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I. INTRODUCTION

The problem of optimal decoding of a trellis coded sequence transmitted over a frequency non-selective,

time-selective fading channel is considered in this paper. It is a well-known fact that when the channel state

information (CSI) is known to the receiver, the receiver may use Viterbi’s algorithm (VA) to £nd the maximum

a posteriori probability sequence detection (MAPSqD) solution with linear complexity in sequence length, N .

However, when CSI is not available at the receiver, the MAPSqD solution cannot be obtained using such a

simple dynamic programming technique, due to memory imposed on the observation by the channel. One

approach for solving the problem is to transmit regularly spaced pilot symbols. The receiver can estimate the

channel using the pilots and then use VA to decode the sequence based on the estimated CSI. Although this

might be a desirable approach for high SNR applications, the unreliable estimated CSI provided by pilots may

substantially deteriorate the performance when the operating SNR is low, e.g., when high-performance codes

are used. In this case, joint sequence decoding and channel estimation (i.e., true MAPSqD in the presence of

unknown CSI) appears to be the desirable policy.

There is an extensive literature on approximate algorithms for solving the joint decoding/estimation prob-

lem. The expectation-maximization (EM) algorithm [1, 2] performs a two-step statistical iteration between

channel-conditioned sequence decoding and data-conditioned channel estimation. A family of algorithms can

be constructed by viewing this problem as a hypothesis testing problem with each hypothesis (sequence) being

a path in a tree of depth N . Since testing all hypotheses amounts to exponential complexity, a tree-pruning al-

gorithm, such as the T-algorithm [3], the M-algorithm [4], or the per-survivor processing (PSP) [5] algorithm

can be employed to trade off complexity for performance. In all these works, the underlying assumption

was that the optimal (exact) MAPSqD solution can only be found with an exponential complexity in the

sequence length N due to the exponential growth of the sequence tree.

It is our intention to prove that the exact MAPSqD solution can be obtained with only polynomial com-

plexity in the sequence length, N . The authors have addressed and solved this problem in the case of uncoded
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sequences for a class of channel models in [6–8]. The basic idea behind this work is that although the se-

quence tree (and thus the number of hypotheses) grows exponentially in N , there is only a certain number

of sequences that are potential candidates for the MAPSqD solution. This suf£cient set of sequences is not

known a-priori, but once the noisy observation is obtained at the receiver, there is a polynomial-complexity

algorithm to obtain it [6–8]. This algorithm is derived by de£ning a new kind of “decision regions” that par-

tition the channel parameter space, as opposed to the traditionally de£ned decision regions that partition the

observation space. By studying the structure of these new “decision regions” the authors showed that their

number grows only polynomially with N and that there is a polynomial complexity algorithm that constructs

them. Unfortunately, all arguments used in [6–8] rely heavily on the assumption of uncoded sequence. In

this paper, in order to solve the trellis coded MAPSqD problem, we adopt the concept of “decision regions”

de£ned in the parameter space as in [6–8]. Contrary to the previous works, however, we de£ne a set of

suf£cient survivor sequences and study their evolution in time. In particular, we show that this set can be

updated in a forward recursive fashion and that the resulting set grows only polynomially, thus establishing

the polynomial-complexity result for the coded case.
The same ideas can be used to de£ne both forward and backward suf£cient survivor sets. This essentially

means that exact symbol-by-symbol soft decisions (more speci£cally, the messages corresponding to the min-

sum algorithm [9]) can also by generated with polynomial complexity. Applications that can potentially

bene£t from this development include serially concatenated convolutional codes through ¤at-fading channels,

where now the entire system consisting of the inner trellis code and the channel has an exact “soft inverse” [10]

[11, p. 85] that is computationally feasible.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the transmission of a sequence of information symbols a = [a1, a2, . . . , aN ]T , with ak ∈ A !
{0, 1, . . . , K − 1}. The sequence is encoded by a £nite state machine (FSM) de£ned by its state s k ∈ S !
{1, . . . , I} at time k. For a given state sk−1 and a current input ak, de£ne ek ! (sk−1, ak) ∈ E ! {1, . . . , IK}

to be a trellis edge. The FSM is de£ned by the “next-state” function ns : E → S

sk = ns(ek), initial state s0 is known (1)

and the “output function” out : E → O ! {0, 1, . . . , M − 1}, such that the transmitted M-ary phase shift

keying (M-PSK) signal is

yk =
√

Ese
j 2π

M out(ek), (2)
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with Es being the symbol energy. It will also be useful to de£ne the “previous-state function” ps : E → S,

and the “input function” in : E → A as follows

sk−1 =ps(ek) (3)

ak =in(ek). (4)

The sequence y = [y1, y2, . . . , yN ]T is transmitted through a frequency-non-selective/time-selective fading

channel. Assuming that the channel remains constant for the entire sequence transmission1, the observation

model can be expressed as

z = cy + n (5)

where z = [z1, z2, . . . , zN ]T is the received signal, c ∼ CN (0, 1) is a complex Gaussian random variable, n =

[n1, n2, . . . , nN ]T is zero-mean circularly symmetric complex additive white Gaussian noise with covariance

matrix KN = N0IN .

When no CSI is available at the receiver, i.e., when the realization of c is unknown, the MAPSqD solution

to this problem is

âMAPSqD = arg max
a∈AN

p(z|a)p(a) = arg max
a∈AN

{
ln p(a) +

1

N0(N0 + NEs)
|zHy|2

}
(6)

It is fairly well known fact (see for instance [12, p. ]) that, due to the linear and Gaussian nature of the

observation model, this problem can be expressed in a double maximization form as

âMAPSqD = arg max
a∈AN

max
c∈C

{
ln p(a) − 1

N0
|z − cy|2 − |c|2

}
. (7)

Since there is an one-to-one correspondence between e and a, £nding âMAPSqD is equivalent to £nding

êMAPSqD as follows

êMAPSqD = arg max
e∈ẼN

max
c∈C

N∑

k=1

Lk(ek, c) = LN(e, c) (8)

where

Lk(ek, c) ! ln p(in(ek)) −
1

N0
|zk − c

√
Ese

j 2π
M out(ek)|2 − |c|2

N
, (9)

1The polynomial complexity result that we will establish is valid even if the channel is time varying, as long as the degrees of freedom in the
channel, i.e., the non-zero eigenvalues of the channel covariance matrix, do not increase linearly with N .
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Lk(ek, c) !
k∑

i=1

Li(ei, c) (10)

and

Ẽk !{ek : ns(ei) = ps(ei+1), ∀i = 1, 2, . . . , k − 1} (11)

is the set of valid paths up to time k.

III. SUFFICIENT SURVIVOR MATRICES

For a given c, if we de£ne the survivor that ends in state i at time k obtained by the VA as

V̂k(i|c) = arg max
ek∈Ẽk:ns(ek)=i

Lk(ek, c), ∀i ∈ S (12)

we have the following lemma.

Lemma 1:

êMAPSqD = VN(i|c) for some i ∈ S and c ∈ C (13)

Proof: See Appendix I.

Therefore, if we de£ne V̂k(c) ! [V̂k(1|c), V̂k(2|c), . . . , V̂k(I|c)]T to be the survivor matrix consisting of all

survivors that end in different states with parameter c at time k and collect all such survivor matrices in a set

D̂k !{V̂k(c) : c ∈ C} (14)

then instead of searching êMAPSqD in ẼN , we need only search through all rows of all survivor matrices

in a potentially smaller suf£cient set D̂N . However, since C is an in£nite set, constructing D̂N by searching

through all c ∈ C will require in£nite complexity. We make the following observation: it is sensible to expect

that the function V̂k(c) remains constant for a range of c’s. More rigorously, we can partition C in such a

way that for all c’s in each set of the partition, V̂k(c) is the same. This leads us to the de£nition of the

“parameter-space decision regions”

T k(Vk) !{c ∈ C : V̂k(c) = Vk} (15)

de£ned for any valid survivor matrix Vk ∈ Dk, where

Dk ! {[e(1)k, e(2)k, . . . , e(I)k]T : e(i)k ∈ Ẽk, ps(e(i)
1 ) = so ∀i ∈ S, and

e(i)
l &= e(j)

l ⇒ ns(e(i)
l ) &= ns(e(j)

l ) ∀i, j ∈ S, 1 ≤ l ≤ k} (16)
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is the set of all valid survivor matrices at time k. The constraints in (16) imply that once survivors merge,

they have to stay merged for their entire past. With the introduction of “parameter-space decision regions” it

is now clear that the suf£cient set can be constructed as

D̂k ={Vk ∈ Dk : T k(Vk) &= φ}. (17)

In the next section we will show that D̂N and TN(VN), ∀VN ∈ D̂N can be generated with polynomial

complexity, and furthermore, that the size of the resulting suf£cient set D̂N is also polynomial in N .

IV. RECURSIVE CONSTRUCTION OF D̂N AND TN(VN)

De£ne the set of all possible extensions of Vk as

ext(Vk) !{Wk+1 ∈ Dk+1 : Wk+1(i, k + 1) = e ⇒ Wk+1(i) = [Vk(ps(e)), e]} (18)

where Wk(i, j) is the j-th element of the i-th survivor in Wk. Also de£ne the follwoing set of channel

parameters

P k(Vk, e) !{c ∈ C : Lk+1([Vk(ps(e)), e], c) = max
e′∈E:ns(e′)=ns(e)

Lk+1([Vk(ps(e′)), e′], c)}. (19)

Observe that the set P k(Vk, e) is a convex polytope since its boundaries are straight lines in C. It should

be clear from this de£nition that for any c ∈ P k(Vk, e), and if the survivor matrix at time k is Vk the VA

(conditioned on c) will choose [Vk(ps(e)), e] as the survivor extension. Then as a consequence of the VA, we

have the following lemma.

Lemma 2:

T k+1(Vk+1) =
⋃

Wk:Vk+1∈ext(Wk)

{
T k(Wk)

⋂

i∈S

P k(Wk,Vk+1(i, k + 1))

}
(20)

Proof: See Appendix II.

Lemma 2 essentially suggests a recursive algorithm for constructing T k+1(Vk+1). In addition, the set D̂k+1

can be easily obtained by collecting the Vk+1’s with nonempty T k+1(Vk+1). However, since the sets P k(Wk, e)

need to be generated for all Wk ∈ D̂k, the size of D̂k+1 can grow (in the worst case) as β|D̂k| for some β > 1,

and thus the size of the suf£cient set D̂N will be exponential in N .

To overcome this problem, we modify the above algorithm by observing that several survivor matrices Wk

result in the same set P k(Wk, e). In particular, if Wk and Uk are such that

Wk(i, j) &= Uk(i, j) ⇒ Wk(i, j) = Wk(l, j) and Uk(i, j) = Uk(l, j) ∀i, l ∈ S, (21)
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i.e., if they only differ in positions at which all the survivors merge together, then P k(Wk, e) = P k(Uk, e),

∀e ∈ E . Therefore, we can partition D̂k into groups Gk
1, G

k
2, . . . , G

k
αk

such that any two survivor matrices that

satisfy (21) belong to the same group. Fig. 1 shows an example of this partitioning. With this modi£cation,

4

3   G

3   G 3   G

3   G 3   G 3   G

3   G3   G

3   G

3   G1

3 5 6

7 8 9 10

2

Fig. 1. An example of groups for I = K = M = 2 and k = 3. Although in this example only G3
1 and G3

2

have more than one elements, for larger k the sets Gk
i have a large number of elements.

instead of constructing P k(Wk, e) for all Wk ∈ D̂k, we can construct P k(Wk, e) for only one Wk ∈ Gk
i for

each group i = 1, 2, . . . , αk, thus reducing complexity.

This leads to the following modi£ed algorithm:

1) Construct T 1(V1) for all V1 ∈ D1. If T 1(V1) &= φ, put V1 into D̂1.

2) Given D̂k and T k(Vk) for all Vk ∈ D̂k, construct groups Gk
1, G

k
2, . . . , G

k
αk

.

3) For each i = 1, 2, . . . , αk, do the following.

a) Choose an arbitrary matrix Wk ∈ Gk
i , and construct P k

e (Wk),∀e ∈ E .

b) For all Vk+1 = ext(Uk),Uk ∈ Gk
i , if T k(Uk)

⋂
i∈S P k

Vk+1(i,k+1)(W
k) &= φ,

i) Union this set with T k+1(V k+1), where T k+1(V k+1) is initially set to be φ. (Note that T k+1(V k+1)

is exactly what was de£ned in Lemma 2)

ii) Put V k+1 into D̂k+1.

4) Iteratively do steps 2) and 3) until we get D̂N and TN(VN).

At this stage, the proof of the polynomial complexity of the algorithm is only available for the case of

I = 2. Although this is the simplest case, it has important applications, such as a differentially encoded BPSK

system. The authors are currently working on the generalization to the case I > 2.

Lemma 3: The number of groups αk is at most polynomial in k.

Proof: See Appendix III.
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We summarize the main result of this paper in the following theorem.

Theorem 1: For I = 2, the algorithm stated in Lemma 2 and modi£ed using the groups de£ned in (21) can

£nd the exact êMAPSqD solution with worst-case polynomial complexity in N for any signal-to-noise ratio.

Proof: A sketch of the proof is now presented. The proof hinges on Lemma 3, which implies that all sets

T k+1(Vk+1) are polytopes de£ned by a number of equations which is polynomial in N . Since each equation

represents a line in the complex plane, the problem becomes equivalent to £nding all partitions generated by

a polynomial number of lines in C. This problem has been studied before in [13] where it has been shown

that there exists a polynomial-complexity algorithm that can £nd the at-most-polynomial number of such

polytopes. The nature of the algorithm is not important here; its existence completes the proof.

V. DISCUSSION AND CONCLUSION

In this paper, the problem of optimal MAPSqD of a trellis coded data sequence transmitted over a frequency-

nonselective, time-selective channel is considered. The case when the receiver does not have CSI is addressed.

It is shown that, contrary to the traditional belief, the exact solution can be obtained with polynomial com-

plexity in the sequence length (the proof for a two-state trellis is only presented). The novel approach we used

here to establish these results is to view this detection problem from the channel parameter space as opposed

to the observation space and de£ne appropriate decision regions.

We would like to point out that with a small modi£cation one can also solve the more interesting problem

of obtaining symbol-by-symbol soft decisions with polynomial complexity. In particular, the metric

SbSk(a) = max
a:ak=a

ln{p(z|a)p(a)} = max
a:ak=a

{
ln p(a) +

1

N0(N0 + NEs)
|zHy|2

}
= max

e:in(ek)=a

{
max

c
LN(e, c)

}
,

(22)

which is exactly the metric implied by the min-sum algorithm can be obtained using the following idea.

Recall that in the proposed algorithm, we have the suf£cient sets D̂k of forward survivor matrices for all time

instants k. Similarly, we can construct the suf£cient sets B̂k of backward survivor matrices at all time instants.

Therefore for any given edge ek we can always £nd its best past and future evolution and the corresponding

soft metric by comparing all the possible combinations of all the past and future survivors in the forward D̂k−1

and backward B̂k+1 suf£cient sets respectively.

Currently we are working on generalizing Theorem 1 for I > 2. For this we might need a more precise

description of the evolution of groups in order to £nd αk exactly, or even a different grouping technique.
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Another topic of interest is the design of practical approximate algorithms for performing MAPSqD or

generating symbol-by-symbol soft decisions. The authors have derived such algorithms for the uncoded case

in [6–8] by introducing a suboptimal, but sensible, partitioning of the parameter space. A similar approach

can be followed for the coded case, thus resulting in performance complexity tradeoffs that are more attractive

than the ones obtained by the existing approximate algorithms.

APPENDIX I

PROOF OF LEMMA 1

De£ne

î(c) ! arg max
j∈S

L(V̂N(j|c), c) (23)

to be the best survivor given c, we have

V̂N (̂i(c)|c) = arg max
ek∈Ẽk

L(e, c) (24)

De£ne further

ĉ(e) ! arg max
c∈C

LN(e, c) (25)

Since ĉ(e) ∈ C ∀e ∈ ẼN , (8) becomes

êMAPSqD = arg max
e∈ẼN

LN(e, ĉ(e))

=V̂N (̂i(c)|c) for some c ∈ C (26)

which proves lemma 1.

APPENDIX II

PROOF OF LEMMA 2

By the Viterbi’s algorithm we know

V̂k+1(c) ∈ ext(V̂k(c)) and (27)

V̂k+1(i, k + 1|c) = e

⇒V̂k+1(i|c) = (V̂k(ps(e)|c), e)

⇒Lk+1((V̂k(ps(e)|c), e), c)

= max
e′∈E:ns(e′)=i

Lk+1((V̂k(ps(e′)|c), e′), c), ∀i ∈ S (28)
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Therefore

T k+1(Vk+1) !{c ∈ C : V̂k+1(c) = Vk+1}

={c ∈ C : Vk+1 ∈ ext(Wk),Wk = V̂k(c), Vk+1(i, k + 1) = e

⇒ Lk+1((Wk(ps(e)), e), c) = max
e′∈E:ns(e′)=i

Lk+1((Wk(ps(e′)), e′), c), ∀i ∈ S}

=
⋃

Wk:Vk+1∈ext(Wk)

T k(Wk) ∩ {c ∈ C : Vk+1(i, k + 1) = e

⇒ Lk+1((Wk(ps(e)), e), c) = max
e′∈E:ns(e′)=i

Lk+1((Wk(ps(e′)), e′), c), ∀i ∈ S}

=
⋃

Wk:Vk+1∈ext(Wk)

{
T k(Wk)

⋂

i∈S

P k
Vk+1(i,k+1)(W

k)

}

which proves lemma 2.

APPENDIX III

PROOF OF LEMMA 3

Suppose I = 2.

Let i → j denote a transition from state i to state j, E i→j ⊂ E be the set of edges going from state i to state

j and

êi→j
l (c) ! arg max

e∈Ei→j
Ll(e, c) (29)

be the best edge going from state i to state j for a given c at time l. For any give i, j and l, consider the

partition J i→j
l of C created by the following set partitioning lines

Ll(e, c) = Ll(f, c), ∀e &= f, e, f ∈ E i→j (30)

Since each line in (30) de£nes a boundary of the two possible results of a pairwise comparison in set E i→j ,

êi→j
l (c), as a result of all possible pairwise comparisons in set E i→j , is a constant for all c in the same element

of the partition J i→j
l . Now consider the £ner partition Ĵk created by all the lines in (30) ∀i, j ∈ S, 1 ≤ l ≤ k.

Then it follows directly from the above discussion that êi→j
l (c) is a constant for all c in the same element of

the partition Ĵk, ∀i, j ∈ S, 1 ≤ l ≤ k.

Let another set of partitioning lines

Ll(e
1→2, c) + Ll(e

2→1, c) = Ll(e
1→1, c) + Ll(e

2→2, c) ∀ei→j ∈ E i→j, ∀i, j ∈ S (31)
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de£ne the partition J̃l. Then for all c and c′ in the same element of J̃l, k ≥ l, V̂k(c) and V̂k(c′), can not be

such that

V̂k(1, l|c) = e1→2 ∈ E1→2, V̂k(2, l|c) = e2→1 ∈ E2→1 and (32)

V̂k(1, l|c′) = e1→1 ∈ E1→1, V̂k(2, l|c′) = e2→2 ∈ E2→2 (33)

since

V̂k(1, l|c) = e1→2 ∈ E1→2, V̂k(2, l|c) = e2→1 ∈ E2→1

⇒
l−1∑

i=1

Li(V̂
k(1, i|c), c) + Ll(e

1→2, c) ≥
l−1∑

i=1

Li(V̂
k(2, i|c), c) + Ll(e

2→2, c), and

l−1∑

i=1

Li(V̂
k(2, i|c), c) + Ll(e

2→1, c) ≥
l−1∑

i=1

Li(V̂
k(1, i|c), c) + Ll(e

1→1, c)

⇒Ll(e
1→2, c) + Ll(e

2→1, c) = Ll(e
2→2, c) + Ll(e

1→1, c) (34)

and

V̂k(1, l|c′) = e1→1 ∈ E1→1, V̂k(2, l|c′) = e2→2 ∈ E2→2

⇒
l−1∑

i=1

Li(V̂
k(1, i|c′), c′) + Ll(e

1→1, c′) ≥
l−1∑

i=1

Li(V̂
k(2, i|c′), c′) + Ll(e

2→1, c′), and

l−1∑

i=1

Li(V̂
k(2, i|c′), c′) + Ll(e

2→2, c′) ≥
l−1∑

i=1

Li(V̂
k(1, i|c′), c′) + Ll(e

1→2, c′)

⇒Ll(e
1→1, c′) + Ll(e

2→2, c′) = Ll(e
2→1, c′) + Ll(e

1→2, c′) (35)

contradict with the fact that c and c′ is in the same element in J̃l. Therefore for all c in the same element of

J̃l the two-to-two transition at time l ≤ k for all V̂k(c) is uniquely de£ned. If we construct a partition J k by

intersecting all the lines in (31) ∀1 ≤ l ≤ k and all the lines partitioning Ĵk, then for all c in the same element

of Jk, we have the following two facts.

1) êi→j
l (c) is a constant ∀i, j ∈ {1, 2}, 1 ≤ l ≤ k.

2) The two-to-two transitions (1 → 2, 2 → 1 or 1 → 1, 2 → 2) of survivor matrices V̂k(c) at all time

instants l, 1 ≤ l ≤ k is uniquely de£ned.

As de£ned in section IV, a group at time k is uniquely de£ned by the following information.
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1) The merging time m < k before which all the survivors merge together into one tail.

2) The state ms ∈ S = {1, 2} to which the only tail connects at the merging time m.

3) The one-to-two transition (trivially ms → 1, ms → 2) of the survivor matrices at time m + 1.

4) The two-to-two transitions (1 → 2, 2 → 1 or 1 → 1, 2 → 2) of survivor matrices for all time instants l,

m + 2 ≤ l ≤ k.

5) The edges corresponding to all the transitions in 3) and 4).

Since for all c in the same element of Jk, information 4 and 5 are uniquely de£ned, the number of different

groups for all V̂k(c)’s is at most equal to the number of all possible combinations of information 1 and 2

(since 3 is a trivial information), which is 2k + 1. Therefore the number of groups αk at time k is at most

(2k + 1)|Jk|.

To enumerate the size of |Jk|, £rst observe that J i→j
l is a partition created by K(K−1)

2 lines ∀i, j ∈ {1, 2}

∀1 ≤ l ≤ k. Therefore Ĵk is a partition created by 22kK(K−1)
2 lines. Moreover, since J̃l is created by at

most (K
2 )4 lines ∀1 ≤ l ≤ k, we conclude that Jk is a partition created by at most (22kK(K−1)

2 )((K
2 )4k) =

k2 K2(K−1)
8 lines, which is polynomial in k. This completes the proof of Lemma 3.
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