E is the energy of signal allocated per each coded bit. The sequence z is then
passed through the channel. The additive white Gaussian noise channel (AWGN) has
been the primary interest in the literature with respect to turbo code performance.
Our work is also based on this particular channel. For the purposes of this work, the

AWGN channel can be modelled as a discrete system by

Y=o+, (2.2)

where y; is the received signal corresponding to z; and n; models the destructive effect

of the channel as an additive Gaussian noise process with

Elnmuy] = %5(/@, (2.4)

for all [and k, and 6(-) denotes the Kronecker delta function. In this case, the

conditional probability density of y; can be written as

1 [y — 2
X S

T) = —=¢ , 2.5
f(yl | l) \/ﬂ_—]\]—o p N, ()
where || - | denotes the Euclidean distance and defined for two N x 1 vectors z and
y by
N
ly =zl = |y — @l (2.6)
k=1

Throughout this study, we will denote probability densities by f(-). The proba-
bility of an event will be expressed as P(-) whereas the probability mass function of a
random variable will be denoted by p(-). The subscript notation, such as fy|x(y | z),
for these functions will be avoided unless necessary. An important parameter for sys-

tem characterization is the signal-to-noise ratio (SNR) which is defined as the ratio

E,/N,.

2.3 Convolutional Codes

Convolutional codes provide a channel coding scheme in which redundancy is
produced sequentially based on the current data in the sequence and the state which
have been formed by all the previous data. Data can be practically encoded by passing
the data through a linear finite-state shift register [12]. A convolutional code with n
shift registers is called an n-memory code. Equivalently, it is referred as a 2"-state
code since n shift registers can accommodate 2" states when binary data is stored in

the shift registers.

10

+

Figure 2.1: A convolutional code with 3 shift registers.

As seen in Fig. 2.1, the output of the encoder is obtained solely based on the
current input and the current state of the encoder, i.e., the content of the shift
registers. At the same time the state of the encoder is updated as well. This update
causes the output sequence to be a function of the whole data sequence rather than
individual data.

Systematic convolutional codes are those that include the data sequence directly
as part of the encoder output. The term “recursive” refers to the method of updating
the encoder’s shift registers. In a recursive encoder the next state depends not only
the current data but also on the encoder’s current state. Component codes of turbo
codes have been predominantly chosen to be systematic recursive convolutional codes.

The input to the encoder is called the data sequence and it consists of data bits

(only binary codes will be considered in this study) (ul,ul, ... ,ul w2, ... ,u¥ ..). In
general, s data bits (uf, u, ..., u*) are input to the encoder at each run of the encoder

and n bits are obtained as the output. If ¢[* denotes the [** coded bit at time m then

we can express ¢;* for a nonrecursive convolutional code as

s n—1
o =22 g (2.7)
7=1 =0
where n is the number of shift registers in the encoder and the addition is modulo-
2 [14]. The values gj; are different for each different code. Although more general
versions of (2.7) can be used, (2.7) will be sufficient for the purposes of this work.

The encoder structure can also be represented as a generator polynomial by using

11

the delay operator D. Multiplication by D is defined in the following way:
Du;- = u;_l. (2.8)

Using this notation (2.7) can be written as

s

ot = Z[g,o] + glljD +...+ gfj_an_l]u;”. (2.9)

=1
A special form of recursive systematic codes have been extensively used in the
turbo code literature. This special form is shown in Fig. 2.2. It is most often

represented by the generator matrix

D i Q}Di
’]‘ + Z?:l ngI‘DZ

1] (2.10)

where the first term (‘1’) refers to the systematic structure, g} and g}’s are the coef-

ficients of the forward and backward generator polynomials of the code.

g“i
X (+ R (+
- & &% &-X
+— D D D 1D
g% 2% £ g%

@ @ -

Figure 2.2: The special form of RSC codes used in turbo codes (Both the addition
and multiplication operations are binary.)

Another representation of interest is the trellis diagram. Trellis diagram of a
convolutional code shows all the possible states, e.g., content of the shift registers,
at each time and the possible transitions between these states. This representation

helps easier understanding of the decoding algorithms and will be explained in the

12

next section.

2.4 Decoding of Convolutional Codes

Inside a turbo decoder bit or symbol information is exchanged since passing infor-
mation on each data sequence from one decoder to the other is not practical. Thus,
we will concentrate on symbolwise/bitwise maximum a posteriori (MAP) decoding of
convolutional codes. We are more interested in the a posteriori probability of data
symbols/bits rather than their most likely values since there will be more information
loss in the iterative decoding process otherwise.

We will call the content of the shift registers the state and will represent the
encoder with the state diagram of a finite state machine (FSM). An example of such
a state diagram with its corresponding encoder is given in Fig. 2.3. The information

attached to each transition reveals the corresponding input and outputs.

0/00

R

4, c, 1/11 /11

0/00
o P b
0/01
C,
+ 1/10 1/10

U

0/01
Figure 2.3: A recursive systematic encoder with 2 shift registers and the corresponding

state diagram.

The state diagram can be extended to a “trellis diagram” showing all the possible
states at each time. Trellis diagram of the encoder in Fig. 2.3 is given in Fig. 2.4

where S; stands for the state at time ¢ . All the possible paths of a data sequence can

13

be obtained from the trellis diagram.

S0 S1 82 S3 S4

[0,0]

[0,1]

[1,0]

[1,1]

Figure 2.4: A trellis diagram.

A posteriori probability of a data symbol P(u; =i | y) * can be efficiently obtained
by employing the BCJR, algorithm [19]. The symbolwise MAP decoding is provided
in Appendix A. The basic idea is marginalization over all the possible paths that
would be possible with u; = ¢ (Fig. 2.5). Consider all paths P(m’, m) that would
have a particular transition (m',m) at time [(m' and m are states of the encoder).
BCJR algorithm proposes an efficient way to find the sum of likelihoods of all the
paths in P(m',m). As a summary of Appendix A, we will provide the functions that

are used to obtain P(d; =1 | y).

n(m',m) = p(w)f(y | m',m) (2.11)
a(m) = Z a1 (m)y(m', m) (2.12)

Bu(m) = Z B (m')yiga(m, m"). (2.13)
Pluy=ily) = Z a;_1(m")y (m', m)Bi(m). (2.14)

(m!,m)u;=i

'We will define P(X¢E | Y = y) & LoxUIZAIXCR)

event E of nonzero probability when Y is a continuous random variable.

for two random variables X, Y, and an

14

Figure 2.5: BCJR Algorithm.

2.5 Turbo Codes

Turbo codes were introduced by Berrou et al. [2]. The original design is depicted
in Fig. 2.6. As is shown in the figure, there are multiple encoders in a turbo code.
The encoders are most often chosen to be convolutional codes. There are multiple
sequences of bits comprising the output of a turbo encoder.

When the turbo code is systematic, the first sequence in the output sequence is
the data sequence itself. The data sequence is encoded by the first encoder and the
encoded bits are added to the output sequence. Then the data sequence is interleaved,
i.e., permuted, and encoded by the second encoder. The encoded bits from the second
encoder is also added to the output sequence. More encoders and interleavers can
be added. Various concatenation combinations can be employed. We will base our
study on turbo codes with two component codes as this structure is the most studied

in literature.

15

Encoder] —

Interleaver

Encoder2 ———

Figure 2.6: The original turbo code scheme.
2.6 Turbo Decoding

A turbo decoder consists of decoding modules corresponding to each component
code. Decoding modules for each component convolutional code are explained in the
previous section. This section will describe the information exchange between these
soft-input soft-output (SISO) modules. This name is given bearing in mind that both
the inputs and outputs are likelihoods for the decoding module. As seen in formulae in
Section 2.4, the main function to obtain the a posterior: probability of a data symbol
is y;(m’, m). This function needs the a priori information p(u;) and the observation
from the channel so that the branch metric be calculated. These two data comprise
the soft inputs and the soft output is the P(u; =i | y).

Berrou et al. introduced the idea of extrinsic information [2]. While the informa-
tion is exchanged between the decoding modules, positive feedback due to information
that is already present in the decoder should be avoided. Let’s consider the case of
a systematic turbo code and BPSK modulation. In this case the data will be trans-
mitted over the channel along with the coded bits. Denote the observation of u as

y" and the observation of coded bits corresponding to the first encoder as y{. In that

16

case,

Plu=ily) = > -y (m) (', m)By(m) (2.15)

= Y aa(m)p(w) fyl | m',m) f(y | m',m)By(m) (2.16)

(m! ym):u;=t

= p(u)f(y |m' \m) > (m)f(yft | m',m)Bi(m)(2.17)

(m!;m)suy=i
The last equality suggests that the input is directly seen as a factor in the output.
This causes positive feedback problems in the subsequent iterations. By omitting the
information that is repeated in the output this problem is resolved. The summation
term in (2.17) is called the extrinsic information for the [bit. Only the extrinsic
information should be passed to other decoding modules and in reality natural loga-

P(UIZO)

rithm of the extrinsic likelihood ratios (In P(u,:l)) is forwarded. Then, the extrinsic

information corresponding to the [** bit in the ** iteration can be written as

Z(m’,m):ulzo Oélfl(ml)f(qu | m,7 m)ﬁl(m)
Z(m/,m);ulzl ap (') f(y* | m', m)Bi(m)

el =In (2.18)

Fig. 2.7 provides an illustration of the overall turbo decoding scheme in detail. In

L are the interleaver and the deinterleaver. The observation

the figure, 7 and 7~
of systematic part of the encoded bits is denoted by y*, where y°* and y°* are the
observation of the encoded bits for the first and second encoders respectively. In
a turbo decoder the actual inputs to the decoders are likelihoods (or the ratios in

the log domain) and observations are directly written only for illustrative purposes.

Subtraction operation takes place since all the likelihoods are in the log-domain.

17

y! \
o Component |+~ e .
- — (+— decision
p(w) Decoder 1 - I+
? " 3
m e o
L yY ;
AT
' ¥°2 | Component | ;X
BCY Decoder 2 :

Figure 2.7: Turbo decoder structure.

18

CHAPTER 3

Convergence Characteristics and Classification

Iterative decoding algorithms attracted much attention after the introduction of
turbo codes. Much research has been devoted to understanding the convergence
of iterative decoding. In this chapter, we will provide a classification of the turbo
decoding convergence characteristics based on simulation observations and the recent

literature on the subject.

3.1 Introduction

When the turbo codes were first introduced in 1993, such good performance
achieved by them was a mystery to the communications and coding community.
Immediately following, much research have been directed toward the study of the
turbo code structure, improving the performance with some design changes and ap-
plying the turbo decoding idea to different problems such as joint demodulation and
decoding.

Recently a number of researchers showed interest in understanding the iterative
decoding. Richardson posed the turbo decoding algorithm as a discrete dynamical
system in [8]. He presented a geometric argument to show the existence of fixed points
of the iterative decoder. Fixed points are points of operation at which the output (ex-
trinsic information) from the turbo decoder is the same as the input. Therefore, when

the turbo decoder hits such a point no further improvement of the extrinsic informa-

19

tion is possible. The existence of fixed points was also proven independently by Duan
and Rimoldi [20]. Moreover, conditions for uniqueness and stability were given in [8].
Properties of fixed points were investigated through bifurcation theory by Agrawal
and Vardy in [9]. However, none of these studies are completely conclusive. There
are many questions regarding the uniqueness and conditions for convergence. This is
the reason why simulation-based convergence characterizations are still beneficial.

Turbo decoding does not always terminate at a fixed point. Especially in the
“waterfall” region, where rapid improvement of error performance is noted, oscillating
error patterns are observed. The extrinsic information produced by the turbo decoder
might oscillate seemingly randomly without convergence. Such points of operation
will be referred to as oscillating points in this work.

Both fixed and oscillating points will be explained and a classification based on
their properties will be provided in Section 3.2. Based on the classification, a stopping

rule will be established and its performance will be evaluated in Section 3.4.

3.2 Classification of Convergence Characteristics

In this section, a classification of turbo decoding convergence characteristics will
be presented. Extensive simulations were conducted to identify the various forms of
convergence behavior with the goal that a categorization of these forms would provide
a clearer understanding of the iterative decoding. In each simulation 50 iterations
were performed and at least 50 packet errors were obtained. Simulation results are
compared to other similar works [10,11]. The results will also be explained with
and compared to studies on fixed points [8,9]. This classification will also mark the
motivation for two different performance analysis tools which will be investigated in
Chapters 4 and 6.

MAP decoders are capable of producing likelihoods for parity bits along with data
bit likelihoods. This actually doesn’t add substantial complexity since the parity bit

likelihoods can be obtained using the following expression as in equation (2.14) of

20

Chapter 2:
Pla=ily)=) lazfl(m')%(m',m)ﬁz(m)- (3.1)

The only change is the summation over the paths with the given parity bit rather
than the given data bit. Combining the data and parity bit likelihoods, the iterative
decoder’s estimate of transmitted codeword can be obtained at any iteration by hard
decision, i.e., making a decision for what the bit is, 0 or 1, based on its likelihood.
We will relate the behavior of iterative decoder to the form this estimate takes.

We categorize the forms of turbo decoder’s convergence behavior in Table 3.1.
These categories will be explained in more detail in the next section. The cate-
gorization is based on convergence to a codeword in the code space and quantity of
erroneous data bits. This categorization is a comprehensive summary of our extensive

simulations and the classifications offered in [10, 11].

Table 3.1: Categories of Iterative Decoders’ Behavior

1. The codeword estimate converges to a codeword with very few or no data bit
errors.

2. The codeword estimate converges to a vector that is not in the code space of
the turbo code with many data bit errors.

3. The codeword estimate oscillates without convergence with many data bit er-
rors.

4. The codeword estimate oscillates without convergence with a few bit errors.

5. The codeword estimate converges to a vector which is not in the code space
with a few errors.

=>

u c X y

'

—— Encoder Modulator Decoder ——

\Channel Demodulator

Figure 3.1: A generic communications system.

To understand this classification better, let’s consider the optimal decoder for the
communication system given in Fig. 3.1. For equally likely bits, the decoder that is

optimal on sequence detection is the maximum likelihood sequence detector (MLSD)

21

which can be written as

4 = argmax P(u=1|y), (3.2)

where @ is the MLSD’s estimate of the transmitted data sequence. There is a one-to-
one correspondence between the set of data sequences and the set of coded sequences
for the encoders that are of interest in communication. The MLSD first chooses
the most likely codeword (coded sequence) given the channel observation y. It then
provides the corresponding data sequence as its estimate of the transmitted data
sequence. However, a turbo decoder actually estimates individual bits/symbols rather
than the whole data sequence. It can be shown that the optimal bit/symbol detector is
identical to the optimal sequence detector at asymptotically high signal-to-noise ratio
(SNR) values (see Section 4.3). This implies that if the turbo decoder approximates
the optimal bit/symbol detector it also approximates the optimal sequence detector
at high SNR values. Since it approximates the optimal sequence detector then the
codeword estimate (meaning the data bits and parity bits combined) should, with
high likelihood, be a vector in the code space of the codeword and thus a valid
codeword. This fact has been used in Table 3.1 and the categories of the table will
be investigated in the next section. The relation between a turbo decoder and MLSD

will be explained in more detail in Chapter 4.

3.3 Categories

With the bit-optimal solution, referred to as the ML solution hereafter, there
would, with high probability, be either a correct decoding or a decoding error with
convergence to a codeword closest to the received vector. The received vector is
nearby the transmitted codeword with high likelihood. Thus the codeword closest
to the received vector should usually have small number of errors with respect to
the transmitted codeword. If the turbo decoder actually approximated an optimal
decoder, category 1 would always be the most likely category. The frequencies that
the other categories are observed suggest that categories other than 1 are due to the

suboptimality of the iterative decoder.

22

Categories 4 and 5 correspond to pathological cases which seldom occur. These

categories will be explained briefly and then ignored in the remainder of the chapter.

3.3.1 Category 1

Category 1 is observed over all values of SNR and it is the desired operation of
the turbo decoder. All the correct decoding cases are in this category. The incorrect
decoding cases in this category, referred to as ML-decoding errors, are observed in
the high SNR region. The ratio of ML decoding errors to all packet errors is shown in
Table 3.2 for a rate-1/3 turbo code with two identical RSC component codes having

the generator matrix
1+ D+ D*+ D*

"1+ D+ D?+ D3+ D*

1 ! (3.3)

The data sequences to the turbo code are of block length 2000 in this case. It can be
concluded from the table that ML-decoding errors occur dominantly at high SNR. A
turbo decoder converges to fixed points in this category. The fixed points observed
with Category 1 are referred to as unequivocal fixed points in [9]. Unequivocal fixed
points are points such that the bit/symbol likelihoods obtained from the decoder are
extreme, e.g., very close to 0 or 1. This category is the combination of modes 1 and

2 in [11] and of types 1 and 2 in [10].

Table 3.2: Ratio of ML decoding errors to all packet errors

E,/No(dB)Y[01 | 03 | 05 | 08 1.0
Ratio | 5/50 | 21/50 | 49/50 | 50/50 | 154/154

We have observed for Category 1 that the codeword estimate is in the code space of
the turbo code. This characteristic was noted in [9] as well. Since the optimal decoder
would have the same property for the codeword estimate (with high probability), we
will regard this category as providing the ML solution all the time. This claim can
be tested by comparing the Euclidean distance between the received vector and the
transmitted vector to the Euclidean distance between the received vector and the

codeword estimate as in Section 4.3. In almost all cases, the distance between the

23

received vector and the codeword estimate is smaller which is an indication that the

turbo decoder really provides the ML solution if the solution is in this category.

3.3.2 Category 2

Category 2 is dominant in the low SNR region. A solution in this category has
error performance close to the uncoded performance of the channel. The number of
bit errors are very high and the codeword estimate is not in the code space of the
turbo code. Category 2 is associated with another type of fixed point called indecisive
fixed point in [9]. The likelihoods produced by the turbo decoder is rather ambiguous,
distributed around 0.5, for an indecisive fixed point. This category is considered as

mode 1 in [11] and as type 4 in [10].

3.3.3 Category 3

As is well known, a turbo decoder doesn’t always converge to a solution. In that
case, a turbo decoder produces different solutions at every iteration. The solutions
appear to be randomly changing. Then, it is said that the turbo decoder’s solution
corresponds to an oscillating point [9]. The oscillating point associated with this
category seldom occur at low SNR [9]. This category also produces a lot of erro-
neous data estimates. Convergence to a codeword naturally doesn’t occur. All the

oscillating solutions are given in mode 3 in [11]. In [10] this category is called type 5.

3.3.4 Category 4

Category 4 is another case of an oscillating point for the turbo decoder. The
number of errors are low similar to the number of errors in ML decoding errors.
However, this category seldom occurs in practice and it won’t be considered in the

remainder of this report. This category corresponds to type 3 in [10].

24

3.3.5 Category 5

This category is one of the other pathological cases. The solution converges to a
small number of bit errors. The codeword estimate is not in the code space of the

turbo code. This category provides an unequivocal fixed point.

3.4 A Stopping Criterion

In this section, a new stopping criterion for turbo decoding and a corresponding
retransmission scheme will be explained based on the classification offered in this
chapter. In Section 3.2, it was pointed out that different types of decoding errors can
be easily distinguished by checking the iterative decoder’s estimate of the transmitted
codeword. If the estimate is a codeword, then either correct decoding occurs or there is
a ML-decoding error which has a small number of erroneous data bits. On the other
hand, when the estimate is not a codeword the error occurs because the iterative
decoder fails to provide the optimal solution. We will call this error type decoding
failure. A decoding failure causes a large number of erroneous bits.

These observations naturally lead us to the idea that using this codeword criterion,
i.e., whether the estimate is in the code space or not, the decoder can be stopped.
In case the estimate is a codeword, ML solution is achieved and estimation of the
data can be done by hard decision based on the data likelihoods.. In the other case,
either convergence has not happened yet or the packet will never converge to the ML
solution and ultimately cause a decoding failure. Specifying a maximum allowable

number of iterations, the following rule is acquired:

e Stopping rule: Whenever an estimate is a codeword, stop. Otherwise continue
decoding as long as estimate is not a codeword up to a prespecified number of

iterations.

This rule obviously allows ML decoding errors. ML decoding errors cause, with
high probability, small number of erroneous data bits and correcting them might not

be of interest in many settings although doing so is possible by using an outer code

25

[10,21]. However, this stopping rule sometimes halts the decoder before convergence.
This might occur in cases where the iterative decoder’s convergence slips into a slow
progress after a quick improvement phase. There is an obvious trade-off between
complexity (maximum number of iterations) and error performance in the light of
this fact, however this issue won’t be pursued in this study.

We will neglect categories 4 and 5, since they are less frequent than the other
categories. We will mark the categories 2 and 3 as decoding failures. Decoding failures
cause a large number of errors and asking for a retransmission for this case makes more
sense. We propose the following automatic repeat request (ARQ) scheme: In case the
decoder doesn’t stop before a specified number of iterations, request a retransmission
of the packet. This scheme almost insures that only ML decoding errors occur. This
approach simply uses the intrinsic properties of iterative decoding and can be further
refined using the idea of utilization of an outer code as in [10,11,21].

Two different codes have been used for the evaluation of this stopping rule and
ARQ performances in this study. The codes are rate-1/3 turbo codes of data sequence

length 1024 with two identical RSC component codes having the generator matrices

14+ D+ D?+ D*

4
L, 1+ D3+ D4] (3.4)
and
1+ D?
1 - 3.5
[W+D+Dﬂ (3.5)

respectively. The interleaver used for both codes is an S-random interleaver with
S =15 (see Section 4.1 for the definition of S-random interleavers).

In Figures 3.2 and 3.4 bit error rates (BER) and packet error rates (PER) of
the aforementioned codes are evaluated. The solid lines are the error performances
of iterative decoding with 50 full iterations. A full iteration corresponds to one
iteration for both component decoders of the turbo decoder. The dashed lines show
the performance of the proposed stopping rule with at most 50 iterations. Based on
these figures, it can be concluded that the stopping rule slightly degrades the error

performance as expected. In both cases the degradation is within 0.1dB of the regular

26

scheme with fixed number of iterations.

Figure 3.2: BER and PER comparisons of the stopping rule to the case of fixed
number of iterations for a symmetric turbo code of the memory-4 component code
with the generator matrix in (3.4).

Figures 3.3 and 3.5 show the average number of iterations with the stopping rule.
The solid line is with the best possible stopping rule and the dashed line is with
the proposed one. With the best possible stopping rule the decoder stops whenever
what is transmitted is the same as what the estimate is and stops after 50 iterations
even if errors still exist. This is unrealistic, of course, since the knowledge of what
is transmitted is necessary. As seen in both figures, the average number of iterations
is a monotically decreasing function of Ej/Ny. The proposed stopping rule is within
0.5 iterations.

The proposed ARQ algorithm performance is depicted in Figure 3.6. The solid
lines are for the regular turbo coding scheme. The dashed lines represent the per-
formance of the ARQ scheme proposed in this section. The throughput values are
written next to the simulation points on the PER plot. Throughput is defined as
the ratio of the number of transmitted packets over the number of total transmis-
sions. As seen in the figure, the BER performance changes more significantly than
the PER performance. This is due to the fact that decoding failures, which cause a

large number of errors, are avoided by the ARQ scheme. Only packets with small

27

35

Average number of iterations

Figure 3.3: Average number of iterations compared to the best possible stopping
rule for a symmetric turbo code of the memory-4 component code with the generator
matrix in (3.4).

Figure 3.4: BER and PER comparisons of the stopping rule to the case of fixed
number of iterations for a symmetric turbo code of the memory-3 component code
with the generator matrix in (3.5).

28

Average number of iterations

Figure 3.5: Average number of iterations compared to the best possible stopping
rule for a symmetric turbo code of the memory-3 component code with the generator
matrix in (3.5).

number of errors are allowed. Even if the same PER was to persist, the BER would
be considerably smaller compared to the regular scheme up to the SNR value beyond
which ML decoding errors dominate. In essence, the proposed ARQ scheme enables
performance close to the performance of ML decoding at earlier SNR values.

This stopping rule is an alternative to the previously proposed rules such as sign-
ratio-change and hard-decision-aided rules of [22] and average likelihood stopping rule
of [11]. These different choices of rules should be compared in terms of computational

complexity and memory requirements in a practical system.

3.5 Conclusions

Based on the classification presented in this chapter we can now differentiate be-
tween two modes of incorrect decoding: ML decoding errors (category 1) and decoding
failures (the rest). The former mode draws on small number of errors whereas the
latter causes a large number of errors. This statement is parallel to other researchers’
observations that iterative decoders produce either no error or a large number of errors

in the low/medium SNR regions. Moreover, ML decoding errors fail with a codeword

29

10 T T T T T T
10_1 i i iiiiiiiiiiiiTNEiiiiiEiiiiiTEiiis -
w 10_2 i r i iriEiiEiiiiiiiiiiiiiiiiiiiiiiiINGG I iiiEiiii i i i i il it -
31%42.7
10 SEESEREEEE] %740*0/09 ‘3**0 ... E
E \;F ! __*‘_« o7 o - Do K g \/o 90 E
[%599 | BSE ROLAE HPD %99.9 ;
107 | I | | I | 3
0 0.2 04 0.6 0.8 1 1.2 1.4
Eb/N0
10° T T T T T T

Figure 3.6: Performance of the ARQ scheme compared to the regular turbo coding
scheme for a symmetric turbo code of the memory-4 component code with the gen-
erator matrix in (3.4) (Throughput values are not written after E,/Ny = 0.8dB since
the throughput becomes very close to 1 afterwards).

30

estimate in the code space whereas decoding failure cases provide codeword estimates
not in the code space. Moreover, these two different modes are prevalent in different
SNR regions. ML decoding errors are dominant in the high SNR regime, whereas
decoding failure events occur in the low/medium SNR regions. The distinction of
these two different modes is the basis for two different performance analysis tools
where each one is effective in different SNR regions. These tools will be explained in

the next chapters.

31

CHAPTER 4

Error Floor Performance of Turbo Codes

In this chapter we will provide a method to find the dominant terms of a turbo
code’s distance spectrum for a given interleaver. This estimate of the dominant terms
will enable us to obtain approximations to the performance of a given turbo code in

the error floor region.

4.1 Introduction

Different modes of turbo decoding errors are distinguished in Chapter 3. When a
turbo decoder operates at high SNR, very few bits of an incorrectly decoded packet
are in error. In addition, the codeword estimate of the turbo decoder is in the code
space of the turbo code. A maximum likelihood sequence detector (MLSD) finds the
closes codeword to a received vector and then outputs the data corresponding to the
codeword as its data estimate. So, MLSD always has a codeword estimate in the
code space. This fact leads us to the belief that a turbo decoder acts like a MLSD
at high SNR. Some results that imply the validity of this conjecture will be provided
in Section 4.3. The component decoders of a turbo decoder produces bit likelihoods.
By exchanging the likelihoods produced in each component decoder, a turbo decoder
approximates the maximum likelihood decoder for each bit, rather than the sequence.
Since MLSD and maximum likelihood bit decoder are equivalent at high SNR, the

observation that a turbo decoder approximates MLSD at high SNR can be explained.

32

The related optimal decoders will be defined and their equivalence at sufficiently high
SNR values will be proven in Section 4.2.

The error probability of MLSD can be bounded by using the well-established
union-bound techniques [12]. The weight distribution of data sequences (input) and
codewords (output) of the code are necessary to evaluate the union bound. Obtaining
the input-output codeword weight distribution, referred to as distance spectrum, is
not a simple task for the case of turbo codes because of the interleaver(s). Benedetto
et al. provided a bound that averages the performance over all interleavers using the
uniform interleaving assumption in [15]. The performance of a code is dominated by
the minimum distance between all the codewords of a code at high SNR. Recursive
codes have been the component code of choice in almost all turbo codes. The use
of recursive codes help obtain approximations to the distance spectrum of a turbo
code. By searching only for input sequences of weight 2, an upper bound to the
minimum distance of a turbo code were obtained for particular interleavers in [23]
and for all the possible interleavers in [24]. A method to find a lower bound to the
minimum distance of a turbo code for a particular interleaver is introduced in [25].
As opposed to emphasis on minimum distance, we will focus on the dominant terms
of the distance spectra of turbo codes. Daneshgaran et al. proposed a method to
obtain the distance spectrum in [26]. The complexity of the method proposed in [26]
is very high.

In this chapter, S-random interleavers are used to permute the data sequence. In
the vast majority of literature, S-random interleavers are the choice of interleavers
due to their good performance. An S-random interleaver permutes the data sequence
in such a way that bits within a distance S are separated by more than S in the

interleaved sequence. This can be expressed in the following by

im(i) — (i —)| > S, Y0<j<S§, (4.1)

where () is the permuting function.

We will propose a method to find an estimate of the distance spectrum of a turbo

33

code with a particular interleaver. The method will be justified by studying the
properties of recursive encoders. An approximation based on their properties will be
presented. The method proposed in this work is based on an approximation stated
and explained in Section 4.5. We will also provide the limitations of the proposed

algorithm in Section 4.7.

4.2 Optimal Decoding at High SNR

We will define two optimal decoders and establish their equivalence at high SNR.
Consider the generic communication system in Fig. 3.1. Without loss of generality,
we will take u to be a K x 1 vector and ¢ to be a N x 1 vector. Let’s also define ¢, as
the codeword corresponding to data u. Throughout this study the data sequence u is
taken to consist of bits equally likely to be 0 or 1. Maximum likelihood bit decoding
(MLBD) can be defined by the following rule:

MLBD : G prpp = argmax P(u, =1 | y), (4.2)

where u,, is the m!* bit in a sequence u, 4, is MLBD’s estimate of u,, and i is in the
alphabet of the code, e.g., in {0, 1} if the code is binary.
MLSD can be defined with the same notation as follows:

MLSD : tpypsp = arg m%XP(u =v|y), (4.3)

where v is a sequence from the set D, of all data sequences. Define the Euclidean

distance || - || between two N x 1 vectors z and y by

N
ly—z)* =" |y — =l (4.4)
=1

The Euclidean distance is used when the conditional probability density of an obser-
vation is evaluated both in MLBD and MLSD. We will prove that these two decoders

behave identically at high enough SNR. A similar proof is given in [27].

34

Claim 1 MLBD and MLSD provide the same solutions in the additive white Gaus-
sian noise (AWGN) channel at asymptotically high SNR so that

lim 4y aprsp = Uk, mLBD- (4.5)
SNR—o0

Proof: In Section 2.2 the likelihood of receiving an observation y; based on x; is

given as
e — |

N (4.6)

flule)=

exp —

vV ﬂ'N()
where z; is in the set {—+/E,, +v/Es} and y; is corrupted by AWGN noise with

one-sided power spectral density Ng. Equivalently, it can also be written as

Pl |) = —— exp — T (47)

where z; is in the set {—1,+1} and y; is corrupted by AWGN noise with one-sided
power spectral density % We will make use of this representation for the likelihood

of receiving a sequence y for a transmitted sequence z:

1 ly — =|]?
flyle)= WQXP—T, (4.8)
E, Es

where N is the length of both sequences. MLSD chooses the codeword with maximum
a posteriori likelihood. By (4.8) this also corresponds to choosing the closest codeword
to the received sequence with respect to the Euclidean distance. Assume the codeword

x,1 is the closest one to y and x,2, is the second closest. Then,
ly — zr|| = ||y — zyu2|| — €, > 0. (4.9)
MLBD'’s rule can also be written in the following way:

Um,MLBD = arg max Z Plu=vly), (4.10)

VU =1

35

where v,, stands for the m®* bit in a sequence v. Let M denote the total number of
sequences u. If there exists a sequence u' whose likelihood is more than the sum of

likelihoods of all other sequences for small enough SNR (f,—o), then

M
Plu=u"ly) > Y Plu=1u|y)
=2
Plu=u"ly)+ > Pu=d |y > Y Plu=4u]y)
§#1,jud, =ul, J#Ljul, #ul,
Y, Plu=d|y) > Y Plu=1uly
joud,=ul, Jrun Fud,

which implies that

N 1
Um,MLBD = Upy,-

Let’s now prove the existence of such a sequence at high enough SNR values when

ﬁ—; > w For an equally likely source of data u
N() < €
E, In(M — 1)
N
€ > foln(M - 1)
N
ly—zall® < lly—zwl®+e- 2> (M - 1)
No

ly —2ull® < lly —@el® - - In(M - 1)

1 ||y_$u1||2 ||y_xu2||2
———meXp———x—— > (M —1)———mexp——f——
(Wg_S)N/2 E_g (ﬂ_g_:)N/2 E_S

Pz = z,1) P(z = x,2)
flylz=zp)——— > (M -1)fly|x=12p2)———
Wle=e) =gy 2 WD =0 =g

Plx=z,|y) > (M—1)P(z==1,.|Yy)
Plx=xz,|y) > ZP(x:xuj | y).
J#1
Since P(z =z, | y) = P(u=v | y), the proof is complete. |

In practice, the SNR does not have to be as small as predicted by the proof above.

One reason is that not all of the rest of sequences will be at the second closest distance.

36

Another reason is that the distance difference € is not likely to be very small. Hence,

MLSD and MLBD behavior starts converging at reasonable SNR values.

4.3 Turbo Decoding at High SNR

As explained prior to this section in this paper, turbo decoding provides an approx-
imation to MLBD with an efficient algorithm. However, there has not been any study
to this day that actually proves this property of turbo codes. The iterative algorithm
makes showing this analytically very hard. By the equivalence of MLBD and MLSD
at high SNR proven in the previous section, this conjecture will be strengthened if
turbo decoding approximates MLSD at high SNR. We will present some numerical
results strongly suggesting that turbo decoding indeed approximates MLSD.

The experiment considered in this section is based on calculating distances be-
tween the observation and different codewords. Let us denote the data by @, the
corresponding codeword by c; and its corresponding transmitted signal by z;. Note
that the set of codewords and the set of transmitted signals have a one-to-one corre-

spondence by (2.1). Let 1 be the closest signal to the received vector, that is

ly =zt |l” < [ly = 1%, (4.11)
for any sequence v. In particular,

ly =zt |I” < [ly — zall*. (4.12)

Two different codes have been used for the plots in this section. The codes are
turbo codes of data sequence length 1024 with two identical RSC component codes

having the generator matrices

1+ D+ D*+ D*
"1+ D+ D?>+ D3+ D*

1

! (4.13)

37

and
1+ D+ D3+ D*

1 1+ D%+ D¢ I

(4.14)

The interleaver used for both codes is an S-random interleaver with S = 15. We will
denote the data estimate of the turbo decoder by @ and its codeword as c;. Let €

2. If € > 0 this indicates that z; is

be the difference between ||y — 23/|* and ||y — x4
closer to observation than xzz. We will show the difference € for each packet by using
bars in our figures. Not all of the error packets in each simulation is depicted in the

figures due to the fact that there also exist decoding failure events in turbo decoding.

0 10 20 30 40 50 60 70 80
Packets

Figure 4.1: € for 74 ML-decoding errors for the turbo code with component code

generator matrix given in (4.13) at ﬁ_ﬁ = 1.6dB where overall PER equals 848360.

As seen in Figures 4.1-4.4, the decoded codeword is almost always closer to the
observation than the transmitted codeword. The signal z,: always has this property.
This suggests that the turbo decoder estimate x; is likely to be the MLSD’s esti-
mate x,1. However, this approach does not rule out the possibility that some other
codeword is even closer to the observation than the turbo decoder’s estimate. Due to
this shortcoming, the results presented in this section can only indicate strongly that
the turbo decoder approximates MLSD at high SNR values because it approximates
MLBD. This statement is the basis of utilizing the union bounding techniques for the

error performance evaluation of turbo codes.

38

&)

| 0‘...‘_|‘._‘._II.||| | |.‘I..|.I|-..‘I“‘|“||.‘|

Il
10 20 30 40 50 60
Packets

Figure 4.2: € for 50 ML-decoding errors for the turbo code with component code

generator matrix given in (4.14) at % = 0.8dB where overall PER equals ;oo

25

0 10 20 30 40 50 60
Packets

Figure 4.3: € for 57 ML-decoding errors for the turbo code with component code
8

generator matrix given in (4.14) at % = 0.9dB where overall PER equals g2

39

25

0 10 20 30 40 50 60
Packets

Figure 4.4: € for 51 ML-decoding errors for the turbo code with component code

generator matrix given in (4.14) at E” = 1.0dB where overall PER equals 176 Tl

4.4 Error Rate Performance of Codes

For linear codes, the performance of a code can be analyzed by simply transmitting
the all-zero codeword without loss of generality [28]. This fact suggest that the
input-output codeword weight distribution, can be used to predict the error rate
performance of a MLSD in AWGN channel [12]. Hamming weight of a binary sequence

«

is defined as the number of nonzero elements in it. The term “weight” will refer to
the Hamming weight hereafter. Consider that the function A(D, P) represents the

distance spectrum with data length K excluding the all-zero codeword. That is,

=> ") aq,DP?, (4.15)

d>0 p>0

where aq, is the number of codewords with input Hamming weight d and output
Hamming weight p. For the case of systematic codes, the packet error rate (PER) for
MLSD can be upper bounded by using the union bound technique by [12]

PER<) D a4,Q(,/2— (d +p)), (4.16)

d>0 p>0

40

where f,—; is the SNR per channel symbol (z; in (2.1)) and Q(z) = \/% [exp(—%) dt.

Similarly, bit error rate for MLSD can be upper bounded as in

BER < Zz%ade(,m%(dw)). (4.17)

d>0 p>0

Due to the fact that Q(z) decreases quite sharply with increasing x, only the
terms with small d + p sum contribute to the error rates significantly. This lays the

ground for focus on the dominant terms (low codeword weights) of A(D, P).

4.5 Dominant Terms of Turbo Code Distance Spec-

trum

4.5.1 Error Events and Basic Input Fragments

As stated in 4.4, we can obtain an approximation to the error rate of a MLSD by
simply considering the transmission of the all-zero codeword. We will refer to the path
of the all-zero codeword in a given code’s trellis (see Section 2.4) as the correct path.
The correct path traverses the zero-state on the trellis all the time. The term a4, in
(4.15) is equivalently the number of incorrect paths corresponding to input sequences
of Hamming weight d that have parity (the output other than the systematic part)
Hamming weight p. An incorrect path is one that diverges from the correct path
and remerges to it at some later time. Multiple divergence is possible. Each path
corresponds to a different input sequence. Thus, we can equivalently investigate the
codewords corresponding to incorrect paths.

Consider a fragment of an incorrect path which starts with a divergence from the
zero-codeword path and ends after remerging to it for the first time. We will call
such a fragment basic input fragment (BIF) and will refer to the case that a decoder
favors this fragment instead of looping in the zero-state as an error event. An error
event happens when the Euclidean distance between the received vector (observation)

and the incorrect codeword (i.e. its corresponding transmitted signal) is smaller than

41

the Euclidean distance between the received vector and the all-zero codeword. As an
example, consider the code in Fig. 2.3. One BIF of this code is 1 0 1. The parity
output corresponding to this BIF is 1 1 1. If zeros are added to the front and/or back
of a BIF the error event does not change. For instance, if 0001 0 10 0 is an input
to the encoder, the parity output is0 00 111 0 0. The same error event is observed

when zero-padded sequences of a BIF is fed into an encoder.

4.5.2 An Approximation for Low Weight Codewords

Consider the original turbo code structure in Fig. 2.6. The following arguments
will also hold with slight changes for other settings. The weight of a turbo code-
word ¢, = (u,cl,c2), where ¢!, corresponds to the parity (the output other than the

YU 'u

systematic part) sequence from the i encoder, is defined as

w(cy) = w(u) +w(ck) +w(c?). (4.18)

The length of the data sequence u is K. There is currently no analytic way to obtain
the distance spectrum of a turbo code due to the existence of the interleaver m before
the second encoder. The only way to obtain the actual distance spectrum and extract
its dominant terms is through exhaustive search over all 2X turbo codewords, which
is not feasible. However, we can avoid the exhaustive search and still obtain a good
estimate of the dominant terms by an approximation.

In the case that w(c,) is small, both w(u) + w(c.) and w(u) 4+ w(c?) should be
small. This means both component codes should provide small codeword weights.
Note that component codes of a turbo code are typically recursive codes. In most
cases when a recursive encoder diverges from the all-zero state for a long time, the

resulting output weight will be large! . A recursive encoder which doesn’t loop in the

! This statement is true unless there exists a loop in the state diagram of the code with zero-input
and zero-output. This sort of a code should be avoided in practice since it brings out a very large
number of small weight codewords. Such a code can be easily detected by using the state transition
matrix method described in Section 4.5.3. When raised to the L** power, this matrix is the L-step
transition matrix and its diagonal reveals the information whether such a loop exists or not. No such
codes are used in this study and all the statements in this work should be interpreted accordingly.

42

zero-state continues to produce nonzero parity bits even though 0’s are continuously
fed into the encoder. Once the encoder leaves the zero-state, only specific sequences
(BIFs) rather than consecutive 0’s can force the encoder to go back to the zero state,
unlike nonrecursive codes.

For a recursive code, a sequence u with small w(u) + w(cl) is most likely to be
an input sequence that causes a single error event. Otherwise it will accumulate a
large parity weight as discussed in the last paragraph. Each error event correspond
to a BIF. A BIF is zero-padded in the front and/or back in order to obtain an
input sequence of length K. Zero-padding a BIF does not change the error event
corresponding to the BIF. Thus, any zero-padded sequence obtained for a BIF has
the same component parity weight. All these input sequences contribute equally to
the error rate of a code in (4.16) and (4.17). All of them should be considered when
evaluating the error rates if their contribution is significant, i.e., the parity weight
due to their BIF is not very large.

Since from Section 4.4 small weight terms are of interest, the number of basic
input fragments to investigate can be limited. The longer a BIF is, the more likely its
corresponding error event will cause a larger parity weight. Similarly, larger weight
input sequences are more likely to cause larger parity weights. Therefore, we will only
investigate BIFs up to a maximum length (77), a maximum input weight (Tp), and
a maximum parity weight (Tp).

In the remainder of this subsection we will relate small weight codewords to the
BIFs explained above. Define a set B; which contains all the codewords having 1%

through n'® smallest codeweights of the first encoder. The set B; can be written as

B, = LnJ arg, miin{w(u) +w(cl)}, (4.19)
i=1
where
arg, min{f(z)} = {u | f(u) is the " minimum of f(z)}, (4.20)

and n is some threshold. The set B; consists of the input sequences which contain

one BIF and have the 15,274 . n' smallest codeweights. By symmetry, all the

43

arguments hold for the second encoder and a set By can be defined as follows:
By = U arg, min{w(u) + w(c2)}. (4.21)
i=1 ‘

In the case that there is no termination, i.e., the encoder is not forced to a known
state after all the data is encoded, another type of event arises which is likely to cause
a small component parity weight. If all the 1’s in u happen to be located very close
to the end, the component codeword weight is upper bounded by 2(K — Z,) where
T, is the index of the first 1 in uw. In order to take this effect into consideration we

will also define the following sets for the first and second codes respectively:

Bg = {u | ’U)(U) < T1 and Iu > K — TQ}, (422)

By = {u]w(u) <T and Iy > K — To}, (4.23)

with thresholds 77 and T5.

The approximation that is used to obtain the dominant terms of the distance
spectrum is stated below.

Approzimation: Tf w(u) + w(ck) + w(c?) is small, then u € |Ji_, B; in case no
termination scheme is used and u € U?Zl B; otherwise.

Only single error events are considered with this approximation. The number
of input sequences to be investigated for small turbo codeweights thus decreases
substantially. Once B;’s, i = 1,...,4, are obtained, all the sequences in these sets
can be turbo-encoded using a given interleaver. All the low weight codewords are
very likely to be in this set of turbo-encoded codewords. The remaining problem is
how to find the basic input fragments of a convolutional code. A method to realize

this will be explained in the next subsection.

4.5.3 Obtaining Basic Input Fragments

Some properties of a convolutional code can be obtained using its state diagram.

This can be done by representing the information in the state diagram in a format

44

that is analytically tractable. One such representation can be obtained by transferring
the state diagram into a state transition matrix. The state diagram of Fig. 2.3 can

be represented by the state transition matrix S

[1 0 DP 0|
_|IpbPp o 1 o
= , (4.24)
O P 0 D
O D 0 P

where the (i,) entry in S is denoted by S;; and it represents the link from state
to state j (states are numbered by their corresponding decimal representations, e.g.,
i = 2 for the state [1,0].) By Si; = aq, D*P?, we mean there are a4, different input
sequences that start in state ¢ and finish in state ;7 with input weight d and parity
weight p.

This matrix can be defined in many ways and some other information can also be
put into its structure. Since our focus is only on the basic input fragments (they leave
the zero state only once), we will use a modified version of this matrix. The zero-state
will be split into two different states to account for the one and only divergence from
the zero-state. We will denote the starting state by [0,0];. All the links (inputs)
leaving the starting state end up in another state. The ending zero-state will be
denoted by [0,0].. All the links from it loop back to itself while producing 0 as its
parity. The state [0,0]. will be added as a 5 state to the modified state transition

matrix S as follows

(00 DP 0 1 |

00 1 0 DP
S=|0 P 0 D 0 (4.25)
0D 0 P 0

(000 0 0 1 |

The matrix S is the state transition matrix for an input length of 1. The L** power

of this matrix, S%, is the transition matrix for the input length of L. Truncation, i.e.,

45

neglecting some of the terms in each polynomial S; ;, can be employed due to the fact
that only terms with small exponents (d, p) are of interest. In addition, truncation
also helps avoid the computational burden due to the great diversity among the terms
of the polynomial S; ; with increasing L. We will thus ignore all the terms with input
weight higher than Tp and output weight higher than 7. The basic input sequences
with these thresholds can be found by examining the polynomial in Sﬂ5. We will use

the algorithm below to find the basic input sequences.
1. Initialize L equal to 1 and construct S for the given component code.
2. Increment L by 1 and find ST.

3. Obtain A = S¥ — S%=1 If A, 5 has nonzero terms, then these terms are due to
the basic input sequences with input length L. Record the nonzero terms along

with the length L.
4. Continue with step 2 until L = T}, for some threshold 77,.

5. For each recorded term, find the actual sequence by checking all the possible

sequences that fit in the description. Record these basic input fragments.

With the steps 1 — 4, the input and parity weights of basic input sequences of
lengths up to 77, are obtained. Using these weights and the lengths,the last step finds
each basic input fragment. For example, assume a term with L =10, d =4 and p = 3
is recorded in step 3. Each of the (5:22) = (2) (since it is known that the first and
the last bits should be 1) input sequences of weight 4 is checked to determine if it
finishes at the zero-state with parity weight p = 3. The complexity of all these steps

are low due to the fact that the dominant terms can be obtained by checking up to

small values of T, Tp and Tp.

4.6 Numerical Results

In this section we will compare the error rates obtained by simulation to the error

rate approximations explained in the previous sections. We have employed 3 different

46

codes for this study, each with different state complexities. All three codes are turbo

codes with two identical RSC component codes having the generator matrices

1+ D?
S — 4.2
L5 (4.26)
1 1+D?] (4.27)
"1+ D+ D37 '
and

1+ D+ D3+ D*
. 4.28
L) (4:28)

For each packet 50 full iterations are run. A full iteration refers to an iteration for
each component decoders with two iterations in total. 77, threshold is set at 20 where
Tp =5and Tp = 8.

In order to show the effectiveness of the proposed approximation with respect
to block length K, the simulated error rates and the approximations are plotted in
Figures 4.5 and 4.6 for various block lengths. Figure 4.5 depicts the packet error
rates and Figure 4.6 shows the bit error rates. Four different block lengths (128, 256,
512, and 1024) are investigated where the interleaver parameters S are 7, 8, 10, and
15 respectively. The solid lines with the marker '+’ show the simulated error rates
whereas the approximations are plotted by the dashed lines. Error rate approxima-
tions are obtained by using equations (4.16) and (4.17). Naturally, only a partial
sum is evaluated for the error rates. There are multiple dashed lines corresponding to
different degrees of truncation, i.e. different number of terms in the error rate sum-
mations. In the lowest bound only the smallest distance with the smallest number of
bit errors is depicted with its corresponding multiplicity. The higher approximations
have the next smallest distances and next smallest number of bit errors. None of the
approximations shown in this section has more than 10 terms in the summation.

We will provide the same comparisons for the turbo codes with the memory-2
and memory-4 component codes in Figures 4.7 and 4.8. As seen in all the figures,
the prediction of the dominant terms by the stated approximation captures the error

rate performance of turbo codes in the high SNR region for different block lengths

47

256

K

128

K

i/

/

L 11
o

~—

1024

K=

V7
VI

7

/1

9§ I
o o
=

H3d

10"

Eb/NO

Figure 4.5: Comparison of the packet error probability approximation and simulated

packet error rates with different block length turbo codes with a memory-3 component

code.

48

K=128 K=256

BER
BER

BER
BER

Y/

-10

10

0 1 2 3 4
Eb/N0

Figure 4.6: Comparison of the bit error probability approximation and simulated bit
error rates with different block length turbo codes with a memory-3 component code.

49

and different component codes. The PER approximation is actually closer to the
simulation results than the BER approximation. This difference can be explained
based on the classification proposed in Chapter 3. When decoding failures occur a
large number of bit errors are made by the decoder. Even if there is only one error
event of that type, the bit error rate can be dominated by that event. Whereas, for

the case of packet errors one decoding failure can not dominate the performance.

0 —1

10 10

PER
S
BER

Figure 4.7: Comparison of the error rate approximation and simulated error rates of
the turbo code with a memory-2 component code (K = 1024).

4.7 Limitations of the Proposed Algorithm

In this section, we will investigate the effect of multiple error events on the distance

spectrum. Only those sequences which have not been considered by single error event

30

PER
BER

1 0_7 1 L 1 i 1 0_10 I 1 7 L 1 i

Figure 4.8: Comparison of the error rate approximation and simulated error rates of
the turbo code with a memory-4 component code (K = 1024).

o1

methodology will be explored. The average number of sequences causing multiple
error events will be investigated. The basic idea is conveyed through presenting a
few cases of sequences as examples. Then we will make use of a lemma by Perez
et al. [4]. The average number of sequences will be derived for each case under the
uniform interleaving assumption. The uniform interleaving argument states that all
sequences are equally likely after interleaving. For example, if an input sequence
of weight-W is interleaved when the sequence length is K, any of the (vlt(/) output

sequences are equally likely with likelihood (Tl) after interleaving. The block length

of an input sequence will be denoted by K. ’VIV‘he thresholds Ty, Tp, Tp as defined in
4.5.2 determine the number of basic input fragments of interest for any given code.
The number of basic input fragments of weight t for the i** encoder will be denoted
by N;; and is a fixed number determined by the given thresholds that do not depend
on K. Without loss of generality we will concentrate on the input sequence to the
first interleaver.

We will define the following ©(-) notation for easier enumeration of the number

of sequences.

Definition 1 Let f and g be functions from the set of integers to the set of real
numbers. f(z) is said to be O(g(zx)) if and only if there exist c¢1,cy and xy such that

cg(z) < f(z) < ca9(),

for any v > xy.

It is a simple exercise to show that if a(z) = O(f(z)) and b(z) = O(g(z)), then
a(z)b(z) = O(f(x)g(x)) and % = @(%). We will use these properties in the
following.

Each of the below cases have multiple error events. We will obtain an average
number of input sequences in each case using the uniform interleaving assumption

and the O(-) notation defined above.

e Case 1l

w(u) = 3. In this case we have one error event caused by a BIF of weight-2

52

followed by a 1 near the end of the input sequence. This single 1 should be close
the end of the sequence since it will cause the first encoder’s parity sequence
to have a large weight otherwise. After interleaving the same case will hold (or
there will be an error event caused by a weight-3 BIF which is considered within
the proposed algorithm thus we won’t consider here). When the first encoder
is considered, the number of such sequences is N; ,©(K). This is due to the
fact that the single 1 is in some area close to the end of the sequence and the
other two 1’s can make up any of the weight-2 basic input fragments anywhere

in the sequence. When interleaved, the likelihood of the sequence having the
N2,20(K)

(5)

same structure is . So the average number of sequences in Case 1 is

Therefore, in average we will have ©(K 1) codewords.

Case 2

w(u) = 4. Two separate error events both with BIFs of weight-2 in both
encoders. Using the same approach in Case 1 and noticing that these 2 error
events can occur anywhere in the sequence, the average number of sequences in

Case 2 is

2 o (K V320((5) _ O(K*) _
N1,2®(<2>) (K) - @(K4) - 6(1)

4

In each turbo code there exist, on average, ©(1) codewords.

Case 3
w(u) = 4. One error event by a weight-3 BIF and a single 1 in the end of the
sequence in both encoders. The number of input sequences that are in this case

Ny O ()™ 2’??)(]{) = 85;; !

4

Case 4

w(u) = 4. An input sequence in Case 2 and its interleaved version in Case 3

33

(or vice versa). The average number of such codewords is

s o (K} MO _ 00
w5)™ = 6

4

e Case 5
w(u) = 5. 2 error events with BIFs with weights of 2 and 3 in both encoders.

The average number of such codewords is

K>)N2,2N2,3@((12{)) O(K*)

2 & T eE)

N1,2N1,3@(<
5

These examples help clarify the meaning of the following lemma from [4]. In the
lemma S; and S, refer to the paths taken in the first and second encoder of a turbo

code respectively.

Lemma 1 Consider a turbo code based on two RSC encoders and a random inter-
leaver of length K. Assume that the first encoder is forced back to the all-zero state.
The contribution to the distance spectrum of the turbo code of two incorrect paths Sy
and Sy with the same information sequence weight, averaged over all random inter-

leavers of length K, converges to a nonzero constant as K — oo, if and only if
1. Sy leaves the second encoder in the all-zero state;
2. 51 and Sy contain the same number of error events;
3. each error event in S; and Ss is caused by a weight-2 BIF.

In all other cases, the contribution goes to zero as K — oo.

What the lemma states is that only sequences with the same number of error
events in both encoders caused by weight-2 basic input fragments will exist in almost
every turbo code. The minimum turbo codeword weight in such a case has to be

larger than or equal to

Wmin,s = s(wrlnin,Z + wrznin,Z +2), (4.29)

04

where wp,in,s denotes the minimum codeweight that can occur when S; and S; both
have s error events and wfnm,z stands for the minimum parity weight produced by a
BIF of weight-2 in the i encoder. The method proposed in this study cannot detect
these sequences. The more error events occur, the larger the minimum codeweight is.
So, only events with s = 2 is of interest. Therefore, one way to tackle this problem
is checking the superpositions of any two weight-2 input sequences containing a BIF.
This is an operation of complexity ©(K?) and might not be preferred to simulations
in most settings. Another approach is to use better component codes with higher
Win,s values. We will discuss the limitations of the proposed algorithm as it stands
in the rest of this section.

In the case that weights of the dominant terms in the weight enumerator estimate
from the proposed algorithm are below wp,;, 2, the error rate estimate is not affected
much. Otherwise it is quite likely that the algorithm misses some of the dominant
terms. This may affect only the multiplicities in some cases and both the multiplicities
and the distance values in others. Therefore this is a limitation for the use of the
proposed method. We will provide two examples both with comparably large block
lengths (K = 4096). For smaller block lengths there is not much room for the
interleavers to avoid small weight codewords stemming from single error events and
thus the proposed method performs quite well.

The simulation results and error floor estimations for two different symmetric
turbo codes with specific S-random interleavers are plotted in Figures 4.9 and 4.10.

The memory-2 and memory-4 codes have the generator matrices [1, %] and

[1 1+D+D3+D*

,m] respectively. The turbo code minimum distance estimate is 20

for the memory-2 code case. This code has w2 = 20. As clearly seen in Fig.
4.9, the proposed method underestimates the dominant terms in the case of the 2-
memory code. As observed in Fig. 4.10, the proposed method estimates the minimum
distance for the turbo code as 16 where the memory-4 code has Wy, 2 = 20. The

missed codewords do not affect the error floor estimate significantly as argued herein.

35

= .
o R
~ 2T 3x
o S R N
~ <~ T~
—4 ~ - ~ S
10 T T e .
< I8x 3
= R
T ~Tx
~ \\§§
NG ~> %
LTS INg
10° S T y
~ N 3
e RN E
> <N\
~
CTRING
~ ~
6 ~ \\\
— ~ ~
107} T AN 3
~ N
>~ ~
O
-
10_7 I I L 1 I
0 0.5 1 1.5 2 2.5 3

Eb/N0

Figure 4.9: Comparison of the error rate approximation and simulated error rates

of a symmetric turbo code of the memory-2 component code with generator matrix

2
[1, 7 55225] (K = 4096.)

4.8 Conclusions

Based on the convergence characteristics classification of turbo codes, we have
provided an approximation to the bit error probability and packet error probability
in the error floor region. The proposed method obtains an approximation to the
dominant terms of the distance spectrum of a turbo code with a given interleaver.
The error rate approximations are very close to the simulation results as presented in
Section 4.6. We also presented some results showing the limitations of the proposed
algorithm. Special attention should be paid especially when working on larger block
lengths. The approach of this method can be applied to any generalized form of turbo

codes.

56

Figure 4.10: Comparison of the error rate approximation and simulated error rates

of a symmetric turbo code of the memory-2 component code with generator matrix

3 4
L, 5o pe) (K = 4096.)

a7

CHAPTER 5

Modelling the Component Decoders

5.1 Introduction

Iterative decoding is a relatively easy to implement suboptimal solution to MAP
decoding for turbo codes as explained in Chapter 2. Multiple component decoders
are used inside an iterative decoder. In recent years, there has been considerable
research concentrated on behavior of component decoders of a turbo decoder. When
investigated independently from other component decoders, the isolated behavior of
a component decoder help model the turbo decoder based on the component decoders
[6,7]. In this chapter, we will investigate some properties of component decoders that
allow us to understand how the component codes work together. Convolutional codes
and MAP decoding will be considered for each component code. Extension to other
decoders is possible.

The density evolution method was proposed in [5] to understand and predict the
large block length behavior of iterative decoding of low-density parity-check (LDPC)
codes. LDPC codes and iterative decoding techniques were first introduced by Gal-
lager [1]. However, these codes were largely neglected until iterative techniques were
popular. Density evolution provides a tool to find a SNR decoding threshold for an
infinitely long LDPC code. For SNRs larger than the decoding threshold, arbitrarily
small error probabilities are possible with the code when the block length becomes

larger and larger. Density evolution is based on tracking the probability densities of

38

the soft information passed between modules of the iterative decoder. In [29], the
method was greatly simplified using a Gaussian approximation to the soft informa-
tion.

The Gaussian approximation to extrinsic information was employed to analyze
turbo decoding for large block lengths in [7]. The existence of a convergence thresh-
old for infinitely long block lengths was proven by regarding the component decoders
as SNR transformers. The same approach was taken by ten Brink in [6] where he
proposed a method to find convergence thresholds using a different measure to char-
acterize the information generated by the decoders.

Current literature on analysis of iterative decoding concentrates on asymptotic
behavior, i.e.,very large block lengths. However, a wide range of applications man-
date the use of small to medium-size block lengths in practice. In this chapter, we will
first describe methods to characterize the component decoders used in an iterative
decoder. We will concentrate on the extrinsic information produced in a component
decoder and investigate some of its properties. We will present a probabilistic model
for the component decoders in the case of small to medium-size block lengths. Fi-
nite block lengths cause random variation in the properties of component decoders.
The probabilistic model accurately characterizes this variation in component decoder
behavior. The probabilistic model of component decoders developed in this chapter

will later be used to examine the iterative decoding process in Chapter 6.

5.2 Decoding Thresholds at Infinite Block Lengths

5.2.1 Density Evolution Method

LDPC codes were introduced by Gallager in [1]. He states in [1] that the aim
of employing LDPC codes is to provide an approach to simple decoding for long
constraint codes. The definition below is almost the same as the original. Extensions

of this definition (irregular LDPC) have been pursued in [13] and references therein.
Definition 2 A regular (n, j, k) low-density parity-check code is a code of block length

39

n with a sparse parity-check matrix, where each column contains a small fized number

j of 1’s and each row contains a small fixed number k of 1’s.

This definition suggests that LDPC codes are defined based on their parity-check
matrices rather than generator matrices as is the case for many other classes of codes.
This construction from the parity-check matrix actually results in a potentially more
difficult encoding structure. We will not consider the encoding problem since it is not
related to this study.

As there are very few 1’s in the parity-check matrix of a LDPC code, parity
checks can be performed with very low computational complexity. This fact enables
the possibility of finding easy-to-implement optimal /suboptimal decoding strategies.
Decoding algorithms for LDPC codes are easy to conceptualize with the graph rep-

resentation of parity-check matrices. Let’s consider the following parity-check matrix

111100
H=|110011]. (5.1)
001111

Each row corresponds to a parity check equation and each parity check equation
can be visualized as a node of a graph. The variables of the code will be matched with
the parity check nodes based on H. Fig. 5.1 shows the graph representation for the H
matrix in (5.1). The nodes on the left are called variable (v) nodes (v, k =1,...,n)
and they represent the bits of the codeword. The nodes on the right represent the
parity check equations and are called check (c¢) nodes.

Without loss of generality, we will assume each variable node is associated with
a random variable vz, k = 1,...,n that is either 0 or 1. We will often refer to a
node when we are actually speaking of its corresponding random variable. A check
node’s random variable is 0 if its corresponding parity check equation is satisfied and
1 otherwise. A channel signal z; = /E,(—1)% is transmitted for each variable node

vg as in our general setting. The received signal corresponding to zy is

Yy =T +np,k=1,...,n (5.2)

60

v C

Figure 5.1: Graph representation of a (6,2,4) LDPC code.

where ny is the AWGN noise term (see Section 2.2). The decoding problem is esti-
mating what the transmitted v, k = 1,...,n values are based on all the observation
(ye, k=1,...,m.)

We will now provide a decoding algorithm, called belief propagation, which ex-
changes soft information between the variable and check nodes. There is a good
discussion of this algorithm’s assumptions and general setting and other decoding al-
gorithms in [5]. In belief propagation, a continuous message alphabet is used for the
soft information that is passed between the nodes. This information is roughly the a

posterior: probability for the node’s random variable from which it is originating. The

a=0)
a=1)

message A’ passed from node a to node b is the natural logarithm of IIZE , where
P(a = 0) has been used liberally to denote the likelihood of a at a given iteration.
The new likelihood values are obtained based on the observation and the information
produced in the previous iteration of the decoding algorithm. The message passed

from a variable node vy to a check node ¢;, to which v, is connected, is obtained by

A=Ay, 4+) AR, (5.3)

ceSec(vy),c#c;

61

where S.(v) is the set of check nodes to which vy, is connected and A, is log %.

In the very first update A7 has the initial value O for every c and v.

The message from a check node ¢, to a linked variable node v; is later updated by

: Ag
tanh 2k = H tanh 5 (5.4)

veSy (ck),v#v;

where S,(ck) is the set of variables nodes to which ¢ is connected. These updates
are performed repetitively until some criterion is met.

Richardson and Urbanke presented a general method called “density evolution” to
determine the decoding threshold of a LDPC code in [5]. Density evolution method
regards each message between the nodes as a random variable. It keeps track of the
probability densities of these messages. From (5.3) and (5.4), the probability densities
of the random variables can be kept track of analytically. The only input to the mes-
sage passing algorithm is A,, whose statistics change with SNR. The minimum SNR

value that enables decoding without any error is declared as the decoding threshold.

5.2.2 A Gaussian Approximation for Belief Propagation

As explained in the last subsection, the density evolution method provides a decod-
ing threshold above which reliable communication is possible. However, the method
of finding the threshold is not very practical since the probability densities of the
information sent between the nodes should be recorded all the time. A Gaussian
approximation offers a simple solution to representing the probability density since a
Gaussian random variable can be characterized completely by its mean and variance.

It is empirically found that message densities resemble Gaussian densities [29,30].

Var(Ay,)

It is further assumed in [29] that the ratio TeamA.
k

= 2 is preserved for all the
exchanged messages. This property will be explained in Section 5.2.4. This effectively
converts an infinite dimensional problem (keeping track of the probability densities)
to a one-dimensional problem (keeping track of only the mean). Decoding thresholds

obtained with this approximation are reportedly very close to the exact thresholds

obtained by the density evolution method.

62

5.2.3 A Gaussian Approximation for Turbo Decoding

The density evolution methodology can also be applied to turbo decoding since a
turbo decoder is also an iterative decoder. In most LDPC algorithms there are simple
analytical expressions, such as (5.3) and (5.4), through which the probability densities
of the messages between nodes can be obtained. However, the MAP decoder for
convolutional codes (as described in Chapter 2) does not have such simple analytical
expressions to represent the extrinsic information it produces. This mandates a focus
on individual MAP decoders to analyze the iterative decoding.

The density evolution method was applied to small memory convolutional codes
[16]. In general, direct application of density evolution without the Gaussian approx-
imation is difficult. The Gaussian approximation to the extrinsic information has
been widely applied [6,7,16]. It has been observed early that extrinsic information in
the log-domain has a Gaussian-like distribution [2]. The validity of Gaussian approxi-
mation was demonstrated empirically in [6,7]. We will simply use this approximation
and related assumptions in the literature without much elaboration.

From this point on we will denote the sequence of observations by {y;,i =1,..., N}
and the a priori (or extrinsic, depending on whether the input or output of a decoder
is considered) information for any iteration i by {ei,k = 1,..., K}, where N is the
number of coded bits and K is the number of data bits. From (2.18) the extrinsic

information at the 7** iteration in the log-domain is
P(u, =0 Yo YN, e e L ettt Uk | up =0 -
(ue =0 y1, 92, ... yn, €1, € K), S L)_671, (5.5)

et =1In : = : L
* P(uk:]-|yl;y27'";yN;ezlilaegilv"'anKTI) f(yuk|uk:1) k

where uy, is the k** data bit and y“* is the observation corresponding to u;. In fact, it
is of interest to represent how well the extrinsic information predicts the transmitted

data. Define a new sequence related to e by
2h = (—1)"*el. (5.6)
We say wuy is correctly estimated if u; is 0 and e is positive or u is 1 and e is

63

negative. The new variable 2 is defined in order to account for the likelihood of a
correct decoding of ug. We will refer to zi’s as extrinsic information from this point
on.

The Gaussian approximation for the case of turbo codes can be summarized as

follows.

1. An extrinsic information sequence {z%,k = 1,..., K} for any iteration i is Gaus-

sian, wide-sense stationary (WSS) and ergodic.

2. {yi,i=1,..., N} {z,k=1,...,K},{z3,k =1,...,K},... are jointly Gaus-
sian and uncorrelated in the sense that any finite collection of y; and zi are

jointly Gaussian and uncorrelated.

The first assumption can be justified by noting that the extrinsic information is the
sum of many terms as seen in (2.14) and by the central limit theorem its distribution
should approach that of a Gaussian random variable. If the bits close to the beginning
and the end of a block are disregarded, it can be said that the decoder neither favors
nor disfavors any of the data bits. All the observations and a prior: information
around any bit have the same statistics. We provide Fig. 5.2 as an evidence for
the wide-sense stationarity of extrinsic information sequences. Seen in the figure are
estimates of mean and covariance statistics over 5000 extrinsic information sequences.
Block length of each sequence was chosen to be 600. The code is the memory-2 RSC
code with the generator matrix [1, %]. The SNR is E;/Ny = —4.27dB and the
extrinsic info sequences are all zeros which correspond to the first iteration of a turbo
decoder. In Fig. 5.2a the sample mean 7, (corresponding to the expected value of
Zy, which is the random variable for realizations of z;) over 5000 sequences is shown
for each k. The 95% confidence intervals are obtained by assuming the samples are
normally distributed with unknown variance [31]. The mean over all the 600 x 5000
samples are also drawn with a solid line and the confidence intervals are plotted
around it. Excluding around 10 bits both from the beginning and end of a block, we

almost have the same mean within the confidence intervals for any k.

64

To estimate the covariance, an unbiased estimate of the covariance is obtained by

5000
1

COV(Zk, Zm) = m
i=1

(zi,kzi,m - Z_kZ_m)a (5.7)
where z; ; is the extrinsic information corresponding to the ;™ bit in the i sequence.
The contour map of the covariance estimate is plotted in Fig. 5.2b. The covariance
estimates are nonzero when |k — m| is smaller than around 20 and essentially zero
otherwise. As seen in the covariance plot, the covariance between Z; and Z;.; is
nearly independent of k. Hence, the extrinsic information sequence can be closely
approximated by a WSS random process. Although the plot is for the extrinsic
information corresponding to the first iteration of a turbo decoder, similar results
hold for a priori extrinsic information sequences generated at later iterations.

The second assumption can partly be derived from the first one since extrinsic
information of one decoder will be fed as the a priori information of the other after
interleaving or deinterleaving. The extrinsic information is obtained by omitting
the channel observation and a priori information in (5.5). The uncorrelatedness in
the second assumption follows from this property. The use of almost any randomly
generated interleaver ensures that the uncorrelatedness holds. This is the prime reason
why any realization of a random interleaver exhibits essentially the same performance
as any other realization in the waterfall region [32]. Thus, all the results obtained
in this chapter are independent of the specific interleaver used in the turbo code
construction. Again the ratio of the variance and the mean of the extrinsic information
(in log domain) will be assumed to be 2 since the distribution of a log-likelihood based
on Gaussian distributions should have this property [6].

The MAP decoder in the turbo decoding algorithm can be regarded as a device
which produces extrinsic information from the given observation and a prior: infor-
mation. It transforms the statistics of the inputs to that of the output. Various
parameters can be used to keep track of the iterative process [6,7,16]. In [6] the mu-
tual information between the extrinsic information and transmitted data was shown

to provide better results with respect to obtaining decoding thresholds compared to

65

—— sample means
— - overall mean
257 — — 95% confidence intervals B

00 1 60 260 3(|20 460 560 600
(a)
Contour Map of Covariance Estimate
600 — ™
550}
500 |
450
400
350
m 300
250
200
150 [
100
50
5‘0 TE)O 150 260 250 360 350 460 ..45‘0 560 55")0. 600
k

(b)

Figure 5.2: Mean and covariance estimates for extrinsic information.

66

other considered parameters. We will also base our study on mutual information.

5.2.4 Characterization of Component Decoders

Based on the discrete-time signal model explained in Section 2.2, the log-likelihood

ratio for any observation is a random variable as defined in the following sense:

L, can be simplified to

L= B, By, (5.9

In that case,

ElLyle] = (=15 (5.10)
Var(Lyle) = 8;:1:. (5.11)

Then, L, has the following property:

Var(Lylc) Var(Lylc)

EIL (-0 El()Ld > (5:12)

It is assumed that extrinsic information also has this property and it is preserved
throughout the iterative process.

We regard an extrinsic information sequence {ei,k = 1,..., K} as a realization
of a random sequence {E!,k = 1,...,K}. We will define the mutual information
between the extrinsic information E¢ and the transmitted bit Uy as in [6]:

fE',i\Uk (elu)
I(EL,Uy) = Z / fei v, (u, €) log, S o fE,i,Uk(u'ae)de’ (5.13)

ue{0,1} %

for any bit location k. The data Uy is equally likely to be 0 or 1. The correspond-

67

ing extrinsic information E} is Gaussian when conditioned on U, by the Gaussian
approximation explained in Section 5.2.3. In that case, I(E:, Ug) can be written in
the following way by using the definition {Z! = (—1)“*E}} and the variance-to-mean

ratio assumption explained in the previous paragraph:

I(ELU) =1— / N f2(2) logy (1 + %) dz. (5.14)

This result suggests that the random variable Z} can be used instead of E} to obtain
the mutual information between the produced extrinsic information and the trans-
mitted data. The same result holds for a prior: information. In the remainder of
the paper we will refer to the sequence {Z},k =1,..., K} and its realizations as the
extrinsic information with an abuse of notation.

There is currently no analytical formula to derive the probability density function
fz; (2) of the extrinsic information at an iteration ¢ for any decoder of a convolutional
code. However, we can run Monte Carlo simulations of a decoder with appropriate
inputs and investigate the produced extrinsic information sequences. The superscript
¢ from the extrinsic information random sequences will be dropped since we will
focus on conditional statistics of the extrinsic information given an input rather than
unconditional statistics at a given iteration ¢. In other words, we examine the input-
output relationship of a given decoder.

The definition below will be useful in representing the mutual information.

Definition 3 The information content function I(a) for a given sequence {ay} is

defined as
1

K

I(a) = e ;[1 — log,(1 + exp(—ay,))]. (5.15)
In the context of extrinsic information this function can be considered as quantifying
the reliability of a sequence or the information content of a sequence. For example,
if ap = 0 for all k, then there is no information in the sequence {a4} and I(«) equals

0. In the next section, we will show using the properties in Appendix B that if

Z = {Zy} then I(Z) approaches a normally distributed random variable as K — oo.

68

Furthermore, since the sequence {Z;} is assumed to be ergodic, I(Z) converges to
I(E%,Uy) (for any k since {Z} is stationary) in the mean square sense [33] such that

lim E|I(Z) — I(Ey, Ug)|* = 0. (5.16)

K—o00

In essence, this function captures the information content in a sequence. Hence, we
will use the parameter I(Z) to track the progress of the iterative process. Note that
interleaving a sequence does not change the information inherent in a sequence. This
property is also reflected with the information content formulation.

When the information content is used as the parameter to track the extrinsic
information progress, a decoder transforms an a priori information sequence {Z¢}
with I(Z®) = I, into an extrinsic information sequence {Zf} with I(Z°) = L.
For shorter notation, we will denote I(Z*) of the a priori information sequence by
I(A) and I(Z°) of the extrinsic information sequence by I(E) . This characterization
of a component decoder can be effectively done by using as the input the a prior:
information with different I(A) and channel observations at different SNR values.

Based on this, an input/output (IO) relation as in Fig. 5.3 can be obtained.

0.9
0.8

0.7+

0.4

. ES/N =-4.77dB
S

0.3
_ _ EJN =-4.52dB

0
0
_ ES/N0=—4.27dB
ES/N0=—4.02dB

0.2

0.1

Figure 5.3: Input/output relation of a MAP decoder at different SNR values. [;,, and
I, are I(A) and I(E) respectively.

69

The IO relation provides the I,,; value conditioned on an input [;, value. Different
component decoders have different IO relations. Note that increasing SNR shifts the
IO relation in the upward direction as decoders produce more reliable information
at higher SNRs. When the progress of a turbo decoder is investigated, the extrinsic
information transfer (EXIT) chart method [6] is an effective tool. This method will
be explained in detail in Chapter 6. The IO relations of both decoders are plotted on
an EXIT chart. The first decoder’s IO relation is plotted with x and y axes holding
the ;1 and I,,:1 respectively. The second decoder’s IO relation is plotted with y
and z axes holding the I, o and I, 2 respectively. This enables a nice visualization
of the extrinsic information progress in a turbo decoder. Fig. 5.4 gives an example
of an EXIT chart and progress of extrinsic information.

1c
09t

57
i 37
L

0.4

r Iin,2

out,

1

0.3

Y

0.24

0.1

0 1 1 1 1 1 1 1 1 1 J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iin,] 4 Iout,Z

Figure 5.4: An EXIT chart and progress of extrinsic information.

In Fig. 5.4, since the component decoders used are the same, the IO relations are
symmetric. The two curves do not intersect before I;,, = I,,; = 1 at this SNR value
for which the IO relation is shown. In this case, the progress of extrinsic information
continues until almost all the bits (excluding the errors due to ML-decoding errors) are
decoded correctly (I,,; = 1). These two curves might intersect before I;;, = I, = 1

at small SNR values for which the extrinsic information cannot progress beyond some

70

point. The lowest SNR value at which these two curves do not intersect marks the
decoding threshold below which the turbo decoder cannot perform well. An extension
of this idea will be made use of in the next chapter in order to obtain an approximation

to the probability of decoding failure for iterative decoders.

5.3 The Nature of Extrinsic Information Sequence

As pointed out before, the extrinsic information sequence {z;} can be visualized
as a length-K realization from a Gaussian source. We will denote by Z and Z; the
corresponding random vector and variables respectively. We will make use of the
WSS assumption and obtain some properties for the sequence of variables in 7.

We will define the covariance function for this WSS sequence by

In order to find covariance function of the extrinsic information from a component
decoder, we simulate large packets (K = 100,000) and obtain an estimate of K (m)

by the unbiased auto-covariance estimator [33]

K—m K K

Ry (m) = { w1 St (nim = % Tias) (20— ki) om20

R'z(—m) ,m<0
(5.18)

The choice of code is a memory-3 code with generator matrix
D?+ D?

=Ll 5.19
Loy oo (5.19)

We evaluate K z(m) for this code’s MAP decoder at an arbitrary SNR value with two
arbitrary I;, values.

In Figures 5.5 and 5.6, the covariance function estimates from 4 different packets
are plotted with two different input information values. The same properties are

observed in both figures. First, no matter what the channel observation and a prior:

71

25 T T

packet 1
— — packet 2

packet 3
—— packet 4

_05 Il Il Il Il Il Il Il Il Il
-50 -40 -30 -20 -10 0 10 20 30 40 50

Figure 5.5: Estimates of covariance function Kz(m) for a memory-3 RSC code when
E;/Ny = —4.17dB and I;,, = 0.

72

packet 1
packet 2
— packet 3 .
packet 4

10 20 30 40 50

Figure 5.6: Estimates of covariance function Kz(m) for a memory-3 RSC code when
E;/Ny = —4.17dB and I;, = 0.5.

73

information realizations are the covariance estimate is almost the same. Second, the
shape of the covariance function is the same for both input information values: it
is nonzero in some region and then zero for the rest. The size of the region where
the covariance function is zero does not depend on the block length K. In the case
of finite number of samples, a statistic obtained from one realization may be quite
different than the statistic obtained from another one. Thus, a sufficiently large block
length should be picked in order to suppress the effects of finite number of samples.
A block length of K = 100,000 is sufficient in estimating the covariance function in
this case.

By testing many other codes, SNR and I;, values we have observed that this
structure of the covariance function is typical for MAP decoders. This is actually not
a surprise since the MAP decoder obtains the likelihood of a bit by averaging (see
Section 2.4 and Appendix A). Averaging makes the extrinsic information of the bits
close to each other correlated. The structure of the covariance function implies that
the correlation between the extrinsic information of two bits dies off quickly when
the two bits are separated further from each other. When the covariance between the
extrinsic information of two bits is zero, then the extrinsic information corresponding
to these bits become independent under the Gaussian approximation. The properties
of information content function will be investigated based on these findings in the

next section.

5.4 Information Content Function

The information content function for the extrinsic information sequence {Z;} is

written as: .
1
(7)== ;[1 — logy(1 + exp(—Z))]. (5.20)
Define a new random variable
T, =1 —logy(1 + exp(—Zx)) = g(Zy). (5.21)

74

The extrinsic information sequence {Z;} is m-dependent and stationary as defined
and proved in Appendix B. Since g(z) = 1 —log,(1 + exp(—z)) is a strictly monoton-
ically increasing function, {7} is also stationary and m-dependent from Lemmas 4
and 5 in Appendix B. We will assume that {7} } is also ergodic. By definition, I(Z)
is the sample mean of the sequence {T}}. By showing that the following properties
of {T}} hold, we will prove that I(Z) is normally distributed following Hoeffding-
Robbins Theorem in Appendix B.

Since T}, is a function of Zj, the mean and covariance of {T}} can be obtained
from {Z;}. But, when finding the mean and variance of I(Z), we will directly use
{T%} in practice. Thus, we will turn to empirical results in order to show that the
mean and variance of the sample mean requirements in Hoeffding-Robbins Theorem

hold.

e Each random variable in the sequence has to have the same finite mean. As
{T}} is stationary, E[T;|’s are all equal for all i. By the ergodicity assumption,
we can find E[T;] for a very large packet. Below are the mean values found by
sample averaging for 5 different packets of length 1,000,000. The same code as
in the previous section is used. The SNR is —4.17dB and [;;, = 0. The averages
are almost the same. This result is typical for any MAP decoder, SNR, and I,

value and thus suggests that E[T;] = ¢ for any ¢ and some ¢ < 0.

packet # | sample average
1 0.244297
2 0.246143
3 0.246585
4 0.245607
5 0.245837

e The covariance function will be found using the same procedure employed in the
previous section. For an easier comparison, the plotted covariance functions are

for the exact same cases as Figures 5.5 and 5.5. As clearly seen in the Figures

75

5.7 and 5.8, the covariance function has the dying off property again. That is,

o2 ,5=0
Kr(m) = (5.22)
0 ,|s| >m.

For such a covariance function, Y ;o Kr(7) is convergent. By Lemma 2 in
Appendix B, the expected value of the sample mean requirement of Hoeffding-

Robbins Theorem is satisfied.

0.6 T T T T T
‘ ‘ ‘ ‘ — - packet 1
packet 2
0.5F —— packet 3 |
— — packet 4

-0.1 i i i i i

-30 -20 -10 0 10 20 30

Figure 5.7: Estimates of covariance function Kz(m) for a memory-3 RSC code when
E,/N, = —4.17dB and I;,, = 0.

e The third requirement is that E|T;|**? is bounded.

o0

BILE = [- log(1+ e)tz e)ds (5.23)
0

= [T ton e N a@de+ [(opi+e) - 1) 0

— 00

76

0.7 T T

— — packet 1
: : ; -— - packet 2
06F e R | packet3 |

— packet 4

0.5
0.4
Kt 0.3
0.2

0.1

-30 -20 -10 0 10 20 30

Figure 5.8: Estimates of covariance function Kz(m) for a memory-3 RSC code when
E,/Ny, = —4.17dB and I;,, = 0.5.

7

For z > 0, g(z) = 1 —logy(1 + e *) < 1. Also, log,(2e™®) > log,(1 + e~ *) for
x < 0. Then

E|T|* < 1+/_ (logy(2e™) — 1)¥ f.(z)dx (5.24)

INA
—_
I
H
—
B,
[\
®
=
|
—_
=
~
0
=
8

[l
—
|
|\O
|
=N
IR
ol
N
~~
8
N
<Y
D

INA
—
|
—
3
5lg
M=
Eal
N
&

< M,

since E|Z;|* < M for any 1.

Based on the assumption that {Z;} is Gaussian and wide sense stationary, {7}}
is an m-dependent sequence and has the above properties. Then, the sample mean
of {T}.} (I(Z)) is normally distributed with a fixed mean and variance by Hoeffding-
Robbins Theorem. This will be the basis of probabilistic modelling of the MAP

decoder in the next section.

5.5 Probabilistic Model of the MAP Decoder

In this section we will concentrate on the behavior of individual MAP decoders
that exist within a turbo decoder. We will make use of the properties obtained in
previous sections. Only convolutional codes and their MAP decoders will be consid-
ered and the results can be extended to other types of codes and decoders. First, we
will provide experimental results for the finite length case. By using the aforemen-
tioned properties of information content function, we will estimate the finite-length
behavior. At roughly the same time this study was being conducted, Lee and Blahut
independently articulated the importance of MAP decoder’s extrinsic information in

the case of finite length turbo decoding in [34]. Both approaches are strikingly similar

78

in regard to the focus on the extrinsic information generated in the MAP decoder.

We will comment on the similarities and differences of our work to [34] as appropriate.

5.5.1 Behavior of the MAP Decoder in the Finite Length

Case

As mentioned in Section 5.2, the MAP decoder is a device that transforms the
inputs (channel observation and a priori information) to the extrinsic information
as its output. This device has been modelled in [6,7] as a probabilistic one which
transforms the statistics of the inputs. All the previous research on iterative decoding
are aimed at infinite block lengths which is deemed as asymptotic performance. This
approach naturally leads to the analysis of the individual MAP decoders with quite
large block lengths. In the asymptotic case, the produced extrinsic information is re-
garded as a random vector with fixed parameters. We choose the information content
as developed in the last section as the choice of parameter to investigate, but similar
arguments hold for other parameters. This fixed parameter argument translates to
the following statement: if an a priori information sequence with I(A) = I, is fed
into the decoder, the generated extrinsic information always has a fixed I(E) = I,y
for fixed SNR no matter what the actual realizations of a prior: information, noise or
data realizations happen to be. In this case, the IO relation of the decoder is said to
be deterministic.

In case of small-to-medium-size block lengths, the decoder’s IO relation does not
maintain the deterministic property. Even if the same statistics of the observation,
data and a prior: information are supplied to a MAP decoder, I,,; differs by vary-
ing the realizations. We will observe this phenomenon by checking the I, for the
extrinsic information with the same input statistics but with differing realizations

using the memory-2 component code with generator matrix [1 . In order to

1+D?]
> 1+D+D?
generate an a priori information sequence with a given mutual information I;,, a

Gaussian sequence {zj,k = 1,..., K} with some mean py corresponding to I, has

79

to be generated through the following rewrite of (5.14)

> exp(—(2 — pz)*/4pz) -
Imzl—/ log,(1+ e %)dz 5.25
- \/m g2() ()

with the assumption that Z is normally distributed with mean @z and variance 2u.

With the Monte Carlo simulation principle, the above equation corresponds to

K
1 —z
Iip=1-— EZIng(l‘i‘e *), (5.26)
k=1
where {zz,k = 1,..., K} are samples from an uncorrelated Gaussian source with

mean pz and variance 2pz. The equations (5.25) and (5.26) are equivalent when K
is large. Using a large value for K the relation between pz and I, can be found. For
a desired value of I;;,, the sequence {2,k = 1,..., K} is obtained from the Gaussian
source using the corresponding value of . The sequence {ex,k =1,..., K} can be
obtained from {z;} as specified before and input to the decoder!.

Fig. 5.9 depicts the histogram of I,,,; for a large number of packets. 50000 different
packets of data block length 512 were decoded wherein the data, channel and a
priori information realizations are randomized. The data is assumed to be equally
likely. The channel realizations are for a fixed SNR. The a priori information is
generated from an uncorrelated Gaussian source with information content mean I,.
The histogram of the extrinsic information’s I, is plotted for the input sequences
with mutual information close to the intended I;,. The simulation results of two
different I;, values are plotted in the figure. In the first iteration of a turbo decoder,
the a priori information is a sequence of zeros which corresponds to I, = 0. For
that case, all 50000 packets have been shown in the histogram. For nonzero values of
I;,,, we only show the histogram for the packets with I;, close to the intended mutual
information. The number of packets for I;,, within 0.01 for the case of intended mutual

information of 0.6 is around 11,000 in our experiment. Fig. 5.10 is the same snapshot

! As shown in the Section 5.4, I}, is also a random variable and not all the sequences obtained in
this way will have mutual information very close to I;,. We will only consider the sequences that
have mutual information within a small neighborhood of the desired I;,, in our plots.

80

]
T
!

(&)]
T
!

of packets (normalized)
w ~
T T
| |

\S]
T
!

0
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

out

1. =0.6
in

of packets (normalized)

Figure 5.9: Mutual information I,,; for each packet and the corresponding normalized
histogram at E;/Ny = —4.77dB which corresponds to E,/Ny = 0dB if the code has
a 1/3 overall rate (The solid line is the probability density function of a Gaussian
random variable normalized with the mean, variance and the total number of packets).

81

at a different SNR value.

As seen in the figures, I(F) for the extrinsic information produced by the MAP
decoder is not fixed for given input statistics. Instead, I(£) has a distribution which
is itself Gaussian-like as predicted in Section 5.4. Similar results have been obtained
in [34] with the aim of providing qualitative explanation of turbo decoding at finite
block lengths. We will assume in the remainder of this study that I(E) is normally
distributed. Although this approximation does not quite hold when the mean of I(E)

is close to 1, it is still a good approximation in most cases.

5.5.2 Estimating /(F)

We showed in previuos sections that [(E) has a normal distribution when the
{Zk} sequence is assumed to be a WSS Gaussian sequence. The experimental data
presented in Section 5.5 supports the normal distribution claim. In this section we
will explain how to obtain estimates of the mean and variance of I(E).

In Section 5.3 it is pointed out that a packet with large block length can pro-
vide good estimates for both the mean and variance of I(E). An arbitrarily chosen

memory-2 code with generator matrix

1+ D+ D?
1+ D2

1,] (5.27)

will be employed to show that these estimates can be obtained even with not so large
block lengths.

The {tx} sequence of the output of a decoder is obtained from the extrinsic in-
formation sequence {z} by tx = 1 — log,(1 + e **). The sample mean of the {¢;}
sequence for a large block length is an estimate of the expected value of I(E). We

will denote this expected value by uz and
1

In addition, an estimate Kr(7) of the covariance function K7(7) can be obtained from

82

IN

\V]

% of packets (normalized)
w

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

out

1. =0.6
in

N

N

% of packets (normalized)
w

04 045 05 055 06 065 07 075 08 08 09

Figure 5.10: Mutual information I,,; for each packet and the corresponding normal-
ized histogram at F;/Ny = —4.07dB which corresponds to E,/Ny = 0.7dB if the code
has a 1/3 overall rate(The solid line is the probability density function of a Gaus-
sian random variable normalized with the mean, variance and the total number of
packets).

83

the same packet by the unbiased estimator defined in Section 5.3. The variance of

I(E) will be denoted as 0% and is found by
1 A
2 .
oh = 2 2 Kr(i), (5.29)

where s is the maximum value where K7(s) is nonzero. Again, I(E) for the extrinsic
information produced by the MAP decoder is not fixed for given input statistics.
Rather, I(E) is a random variable normally distributed with mean pz and variance
o2. For infinitely large block lengths, 02 goes to zero. This is the reason why
there is no variation in the information content of infinitely long extrinsic information
sequences as previously studied in [6,7,16].

In Fig. 5.11 there are two plots: one for the mean and one for the standard devia-
tion of I(E). The lines are obtained by running decoders with many different packets
of K =512 at selected I;,, values. The solid line is the estimate of the parameter cor-
responding to the plot. The dashed lines are the 95% confidence intervals (obtained
for unknown variance [31]) for the estimates. The '+’ markers are estimates based
on one long packet of length 100,000. Fig. 5.12 shows the same plots at another
SNR value. The one-packet estimates are usually within 95% intervals in this case for
both the mean and standard deviation values. Equivalent results hold for other codes
and SNR values as well. If one needs better estimates, using larger block lengths is
always an option. Based on this approach, we arrive at an IO relation represented in
the error bar notation as in Fig. 5.13. With the error bar notation, the mean of the
output /(E) conditioned on the input I(A) = I;,, values is plotted with a line. The
standard deviation of I(E) conditioned on I(A) = I;;, is shown with the bars around

the mean value.

5.6 Conclusions

We have studied the input-output relation of component codes of an iterative de-

coder by focusing on the properties of extrinsic information. We developed a method

84

0.09

0.08

0.05

0.04

0.03 ‘
0 0.1

Figure 5.11

0.2 0.3

: Estimates

0.4

of pr

0.5 0.6 0.7 0.8 0.9

and or at E/Ny = —4.27dB.

85

M1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02 | | |

Figure 5.12: Estimates

0.4 0.5 0.6 0.7 0.8 0.9

of ur and o7 at E;/Ny = —3.27dB.

86

Iout 1
01f R R R SRR -
% 0.2 0.4 . 0.6 08 1
in
]
0.9¢
0.8¢
0.7¢
0.67
L, 0-5F
04f L S PR e SR
0.3F
0.2F
0.1F S SRR o
% 0.2 0.4 , 0.6 0.8 1
in

Figure 5.13: IO relation for a memory-2 code at E;/Ny = —4.27db (top) and E;/Ny =
—3.27dB (bottom).

87

to model the behavior of a component MAP decoder in the finite block length case.
Any decoder and concatenation scheme can be studied in a similar way. This charac-
terization of the finite-length behavior will be utilized in the next chapter to predict

the performance of a turbo decoder in the region where decoding failures dominate.

88

CHAPTER 6

EXIT Chart Method to Approximate Probability

of Decoding Failure

Properties of component decoders of an iterative decoder were investigated in the
previous chapter. This chapter will be devoted to the application of this knowledge

to the study of decoding failure events in an iterative decoder.

6.1 Introduction

In Chapter 3, decoding failure is defined to be the event that an iterative decoder
does not yield the optimal solution. Decoding failures are the prevalent cause of
incorrect decoding in the waterfall region where the performance of a turbo code
improves rapidly with a small increase in SNR. Performance of turbo codes in the
waterfall region are not affected much by a particular choice of interleaver and the
distance spectrum of the code corresponding to the interleaver [32]. Since the errors
in the waterfall region is dominantly due to decoding failures and the waterfall region
corresponds to low/medium SNR, an approximation to the probability of decoding
failure becomes an approximation to the packet error rate in the low/medium SNR
region.

The extrinsic information transfer (EXIT) chart method was proposed to predict
the performance of turbo codes for the case of infinitely large interleavers in [6]. It

gives a capacity-like decoding threshold for a given code above which zero error rate is

89

possible. It is reported that the use of mutual information in the EXIT chart results
in decoding thresholds that can closely predict the behavior of the iterative decoder.

The probabilistic model of component decoders will be used in EXIT charts to
approximate the probability of decoding failure for the case of finite interleaver sizes.
The iterative decoding has the Markov property that the future (extrinsic information
to be produced) is independent of the past (previous a priori information inputs)
given the present (current a priori information input). A Markov process model will
be defined and employed to obtain an approximation to the probability of decoding
failure.

In Section 6.2 the EXIT chart method will be explained. We will extend the EXIT
chart methodology to the study of turbo decoding for finite block lengths in Section
6.3. Based on the EXIT chart method for finite block lengths, we will develop a
Markov process model to estimate the probability of decoding failure in Section 6.4.

The chapter will be concluded by numerical results in Section 6.5.

6.2 The EXIT Chart Method for Infinitely Large
Block Lengths

As briefly discussed in Chapter 5, the input-output (IO) relations of the com-
ponent decoders are instrumental in obtaining decoding thresholds using the EXIT
chart methodology. The IO relation of a decoder reveals the information content of
extrinsic information (output) conditioned on a given value of information content of
a priori information (input). The IO relations of both component decoders have to
be considered while constructing the chart. The IO relation of the first code’s decoder
(Cy) is plotted on the z —y axes. The IO relation of the second code’s decoder (C?) is
plotted on the y — z axes (swapped coordinates). This enables a stepwise illustration
of the iterative decoding process. The iterations corresponding to C; and Cy are
displayed in the vertical and horizontal directions respectively.

In Fig. 6.1, trajectories of 4 arbitrarily chosen packets are shown. A fixed number

90

of 30 iterations were run in each simulation presented in this section. The code used
in the figure is a symmetric turbo code of a memory-2 code with generator matrix
1 ,lizf;] The block length is taken to be K = 100,000 to mimic the case of
an infinitely large block length. The IO relations of the two component decoders
intersect in the EXIT chart for the specific SNR value of the figure. This implies
that the information I(E) in the extrinsic information sequence should not progress
after the intersection point. That is exactly what is observed in the figure. Fig. 6.2
provides a more detailed picture of the region where the IO relations of the component
decoders intersect. Since K is quite large in this case, the variation in the IO relations
is small. Yet, the randomness predicted for the iterative process in the last chapter
can be observed even at this considerably large value of K. Small differences add up
and thus the trajectories are different.

Fig. 6.3 depicts the trajectories of 4 arbitrary packets of K = 100,000 of the
same code at a higher SNR value. The IO relations of the component decoders do
not intersect at the SNR value of the figure. The progress of I(E) continues until
I(E) is approximately 1 for all packets in that case. Almost all the bits, excluding the
ML-decoding errors, are decoded correctly when I(E) ~ 1. Small differences between
trajectories are present but do not cause any decoding failure.

In order to obtain a rule to determine the decoding threshold, a more general
scenario than the symmetric case has to be taken into account. The IO relations
of two component decoders are identical for symmetric turbo codes. In asymmetric
turbo codes, different component codes are used for turbo code construction. The

component decoders do not necessarily have the same IO relations. Consider the IO

]) and Cy ([1, LDED4DY)) g

relations of two different component codes C; ([1 DD

) 1+D2
in Fig. 6.4. As predicted by the EXIT chart method, the iterative decoder of this
asymmetric code is able to decode all the packets correctly at the SNR value of the
figure. The trajectory of an arbitrarily chosen packet is shown in the figure.

All the results obtained in this section imply that if two IO relation curves do

not intersect on the EXIT chart then correct decoding occurs [6,7]. This statement

91

05 T T T T T
0.45F
041
0.35F
10 relation of C1
0.3 .
/)_/ -
‘;l ooz
5 ;
~ B : / n
§0 25 & oy
~° Preaey §Z23
Z = Y
0.2 BT i : : -
B -/
=7 % 1O relation of C,
0.15(&/// RE b A : ~o: |
_///
/7
01 K |
Y
!
1
0.05F ‘./.// .
W,
O 1 1 Q/I 1 1 1 1 I 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

in, I’ Iout, 2

Figure 6.1: Trajectories of an iterative decoder at E,/Ny = —0.2dB. The lines marked
with ‘0’ and ‘*’ correspond to the IO relations of C; and C5 respectively. The dash-
dotted line shows the o-bands of the IO relations for K = 100, 000.

92

0.4

0.35
1O relation of C1
v/b
_/
0.3 _ P
A ~
7
. 7 P
o 1,77
r . , »/
< / .
P 17 10 relation of C
_ / / / 2
/ /
v
s
/ 1 Il
0.25
0.25 0.3 0.35 0.4

Figure 6.2: Trajectories of an iterative decoder at E,/Ny = —0.2dB. The lines marked
with ‘0’ and “*’ correspond to the IO relations of C; and C5 respectively. The dash-
dotted line shows the o-bands of the IO relations for K = 100, 000.

93

o9 A

08} e .

0.7

'IOreIatiohcr:fVC1 . PZ

o
(e}
T

I’Iin,2

bt
(S}
T

out,

1

0.4

0.3

10 relation of C2
0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iin,l ’Iout,Z

Figure 6.3: Trajectories at E,/Ny = 0.25dB on the same EXIT chart. The lines
marked with ‘o’ and ‘“*’ correspond to the IO relations of C; and C, respectively. The
dash-dotted lines show the o-bands of the IO relations for K = 100, 000.

94

0.9

0.8

0.7 10 relation of C1

03f ="

10 relation of 02

0.2t ¥ s

01 /,%,e .

!
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Iin, r [out,Z

Figure 6.4: Trajectory of a packet at Ej,/Ny = 0.5dB for the asymmetric case. The
lines marked with ‘o’ and ‘“*’ correspond to the IO relations of C; and Cy respectively.

95

corresponds to

I0¢,(z) > I0Z} (z) (6.1)

for any = (except * = 1), where IOc,(-) is the IO relation of the " component
decoder inside the iterative decoder. Let I denote the extrinsic information content
I.: at the k" iteration (I is I,y from the first decoder, I is I,,; from the second
decoder, I3 is I,y again from the first decoder and so on.) Without loss of generality,
assume I; = z for some ¢ and = € [0,1]. Since the IO relation does not have any
variance in the case of infinitely large block lengths, I;1; = IO¢,(x) for the next
iteration. For the previous iteration, I;_; = 1'0521(3:). In case of correct decoding,
I0¢,(z) > I0Z) () for all . Then, I;;; > I;_;. Hence, the intersection statement

can be translated into: “Iterative decoding does not have a decoding failure if
L2 > I

for all 47 [6]. Although the intersection argument can be equally helpful for the case
of infinitely large block lengths, it does not mean much for the finite length case. In
the finite length case, there is a variation of the IO relation. The rule “I;; 5 > I;” is

very important in that respect.

6.3 EXIT Chart Method for Finite Block Lengths

As it was discussed in detail in Chapter 5, the IO relation of a code is probabilistic.
Although the EXIT chart method cannot be of direct help for finite block lengths, the
basic idea can still be applied. The basic idea is to extract some property from the IO
relations of component decoders that can be used to predict the behavior of iterative
decoding. For the infinite length case, this property is stated as the intersection rule
or “I;1o > I;”. Through experimentation, we will try to decide on such a rule to be
used for finite block lengths that is both practical and has good prediction capability.

In Fig. 6.5, 4 correctly decoded packets which obey the “I;,5 > I;” rule are shown.

An asymmetric turbo code with two different component codes having generator

96

3 4
and [1, LED+D*+D!

T pipi| are used. Two different SNR values are

matrices [1, %]
considered. Most of the correctly decoded packets obey the rule as the packets in this
figure. Fig. 6.6 depicts 4 correctly decoded packets which do not obey the mentioned
rule. In each of the packets’ trajectories there is a tangling point where there is a
decrease in I(E). However, the component decoders recover after a few iterations
and the progress resumes. This case is observed less often compared to the former
case. So, some packets do not obey the rule, yet they are still decoded correctly.

In order to approximate the probability of decoding failure in some way, a rule
similar to “I;;» > I;” is necessary. In the case of incorrect decoding (with regard
to decoding failure, not the ML-decoding errors), the iterative process cannot go
beyond some value of I(E) away from I(F) = 1. It is either stuck at a fixed point
or oscillates around some point. We discussed properties of different convergence
categories with respect to fixed and oscillating points in Chapter 3. Since I(F) is

4

stuck around a point, any rule, be it “I;,y > I;”, “I;,5 > I;,” etc., can detect decoding
failures. Then, the accuracy of a rule is contingent on the frequency that the rule
can predict the correct decoding of a packet. For this purpose, we ran simulations to
follow trajectories and evaluate how frequently some given rules can predict correct
decoding.

In Fig. 6.7 the percentage of correctly packets which obey a particular rule is
plotted as a function of SNR. The rules are k-step rules such that decoding is deemed
correct whenever I(E) keeps on increasing in every k iterations. In general, it should
be expected that rules that can allow more steps permit more failures to recover and
thus should perform better. This is almost what is observed in Fig. 6.7. The 1-step
rule is quite bad. The 2-step rule has a considerable performance improvement in
comparison to the 1-step rule. The 3-step rule performs worse than the 2-step. (The
EXIT chart in Fig. 6.4 clearly shows the case where the 3-step rule will not work
properly.) The 4-step rule is better than the 2-step. However, the difference is not as
striking as the difference between the 1-step rule and the 2-step.

As seen in Fig. 6.7 all the rules perform better as the SNR increases. The 2-step
rule “I; 15 > I;” is the rule by which the decoding threshold for infinitely large block

97

packet 1

packet 2

packet 3 packet 4
1 " " " - 1 " " .
. 56
5 # g
. '/q/ /* /]
AR
vV -«
R R
.)K/ v
.
../>
4
/-
‘ ‘ ‘ ‘ : i’ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6.5: Trajectories of 4 packets of K = 1024 at E,/N, = 0dB (packets 1 and 2)
and 0.5dB (packets 3 and 4). The lines marked with ‘o’ and “*’ correspond to the IO
relations of C; and C; respectively. The dash-dotted lines show the o-bands of the
IO relations for K = 1024.

98

packet 1 packet 2

SSRON

packet 3
1 . —
_/'O
e
| AT
0.8 /,/p:./ ‘/I/ /
o £ //%//
s g .
0.6 /@/‘//‘/ /./
AV TR
: v
P //6.'. - /*/‘
0.4} SVSL e
’ _/O/ ,'_/ a
P 4
/‘O/ N * 7
. — s
029 7| x o
./ //'
‘//9('/
Ty’ ‘ ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6.6: Trajectories of 4 packets of K = 1024 at E,/N, = 0dB (packets 1 and 2)
and 0.5dB (packets 3 and 4). The lines marked with ‘o’ and “*’ correspond to the IO
relations of C; and C; respectively. The dash-dotted lines show the o-bands of the
IO relations for K = 1024.

99

% correctly decoded packets obeying the rule

20 ‘ ‘
0 0.5 1 15
E,/N, (dB)

Figure 6.7: The percentage of correctly decoded packets that obey a certain rule.

lengths can be determined. Above the decoding threshold arbitrarily small error rates
are possible. The 2-step rule also performs quite well in the finite length case. The
simplicity of this rule compared to higher order rules should be kept in mind as well.
Based on all these arguments, we choose this rule to use for evaluating the probability

of iterative decoding failure.

6.4 A Markov Model of Iterative Decoding

The extrinsic information produced by one decoder is fed as the a prior:i infor-
mation to the other decoder in the next iteration. The Gaussian assumption, as
explained in Chapter 5, asserts that a priori information sequences that are fed into
a component decoder at different iterations are independent. This suggests that the
extrinsic information produced by a component decoder at any iteration depends
only on the observation and the a priori information at that iteration. It does not

depend on the a prior: information at earlier iterations. Consequently, the Gaussian

100

assumption implies a memoryless property in iterative decoding so that past a priori
information can be ignored. This further implies that I3, as defined in the last sec-
tion, only depends on [when conditioned on a given observation. We will make use

of this Markov property in order to approximate the probability of decoding failure.

Definition 4 Let { Xy, k =1,2,3,...} be a discrete-time stochastic process with state
space S. The conditional density function of Xy, is denoted by fx,,|x, _, . x, (]yeeeyr)
{ X,k = 1,2,3,...} is said to be a Markov process when, for any collection of

th<ty<...<t, €T and x1,x3,...,2, €S,

thn|th,1 Xy, (.’En|.’17n,1, SRR '731) = thn\th_l (.’En|.’L‘n,1),

provided that both probability density functions exist.

By the above definition of a Markov process, the iterative decoding process rep-
resented by the {I;} sequence forms a Markov process. The transition probability
function of this chain (fy,,,z,(-|-)) is time-invariant for a given SNR by the proba-
bilistic model developed in Chapter 5. The state space S of this process is the range
of mutual information function: [0,1]. S is a continuous state space and thus hard
to work with. A Markov chain is a Markov process with finite state space and eas-
ier to work with. It is shown in [35] that continuous state space Markov processes
can be discretized into Markov chains. We will simply use this result without much
elaboration as it is common practice in engineering applications.

The state space S will be discretized and taken to be a finite set for the remainder
of the chapter. The effect of discretization levels will be investigated later. The

following form of the partitions of the interval [0, 1] will be considered,

n
S=Ja (6.2)
i=1
where ¢;’s are continuous intervals and have the property that

TEGHYEGr1 =T <Y, (6.3)

101

for all z,y and ¢. The set ¢; will be referred to as the quantization level g; from this
point on. We have the following approximation to the transition probability from

level g; to g;

p
SUPyeq,

$ —_ .
oo frn (zlg)dz, =1

Proaan(@leg) = for2 < fr i (elg)dz, 1<i<n (6.4)

nfzeql- T

\j;;:?zeqixffk+1|lk($|‘]_j)d$’ i=n

infyeq, ac+supxeqj z
2

for any k,g; and g; where ¢; = . If the time-invariant nature of the

chain is considered, then we can simplify notation as
Pji = p1k+1\1k(Qi|q]') = p(%‘|¢]j)- (6-5)

6.4.1 Decoding Failure at a Given Iteration

We will evaluate the likelihood of first decoding failure at the ' iteration Py (7).
By the “I;15 > I;” rule, a decoding failure occurs at the i iteration if I;,, < I;.
Define an indicator function that determines whether any decoding failure occurred

up to iteration ¢ by

, 1, if3j:L<I_oj<i
Ndf(z):{ 7o (6.6)

0, otherwise .

We will slightly change the rule so that it will be assumed convergence to correct
decoding occurs when I, = g¢,, i.e., I is large, and Ng(k — 1) = 0 for some k. By
this change, ¢, becomes an absorbing state of the Markov chain, i.e., p,, = 1, which

means that the chain stays indefinitely in state ¢, whenever the process enters it. By

102

the above definitions and explanations,

Pdf(i) = P(IZ < I;_o, Ndf(i — 1) = 0) (67)
qn
= Y P(L;<IigLiy=q"" Ny(i—1)=0) (6.8)

¢ 2=q1

qn
= Y P(L<Lislliy=q"% Ny(i—1)=0)
¢~ 2=q

P(I; =¢ % Ng(i—1)=0) (6.9)

If both terms in the last summation can be found, then Pg(i) can be determined.

First, consider the decoding failure term.

P(I, < Ii_2|fi_2 = qi_z,Ndf(i — 1) = 0)
qdn
= Y PULi<qd 7 Li=q¢ L =q"li.o=q"> Ny(i—1) =0) (6.10)

¢ lgi=q1

= > Z P(Li=q¢ I 1 =q¢ I 3 = ¢ % Ng(i — 1) = 0) (6.11)

z<qz 2 qz lfq1

=) Z (L=q¢Ii 1 =¢ L o =q¢ % Ny(i—1)=0) - (6.12)
1.<q1. 2qz lfq1

P(I;_y =q¢ My =¢ * Ng(i —1) = 0)

=) Z (¢'lg" M p(a"g"?). (6.13)

q° <q1. 2qz 1_111

Hence, P(I; < Lis|li_s = ¢" 2, Ng(i — 1) = 0) is a function of ¢" 2, a dummy
variable, and does not depend on the iteration number i. It will be denoted by

Qqr(x) and can be obtained from the IO relations for any value of z. Similarly, the

103

P(Ii_y = ¢ 2, Ng(i — 1) = 0) term of (6.9) can be evaluated as follows.

= Y P(Iia=q¢ " Ii.i=q¢"" Ng(i) = 0) (6.14)
= Y Pia=q¢ *Lii=q " I;> T Ngi—1)=0) (6.15)

= Y PUia=d A Ng(i=1)=0)-
¢~ 2=q
P(Iisy = ¢ I; > Lis|liy = ¢"%, Ny (i — 1) = 0) (6.16)
gn
= > P(lia=q¢ Ngi—1)=0)-
¢~ 2=q

P(Iz Z Ii—2|-[i—2 = qi—2, Ndf(l —].) = O)P(Iz_l = qi_1|Ii_2 = qi_2) (617)

= Y P(lia=dq % Ngli— 1) = 0)(1 - Quld)pld ld?) (618)

¢ 2=q

The last set of equations implies that only P(I; = ¢*, Ng(i + 1) = 0) at each
iteration has to be recorded in order to find the probability of decoding failure. In

the next subsection, we will explain how to obtain these probabilities using matrices.

6.4.2 Numeric Evaluation of Fy

Denote P(I;—1 = qx, N4 (i) = 0) by m;. Consider a matrix P; such that
[Pilij = pij = P(Ir = qj|Ix—1 = @), (6.19)

where p;; is the transition probability function of the Markov chain as defined in (6.5).

In consequence, (6.13) can be written as
k-1
Qur(ax) = > [Pk, (6.20)

j=1

for k > 2 with Qg (q1) = 0.

104

Using the description of m,; above, (6.18) becomes
i = > i 1(1— Qur(4;)) [Pl (6.21)
j=1

For easier representation, the likelihood of decoding failure up until the it iteration

will be denoted by 7,1, with an abuse of notation. Then,

Tpil,i = Mnptli—1 + Z ;-1 Qar (qj)- (6.22)

j=1

Let’s define a matrix T such that

(1—Qu(g))Plj, 1<ji<n1<k<n
[T]k,j = { Qdf(Qj), 1<j<nk=n+1 (6.23)

By this definition,

1,
T2,
T = : =Tm;_4. (6.24)

Tni

| Tn41,i i
In the case of iterative decoding of equally likely bits, the mutual information in the

beginning of decoding is 0. As a result,

T — Ti’ﬂ'g,ﬂ'o = . . (625)

0

The last equation can be considered as the transition matrix of yet another finite

state Markov chain. Since a unique stationary distribution of m; exists in the case of

105

finite state space [36], m, = lim;_,o, T"my can be found by using a sufficiently large i.

In that case, the probability of decoding failure can be obtained from 7, by

Pdf - [ﬂ-s]l,n+1- (626)

6.5 Numerical Results

For all the results that will be presented in this section, the properties of extrinsic
information sequences are obtained at various SNR. values with various values of I;,
as discussed in Chapter 5. Based on the properties of the extrinsic information, the
IO relation for each SNR and I;, value was found. In most cases, the I;, values in
steps of 0.1 have been used and the IO relation have been obtained by interpolation.
Since the IO relation is smooth, this interpolation does not pose any threat and it
effectively reduces the complexity of the method. Once the IO relation for a particular
component decoder is obtained, the transition probability matrix to be used in last

section’s methodology can be found.

6.5.1 Quantization

We will first explain the quantization method employed and then present results
on the effect of quantization. For any quantization step g, we will have the following

quantization levels:

= [0, qs;ep)
Qstep 3
42 [%, §Qstep)
3 5
q3 = [5‘]51561)7 5‘]51561))
3 qst
gn-1 = [Imax - Eqstepa Imax - 32617)
QStep
n — Imaa: -) 1.
q [5 1]

106

We will set [,,4; value to 0.95 in this study. This value of I,,,, was determined based
on the simulation results for determining the correct decoding rule. It was observed
that when a packet reaches I(E) = 0.95 it is almost always correctly decoded. It
follows from the description of quantization that the smaller the number g, is, the
finer the quantization gets.

The effect of quantization is shown in Fig. 6.8. A symmetric turbo code with

1+D?

, m] is used. The three plots correspond to

component code generator matrix [1
the Py estimates for three different block lengths K = 256,1024, and 4096. As seen
in all the plots, finer quantization increases the Py estimate since more states will
be deemed as failed in that case. However, the estimate differences between different
values of gy, are not very significant. The differences are also decreasing so that
there is the sign of a convergent behavior. We will choose gy, = 0.005 to be used for

the rest of the chapter. This value of gy, seems to be sufficient since the error rates

of interest for the codes we investigate is up to packet error rate PER = 107°.

6.5.2 The Symmetric Case

When the component decoders are the same, the method explained as in the last
section is directly applied. In all the simulations in this section, the turbo codes were
run for 100 iterations (each decoder is run 50 times). At least 200 packet errors have
been collected in all cases.

In Fig. 6.9, the packet error rate performance of a symmetric turbo code with
component code generator matrix [1, %]. In each packet there are 1024 data
bits (K = 1024). Four different lines are shown. The solid line is the PER obtained
from simulation. The dashed line with ‘*’ is the Py estimate obtained from the EXIT
chart method. The dashed line with ‘+’ is the error floor estimate studied in Chapter

4. Since the sum of Py and error floor estimates is the total PER estimate, that

sum is plotted with the bold dashed line in the figure. A symmetric turbo code with

1+ D2

, Tibrps) is employed in Fig. 6.10. In order to

component code generator matrix [1

test the effectiveness of the Py estimation method with respect to block length, the

107

10_10 1 1 1 1 |

0 0.5 1 1.5 2
Eb/NO
o K=4096
10" @ ®
107
P ‘
df 10'4 L
10°F
10_8 | | | | | |
-0.2 0 0.2 0.4 0.6 0.8
Eb/No

Figure 6.8: The effect of quantization on Py estimation.

108

estimates and simulation results are displayed for four different values of block length

K in the figure.

..... N DIl - Simulation

...... e PERapprox_
—x— Py est.

—+— Error floor est.

PER

Figure 6.9: Packet error rate estimates and simulation results of a turbo code (K =
1024).

As observed in these figures, the Py estimate behaves as an upper bound to the
actual Pg. In the model we defined, it was said that the rule “I;;, > I;” does not
perfectly predict the correct decoding of a packet. Thus, the developed model used
with this rule offers a worst-case scenario so that its estimate behaves like an upper

bound. The PER estimate, which is the sum of Py and error floor estimate, is within

109

PER

PER

Figure 6.10: Packet error rate estimates and simulation results of a turbo code at
K = 128,256,512, and 1024(‘-":simulation, ‘4 :error floor estimate, *’: Py estimate,
‘- -":combined PER estimate).

110

a small neighborhood (0.1 — 0.3dB) of SNR values of operation in all of the cases.

6.5.3 The Asymmetric Case

In Section 6.4, the methodology for obtaining Py estimate of an iterative decoder
is explained for the case of two identical component decoders inside an iterative
decoder. All the arguments will hold when the component decoders are not the same.
The only difference exists in the order that the transition probability functions are
used. The derivations for the asymmetric case won’t be pursued in order to avoid
redundancy.

In Fig. 6.11, the simulation results and error rate estimates are displayed for

an asymmetric turbo code. This turbo code consists of two codes with generator
matrices [1, %] and [1, %]. The block length of the code is K = 256.
Both error floor and Py estimates are shown. The combined PER estimate is also
seen in the figure and within 0.1dB of the simulation results for PER< 1071.

As a last example, we will consider the serial concatenation of two convolutional
codes. Although we haven’t discussed explicitly, it is obvious from the mechanics of
the EXIT chart that the EXIT chart method can be applied to any system that has
component decoders which accepts soft information (as in the form of likelihoods) and
produces soft information. The serial concatenation algorithm and the application of
EXIT chart method have been discussed in [16]. We will directly apply our method
following the studies for asymptotically long serially concatenated codes. The serially
concatenated code of Fig. 6.12 is constructed by using the same memory-2 code with
generator matrix [1, %]. 128 data bits are fed into the first encoder and 256
coded bits are generated. These 256 bits are fed into the second decoder to generate
512 bits in total. The overall rate of the code is 1/4. No error floor is observed until
PER = 10~* for this code. The Py estimate is about 0.15dB from the simulation
curve for PER less than 1071

In both cases of asymmetry, the Py estimate predicts the simulation results closely.

The estimates are within 0.05 — 0.3dB of the simulation results depending on the

111

‘| = Simulation
—+— Error floor est.
—x— Py est.

= = PER approx.

PER

Figure 6.11: Packet error rate estimates and simulation results of an asymmetric
turbo code (K = 256).

112

Figure 6.12: Packet error rate estimates and simulation results of a serially concate-
nated code (K = 128).

113

operation SNR of the code. There are methods to predict the error floor of serially
concatenated codes [25]. However, use of almost any random interleaver in a serially
concatenated code results in a very low error floor which makes the error floor and
its estimate irrelevant for most practical situations. In this respect, the result with

the serially concatenated code is especially important.

6.6 Conclusions

The EXIT chart method has been used to predict the behavior of iterative decoders
at asymptotically large block lengths. In this chapter we proposed a method to
extend the use of the EXIT chart method to finite block lengths. As supported
by numerical results, this method can predict the performance of iterative decoding
quite accurately in the low/medium SNR region where decoding failures dominate
the performance. The proposed methodology can be utilized to study any iterative

system with components that exchange soft information.

114

CHAPTER 7

Conclusions

7.1 Contributions

We studied turbo codes of practical block lengths. The main contribution of
this thesis is distinguishing two distinct modes of a turbo decoder’s operation and
analyzing them. Different types of convergence behavior were identified and classified.
The classification illustrates the existence of bimodal behavior of a turbo decoder.

An approximation to the error floor performance of a turbo code was obtained by
estimating the distance spectrum of the code. The estimation method is based on
an approximation through which the number of codewords that have to be searched
for small code weights can be decreased effectively and substantially. The proposed
method accurately predicts the error rate of a turbo code at high values of SNR at
which the error floor is observed.

The waterfall region analysis is done through the use of a probabilistic model
for the iterative decoding process. Since the emphasis of this thesis is on the turbo
codes of practical block lengths, the effect of finite block lengths on the component
decoders was investigated. It was found out that the correlation in the information
produced by a component decoder can be used to model the component decoder.
This probabilistic model was then embedded into a Markov process to obtain error
rate approximations to the performance in the waterfall region. This approximation

combined with the approximation for the error floor region accurately predicts the

115

performance of a turbo code over both regions.

7.2 Future Work

The study on the information produced by a component decoder does not as-
sume a specific form of decoder as long as a few assumptions hold. Therefore the
methodology developed for the MAP decoder can be easily extended to any other
decoding module that can be considered as an independent soft-input soft-output
module. The immediate applications will be to the study of max-log-MAP decoder,
soft output Viterbi algorithm and other decoding algorithms for convolutional codes.
The method will be extended to modulation schemes such as M-PSK, continuous
phase modulation etc. We will also study the applicability of this method in fading
channels. The proposed methodology is not only restricted to the study of decoders.
For example, a demodulator which performs per-survivor processing to account for
the fading process in a fading environment can also be investigated with our method-
ology as long as it stands as an independent soft-input soft-output block. Thus, we
will apply our technique to study turbo equalization schemes. We will also apply the
EXIT chart methodology to obtain bit error rate approximations.

The distance spectrum estimation method will be applied to different flavors of
turbo codes such as punctured turbo codes, asymmetric turbo codes, turbo codes
with more than two component codes etc. with different modulation schemes. The
extension of the estimation method will be sought for the case of parallel concatenated
block codes, a.k.a. product codes. The estimation method also motivates more
research on how to obtain turbo codes with low error floors. This issue will be
elaborated in subsequent studies.

These two methods offer practical tools to compare codes of different rate, struc-
ture and complexity. Based on these comparisons design optimizations will be carried
out to obtain the best systems that can meet given criteria in a given scenario in order

to accommodate quality of service requirements.

116

APPENDICES

117

APPENDIX A

Symbolwise MAP Decoding of Convolutional
Codes

A data symbol uy is the collection of all the s data bits (uf,uf,... u¥). We
will derive the algorithm based on data symbols and bit probabilities can easily be
obtained by summing over the data symbols. As mentioned before, the output and
the next state of a convolutional code is determined by the current state and the

data. Then,

Plup=1i|y) = P(Si_1=m', Sy =m|y), (A1)

(m!ym):up =1

where S is the encoder’s state at discrete time index k, y is all the channel observa-
tion, ¢ is from the alphabet of data symbols and summation is over all the transitions

between states m' and m where uy = i. Let’s define a function M (m', m) such that
Mi(m',m) = P(Sg_1=m', S, =m | y). (A.2)
By this definition, we can rewrite (A.1) as

Plup=1ly) = Mi(m/, m). (A.3)

(m!ym):up =1

118

Now consider all the paths that has the transition Si_; = m' — S, = m. My(m', m)

can be written as

Mk(mlvm) = Z p(u | y)v (A4)

ueDy,(m! ;m)
where u is a hypothesized input sequence to the encoder, Dy(m', m) is the set of all
input sequences which traverse the code’s trellis through state m’ at time k£ — 1 and
state m at time k.
Using Bayes’ theorem, we can write the following expression:

_ [y [wp(u)

In (A.5), the denominator is a constant for all £, m' and m so we can disregard it.

Then,
My(m',m)= Y f(y|uwp(w), (A.6)

ueDy(m',m)

It is assumed that the symbols in the data sequence are independent. In that

case,
N

p(w) = [o). (A7)

[
From the structure of the encoder, it is known that there is 1-1 correspondence
between the domain of v and the domain of the encoder output sequence c. Using

this fact,
flylw) =f(y|cu), (A.8)

where ¢, is the encoded sequence corresponding to u.
By defining a state variable for the past data and the hypothesized output sequence

cy, we can express f(y | ¢,) as a product of N terms. Let’s define

Ul(cu) = [yla - U Cu]a

3= stands for equality with a constant.

119

where y; denotes the channel signal for the k™ symbol interval and o;(c,) is the state
for the [symbol in codeword ¢, (o¢(c,) holds the starting state of the inner encoder.)

If we apply the chain rule, we obtain

N

fyle) =1l ol (A.9)

=1

By substituting (A.7),(A.8) and (A.9) into (A.6), we arrive at the following ex-

pression for M (m', m):

N

Ml m)= 3 [Lpt)f] o a(ea). (4.10)

ueDg(m',m) =1

In case memoryless channels are considered and the convolutional code’s encoder

is a FSM,

f(yl | o-lfl(cu)) = f(yl | Yiy .- ;ylfl;cu)
= flulca)
= [y | Sim1(w), Si(u)),

where S;(u) is the state of the encoder at time [when the input to the encoder is u.

Then, (A.10) can be simplified to

M m)= S0 T u(Sia(w), Siw), (A1)

where
n(m',m) = p(uw) f(y | m', m).
Computation of (A.11) is a basic problem which can be solved by the BCJR
algorithm [19]. This algorithm has been studied quite extensively in the literature

in the discussion of turbo codes and their derivatives. BCJR algorithm proposes a

recursive solution to the problem of summing the metrics of all paths passing through

120

a fixed transition in a given trellis. Two functions ay(m) and SBix(m) are defined, The
former is for the forward direction and the latter is for the backward. ay(m) can be
regarded as the sum of all path metrics ending up at state m at time k. In symmetry,
Br(m) can be thought of as the sum of all path metrics starting at state m at time

k. The following recursions are utilized to find ay(m) and S (m):

aulm) = 3 s (o, m)
Br(m) = Zﬁkﬂ(m')%ﬂ(m,m')-

Initial values depend on the additional information that is available to the encoder.
The encoder is preferably initialized to zero state. The last state of the encoder is
not known unless termination sequences are deployed. In the case no termination
strategy is used, the last state for the encoder can be any of the states with equal

likelihood. These recursions are run once for the whole sequence and My (m', m) can

be written in terms of these functions the following way:
M (m',m)=ay_1(m')y (m', m)B(m). (A.12)
In this case, (A.4) can be easily obtained by

Plax=ily)= S awa(m')yu(m’,m)Be(m).

(m! ym):up=i

121

APPENDIX B

Some Properties of Random Sequences

Definition 5 A random sequence {X;} is an m-dependent sequence if
{Xors Xarity--, Xa} and {Xp, Xpi1,..., Xpis} are independent sets of variables
for any r,s >0 if b—a > m [37].

Theorem 1 (Hoeffding-Robbins). If {X;} is an m-dependent sequence satistfying

2. lim,, o, E[S?] = A? for all a (A*> >0),
8. E|X;|**° < M (for some § >0 and M < o),

where S, = ﬁzgﬁ_l X;, then S = Sy s asymptotically normal such that it is

normally distibuted with mean 0 and variance A* (Theorem 1.1 in [37]).

Corollary 1 Theorem 1 also holds with finite mean E[X;| = ¢ < oo for all i and
S, = ﬁ Z?L"H(Xi — E[X;]). In that case, S = Sy is asymptotically normal such

that it is normally distributed with mean ¢ and variance AZ.

Lemma 2 When X;’s have common mean, the covariances satisfy
Cov(Xa, Xaik) = Tk, a function depending only on k, and Y ;- r converges, then
S, satisfies the second property in Theorem 1 with A% = ry + 2 Zzozl ry (Lemma 5.1

in [37]).

122

Property 1 A WSS Gaussian sequence with finite mean and autocovariance function

o2 ,5=0
Kx(s) = (B.1)
0 ,ls|>m

s an m-dependent sequence.

Proof: Given Kx(s), X; and X, are uncorrelated for |s| > m. Since X; and
Xi1s are jointly Gaussian and uncorrelated, they are independent. Take any block
of » random variables before X; and any block of & random variables after X;,,.
{Xi v, Xi vi1,..., X} and { X5, Xivsi1, ..., Xiysir) are independent sets for any
i. Then {X;} is an m-dependent sequence. |

Lemma 3 The sample mean of a WSS Gaussian sequence with finite mean ¢ and
autocovariance function given as in (B.1), S = %Z?:l X;, 1s asymptotically normal

with mean 0 and variance = > o Kx(s).

Proof:

e E[X;] = c for any i > 0, by the WSS property. Without loss of generality, we
will consider X; as a zero-mean sequence for easier reading. Nonzero mean will

only add some constants to the derived expressions.

123

e For the second property of Theorem 1,

1 a+n a+n
BIS} = El= > 3 XiX)] (B.2)
i=a+1 j=a+1

1 at+n a+n
= 1YY Exx (B.3)
i=a+1 j=a+1
1 at+n a+n
= Y Kxli) (B.4)
i=a+1 j=a+1
1 atn i+s

LS Exli-) (B.3)

i=a+1 j=i—s

Q
|

The last summation is convergent. Then the second assumption also holds.

e It is well known that any moment of a Gaussian random variable can be obtained
from its mean and variance. The assumption holds directly from this fact for the
even powers. For the odd powers, (fx, () being the probability density function

of a Gaussian random variable with mean zero and variance o?)

|
- \/%2%—2"“. (B.9)

So, E|X;|* < M for any n > 1 and some M < oo.

Since {X;} is also an m-dependent sequence, the statement of the lemma holds. W

Lemma 4 Let {X;} be a stationary sequence. Define {Y;} sequence such that
Y; = g(X) for some strictly monotonically increasing function g defined in R. Then,

{Y;} is also a stationary sequence.

124

Proof:

P(Yiik < vo,Yirkt1 <Y1, Yitkin < Un)

= P(Xz'+k < g_l(yo), Xivkr1 < g_l(yl)a cos Xighn < g_l(yn))
= P(X;<g '(w), Xir1 < g Hw), -, Xivn < g Hun))

- P(}/;Syoa}/;+lSyla"'vi/;kngyn))

for any i,k and n. Hence, {Y;} is also stationary. [

Lemma 5 Let {X;} be an m-dependent sequence. Define a sequence {Y;} such that
Y; = 9(X;) for some strictly monotonically increasing function g defined in R. Then,

{Y;} is also m-dependent .

Proof: {Xa v, Xa ri1,...,Xa} and {Xp, Xp11,. .., Xpys} are independent sets of
variables for any r,s > 0 if b — a > m. Functions of independent random variables
are also independent random variables. In that case, {g(X,_»), 9(Xa—ri1),---,9(Xa)}
and {g(Xs), 9(Xp11), - .-, 9(Xpss)} are independent sets. Then, {Y, ,, Y, ,11,...,Ys}

and {Y}, Yy11, ..., Y.} are independent sets for any r,s > 0 if b — a > m. [|

125

BIBLIOGRAPHY

126

1]
2]

3]

4]

7]

[10]

BIBLIOGRAPHY

R. G. Gallager, Low-Density Parity-Check Codes, Ph.D. thesis, MIT.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo Codes,” Proc. IEEE International Con-
ference on Communications, pp. 1064-1070, May 1993.

S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random
and nonrandom permutations,” TDA Progress Report 42-122, Jet Propulsion
Lab., August 1995.

L. C. Perez, J. Seghers, and D. J. Costello, “A distance spectrum interpretation
of turbo codes,” IEEE Transactions on Information Theory, vol. 42, no. 6, pp.
1698-1709, November 1996.

T. Richardson and R. Urbanke, “The capacity of low density parity check codes
under message passing decoding,” IEEE Transactions on Information Theory,
vol. 47, pp. 619-637, February 2001.

S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated
codes,” IEEE Transactions on Communications, vol. 49, no. 10, pp. 1727-1737,
October 2001.

H. El Gamal and A. R. Hammons, “Analyzing the turbo decoder using the
Gaussian approximation,” IEFE Transactions on Information Theory, vol. 47,
no. 2, pp. 671-686, February 2001.

T. J. Richardson, “The geometry of turbo-decoding dynamics,” IEEE Transac-
tions on Information Theory, vol. 46, pp. 9-23, January 2000.

D. Agrawal and A. Vardy, “The turbo decoding algorithm and its phase trajec-
tories,” IEEFE Transactions on Information Theory, vol. 47, no. 2, pp. 699-722,
February 2001.

O.Y. Takeshita, O. M. Collins, P. C. Massey, and D. J. Costello, “On the frame-
error rate of concatenated turbo codes,” IEFEFE Transactions on Communications,
vol. 49, no. 4, pp. 602-608, April 2001.

127

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

A. C. Reid, T. A. Gulliver, and D. P. Taylor, “Convergence and errors in turbo-
decoding,” IFEE Transactions on Communications, vol. 49, no. 12, pp. 2045—
2051, December 2001.

J. G. Proakis, Digital Communications, McGraw-Hill, 1995.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEFE Transactions on
Information Theory, vol. 47, no. 2, pp. 619-637, February 2001.

A. Burr, Modulation and Coding for Wireless Communications, Prentice Hall,
2001.

S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel
concatenated coding schemes,” IEEE Transactions on Information Theory, vol.
42, no. 2, pp. 409-428, March 1996.

D. Divsalar, S. Dolinar, and F. Pollara, “Iterative turbo decoder analysis based
on density evolution,” IEEE Journal on Selected Areas in Communications, vol.
19, no. 5, pp. 891-907, May 2001.

O. Y. Takeshita, O. M. Collins, P. C. Massey, and D. J. Costello, “A note on
asymmetric turbo codes,” IEEE Commun. Lett., vol. 3, pp. 69-71, March 1999.

P. C. Massey and Jr. D. J. Costello, “New low-complexity turbo-like codes,”
Proc. of Information Theory Workshop, pp. 7072, Sept. 2001.

L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes
for minimizing symbol error rate,” IEEE Transactions on Information Theory,
March 1974.

L. Duan and B. Rimoldi, “The iterative turbo decoding algorithm has fixed
points,” IEEE Transactions on Information Theory, pp. 2993-2995, November
2001.

K. R. Narayanan and G. L. Stiiber, “A novel ARQ technique using the turbo
principle,” IEEE Commun. Lett., vol. 1, pp. 49-51, February 1997.

R. Shao, S. Lin, and M. Fossorier, “Two simple stopping criteria for turbo
decoding,” IEEE Transactions on Communications, vol. 47, no. 8, pp. 1117-
1120, August 1999.

W. Blackert, E. Hall, and S.Wilson, “An upper bound on turbo code free dis-
tance,” Proc. IEEE International Conference on Communications, pp. 957-961,
1996.

M. Breiling and J. B. Huber, “Upper bound on the minimum distance of turbo
codes,” IEFEE Transactions on Communications, vol. 49, no. 5, pp. 808-815,
May 2001.

128

[25]

[26]

[27]

28]
[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

R. Garello, P. Pierleoni, and S. Benedetto, “Computing the free distance of
turbo codes and serially concatenated codes with interleavers: Algorithms and
applications,” IEEFE Journal on Selected Areas in Communications, vol. 19, no.
5, pp. 800-812, May 2001.

F. Daneshgaran and M. Mondin, “An efficient algorithm for obtaining the dis-
tance spectrum of turbo codes,” International Symposium on Turbo Codes, pp.
251-254, 1997.

P. Odling, H. B. Eriksson, T. Koski, and P. O. Borjesson, “When are the MLSD
respectively the matched filter receiver optimal with respect to the BER?,” Proc.
IEEE International Symposium on Information Theory, p. 331, 1995.

C. Lee, “Convolutional coding fundamentals and applications,” 1997.

S. Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product
decoding of low-density parity-check codes using a Gaussian approximation,”
IEEFE Transactions on Information Theory, vol. 47, no. 2, pp. 6567-670, February
2001.

N. Wiberg, Codes and Decoding on General Graphs, Ph.D. thesis, Univ.
Linkoping, 1996.

A. M. Mood, F. A. Graybill, and D. C. Boes, “Introduction to the theory of
statistics,” 1963.

P. Le Bars, C. Le Dantec, and P. Piret, “Bolt interleaver for turbo codes,” IFEE
Transactions on Information Theory, vol. 49, no. 2, pp. 391-400, February 2003.

H. Stark and J. W. Woods, Probability, Random Processes, and Estimation
Theory for Engineers, Prentice Hall, 1994.

J. W. Lee and R. E. Blahut, “Analysis of the extrinsic values in the finite length
turbo decoding,” Conference on Information Sciences and Systems, Princeton
University, March 2002.

C. Guihenneuc-Jouyaux and C. P. Robert, “Discretization of continuous Markov
chains and Markov chain Monte Carlo convergence assessment,” Journal of
American Statistical Association, vol. 93, no. 443, pp. 1055-1067, September
1998.

P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Stochastics Processes,
Waveland Press, 1987.

R. J. Serfling, “Contributions to central limit theory for dependent variables,”
Annals of Mathematical Statistics, vol. 39, no. 4, pp. 1158-1175, August 1968.

129

ABSTRACT

Performance of Turbo Codes: The Finite Length Case

by

Ali Ozgiir Yilmaz

Chair : Wayne E. Stark

Parallel concatenated convolutional codes, a.k.a. turbo codes, have attracted
much attention since their appearance in 1993. Turbo codes are decoded by itera-
tive (turbo) decoders in which a component decoder for each component code exists.
Turbo decoders perform quite well with respect to bit and packet error rates. The
code structure coupled with the iterative decoding scheme provides performance close
to the fundamental communication limits predicted by Shannon with reasonable com-
plexity. In this thesis we investigate the performance of finite length turbo codes.

Due to the ad hoc nature of turbo decoding, error rate performance analysis is
difficult. In the first part of this thesis, we classify the different characteristics of
turbo decoding based on empirical results and analyses available in the literature.
This classification helps distinguish two modes of turbo decoding behavior: optimal
mode and decoding failures.

The performance in the optimal mode is affected by the code structure of a turbo

code. The interleaver in turbo code construction makes it difficult to find the code
structure for a particular interleaver. In order to overcome this difficulty, we concen-
trate on special error events of the component convolutional codes. We propose an
efficient method to estimate the code structure. By this estimate, an approximation
to the error rate performance can be obtained for the optimal mode.

Decoding failures occur due to nonoptimal operation of a turbo decoder. There-
fore, analysis of iterative decoding is of interest with regard to decoding failures.
Iterative decoding analysis methods are available for infinite length turbo codes. By
investigating the properties of the component decoders, a probabilistic model is de-
veloped for finite lengths. Using this model, we find approximations to probability of
decoding failure.

Combining the analysis methods for the two modes of a turbo decoder yields an
accurate overall approximation to the error rate performance. Numerical results are

presented to verify the accuracy of the approximation.

