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Abstract

Time series representations are common in MIR applications such as query-by-humming,
where a sung query might be represented by a series of ‘notes’ for database retrieval. While such a
transcription into (pitch, duration) pairs is convenient and musically intuitive, there is no evidence
that it is an optimal representation. The present work explores three time series representations
for sung queries: a sequence of notes, a ‘smooth’ pitch contour, and a novel sequence of pitch
histograms. Dynamic alignment procedures are described for the three representations. Multiple
continuity constraints are explored and a modified dynamic alignment procedure is described for
the histogram representation. We measure the performance of the three representations using a
collection of naturally sung queries applied to a target database of varying size. The results show
that the note representation lends itself to rapid retrieval whereas the contour representation lends
itself to robust performance. The histogram representation yields performance nearly as robust as
the contour representation, but with computational complexity similar to the note representation.

1 Introduction
The ever increasing number of digital audio files available on the internet motivates the idea of web
searches that use acoustic signals as query input rather text strings. Music information retrieval
(MIR) is a burgeoning area of research within the broader field of ”content-based” information
retrieval. In particular, the MIR community is exploring techniques to allow a user to search a
database of music using only a brief snippet of recorded audio; no information about a song’s
composer, performer, name or lyrics is required. Of particular interest are systems that allow the
user to simply sing, or hum, a short melodic phrase. Systems that support this sort of interaction
are known as query-by-humming (QBH) systems. As for any information retrieval task, the sung
query must be coded to allow for efficient retrieval. The choice of query representation is of
paramount importance; compact representations lend themselves to rapid retrieval whereas detailed
representations lend themselves to accurate retrieval.

Time series representations are ubiquitous in information retrieval applications [18,43]. MIR is
no exception; sequences of notes, pitch estimates, or MFCCs, for example, are common [7, 9, 25].
It is well established that for comparing two time series, a direct comparison, such as the Euclidean
distance, yields a brittle metric [17,43]. A similarity metric that is robust to elastic shifts and scales
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of the time index is required. This has reinvigorated interest in dynamic time warping (DTW),
string-matching, and other efficient time series alignment methods within the IR community. All
such alignment procedures have complexity O(NK), where N and K are the lengthes of the two
sequences. Accordingly, it is desirable to keep the length, or dimension, of the representation as
small as possible. However, this often comes at the expense of retrieval performance.

In the present work we compare the relative merits of three time series representations for
sung queries. Two representations have been previously proposed: a pitch contour1 [25], and a
sequences of notes [9, 28, 32]. A unified presentation of the alignment procedure is given for the
two representations. For the contour representation we explore multiple continuity constraints and
find that judicious slope constraints improve performance considerably. We also consider two
methods for reducing the dimensionality of the contour representation: decimation and piecewise
linear approximation. For the note representation, multiple note estimators are considered. We
include multiple implementations of the contour and note representations so as to demonstrate the
range of performance possible using either representation; we are interested in the relative merits
of each representation rather than a specific implementation.

Finally, we propose a novel sequence of pitch histograms as an alternative query representation.
Unlike other pitch histogram representations [13, 39], which were proposed to allow for errors
in pitch detection, we employ pitch histograms to eliminate ambiguous timing information, thus
quickening the alignment procedure. This representation violates the local comparison constraint
of the common DTW algorithm, hence a modified dynamic alignment procedure is presented.

We evaluate the performance of the three representations in the context of a query-by-humming
system. Early QBH successes by [11,15,28] have inspired numerous alternative techniques [9,13,
32]. While many exciting and novel ideas have been explored, results are often inconclusive and
difficult to generalize [9,10]. In the present work we focus on relative performance trends between
the three representations rather than the absolute performance of any one. We apply our methods
to a variable database of themes, similar to [9]. In so doing, we observe some interesting trends
between the different methods.

As for any experiment, numerous simplifications are made to facilitate measurement and elim-
inate distracting details. Our hope is that by considering how the performance decreases as target
database size increases we arrive at a measure of how the methods would perform in a broader
context. That is, many of the complicating factors that detriment QBH performance in a real-world
scenario are, in effect, equivalent to simply expanding the size of the target database.

1.1 Background & Motivation
To date, most QBH systems first transcribe the sung melody into a sequence of ‘notes’2, and use
this representation to search a database of similarly represented target themes [2, 5, 11, 22, 27, 28].
While a note representation may be musically intuitive, there is no hard evidence to imply that
it is optimal in any specific technical sense. Neglecting the musical justification for notes, the
transcription stage of these QBH systems can be viewed simply as reducing the dimension of the
query to a manageable size for database searching. For example, the dimension of a 10 second

1In the present work, the “pitch contour” is defined as the output of a pitch track algorithm. See Fig. 4 for a sample
pitch contour. Other authors use “pitch contour” to refer to a coarsely quantized sequence of pitch differences of a note
sequence, as in Parson’s directory of themes, i.e., “UDUDRU” for example [31].

2Strictly speaking, many systems do not estimate the note sequence, but rather a coarsely quantized sequence of pitch
differences. Furthermore, many systems do not code note duration [29].
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query recorded sampled at 8 kHz is 80,000. Clearly, performing a O(NK) alignment for N ≈
K ≈ 80, 000 (even if an appropriate cost scheme could be found) is computationally prohibitive.
Transposed queries on the other hand, typically contain between 8 and 20 notes, a more reasonable
size. For a given query, this O(NK) alignment procedure, often referred to string-matching, must
be performed for every theme in the target database. The themes in the target database are rank
ordered using the alignment cost for each target as a measure of dissimilarity. It is essential that the
computational complexity of comparing a query to a target be kept to a minimum. Other methods
have been proposed for comparing query and target note representations, such as hidden Markov
models (HMM) [29, 38]. While HMMs’ have been found to yield good results in some situations,
they are not considered in this work. Note representations and string-matching are discussed in
detail in Section 4.

Some researchers have begun to reconsider the reliance on sung melody transcription as the
de facto method for reducing query dimensionality. In particular, Mazzoni and Dannenberg have
proposed direct use of the pitch contour in QBH systems [24, 25]. In their work Mazzoni use
dynamic time warping (DTW) to align the pitch contour of the sung query with the pitch contour
for every melody in the target database. String-matching and DTW are largely equivalent, both
employ dynamic programming (DP) to efficiently search for an optimal alignment between to time
series based on fixed continuity constraints and cost schemes. String-matching is typically applied
to sequences of discrete symbols, whereas DTW is applied to real-valued sequences. Furthermore,
string-matching cost schemes often explicitly allow for ‘inserting’ or ‘deleting’ an element from
one sequence, in which case this element is not matched to any element in the other sequence. This
is not the case for DTW cost schemes, every element from the query sequence must be matched
to an element from the target sequence. For DTW a match cost is associated with every alignment
step, for string-matching ‘non-diagonal’ steps have separate insert/delete costs and no match cost.
Contour representations and DTW are discussed in Section 3.

Another interesting alternative was presented in [39]. In their work Song et al explore the use of
a sequence of pitch histograms as a mid-level representation for polyphonic music. They use pitch
histograms rather than scalar pitch estimates to circumvent the difficulty of extracting the perceived
melody from a cluttered acoustic signal. While the proposed representation they used has many
potential benefits many details of their implementation were ad hoc and the results were somewhat
inconclusive. In the present work we also consider using a sequence of pitch-histograms, but in this
case the histograms are used to circumvent the inherent difficulty of segmenting sung melodies.
Furthermore, the method for comparing histograms as well as aligning sequences of histograms is
quite different in the present work than in [39]. This method is presented in detail in Section 5.

All of the representations described above are time series that require an alignment procedure to
yield a robust measure of similarity. This observation forms the underpinning of the present work.
In particular, it is found that the dimension of the final representation greatly influence retrieval
performance; small representations lend themselves to rapid retrieval whereas large representations
lend themselves to robust performance.

One further motivation for this work is the inability to generalize the results of much research
in QBH-systems beyond their original scope. In this work we demonstrate how the various systems
will perform, relative to each other, as the size of the target database is increased to the size one
would expect for a real-world system.

The following subsection provides a brief background and motivations. Methods for evaluation
are presented in Section 2. Sections 3, 4, & 5 describe, in turn, the computation and alignment of
the contour representation, the note representation, and the histogram representation. The perfor-
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mance of the three representations is compared in Section 6.

2 Methodology
One of the many problems confronting the MIR community is the difficulty of comparing results
from different projects [9,10]. In particular, different research groups employ different datasets for
testing. In this work, rather than present results for a single target database, results will be presented
for a range of target databases; the size of the target database is varied, while making sure that the
target themes that the test queries represent are always in the target database. As the number of
distracting targets in the database increases, the performance of any IR system naturally decreases.
In the present work we do not emphasize the performance of our QBH system on any one target
database, but rather the rate of decrease in performance as the size of the target database increases.
The MIR community is actively developing QBH systems with the hope that such systems may
be deployed outside the confines of the research lab. Therefore, it is of the utmost importance to
consider how QBH systems perform as the target database is scaled up to massive proportions.

Throughout this work two QBH performance measures will be reported, classification accuracy
and mean reciprocal rank. Let rk be the rank of the correct target for query k. The classification
accuracy, CA, is the percentage of recorded queries for which rk = 1. Note that 0 ≤ CA ≤ 1. The
mean reciprocal rank is given by MRR = 1

N

∑N
k=1

1
rk
where N is the total number of recorded

queries used for testing. Note that CA < MRR ≤ 1+CA
2 .

2.1 Query Test Set
For performance evaluation, we employ a query test set containing many sample queries of fourteen
popular tunes, from the Beatles’ “Hey, Jude” to Richard Rodgers’ “Sound of Music.” A total of
480 queries were collected from fifteen participants in our study. Each participant was asked to
sing a familiar portion of a subset of the fourteen tunes four times each. The participants had a
variety of musical backgrounds; some had considerable musical or vocal training while most had
none at all. Participants were instructed to sing each query as naturally as possible using the lyrics
of the tune3. The queries are monophonic, 16 bit recordings sampled at 44.1 kHz and resampled to
8 kHz to reduce processing time. The queries are between 5 and 20 seconds in length. All data was
collected in a quiet classroom setting and participants were free to progress at their own pace. Most
of the recorded queries are easily identifiable, if for no other reason than the recordings contained
recognizable lyrics. A few dozen of the sung queries are especially poor, however. In particular,
some participants had a tendency to sing the melody virtually monotone.

Note that every query represents the exact portion of one of the target themes. For a real-
world QBH system, this is an unreasonable assumption. Some systems address this problem by
specifically allowing for inserted and deleted notes at the beginning and end of the theme in the
retrieval component [29]. Another common practice is to include multiple themes for each tune in
the target database [9], increasing the size of the target database.

3This contrasts substantially from the common practice of having participants sing isolated pitches on a neutral vowel.
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2.2 Target Database
In previous work [2, 3] we employed a target database consisting solely of the fourteen themes
for which we have sample queries. While we report classification accuracy in excess of 90%
in [2, 3], this measure was not indicative of the the methods would perform in a broader context.
Expanding the target database to include themes not represented in the test set was proposed in [9].
In the present work we follow suit and consider retrieval performance as the target database size
increases.

How the target database of themes is augmented is of critical importance. The additional
themes must be sufficiently similar to the original themes to substantially detriment retrieval per-
formance. That is, augmenting our target database with themes that are very different from those
represented in the test set would not necessarily affect retrieval performance. For example, if we
augmented our target database with a collection of themes found using a web-crawler, there’s no
guarantee the web-crawler did not stumble upon a collection John Zorn performances. Scaling the
target database to include thousands of similar ‘authentic’ themes is difficult. Accordingly, we aug-
ment the fourteen authentic themes with a varying number of ‘synthetic’ target themes. It should
be noted from the outset that using synthetic targets limits how the results can be interpreted; we
are concerned with relative trends rather than absolute performance, however.

We generate synthetic themes with a Markov process designed to yield note sequences with
similar first-order statistics as the fourteen authentic themes. For every synthetic target, two parallel
Markov processes are constructed. One Markov process generates a sequence of note pitches: each
state of the model represents a pitch. And the other Markov process generates a sequence of note
durations: each state of the model represents a duration. Note pitches and durations are generated
independently.

Two methods were explored for generating the two Markov models. Markov models were
implemented that used the Yule algorithm to generate state transition probabilities, using the 14
‘authentic’ themes as training data. The resultant transition probabilities were unreasonable, how-
ever; certain common pitch transitions were not well represented in the small training set. As such,
Markov states and transition probabilities were assigned intuitively using the procedure below.

Using the 14 ‘authentic’ targets, histograms are computed for the number of notes per target,
the pitch range for each target and the note duration range for each target. These three histograms
are normalized to represent probability distributions. For every synthetic target the number of
notes as well as the pitch and duration ranges are given by realizations of random variables with
the corresponding distributions. The set pitch states is then the set of all uniformly spaced (with
12 pitches per octave) pitches in the allowed range. The duration states are taken as all multiples
of two and three times the minimum note duration until the maximum note duration is exceeded.
Finally a tonic is chosen at random from among the pitch states.

Having established the pitch and duration states for the Markov models it is necessary to define
transition probabilities between states. For a given pitch state, the transition probabilities away
from that state are given by a triangular distribution that peaks at the current pitch state and de-
scends linearly to zero at the minimum and maximum allowed pitches. Several modifications to
this distribution are then made. First the probability of transitioning to the same state is reduced
by a factor of ten and then the probability of transitioning to any state that is not in the key of the
selected tonic is reduced by a factor of ten. Transition probabilities are then re-normalized. The
duration state transition probabilities are uniform except that the probability of transitioning to the
longest durations was reduced by a factor of three and the probability of transitioning to the same
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Figure 1: Pitch-contour for two of the tunes in the target database. The top contour is for ”Do-
Re-Me” by Richard Rodgers and the bottom contour is for ”My Bonnie Lies Over the Ocean”
by Charles E. Pratt.

duration was increased by a factor of two.
The Markov process outlined above yields similar pitch-contours as the fourteen ‘authentic’

themes. Figure 1 shows two ‘authentic’ targets, the top pitch-contour is that of Richard Rodgers’
“Do-Re-Me” and the bottom contour is that of traditional Scottish tune “My Bonnie Lies Over the
Ocean.” Notice that there are no breaks in either pitch-contour even though the tunes do contain
rests. It has been found that note-offset time is a very unreliable statistic, hence many QBH systems
consider the inter-onset interval (IOI) of a note rather than it’s duration [29]. This convention is
maintained throughout the present work. Therefore, all notes in a target pitch contour are extended
to the beginning to the next note.

Figures 2 & 3 given some sample themes generated by theMarkov model. Most of the synthetic
targets yielded pitch contours that, at least nominally, resemble the fourteen ‘authentic’ targets,
even if they do not sound particularly pleasing (although many do). The Markov process did not
always yield reasonable looking pitch-contours however. As can be seen in Figure 3, unreasonable
clusters of short notes can be generated. This is due to the Markov constraint: in determining the
transition probabilities away from a given state the Markov process cannot consider the path by
which the process got to the current state, the transition probabilities only depend on the current
state itself. Clusters of short notes are not uncommon in Western music, however such short notes
are typically passing notes. That is, the general melodic motion is monotonic during sequences of
consecutive short notes. This trend is not reflected in the Markov processes implemented in this
work.

In spite of the shortcomings outlined above, the Markov process was found to generate syn-
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Figure 2: Two reasonable synthetic pitch contours.
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Figure 3: Two unrealistic synthetic pitch contours.
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thetic targets sufficiently similar to the fourteen ‘authentic’ targets to substantially detriment per-
formance. Furthermore, because none of the QBH methods explored in this work consider the
global structure of the query, these synthetic targets do not favor one method over the others.

3 Contour Representation
The present work is predicated on the assumption that queries should be coded using primarily
pitch information. Singers can sing the same melody with varying amplitude envelopes, lyrics and
style. Furthermore, reliable timbrel or phonetic-stream information is difficult to extract from sung
melodies [30]. As such, we desire our query representation to be, at least nominally, independent
of such variables. An estimate of the sung pitch contour is therefore a natural query representation.

Direct use of the pitch contour was proposed by Mazzoni & Dannenberg [24, 25], in part, to
circumvent the difficulty of note segmentation and estimation. While some promising preliminary
results were observed in [24,25], subsequent results have been inconclusive [9]. The present work
extends some of the ideas presented in [24, 25] and notes some interesting performance trends
relative to the other representations discussed below.

The query pitch contour can either be used directly by the retrieval system, or further coded. All
three query representations considered in the present work are derived from the pitch contour. The
remainder of this section describes the computation and alignment of the contour representation.

3.1 Pitch Contour
Both [25] and the present author use an autocorrelation-based algorithm for estimating the pitch
contour, but the twomethods ‘tweak’ the autocorrelation in different ways. Mazzoni &Dannenberg
use an algorithm proposed by Tolonen &Karjalainen [40] in which the autocorrelation is lag-scaled
and subtracted from itself to remove false peaks4. Smooth contours are then constructed using a
nearest-neighbor algorithm.

In the present work we use an algorithm proposed by Boersma [4, 6], which we found to be
robust to the volatile pitch fluctuations common to untrained singers. The algorithm computes the
autocorrelation for overlapping windows of recorded data. The bias of the window function is
mitigated by the normalization r̃(τ) = r(τ)

rw(τ) , where r(τ) is the autocorrelation of the windowed
data and rw(τ) is the autocorrelation of the window function. A set of candidate peaks is selected
for every frame and the Viterbi algorithm is used to construct a smooth contour. We use a step-size
of 10 ms throughout this work. The fundamental frequency values are then converted to MIDI
pitch5, yielding the final pitch contour.

Fig. 4 shows a sample pitch contour for the main theme from “Sound of Music.” Included in
Fig. 4 is the piecewise constant ideal contour for the same theme stored in our target database.
We note that most sample queries in test set yield ‘messier’ contours, with prolonged scooping
between notes as well as considerable fluctuation within notes. In Fig. 4, the target contour has
been time-scaled to the same length as the query. Finally, note that the query contour contains gaps
corresponding to short pauses taken by the singer; the pitch track algorithm performs an implicit
voiced/ unvoiced segmentation.

4A signal with period T0 demonstrates peaks in its autocorrelation at lags T0, 2T0, 3T0 · · · .
5The real-valued MIDI pitch number p is related to a signal’s fundamental frequency in Hz, f0, as p =
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Figure 4: Sample query and target pitch contours for the main theme from Richard Rodgers’
“Sound of Music.” The query pitch contour is given by the solid line and the target pitch
contour is given by the dashed line.

3.2 Dimension Reduction
Direct use of the pitch contour yields a query representation of relatively large dimension. For
a step-size of 10 ms, typical pitch contours are of length ∼ 103, whereas the note sequences
discussed in the next section are of length ∼ 101. Direct use of the contour is too computationally
burdensome. Accordingly, we employ a simple dimension reduction technique proposed in [18];
query pitch contours are decimated by a factor of 10, yielding a representation of length∼ 102 [24].
Decimating by factors greater than ten effectively smear notes together6 while factors smaller than
ten yield contours that are too computationally cumbersome to align.

A similar question is addressed in section 3.5. We propose the use of a piecewise linear ap-
proximation to the pitch contour. By varying the segment approximation error, we can indirectly
adjust the dimension of the query representation; trading performance for computation speed.

3.3 Dynamic Time Warping
The retrieval component compares the query pitch contour with the piecewise constant contour
for every theme stored in the target database. Let the query pitch contour be given by Q =
(q1, q2, · · · qK) and the target contour given by T = (t1, t2, · · · tN ). A direct, albeit ‘brittle,’
dissimilarity measure is given by [18]

D =
min(K,N)∑

k=1

|qk − tk|p. (1)

12 log2(f0/261) + 60.
6‘short notes’ can be less than 200ms in duration.
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Figure 5: Sample alignment for a query contour of “Row, Row, Row Your Boat” with the true
melody.

A more robust metric is yielded with dynamic time warping (DTW), an alignment procedure pop-
ularized in the 1970’s for speech recognition [14, 36, 37]. The increasing number of multimedia
applications for large collections of time series has recently reinvigorated interest in DTW within
the database community [18, 34, 42, 43].

To find the optimal alignment path betweenQ andT we recursively compute anN ×K matrix
of minimum prefix alignment costs, Γ = [γn,k]. γn,k is the minimum alignment cost for (q1 · · · qk)
and (t1 · · · tn). Let a warping path be given byw = (w1, w2, · · ·wT ), where wt = (n, k) indicates
that qk is aligned with tn. Figure 5 shows a warping path for a sample query pitch contour for
the main theme from “Row, Row, Row Your Boat” with the piecewise constant contour of the true
theme.

3.3.1 Continuity Constraints & Cost Schemes

The warping path must adhere to several constraints to be physically meaningful. The path must
originate in the lower-right corner of Γ and terminate in the upper-left corner; w1 = (1, 1) and
wT = (N, K). The path must also be monotonically nondecreasing and continuous in some
sense. Continuity constraints are often employed to restrict the slope of the alignment path and
prevent pathological alignments [14,34,36,37,42]. In the present work we consider three common
continuity constraints; the general constraint [24, 36], the ‘Itakura’ constraint [14] and the ‘Sakoe’
constraint [37]. The Itakura and Sakoe continuity constraints place bounds on the slope of the
alignment path. The three continuity constraints are shown in Fig. 6. Starting in the lower left
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corner of Γ, every element of Γ is found recursively by

γn,k = min




γn−1,k

γn,k−1

γn−1,k−1



 + Match Cost(qk, tn) (2)

for the general continuity constraint, where

Match Cost(qk, tn) = |qk − tn|p. (3)

The precise value of p has little influence on performance, p = 1
2 appears to be a good value

7. For
the general continuity constraint, it is also possible to use an edit-distance cost scheme,

γn,k = min




γn−1,k + 1
γn,k−1 + 1

γn−1,k−1 + 2
α Match Cost(qk, tn)



 . (4)

For the edit-distance cost scheme, vertical and horizontal steps in the warping path are interpreted
as inserting and deleting elements from the query. Insertion and deletion steps are assigned a
constant cost and diagonal steps are assigned a cost proportional to the match cost between the two
pitches. For p = 1, matching two pitches with a difference of α yields a cost equivalent to deleting
the old pitch and inserting the new pitch, similar to the cost scheme described in section 4.3.1. For
the Itakura and Sakoe constraints, the recursive cost equations are

γn,k = min





γn−2,k−1

γn−1,k−1

γn−2,k−2 + Match Cost(qk−1, tn)
γn−1,k−1 + Match Cost(qk−1, tn)



 + Match Cost(qk, tn) (5)

and

γn,k = min





γn−1,k−1

γn−2,k−1 + βMatch Cost(qk, tn−1)
γn−1,k−2 + βMatch Cost(qk−1, tn)
γn−3,k−1 + β2Match Cost(qk, tn−2) + βMatch Cost(qk, tn−1)
γn−1,k−3 + β2Match Cost(qk−2, tn) + βMatch Cost(qk−1, tn)





+ Match Cost(qk, tn), (6)

respectively. β ≥ 1 is an extra cost penalty applied to favor more direct alignment paths. We found
β ≈ 1.4 to be a good value.

The final alignment cost for Q and T is given by γN,K , and is interpreted as a dissimilarity
measure. By performing this alignment on every target in the database we can rank order the target
themes. The complexity of this alignment procedure is O(NK). Note that the final alignment cost
is not normalized by the total length of the warping path. Using γN,K/T as the final similarity
metric is common in DTW systems [24, 36, 37]. This normalization is used so as to not penalize
long targets. However, as discussed below, in our system all targets are time scaled to have duration

7The current implementation also uses the remainder of dividing |qk − tn| by 12 so as to make the match cost invariant
to octave errors.
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Figure 6: Three local continuity constraints for DTW. The Sakoe-Chiba continuity constraint is
shown with a slope constraint of 1

2 [37].

equal to that of the query. Normalizing by the total warping path length prohibits the use of many
cost schemes, as the DP algorithm is no longer guaranteed to find the optimal alignment path after
normalization. The cost scheme we use for the Sakoe continuity constraint, for example, violates
the DP constraint if the final alignment costs are normalized. As such, we do not normalize the
final alignment costs.

Note that whether the use of a cost scheme or continuity constraint that violates the DP con-
straint (in which case the final alignment path is suboptimal) detriments retrieval performance is
an unanswered question. Indeed, other cost schemes were explored that violate the DP assump-
tion even without normalization. One of these cost schemes yielded marginally better performance
than even the best cost scheme described above (although this improvement is virtually negligible).
When using such a cost scheme, the alignment procedure finds a suboptimal alignment for all tar-
get themes, not just the correct theme. So long as the alignment procedure does not ‘penalize’ the
correct theme more than the others, it does not really matter whether or not an optimal alignment
is found.

3.3.2 Implementation Issues

The following implementation issues were found to have a significant effect on system perfor-
mance, but are not particularly interesting to discuss. The target database used throughout this
work stores targets as a sequence of (pitch, duration) pairs. Most QBH systems must be tempo-
invariant: only the relative durations in the target database are important, not the absolute values.
The target pitch contours time-scaled to be the same length as the query contour.

In addition to being tempo-invariance, most QBH systems must also be transposition-invariant.
The average pitch offset between the query and target is subtracted prior to alignment. We can
iterate between these two steps, pitch-shift and alignment, to further improve the match quality.
This two-step iteration was implemented and preliminary results showed that while the initial pitch-
shift is essential, successive iterations did not improve retrieval performance. The DTW algorithm
is computationally expensive even without this iteration and hence this iteration is not included in
the performance results below.

The pitch-contour computed for the query is not continuous: when the singer pauses or the
pitch is otherwise impossible to estimate, the pitch-track algorithm outputs a ‘null’ pitch, as seen

12



in Fig. 4. In fact, the pitch-contour itself is a voiced/unvoiced detection. It is unclear how to match
such ‘null’ query regions to the target contour. Multiple cost schemes were implemented for the
null regions, but simply ‘filling in’ the null regions was found to yield the best performance. That
is, the end of every segment of detected pitch is extended to the beginning of the next segment.
This extension is performed by computing the weighted average of the last 100ms of each segment
and setting the entire null region to this value.

It should be evident from Figure 5 that allowing extreme warping functions is not useful. That
is, allowing the alignment path to stray into the upper-left or lower-right corner of Γ is unrealistic.
Two contours that are reasonably similar in shape should not require such distorted alignments.
Restricting the alignment path to a certain width, referred to as the beam-width, not only prevents
pathological alignments but also increases the speed of computation. In this work we found using
a beam-width of 20% of the query length to work well.

3.4 Performance
Fig. 7 displays the performance of the five QBH systems described above, all of which use a
pitch contour representation. For both plots in Fig. 7, the target database size is represented along
the abscissa. The ordinate represents classification accuracy for the left plot and MRR for the
right plot. The fourteen ‘authentic’ themes are included in every database size, hence for the
largest target database size, 3570 of the 3584 themes are ‘synthetic.’ For all but the smallest and
largest target databases, the points shown are an average across multiple target databases. Data
are shown along with best-fitting linear curves. This is in contrast to [9], where performance was
found to be inversely proportional to the log of the target database size. Clearly, the linear fit
cannot be extrapolated indefinitely, CA cannot become negative. Nonetheless, a linear fit provides
a pragmatic visual aid and implies a ‘slope,’ or rate of performance degradation.

All methods show similar performance for the smallest target database, with classification ac-
curacy between 85% and 90%. As the target database grows however, some clear differences in
performance become evident. For the largest target database classification accuracy in between
55% and 80%. The curve labelled “Direct” gives the performance of a QBH system that uses (1)
to compare query and target contours, without alignment8. As expected, this rudimentary dissimi-
larity measure yields the worst performance. The standard DTW cost scheme, given by (2), yields
substantially better performance, but the other cost schemes yield better performance still.

The edit-distance, Itakura and Sakoe cost schemes yield similar performance, with CA ≈ 89
for a target database with 14 themes and CA ≈ 79 for a target database with 3584 themes.
The Itakura and Sakoe cost schemes yield slightly better performance than the edit-distance cost
scheme. In particular, the Sakoe constraint yields the most robust performance; the rate of perfor-
mance degradation for this cost scheme is slower than the rest, even if it performs slightly worse
than the Itakura cost scheme for small database sizes.

While the improved Sakoe and Itakura constraints yield somewhat better performance than the
edit-distance constraint, there may be a subtle advantage to using the edit-distance constraint. The
subset of the matrix Γ that the alignment is allowed to visit is known as the warping window [17].
Figure 8 shows the warping window for the edit-distance and Itakura constraints. Dark squares

8Note that unlike the other performance curves shown in Fig. 7, the ‘Direct’ curve is for a system that does not down-
sample the contours as described in section 3.2. If the contours are down-sampled prior to computing (1), performance is
considerably worse than that shown in Fig. 7.
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Figure 7: Performance of ve QBH systems that use a pitch contour representation. The left
plot gives the classication accuracy versus target database size and the right plot gives the
MRR versus target database size.

show the points the alignment path can visit. One of the global constraints for the alignment is that
it must begin at γ 1,1 and end at γN,K . The edit-distance constraint allows the beginning and end of
the query to be inserted or deleted to match the target contour. The Itakura and Sakoe constraints
force the beginning and end to expand or contract only ‘gradually’ however [17]. For example, if
the query contains a portion at the beginning that does not match with the beginning to the target
contour, but the contours are similar otherwise, the edit-distance constraint allows the spurious
portion at the beginning to be deleted (resulting in a small alignment cost) whereas the Sakoe and
Itakura constraints do not allow the spurious portion to be completely contracted (resulting in a
large alignment cost). As mentioned in Section 2.1, real-world QBH systems will be expected to
operate even when the user does not sing a theme using the same start and end notes as the theme
stored in the target database. The edit-distance constraint may be better suited to this environment
than the Sakoe and Itakura constraint. On the other hand, the boundary conditions given above can
be loosened, allowing the deleted or spurious portions at the beginning and end of the query to be
accounted for while using a continuity constraint that restricts the slope of the warping path [29].

3.5 Piecewise Linear Approximation
Section 3.2 describes the role of down-sampling in reducing the dimension of the query contour
to a manageable size. Down-sampling can be viewed as approximating the signal as piecewise
constant [18]. The constant regions are of equal length, in this work length ten. Another way
to approximate the contour is as piecewise linear, where segment boundaries are defined using a
maximum allowable segment approximation error rather than a constant segment length. This ap-
proach to dimension reduction has been recently explored by Keogh et al [8,19–21]. Of immediate
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Figure 8: Alignment path boundaries for the general and Itakura continuity constraints.

applicability to the current work is Keogh’s use of DTW to measure the similarity between time
series approximated by such piecewise linear representations [20].

3.5.1 Implementation

In the present work the piecewise linear approximation is computed using a simple ‘bottom-up’
recursive algorithm [19,21,33]. The initial approximation is given by consecutive pairs of contour
values; there are K

2 initial segments yielding zero approximation error. The algorithm then merges
the two neighboring segments that result in the smallest increase in approximation error (found by
integrating the absolute difference between the original contour and linear approximation). Linear
regression is used to find the best linear fit for every segment of observed contour. The algorithm
terminates when the lowest cost merge increases the individual segment error above some thresh-
old, ε. Figure 9 shows two sample piecewise linear approximations for a portion of the main theme
from “America the Beautiful.” The top plot shows the approximation made for ε = 2 and the
bottom plot shows the approximation made for ε = 16. This algorithm is readily modified to yield
piecewise constant approximations as well.

The DTW algorithm using the simplest continuity constraint (Equation 2) is used for the piece-
wise linear representation, although a modified cost scheme is required. Let the piecewise linear
approximations of Q and T be given by Q̂ = (q̂1, q̂2, · · · q̂K̂) and T̂ = (̂t1, t̂2, · · · t̂N̂ ). For the
contour representation described above, each sequence element is simply a pitch. For the note rep-
resentation described in the next section, each sequence element is a (pitch, duration) pair. For the
current piecewise linear representation each element is a (mean pitch, pitch slope, duration) triple,
q̂k = (q̂k, pit, q̂k, slope, q̂k, dur). In [20] Keogh proposes the following match cost,

Match Cost(q̂k, t̂n) = |q̂k, pit − t̂n, pit|p (7)

Keogh set p = 2 but in for the present application we found p = 1
2 to be a better value. Given that

this match cost makes no use of the slope or duration of either segment it is unclear why Keogh
proposes a piecewise linear approximation instead of a piecewise constant approximation. In this
work we also implemented a piecewise constant representation using the same cost scheme and
found equivalent performance.

A more intuitive match cost might be to integrate the difference in area between the linear
segments. It is unclear how to perform this ‘integration’ however because the two segments are not
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Figure 9: Sample query pitch-contour for a portion of the main theme to “America, the Beau-
tiful.” The thin line is the observed pitch-contour and the thick line is a piecewise linear
approximation. The top plot shows a piecewise linear t with small approximation error and
bottom plot shows a t with large approximation error.

necessarily the same length. In the present work we consider the following heuristic approach. The
piecewise linear approximation to the target contour clearly contains a small number of constant
segments; ∀n, t̂n, slope = 0. Hence a reasonable match cost is

Match Cost(q̂k, t̂n) =
qk, dur∑

i=1

|(qk, pit + i · qk, slope) − tn, pit|p (8)

While this match cost would appear to better capture the difference between two segments, it was
found experimentally to perform somewhat worse than the simpler match cost above. This is likely
a result of the disparity between query and target sequence lengths, as discussed below.

3.5.2 Performance

The performance of the piecewise linear system for various levels of approximation error ε is
shown in Figure 10. As expected, the performance of the system improves as the approximation
error decreases (and the average dimension increases). It is also clear from the figure that the piece-
wise linear system performs considerably worse than even the ‘brittle’ direct method, regardless of
how small the approximation error is.

There are several possible reasons for the poor performance. One shortcoming of the current
implementation is that the piecewise linear approximation algorithm returns a much longer se-
quence of segments for the query contour than the target contour. The target contours, which are
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Figure 10: Performance of the piecewise linear contour representation.

piecewise constant, yield a piecewise linear representation containing as many segments as there
are notes in the melody; typically N̂ is between ten and twenty. For the query contours however
the piecewise linear representation contains between 30 and 100 segments. Because K̂ and N̂ are
so disparate it is not possible to apply a continuity constraint that biases the slope of the alignment,
as for the Itakura and Sakoe constraints. The consistent difference between K̂ and N̂ could also
explain why the match cost (7) yields better performance than the more intuitive match cost (8).
This disparity could be addressed by simply segmenting the target representation so as to have as
many segments as the query; perhaps by inserting into T̂ segment boundaries wherever there are
segment boundaries in Q̂.

While the current piecewise linear implementation is not effective in terms of absolute retrieval
performance, it does facilitate further investigation into the influence of representation dimension
on retrieval performance. In Figure 10 the different piecewise linear curves are labelled with the
segment approximation error of the piecewise linear representation. The curves can also be labelled
using either the average total approximation error or the average representation length. These
two cases are shown in Figure 11. The ordinate gives the MRR, the depth axis gives the target
database size and the horizontal axis gives the total approximation error for the left plot and the
average representation length for the right plot. As is evident from the figure, the performance is
monotonically increasing with respect to representation length for all target database sizes.

Figure 12 averages the MRR across target database size for the surface shown in Fig. 11.
For both plots in Fig. 12 the ordinate gives the MRR. For the left plot the abscissa gives the to-
tal approximation error and the right plot gives the representation length. The difference in shape
demonstrated in Fig. 12 is worth noting. The MRR rank appears to to degrade linearly as a function
of the approximation error. A linear fit is clearly not appropriate for MRR versus representation
length however; performance appears to plateau for lengths greater than 100. Performance im-
proves much more when the representation length is increased from 20 to 30 than from 80 to 90
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Figure 11: Mean reciprocal rank for the piecewise linear contour representation. The left plot
gives the MRR versus total approximation error and the right plot gives MRR versus average
query dimension. The depth axis gives the size of the target database.

(or even 60 to 90). This would seem to imply that a representation ‘finer’ than notes is prefer-
able for QBH systems. Nonetheless, note representation are standard in practice. The next section
discusses note representations.

4 Note Representation
Most QBH systems operate by first transcribing the sung query into a sequence of (pitch, duration)
pairs [3, 9, 11, 27, 29, 32]. In addition to being musically intuitive, melody transcription is one
method for reducing the dimension of the query for database searching. The present work compares
five note transcription methods. Three of the note estimators have been previously described [1,2].
The other two new methods will be described in greater detail [3].

4.1 Note Segmentation
Often, naturally sung melody transcription is implemented as a three-stage process. First, the sung
pitch contour is estimated. This contour is then segmented into separate notes. Finally, note pitches
are assigned as the average contour value within each note. Performing note segmentation prior
to pitch assignment is intuitive; it is unclear how to assign pitches to individual notes before note
boundaries have been fixed. Simultaneously searching the space of all possible note boundaries
and note pitches is considerably more difficult than first searching the space of note boundaries and
then assigning pitches [1, 16].

Many QBH systems [11, 22, 23, 28] require the user to articulate each note with a separate
‘da’ or ‘ta’; the user is required to perform note segmentation. In this case, a simple amplitude
threshold is used to detect note boundaries. If a user sings a continuous melodic line or lyrics
the segmentation process fails and the QBH systems yield poor performance. It has been shown
that even when the user adheres to the above restriction, the majority of errors result from this
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Figure 12: Mean reciprocal rank for a piecewise linear contour representation. The plot on the
left gives the performance vs. total approximation error and the right plot gives the perfor-
mance vs. average query dimension.

rudimentary note segmentation method [26,29]. This restriction is undesirable however, especially
for systems designed for untrained singers.

Three segmentation methods presented in [1] are included in the present work: a smoothed
pitch derivative [28], an adaptive RLS filter, and a nonlinear LMS filter (or perceptron). Two other
methods that incorporate a prior constraint on the distribution of note pitches are also included: a
quantizer and an HMM [3]. All five of the note estimators included here employ the pitch detection
algorithm described in section 3.1. The various note estimators are included to demonstrate the
range of performance possible using a note representation.

4.2 12-Tone Prior
The note segmenters included in [1] do not make use of the fact that most melodies found in
Western music are restricted to a 12-tone scale. While incorporating a 12-tone, equal-tempered,
prior into note segmentations was not found to improve segmentation performance, it was found to
improve retrieval performance considerably [2, 3].

There are a few concerns however with using this prior that often discourage its use. The first
difficulty is simply that most individuals do not have perfect pitch, and set their own personal tonic
when singing a solo melody. The 12-tone equal-tempered prior only constrains the distribution
of pitches, not the absolute pitches themselves. A simple resolution to this difficulty is presented
below.

Another concern with applying the 12-tone equal-tempered prior is pitch drift. Singers, espe-
cially untrained singers, will slowly modify the tonic pitch throughout a solo performance. While
pitch drift presents a considerable challenge to general sung melody transcription, it was found
that for the queries used in this work pitch drift is negligible. Sung queries for QBH retrieval are
generally less than 20 seconds in duration, in which case even an untrained singer will not drift too
far from their original tonic.

In this work we incorporate a 12-tone, equal-tempered, prior into two note segmenters. Both
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Figure 13: Transcriptions for a sample query of the main theme from “Yankee Doodle.” The
thin line is the observed pitch-contour and the thick line is the transcribed contour. Both
transcriptions were generated using the quantizer segmenter. The top plot shows the result
when no note thinning is performed, the bottom plot shows the case when note thinning is
performed.

segmenters require that a codebook of quantization pitches be specified before segmentation. An
initial codebook spanning several octaves is constructed with 12 quantization levels per octave. For
a set of pitch offsets spanning one half-step9 separated by 5 cents10100 cents equal a half-step.), the
quantization MSE is computed for the observed pitch contour. The offset that yields the smallest
quantization error is chosen for the final codebook design.

4.2.1 Quantizer as estimator

A simple method for detecting note boundaries is to use the quantizer described above to indicate
note boundaries; a note is inserted wherever the quantized contour transitions between pitches. As
expected, such a segmentation is riddled with spurious notes [3,34]. The top panel of Fig. 13 shows
the direct quantizer output for a sample query of “Yankee Doodle.” Spurious notes are a problem
in most transcription systems [3, 28] and are often dealt with by merging all notes less than some
duration, Tmin, with their nearest neighbor.

Applying minimum duration thinning to the quantized contour dramatically reduces the num-
ber of spurious notes. The algorithm iteratively selects the shortest note and merges it until the
shortest note in the quantized sequence is greater than Tmin. We found Tmin ≈ 150ms to be a

9An interval of 1.0 in MIDI pitch.
10(
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good value.
In spite of the minimum duration thinning, numerous spurious notes persist. To further re-

duce the number of spurious notes a minimum pitch difference constraint is applied. For each
note, a preliminary pitch is assigned as the average unquantized contour value within the note’s
boundaries. The difference in pitch between adjacent pairs of notes is computed. The algorithm
iteratively selects the smallest pith difference and merges the two notes together until the smallest
pitch difference is greater than∆Pmin. We found∆Pmin ≈ 0.85 to be a good value [3].

The bottom panel of Figure 13 shows the result of this process applied to the quantized contour.
The two thinning procedures described have, in this case, removed all the spurious notes without
removing any true notes. Removing the ‘minimum pitch’ thinning procedure would introduces
a small number of spurious notes back into the estimated note sequence; the minimum duration
constraint is the more important of the two.

4.2.2 Hidden Markov Model

Another technique for incorporating the 12-tone, equal-tempered, prior that is more robust to spu-
rious notes is an HMM. Every state in the HMM represents one unique pitch in the 12-tone equal-
tempered codebook described above [2, 3]. Spurious notes are limited by defining state transition
probabilities that favor constant pitch.

Two probability distributions were implemented. A rudimentary distribution that sets the prob-
ability of self-transition very high (about 98%) and uniform for the remaining pitch states ( 2%

M−1
whereM is the number of HMM states). Another transition probability distribution was computed
with the Yule algorithm, using the fourteen ‘authentic’ target themes are training data [35]. Sur-
prisingly, the rudimentary transition probability distribution was found to yield considerably better
performance, perhaps due to the small set of melodies used for training.

In [1] it was found that if the observed pitch-contour is modelled as piecewise constant with
additive noise, a Laplacian distribution is a good model for the noise process. Accordingly, the
observation noise process used by the HMM is Laplacian with β ≈ 3.

Having constructed the HMM, the most probable state sequence is found with the Viterbi algo-
rithm, using the pitch contour as the observation sequence [35]. This algorithm constructs a trellis
to record the most probable prefix path to every state for every time step of observation data. The
algorithm then regresses back through the trellis to find the most probable note sequence.

An example transcription using the HMM is shown in Fig. 14for the same sample query as in
Fig. 13. By comparing the two figures it should be clear that the Quantizer and HMM produce sim-
ilar transcriptions. It is worth noting that the HMM estimator does not require a minimum duration
thinning step like most melody transcription methods. This is because the high self-transition prob-
ability for each state naturally discourages spurious notes. It was found that the minimum duration
thinning did improve performance modestly however, so the step was included in final performance
comparisons. Lastly, while the two methods often yield similar transcriptions, the quantizer is con-
siderably faster than the HMM.While the Viterbi algorithm keeps the computational complexity of
finding the optimal state path manageable, it is still much slower than quantizer described above.

4.3 String Matching
The query representation is thus given by a sequence of (pitch, duration) pairs. The query se-
quence must be compared with every target sequence in the database. Due in part the the difficulty
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Figure 14: Transcription for a sample query of the main theme from “Yankee Doodle.” The
thin line is the observed pitch-contour and the thick line is the transcribed contour, generated
using the HMM method.

of reliably detecting note boundaries, a direct comparison of query and target sequences yields
poor performance. A more robust method for comparison is taken from biological sequence anal-
ysis [12].

Let the estimated melody be given by a sequence of K ‘notes’ pairs, Q = (q1,q2, · · · ,qK)
where qk = ( q k,pit , q k,dur ). Similarly, let a target theme be given by a sequence of N ‘notes’
pairs,T = (t1, t2, · · · , tN ). Because note off-set time is an unreliable statistic, inter-onset interval
(IOI) is used in the place of note duration [29].

The prevailing method for aligning two sequences of notes is string matching [12]. The align-
ment is achieved by inserting, deleting, and replacing elements of the query sequence in order to
match the target sequence. Each of these three operations is assigned some cost, and a dynamic
algorithm is employed to find the minimum cost alignment.

4.3.1 Cost Scheme

Numerous cost schemes have been proposed, and we found a simple approximation to an edit-
distance DTWmetric to be particularly effective Suppose both the query and target note sequences
are ‘unwrapped’ into the piecewise constant pitch contours they represent. A unit cost is assigned
to the insertion or deletion of a sample from the query contour. Further, we define the cost of
replacement to be proportional to the pitch difference between two samples. In this formulation,
there will be some pitch difference above which replacement will cost more than simply deleting
the note and inserting a new sample. We denote this pitch difference as α.

This cost scheme cannot be implemented directly on the note sequences: ‘unwrapping’ the
note sequences for alignment allows the optimal alignment to split query notes between target
notes. When aligning the note sequences, the notes must be inserted or deleted in their entirety.
The cost scheme outlined above can be translated to string edits on complete notes however. In
this case, the cost of note insertion or deletion is clearly proportional to the note’s duration. The
replacement cost has two components, a cost proportional to the difference in durations (to make
the durations equal), and a cost proportional to the pitch difference times minimum of the two
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Figure 15: Sample string alignment for a query of “Do-Re-Me” and the true melody.

durations (to make the pitches equal, either before insertion or after deletion). We found α ≈ 5 to
be a good value. Replacing two equal-duration notes with a pitch difference equal to α has equal
cost to an insertion-deletion pair. Thus, our final costs are defined as

Insert Cost(tn) = tn,dur

Delete Cost(qk) = q k,dur

Replace Cost(qk, tn) = |q k,dur − tn,dur| +
2
α

min(q k,dur, tn,dur) |q k,pit − tn,pit| (9)

We have explored other cost schemes as well, but no meaningful performance improvement
was found. In particular, the cost scheme does not necessarily require separate insertion and dele-
tion costs. By requiring every query note to be ‘matched’ to one target note, and vice versa, we
arrive at the simpler cost scheme typically used by DTW algorithms, as described in section 3.3.1.
Such a cost scheme was implemented, in which the match cost was simply proportional to the pitch
difference. The performance of these two schemes is compared below.

4.3.2 Sequence Alignment

Fig. 15 shows an alignment path between a rather error-prone sample query of “Do-Re-Me” and
the true theme. For simplicity, only note pitches are shown. In this figure, horizontal steps in
the alignment path represent deleting an element from the query sequence, vertical steps represent
inserting an element into the query sequence, and diagonal steps represent note replacement.

String matching is another dynamic alignment algorithm, and is identical to DTW. An optimal
alignment between Q and T is found by recursively building a matrix Γ = [γn,k] of minimum
prefix alignment costs. Let the alignment path be given by w = (w1, w2, · · ·wT ). The path must
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be monotonic nondecreasing and adhere to the general local continuity constraint from Fig. 6;
∀t, wt − wt−1 ∈ {(0, 1), (1, 1), (1, 0)}. Starting in the lower left corner of Γ, every element of Γ
is found recursively by

γn,k = min




γn−1,k + Insert Cost(tn),
γn,k−1 + Delete Cost(qk),

γn−1,k−1 + Replace Cost(qk, tn)



 . (10)

The final alignment cost for Q and T is given by γN,K , and is interpreted as a dissimilarity
measure. By performing this alignment on every target in the database we can rank order the target
themes. The complexity of this alignment procedure is O(NK).

To extract the actual alignment for warping the query to the target the algorithm must also
construct aN +1×K +1matrixΨ. The (n, k)th element ofΨ stores which of the three directions
the lowest-cost path came from. Starting at [Ψ]N,K , the algorithm regresses back to [Ψ]0,0, tracing
out the optimal alignment.

It is unreasonable to expect the query and correct target to be in the same key. To account
for this, the mean pitch difference between the query and target note sequences (weighted by note
lengths) is subtracted prior to alignment. In fact, the constant-shift and alignment is iterated to
further improve the final match quality. While the initial constant-shift is essential, the iterative
algorithm only improves performance modestly. This iteration is included in the results presented
below.

4.4 Performance
Fig. 16 displays the classification accuracy and MRR of six QBH systems that employ a note
representation across the same set of target databases as Fig. 7. The performance of five note
estimators are given: a pitch-derivative segmenter, a RLS filter, a NLMS filter, a quantizer and an
HMM. For all five note estimators, the cost scheme described in section 4.3.1 is used for sequence
alignment. For the HMM estimator, a second cost scheme is included, the standard DTW cost
scheme given given by (2). The curve representing the HMM note estimator with the DTW cost
scheme is labelled “Note: HMM, DTW.”

In [2, 3], numerous note estimators were compared using a single target database of fourteen
themes; it was found that the baseline pitch-derivative yielded the worst performance by a consid-
erable margin, the RLS and NLMS estimators yielded equivalent retrieval performance, and the
quantizer and HMM yielded the best performance. The present work augments these results and
notes some important differences that only become apparent as the target database size increases.

First, the RLS filter appears to yield essentially the equivalent performance as the baseline
pitch-derivative. That is, the RLS filter yields only a 2% higher CA than the pitch derivative for
all target database sizes. For the smallest target database size of fourteen ‘authentic’ themes, this
difference appears meaningful. However, as the target database size increases, the performance
of the RLS filter degrades as rapidly as the pitch-derivative, whereas the performance of the other
note estimators degrades more slowly. In particular, the NLMS estimator, the one other estimator
considered here that does not incorporate a 12-tone prior into segmentation, performs considerably
better than the RLS and pitch-derivatives.

From Fig. 16, it is evident that incorporating the 12-tone constraint into note segmentation
yields substantially more robust retrieval performance. Indeed, the quantizer and HMM yield
CA ≈ 76% for the largest target database, whereas the other note estimators yield CA ≈ 64%.
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Figure 16: Performance for six QBH systems that employ a note representation vs. target
database size. The left plot gives the classication accuracy and the right plot gives the
MRR. All six QBH systems use a sequence of notes to represent the query and target for
retrieval. For the curve labelled “Note: HMM, DTW”, the cost scheme (4) is used, all others
use (9).

This supplements the results presented in [2], in which it was concluded that an HMM yields
the best retrieval performance. Given than the quantizer yields virtually the same performance
as the HMM, it appears that incorporating the 12-tone constraint is the principle reason for the
improved performance, not the structure of the HMM. Although, note that as the target database
size increases, the HMM does yield marginally better performance than the quantizer.

Fig. 16 presents results for the HMM note estimator using both the cost scheme presented
in section 4.3.1 and the standard DTW cost scheme of (2). As is evident from the figure, the
DTW cost scheme performs somewhat worse than the cost scheme of section 4.3.1. We found
that performance degrades a similar amount if the DTW cost scheme is applied to the other note
estimators as well. It is curious however, that as the target database size increases, the performance
of the DTW cost scheme degrades more slowly than the cost scheme presented in section 4.3.1.
This would seem to imply that not explicitly allowing for note insertions and deletions11 performs
better as the target database is scaled to massive proportions. A similar comparison will be made
in section 6 between the note and contour representations.

5 Histogram Representation
As will be shown in the next section, the contour representation yields more robust performance
than the note representation. This comes at the cost of a much larger query representation, however.

11That is, requiring every query note to be matched to at least one target note, and vice versa.
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Indeed, for our MATLAB implementation, aligning a pair of note sequences takes about 0.001s and
aligning a pair of pitch contours takes about 0.1s. The contour representation is impractical for any
real-world QBH system with a large target database. This observation motivates an alternative
representation that yields similarly robust performance as the contour representation, but without
the computational burden. We propose a novel sequence of pitch histograms.

Perhaps the most difficult component of sung query transcription is note segmentation [2, 3, 9,
28, 29]. For example, a portion of pitch contour that is slowly ascending can be labelled as either
a slow transition between two notes or a sequence of rapid passing notes. There is an inherent
tradeoff between insertion and deletion errors in any segmentation problem [3, 16]. Most QBH
systems are implicitly tuned to have roughly equal note insertion and deletion rates. An interesting
exception is presented in [34], in which a note estimator with a very high insertion rate is coupled
with an alignment procedure that accounts for many insertion errors. As discussed in section 3,
the pitch detection algorithm employed in the present work performs a partial segmentation, which
can be interpreted as a note segmenter with a high note deletion rate12. In this case, each contour
region represents one or more notes. Each region is collapsed into a single histogram of pitches.
In so doing, we model the sung query as a partially ordered set13.

Pitch histograms have been proposed before for MIR. Tzanetakis and Cooke [41] proposed
pitch histograms for genre classification and Heo et. al. [13] and Song et. al. [39] have proposed
sequences of pitch histograms for query-by-humming. There are some important distinctions how-
ever. In [13, 39] pitch histograms are employed to account for uncertainty in pitch detection as
well as polyphonic sources. In contrast, we employ pitch histograms to discard ambiguous timing
information within each contour region. Furthermore, [13,39] compute pitch histograms for a con-
stant frame size, whereas we compute a single histogram for every contour region. In this case the
duration represented by each histogram varies, and a modified DP alignment algorithm is required.

5.1 Query & Target Histograms
A sample query pitch-contour for the tune “Yankee Doodle” is shown in Figure 17, and the corre-
sponding sequence of pitch histograms is shown in Figure 18. As is evident from the figures, this
contour contains six regions and hence the histogram sequence is of length six.

Throughout this work a histogram bin width of δ = 0.2 is used, hence there are 5 bins per
half-step. Bin widths smaller than 0.2 do not improve performance substantially. Furthermore,
δ > 0.2 yields somewhat worse performance, although bin widths as large as 0.5 or 1 still yield
reasonable performance.

Let the sequence of query histograms be given by Q = (q1, q2, · · · ,qK), and similarly the
target sequence be given by T = (t1, t2, · · · , tN ). Each query histogram is given by qk =
[q1

k, q
2
k, · · · , qM

k ], and every target histogram by tn = [t1n, t2n, · · · , tMn ]. The number of samples in
themth bin of the kth query histogram is given by qm

k .
Before the query and target sequences are aligned, both sequences are normalized to unit ‘vol-

12Indeed, applying such a note segmenter to our database of sung queries (that is, using the gaps in the pitch contour
to indicate new notes) yields a segmentation with a deletion rate of about 35%. Note that this segmenter is similar to an
amplitude threshold, short pauses are used to detect note boundaries.

13The order of contour regions is defined, but the order of pitches within each region is not.
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Figure 17: Sample query pitch-contour for “Yankee Doodle.”
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ume,’
K∑

k=1

M∑

m=1

qm
k =

N∑

n=1

M∑

m=1

tmn = 1 (11)

thus guaranteeing tempo-invariance. To make the system transposition-invariant, the mean pitch
difference between the query and target contours is subtracted from the contours prior to computing
the histograms, as is described in Section 3.3.2.

Note that the target sequence of histograms is represented using a separate histogram for ev-
ery note; ∀ 1 ≤ n ≤ N, ∃! m S.T. tmn > 0. The length of the target sequence, N , equals the
number of notes in the target. If a singer were to articulate each note individually with a ‘da’ then
K ≈ N . Because most users sing portions of the melody continuously, typically K < N . If the
user sang completely legato, one continuous melody, thenK = 1.

Unlike the systems presented in previous sections, it is not sufficient to only compare qk and
tn when aligningQ and T. Because each query histogram may represent more than one note, it is
necessary to compare each query histogram to a collection of target histograms. Accordingly, let
t(n,p) be the cumulative sum of tn through tp,

t(n,p) =
p∑

i=n

ti

=

[
p∑

i=n

t1i ,
p∑

i=n

t2i , · · · ,
p∑

i=n

tMi

]
. (12)

5.2 Match Cost
We use a musically intuitive match cost that shares some features with quantization error. That is,
the match cost for qk and t(n,p) is computed by associating, or ‘quantizing’, every query bin to
the nearest non-zero bin in t(n,p). The query histogram is partitioned in cells based on t(n,p). A
cost is computed for each cell, and the final histogram match cost is given as the sum of the cell
costs. A Voronoi partition is used to define cell boundaries14. The cost of each cell is given by two
components, a duration difference and a quantization error. If the duration component is neglected,
the cell cost would be similar to the quantization error of quantizing the query bins to the non-zero
target bin.

Fig. 19 shows query histogram q3 for the pitch contour shown in Fig. 17, as well as the cu-
mulative target histogram t(3,5) for the main theme from “Yankee Doodle.” The cell boundaries
are shown with vertical lines. Note that all three target notes represented in this example have the
same duration. Also note that the histograms in Fig. 19 have been normalized according to (11.

The cost of each cell is given by two components, a duration difference and a quantization
error. If the duration component is neglected, the cell cost would be similar to the quantization
error of quantizing the query bins to the non-zero target bin.

The cost for each cell is similar to the cost scheme outlined in Section 4.3.1, in that the are two
components to the error: a duration component and a pitch component. If the duration component
is neglected, the cell cost would be similar to the quantization error of quantizing the query bins
to the non-zero target bin. Let m0 be the non-zero bin in the current cell of the target histogram

14Cell boundaries are given by the midpoint between non-zero bins in t(n,p). Hence the number of cells is equal to
p − n + 1.
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Figure 19: The top plot is the normalized query histogram q3 from Fig. 18. The bottom plot is
the normalized cumulative target histogram t(3,5) for the main theme from “Yankee Doodle.”
The vertical lines represent the cell boundaries for associating query bins with target bins
and the dotted lines show the linear trend with which cost increases away from the non-zero
target bins.

t(n,p). The cost for the current cell is computed as follows. Beginning with bin m0, ‘quantize’
query bins to the target bin. Radiate outward from m0

15 until the total duration accrued by the
‘quantized’ query bins equals the duration of the target bin. For every query bin qm

k ‘quantized’ to
m0, increment the cost according to

Cell Cost = Cell Cost+ α · qm
k · |m − m0|p. (13)

The |m − m0| radius term yields increasing error as query bins farther away from m0 are ‘quan-
tized’ with the target bin, and the qm

k term accounts for the number of contour samples that are
quantized tom0. p = 1 was found to be a good value, as in Section 4.3.1. When either the accrued
query duration equals the target duration, or all query bins in this cell have been ‘quantized’ to
m0, the remaining difference in duration is simply added to the Cell Cost. Note that every query
bin contributes either to the pitch component or the duration component, but not both. α = δ

4 was
found to be a good value.

5.3 Alignment Procedure
For the note and contour representations, every query element is matched to one of N possible
target elements. For the histogram representation however, every query histogram, qk, is matched
to one of N2 possible cumulative target histograms, t(n,p). To find the optimal alignment between
sequences Q and T we construct a N × N × K matrix Γ = [γn,p,k]. The (n, p, k)th element of

15That is, begin with binm0, then ‘quantize’ binm0 + 1, thenm0 − 1, thenm0 + 2 · · · , stopping if a cell boundary is
reached.
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Figure 20: This gure shows the allowable alignment points in the coast matrix Γ. Each panel
shows one slice of the matrix, corresponding to one region of query pitch contour. Dark
squares represent points the alignment path may visit. In this example the query is repre-
sented by a sequence of six histograms and the target by a sequence of twelve histograms.

Γ represents the minimum alignment cost for the prefix subsequences (q1 · · ·qk) and (t1 · · · tp),
with qk matched to t(n,p). Starting with k = n = 1, every element of Γ is found recursively by

γn,p,k = min
r

γ r,n−1,k−1 +Match Cost(qk, t(n,p)). (14)

Figure 20 shows an example of the points in Γ that the alignment path can visit. This figure
shows the case for N = 12 and K = 6. The dark squares in the kth panel of the figure show all
the possible cumulative target histograms that the kth query histogram can be matched to. For each
panel, the vertical index gives the starting point n for the cumulative histogram and the horizontal
index gives the ending point p. For example, the first query histogram, k = 1, must match to a
cumulative target histogram beginning with n = 1, but can end anywhere from p = 1 to p = 7
(p = 8 · · · 12 is disallowed because at least five target histograms are needed to match to the
remaining five query histograms).

Note the critical assumption, that every histogram aligns with at least one target histogram.
This alignment algorithm is only valid for N ≥ K. If for a particular query and target N < K,
K − N all-zero histograms are appended to T for the alignment algorithm to find an alignment
path16. Unlike the alignment algorithms presented in previous sections, it is unclear how to define
the ‘slope’ of the alignment path for this representation, hence no cost scheme that penalize extreme
slopes are considered. It is nonetheless possible that more subtle cost schemes can be developed to
improve retrieval performance.

5.4 Implementation Issues
The histogram representation is implemented both with and without extending query contour re-
gions. As is evident from the Fig. 4, the observed query pitch contour often contains gaps in the
contour, whereas the target pitch contour is defined for every time step. The target contour is
time-scaled to be the same duration as the query contour prior to computing Q and T. Hence
more contour values are included in the target sequence of histograms than the query sequence. To
account for this, the ‘null’ regions in the query contour are filled in, as described in section 3.3.2.

16While this solution is somewhat dubious, any target theme for which N < K is not likely to be the true theme sung
by the user.
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Figure 21: Performance of the four QBH systems that emply the histogram representation vs.
target database size. The left plot gives the classication accuracy and the right plot gives
the MRR.

The crude segmentation performed by the pitch detection algorithm can be augmented by any
of the note segmenters described in the previous section, thus reducing the number of notes that
are collapsed into a single histogram. All of the methods presented in Section 4 can be tuned to
tradeoff inserted notes for deleted notes. For the histogram representation, the crude segmentation
is refined somewhat by the NLMS segmenter tuned so that the note insertion rate is essentially
zero whereas the deletion rate is relatively high17. While such a segmenter is ill-suited for a note
representation, the histogram representation assumes that each query histogram represents at least
one note.

5.5 Performance
Fig. 21 displays the classification accuracy and MRR of four QBH systems that employ the his-
togram representation across the same set of target databases as Fig. 7. The curves labelled “Ext.”
extend the query contour regions prior to computing the histogram sequence, as described above.
The curves labelled “Seg.” augment the segmentation performed by the pitch detection algorithm
with a NLMS segmenter, as described above.

Clearly, filling in the ‘null’ query contour regions prior to computing the histogram sequence
improves performance considerably. This is not surprising, the match cost described in section 5.2
assumes that equal number of contour samples are represented by the query and target histogram
sequences.

As can be seen in the Fig. 21, the additional segmentation does not change performance. One
17In this case the note deletion rate is about 25%, rather than 35% if only the segmentation provided by the pitch

detection algorithm is used

31



possible explanation is that the assumption that every query histogram represents at least one com-
plete note is, in fact, dubious. While this assumption may be true for the vast majority of recorded
queries in our database, about 10% of the test queries contain either spurious ‘bursts’ of pitch
contour or occasionally split the contour within a single note. Both of these phenomena manifest
themselves in ‘poor’ queries. Some queries contain background noise that the pitch detection al-
gorithm occasionally detects a pitch in, especially at the beginning or end of a query. Many of
these spurious bursts can be removed by simply discarding any region less than 70ms in length, but
some remain. Furthermore, untrained singers will sometimes articulate pitch very poorly and the
pitch detection algorithm will not detect a pitch at every frame throughout the duration of a note.
Both of these problems could be mitigated by judicious pre-processing of the observed contour,
improving performance for systems both with and without the extra segmentation.

6 Discussion
Fig. 22 gives a summary of the results presented in sections 3, 4, & 5. For both plots, target
database size is represented along the abscissa. The ordinate represents classification accuracy for
the left plot and MRR for the right plot. In both plots, three curves are included for the contour
representation: direct comparison (without alignment), and the Itakura and Sakoe constraints (the
two best alignment constraints). Three curves are included for the note representation: the pitch-
derivative estimator (the poorest note estimator), and the quantizer and HMM estimators (the two
best note estimators). One curve is included for the histogram representation. The contour repre-
sentation curves are represented with a solid line, the note representation curves are represented
with a dashed line, and the histogram representation curve is represented with a dash-dot line.

The relative performance of the various QBH methods demonstrate several interesting trends.
As expected, direct comparison of pitch contours, without alignment, yields the poorest perfor-
mance. It is striking however that using a common note estimator with alignment only yields
marginally better performance, and that this improvement quickly vanishes as target database size
increases. That is, melody transcription coupled with alignment does not necessarily perform any
better than Euclidean distance applied directly to the pitch contours.

The quantizer and HMM note estimators yield considerably better performance than the pitch
derivative estimator. Indeed, for a small target database size, the note representation computed
using the quantizer and HMM estimators yield the best performance, CA ≈ 92%. However, the
rate of performance degradation of the note representations is considerably faster than that of the
best contour representations. The contour representation using the Itakura and Sakoe continuity
constraints yield the most robust performance, the Sakoe constraint in particular. For the largest
target database size the best contour representations yield CA ≈ 80% whereas for the best note
representations CA ≈ 75%. That the contour representation is more robust to increasing target
database size is not surprising; as the number of targets grows, targets placed in ∼ 10-dimensional
space will inevitably be closer than targets in ∼ 100-dimensional space.

The histogram representation does not outperform the best note or contour representations.
However, the rate of performance degradation for the histogram representation is considerably
slower than that of the note representations. The CA slope for the histogram representation is
equal to that of the contour representation using the Itakura continuity constraint. For the largest
target database, the histogram representation yields equal CA as the best note representation. This
is an intriguing observation because while the contour representation yields the most robust per-
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Figure 22: Performance of various QBH methods vs. target database size. Systems that
employ a contour representation are shown with a solid line. Systems that employ a note
representation are shown with a dashed line. The histogram representation is shown with a
dash-dot line.

formance, it is computationally burdensome. For our MATLAB implementation, alignment of his-
togram sequences is only modestly more time consuming than for the note representation18. This
implies that as the target database is scaled to massive proportions, the histogram representation
could provide the best compromise between performance and retrieval speed.

The performance of the histogram representation can possibly be improved by more judicious
‘continuity’ constraints and histogram match costs. For the contour representation, the best per-
formance is achieved with the Itakura and Sakoe continuity constraints. No alternative continuity
constraints were explored for the histogram representation, there being no obvious interpretation
for the ‘slope’ of the alignment path. Furthermore, the alignment procedure for the histogram
representation assumes that every query histogram represents at least one target note, insertion
errors are disallowed. Some of the query pitch contours contain spurious contour regions which
result from environmental noise, however. Many of these spurious regions could be discarded us-
ing a minimum duration constraint, but those that remain cause the alignment procedure to find
implausible alignments.

Comparing the CA and MRR results in Fig. 22, the note representations yield relatively better
performance in terms of MRR than CA. Indeed, for the largest target database, the median rank
of all misclassified queries using the note representation is about 30, whereas the median rank is
about 100 for the contour representation. This is due to the different cost schemes. The contour
and histogram cost schemes do not explicitly allow for portions of the query to simply be ‘deleted’

18For our MATLAB implementation, aligning a pair of note sequences takes about 0.003s. Indeed, for the histogram
representation, Γ contains∼ 103 elements. Whereas for the note and contour representations, Γ contains∼ 102 and∼ 104

elements, respectively.
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Figure 23: Sample query and target pitch contours for two particularly poor queries.

or ‘inserted,’ every element of the query must be matched to at least one element in the target.
This occasionally results in pathological alignments for the contour and histogram representations,
radically warping the query sequence to account for a short portion of incongruous data. In such
situations the note representation alignment simply deletes or inserts the appropriate element.

6.1 Query Quality
As described in section 2.1, we employ a query test set of 480 naturally sung melodies. Fig-
ures 4, 9, & 17 give examples of ‘good’ query pitch contours. Not all of the queries in our database
have such easily identifiable contours however. Figure 23 gives two examples of ‘poor’ query con-
tours, along with the correct target contours. These two queries are virtually monotone, rendering
a ‘flattened’ contour19.

The contours shown in Figure 23 are exceptionally poor. There is, of course, a continuum
19In fact, we observed for our query test set that when a participant sang a note with incorrect pitch, the pitch they did

sing was almost always a pitch they had sung earlier in the same query. This would seem to imply that an untrained singer
would rather return to a pitch they ‘knew’ how to sing rather than waffle around a new pitch they are uncertain of (even if
the pitch is wrong, at least it fits into a equal-tempered scale), implying a model for singer error.
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Figure 24: Performance of various QBH methods vs. target database size when excluding the
poor queries in the test set.

in query contour quality between these poor examples and the relatively good examples shown
earlier. It is unclear that any QBH system should be expected to perform well even with such bad
queries. Specific modeling of singer and transcription error is becoming a more active area of QBH
research [29, 34].

It should be noted that the author has no difficulty classifying either query shown in Fig. 23,
albeit this is due to the author’s knowledge of the lyrics of both themes. As mentioned at the outset,
our query representations are based exclusively on the estimated pitch contour. Employing other
features such as broad spectral or phonetic information may further improve performance.

We therefore consider the performance of the QBH systems on a reduced database, discarding
the ‘poor’ queries. Figure 24 gives the performance for the QBH systems shown in Figure 22, but
with all queries from three singers discarded. These three of the fifteen participants sang virtually
monotone, and often very fast. Discarding the queries from these three participants left a test set
of 400 queries.

There are two noteworthy differences in performance between Fig. 24 and Fig. 22. First, the
contour representation performs relatively well on the filtered test set compared to the note repre-
sentation. This reinforces the earlier observation that the contour representation does not perform
well on queries that contain singer errors. Second, the histogram representation performs relatively
poorly on the filtered test set compared to the contour and note representations. This implies that
the histogram representation is relatively adept at classifying poor quality queries.
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7 Conclusion
This work gave a thorough comparison of three query representations in the context of a QBH sys-
tem. Two representations have been previously proposed: a sequence of notes and a pitch contour.
A novel query representation is also proposed, a sequence of pitch histograms. Five note estima-
tors were considered for the note representation, and it was found that estimators that incorporate a
12-tone prior into note segmentation yield the most robust performance. Several implementations
were considered for the contour representation, and it was found that continuity constraints and
cost schemes that penalize extreme alignment slopes yield the most robust performance. While the
contour representation was found to yield more robust performance than the note representation,
this comes at the cost of greatly increased computational complexity. A piecewise linear approxi-
mation for the contour representation was proposed to reduce the size of the representation, but the
implementation was found to perform poorly.

A novel sequence of histograms was proposed. This representation collapses separate regions
of pitch contour into a single histogram. This representation required a modified dynamic align-
ment procedure for retrieval. This representation was found to be modestly slower than the note
representation, but provided, in some sense, more robust performance. The histogram representa-
tion presents an potentially useful compromise between note and contour representations.
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