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Abstract

The present work proposes automatic methods for determining the extent
of dysphonia in patients with spasmodic dysphonia. Spasmodic dysphonia is
a disorder of the larynx which involves involuntary contractions of the vocal
folds during speech production. Numerous acoustical aspects of a voiced spas-
modic speech signal which indicate the presence of these vocal spasms have
been identified, including voicing breaks, shifts in fundamental frequency, and
signal aperiodicities. We have developed algorithms for assessing the severity
of dysphonia which are based on periodicity analysis, fundamental frequency
estimation, and the processing of signals in the time-frequency and time-lag
domains. These methods are tested on thirty-seven recordings of patients with
spasmodic dysphonia reading a phonetically balanced passage of text. The al-
gorithm’s assessments are evaluated by comparing them to ratings generated
by trained listeners on the same data set. A baseline algorithm achieves a mean
rank correlation of 0.76 when compared to the five judges, as compared with a
mean rank correlation of 0.83 among the judges.

1 Introduction

Spasmodic dysphonia (SD) is formally characterized as a focal dystonia of the
larynx [1]. Patients affected by SD exhibit abnormal contractions of the laryngeal
muscles during vocal production. The disorder produces a wide variety of effects in
the speech of an afflicted patient; dysphonic speech has been described as strained-
strangled, squeezed, effortful, choked, jerky, hoarse, and groaning [18]. Vocal tremor
is reported to accompany SD in roughly one-quarter of cases [1]. One of the most
widely used treatments for SD is the injection of Botulinum Toxin A (Botox) into
the muscles around the larynx. The injections serve to paralyze the muscles affected
by the abnormal contractions, providing some measure of relief from symptoms [5].

Assessment of SD, as with many vocal disorders, is dependent in large part on
a perceptual evaluation of the patient’s vocal function. A typical clinical assess-
ment includes a perceptual evaluation, a patient history, a complete head and neck
physical examination, acoustic or aerodynamic assessments, and a detailed laryngeal
examination [4][16]. In general, the subjective nature of this evaluation can make
assessment of the severity of a vocal disorder rather challenging. In particular, this
complicates an evaluation of the efficacy of treatment.



Various researchers have suggested the need for standard battery of tests to
evaluate a patient with spasmodic dysphonia [10][17][16]. A useful addition to such
a battery would be a set of objective measures of vocal function derived from the
speech waveform itself. Many researchers have examined the acoustic features of
dysphonic phonation. Such features include shifts and deviations in fundamen-
tal frequency, signal aperiodicities, and voicing breaks [12][14][15]. These features,
though, generally must be identified by hand, which introduces a measure of sub-
jectivity into the process. Generally high inter-measurer correlations for these tasks
have been reported [18], but the time and effort required for a human listener to
identify such features is not insignificant. Automatic, objective methods for the
identification of such features would reduce the time required for analysis while
being highly repeatable.

In order to facilitate the assessment of patients with SD, this work proposes
algorithmic methods of processing speech waveforms from patients with SD. Existing
speech processing methodologies often rely on a voiced /unvoiced decision which is in
turn based on the periodicity of a segment of the speech signal. Because of the noted
prevalence of aperiodic segments of voiced speech in dysphonic phonation, the use of
these standard techniques is not recommended. We propose an alternative approach
that can identify both aperiodic segments and segments with stable fundamental
frequency within voiced phonation. This approach allows the calculation of a wide
variety of statistics which may assist in the discrimination of severity of dysphonia
in a patient.

There is considerable disagreement regarding the use of sustained phonation ver-
sus continuous speech for an acoustic evaluation of the dysphonic voice. It is widely
agreed that SD is significantly task dependent [11]. On the one hand, some re-
searchers have suggested that sustained phonation produces more abnormal events
and thus is more useful as a diagnostic tool [15]. Analysis of sustained phonation
is also more straightforward because it provides an unambiguous context in which
pathological features can be easily identified and relevant statistics can be easily cal-
culated. On the other hand, continuous speech involves a wider variety of “speech
tasks,” which provides a greater cross section of the effects of a patient’s dyspho-
nia. Further, examining symptoms during continuous speech may provide a better
indication of how severely a patient is effected during everyday use of the voice.

The ultimate goal of the present work is to develop discriminant statistics that
correlate well with the perceived degree of dysphonia. We have chosen to compute
these statistics from continuous speech recordings. During a six month study period,
a database of recordings was collected from patients with SD reading a phonetically
balanced passage. Each of these recordings was rated for degree of dysphonia by five
trained listeners; these ratings serve as a baseline for evaluation of the discriminants
presented here.



Man’s First Boat

Long ago, men found that it was easier to travel on water than on land.
They needed a clear path to travel on land, but on water a log of wood
or any object that would float became a man’s boat. It served to carry
him across a stream or down a river.

Figure 1: The phonetically balanced passage used for vocal function assessment.

2 Methodology

2.1 Data

For this study, recordings were collected from thirty six patients with adductory
spasmodic dysphonia over a six month period. Of the patients, thirty one were
female, aged 27-85, and five were male, aged 35-67. The patients were asked to read
a phonetically-balance passage, which is given in Figure 1. The recordings were
made using a DAT recorder in a quiet room immediately prior to Botox injection.
The database contains thirty seven recordings; one patient was given two injections
during the six-month period and was thus recorded twice. The recordings were
digitally transferred to a computer and resampled at 44,100 samples per second.

Each recording in the database was evaluated perceptually by five trained lis-
teners: four speech language pathologists and one otolaryngologist. The recordings
were presented in random order to each listener; the listeners were then asked to
rate the extent of dysphonia for each recording on a one-hundred point scale, from
“mild” to “severe.” The resulting ratings were found to have a Kendall’s coefficient
of concordance [6] of 0.83, which indicates good agreement between the the listeners.

2.2 Preliminary investigation

The first stage of our investigation involved an examination of the recordings
in our database. Since many of the commonly indicated pathological features of
the dysphonic voice are related to the fundamental frequency (or, alternatively, the
periodicity) of the speech signal, the use of a fundamental frequency tracking algo-
rithm was a significant element of this investigation. The algorithm employed here
is a modification of a time-domain autocorrelation approach presented by Boersma
[2]. The details of this algorithm can be found in Appendix A at the end of this
report. The algorithm computes the short-time autocorrelation of each of a set of
overlapping frames of audio data, much like a spectrogram. This forms a surface
with dimensions of time and lag. By locating peaks on the resulting surface, one
can track the fundamental period (and thus, the fundamental frequency) of the sig-
nal over time. Additionally, the autocorrelation value at such a peak provides an
indication of the extent of periodicity of that frame.

During the preliminary investigation, the recordings were examined by listen-
ing to them; through plots of the time-domain signal, the signal’s estimated fun-
damental frequency, and the frame-correlation value; and through images of the
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Figure 2: The autocorrelation surface (upper left), spectrogram (upper right), and
time-domain waveform (bottom) for a signal that exhibits period doubling.

time-frequency and time-lag surfaces (via the spectrogram and the short-time au-
tocorrelation, respectively). Some of the most relevant observations are recorded
here.

2.2.1 Subharmonic events and period doubling

Previous investigations using this database have suggested that the appearance
of subharmonics due to period doubling is a common pathological feature of SD.
Our observations agree with this assessment. Figure 2 shows the time-domain signal,
the autocorrelation surface, and the spectrogram for a speech signal that undergoes
period doubling. Note that in this Figure the period doubling arises from the change
in shape of alternate cycles of the signal. In general, these subharmonic events
appear to be more common in mild to moderate cases of SD. For more severe
forms, voicing is generally not stable enough for such subharmonic events to become
evident.

2.2.2 Croak

2

Another common feature in our database is “croak” or “vocal fry.” Croak ap-
pears as an abnormally low fundamental frequency during voiced segments of the
speech signal. In some patients, the croak is a temporary change in voicing which re-
sults in a drop in fundamental frequency. In others, croak is evident throughout the
recording. Figure 3 shows an example of a signal that exhibits croak. The segment
shown begins with croaked phonation and then transitions to normal phonation.
Note that this signal also involves a doubling of the signal’s period. In Figure 3,
however, the time-domain waveform shows a distinctive “damped oscillator” char-
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Figure 3: The autocorrelation surface (upper left), spectrogram (upper right), and
time-domain waveform (bottom) for a signal that exhibits vocal croak.
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Figure 4: The autocorrelation surface (upper left), spectrogram (upper right), and
time-domain waveform (bottom) for a signal that exhibits vocal croak due to a
frequency shift.



acteristic, whereas in Figure 2 the period doubling results from a slight adjustment
of the normal waveform shape. The autocorrelation surface in Figure 3 also shows
a characteristic high frequency oscillation that is not evident in Figure 2. These
differences suggest a different mechanism behind the two features.

In particular, croak is not restricted to period doubling. For instance, the signal
shown in Figure 4 exhibits croak due to a rapid downward shift in fundamental
frequency. This shift is not readily observable on the autocorrelation surface, but
it can be visually inferred from the spectrogram. In the time-domain signal, in-
dividual cycles of the signal are visually apparent; however, frequency modulation
changes the signal’s period from cycle to cycle and prevents the identification of the
signal’s fundamental frequency using our autocorrelation method. Such “pseudo-
periodicity” is a common feature of croaked phonation. The presence of a relatively
strong first formant allows small changes in fundamental frequency to decorrelate
successive cycles of the signal. Such small changes in fundamental frequency may
arise from frequency shifts, vocal tremor, or simple prosody.

2.2.3 Voice breaks, aperiodicities, and frequency shifts

As suggested by other researchers, voicing breaks, voice tremor and frequency
shifts, and aperiodic segments are also present in a significant number of recordings.
Since our database consists of continuous-speech recordings, these features cannot
be easily identified without contextual information about the utterance. Without
such knowledge, these pathological features can easily be confused with common
features of continuous speech. In continuous speech, for instance, voicing breaks
typically result in the abnormal shortening of a voiced phoneme. Thus, a pathologi-
cal voicing break is not significantly different from breaks that might occur between
phonemes or words in normal speech. Similarly, voice tremor and frequency shifts
can be difficult to distinguish from the normal frequency contours of speech prosody.
Frequency shifts like the one in Figure 4 are often difficult to identify because the
frequency modulation complicates the identification of the fundamental frequency.
Finally, speech is naturally aperiodic at the boundaries between adjacent phonemes
or words.

2.2.4 Voicing stability

One feature of the signals that was found to vary considerably across the database
was the voicing stability. The voicing stability is the extent to which the speech
signal adopts a continuous and stable period during voiced phonation. Informal
listening seemed to indicate that voicing stability correlates well with the perceived
severity of SD.

2.2.5 Clipping artifacts

One final important feature of the recordings in our database is not directly
related to the patients’ dysphonia. Many of the recordings in the database exhibit
clipping artifacts. Often these artifacts are noise resulting from hard consonant



attacks or breath noise. In these cases, we would like to neglect frames that are
corrupted by such clipping artifacts. In a few cases, though, the microphone level
was not properly set, and significant portions of the voiced speech signal are clipped
as a result. In these cases, the recording is still very understandable and clipped
frames should not necessarily be neglected.

2.3 Processing of dysphonic speech

As indicated in the previous section, many of the pathological features of dys-
phonic speech are not easy to identify in the context of continuous speech. Further,
dysphonic speech tends to violate some of the standard assumptions made in speech
processing. Here, we propose an alternative approach for dysphonic speech that
addresses these concerns. The algorithm is described below, and a more detailed
presentation is given in Appendix B.

The literature suggests that the primary characteristics of dysphonic speech are
variations in voiced speech. Thus, we propose that the first step in processing dys-
phonic speech, as with most other speech, is to perform voicing detection. However,
as we have noted, we cannot use periodicity as our measure of voicing since we
expect that some voiced phonation may be aperiodic. Instead, we adopt a voic-
ing detection method that begins by identifying frames that are not voiced. The
algorithm makes positive detections of silent, fricative, and clipped frames using
simple rules based on easily-computed frame statistics. A silent frame is detected
when a frame has an RMS value less than some fraction of the maximum signal
value. Fricative frames are detected when a frame has a spectral centroid greater
than some frequency. Clipped frame detection is based on the ratio of the frame’s
RMS value to the maximum value. To prevent the algorithm from improperly dis-
carding voiced frames that are clipped, we only discard clipped frames if their peak
autocorrelation falls below a threshold. Any frame that does not fall into one of
these groups is considered to be voiced. We also remove a few frames at the edge of
voiced segments to reduce the influence of aperiodicities due to starting and ending
transients.

As in the preliminary investigation, a fundamental frequency tracking algorithm
is an important part of our discrimination algorithm. The calculation of the short-
time autocorrelation function is described in Appendix A. Once the short-time
autocorrelation function has been calculated for each of a set of overlapping audio
frames, a set of potential autocorrelation peaks is identified for each frame. These
peaks are restricted to a particular range of the lag 7, which corresponds to an
acceptable range of fundamental frequencies. Since a purely periodic signal will
exhibit equal amplitude peaks for values of 7 that are integer multiples of the fun-
damental period, a discounting factor is included to promote the selection of the
lowest reasonable value of 7. The result should correspond to the fundamental pe-
riod of the signal. Viterbi’s algorithm is then used to search through the possible
peaks for a “best path.” Transition costs are determined as a function of the value
of the short-time autocorrelation at the prospective peaks and the frequency dif-
ference between neighboring frames. The result is used as an estimate of the local



fundamental frequency for each frame of the speech signal.

The fundamental frequency estimate allows the identification of regions of sta-
ble voicing. In general, we consider that stable regions are separated by significant
jumps in fundamental frequency. If these regions are too small, we neglect them as
spurious. Formally, we say that a frame is stably voiced if it has not been classified
as silent, fricative, or clipped and it belongs to one of a set of five or more consec-
utive frames not separated by a significant change in fundamental frequency. After
this classification, any frame that has not yet been classified (as either unvoiced or
as stably voiced) can implicitly be identified as voiced but either aperiodic or un-
stable. We will see that this “frame classification” approach allows the generation
of statistics that correlate well with perceptual judgements of extent of dysphonia.

2.4 Deriving discriminant features

The “frame classifier” algorithm described in the previous section and in Ap-
pendix B provides a framework for computing a wide variety of discriminant fea-
tures over a data set. Some such features are quite simple to compute; others can
be significantly more complex. In general, we consider aggregate statistics for each
recording; however, one could easily extend this method to the identification of spe-
cific pathological features in the speech signal. Here we describe some of the more
successful discriminant features that we have investigated. In following sections, we
evaluate these discriminant features. We also discuss methods of combining these
features to produce a discriminant that is more highly correlated with the perceptual
ratings for our database.

e Unstable-to-voiced ratio. One of the goals behind the frame classification
algorithm is the identification of aperiodic segments within a speech signal.
The unstable-to-voiced ratio provides an aggregate indication of how much
voiced speech is either aperiodic or unstable due to frequency shifts or voice
breaks.

e Stable voicing fraction. The stable voicing fraction is the ratio of the
number of stably voiced frames to the total number of frames in the recording.
This ratio provides an indication of the overall extent to which a passage is
“stably voiced,” which the preliminary investigation suggested correlates well
with extent of dysphonia.

e Mean voiced harmonic-to-noise ratio. The mean voiced harmonic-to-
noise ratio provides an indication of the overall periodicity of the voiced por-
tions of the signal. Speech with aperiodicities and unstable fundamental fre-
quencies have a lower voiced HNR.

e Mean stable harmonic-to-noise ratio. This ratio indicates the overall
periodicity of stably voiced portions of a signal.

e Signal length. A statistically significant difference in mean time taken to
speak a passage has been noted between dysphonic and normal speakers, and



between dysphonic patients before and after treatment with Botox injection
[12]. This feature, however, will generally also depend on speech rate, and so
it may not be a generally useful discriminant.

e Mean stable length. The “mean stable length” is the average number of
frames in a “stably voiced” portion of the signal. This feature should be
affected by voicing breaks and frequency shifts, and thus it may serve as an
indication of the severity of dysphonia.

e Mean frequency deviation. The mean frequency deviation is the average
magnitude change in fundamental frequency from frame to frame within a sta-
bly voiced segment. This feature should provide an indication of fluctuations
in the fundamental frequency such as those produced by vocal tremor.

2.5 Discriminant evaluation

In order to evaluate the effectiveness of these SD discriminant features, we com-
pare them to the ratings provided by five trained listeners. Each of the listener was
asked to provided a score for “degree of dysphonia” on a one-hundred point scale.
The perceptual nature of these ratings prevents us from comparing these scores di-
rectly among the listeners or between our algorithm and the the listener’s scores.
Instead, we consider that the only reliable information provided by these ratings is
the rank ordering of the speech tokens.

In order to compare our discriminant features to the perceptual judgements of
of these listeners, we rank-order the tokens based on the discriminant, and then
compute the Spearman rank correlation [6], 75, between these ranks and the ranks
for each listener. An overall score for a particular discriminant is calculated as the
mean value of the rank correlations with each listener. We have noted that Kendall’s
coefficient of concordance for the five listeners is equal to 0.83. This coefficient is
approximately equal to the average pairwise rank correlation over all pairs of judges
[6]. Thus, a discriminant with mean rank correlation of approximately 0.83 would
agree with the judges as well as the judges agree with themselves.

3 Results

We have organized the evaluation of results from our algorithmic methods into
three “experiments.” The first experiment evaluates the use of each feature de-
scribed in Section 2.4 as a discriminant for determining the extent of dysphonia.
The second experiment examines ways of combining multiple features to produce
a combined discriminant. The third experiment examines how well the combined-
features method operates when “trained” and “tested” on separate data sets.

3.1 Experiment #1: Feature Evaluation

Table 1 shows the mean rank correlation for each of the features provided in
Section 2.4. For N = 37, we reject the null hypothesis of statistical independence at



Feature Judge 1 | Judge 2 | Judge 3 | Judge 4 | Judge 5 | Mean
U-to-V Rat 0.7037 | 0.5967 | 0.5510 | 0.6265 | 0.7611 | 0.6478
Stable VF -0.7988 | -0.7859 | -0.7350 | -0.6839 | -0.8156 | -0.7638
Voiced HNR | -0.6687 | -0.5638 | -0.5165 | -0.5851 | -0.6709 || -0.6010
Stable HNR || -0.5342 | -0.4446 | -0.3783 | -0.5951 | -0.5557 || -0.5016
Signal Leng || 0.4364 | 0.5268 | 0.5912 | 0.3935 | 0.4655 || 0.4827
Stable Leng || -0.6105 | -0.4889 | -0.4230 | -0.4419 | -0.6288 | -0.5186
Frq Dev 0.6430 | 0.5032 | 0.5056 | 0.5974 | 0.6869 | 0.5872

N O Ut W N T3k

Table 1: Spearman rank correlations between each of seven features and the five
judges.

p < 0.01 for rank correlation values of |rs| > 0.42. Nearly all of the features presented
here show statistically significant rank correlations with each of the judges.

The feature with the largest mean rank correlation is the “stable voicing frac-
tion” with a mean rank correlation of -0.7638. Since only the rank order of the
discriminant contributes to the rank correlation, we can easily negate or invert the
discriminant to achieve a positive correlation. Thus, this correlation indicates high
correlation with the perceived extent of dysphonia. It does, however, fall below
the mean inter-judge rank correlation of 0.83. The “unvoiced-to-voiced ratio” and
“voiced HNR” also show good correlation with a mean rank correlation of 0.6478
and -0.6010, respectively.

3.2 Experiment #2: Combining features into a single discriminant

Each of these features captures a somewhat different aspect of the the underlying
signal. Thus, one might expect that combining the information from several features
into a single discriminant might produce a discriminant with improved performance.
Here, we examine the usefulness of producing a new discriminant, d, as a linear
combination of N calculated features, f;, as

d=aifi+aafa+ - +anfy (1)

using weights «;. For simplicity, we normalize the features to have zero mean and
unit variance.

The primary challenge with this method is identifying weights that yield a dis-
criminant with improved correlation. This requires a training procedure to identify
appropriate weights. We have examined two such procedures. The first involves a
randomized search of the parameter space. In this method, a number of random
weights are generated, and the mean rank correlation between the resulting discrim-
inants and the listener’s ratings are computed. The sets of weights with maximum
mean rank correlation are then perturbed randomly in a manner similar to simulated
annealing. This procedure, while somewhat slow, can produce parameter settings
that produce discriminants with rather high mean rank correlation. Because of its
speed, however, using this method to identify an appropriate set of features (that
is, using it for feature selection) can be quite laborious.

10



Feature set | MMSE r, | Refined 7,

[2 5] 0.7909 0.8004

[2 6] 0.7743 0.7796

[2 3] 0.7629 0.7677
[2 5 6] 0.7954 0.8037
[2 3 5] 0.7920 0.8032
[12 5] 0.7906 0.8028
256 7] 0.8032 0.8156
[1235] 0.7983 0.8051
235 6] 0.7959 0.8084

Table 2: Three best feature sets for two, three, and four features. The resulting
least-squares and refined rank correlations are listed.

A second procedure produces slightly lower mean rank correlations, but is signif-
icantly faster and highly repeatable. This procedure involves projecting a “target”
vector with one dimension per recording in the database onto the subspace spanned
by the N discriminants. That is, if b is the target vector and A is a matrix with
the set of N f;’s as columns, then we are seeking a least-squares solution to the
overdetermined system defined by

Ax = b. (2)

Identifying an appropriate target vector is not trivial because our “target” is truly
ordinal in nature. However, we have found that good results are achieved by using
a vector derived from the ranks given by the trained listeners. To form this target
vector, we take the mean of the listener’s ranking vectors, rank order the result,
and subtract the mean. With such a target vector, a least squares solution may be
readily obtained. The speed of this procedure suggests that we might use the least-
squares technique for the selection of an appropriate feature set, and then refine the
results using the randomized optimization method.

For our second experiment, we have used the least-squares technique to identify
the three best feature sets with two, three, and four features. These feature sets
were then refined using the random optimization method described above. Table
2 presents the results. The addition of a second feature increases the mean rank
correlation from 0.76 to 0.80. Additional features beyond two only increase the rank
correlation slightly beyond this to a maximum of 0.8156 with four features. These
scores suggest that we are at a knee in the performance curve and that further gains
may require correspondingly more features. The rank correlations we obtain here
are better than the best single-feature rank correlation, but is still below the mean
inter-judge rank correlation of 0.83.

The vector-space interpretation of the search for a combined discriminant sug-
gests a potential problem with this approach. In general, as we introduce more
features, we are able to produce discriminants that better match the the perceptual
rankings. However, these features do not necessarily need to correlate with spas-
modic dysphonia. Any linearly independent (but potentially random!) feature has
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the potential to improve correlation because of the corresponding increase in the
dimension of the subspace spanned by the features. In the limit, if we have one
(linearly independent) feature for each recording in our database, we can match our
target vector perfectly, even if our features are completely random. In such a case,
we will have strongly overtrained our system, and its performance on other data is
likely to be significantly degraded. Because of this, we have restrict our attention
to small feature sets for this experiment. In the next section, we examine how well
this method operates when trained and tested on different sets of data.

3.3 Experiment #3: Training and testing on different data sets

In the previous experiments, we identified multiple-feature discriminants by
“training” a set of weights for linear combination of the features. As was indi-
cated, we must be careful that we are not overtraining our discriminants on the
present data, thus inflating the results obtained on this data set at the expense of
results on a larger data set. To examine the wider applicability of our techniques,
here we will examine the results when we train on one subset of the database and
test on another (disjoint) subset.

The procedure for this experiment is as follows. We first partition the database
into multiple pairs of training and testing sets. The training and testing sets that
form one pair are disjoint and each contain 18 recordings from the original database.
To assure a reasonable distribution between the training and testing sets, each par-
tition is chosen so that the mean rank of the two sets is approximately equal. For
each partition, we “train” four discriminants, one each with one, two, three, and
four features. The discriminants are trained by selecting the “best” feature set of
all sets with the desired number of features. The “best” feature set has the highest
mean rank correlation as identified using the least-squares technique described in
the previous section. The resulting feature weights are then used to compute dis-
criminants for the testing set, and the mean rank correlation is computed for this
set.

Table 3 shows the results of this procedure for four partitions of the database.
We can note from this data that there is significant variability between the rank
correlation for the training set and the testing set. Despite this variability, though,
most of the testing set correlations are still fairly high, especially in the first two
partitions. For these examples, it is not clear that the use of additional features
to improve the rank correlation of the training set actually improves the rank cor-
relation for the testing set. In fact, the evidence suggests that additional features
may actually degrade performance. Except for the first partition, the testing set
performance is the best with the single-feature discriminant.

4 Discussion

The results of our three experiments have shown that we can produce a discrimi-
nant that correlates well with perceptually-rated degree of dysphonia. In particular,
the first experiment indicates that the “stable voicing fraction” that we have em-
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Features | Train ry | Test rg
Partition #1 2] 0.7415 | 0.7288
[2 5] 0.8410 | 0.7672
257 0.8463 | 0.7397

567 | 0.8430 | 0.7393
Partition #2 2] 0.6827 | 0.8303

25 0.7429 | 0.8208

] | 0.7504 | 0.8208
235 | 0.7504 | 0.8054
Partition #3 | [2] 0.7107 | 0.7881
25 | 0.7658 | 0.7857
127 | 0.8247 | 0.5828
247 | 0.8304 | 0.5619
Partition #4 | |2 0.7750 | 0.6869
25 | 0.8021 | 0.6782
[235] | 0.7990 | 0.6446
[2356] | 0.8033 | 0.6202

Table 3: Rank correlations for four training/testing partitions of the database.

ployed here is a strong indicator of severity of dysphonia. Some of the other features,
such as the “unstable-to-voiced ratio” and the “mean harmonic-to-noise ratio” also
serve as good indicators of severity. Still, none of our single feature discriminants
agree with the judges as well as the judges agree with one another.

The second experiment indicates that we can improve discriminant correlation
somewhat by combining multiple features into a single discriminant. In doing so,
however, we must be mindful of the consequences for the discriminant’s perfor-
mance on a larger data set. The data for the second experiment suggests that the
best tradeoff between high correlation and low complexity is a simple two-feature
discriminant.

The third experiment shows that a multi-feature discriminant trained on one
half of our database does not necessarily produce improved results on the other
half. This throws doubt on whether the multi-feature discriminants generated in the
second experiment will actually generalize well to a larger data set. The feature-
combination process is inherently statistical, and our database may not be large
enough to produce results that can generalize to a larger population of patients.

We can obtain another indication of the general applicability of a particular
discriminant by testing it on recordings of speakers who do not have spasmodic
dysphonia. To this end, the seven features described in 2.4 were computed for three
“control” recordings of the author reading the “Man’s First Boat” passage. The
resulting rank (out of 40) for each recording is presented in Table 4. Recall that fea-
tures 1, 5, and 7 have a positive correlation with SD extent, so the control recordings
should have very low ranks; features 2, 3, 4, and 6 exhibit a negative correlation so
we expect high rankings. Some of the features, such as the mean frequency devia-
tion, do show the expected trend. For others, these “control” recordings are ranked
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# Feature Control #1 | Control #2 | Control #3
1 | U-to-V Rat 7 1 3
2 Stable VF 14 25 23
3 | Voiced HNR 31 38 35
4 | Stable HNR 21 30 27
5 | Signal Leng 4 17 1
6 | Stable Leng 28 35 33
7 Frq Dev 1 4 2

Table 4: Rankings (out of 40) for three “control” recordings made by the first author.

somewhere near the middle of the database, which seems to suggest that the author
is afflicted by a moderate form of spasmodic dysphonia. Particularly interesting
is the fact that the stable voicing fraction, which achieved very good correlation
with SD extent, does not rate the control recordings as “better” than most of the
recordings in the database. These preliminary suggest that mild dysphonia may be
characterized by more subtle features than the aggregate statistics we have com-
puted here can capture. They further suggest the need for a more detailed study of
these statistics for dysphonic and non-dysphonic patients.

While we certainly would not suggest that the discriminants identified in this
study form the sole basis of an assessment of patients with SD, such scores could
potentially be used as one component of the clinical assessment. Because these dis-
criminants are obtained algorithmically, they are less subjective than similar scores
provided by a human observer trying to identify aperiodic segments or frequency
shifts. Further, we suggest that the framework presented here is generally useful
for the processing of dysphonic speech. One could use it to explore the correlation
between various features of the waveform and characteristics such as breathiness or
strain-strangled quality. More advanced features that incorporate contextual infor-
mation might also be developed. In particular, additions such as a text alignment
system or a prosody model might prove useful for examining and identifying aspects
of spasmodic speech, such as voicing breaks or vocal tremor.

5 Conclusion

In this study, we have presented a system for processing continuous-speech
recordings of dysphonic speech. This system classifies frames of audio as stably
voiced, unstable/aperiodic, silent, fricative, or clipped while also providing a funda-
mental frequency estimate and a periodicity rating for each frame. The information
returned by the system allows the calculation of various statistics from continuous
speech recordings. We have found that one such statistic in particular, the “sta-
ble voicing fraction,” correlates very well with the degree of dysphonia as rated by
five trained observers. Other features correlate also exhibit significant correlations
with extent of dysphonia. Methods of combining features to produce a more highly
correlated discriminant are examined, but the reliability of such discriminants on
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larger data sets is uncertain.
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A Appendix: Periodicity analysis

Determining the fundamental period (and thus, the fundamental frequency) of
a signal is a common task for speech and audio processing, and a significant body of
research has been devoted to this problem. Hess [8] and Hermes [7] provide a good
overview of these so-called “pitch detection” algorithms. In some cases, we may also
be interested in the extent to which a signal varies from perfect periodicity over a
short time frame. Unfortunately, most fundamental frequency estimation algorithms
do not also indicate the extent of periodicity. More recently, algorithms have been
presented that do provide this information. One such algorithm is presented by
Boersma [2]. In this work, we employ a modification of Beorsma’s method for
periodicity detection.

A.1 Short-term autocorrelation and Boersma’s method

Most time-domain, autocorrelation-based fundamental frequency tracking algo-
rithms operate on the basis of an analogy to the autocorrelation of random processes
which are wide sense stationary and ergodic. For the WSS, ergodic random process
x(t), we compute the normalized autocorrelation function r,(t) as,

_Ex(0)x(n)]  [x()x(t—T)dt
E[x2(0)] —  [x*(t)dt

3)

where E[] indicates the expectation of a random variable. The second equality
in (3) arises from the assumption of ergodicity in correlation. 7,(7) has a global
maximum of r,(7) = 1 at 7 = 0. If x(¢) is a periodic process with fundamental
period Tp, then r,(7) will also have global maximum at each 7 = kTy, where k € Z.
By locating maxima of r,(7), one can identify the fundamental period (and thus
the fundamental frequency) of x(t).

For pseudo-periodic processes, the value of the autocorrelation function is also
useful for determining “how periodic” the process is. Suppose that we let y(t) =
x(t)+v(t), where x(t) is periodic with period T and v () is a white noise process that
is uncorrelated with x(¢). The autocorrelation function of the sum of uncorrelated
processes is the sum of the autocorrelations, so

r2(7) + Nod(T)

ry(T) = No +12(0)

(4)
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where Ny is the power of v(¢). From this, we can determine the harmonic to noise
ratio, which is defined as the power of the “periodic part” of y(¢) to the “non-periodic

part,” as
ry(To) rz(0)
HNR = —% = ) 5
1 — ’f'y(To) N(] ( )

Thus, the value of r,(7) at 7 = T acts as an indicator of the periodicity y(¢).

For real applications of a periodicity detector, we generally need to estimate
the fundamental period of a non-stationary signal that may be nearly periodic over
some finite support. To do this, we apply a symmetric, finite-support window w(t)
to the signal z(t) before calculating the autocorrelation. This yields the normalized
short-term autocorrelation function, 7/ (7), which is defined as

Jz)wt)z(t — T)w(t — 7)dt
[ 22(t)w?(t)dt '

Here, if z(t) is locally periodic with period Ty over the time support of w(t), then
rl.(7) will have a relative maxima at 7 = Ty. Unfortunately, the window function
also introduces a taper into r. (), which complicates the identification of the correct
lag value for the signal’s fundamental period [13].

Boersma suggests that this taper can be eliminated by dividing 7.(7) by the
autocorrelation of w(t). No justification is provided; however, if we view 7(7) as

an estimator of r,(7), we can see that the expected value of r/ (1) is

r () =

(6)

~ Jw®)w(t —T)dt

 Jw(t)dt
us, 7..(7) 18 a bilased estimator of r,(7), with a bilas equal to the normalize

Th ' (1) i biased i fry(7) ith a bi 1 h lized

autocorrelation of w(t). Dividing by the the autocorrelation function of the window
produces the unbiased estimator

E[r(1)] 72 (7). (7)

() = o) ®

Note that the variance of this estimate can become significant for large values of 7
[9]. The resulting estimate of the long-term autocorrelation function proves to be a
useful method of detecting local periodicity in a signal, providing both an estimate
of the period and the degree of periodicity.

A.2 Extensions to Boersma’s method

Boersma’s method, while quite useful, is not perfect. In particular, consider
the use of (8) to calculate the harmonic to noise ratio. For this calculation to be
meaningful, 7, (7) must be no greater than one. It turns out, however, that (8) is not
guaranteed to remain less than one. Boersma suggests that autocorrelation values
that are greater than one should be “reflected through 1”7 before computing the
harmonic to noise ratio. Again, no justification is provided for this procedure, and
it’s use is somewhat questionable. By modifying the calculation of our estimated
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autocorrelation, however, we can guarantee that our short-term autocorrelation will
never exceed one.

The basic idea is that we compute the normalized correlation between a win-
dowed signal and its shifted counterpart. That is, we want our candidate autocor-
relation to have the form

(21(1), 22(2))
Iz @)z

Then, by the Cauchy-Schwarz inequality, 7., .,(7) < 1. Note that (6) already has
this form. However, we would like to meet another constraint as well. When the
underlying signal, z(t) is periodic with period Ty, we want 7, ,,(Tp) = 1. This
ensures that the harmonic to noise ratio calculation given in (5) is still valid. One
way to satisfy these constraints is to use

(9)

f;l,ZQ (T) =

21(t) = z(t)VJwt)w(t—r1) (10)
zo(t) = z(t—71)y/wt)w(t —1), (11)

where w(t) is a symmetric window. If z(t) = z(t — Tp), then z1(t) = 22(t) and

7, ,(7) reduces to 1. This yields a first alternate form for the local estimate to the

autocorrelation, 7/ (7), which is given by

f x(t)w(t)a:(t — T)w(t — 7)dt ‘
\/f:n2 w(t —7)dt [ wt)z?(t — T)w(t — 7)dt

(12)

Both (12) and (8) are nonideal in one important respect. In both of these
calculations, the estimated autocorrelation values for increasingly large values of 7
are computed with progressively less data support. This occurs because the non-zero
portion of the effective window w(t)w(t — 7) shrinks as 7 increases. Because of this,
Boersma suggests that the maximum useful value of 7 is one-third of the window
length. In particular, 7/ (7) and 7,(7) are undefined for 7 greater than the window
length. We can alleviate these problems by defining the short-term autocorrelation
function such that it uses a constant window for all 7. This suggests a second
alternative form of the short-term autocorrelation function, given by

Jax(t+7/2wt)x(t — 7/2)dt
\/facQt—i—T/Q dt\/fx2t—7/2 Jw(t)dt

There are several important aspects of this equation. First, we are windowing
the product of shifted versions of z(t) rather than simply multiplying shifted versions
of z(t)w(t). This provides a single window for all 7, as desired. Second, we have
introduced a different time shift to both “copies” of z(t) and the window w(t).
This is necessary because, to prevent the introduction of a lag-dependent delay, the
effective window of z(¢)z(t — 7) must be centered at 7/2. In (12) and (8), this was
achieved by using w(t)w(t — 7) as the effective window. Here, we achieve this goal
by shifting x(¢) in opposing directions while leaving w(t) “stationary.”

(7 =

(13)
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We suggest that (13) is an ideal theoretical definition for the short-term auto-
correlation for several reasons. First, as with 7,(7), 7. (Tp) = 1 when z(t) is periodic
with period Ty. Second, by construction we know that 7, (7) < 1, which allows (5)
to always be meaningful. Third, the computation uses a uniform support size for all
7. Finally, 7.(7) is produces a meaningful result for all 7, regardless of the window
length. Unfortunately, as we will see in the next section, 7, (7) requires significantly
more computation than either 7 (7) or 7.(7).

A.3 Implementation Issues

Though developed in continuous time, the various short-term autocorrelation
functions presented in the previous sections can readily be implemented in discrete
time. The primary concern in doing so is the loss of resolution in 7 when identifying
peaks on the short-term autocorrelation function. Assuming that all signals are
bandlimited, we can ideally reconstruct the continuous-time short-term autocorre-
lation function from the discrete-time short-term autocorrelation function through
sinc interpolation. In particular, Boersma suggests using sinc interpolation to refine
estimates of maxima on the autocorrelation function. In practice, we have found
that using parabolic refinement of local maxima actually produces better accuracy
with significantly less computation.

Another potential difficulty that arises from sampling occurs in the definition

of 7,.(t) (13). Here, we are shifting x(¢) by the value 7/2. To implement this in
discrete time, though, we must shift by an integer number of samples. By either
upsampling our signals by a factor of two or by assuring that they are bandlimited to
fs/4, we can replace 7/2 by an integer shift. Then, we can perform the computation
without aliasing. This is effectively the same operation required when computing
the discrete-time pseudo-Wigner distribution [3].
' (7) can be computed efficiently by using the fast Fourier transform to compute
the necessary correlations. Since the autocorrelation function of the window can
be computed off-line, the algorithm requires only two FFTs for each short-term
autocorrelation function that we wish to calculate. To prevent artifacts from the
circularity of DFT-based convolution, it is necessary for the DFT length to be greater
than 1.5 times the window length [2]. The computation of 7,(7) can be computed in
a similarly efficient way. In this case, however, we need four FFTs per frame — two
each for the correlations in the numerator and the denominator of (12). (The results
of the two correlations in the denominator are time-reversed versions of one another,
so we only need to compute one of them.) The computation of both forms of the
short-term autocorrelation function has a complexity of O(N log, V) operations per
frame, where N is the DFT length.

Our “ideal” short-term autocorrelation function, 7 (7), is not so efficient to com-
pute. The numerator of (13), with its two distinct time shifts, cannot be expressed
as a simple correlation. This further means that we cannot perform this calculation
with the fast Fourier transform. The resulting computational complexity is O(M N)
per frame, where N is the window length and M is the number of values of 7 that
we evaluate. For the present application, we are computing autocorrelations for one

f
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hundred frames of data per second over 20 to 40 seconds; thus, the computational
requirements for 7 (7) become rather significant.

Because of the computational complexity required for 7, (7), we employ the short-
time autocorrelation function given by 7, (7) for periodicity detection in this study.
We compute 7(7) as

DET{ [DFT{alnjuwfn]}[*}

\/DFT—l{DFT{x2[n]w[n]}W* [k]}\/DFT—l{DFT{x2[n]w[n]}*W[k]}
(14)
where z[n] is one frame of the input signal, w[n] is the window function, and Wk]| is
the DFT of the window function. As previously noted, the terms in the denominator
are time-reversed versions of one another, so the entire computation requires only
four DFTs per frame.

B Appendix: Frame classification algorithm

Here, we describe the frame classification algorithm that forms the basis of our
discriminant calculation method.

1. Define a frame segmentation. Following [2], we use a frame size which
is equal to three times the period of our minimum expected fundamental fre-
quency. We use a minimum fundamental of 50 Hz, which yields a frame size
of 60 ms. Our frame step size is 10 ms.

2. Filter the input signal. As a preprocessing step, we lowpass filter the input
signal to 900 Hz. This reduces the susceptibility of the periodicity detection
to frequency modulation.

3. For each frame:

(a) Calculate the short-time autocorrelation. Using (14), we compute
the short-time autocorrelation function of one frame of the lowpass fil-
tered signal. We use an FFT length equal to the smallest power of two
greater than the window size.

(b) Locate peaks of the autocorrelation function. We identify the six
most likely peaks within the range of lags corresponding to a frequency
range of 50 Hz to 400 Hz. Following [2], the “most likely” peaks are
determined subtracting a 0.02 per octave discounting factor from the
autocorrelation function’s value. The location and height of each peak is
refined using parabolic interpolation.

(c) Calculate frame statistics. The RMS value, spectral centroid, and
the maximum (windowed) value are computed for the frame using the
original (unfiltered) signal.
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4. Identify best frequency path. Using the Viterbi algorithm, we identify the

lowest-cost path through the potential peaks of the autocorrelation surface.
The cost of a transition is equal to 0.2 times the number of octaves jumped
less the value of the autocorrelation function at the next frame.

Identify unvoiced frames. Unvoiced frames are identified using the follow-
ing rules:

o A frame is fricative if its spectral centroid is greater than 400 Hz.

e A frame is silent if its RMS value is less than 0.01 times the maximum
signal value.

e A frame is clipped if the ratio the the frame’s maximum value to its mean
squared value is less than 10 and the frame’s peak autocorrelation value
is less than 0.8.

Any frame that is classified as one of the above is considered to be unvoiced.
We perform three binary erosions and one binary closure on the remaining set
of voiced frames to remove frames that transition from voiced to unvoiced.

. Identify stably voiced frames. In this step, we collect consecutive frames

into groups of stably voiced frames. These groups are separated by jumps in
fundamental frequency in which the lower of the two neighboring frequencies
is less than 0.65 times the higher. Any such group that contains fewer than 5
frames is considered to be unstable.

Calculate features. Having classified each frame of the audio signal, we
can now calculate features as candidate discriminants for dysphonic severity.
There is a wide array of potential discriminants; some of these are discussed
in Section 2.4.
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