
Automatic Segmentation of Sung Melodies

Norman H Adams

December 15, 2002

Abstract

The present work explores several techniques for the automatic segmentation of
sung melodies. Most contemporary music information retrieval (MIR) systems require
sung queries to be segmented into disjoint regions representing individual notes for
database searching. The fundamental philosophy adhered to throughout this work
is that a melody segmentation algorithm should rely primarily on fundamental pitch
information. Three classes of segmentation algorithms are explored: predictive filter-
ing, LMS detection and curve fitting. Two different predictive filter formulations are
presented, Kalman filters and adaptive RLS filters. A single-node neural network, or
perceptron, is implemented as a LMS detector. Lastly, a curve fitting algorithm is
developed. The curve fitting algorithm makes use of dynamic programming to keep
the computational complexity manageable.

1 Introduction

The music segmentation problem can be viewed as one component of the transcription
problem. We are given a recording of a passage of music and wish to reconstruct the
musical score the performer used in creating the recording, assuming the piece is based on
a written score.

Sung melodies are monophonic, no more than one note is ever articulated at once.
For monophonic music transcription, the audio recording must be partitioned into disjoint
regions in time, with each region corresponding to one note. In particular, this work will
explore a variety of techniques for segmenting melodies sung by untrained singers.

Three broad techniques are explored: predictive filtering, neural networks and curve
fitting. Two different predictive filter formulations are presented in Chapter 3, Kalman filters
and adaptive RLS filters. A single-node neural network is implemented as a perceptron in
Chapter 4. A perceptron is equivalent to a LMS filter with a threshold decision performed
on the filter output. Lastly, a curve fitting algorithm is presented in Chapter 5. The curve
fitting algorithm makes use of dynamic programming to keep the computational complexity
reasonable.

The next section provides some background and motivation for this work. The
fundamental approach is stated in Chapter 2. A pitch tracking algorithm first presented
in [5] is used throughout the present work, and is described in section 2.2. The global
performance metric used to compare the various techniques is described in section 2.3.

This research is a part of the ongoing MUSART project, a collaboration between
the University of Michigan and Carnegie Mellon University to develop a robust music infor-
mation retrieval (MIR) system for aural queries.

1.1 Background & Motivation

The rapidly increasing number of digital audio files available on the Internet motivates the
question of how someone might find a particular piece of music when all they know of the
piece is the melody, rhythm or timbre. The music information retrieval (MIR) systems
currently being developed hope to answer this question.

1

Most individuals, lacking any specialized music training, remember a piece of music
by it’s hook, riff, theme, or chorus. That is, they remember some characteristic segment of
the melody. They have no knowledge, or interest, in the precise notes that define the tune.
As such, it is desirable to be able to search the Internet, or any other digital audio database,
with a sung melody as the only query input.

The final years of the 20th Century were witness to the first concerted developments
in music information retrieval. The MELody inDEX (MELDEX), developed by the New
Zealand Digital Library, was one of the first MIR systems, and to this day remains one of
the more prominent systems available [20]. MELDEX accepts a sung melody as input and
searches its database of 9400 folk tunes, returning the tunes with similar melodic segments.
One of the restrictions the system places on the user is that every note must be separately
articulated with a ’da’ or ’ta’. MELDEX segments the recorded audio file with a constant
amplitude threshold. If the user sung a continuous melody or lyrics, the algorithm would
be unable to isolate separate notes [20]. It has been shown that even when the user adheres
to this restriction, the majority of errors MELDEX makes result from this rudimentary
segmentation method [7, 19, 20].

Several other MIR systems have been developed since MELDEX [4, 15, 16, 21], all
of which use some sort of transcription of a sung query for searching. The transcription is
found by computing a pitch-contour, or pitch-track, from the sung query and segmenting
this contour into disjoint rejoins representing individual notes. The segmentation step is
performed using either an amplitude threshold (not necessarily constant) or a manually
input metronome track.

Before proceeding we should clarify why the above restriction is undesirable. For
untrained singers it is often simpler to sing a melody with the lyrics they are familiar with,
the lyrics aid the singer in reproducing the correct pitches and rhythms. From a more
technical perspective, the lyrics themselves contain information that could be used by the
MIR. To date, such phonetic-stream analysis has yielded limited results, but the method is
still in its infancy [4].

It would be reasonable to propose circumventing the segmentation problem alto-
gether if it is so troublesome. One alternative that has been explored is the use of the
pitch-track itself in performing the database search. Rather than completing the transcrip-
tion of the query and using the transcribed notes to search the database, use the pitch-track
directly. While this method has been shown to be promising in some circumstances, it is
computationally intensive and cannot be easily scaled to large databases [4, 18].

As mentioned above, initial attempts to solve the melody segmentation problem use
a simple amplitude threshold [7, 20]. This approach, of course, only works when the singer
inserts brief pauses between every note. More sophisticated approaches have been explored.
[20] also proposes the use of a smoothed discrete derivative of the pitch-track to perform
segmentation. The pitch-track is partitioned into 20ms regions and if any two consecutive
regions differ in pitch by more than 50 cents a new note is instantiated. While this approach
does partially loosen the above restriction, performance is mediocre, as shown in section 2.3.

Hidden Markov Models (HMM) were proposed in [23] to aid with segmentation,
however the application was somewhat different. The author was exploring music segmen-
tation for use with automatic music accompaniment systems. In this case the musical score
is also available to the algorithm, and hence the problem is closer to score following than
blind segmentation. The use of HMMs was extended to unsupervised segmentation in [3],
but with mixed results. HMMs were more successfully employed in [9] to segment piecewise
constant signals corrupted by Gaussian white noise. While the pitch-tracks generated from
sung melodies do resemble piecewise constant signals, the corrupting ’noise’ is colored and
nonstationary. The assumptions made in [9] are too restrictive to apply the method directly
to segmenting sung melodies.

A related music segmentation problem was addressed in [25] with Kalman filters.
A Kalman filter was used to track every partial detected in a recording of a brass quartet.
When the Kalman prediction failed to match the observed data, a note-change was assumed

2

to have occurred. The method worked well for a brass quartet, however it is unclear whether
a Kalman filter is well-suited to predict the more volatile pitch-tracks produced by sung
melodies. The Kalman filter is explored in Chapter 3.

Automatic segmentation of tonal languages was explored in [8]. Segmenting tonal
languages is similar in some regards to segmenting melodies in that tonal languages associate
meaning to different pitches. It was found in [8] however that human segmentation of
tonal languages relied heavily on contextual information, and hence could not be reliably
automated.

While automatic segmentation of sung melodies is still a relatively new field, there
are two related audio segmentation problems that have been more thoroughly explored. Au-
tomatic segmentation for continuous speech recognition is a mature research area, numerous
techniques have been explored with several notable successes [1, 24, 28]. These methods all
make use of a very different set of features than considered here however. Similarly, auto-
matic segmentation of audio content uses features such as spectral shape and zero-crossings
(to detect regions of pure dialog vs regions with other material, for example) [6, 14, 22, 30].
As described below, the fundamental approach here is to detect note changes based only on
pitch-track information, without considering any phonetic-stream information.

2 Approach

A fundamental assumption behind this work was that a sung melody should be segmented
using primarily pitch information. It is not uncommon for a singer to sing a melodic passage
with constant volume and timbre. Only the pitch is changing, all other relevant features
are constant. This is not to say amplitude or phonetic-stream information should not be
used, but that the segmentation algorithm must be able to work even when these features
contain no information useful to segmentation. In this work no phonetic-stream or timbrel
information was considered. Amplitude information was incorporated into the perceptron
described in Chapter 4, but aside from this only pitch information is utilized.

2.1 Recorded data

All of the sung melodies used in this research were recorded in the School of Music at
the University of Michigan. Five students without any vocal training sang a collection of
ten popular tunes, from the Beatles’ ”Hey, Jude” to Richard Rodgers’ ”Sound of Music”,
four times each. All recordings were mono, 16 bit. The sampling rate was 44.1 kHz. The
recordings are not professional however, and do contain some background noise and the
occasional student giggle. Of the 200 files in the database, 80 were manually segmented for
training and analysis of the algorithms below.

2.2 Pitch track

The segmentation methods developed here make use of an autocorrelation-based pitch
tracker developed in [2, 5]. The pitch track algorithm takes the input audio file and slices it
into frames of length 10ms. The fundamental frequency is then computed for each frame.
The algorithm returns three discrete signals, all of which are indexed by the same 10ms
interval: the frequency track, the autocorrelation track and the root mean square (RMS)
amplitude track. The frequency track is the reciprocal of the location of maximum auto-
correlation. The autocorrelation track is the correlation value at this maximum. And the
amplitude track is the root mean square value in each 10ms frame. The autocorrelation
track can be viewed as a confidence measure in the frequency estimate for each frame.

Rather than work with the frequency track directly, the frequency track is converted
to MIDI (musical instrument digital interface) pitch number. If fk is the frequency track

3

value at time step k, then the pitch track value is given by,

pk = 12 · log2

(
fk

440

)
+ 69. (1)

For example, the A natural below middle C is assigned the MIDI number 69 (440Hz) and
the A# below middle C is assigned the MIDI number 70 (466Hz). MIDI scaling aids in
interpretation of the pitch track. Note that in general pk is not an integer.

The pitch tracker has the useful property that whenever it cannot confidentially
estimate the pitch for a given frame, it outputs a fundamental frequency of zero. Hence
pauses and unvoiced phonemes are represented by zero in the pitch track. The practical
result of this that the pitch track itself performs a partial segmentation automatically.
In fact, this rudimentary segmentation is roughly equivalent to the amplitude threshold
segmentation described in the previous chapter. Note that the pitch track never pins to
zero when a note is being clearly articulated.

In detection terminology, the pitch track performs a segmentation with zero false-
alarm probability and a rather high miss probability. In this context, a false-alarm is
mistakenly deciding that a note-change occurred when in truth one did not. Similarly, a
miss is mistakenly deciding that a note-change has not occurred when in truth one has.
Hence, the goal of the segmentation algorithm developed here is too reduce the miss rate
without substantially increasing the false-alarm rate.

The output of the pitch tracker is first inspected to find the regions where the pitch
track is nonzero. Very short regions, of length less than 6 frames (60ms) are assumed to
be spurious and discarded. Regions of length less than 20 frames (200ms) are assumed to
only contain one note and hence not analyzed for note-changes. These values were found
experimentally.

A sample pitch track, along with a manual segmentation, is shown in Figure 1. This
pitch track was generated from the tune ”Rock a bye baby,” the lyrics corresponding to this
portion of pitch track are ”ro ’ka bye ba-by in the.” Note that the manual segmentation is
represented as a piecewise constant function. The specific values of each constant region of
of no interest here, they were computed simply as the weighted average of the pitch track
within each region (weighted by the correlation track). The beginning and end of each
constant region represent the manual segmentation.

0 1 2 3
50

52

54

56

58

60

62

64

66

68

70

Time (s)

MID
I pit

ch n
um

ber

Pitch track (blue) & manual segmentation (red)

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Cor
rela

tion

Correlation track

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (s)

RM
S a

mp
litud

e

Amplitude track

Figure 1: The left plot shows a sample pitch track (blue) along with a manual segmentation
(red). This pitch track corresponds to the lyrics ”Rock a bye baby in the” from the tune of the
same name. The right plots show the corresponding correlation and amplitude tracks.

Figure 1 shows are relatively clean pitch track. Most of the recordings in the
database did not produce such clean pitch tracks. Nonetheless, it is apparent that the
’ideal’ pitch track is in fact a piecewise constant signal. This would represent a singer that
transitions instantly between notes and maintains each pitch exactly, with no fluctuations.

4

Framed in this way, the melody segmentation problem resembles the edge detection
problem in image processing, where edge detection algorithms partition two-dimensional
signals the melody segmenter partitions one-dimensional signals. Having made this con-
nection, it is apparent that just as the edge detection problem is ill-defined [17], so is the
melody segmentation problem. There exists no general analytic solution. Rather, a collec-
tion of different techniques is needed to solve the melody segmentation problem in different
contexts, with each technique relying on its own assumptions.

2.3 Performance metrics

Two types of errors are possible for automatic segmentation algorithms. Deletion-errors
(missed notes) occur if a true note boundary has not been detected by the segmenter.
Insertion-errors (false-alarm notes) occur if a detected note boundary does not correspond
to a true note boundary. Most segmentation algorithms can trade one type of error for
the other. The information retrieval community uses two measurements to quantify the
frequency of both deletion and insertion errors, precision (PRC) and recall (RCL) [13, 14],

RCL = # of correctly found boundaries
total # of true boundaries = 1 − p̂m = p̂d

PRC = # of correctly found boundaries
total # of hypothesized boundaries = 1 − p̂fa

(2)

where p̂m and p̂fa are the measured miss and false-alarm rates, respectively. p̂d is the
measured detection rate. A plot of p̂d versus p̂fa is referred to as a receiver operator
characteristic (ROC).

While ROC curves are familiar to anyone with experience in detection theory, the
MIR community often prefers to measure segmentation performance in terms of the number
of missed and inserted notes per query. Let MPQ represent the average number of missed
notes per query and IPQ represent the average number of inserted notes per query.

Plotting MPQ versus IPQ yields a curve similar to an ROC curve, but the scaling is
somewhat different. The manually segmented files in the database used in this work contain
an average of 14.55 notes. As such, MPQ will take on values between 0 and 14.55, but IPQ
can take on values between 0 and ∞. p̂d and p̂fa both take on values between 0 and 1. Both
plots will be provided throughout this work.

It should be noted that the correct position of a note boundary is not well defined.
The manually segmented files were segmented by this author. There were numerous in-
stances where the precise boundary locations were arbitrary within 50ms. Furthermore, it
has been found that missed/inserted notes are far more damaging to MIR performance than
slight rhythmic errors [4, 19]. With this being the case, a reasonably large radius of 100ms
was chosen for associating hypothesized and true note boundaries.

To serve as a baseline to compare the methods explored here, two conventional
melody segmentation algorithms were implemented. The constant amplitude threshold and
smoothed discrete derivative methods described in section 1.1 were tested on the database
of 80 manually segmented melodies. The results are shown in Figure 2.

The amplitude threshold method is represented simply as a point. This is because
the singers sang continuous lyrics. Modifying the specific threshold for detecting new notes
did not significantly reduce the number of missed notes. The performance of the smoothed
derivative method could be changed by adjusting the pitch change threshold. The threshold
was swept between 0.5 and 4 MIDI pitch values to produce the curves shown. Note that using
a 20ms bin size (as was used in [20]) results in mediocre performance. Increasing the bin
size to 80ms (corresponding to more smoothing) improves performance considerably. Both
curves intersect the amplitude threshold operating point. The segmentation algorithms can
be viewed as searching for additional notes after the pitch tracker has performed a partial
segmentation.

5

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

20ms regions
80ms regions
Amplitude threshold

20ms regions
80ms regions
Amplitude threshold

Figure 2: The left plot shows the average number of inserted notes per query vs. the average
number of missed notes per query. The right plot shows the corresponding ROC curves.

3 Predictive filtering

One of the difficulties encountered when trying to detect a note change was that often
the magnitude of the change in pitch near a note boundary was no greater than the pitch
fluctuations within a single note. The pitch tracks were very volatile, but not necessarily
unpredictable. In particular, many of the pitch tracks contained significant vibrato. Vi-
brato is an oscillation in pitch around some average frequency. Typically vibrato is roughly
sinusoidal with frequency between two and five Hz.

The observed patterns in the pitch tracks motivate the question, can the pitch
track be modelled in such a way as to distinguish between the fluctuations in pitch within
a note (due to vibrato and such) versus those that indicate a note change? Predictive
filtering techniques were explored to estimate future pitch track values based on a collection
of current states. Specifically, a time-invariant Kalman filter and a recursive least squares
(RLS) filter were considered. Both filters use a model of signal behavior to predict future
pitch track values based on current states, such as past and present pitch track values.
In the case of the Kalman filter the signal model was specifically designed to account for
vibrato, whereas for the RLS filter the signal model automatically adapts itself to pitch track
fluctuations. When the filters made an accurate prediction the current signal model was
assumed correct and the new pitch track value was added to the current note. Conversely,
when the predictive filters did not accurately estimate the next pitch track value a new note
was instantiated.

The development and performance of the Kalman filter is given in sections 3.1
through 3.5, and the RLS filter is presented in sections 3.6 through 3.8.

3.1 Statistical Analysis

If the pitch track, within any single note, could be modelled as the output of a stationary
linear system driven by white noise, a Kalman filter would be a natural choice for tracking
the behavior of the pitch track. The first step in designing the Kalman filter was to develop a
model of the pitch track behavior within any single note. This was done by first performing
a nonparametric spectral estimation on individual notes and then averaging across all notes
in search of consistent characteristics. In particular, Welch’s averaged periodogram method
was used to estimate the power spectral density of the pitch tracks [26]. The statistical
analysis performed here was modelled after a similar analysis in [25].

6

Of the 200 sound files in the database the author selected 20 files that contain a
large number of sustained notes. From these files regions of each sustained note that were
relatively ’stable’ for at least 500ms were selected. In this case ’stable’ was taken to mean
that any transient behavior due to note transitions was negligible. Singers would take up to
100ms to slide into new notes, these so-called ’scooping’ regions were not considered part
of a ’stable’ note. Regions of the pitch track that contained any other fluctuation, such as
vibrato, were retained. A total of 70 regions were included in the analysis.

The mean pitch was subtracted from each region. The regions were divided into
400ms segments (40 samples), with 200ms overlap (20 samples). Each segment was win-
dowed with a Blackman window, normalized and zero-padded. The magnitude squared
DFT was computed for each segment and averaged over the region to give the pitch vari-
ation PSD. Two sample pitch track regions and their corresponding PSDs are shown in
Figure 3. These 70 PSDs were then averaged in the log-domain, yielding an average pitch
variation PSD.

0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

Pi
tc

h
(M

ID
I #

)

Sample pitch track segment without vibrato

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

Po
we

r (
dB

)

Sample periodogram without vibrato

0 0.1 0.2 0.3 0.4 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (s)

Pi
tc

h
(M

ID
I #

)

Sample pitch track segment with vibrato

0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

Frequency (Hz)

Po
we

r (
dB

)

Sample periodogram with vibrato

Figure 3: Sample pitch track regions and their corresponding PSDs. The top plots represent a
segment without any vibrato and the bottom plots represent a segment with vibrato.

In addition to the spectral analysis, a histogram of the pitch track data was com-
puted as an estimate of the PDF. The histogram was computed using 81 bins uniformly
distributed over the interval [-2,2].

The final PSD estimate and PDF estimate are shown in Figure 4. As can be seen
from the figure, the pitch variation PSD does exhibit a second-order low-pass characteristic
with a slight resonance at approximately 3 Hz. The PDF estimate is shown with the
minimum squared-error best fit Gaussian PDF. The match is reasonable, although the pitch
variation PDF would perhaps be better described as double exponential. Nonetheless, the
match is good enough to justify the use of a Kalman filter.

3.2 Pitch Evolution Model

The spectral analysis performed in the previous section implied that the pitch evolved
according to a second order autoregressive noise process. In particular,

pk = pk−1 + wk (3)

7

0 10 20 30 40 50
−80

−60

−40

−20

0

20

40
Pitch variation PSD

Po
we

r (d
B)

Frequency (Hz)
−2 −1 0 1 2
0

0.5

1

1.5

2

2.5
Pitch variation PDF estimate

Pitch variation (MIDI #)

Pro
bab

ility
 de

nsi
ty

Pitch variation PDF
MSE Gaussian PDF

Figure 4: The plot on the left is the average pitch variation PSD. One standard deviation is
indicated by the dotted lines. The plot of the right is the pitch variation PDF estimate. The
best squared-error fit Gaussian PDF is shown by the dotted line.

where pk is the pitch at discrete time step k and wk is the driving noise process. The
behavior of the noise process is given by,

wk = α1 wk−1 + α2 wk−2 + Guk (4)

where α1 and α2 are the autoregressive (AR) model parameters and uk is the input white
Gaussian noise process, scaled by G. α1 and α2 are the forward linear predictor coefficients
for the AR(2) prediction of wk based on wk−1 and wk−2. In assuming an autoregressive
model, any of the conventional parametric spectral estimation techniques could be used to
compute α1 and α2. The least squares method, using the Levinson-Durbin recursion, was
chosen to compute the AR(2) coefficients [26].

Before proceeding, recall that some of the pitch track regions contain substantial
vibrato and some do not. Using the data that does contain vibrato versus the data that
does not contain vibrato produces two different sets of AR(2) coefficients. The AR(2)
coefficients from the data without vibrato place both poles on the real axis, whereas the
AR(2) coefficients from the data with vibrato places the poles as a conjugate pair. Averaging
these two AR(2) coefficients yields a forward linear predictor that is neither especially good
at predicting regions without vibrato nor regions with vibrato. One of the two sets must be
chosen.

In Figure 3 the amplitude variation of the pitch track when vibrato was present is
larger than without vibrato. This trend was observed throughout the data. This being the
case, the AR(2) coefficients were computed using only the pitch tracks that contain vibrato.
The argument being that if the filter successfully tracks the more volatile regions of the
pitch then it should be able to track the less volatile regions reasonably well.

The final AR(2) coefficients are α1 = −1.3895 and α2 = 0.4918, which place poles
at angle π

23 (2.2Hz at 10ms sampling period), please see Figure 5.

3.3 Kalman formulation

The Kalman filter is an optimal linear MMSE recursive estimator [12, 25]. Given a model
of a system’s behavior and driving and observation noise processes, the Kalman filter uses
successive observations to update the system’s state. Specifically, the discrete-time, vector-
state, scalar-observation Kalman filter assumes a process of the form,

xk+1 = Axk + Buk

yk = Cxk + vk (5)

where xk is the system state at time step k, yk is the observation at time step k, and uk and
vk are the driving and observation noise processes, respectively. The A matrix is the state

8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
ag

in
ar

y
P

ar
t

AR(2) pole locations

Figure 5: Pole locations for the autoregressive noise process.

transition matrix, which describes now the state vector xk evolves in the absence of external
influence. The B matrix describes how the driving noise influences the state transitions.
The C matrix describes how the observation yk is formed from the state vector xk. The
noise processes, uk and vk, are both zero-mean white Gaussian noise processes with unit
variance.

From (3) and (4) it is evident that the system state vector contains three elements,

xk = [pk wk wk−1] t (6)

and the observation vector is simply the pitch track plus observation noise, vk,

yk = p̃k (7)

where,
p̃k = pk + vk. (8)

Combining (3) through (8) we have that,

A =

⎡
⎣ 1 1 0

0 α1 α2

0 1 0

⎤
⎦ , (9)

B =

⎡
⎣ 0

G
0

⎤
⎦ , (10)

C = [1 0 0]. (11)

3.4 Kalman tracking

Having defined the Kalman filter parameters, the Kalman filter was run using the pitch
tracks as the observation data yk. Each successive pitch track value was compared to the
pitch predicted by the Kalman filter. When the prediction matched the observation data
the new sample was taken to be a continuation of an existing note. When the prediction
did not match the observed data a new note was instantiated. The distance function for the
vector-state, scalar-observation Kalman filter is given by [12, 25],

d2
k =

e2
k

CPkCt + R
(12)

where ek = yk − Cx̂k is the error between the observation and predicted observation. The
variance of the error ek is given by CPkCt + R, where R is the variance of the observation
noise vk (taken to be unity) and Pk is the expected covariance of the system state xk

(given by the filter update equations). The distance dk is then compared to a threshold to
determine whether a new note must be instantiated.

9

3.5 Kalman filter performance

A sample output of the Kalman filter is shown in Figure 6. As expected, the distance was
typically small, but large near note transitions. Notice that not all note changes produced
equal Kalman distances. Furthermore, a note change did not cause a single large distance
value, but rather a cluster of large distances in the vicinity of the note change.

1 1.5 2 2.5 3
50

55

60

65

70

Time (s)

P
itc

h
(M

ID
I #

)
Observed pitch track (blue) and manual segmentation (red)

1 1.5 2 2.5 3
0

0.5

1

1.5

2

Time (s)

D
is

ta
nc

e

Kalman distance

Figure 6: A sample output of the Kalman distance. The top plot shows the measured pitch
track along with a manual segmentation. The bottom plot shows the corresponding Kalman
distance.

To perform an automatic segmentation of a pitch track, the distance curve was
compared to a threshold. A new note was inserted wherever the distance function exceeded
the threshold. To prevent clusters of spurious notes a thinning procedure similar to that
described later in section 4.4 was employed. Clearly, by adjusting the decision threshold
there was a tradeoff between missed and inserted notes. This tradeoff can be seen in Figure 7.
Note that the Kalman segmenter produced consistently higher detection rates at the same
false alarm rate than either of the conventional segmenters.

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

Kalman filter
RLS filter
20ms regions
80ms regions
Amplitude threshold

Kalman filter
RLS filter
20ms regions
80ms regions
Amplitude threshold

Figure 7: Performance curves demonstrating the tradeoff between missed and inserted notes for
the predictive filter segmenters. The left plot gives the average number of missed and inserted
notes per query, and the right plot gives the segmenter ROC.

10

3.6 RLS formulation

The Kalman filter formulation presented above is time-invariant. This is arguably not an
appropriate formulation given the time-varying nature of the pitch tracks. Of particular
concern is the inability of the above formulation to adapt to regions with and without
vibrato. Had the pitch tracks not been so volatile, a stationary formulation would have
been better justified.

Allowing the A, B and C matrices to be time-varying enables the filter to more
accurately predict pitch tracks whose statistical properties change over time. A special case
of this general Kalman filter is the recursive least squares (RLS) filter [10, 27].

RLS filters are especially attractive because they do not require precise assumptions
about the behavior of the pitch tracks. No statistical analysis is required. The filter recur-
sively updates itself at each time step to minimize the squared error between the predicted
and actual pitch tracks.

In this work an RLS filter was implemented as a P -step predictor [27]. At time step
k the information vector is the most recent N pitch track values,

xk = [pk pk−1 · · · pk−N+1] t (13)

The desired, or observed, pitch track prediction is,

dk = pk+P (14)

and the actual pitch track prediction is,

d̂k = p̂k+P = wt
k xk (15)

where wk is the adaptive filter coefficients. These coefficients are chosen so as to minimize
the squared error through time step k,

Jk =
k−1∑

n=N+P−1

|dn − d̂n|2 = Jk−1 + |dk−1 − d̂k−1|2. (16)

Note the sum begins at n = N + P − 1 instead of n = 0, this is due simply to indexing.
The first pitch track value is taken to be p 0, as such the first predicted value is p̂N−P+1.
Neglecting for the moment that xk has an unknown non-zero-mean, the linear minimum
mean square error coefficient vector is given by the well-known normal equation [10, 27],

wk = R−1
k ck (17)

where Rk is the autocorrelation matrix at time step k and ck is the cross-correlation vector,
numerically calculated by

Rk =
k−1∑

n=N−1

xnxt
n = Rk−1 + xk−1 xt

k−1

ck =
k−1∑

n=N−1

xndn = ck−1 + xk−1 dk−1 (18)

If unlimited computational power were available, (15) through (18) would be a sufficient
description of the RLS algorithm. In practice, of course, the repeated calculation of R−1

k is
an inefficient use of computing power. From (18) it seems reasonable to postulate that just
as there is a recursive formula for Rk, there should exist a recursive formula for R−1

k . Such
a formula can be found by making use of the matrix inversion lemma [10, 27],

(A + BCD)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1. (19)

11

With the substitutions A = Rk−1, B = Xk, C = 1, D = Xt
k and a bit of algebra a recursive

formula is found,

R−1
k+1 = R−1

k − zk zt
k

1 + qk
(20)

where,

zk = R−1
k xk

qk = xt
k zk. (21)

Substituting this result into (17) and a bit of algebra give us the filter coefficient update
equation,

wk+1 =
(
R−1

k − zk zt
k

1 + qk

)
· (ck + xkdk)

= wk +
(dk − d̂k) · zk

1 + qk
. (22)

A ’forgetting’ factor, 0 < ρ < 1, is frequently incorporated into the RLS filter to diminish
the influence of ’older’ data,

Rk =
k−1∑

n=N−1

ρk−1−n xnxt
n

ck =
k−1∑

n=N−1

ρk−1−n xndn (23)

giving modified update equations,

R−1
k+1 =

1
ρ

(
R−1

k − zk zt
k

ρ + qk

)

wk+1 = wk +
(dk − d̂k) · zk

ρ + qk
. (24)

The only remaining question is how to initialize the filter, specifically RN−1 and wN−1.
The autocorrelation matrix is typically initialized as,

RN−1 = η IN (25)

where η is a positive parameter. η influences how quickly the filter converges to steady-state.
Given that a new note is never instantiated within 120ms of a note boundary, the precise
choice of η was not important. The filter coefficients themselves were simply initialized by
wN−1 = [1, 0 · · · 0]t.

3.7 RLS tracking

The above development leaves three relevant parameters that must be chosen; the filter
length N , how many time steps to predict P and the forgetting factor ρ. This three-
dimensional parameter space was found to have numerous local minima and maxima (in
terms of segmentation performance). Setting the ratio of P

N � 2
3 yielded consistently good

results. Final parameter choices were found manually, N = 5, P = 3 and ρ = 0.90.
Having set the filter parameters the RLS filter is run using the pitch track as the

information signal (13) and the desired signal (14). The squared prediction error |dk − d̂k|2
is compared to a threshold to determine whether a new note should be instantiated. The
same thinning procedure used with the Kalman filter is again needed to reduce clusters of
notes to a single new note.

12

3.8 RLS filter performance

A sample output of the RLS filter is shown in Figure 8. Similar to the Kalman filter, the
error was typically small, but large near note transitions. The overall performance of the
RLS segmenter is shown in Figure 7. As can be seen from the figure, the RLS and Kalman
filters demonstrated equivalent performance in the low false-alarm domain. However for
detection rates above 0.87, the RLS filter provided superior performance to the Kalman
filter. This was due in part to the RLS filter’s ability to adapt to different types of pitch
track fluctuations, whereas the Kalman filter was restricted to tracking only one class of
fluctuations (vibrato in this case).

1 1.5 2 2.5 3
50

55

60

65

70

P
itc

h
(M

ID
I #

)

Time (s)

Observed pitch track (blue) & manual segmentation (red)

1 1.5 2 2.5 3
0

0.5

1

1.5

D
is

ta
nc

e

Time (s)

RLS distance

Figure 8: A sample output of the RLS distance. The top plot shows the measured pitch track
along with a manual segmentation. The bottom plot shows the corresponding RLS distance.

4 Nonlinear LMS filtering

The previous chapter explored the use of two different predictive filters to detect note
changes. Both nonparametric and parametric spectral estimation tools were employed to
design a simple time-invariant model of the pitch track for use in a Kalman filter. The time-
varying characteristics of the pitch track however limited performance. A predictive RLS
filter was also implemented. Although the RLS filter yielded considerably better results, it
did not make use of any modelling of the pitch track (other than it being relatively constant
within a single note). In short, the Kalman filter assumed too much while the RLS filter
did not assume enough.

A compact model of vocal production of melodic lines has yet to be developed. In
spite of this, it is reasonable to postulate that incorporating as much information about
the pitch tracks as possible into the segmentation algorithm should improve performance.
The difficulty, of course, is how to incorporate this information when no analytic model is
available.

Neural networks are frequently used in situations where no analytic model is avail-
able. These systems rely on the availability of training data to capture statistical charac-
teristics of the signal. That is, neural networks allow the data to ”speak for itself” [10].

The present work considers the simplest form of neural network, a single layer
network or neuron. A single neuron consists of a linear combiner, with waits determined
via a training routine, and a threshold function. Viewed in this way, a neuron is equivalent
to a nonlinear least mean squares (LMS) filter. A LMS filter makes use of a reference signal
(training data) to compute a linear weight vector that minimizes the square error between

13

the reference signal and the output of the filter. The addition of a threshold operator (a
nonlinear operator) to the output of the LMS filter yields a NLMS filter [10].

4.1 Detection formulation

Rather than formulate the neural network as a filter, as was done in the previous chapter,
it was decided to formulate the neuron in a detection framework. The pitch track was
initially sliced into regions 80ms long (8 pitch track samples). Regions were treated in-
dependently and hence the problem was reformulated as a conventional simple-hypothesis
detection problem.

The detection hypotheses are,

Hk
0 : A note-change has not occurred in region k

Hk
1 : A note-change has occurred in region k. (26)

To determine which of the hypotheses is more probable a feature vector is calculated for
each region. A weighted sum of these elements is computed and the result is compared to
a threshold. If the sum is greater than the threshold hypothesis Hk

1 is chosen, otherwise
hypothesis Hk

0 is chosen.

4.2 Feature vector

The precise features to include in the feature vector were developed experimentally by
exploring various types of discrete derivatives. The assumption was that an ’ideal’ pitch
track would be a piecewise constant function. That is, the singer transitions between pitches
instantaneously and maintains each pitch without any deviation. If this had been the case
only a single feature would have been needed, the discrete first-order difference. This simple
derivative would have been nonzero if and only if a note change had occurred. Of course,
this ’ideal’ pitch track is grossly optimistic, transition times are substantial and pitches are
never held constant. Clearly, a single first-difference feature is not sufficient. The final
features chosen are presented next, with a cursory justification given after.

The pitch track was sliced into region of length 8 (80ms). Computing the fea-
ture vector for each region involves both the current region and the regions preceding and
following the current region.

Let pk be the eight-element vector representing the kth region of the pitch track.
Further, let pk

j be the jth element of pk. Similarly, define ck and ck
j for the autocorrelation

track and ak and ak
j for the amplitude track. Finally, let fk be the feature vector for the

kth region and fk
j be the jth element of fk. Numerous feature vectors were experimented

with, some of which were quite long, and the ultimately a five-element feature vector was
decided upon. For the kth region the feature vector is calculated by

fk
0 =

√
|pk+1 − pk−1|

fk
1 = max |Δpk|
fk
2 =

{
1 if 0.9 > min ck

0 if 0.9 ≤ min ck

fk
3 = max (0,Δck)

fk
4 =

√
max (0,ak+1 − ak−1) (27)

where pk and ak are the mean of pk and ak, respectively. Δpk and Δck are the conventional
discrete derivatives of pk and ck. That is,

Δpk
j =

⎧⎨
⎩

pk
j+1 − pk

j if 0 ≤ j ≤ 6

pk+1
0 − pk

7 if j = 7
(28)

14

The features are arranged roughly in order of decreasing importance. fk
0 is far

and away the most important feature. This feature represents a compromise between a
derivative (to indicate change) and a low-pass filter (to smooth out noise etc.). Using an
averaging length of 8 frames and a gap of 8 frames was found experimentally to be a good
value. The square root operation is included in fk

0 because we do not want to favor large
note-changes, transitions greater than one semitone are pulled back towards one by the
square root operation. In hindsight, this feature can be further justified by considering the
impulse response that the first feature represents. The frequency response of this impulse is
shown in Figure 9. As can be seen from the figure, the amplitude response is maximum at
frequency 2.9Hz, which happens to be the average note rate within continuous passages.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Frequency (Hz)

G
ai

n

Figure 9: Amplitude response for the first NLMS feature.

Features fk
1 and fk

3 indicate the maximum derivative within each region, the idea
being that if the region contains large instantaneous derivatives there is a higher probability
that the region contains a note change. It was also observed that during note changes
frequently the autocorrelation track would drop momentarily, indicating less confidence
in the pitch estimate. This observation is incorporated into feature fk

2 , which uses a hard
threshold to indicate when the pitch track algorithm has less confidence in its pitch estimate.

Sample pitch and autocorrelation tracks are given in Figure 10. The amplitude
track was excluded from the figure, but similar trends are observed, although typically not
as distinctly. The plots on the left give an example of an interval when a note change has
not occurred, and the corresponding feature vector, f0, is given below. Similarly, the plots
on the right give an example of a note change, with corresponding feature vector f1 given
below. In this figure the differences between the two sets of curves are obvious. This is not
typical, the differences are usually more subtle.

f0 =

⎡
⎢⎢⎢⎢⎣

0.2799
0.1752

0
0.0082

0

⎤
⎥⎥⎥⎥⎦ f1 =

⎡
⎢⎢⎢⎢⎣

1.4058
0.8086

1
0.1038
0.0930

⎤
⎥⎥⎥⎥⎦ (29)

Before proceeding with the scalar decision statistic was computed from this vector, it is
useful to consider the correlation between elements of the feature vector. The following
correlation matrix was computed numerically.⎡

⎢⎢⎢⎢⎣
1 0.471 0.400 0.329 0.268

0.471 1 0.567 0.627 0.195
0.400 0.567 1 0.722 0.183
0.329 0.627 0.722 1 0.237
0.268 0.195 0.183 0.237 1

⎤
⎥⎥⎥⎥⎦ (30)

15

0 0.05 0.1 0.15 0.2
59

60

61

62

63

Pi
tch

 T
ra

ck
 (M

ID
I #

)

Example pitch track − no note change

0 0.05 0.1 0.15 0.2
0.6

0.7

0.8

0.9

1

1.1

Time (s)

Au
toc

or
re

lat
ion

Example autocorrelation track − no note change

0 0.05 0.1 0.15 0.2
59

60

61

62

63

Pi
tch

 T
ra

ck
 (M

ID
I #

)

Example pitch track − note change

0 0.05 0.1 0.15 0.2
0.6

0.7

0.8

0.9

1

1.1

Time (s)

Au
toc

or
re

lat
ion

Example autocorrelation track − note change

Figure 10: Sample pitch and autocorrelation tracks, the plots on the left give an example of the
tracks when a note change has not occurred and the tracks on the right give an example of the
tracks when a note change has occurred.

As can be seen from the matrix, the elements of the feature vector are somewhat correlated
with each other. More importantly, this shows that the elements are not at all independent
(had they been independent the correlation matrix would have been an identity matrix).

4.3 Decision statistic

A scalar decision statistic, sk, is then calculated from each feature vector by taking a linear
combination of the elements,

sk = wt · fk =
4∑

j=0

wj · fk
j (31)

where w = [w0, w1, w2, w3, w4]t is the feature vector. The decision is then made by simply
comparing sk to a threshold δ,

sk < δ : decide Hk
0

sk ≥ δ : decide Hk
1 . (32)

The weights, w, used in the above summation were computed using a perceptron
training rule. A perceptron is a single layer (i.e. linear) neural network whose weights
are computed using training data to minimize the the probability of error when choosing
between H0 and H1 [29].

A perceptron is ideally suited for classifying vectors that are linearly separable,
in which case the weights can be computed to result in no errors with a finite number of
training cycles, or epochs [29]. The feature vectors in the training data are not linearly
separable and hence the perceptron training cannot return zero error. Furthermore, there
is no guarantee that the training will converge to the globally optimal solution.

Another assumption made by the perceptron training rule is that the elements of the
feature vector are statistically independent. As shown in the previous section, the elements
are not independent here. This too implies that the perceptron may be unable to find the
globally optimal weighting. Nonetheless, it is still a pragmatic solution for determining
reasonable weights.

If H0 and H1 had been equally likely and misses and false-alarms had been equally
undesirable, the perceptron training rule would have been given by

w = w + v · (t − a) · fk, (33)

16

where t is the true value the detector should have chosen (H0 : t = 0 and H1 : t = 1) and
a is the value actually chosen with the current weight vector w. 0 < v ≤ 1 is the training
rate and controls the tradeoff between how quickly the weights converge and the variance
of the final weights.

The hypotheses H0 and H1 are not equally likely however, the probability of H0

being much greater than that of H1 (any given 80ms region of pitch track will probably
not contain a note change). Further, a miss event is considered more undesirable than a
false-alarm. Therefore the training rule was modified to be asymmetric,

w =

⎧⎨
⎩

w + vm · fk, if t − a = 1
w − vfa · fk, if a − t = 1
w, if a = t

(34)

Reasonable training rates were determined experimentally, vm = 0.01 and vfa = 0.0005.
These training rates resulted in relatively slow convergence. For training, 447 feature vectors
were selected, of which 67 contained note change events. These feature vectors were taken
from 30 of the files that had been manually segmented. The perceptron converged after
several dozen epochs to the following weights,

w =

⎡
⎢⎢⎢⎢⎣

0.8318
0.2105
0.0690
0.0926
0.0983

⎤
⎥⎥⎥⎥⎦ (35)

4.4 False alarm thinning

The primary objective of the segmentation algorithm presented here is to reduce the miss
rate of conventional amplitude-threshold methods. The segmentation algorithm described
above does in fact reduce the miss rate substantially, but at the cost of increasing the
false-alarm rate.

The large increase in the false alarm rate is a result of an implicit assumption
made when reformulating the segmentation problem as a detection problem. The detection
scenario assumes that consecutive feature vectors are independent of each other. This is
not the case here, there is a high degree of correlation between consecutive feature vectors.
In particular, when a note change occurs not only does the decision statistic containing the
note change exceed the threshold, but so do some of the neighboring decision statistics.
That is, the false alarms typically occur in clusters centered around a single legitimate note
change.

This problem is reminiscent of a problem in image detection. Similar to this seg-
mentation problem, the edge detection problem is an ill-defined problem. Conventional
edge detection techniques involve discrete derivatives analogous to those used in this work.
False alarm edges often occur in clusters centered around a single legitimate edge. Because
of this, numerous edge thinning or clustering procedures have been developed for various
scenarios [11, 17].

Two simple thinning, or clustering, procedures were implemented in this work. The
first thinning procedure worked as follows. Consecutive note changes were first located.
Within these regions, the segment with the highest confidence (the largest value of sk) was
retained and one segment to the left and right was discarded. This procedure was repeated
until all consecutive note changes were removed. The second clustering procedure searched
for notes less than 150ms in duration and merged them with the note to the left or right
depending upon which was closer in pitch.

These two procedures, while ad hoc, were found to remove many of the false-alarms
while only increasing the miss rate slightly.

17

After a note change has survived the thinning process, the precise location within
each 80ms region is determined. The location of the maximum derivative of the pitch track
defines the precise segment location within each region, argj max |Δpk|.

4.5 Performance

The overall performance of the NLMS segmenter is shown in Figure 11. As with the pre-
dictive filters, the NLMS segmenter consistently performed better than the conventional
methods.

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

NLMS filter
20ms regions
80ms regions
Amplitude threshold

NLMS filter
20ms regions
80ms regions
Amplitude threshold

Figure 11: Performance curves for the NLMS segmenter. The left plot is the average number
of missed and inserted notes per query, and the right plot gives the segmenter ROC.

Before proceeding with the final segmentation method considered in this work, a
comparison of the NLMS with and without thinning is instructive. Such a comparison is
shown in Figure 12. Two ROC curves are shown; the blue curve represents the segmenter
using both note thinning routines, the green curve represents the segmenter using only the
first of the two thinning routines described in the previous section. Overall, the use of both
thinning procedures yields better performance. However, the second thinning procedure
prevents the segmenter from ever recognizing short notes (of duration less than 150ms),
hence the apparent asymptote in the ROC curve for the NLMS segmenter with both thinning
routines. To date, all segmentation algorithms used in MIR systems produce no false alarms,
but often many missed notes. This being the case, little work has been done comparing the
performance decreases due to missed versus inserted notes. Intuitively one might assume
that both errors are equally undesirable. However, should it turn out that missed notes are
more detrimental to MIR performance than inserted notes, the second thinning procedure
may be counterproductive.

5 Curve fitting

Throughout this work the assumption that an ’ideal’ pitch track would simply be a piecewise
constant function has been critical. This intuitive, if not dubious, assumption motivates the
question: why not segment the pitch track by fitting it to a piecewise constant function?
The use of curve fitting to perform segmentation is explored in this chapter.

18

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

NLMS filter
NLMS w/o thinning
Amplitude threshold

NLMS filter
NLMS w/o thinning
Amplitude threshold

Figure 12: Performance curves for the NLMS segmenter with and without false-alarm thinning.

5.1 Problem formulation

Consider an arbitrary pitch track, p = [p0, p1, · · · pN−1]t and piecewise constant signal
s = [s0, s1, · · · sN−1]t containing M constant portions,

sk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a0 k = 0, 1, · · · , k1 − 1
a1 k = k1, k1 + 1, · · · , k2 − 1
...
aM−1 k = kM−1, kM−1 + 1, · · · , N − 1.

(36)

The vector a = [a0, a1, · · · aM−1]t defines the amplitude of each constant portion
and k = [k0, k1, cdots kM−1, kM]t define the boundaries between constant portions, where
k0 = 0 and kM = N − 1. Taken together, the 2M − 1 nontrivial parameters contained in
the vectors a and k define the piecewise constant signal s.

If the pitch track p is known to contain M notes, then the (2M − 1)-dimensional
parameter space of all possible piecewise constant signals must be searched to find the
solution that minimizes the error between p and s. If the conventional magnitude-squared
error metric is used, the error function is given by [13].

J(p, s) = (p − s)t · (p − s) =
M−1∑
m=0

km+1−1∑
k=km

(pk − am)2. (37)

Using a squared error metric, for a given k the (MLE) amplitude estimates of each constant
portion are computed as the mean of the pitch track in each portion [13],

âm =
1

km+1 − km
·

km+1−1∑
k=km

pk. (38)

It was found experimentally however that an absolute error metric yielded better
segmentation accuracy, in which case the error function is given by,

J(p, s) =
M−1∑
m=0

km+1−1∑
k=km

|pk − am|, (39)

and the (MLE) amplitude estimates are given by the median of each portion [12],

âm = median(pk : km ≤ k < km+1). (40)

19

5.2 Dynamic programming

As was shown in the previous section, if the boundary locations were known, estimating the
amplitude values would be trivial. The difficulty was in estimating the boundary locations.
If a brute force search was used the computational complexity would be O(NM) [13] (again,
assuming the number of notes M was known) . Although computational complexity was not
the primary focus of this work, the brute force search was far too slow for experimentation
and simulation. To reduce the computational load to a more manageable level a search
algorithm that makes use of a technique known as dynamic programming was employed.

Dynamic programming is used frequently in signal processing applications, such as
Viterbi decoding, to reduce redundant computations. As applied to the melody segmenta-
tion problem, the fundamental idea is as follows. Suppose a note boundary is located at
L + 1 (0 < L < N − 2), and that there are M1 notes prior to time step L + 1 and M2 notes
following time step L+1 (M1+M2 = M). If a M1−1 segmentation that minimizes error for
k = 0, · · ·L is found, and a M2−1 segmentation that minimizes error for k = L+1, · · ·N −1
is found, then the segmentation that minimizes the total error is simply the concatenation
of the two partial segmentations.

Through the use of this technique the computational complexity is reduced to
O(NM). The primary components of the algorithm are outlined below. A more complete
description can be found in [13].

Define the error for the constant region bounded by km and km+1 as,

Δm[km, km+1 − 1] =
km+1−1∑
k=km

|pk − âm| (41)

where âm is computed by (40). The minimization of J(p, s) over a and k is equivalent to
the minimization of,

J(p,k) =
M−1∑
m=0

Δm[km, km+1 − 1] (42)

over only k. Suppose the nth boundary is located at time step k = L + 1, then define the
minimized error through to time step L as,

Jn[L] = min
k1,k2,···kn−1

n−1∑
m=0

Δm[km, km+1 − 1] (43)

where k0 = 0 and kn = L+1. Note that when the optimal k has been found, JM−1[N −1] =
J(p,k). A recursive formula for Jn[L] can be easily obtained by noting,

Jn[L] = min
kn−1

min
k1,k2,···kn−2

n−1∑
m=0

Δm[km, km+1 − 1]

= min
kn−1

[(
min

k1,k2,···kn−2

n−2∑
m=0

Δm[km, km+1 − 1]

)
+ Δn−1[kn−1, kn − 1]

]

= min
kn−1

(Jn−1[kn−1 − 1] + Δn−1[kn−1, kn − 1]) . (44)

The complete curve fitting algorithm then works as follows. Compute J0[L] for
all L = 0, 1, · · ·N−M . Compute J1[L] for all L = 1, 2, · · ·N−M +1, and store the value
k1[L] that minimizes J1[L] for each L. Repeat this process through to JM−2[L], storing the
values kn[L] for all n and L. And lastly, compute JM−1[N − 1] and store the minimizing
value kM−1[N − 1]. The optimal partition, or segmentation, is then found via the backward

20

recursion,

k̂M−1 = kM−1[N − 1]

k̂M−2 = kM−2[k̂M−1]
...

k̂2 = k2[k̂3]

k̂1 = k1[k̂2]. (45)

It should be noted that while the so-called ’greedy’ algorithm described above does
keep the computational complexity manageable, this algorithm is still far slower than the
other methods explored in this work.

5.3 Note number estimation

The development presented in the previous section made one critical assumption, that the
number of notes the pitch track represented was known. This assumption is, of course, false.
The number of notes the pitch track represents must be estimated, perhaps using a bat-
tery of generalized likelihood ratio tests (GLRT) [13]. Unfortunately, such tests require an
analytic model of pitch track behavior. No such model has been developed. While numer-
ical measurements could be made to compute the necessary probabilities, time constraints
prohibited such explorations.

Clearly, as the number of hypothesized notes in the pitch track increases, the final
error of the optimal piecewise constant curve fit will decrease. It is not unreasonable to
postulate that as the number of hypothesized notes is increased beyond the true number
of notes, the rate of decrease in the error will itself decrease. In other words, a plot of
the minimum curve fit error versus the number of hypothesized notes would demonstrate
a sharp ’knee’. Unfortunately, this was not found to be the case. An example is shown in
Figure 13.

1 2 3 4 5 6 7 8 9 10 11
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Notes

M
ea

n
E

rr
or

Error vs. # of notes

Figure 13: An example plot showing the minimum curve fit error versus the number of hypoth-
esized notes. In this case the pitch track represented six notes.

In this work a more rudimentary method was used to approximate the number of
notes in a given pitch track: simply multiply the duration of the pitch track (in seconds)
by a scalar number (representing the expected number of notes per second) and round up.
Use this number as the hypothesized number of notes. By adjusting the expected number
of notes per second inserted notes can be traded for missed notes, hence an ROC curve can
still be generated as in previous chapters. A false-alarm thinning routine similar to that
described in section 4.4 is then used to remove spurious clusters of notes.

It should be noted that in the development presented in section 5.2, no restrictions
regarding minimum note lengths were made. Such a restriction could easily be incorporated
into the algorithm. Initially such a restriction was included, with the idea that there is no

21

point in searching for short notes given that they would be removed by the thinning routine
anyway. This was a counterproductive assumption in hindsight. By letting the algorithm
include short notes (which would then be removed by the thinning routine) diminished the
impact of the mediocre note number estimates.

5.4 Performance

The overall performance of the curve fitting segmenter is shown in Figure 14. As will be
further discussed in the final chapter, the curve fitting segmenter does not perform as well
as the RLS and NLMS segmenters. It should be noted, that the performance of the curve
fitting segmenter was greatly improved if the algorithm knew a priori the true number of
notes (and no thinning was performed).

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

Curve fit
20ms regions
80ms regions
Amplitude threshold

Curve fit
20ms regions
80ms regions
Amplitude threshold

Figure 14: Performance curves for the curve fitting segmenter. The left plot is the average
number of missed and inserted notes per query, and the right plot gives the segmenter ROC.

5.5 Alternate representations

The uncertainty regarding the number of notes a given pitch track corresponds to presents
an intriguing possibility. Perhaps a single estimate of the number of notes should not be
made, but rather use a family of possible solutions (i.e. transcriptions), each based on a
different number of estimated notes, to search the MIR database.

As will be discussed in the final chapter, the most commonly missed notes were
’passing’ notes. The most commonly inserted notes were inserted in regions where the
singer gradually ’scooped’ between two pitches. In fact, there is no clear distinction between
passing notes and prolonged scooping regions. Often, the author had difficulty deciding
between a passing note and a scooping region when manually segmenting pitch tracks. This
implies that it is unreasonable to expect an automatic segmentation algorithm to reliably
distinguish between the two.

An interesting property of the curve fitting algorithm was that if the algorithm were
first run searching for a two note partition, and then a three note partition, the first boundary
found would be retained and second boundary added. In a sense, the first boundary found
was more ’reliable’ (or ’important’) than the second.

An example of this phenomena is shown in Figure 15. In all four plots the blue curve
represents the measured pitch track and the red curve represents the manual segmentation.
The top plot shows the segmentation that results from assuming the pitch track represents
only two notes, the second plot shows the segmentation from three notes. The true number of
notes in this pitch track is six, and the segmentation resulting from this number of assumed

22

notes is second from the bottom. The bottom plot shows the segmentation resulting from
ten assumed notes.

56

58

60

62

64
P

it
c
h
 (

M
ID

I
#
)

Two−note curve fit

56

58

60

62

64

P
it
c
h
 (

M
ID

I
#
)

Three−note curve fit

56

58

60

62

64

P
it
c
h
 (

M
ID

I
#
)

Six−note (correct) curve fit

1 1.5 2 2.5 3
56

58

60

62

64

P
it
c
h
 (

M
ID

I
#
)

Ten−note curve fit

Time (s)

Figure 15: Sample curve fits for a pitch track generated ”Rock a bye baby”. In all plots, the
blue curve is the measured pitch track, the red curve is the manual segmentation and the black
curve is the automatic segmentation.

Given that repeatedly running the algorithm for an increasing number of notes
never changed the boundaries already found implied that the algorithm could be run once
for a large number of notes and then successively remove the boundary the resulted in the
smallest increase error. Strictly speaking, this method potentially yields suboptimal curve
fits.

We now have a method or ranking note boundaries. This motivates some possible
alternate representation of a sung query that may be more ’robust’ to sung imperfections.
Two possible representations are described below.

A binary tree could be built. Please see Figure 16 for an example tree, generated
from the same pitch track as that used in Figure 15. The root node represents the first,
most reliable, note boundary. Four numbers are contained in every node: the boundary
rank (the root node is the first boundary), the location of this boundary in the pitch track
and the pitch values on either side of the boundary.

When a new node is added, the tree must be searched. Suppose the location of the
new boundary is time step L. Beginning at the root node, check if L is greater or less than
the location of the root boundary. If it is less, move to the left child of the node, if it is
greater move to the right child of the node. Repeat this process until an open space is found
and add the new node. At any point during the tree’s construction, the ’current’ piecewise
constant pitch track can be found by simply traversing the tree from left to right.

Roughly speaking, the more ’reliable’ note boundaries are located near the top of
the tree. The leaves of the tree represent the least ’reliable’ note boundaries. Traversing the
tree from the root node to any leaf yields a list of successively less ’reliable’ note boundaries.

23

Edge 1: 129
61.2 59.3

Edge 2: 54
61.7 60.9

Edge 3: 16
59.1 62.6

Edge 4: 188
58.8 59.8

Edge 5: 235
60.5 57.5

Edge 6: 225
60.8 59.4

Edge 7: 31
63.1 62.4

Edge 8: 175
58.6 59.5

Edge 9: 152
58.3 58.8

Figure 16: An example tree decomposition of a sung melodic passage from ”Rock a bye baby”.
Each node represents a note boundary. Each node is labelled with the order in which it was
created, the location of the boundary it represent and the pitches of the notes to its left and
right.

Unfortunately, nodes that do not lie on the same root-leaf path cannot be compared. Refer-
ring to Figure 16, the third edge is lower than the fourth edge, even though the third edge
was generated before the fourth (and hence is more ’reliable’). Therefore, the tree cannot
be truncated below some level and hope the notes remaining were the most ’reliable’.

This difficulty can be overcome by computing a dendrogram. Dendrograms are a
popular tool in the data clustering community [11]. A dendrogram is formed by clustering
data (in this case the pitch track) into successively fewer classes based on some error measure.
Figure 17 provides a sample dendrogram generated from the same pitch track as before. It
should be noted that Figure 17 is not a typical visualization of a dendrogram. In particular,
only the final, or most clustered nine layers of the dendrogram are shown. Each horizontal
layer in Figure 17 represents a piecewise constant curve fit to the pitch track shown in
Figure 15. Progressing down the dendrogram corresponds to adding more and more notes
to the curve fit. In principle the decomposition could be continued until each pitch track
sample represented a separate note. Lighter colored regions correspond to higher notes.

While the tree and dendrogram decompositions just described present some intrigu-
ing possibilities, comparing two trees or dendrograms is more complicated than comparing
two transcriptions. It was found experimentally that the trees or dendrograms generated
from two different pitch tracks representing the same melody often had different structures.
For example, one tree might be heavily biased to the left and the other might be well-
balanced, and yet they both represent the same melody. Resolving such difficulties was
beyond the scope of this work.

6 Conclusion

6.1 Results

A complete set of ROC curves for all the techniques explored in this work is shown in
Figure 18. A few points should be noted while comparing the performance of the various
techniques. First, all of the techniques explored here appear to perform better than the

24

Figure 17: An example dendrogram decomposition of a sung melodic passage from ”Rock a bye
baby”. Each horizontal layer represents the optimal piecewise constant curve fit based on fixed
number of notes. Progressing from top to bottom, one note is added at each layer. The lighter
regions represent higher notes.

conventional amplitude threshold and pitch derivatives described in section 2.3. While the
methods explored here are more sophisticated and do offer some performance improvement
to the conventional techniques, the degree of their superiority is potentially overstated. In
particular, no post-processing of any kind was performed on the segmentations computed
by the pitch derivative methods, including thinning. Had a thinning routine been developed
for these methods, their ROC curves would have improved.

0 2 4 6
0

1

2

3

4

5

6

Av
era

ge
 N

um
be

r o
f M

iss
ed

 N
ote

s p
er

Qu
ery

Average Number of Added Notes per Query
0 0.1 0.2 0.3 0.4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Av
era

ge
 D

ete
cti

on
 R

ate

Average False Alarm Rate

Kalman filter
RLS filter
NLMS filter
Curve fitting
20ms regions
80ms regions
Amplitude threshold

Kalman filter
RLS filter
NLMS filter
Curve fitting
20 regions
80ms regions
Amplitude threshold

Figure 18: The left plot shows the average number of inserted notes per query vs. the average
number of missed notes per query. The right plot shows the corresponding ROC curves.

An initial comparison of the ROC curves seems to imply that the NLMS filter gave
the best performance. This is perhaps misleading. The NLMS filter had two advantages
over the other methods that may not be present in a legitimate MIR system. First, the
weight vector w described in section 4.3 was trained on a subset of the testing data. That
is, 80 files were manually segmented. All 80 files were used in generating the ROC curves.
30 of these same files were also used in training the weight vector. Second, the features
themselves were developed manually using the same data set. For example, the square root

25

operation in the first feature of (27) was included because it was found experimentally to
improve performance. The NLMS filter was developed and tested on the same, relatively
small, data set. The other techniques explored here did not make such direct use of the
data set during development. Therefore, it is reasonable to suspect that performance of the
NLMS filter will suffer more than the other methods when tested on a different or expanded
data set. With this in mind, the RLS filter may offer the most reliable overall performance.

By adjusting the decision threshold, both the RLS and NLMS segmenters could be
set so as to give an average of less than one inserted and one deleted note per query. While
even a single inserted or deleted note can be enough to yield incorrect MIR results, this is
still better than current continuous melody segmenters. All four techniques explored here
could be set to produce less than 1.5 inserted and deleted notes per query.

Note that none of the techniques explored here are able to exceed a 0.95 detection
rate. This is due to the thinning procedure described in section 4.4, which prevents especially
short notes from being detected.

Before proceeding, recall that the ROC curves were computed numerically. The
small ripples evident in all curves are a result of the relatively small database used for
testing. A larger database would have further reduced these ripples.

For further analysis we resort to subjective evaluation. Figure 19 gives a sample
output of the NLMS filter segmenter. This is an example of the tune ”Rock a bye baby

0 1 2 3 4 5 6 7 8 9
52

54

56

58

60

62

64

66

68

M
ID

I N
um

be
r

Pitch path (blue), Auto segmentation (black) & Manual segmentation (red)

Time (s)

Figure 19: A sample output of the NLMS segmentater using both thinning procedures. The
passage sung is ”rock a bye baby in the tree top, when the wind blows the cradle will drop”.
The blue curve is the measured pitch track. The black curve is the automatic segmentation.
And the red curve is the manual segmentation.

in the tree top, when the wind blows the cradle will drop.” The first multiple-note region
corresponds to ”a bye baby in the”, the second to ”tree top”, the third to ”when the wind
blows” and the forth ”cradle will drop”. Note, the singer has actually sung the ”in the”
incorrectly, but this is immaterial to the present analysis. This is a particularly good example
because it demonstrates both types of errors while still giving a reasonable indication of
average performance.

As can be seen in the figure, the automatic segmentation matches the manual
segmentation reasonably well. There is a single missed note, ”the” in ”baby in the” and a
single inserted note, ”when” in ”when the wind”.

Listening to the audio file reveals that the missed ”the” is sung very briefly, the
singer does not clearly articulate the note. This is the most common type of missed note.

26

In particular, all the segmentation methods had difficulty detecting ’passing’ notes. Passing
notes are nestled between two important notes. Often a passing note would manifest itself
as a continuous slide between two sustained pitches in the pitch track, there would be
no plateau at all. Furthermore, the length and shape of this slide was not (visually) any
different than when the singer was ’scooping’ between two notes. While this does reveal
an interesting question in the human perception of notes, for the time being it represents a
reliable source of error in the segmentation algorithms. All of the systems developed here
can be adjusted so as to usually detect passing notes or ignore scooping regions, but not
both.

The inserted note, ”when”, is also an instance of the singer not clearly articulating
the note. The singer lilts the pitch, causing the sporadic output seen in the pitch track. In
fact, on this particular recording the singer falls into a short giggle shortly after with ”blows
the”. Rather than viewing this as an error on the part of the singer, it is best to view this
as another obstacle to designing a robust segmentation algorithm.

These results may appear reasonably good on the surface, but whether they are
robust enough for subsequent database searching remains unclear. Depending upon how
the MIR search is implemented, a single miss or false alarm could seriously degrade system
performance.

6.2 Discussion

The recording analyzed in the previous section brings up an important issue. We do not
want to design an MIR system that only works for trained singers. An untrained singer will
inevitably make numerous small mistakes when singing a tune. Typically these errors are
not as bad as actually giggling during the recording, but at the very least some notes will
not be clearly articulated.

In particular, passing notes are frequently missed. The algorithms described here
have the flexibility to be tuned so as to not miss these notes, however it comes at the
cost of substantially increasing the false alarm rate. As it stands, it is better to miss the
occasional passing note than insert many extra false alarm notes. This implies that the
ultimate search engine used to match the query notes with the database must have some
mechanism for assigning lower cost to these passing notes.

Similarly, that the precise location of the note boundaries is often ill-defined, even
when performing manual segmentation, implies that the MIR search must not be sensitive
to slight timing errors.

But returning to the segmentation problem itself, each of the methods explored
here open particular doors for further improvement. All of the techniques explored here
make use of a rudimentary ’minimum duration’ note thinning procedure. Data clustering is
a vast field of research with many elegant solutions for various applications. More sophis-
ticated thinning or clustering algorithms could yield performance improvements for all the
techniques explored in this work.

The NLMS segmenter, being relatively ad hoc, presents the fewest possibilities for
further improvement. As with any system based on ad hoc fiddling, further fiddling will
eventually reach a point of diminishing returns. While further epsilon improvements proba-
bly do exist, they will not be of particular interest to the research community. Although it
is worth noting that the feature vectors explored here only consider a variety of discrete first
derivatives. Higher order derivatives were not considered. Second derivatives could provide
useful statistics not employed by the current system.

Both of the predictive filter techniques subtract a running sample mean from the
pitch track before processing the pitch track values. Such a step is necessary because the
Kalman and RLS filters considered here were developed assuming zero-mean processes.
Simply subtracting a running sample mean potentially distorts important characteristics of
the pitch track. A less distorting method of forcing the tracks to zero-mean could improve
performance considerably.

27

The Kalman filter developed in Chapter 3 assumed a pitch track modulated by
vibrato. There are, of course, many other types of ’distortion’ an otherwise constant pitch
track may experience. Designing the filter under a vibrato-corrupted assumption obviously
limits the filters performance when no vibrato is present. This implies that perhaps two, or
more, Kalman filters should be developed and an initial detection step performed first to
determine which filter should be used.

As was mentioned in the previous chapter, the curve fitting algorithm used a crude
estimate of the number of notes to fit the pitch track to. It was found experimentally that
when the algorithm knew a priori what the correct number of notes was that performance
was very good. A more sophisticated method of estimating the number of notes to fit would
certainly improve segmenter performance. However, a more sophisticated approach would
most likely involve computing the optimal curve fit for multiple note number hypotheses
and then selecting the hypothesis with the least overall cost, or risk [13]. Given that the
algorithm was quite slow for even a single note number hypothesis, computing multiple
hypotheses may be computationally unreasonable.

But this lack of a satisfying method to estimate the number of notes opened the
door to a new possibility. Rather than use a transcription of a sung melody as the database
query, why not use a decomposition from the most ’reliable’ to the least ’reliable’ notes as
the database query? Such an investigation was beyond the scope of this work.

In spite of the above recommendations, a substantial improvement in performance
will only be had by taking a fundamentally different approach. In particular, a more analytic
model of the pitch track needs to be developed in order make the subtle passing notes more
obvious. Visually inspecting the pitch tracks of various recordings reveals that often the
passing notes are completely hidden in the pitch changes between major notes. It is an
interesting issue in the perception of sound, we can hear a passing note even when the pitch
track shows no plateau whatsoever. In some cases this may be due to other information,
that is the listener is familiar with the tune and ’inserts’ the passing note. This disparity
between what pitches we can perceive aurally versus those visually apparent in the pitch
track must be resolved. It is unclear however whether any amount of modelling will be able
to unravel this complexity.

One particularly promising direction for future work is incorporating speech recog-
nition ideas into melody segmentation. Often a passing note is recognized by the listener
not because of its pitch, but because it is articulated as a separate syllable. The speech
recognition community has explored many techniques for segmenting continuous speech
into isolated syllables, although to date segmenting sung speech into syllables has not been
considered.

Hence the question of circumventing the segmentation problem again presents itself.
To date, most aural MIR systems have all been based on some sort of transcription of
recorded audio. The choice of using a note sequence for searching may be an intuitive, but
there is no particular evidence to imply it is optimal. Given that a robust transcription
algorithm for sung melodies has yet to be developed, perhaps other characteristics of the
sung queries should be explored. There are any number of other characteristics that may
be more analytically tractable, such as note renewal times or time and frequency differences
between the high and low notes of a passage.

6.3 Conclusion

Several techniques for the automatic segmentation of sung melodies have been explored.
The fundamental philosophy adhered to throughout this work was that a melody segmen-
tation algorithm should rely only on pitch change information. A multiple note passage
will often be sung with constant amplitude and timbre, hence a segmentation algorithm
should not rely on amplitude and timbre. Three classes of segmentation algorithms were
explored: predictive filtering, neural networks and curve fitting. Of the two predicative
filters implemented, the RLS filter outperformed the Kalman filter. This was due primarily

28

to the Kalman filters inability to track the time-varying characteristics of the pitch track.
Numerically the neural network yielded the best performance, although this superior perfor-
mance is due in part to the training data used to design the algorithm. Applying the NLMS
algorithm to a different or expanded database will likely reveal weaknesses not seen in this
work. Lastly, while the curve fitting algorithm did not yield especially good segmentation
results, the exploration did propose alternate melody representations that may be useful for
future MIR systems.

It was concluded that any substantial further improvement will require incorporat-
ing volume and timbre information. In particular, the ambiguity regrading passing notes and
scooping regions cannot be resolved with only pitch information. Nonetheless, the methods
explored here do present improved performance over conventional methods for segmenting
sung melodies.

References

[1] R. Andre-Obrecht, A Statistical Approach for the Automatic Segmentation of Continu-
ous Speech Signals, IEEE Trans. on Acoustics, Speech and Signal Processing 36 (1988),
no. 1, 29–110.

[2] M. A. Bartsch, Automatic Assessment of the Spasmodic Voice, Qual II Report, Uni-
versity of Michigan, 2002.

[3] E. Batlle and P. Cano, Automatic Segmentation for Music Classification Using Com-
petitive Hidden Markov Models, Proceedings of ISMIR 2000 (2000), Plymouth, MA.

[4] W. P. Birmingham, R. B. Dannenberg, G. H. Wakefield, M. Bartsch D. Bykowski,
D. Mazzoni, C. Meek, M. Mellody, and W. Rand, Musart: Music Retrieval Via Aural
Queries, Proceedings of ISMIR 2001 (2001), Bloomington, IN.

[5] P. Boersma, Accurate Short-Term Analysis of the Fundamental Frequency and the
Harmonics-to-Noise Ratio of a Sampled Sound.

[6] W. Chou and L. Gu, Robust Singing Detection in Speech/Music Discriminator Design,
IEEE International Conference on Acoustics, Speech and Signal Processing 2 (2001),
865–868.

[7] R. B. Dannenberg, Music Representation Issues, Techniques, and Systems, Computer
Music Journal 17 (1992), no. 3, 20–30.

[8] S. Duanmu and G. H. Wakefield et al, Taiwanese Putonghua Corpus (TWPTH) Speech
and Transcripts, Linguistic Data Consortium (1998).

[9] J. K. Fwu and P. M. Djurie, Segmentation of Piecewise Constant Signal by Hidden
Markov Models, IEEE Signal Processing Workshop on Statistical Signal and Array
Processing (1996), 283–286.

[10] S. Haykin, Adaptive Filter Theory, Prentice Hall Ptr, Upper Saddle River, NJ, 1996.

[11] A. K. Jane and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall Ptr, En-
glewood Cliffs, NJ, 1988.

[12] S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice
Hall Ptr, Upper Saddle River, NJ, 1993.

[13] , Fundamentals of Statistical Signal Processing: Detection Theory, Prentice Hall
Ptr, Upper Saddle River, NJ, 1998.

29

[14] T. Kemp, M. Schmidt, M. Westphal, and A. Waibel, Strategies for automatic segmen-
tation of audio data, IEEE International Conference on Acoustics, Speech and Signal
Processing 3 (2000), 1423–1426.

[15] Y. E. Kim, W. Chai, R. Garcia, and B. Vercoe, Analysis of a contour-based represen-
tation for melody, 2000.

[16] N. Kosugi, Y. Nishihara, and T. Sakata et al, A PracticalL Query-By-Humming System
for a Large Music Database, ACM Multimedia (2000), 333–342, Los Angelos, CA.

[17] J. S. Lim, Two-Dimensional Signal and Image processing, first ed., Prentice Hall Ptr,
Upper Saddle River, NJ, 1990.

[18] D. Mazzoni and R. B. Dannenberg, Melody Matching Directly from Audio, Proceedings
of ISMIR 2001 (2001), Bloomington, IN.

[19] R. J. McNab and L. A. Smith, Evaluation of a Melody Transcription System, IEEE
International Conference on Multimedia and Expo, 2000 2 (2000), 819–822.

[20] R. J. McNab, L. A. Smith, D. Bainbridge, and I. H. Witten, The
New Zealand Digital Library MELody inDEX, D-Lib Magazine (1997),
http://www.dlib.org/dlib/may97/meldex/05witten.html.

[21] M. Melucci and N. Orio, Musical information retrieval using melodic surface, Proceed-
ings of ACM Digital Libraries Conference (1999), 152–160, Berkeley, CA.

[22] M. Pandit, J. Kittler, Y. Li, and E. H. S. Chilton, A Comparative Study of Differ-
ent Segmentation Approaches for Audio Track Indexing, International Conference on
Pattern Recognition 2 (2000), 467–470.

[23] C. Raphael, Automatic Segmentation of Musical Signals Using Hidden Markov Models,
IEEE Trans on PAMI 21 (1999), no. 4, 360–370.

[24] A. K. V. SaiJayram, V. Ramasubramanian, and T. V. Sreenivas, Robust parameters for
automatic segmentation of speech, IEEE International Conference on Acoustics, Speech
and Signal Processing 1 (2002), 513–516.

[25] A. Sterian, Model-Based Segmentation of Time-Frequency Images for Musical Tran-
scription, Ph.D. thesis, University of Michigan, Department of Electrical Engineering
and Computer Science, 1999.

[26] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice Hall Ptr, Upper
Saddle River, NJ, 1997.

[27] J. R. Treichler, C. R. Johnson, and M. G. Larimore, Theory and Design of Adaptive
Filters, Prentice Hall Ptr, Upper Saddle River, NJ, 2001.

[28] J. P. van Hemert, Automatic Segmentation of Speech, IEEE Trans on Signal Processing
39 (1991), no. 4, 1008–1012.

[29] O. Weisman and Z. Pollack, The Perceptron, http://www.cs.bgu.ac.il/ omri/Perceptron,
1995.

[30] T. Zhang and C. C. J. Kuo, Audio Content Analysis for Online Audiovisual Data Seg-
mentation and Classification, IEEE Trans. on Speech and Audio Processing 9 (2001),
no. 4, 441–457.

30

