
1

Lifetime Bounds, Optimal Node Distributions and
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Abstract—In this paper we investigate the expected life-
time and information capacity of a data-gathering wireless
sensor network. The information capacity is defined as the
maximum amount of data (bits) transferred before the first
sensor node death due to energy depletion, while ignoring
various signaling overheads, such as MAC and routing. We
develop a fluid-flow based computational framework that
extends existing approaches, which are based on precise
knowledge of the layout/deployment of the network, i.e.,
exact sensor positions. Our method, on the other hand,
computes the expected information capacity for a given
distribution of sensor node layout and sensor data rates,
rather than any particular instance of sensor deployment.
Our flow model assumes a a continuous density of sensor
deployment, and is particularly appropriate for sensor
environments characterized by highly dense node deploy-
ments. This continuous-space flow model is then discretized
into grids and solved using a linear programming ap-
proach. Numerical studies show that this model produces
very accurate results, compared to averaging over results
from random instances of deployment, with significantly
less computation. We then use our model to determine
optimal node distributions for a linear network and the
properties of optimal routing that maximizes the lifetime
of the network.

Index Terms—Mathematical programming, optimiza-
tion, system design, wireless sensor networks, lifetime,
capacity, sensor deployment, node distribution, optimal
routing, fluid flow model,

I. INTRODUCTION
Maximizing the functional lifetime of individual sen-

sor nodes is clearly one of the biggest design objectives
for any wireless sensor network deployment. This life-
time, and the amount of information that can be col-
lected, depends on (a) the layout of the sensor network,
(b) the initial battery capacity on the individual sensor
nodes, (c) the characteristics of the sensor data generated
at the individual nodes, and (d) the communication costs
in transferring such generated data to a set of designated
collector nodes. In this paper, we present a mathematical
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framework that accepts each of the above variables as
input, and outputs an estimate on the maximum amount
of sensory data that can be collected. We develop a linear
programming tool that allows us to rapidly compute the
lifetime of a sensor network and study the dependence
of this lifetime on various parameters of interest. In
particular, we use this tool to determine the optimal
node distribution for sensor network layouts, and also
study the properties of the traffic paths that maximize
the network lifetime. We expect that our model will
provide sensor network designers a fast computational
tool to analyze the aggregate behavior of specific sensor
networks of interest, which are often characterized by
fairly high node densities.
We consider a wireless sensor network that is deployed

over a specific geographic area (the “field”). Nodes of
the sensor network are engaged in sensing and collecting
data from the field, and then transporting it to one
or more collectors (which may themselves consist of
individual or multiple nodes) for further processing. The
operations of data sensing and data forwarding may be
done continually, periodically or intermittently. Our goal
is to determine limits on how long the network can last,
and more importantly, how much data the network can
collect. In this paper, we concentrate on maximizing
the information capacity of the network, defined as
the maximum amount of information (bits) that can be
transferred from the sensing field to the collector regions
until the first sensor node gets completely drained of its
battery and dies, as well as the lifetime of the network,
defined as the time till this first sensor death.
Our work in this paper is inspired by that of [1], which

presents a linear programming approach for computing
the lifetime of a specific sensor network deployment. In
[1], the data collection and transfer process is represented
by a fluid flow model; maximizing the network lifetime
is then equivalent to a linear flow maximization problem.
The problem formulation in [1] is, however, based on
the precise location of the individual sensors: should
the sensor locations or their data rate be subject to even
small changes, the lifetime needs to be recomputed from
scratch. Accordingly, this linear programming model
cannot handle scenarios where the network topology
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cannot be deterministically described.
In contrast, our approach aims to determine the net-

work lifetime, based on probability distributions of the
node densities over the sensing field, and of the dis-
tribution of raw sensory data rates over that field. Our
focus on describing node layouts and sensor data rates
in terms of distributions is motivated by many important
sensor networking scenarios, where the specific node de-
ployment is not generated manually, but rather randomly
according to certain distributions. For example, in many
exploration and battlefield scenarios, nodes may simply
be dropped remotely (from an airplane or a ship) over
a physical area. We cannot control the precise location
of the individual nodes but only the aggregate node
distribution (at a suitably coarse granularity). In such
scenarios, a specific sensor network instance is really
a single sample path out of all possible deployment
outcomes based on a given distribution.
As in [1], we reduce the lifetime determination prob-

lem to a fluid-based flow maximization problem, where
the maximization is over routing choices or flow distribu-
tions. The key to developing a fluid flow model to handle
distributions of nodes is to assume that these distribu-
tions are represented by functions that are continuous
(over the sensing and collector regions). This approx-
imation is particularly appropriate for sensor network
environments that, in contrast to conventional computing
networks, exhibit much higher node density. Highly
dense sensor fields allow us to treat individual sensor
nodes as fungible and study the aggregate properties of
groups of nodes. The continuous-space fluid flow model
is then numerically solved through discretization, i.e., by
breaking up the continuous field into small, but discrete,
individual grids. Interestingly, our numerical results shall
show that this approach not only generates very accurate
estimates on lifetime and information delivered for dense
sensor fields, but remains accurate even for fields with
sparsely deployed sensors.
In general, network lifetime and its information ca-

pacity are two distinct metrics: maximizing one does not
necessarily imply the maximization of the other. How-
ever, if the information generation rate is not location-
varying, and if each node eventually relays all pack-
ets/bits that it receives from other nodes, then we shall
show that maximizing the amount of information trans-
ferred is equivalent to simply maximizing the lifetime.
More interestingly, we shall see that maximizing this
lifetime results in virtually zero residual energy at all
other nodes at the time of death of the first node. In other
words, although we have defined the network lifetime to
be defined by the death of the first node, maximizing it
also maximizes the amount of data that is delivered till

the death of all the sensor nodes.
As in [1] the notion of time in this paper has a rather

unconventional meaning, in that we only consider time
elapsed when a node is either actively transmitting or
receiving. We do not take into account the time a node
spends idling. Alternatively, it is as if all transmissions
and receptions can happen concurrently. In reality, they
need to be properly scheduled (e.g, MAC) to avoid
collisions, and one has to wait from time to time for
its scheduled transmission. Our model focuses only on
the operational lifetime: by assuming an ideal condition
where nodes spend no power in an idle state, and
by ignoring any signaling-related overhead, our model
provides an upper bound for any practically realizable
network. Our formulation also abstracts the communica-
tion overhead in terms of “communication energy per
bit”. While this value may vary with changes to the
specific physical layer settings (e.g., the raw bit rate,
error correcting codes, etc.), it does not affect the overall
applicability of our model.
We shall see that the computation of the bound reduces

to a flow maximization problem, where we essentially
compute the relative usage of different paths (from a
sensor node generating data to a collector acting as a
data sink) for transferring the sensed data. In general,
there are an infinite number of routing strategies that
can result in the same overall flow rates. Our goal is
thus not on determining a precise routing strategy, but on
studying the relative usage of different paths by any well-
designed routing strategy. As proved in [1], any such
lifetime bound is, however, always realizable in practice.
The remainder of the paper is organized as follows.

We present the details of our formulation, the solution
technique, and a critique of this modeling framework, in
Section II. In Section III we present numerical results
of our model under various parameter settings. Section
IV shows how we use this modeling method to obtain
optimal node distribution that maximizes the information
capacity in the example of a linear network, as well as
properties of the optimal routing strategy. Related work
is presented in Section V and Section VI concludes the
paper.

II. PROBLEM FORMULATION
In this section we develop a fluid-flow model for

maximizing the lifetime or the total information deliv-
ered/transferred by the sensor network and discuss its
unique features.

A. A Continuous Model
Suppose we have a sensing field with very densely de-

ployed sensors. At its extreme, the field may be regarded
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as being continuously filled with sensors. Accordingly,
let the following continuous functions represent various
network parameters as a function of the location (x, y)
in the sensing field.

ρ(x, y): The number of sensors per unit space (e.g.,
m2) at point (x, y). For example, if N sensors are
uniformly deployed over a sensing field of area A, then
this density is ρ(x, y) = N/A, for all (x, y) ∈ A by
using A to denote both the size and the range of the
area.

i(x, y): The information rate density, the amount of
information (e.g., number of bits) generated per second
per unit space at point (x, y). For example, if every
sensor is generating b number of bits/sec, then i(x, y) =
b · ρ(x, y).

e(x, y): The initial energy density, or the amount of
energy (e.g., joule) present in the beginning per unit
space at point (x, y). Suppose in the beginning every
sensor carries e joules, then e(x, y) = e · ρ(x, y). We
assume that batteries are not rechargeable.
Given these definitions we have the following iden-

tities:
∫ ∫

A ρ(x, y)dxdy = N ,
∫ ∫

A e(x, y)dxdy = E,
and

∫ ∫
A i(x, y)dxdy = B, where N is the total number

of sensors in the field, B is the total number of bits
generated per second by the field, and E is the total
amount of energy available in the beginning. The above
definitions can also be generalized to time-dependent
parameters.
For simplicity of notation, we will use σ to represent

a point in a two-dimensional space, i.e., let σ = (x, y),
σ

′ = (x′
, y

′), and so on. Our previous definitions
can now be written as ρ(σ), i(σ) and e(σ). Note that
dσ = dxdy. Define also the “flows” - f(σ, σ

′) to be the
amount of data delivered/transmitted from location σ to
location σ′ . This value has the unit of “number of bits per
unit-source-space per unit-sink-space” or equivalently
“number of bits per unit-space-squared”. Note that flows
are quantities over time, i.e., the total amount from
one location to another over a period of time, which
is determined by the optimization problem. In general,
the data is transported to a collector (or base station),
whose location σ∗ can be either within or outside the
sensing field. Let A denote the area of the sensing field
(where the sensors are distributed), and C denote the area
of the base station/collectors. Without loss of generality,
we can assume that A and C are non-overlapping (as
long as a collector/base station is not considered a sensor
simultaneously). This distinction becomes trivial when
the density functions are replaced by sampling functions
at single points, as we will show later.
For our analysis, we do not consider time dependence.

Thus, i(σ) is only a function of the location σ, but is

constant over time. All information is transmitted to the
collector. Nodes eventually transmit all data received and
do not keep any of the data by the time the network
lifetime ends. We then have the following formulation
(P) for maximizing the total information transferred from
A to C:

max
f

t ·
∫

σ∈A
i(σ)dσ ∼ max

f
t (1)

S.t.
∫

σ′∈A
f(σ, σ

′
)dσ

′
+

∫

σ′∈C
f(σ, σ

′
)dσ

′

=
∫

σ′∈A
f(σ

′
, σ)dσ

′
+ i(σ) · t, ∀σ ∈ A (2)

∫

σ′∈A
f(σ, σ

′
)ptx(σ, σ

′
)dσ

′
+

∫

σ′∈C
f(σ, σ

′
)ptx(σ, σ

′
)dσ

′

+
∫

σ′∈A
f(σ

′
, σ)prxdσ

′
+ t · εs(σ, i(σ))

≤ e(σ), ∀σ ∈ A (3)
f(σ, σ

′
) ≥ 0, ∀σ, σ

′
∈ A ∪ C (4)

f(σ, σ
′
) = 0, ∀σ = σ

′
(5)

f(σ, σ
′
) = 0, ∀σ ∈ C,∀σ

′
∈ A . (6)

The equivalency (∼) in (1) is due to the fact that i(σ)’s
are time-invariant and given. The first constraint (2) is a
statement of flow conservation, i.e., over the lifetime of a
sensor, the total amount transmitted must equal the total
amount received plus total amount generated/sensed. (3)
is the energy constraint, i.e., the total energy consumed
by a sensor, including transmission, reception, and sens-
ing, cannot exceed the initial energy equipment; (4) is
the non-negativity constraint; (5) states that any sensor
should not transmit to itself. and (6) means that data
does not flow from the collector back to the sensors.
In a practical scenario there might be broadcasts from
the collector to the nodes. However, if we assume that
the collector is not energy constrained, then this model
merely concentrates on data delivery and remains valid.
Here ptx(σ, σ

′) is the energy dissipation instead of power
dissipation, in transmitting from location σ to σ′ , in J/bit.
prx is the energy dissipation in receiving. ε(·) is the
energy spent in sensing, and e(·) is the initial energy.
The formulation (P) is equivalent to an a more generic

“max-min” formulation that allows nodes to have ar-
bitrarily different lifetimes t, and that maximizes the
minimum of these arbitrary lifetimes.
Some important points of the above model should be

noted. Implicitly i(σ) ≥ 0 and
∫
σ∈A i(σ)dσ > 0 are

assumed to ensure that the optimization does not become
trivial. In (2) the conservation principle is expressed in
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terms of rate, i.e., in terms of bits per unit space rather
than bits. The actual conservation comes by considering
the inflow/outflow over the infinitesimal area dσ =
dx dy, which gives

(∫

σ′∈A
f(σ, σ

′
)dσ

′
)

dσ +
(∫

σ′∈C
f(σ, σ

′
)dσ

′
)

dσ

=
(∫

σ′∈A
f(σ

′
, σ)dσ

′
)

dσ + i(σ)dσ · t, (7)

where the three integrands can be written in terms of a
point (x, y) ∈ σ as

∫
σ′∈A f(x, y, σ

′),
∫
σ′∈C f(x, y, σ

′),
and

∫
σ′∈A f(σ′

, x, y), respectively, by using the “inter-
mediate value theorem”1. In essence, σ in function f(·)
refers to a single point, but the conservation principle
refers to the infinitesimal area around that point. Since
dσ cancels out on all terms in (7), we get (2).
The total amount of information delivered to the

collector is
∫
σ∈A

∫
σ′∈C f(σ, σ

′)dσdσ
′ . Note that, in this

model,
∫

σ∈A

∫

σ′∈C
f(σ, σ

′
)dσdσ

′
=

∫

σ∈A
i(σ)dσ · t, (8)

by taking one more integral over σ ∈ A on both sides
of (2). Thus, the objective of maximizing lifetime is
equivalent to maximizing total amount of data delivered.
As a matter of fact, it seems we can completely eliminate
t from the formulation by replacing t in the formulation
(P) by the equivalent relationship defined by (8). The
optimization problem (P) can thus be simplified to a
maximization on a set of arbitrary non-negative flow
variables f(·, ·) and is equivalent to the optimization
problem (P1) shown in Figure 1: For the rest of our
discussion we will concentrate on formulation (P1)
rather than (P). Accordingly, we shall focus on directly
maximizing the information capacity, rather than the
indirect lifetime variable.

B. Solution Approach – Discretization
The formulation (P1) in Section II is in itself in-

tractable, since it is an infinite-dimensional optimization
problem due to the continuous and integral nature of
its elements. An immediate thought is to solve the
discretized version of this formulation. This corresponds
to dividing the sensing field into grids of equal or
variable sizes. This inevitably introduces error. However,
if we consider a highly densely populated sensing field,
then with relatively high resolution grids, we expected
the partitioning or discretization to produce reasonably
accurate results.

1It is while applying the intermediate value theorem that we require
the functions i(σ) and e(σ) to be continuous in constraints (2) and
(3) respectively.

max
f

∫

σ∈A

∫

σ′∈C
f(σ, σ

′
)dσdσ

′
(9)

S.t.
∫

σ′∈A
f(σ, σ

′
)dσ

′
+

∫

σ′∈C
f(σ, σ

′
)dσ

′

=
∫

σ′∈A
f(σ

′
, σ)dσ

′
+

i(σ)

∫
σ∈A

∫
σ′∈C f(σ, σ

′
)dσdσ

′

∫
σ∈A i(σ)dσ

,

∀σ ∈ A (10)∫

σ′∈A
f(σ, σ

′
)ptx(σ, σ

′
)dσ

′
+

∫

σ′∈C
f(σ, σ

′
)ptx(σ, σ

′
)dσ

′
+

∫

σ′∈A
f(σ

′
, σ)prxdσ

′
+

{
∫

σ∈A

∫
σ′∈C f(σ, σ

′
)dσdσ

′

∫
σ∈A i(σ)dσ

} · εs(σ, i(σ))

≤ e(σ), ∀σ ∈ A (11)
f(σ, σ

′
) ≥ 0, ∀σ, σ

′
∈ A ∪ C (12)

f(σ, σ
′
) = 0, ∀σ = σ

′
(13)

f(σ, σ
′
) = 0, ∀σ ∈ C,∀σ

′
∈ A (14)

Fig. 1. Formulation P1

Following this thought, suppose the sensing field is
partitioned into M smaller non-overlapping areas/zones,
indexed by m, m = 1, 2, · · · , M . each of size Am. That
is Am ∩ An = φ for m (= n, and A1 ∪ · · ·AM = A.
Again we will abuse the notation and let Am indicate
both the size and area itself. Then the original objective
function (9) becomes

maxf

∫

σ∈A

∫

σ′∈C
f(σ, σ

′
)dσdσ

′
=

∫

σ∈A
f(σ, σC)Cdσ

=
M∑

m=0

∫

σ∈Am

f(σ, σC)Cdσ =
M∑

m=0

f(σm, σC)AmC,

where σm is some location within areas Am, and σC

is some location within C. The first and third equalities
are due to the theorem of intermediate value since f() is
a continuous function over the two-dimensional space.
The two constraints can be discretized in a similar

way. For example, we obtain the following discretized
version of the flow conservation constraint and energy
constraint:
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∑

k∈M

f(σ1
m, σ1

k)Ak + f(σ2
m, σC(m))C

=
∑

k∈M

f(σ2
k, σ3

m)Ak + i(σ4
m)t ∀ m ∈ M (15)

and
∑

k∈M,k "=m

f(m, k)ptx(m, k)Ak + f(m,C)ptx(m,C)C +

∑

k∈M,k "=m

f(k,m)prxAk + t · εs(m, i(m))

≤ e(m) · Am ∀ m ∈ M, (16)

where e(m) is the approximated nominal energy density
within aream, and σi

m, i = 1, · · · 4 are points within area
Am.
This discretization has the effect of creating a regular

or possible irregular grid/partition in the field. Every
region Am is a rectangle/sector in the grid/partition
where the information and energy density of the re-
gion Am are concentrated on a single point within the
rectangle/sector. In essence, this method is using a grid
version of the network, where nodes are deployed at
points in the grid, to estimate the average information
capacity of a network with certain node distribution
pattern. What we really want is the expected information
capacity over the distribution of sensor node deployment,
denoted by E[C(·)], where C(·) is the capacity of the
network implicitly defined through the fluid flow model.
This expected value can currently only be obtained
via averaging over a large number of random cases.
The continuous fluid flow model followed by discretiza-
tion presented in this paper essentially computes the
information capacity of the grid deployment, which
may be thought of as the “expected deployment” with
the right partitioning, imprecisely denoted by C(E[·]).
Thus whether our model is valid hinges upon whether
C(E[·]) is a good approximation for E[C(·)]. Note that
C(E[·]) = E[C(·)] is trivially true if C(·) is a linear
function of its arguments. However, here the information
capacity is only implicitly defined via a math program.
On the other hand, the grid network can be viewed

as a “perturbed” version of any random layout, and
vice versa. Using results from the stability of linear
programs (LP), see for example [2], one can show that
the LP defined through the continuous model followed
by discretization is indeed stable. This means that when
the node locations are perturbed within a certain range,
it produces bounded difference on the objective function
value. The key then is to show that the disturbance intro-
duced by approximating the averages of random layouts
using the grid/partitioned version is within this stability

range. While we believe this to be true, especially when
node density is high, more analysis is needed to confirm
this. However, it is out of the scope of this paper, where
we shall use numerical studies to empirically validate
our method. Note also that the stability of the LP does
not imply that the information capacity computed from
a random “sample path” is close to that of another, nor
does it imply that the information capacity computed by
a random sample path is always close to the expected
capacity E(C(·))–indeed, our model is useful precisely
because (as we shall see in Section III.A), the infor-
mation capacity of a particular deployment may differ
significantly from the mean value.

C. Discussion and Critique of the Model

This formulation is really a generalization of the
formulation in [1]. To see this, note that if we know
the precise location of each sensor, then the continuous
functions become impulse (δ()) functions sampling at
these particular locations. Consequently the integration
operations reduce to summation at those sampled loca-
tions, which becomes the same as the formulation in
[1]. Due to this generality, our formulation produces
a much more powerful result in that it represents the
average capacity of the network for a distribution of the
deployment (expressed by the density function) rather
than for a particular deployment.
Our models assume that f(·, ·), ptx(·, ·), etc. are con-

tinuous functions of position (x, y) (to apply the interme-
diate value theorem). Hence, applying them to real-life
scenarios, where parameters may exhibit discontinuity,
will inevitably introduce some errors. For example, most
real communication adapters have a few discrete levels
for ptx, which is then a step-wise constant function of the
(continuous-valued) distance to the receiver. In addition,
our solution approach inevitably involves coarse or fine-
grained approximation. The utility of this method thus
depends on the relative size of this approximation error.
In the next section we will present numerical experi-
ments to quantify some of these errors.
By modeling sensor deployment as a continuous func-

tion, (P1) provides a way to obtain the capacity for
different node density functions (deployment patterns),
and thus study the impact of different node distributions
on the maximum achievable capacity. For example, as we
show in Section IV this analytical tool can be used to
study non-linear deployment of sensors, and the degree
to which we need to deploy a larger number of sensors
close to the collector node to counteract the higher
energy that these nodes expend in relaying information
from sensors further away.
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III. NUMERICAL EXPERIMENTS
The main purpose of our numerical experiments is to

examine whether our model can provide accurate results,
and whether such results are sensitive to changes in a
range of parameters as well as the granularity of the
discretization. Therefore, almost all results presented in
this section are in the form of comparing the result of
our fluid flow formulation (P1) using our computation
method, with that obtained by averaging over 100 in-
stances of the sample path fluid flow models each for one
random deployment. These results are compared under
equivalent conditions. Specifically, the number of nodes
in the sensing field, the location of the collector, as well
as the size of the field will be kept the same for each pair
of comparison. The total energy will be kept at E = 1
joule.
We adopt the following energy model. Total energy

consumed by a sensor in transmission is Et(r) =
(et + edrα)b, where et and ed are specifications of the
transceivers used by the nodes, r is the transmission
distance, b is the number of bits sent, and α depends
on the characteristics of the channel and will assumed
to be time invariant. Energy consumed in receiving is
Er = erb. Finally Es = esb is the energy spent in
sensing/processing data that is quantized and encoded
into b bits. Again er depends on the transceivers. In
this section we will use the following parameter values
taken from [1]: et = 45x10−9, er = 135x10−9, and es =
50x10−9, all in J/bit, and ed = 10x10−12 in J/bit-meterα.
α ranges between 2 and 4. As stated earlier, we will
ignore idling energy in this model. Since time elapses
in the same way for every sensor node, by the time the
first node dies every sensor will have experienced equal
amounts of idle time.

A. Varying Grid Size
Suppose 225 nodes are uniformly distributed over a

square field of size 1000×1000 square-meters (lower left
corner at (0, 0)). The collector is located at (500,-1000).
The results obtained by averaging over 100 random de-
ployments (AVG) are shown in Table I. We included the
95% confidence interval (C.I.) as well as the maximum
and minimum values among these random samples, all
in bits. From these results, we see that the information
capacity of a particular instance of node deployment can
be almost 10% lower or higher than the mean value.
To solve (P1), grids of equal-sized squares are em-

ployed. For the rest of our discussion we will use the
term “number of grids” to indicate the number of such
squares in a grid partition. As the number of grids in-
creases, the computation is done on an increasingly finer

α AVG 95% C.I. Min Max
2 46615 [46292 , 46938] 43593 49577

TABLE I
AVERAGE INFORMATION CAPACITY FROM 100 RANDOM

DEPLOYMENTS.

granularity. In each grid/square, energy and information
densities are concentrated on a single point at the center
of the grid/square. Table II lists selected results from
this experiment by varying the size/number of grids, and
Figure 2 shows the complete results, both for α = 2.

# of Grids P1 % error
225 46885 0.58%
196 46884 0.58%
144 46873 0.55%
100 46843 0.49%
64 46840 0.48%
36 46801 0.40%
16 46623 0.02%
9 46384 -0.49%
4 45872 -1.6%

TABLE II
VARYING NUMBER OF GRIDS (α = 2).

20 40 60 80 100 120 140 160 180 200 220
4.5

4.55

4.6

4.65
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4.75
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x 104
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cit
y

Number of Grids

Mean 

Result of optimization for different grid sizes 

Higher value of 95% C. I.
with 100 sample paths 

Lower value of 95% C. I.
with 100 sample paths 

Fig. 2. Varying number of grids (α = 2).

The above results first of all showed very good
accuracy of our model, with almost all results within
the 95% confidence interval. Secondly, we see that
the coarser grained computation (with fewer number of
squares/grids) generates equally accurate results as the
finer grained computation. This suggests that we could
obtain sufficiently accurate results with very few number
of grids (as few as 9). As the number of grids increases,
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the estimate given by our model also increases2. This is
because as the number of grids increases, each grid has
more options as to how to send its data to the collector
and therefore the capacity is higher. There seems to be a
certain level of granularity, corresponding to a certain
number of squares/grids in the partition, that comes
closest to the mean. In the case of Table II, this number
is 16. Further study is needed to see whether this number
can be pre-determined.
All results are obtained in Matlab. Results in Table

II are obtained in a matter of seconds or minutes (the
finer the grid the longer it takes to solve the optimization
problem). On the other hand, to obtain the results in
Table I we need hours of computation. Thus our model
can indeed serve as a very powerful computational tool.

B. Insensitivity to Varying Parameters

In this subsection we examine the robustness of our
model by varying a range of parameters. We first vary
the size of the field by considering 10 × 10, 100 × 100
and 1000 × 1000, as shown in Table III. α is set at 2,
the number of nodes and square grids in the partition is
225 for all cases, and the total energy of the network
is again held constant. Note that for a smaller field
this implies a larger information capacity since the
average transmission range is also smaller. We see that
in all cases the result of our optimization model closely
approximates that obtained by averaging over random
deployments.

Field size P1 AVG % error
102 10137000 10138000 -0.01%
1002 2342900 2322800 0.86%
10002 46885 46615 0.58%

TABLE III
VARYING FIELD SIZE.

Next we examine the effect of varying the attenuation
factor α. Table IV shows the results for different values
of α. Again we see that our model gives very good es-
timates. Note that the information capacity for the cases
α = 3.5 and α = 4 falls below 1 bit. This is because (1)
the linear program generates results assuming bits are
infinitely divisible; and (2) the parameters we have used
are such that very little information can be transferred
under these conditions. With proper scaling, these values
can be made more realistic.

2We did not evaluate partitions with more than 225 grids since we
only have 225 nodes in the field.

α P1 AVG % error
2 46885 46615 0.58%
2.5 1282.9 1274.3 0.67%
3 34.8598 34.8813 -0.06%
3.5 0.9544 0.9464 0.84%
4 0.0263 0.0258 1.94%

TABLE IV
VARYING α.

C. Varying the Number of Sensor Nodes
In this subsection we examine the effect of varying

the number of sensor nodes in the field, while keeping
the total energy constant. We will keep the size of the
sensing field to 1000 × 1000 and α = 2. The number
of sensor nodes in the field is varied from 4 to 225.
Note that such a change does not affect the results from
our model (P1), since (P1) only relies on the node
distribution, energy distribution, and the granularity of
the partition. Having different number of physical nodes
results in the same discretized version of (P1) in this
case. The comparison results are shown in Figure 3. In
each case the result is compared to the result of (P1)
using the same number of squares in the grid as the
number of nodes.

0 50 100 150 200 250
4.3

4.4

4.5

4.6

4.7

4.8

4.9

5
x 104

Number of Nodes

In
fo

rm
at

io
nC

ap
ac

ity

Average Result
Optimization P1

Fig. 3. Effect of varying the number of sensor nodes

From these results we see that a change in the number
of nodes does not affect our results as long as the
number of nodes is not too small (below 16 in this
case). When the number of nodes is very small, e.g.,
4, the error between our method and averaging over
random deployments increases. We believe this has to do
with the stability condition of the corresponding LP. As
the number of nodes decreases, the “distance” between
any two randomly generated deployments also increases.
Thus the LP based on the regular grid deployment
represents too large a perturbation.
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D. Non-uniform Node Distributions
All previous results employ a uniform node distri-

bution across the sensing field. In this subsection we
will examine different node distributions while fixing
the total number of nodes at 225. Specifically we will
consider the linear sloped node distribution shown in
Figure 4, where the node density linearly increases over
the field as it gets closer to the collector. To obtain
a sequence of node distributions, we vary the slope
by changing the length of the line segments AB and
CD shown in Figure 4. The uniform distribution is a
special case with AB = CD = 1 · c, where c is
a normalizing constant. For simplicity we will assume
that the per-node energy and information generation
rate remain constant. Accordingly, the energy density
and information generation functions are non-uniform
(linearly scaled versions of the node distribution) as well.

X

Y

Z

(0,0) (0,1000)

(1000,0) (1000,1000)

A

B

C
D

Fig. 4. “Sloped” distribution

Under such non-uniform distributions, the discretiza-
tion of (P1) is done by partitioning the field into un-equal
sized rectangles while keeping the total energy in each
rectangle grid constant. The results are shown in Table
V by using 225 number of such rectangle grids. Again
our model produces very accurate estimates. It should
be noted that the increasing capacity with the increase
in the slope is to be expected since in this case more bits
are generated at locations closer to the collector. A more
interesting scenario to be examined in the next section
is to keep the information density uniform, while node
distribution is kept non-uniform, i.e., using some nodes
purely as relays.

(AB, CD) P1 AVG % error
(2c, 0) 57162 57322 -0.28%

(1.75c, 0.25c) 54602 54769 -0.3%
(1.5c, 0.5c) 52013 52215 -0.38%

(1.25c, 0.75c) 49431 49424 0.014%
(1c, 1c) 46885 46615 0.58%

TABLE V
VARYING NODE DISTRIBUTION.

E. Residual Energy
Figure 5 shows the amount of residual energy of every

node in the two-dimensional network we have being
using, with 225 nodes in a 1000 × 1000 network, using
(P1). Note that (P1) only seeks to maximize the amount
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Fig. 5. Residual node energy

of data delivered till the first sensor node dies, and
equivalently, the time till the first death. It does not seek
to maximize the time to the death of the last sensor in
the network. However, as we can see from this result, the
maximal is actually achieved by balancing the lifetime of
each individual sensor. As a result, when the first sensor
dies, there is virtually no energy left in any of the other
sensors, either. Therefore, in effect (P1) maximizes the
total amount of data delivered till all sensors die. Note
that the residual energy values are not exactly zero due
to numerical tolerance used when solving the problem
in Matlab.

IV. OPTIMAL NODE DISTRIBUTIONS AND FLOW
PATTERNS

In this section we use (P1) to investigate the effect
node distribution has on the network lifetime and ca-
pacity. We will also examine the optimal flow allocation
patterns to derive insights into the properties required of
a well-designed routing protocol. We emphasize that our
model provides a rapid computational tool that facilitates
the investigation of alternative node distributions. In this
section we will solely focus on a “linear” network where
sensor nodes as well as the collector are lined up on
a straight line, although our method can be equally
applied to two-dimensional as well as three-dimensional
networks. This is because working in one dimension
makes the result much easier to represent and interpret.
Our network consists of a line segment of length D

between (0, 0) and (D, 0), on which sensor nodes are
distributed. Our computation will be based on dividing
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the line segment into a constant number (M ) of grids.
The collector is located at (D + D

M , 0), a distance D/M
away from one end of the line segment.

A. Optimal Node Distribution
One question of obvious interest is what would be an

optimal node distribution that could maximize the net-
work lifetime as well as total amount of data deliverable.
While most reported work on sensor networks assumes
a uniform node distribution, it is intuitively clear that
the network should last longer if we place more nodes
closer to the collector, the point of traffic concentration.
Following this, even though there are infinitely many
types of possible distributions, we will only consider the
following family of exponential node distributions:

fX(x) = cxa, a ≥ 0 , (17)

where x is the location on the line segment, c is a normal-
izing constant, and a will be varied to obtain different
distributions. Note that a = 0 and c = 1/D gives the
uniform distribution. As a increases, more nodes are
being deployed closer to the collector. For simplicity,
below the term “optimal distribution” will refer to the
best distribution among this family of distributions.
For each a value, we create M = 100 grids and set

D = 1000. We will assume that the field has a constant
information distribution across the network. Therefore if
we place more nodes closer to the collector, then nodes
closer to the collector will generate less data while nodes
far away will generate more. Each node will also contain
equal amount of initial energy. The size of a grid is
chosen such that each grid contains an equal amount
of probability mass of the node distribution. In other
words, each grid contains an equal number of nodes and
possesses equal initial energy.
Figure 6 shows the amount of data delivered by the

network for different values of a. Here we have used
two different energy models for comparison purposes.
“Energy Model A” refers to the model presented and
used in the previous section, while “Energy Model B” is
the same model with a different set of parameters taken
from [3]: et = 50x10−9, er = 50x10−9 both in J/bit,
and ed = 100x10−12 in J/bit-mα. In this section α is
set to 2. We see that the maximum amount of data is
delivered when a is approximately 0.7677 in the case of
model A and approximately 0.8 in the case of model
B. a = 0 corresponds to a uniform distribution and
a = 1 corresponds to a linear density. With a uniform
distribution, nodes closer to the collector spend too much
energy relaying data for other nodes; for a very high
value of a, nodes far away spend too much energy
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Fig. 6. Varying node distributions.

because they are generating the majority of the data.
The maximizing node distribution essentially achieves
the optimal balance between these two effects.
It’s interesting that except for the scale, the two models

generate strikingly similar results. They show that the
the uniform distribution can result in a capacity loss of
about 18% and 35% from the optimal value for the two
models, respectively. We also see that, once a exceeds
1, causing most nodes to be deployed too close to the
collector, the results deteriorate quickly.

B. Residual Energy
Figure 7 shows the residual node energy in the linear

network scenario under two types of node distributions
using energy model A: (a) the uniform distribution,
and (b) the optimal distribution (exponential with a =
0.7677). Like earlier results in Figure 5 for the two-
dimensional layout, we see that there is virtually no
energy left in the network by the time the first sensor
nodes dies, i.e., all nodes in effect die at the same time.
Again, the residual energy values are not exactly zero (or
even fall below zero) due to numerical tolerance used in
Matlab.

C. Optimal Flow Patterns and Routing Implications
Our linear programming framework essentially com-

putes the optimal flows between any two points σ and
σ

′ . By studying the optimal flow allocation patterns, we
can obtain useful insights into the characteristics that
an optimal (or close to optimal) routing strategy should
possess. For example, if it turns out that most of the
flow mass is concentrated over small-distance links, it
follows that the routing algorithm should prefer a larger
number of small-distance hops over a small number of
larger-distance hops. Since the routing pattern obtained
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from our computation is specific to the particular grid
used, we focus on extracting the essential principles of
the optimal traffic paths.
We consider two measures of the optimal flow pat-

terns. The first is the fraction of data transmitted over
a given distance (as a function of the distance), i.e., a
histogram of the flow mass vs. the link distances. The
second is the average transmission distance of a node
(averaged over the total amount of data transmitted by
that node), as a function of its distance to the collector.
Both these measures attempt to reveal the (average) size
of a transmission hop. The first measure also shows
whether all flows use hops of similar distance, or whether
the flow mass is distributed over a wide range of hop
distances. The second one shows how the length of the
average hop changes depending on the location of the
nodes.
We will determine these two characteristics with the

optimal node distribution (a = 0.7677) and the uniform
distribution (a = 0), both under energy model A. Figure
8 shows the fraction of data transmitted over a given
distance for both cases. For a given distance d, this
fraction is defined as 1

M

∑M
i=1

flowd

i

flowT

i

, where flowd
i is

the total flow out of node i that is transmitted over a
distance d and flowT

i is the total flow out of node i.
In the uniform distribution case, where the transmission
distance has discrete values (multiples of the distance of
a single hop), the curve is generated by connecting values
at these discrete points. In the non-uniform distribution
case, where each node has a different set of possible
transmission distances, we combine data transmitted over
10 meter segments, and represent it as a single point.
For example, the value at 300 meters represents all
transmissions over 290 to 300 meters.
From Figure 8 we see that there is a clear “distance

threshold” beyond which data rarely travels in one hop.
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Fig. 8. Fraction of data vs. distance.

This threshold seems to be around 180 meters in the
optimal case, and around 220 meters in the uniform case.
This result indicates that a node’s transmission range can
be limited to a certain level and not have a big effect on
how much data can be delivered. In addition, the majority
of data is transmitted over distances between 100 and
180 meters in the optimal case, and between 140 and
220 meters in the uniform case. Note that nodes closer to
the collector do not have the option of transmitting over
large distances. So in that sense this result is somewhat
biased towards smaller distances.
Perhaps most importantly, this figure shows that a

significant portion of the flow mass is transported over
medium-sized hops (in the uniform case, the distance
between neighboring grids is 10 meters), and not di-
rectly to the nearest neighbor. Various proposals for
minimum-energy routing in multi-hop wireless networks
(e.g., [4]), on the other hand, prefer a large number
of small distance hops to minimize the communication
energy. Such protocols are often designed for ad-hoc
networks, where all nodes are equally likely to be both
sources and sinks of data. In contrast, for sensor network
environments where most sensor nodes are either sources
or relays, it appears that using direct transmissions to
more distant neighbors is preferable, since it reduces the
forwarding burden on intermediate nodes. We also see
that the optimal node distribution has a smaller range
than the uniform case. For the optimal node distribution,
nodes further away from the collector have more data
to transmit (the information generation rate is constant
over the entire field) than in the uniform distribution, and
accordingly prefer smaller distance hops to reduce their
transmission costs.
Figure 9 shows the average distance a node transmits

its data as a function of its distance from the collector.
The node closest to the collector will always send
directly to it and therefore its average distance is always



11

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Av
er

ag
e 

Tr
an

sm
iss

io
n 

Di
st

an
ce

Distance to the Collector

Optimal Distribution
Uniform Distribution

Fig. 9. Average transmission distance.

its distance to the collector. As nodes are placed further
away, we see that their average distance continuous to
increase, although not as fast as their distance to the
collector. This shows an increased reliance on having
their data relayed by other downstream nodes. Finally,
we see that for nodes far away from the collector, their
average distance decreases under the optimal distribution
but continues to increase under the uniform distribtion.
This shows that under the optimal distribution such
nodes transmit most of their data to increasingly closer
relaying nodes. Since regions farther from the collector
have a smaller node density, the corresponding nodes
have higher data generation rates. Accordingly, they
conserve their transmission energy by choosing shorter
hops, which is less of a need under the uniform distri-
bution. Note also that the curve for the optimal case is
near perfectly smooth: small changes in node location
only create small changes in the average transmission
distance. This suggests that near-optimal routing might
be constructed using location information.

D. Limited Transmission Range

In the previous subsections, we have allowed the max-
imum transmission range of each node to be unbounded.
We now consider the impact of specifying a maximum
limit on the transmission range. Since the previous
studies show that the bulk of the data flow occurs
over intermediate hop distance, we expect that limiting
this transmission range to moderate values should not
significantly reduce the information capacity.
To consider a bounded transmission range, we

add the following extra constraint to (P1): f(σ, σ
′) ·[

d(σ, σ
′) − r

]+ = 0 for all σ, σ
′ , where [x]+ takes value

x or 0, whichever is greater. d(σ, σ
′) denotes the distance

between one location/grid σ and the other σ
′ , and r

denotes the maximum range of transmission allowed.
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Fig. 10. Data delivered vs. limit of transmission range

Figure 10 shows the total amount of data that could
be delivered to the collector for different maximal trans-
mission ranges. We see in the case of optimal node
distribution, relaxing the transmission range constraint
to be beyond 150 meters (the “knee”) makes virtually
no difference. In the uniform case, the total amount
of data does continuously increase as the transmission
range limit is relaxed. However, this increase signif-
icantly slows down beyond 200 meters (the “knee”).
In each case, an increase in the transmission range
limit results in significant gain in information capacity
when the range is below the “knee”. For the optimal
distribution, the smallest transmission range shown is
60 meters–any lower value causes the nodes farthest
from the collector to become disconnected. Similarly,
for the uniform distribution, the smallest range shown
(18 meters to avoid division by zero in Matlab) is
the minimum needed to maintain connectivity. These
results indicate that sensor nodes should be equipped
with moderately powerful radio interfaces, capable of
direct transmission over reasonably large distances, to
achieve close-to-optimal information capacity.

V. RELATED WORK

Several different approaches have been used to mea-
sure or quantify the lifetime of sensor network de-
ployments. As already stated, the fluid-model modeling
technique used in [1], [5] is closest to our approach–in
contrast to our emphasis on distributions over a sensing
field, [1], [5] considers lifetime bounds for a specific
instance of sensor network deployment. [1] Further de-
termined lifetime bounds in the presence of a) traffic
aggregation (where intermediate nodes would compress
the incoming data), and b) multiple locations (where a
sensor node could be located at multiple discrete points
with different probabilities). In a related problem, a
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similar linear program is used in [6] to determine how
routing should be done in order to increase network
lifetime.
The power consumption of specific sensor network

technologies and deployments has also been studied
in [7], [3]. However, these studies are not concerned
with the computation of theoretical bounds. Instead, they
focus on novel algorithms and protocols for reducing
the routing-related energy overhead in sensor networks.
For example, [3] proposed LEACH, a clustering protocol
that uses data aggregation over a hierarchical topology to
reduce the power consumed by individual sensor nodes.
Alternatively, the lifetime of specific sensor network
topologies has also been studied using hybrid automata
modeling [8]. In [8], a model-based simulator is used
to determine the variation in network lifetime with
changing distances between the sensing nodes and the
collector node.

VI. CONCLUSION

The paper presented a modeling methodology that
drastically reduces the time needed for determining
the expected information capacity of a data-gathering
wireless sensor network. With this framework we are
able to derive the expected lifetime and information
capacity of any distribution of sensor nodes rather than
just particular sample paths of the node deployment.
We conducted various numerical experiments, under a
variety of parameters. We showed that results generated
under this formulation are quite insensitive to the change
in a range of parameters, including field size, grid size
and the attenuation parameter α. We then used this
method to determine for a linear network the optimal
node distribution within a family of distributions that can
maximize the network lifetime and maximize the total
amount of data delivered by the network. Our numerical
studies show that, to maximize the network lifetime,
sensor nodes must transmit a significant fraction of
their packets directly to longer-distance neighbors (using
medium-range radios), rather than simply forwarding it
to their nearest downstream neighbor. In future work, we
plan to use our linear programming tool to further study
how various parameters of dense sensor networks impact
its operational lifetime.
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