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Abstract
Motivated by the recent work of Laroia and Farvardin, this paper presents new reduced-

complexity methods for avoiding the bu�ering problems associated with entropy-coded,
scalar quantization. Basically, given a �xed-size source block, these methods use dynamic
programming and other techniques to search the sequences produceable by an entropy-
coded, scalar quantizer for one with minimum distortion subject to a constraint on the
number bits produced by some binary encoding of these sequences. The result is that
although some encoding methods might have a variable rate on the sample level, the overall
quantizer has a �xed rate on the block level. A general class of such methods, called
block-constrained quantization, is introduced. A way to reduce the encoding complexity
and several ways to to simplify the search complexity are found. A node-varying method
with improved performance is given. New insight into the performance of block-constrained
quantizers is presented. Compared to the original Laroia-Farvardin method, the results
presented here show small improvements in performance and large reductions in complexity.

Key Words : Entropy Coding, Scalar Quantization, Structured Vector Quantiza-
tion, Block-Constrained Quantization, Fixed-Rate Quantization.

1 Introduction

Quantization plays an important role in the transmission and storage of analog data.

It becomes increasingly important as demand presses against the capacity of available

�This work was supported in part by a scholarship from King Abdul-Aziz University, Jeddah,
Saudi Arabia and by NSF grant NCR-9105647.
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channels and storage media. Scalar quantization is the oldest form of quantization and

the simplest. But, it is possible to do signi�cantly better. For example, entropy coding

improves the performance of scalar quantizers and can achieve performance within

1:53 dB of the rate-distortion limit, with respect to mean-squared error distortion.

The major disadvantage of entropy-coded quantizers is their variable output rate,

which requires bu�ering and causes synchronization problems. Bu�er-instrumented

strategies have been used [1] to minimize such problems. However, such schemes

degrade the performance of the system for future samples of the source if the past

ones were bad. This means that the wrong samples get the \punishment".

A new �xed-rate method that resembles entropy-coded, scalar quantization has

recently been proposed by Laroia and Farvardin [2]. With this approach, given a block

of source symbols, dynamic programming is used to �nd a sequence of quantization

levels that can be encoded with a �xed number of bits, using a kind of lexicographic

indexing. Consequently, the source samples are not quantized independently and the

samples which cause the rate to increase are the ones which are quantized with poorer

�delity.

Although this appears to be the right approach for achieving the performance of

entropy-coded quantizers with �xed rate, there remain problems. Search complexity

(per sample) is high and increases linearly with dimension, and the lexicographic

indexing requires a large amount of storage.

In this paper, we suggest methods to substantially simplify the indexing and

reduce the search complexity. To simplify the indexing, we make use of the fact that

one can obtain a system that is �xed rate on a block level, while retaining the variable-

rate nature at the sample level. To simplify the searching we show that with high
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probability only a small, easily identi�ed subset of the states need be searched by the

dynamic programming. Moreover, we show that the dynamic programming can be

replaced with far simpler, suboptimal methods, with only small losses in performance.

As additional motivation for work in this area, we cite, as did Laroia and Far-

vardin, the need for low-complexity, �xed-rate quantization at moderate-to-high rates.

Although low rate (along with low distortion) is a primary goal of quantization, there

are many systems where after suitable preprocessing (e.g. a transform or subband

decomposition) there are important components of the data (e.g. low-frequency com-

ponents) that must be quantized with very low distortion and, consequently, with

moderate-to-high rate, e.g. three or more bits per sample. One might look to vector

quantization (VQ), because VQ achieves the distortion-rate function (asymptotically

as the dimension grows. However, at moderate-to-high rates, only small dimensions

are practical, which greatly limits VQ performance. Even relatively low-complexity

structured VQ's (such as two-stage and tree-structured) have large complexities in

this range of rates. Thus, there is considerable need for low-complexity methods.

Block-constrained methods such as those presented in [2] and here have complexity

that increases slowly with rate. Thus, they are well suited to coding in the moderate-

to-high rate range.

This paper is oriented towards achieving the performance of scalar quantization

with �rst-order entropy coding, but with �xed-rate, low-complexity schemes. For

memoryless sources and moderate-to-high rates, such performance is better than that

achievable by practical VQ's. For sources with memory, VQ may work better, but it

is believed that th methods described here can be extended to exploit source corre-

lation, as for example in [3]. In this case, future work may �nd these methods to be
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competitive with the best �xed-rate quantization techniques.

Throughout this paper, we use the squared-error distortion measure and results

are given only for independent, identically-distributed (IID) sources, Gaussian and

Laplacian; however, it is anticipated that the results extend to sources with memory,

as for example in [3].

Section 2 gives background material on entropy-coded, scalar quantizers (ECSQ's).

Section 3 introduces the problem of converting ECSQ's to �xed-rate. Although the

�rst work in this area is that of Laroia and Farvardin, we describe our approach

�rst, as it is more elementary. The more sophisticated Laroia-Farvardin approach is

postponed to Section 4, where it will be seen to overcome some shortcomings of our

approach at the expense of increased complexity. Section 4, presents our approach and

that of Laroia and Farvardin [2] in a more uni�ed framework. We use the term block-

constrained, �xed-rate, entropy-coded quantization (or block-constrained quantization

(BCQ) for short) to describe such schemes. Section 5 describes the implementation

of the dynamic programming search. Section 6 discusses design and optimization

of BCQ's. Section 7 compares the performance of the new and old BCQ methods.

Section 8 gives the reduced state implementation of the dynamic programming search.

Two very low-complexity search methods are presented in Sections 9 and 10. In

Section 11, we present a version of BCQ, called node-varying BCQ, that reduces

some of the shortcomings of method of Section 3. Finally, conclusions are given in

Section 12.
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2 Entropy-Coded Scalar Quantization

An entropy-coded, scalar quantizer (ECSQ) consists of an m-level scalar quan-

tizer with levels q = (q1; q2; : : : ; qm); where q1 < q2 < � � � < qm; thresholds

t = (t1; t2; : : : ; tm�1); where t1 � t2 � � � � � tm; and a variable-length, binary, pre�x

code C = fc1; c2; : : : ; cmg; where the binary codeword cj corresponds to level qj and

has length lj:De�ne l(qj) = lj, lmin = minj lj and lmax = maxj lj: Let l = (l1; l2; : : : ; lm)

denote the lengths of the binary codewords. It is well-known that there exists a pre-

�x code with lengths l if, and only if, l has positive, integer components that satisfy

Kraft's inequality,
Pm

j=1 2
�lj � 1: With this in mind, will always use l to describe a

pre�x code instead of C:

De�ne the quantization rule Qt by Qt(x) = qj if x 2 (tj�1; tj]; j = 1; 2; : : : ;m;

where t0
4
= �1 and tm

4
= +1: When there is no ambiguity, we will use Q and Qt

interchangeably. Finally, de�ne the encoding rule fe by fe(qj) = cj: De�ne �Q to be

the nearest-neighbor, quantization rule, i.e. �Q(x) = qj if (x� qj)2 is smallest.

Given a source sample xi; the entropy-coded, scalar quantizer produces Qt(xi)

and then transmits the corresponding binary codeword f
e
(Qt(xi)): We denote such a

quantizer by (q; t; l):

Let the source be modeled by an IID, discrete-time, random process fXi :

i = : : : ;�1; 0; 1; : : :g with zero mean and variance �2: The squared-error distor-

tion, average length (rate) and entropy of a scalar quantizer (q; t; l) are, respectively,

Dsq(q; t)
4
= E(Xi�Qt(Xi))2, �l(t; l)

4
= El(Qt(Xi)) and H(t)

4
= �Pm

j=1 pj log2 pj ; where

pj = Pr(Xi 2 (tj�1; tj]) and 0 log2 0 is set to 0:

We de�ne the optimum performance theoretically achievable (OPTA) for entropy-
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coded, scalar quantizers as

�pesq (r)
4
= inf

m;q;t;l:

l2Lpem ;�l(t;l)�r

Dsq(q; t); (1)

where

Lpe
m =

8<
:(l1; l2; : : : ; lm) : lj 2 f1; 2; : : :g;

mX
j=1

2�lj = 1

9=
; ;

and the superscript \pe" in �pesq and Lpe
m is included to indicate that (sample-by-

sample) pre�x encoding is used. For a �xed (q; l), we de�ne the OPTA

�sq(q; l; r)
4
= inf

t:�l(t;l)�r
Dsq(q; t); (2)

which characterizes the optimum performance of the ECSQ (q; t; l) over all choices of

thresholds t:

The usual way of designing an entropy-coded, scalar quantizer is to �rst design

a scalar quantizer with minimum distortion subject to a constraint on its output

entropy, and then to use Hu�man's algorithm to design a pre�x code for the resulting

quantizer. The rate of the pre�x code (and the resulting ECSQ) equals the quantizer

entropy plus a number between 0 and 1; called the redundancy of the pre�x code.

Algorithms for designing quantizers with minimum distortion subject to a con-

straint on their entropy have been proposed in [6, 7, 8, 10, 11]. Such quantizers are

called entropy-constrained, scalar quantizers, to distinguish them from the abovemen-

tioned entropy-coded, scalar quantizers1. The optimum performance of such quantiz-

ers is characterized by the following OPTA:

�entsq (r)
4
= inf

m;q;t:H(t)�r
Dsq(q; t):

1In this paper, ECSQ will always mean entropy-coded, scalar quantization.
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The results of the above papers numerically demonstrate that �entsq (r) is within about

1:5 dB of the distortion-rate function D(r); for a broad class of source distributions

and all values of r: Moreover, it is known that uniform quantizers are nearly opti-

mum for entropy-constrained quantization. The �rst discovery was that of Goblick

and Holsinger [4] who numerically demonstrated that, for large values of r; uniform

quantizers with output entropy r have distortion about 1:5 dB larger than D(r). Sub-
sequently, Gish and Pierce [5] proved the optimality of uniform scalar quantizers for

su�ciently smooth source densities and asymptotically large rates r: They also proved

that limr!1(�
ent
sq (r)=D(r)) = �e=6 (i.e. an increase of 1:53 dB). Wood [6] proved sim-

ilar results. Moreover, it was demonstrated by several authors that even for moderate

rates uniform quantizers are generally nearly optimum (see [6, 7, 9, 10]).

Figure 1 shows �entsq (r) expressed as signal-to-noise ratio vs. entropy, computed via

Algorithm 2 of [10], for a Gaussian source. It also shows the performance of entropy-

coded, scalar quantizers found by using Hu�man's algorithm to generate pre�x codes

for the scalar quantizers that achieve �entsq (r): Note the 6 dB/bit slope of �entsq (r) and

D(r) which is, in general, the case for large rates.

Using Hu�man's algorithm to design pre�x codes for optimum entropy-

constrained, scalar quantizers does not necessarily result in the best entropy-coded,

scalar quantizers. A better method for designing ECSQ's is motivated by the work

of Chou, et al., who proposed a training-sequence algorithm to design entropy-

constrained, or entropy-coded, vector quantizers. In the case of scalar quantizers,

it is straightforward to modify their algorithm to use the source density instead of a

training sequence. The results of using this algorithm are also plotted in Figure 1.

We make several observations. The redundancy for this algorithm is noticeably less
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than for the previous approach, especially at rates 2 or below. Both ECSQ design

approaches produce \scalloped" curves; i.e., the redundancy varies nonmonotonically

with rate. Finally, the redundancy of each gets large as rate approaches one, which

is due to the fact that pre�x codes cannot have rate less than one.

3 Converting ECSQ to Fixed Rate

Consider the operation of the entropy-coded, scalar quantizer on a block basis.

Given an n-dimensional source vector x = (x1; x2; : : : ; xn); the entropy-coded, scalar

quantizer �nds Q(x)
4
= (Q(x1); Q(x2); : : : ; Q(xn)) and transmits the binary string

fe(x)
4
= fe(Q(x))

4
= (fe(Q(x1)); fe(Q(x2)); : : : ; fe(Q(xn))); which is uniquely de-

codable due to the pre�x property of C: The total length of the output string is

l(x)
4
= l(Q(x))

4
=
P

i l(Q(xi)); which varies greatly with x and necessitates bu�ering,

if transmission over a �xed-rate channel is intended.

A Naive Approach

We, �rst, consider a naive way to convert an entropy-coded, scalar quantizer (q; t; l)

into a �xed-rate, block code. Suppose we have a desired input blocklength n and

rate r: Let us imagine having a bu�er of length nr. Now given a source vector

x = (x1; x2; : : : ; xn), we successively apply the ECSQ to each source sample, placing

the resulting binary codewords into the bu�er. Once it is �lled to capacity the nr

bits are transmitted. Any further bits produced by the ECSQ are simply discarded.

And if less than nr bits are produced, the bu�er is �lled to capacity with zeros. The

decoder, which receives the nr bits, decodes them using the usual pre�x decoder. If it

decodes fewer than n samples, the remaining samples are reproduced with the mean

value of the source. Although this system is very naive, it is easy to see that the
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law of large numbers implies that if r > �l(t; l), then as n gets large, its distortion

approaches Dsq(q; t), the distortion of the ECSQ. Indeed, we show in Appendix A

that this happens even if all samples in the block were to be reproduced by the mean

value, when the decoder decodes fewer than n samples.

A Better Approach

A much better way to convert the ECSQ into a �xed-rate block code is the follow-

ing: Given a source vector x = (x1; x2; : : : ; xn), search for the closest sequence of n

quantization levels, whose corresponding binary codewords have cumulative length at

most nr. Clearly, such a system will give no larger distortion than the naive system.

Hence, if n is large and r > �l(t; l), the distortion of the improved system will be no

larger than Dsq(q; t), the distortion of the ECSQ.

This method is actually just one of a family of methods that we call block-

constrained, �xed-rate, entropy-coded quantization (or block-constrained quantization

(BCQ) for short) that were inspired by the original pioneering work of Laroia and Far-

vardin [2]. We now give the details of the speci�c block-constrained method described

above.

Given a source n-vector x; the block-constrained quantizer �nds y 2
fq1; q2; : : : ; qmgn which solves the following minimization:

Minimize
nX
i=1

(xi � yi)
2; (3)

subject to
nX
i=1

l(yi) � L;

where L is called the length threshold or simply the threshold. It should be noted

that the above minimization has a solution if, and only if, nlmin � L; which will be

assumed to hold throughout this paper and will not be mentioned later.
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Let ŷ = (ŷ1; ŷ2; : : : ; ŷn) be a solution to the above problem. Then, the encoder

transmits an bLc-bit string which is composed of the concatenation of the binary

codewords corresponding to ŷ1 through ŷn plus bLc � l(ŷ) zeros. This binary string

is uniquely-decodable. Therefore, it is clear that the rate of this scheme is bLc=n bits

per source sample. Thus, on the block level, we have a �xed-rate quantizer, while

retaining the inherent variable-rate nature on the sample level.

We call this kind of coding pre�x-encoded block constrained quantization (pe-

BCQ). We use the notation pe-BCQ(q; l; n; L) to denote a speci�c code, whose dis-

tortion and rate are denoted Dbcq(q; l; n; L) and Rpe
bcq(n;L)

4
= bLc=n; respectively.

This notation is intended to emphasize that the distortion does not depend on the

pre�x encoding scheme and the rate does not depend on the levels or the lengths.

The set of all sequences of n quantization levels whose cumulative length is at

most L forms the codebook

Cbcq(q; l; n; L) 4
=

(
y 2 fq1; q2; : : : ; qmgn :

nX
i=1

l(yi) � L

)
: (4)

Its members, called codevectors, comprise all possible solutions to (3).2

Finally, we de�ne the OPTA for this class of BCQ's as:

�pebcq(r)
4
= inf

n;m;q;l:l2Lpem
Dbcq(q; l; n; nr);

which represents the best possible performance of pre�x-encoded BCQ's.

It is interesting to compare the output of the BCQ with that of the nearest-

neighbor, scalar quantizer with the same levels operating on the same block of source

samples. If the latter has a total length no larger than L, then both outputs coincide,

i.e. a valid output for one is valid for the other and they both have the same distortion.

2We emphasize that in our terminology, \codeword" means a binary sequence and \codevector"
means a sequence of quantization levels.
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Otherwise, the BCQ tries to �nd a sequence of quantization levels that is closest to

the source sequence and satis�es the length constraint. Nevertheless, the two outputs

will ordinarily be close to each other. Figure 2 shows a typical situation.

As an example, Figure 3 shows the performance of pe-BCQ based on a Hu�man-

coded, uniform scalar quantizer with 20 levels spaced � = :54 apart, for various

blocklengths n and an IID, unit variance Gaussian source. One may observe a clear

improvement of the method with n. The �gure also shows the performance of the

naive system based on the same levels and lengths, with nearest neighbor thresholds.

Notice that the block-constrained approach does signi�cantly better than the naive

one.

Explaining the Asymptotic Behavior

Note that the above block-constrained method never actually uses the thresholds t

of the underlying scalar quantizer. Indeed, it is important to observe that given any

thresholds t0; if one quantizes a source vector x with the scalar quantizer (q; t0; l) and

obtains l(x) � nr; then pe-BCQ(q; l; n; nr) will �nd a y that is at least as good as

that produced by the scalar quantizer. It follows from the law of large numbers that

if r > �l(t0; l) and n is large, then pe-BCQ(q; l; n; nr) will have distortion no larger

than that of the scalar quantizer (q; t0; l): That is, for any t0 such that �l(t0; l) < r;

lim sup
n!1

Dbcq(q; l; n; nr) � Dsq(q; t
0):

By taking the in�mum of the above over all t0 such that �l(t0; l) < r; it follows that

lim sup
n!1

Dbcq(q; l; n; nr) � �sq(q; l; r);
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where �sq(q; l; r) is de�ned by (2) and assumed to be continuous at r.3 Indeed, it is

shown in [16] that

inf
n
Dbcq(q; l; n; nr) = lim

n!1
Dbcq(q; l; n; nr) = �sq(q; l; r); (5)

assuming �sq(q; l; r) is continuous at r: Moreover, it is clear that

lim
n!1

Rpe
bcq(n; nr) = lim

n!1

bnrc
n

= r: (6)

Therefore, the limiting distortion of pe-BCQ(q; l; n; nr) is, precisely, the least distor-

tion of entropy-coded scalar quantization with levels q; lengths l and any thresholds

t such that �l(t; l) � r:

It follows easily that

�pebcq(r) = �pesq (r); (7)

assuming �pesq is continuous at r; where �pesq is as de�ned by (1). This means that

the best performance achieved by the class of BCQ's introduced so far (i.e. pre�x-

encoded BCQ's) is, exactly, the best performance achieved by ECSQ's. (See [16] for

more details.)

It is important to notice that (5) holds for any choice of l; it does not require l to

satisfy Kraft's inequality. Indeed, it holds for any real lengths (even negative ones).

This makes the result a very useful tool for the asymptotic analysis of the generalized

BCQ's discussed in Section 4, below.

Finally, with our new understanding that BCQ does not depend on the quantiza-

tion thresholds, we reconsider the comparison with the naive system. In Figure 3, the

naive system used nearest-neighbor quantization, i.e. used a �xed set of thresholds.

3This is expected for continuous sources and r > lmin:
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But, for a given rate r; it may be possible to choose a better set of thresholds. Thus,

the comparison in Figure 3 is unfair to the naive system. To make a fairer compari-

son, we ran the naive system with a variety of threshold sets, and for each r we plot

in Figure 4 the best signal-to-noise ratio attained. Motivated by the work of [11],

for a range of � � 0; we considered sets of thresholds that minimized the functional

(x � qj)2 + �lj over j. The same �gure also shows the performance of BCQ as well

as its asymptotic distortion limit �sq(q; l; r). It can be seen that the naive system

improved considerably, but is still substantially, inferior to the BCQ.

E�ects of Pre�x Code Redundancy

As mentioned above, scalar quantization with �rst-order pre�x encoding cannot

achieve the OPTA of entropy-constrained, scalar quantization, due to code redun-

dancy. A typical redundancy of :03 bits/sample (see Figure 1) translates into a loss

of about :2 dB in signal-to-noise ratio (SNR). As shown above, this loss is inherited

by any pe-BCQ. Of course, this redundancy can be reduced by applying a pre�x code

to blocks of quantizer levels. However, this will increase the complexity of the BCQ.

As we will explain later, Laroia and Farvardin [2] avoid this redundancy by as-

signing non-integer lengths to the quantization levels. This, however, means that the

binary encoding/decoding can no longer be done on a sample-by-sample basis. We

will discuss this in more detail in the next section.

4 General Block-Constrained Quantizers

In this section, we describe a more general class of block-constrained quantizers mo-

tivated by the case explained above and by the work of Laroia and Farvardin [2].
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As so far introduced, a BCQ is characterized by quantization levels q, lengths l

(positive integers satisfying Kraft's inequality), a blocklength n and a threshold L:

Its codebook consists of the set of quantization level sequences y, called codevectors,

whose cumulative length l(y) does not exceed the threshold L:A given source sequence

x is quantized into the closest codevector in the codebook (i.e. we �nd the closest

sequence of quantization levels whose cumulative length is no larger than L). And

each component of this codevector is encoded into the corresponding codeword from

some binary pre�x code with lengths l:

A generalized BCQ is the same except that we allow the lengths in l to be arbitrary,

real numbers (even negative) and we permit other methods to binary-encode the

codevectors. As before, the codebook, denoted by Cbcq(q; l; n; L); is given by (4),

where Lmay need to be di�erent from nr; depending on the particular binary encoding

scheme, i.e. L is chosen so that the binary encoding scheme has a rate equal to the

desired rate r:

The quantization process proceeds as before via (3). If l consists of rational (or

rationalizable) lengths with a relatively small denominator, then the quantization

can be implemented e�ciently using dynamic programming as proposed in [2] and

explained in Section 5. If l consists of arbitrary real numbers, the implementation

of (3) can be complex; however, low-complexity, approximations are possible. Such

methods will be considered in Sections 9 and 10.

There are many ways to binary-encode the codevectors into bits. However, the

minimum possible rate is achieved by �xed-length block encoding, whose rate is

Rbe
bcq(l; n; L)

4
=

1

n

l
log2

���Cbcq(q; l; n; L)���m

bits per source sample, where
���Cbcq(q; l; n; L)��� is the size of the BCQ codebook. The
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Laroia and Farvardin scheme used block encoding.

Conversely, when it is desired to achieve rate r with block encoding, the threshold

L should be chosen so that the codebook is as large as possible without exceeding

2bnrc. There may be several suitable values. We let Lbe(l; n; r) denote any such value.

With this choice of threshold, we are guaranteed to have Rbe
bcq(l; n; L

be(l; n; r)) � r;

and it can happen that the inequality is strict. However, it is shown in [16] that

limn!1Rbe
bcq(l; n; L

be(l; n; r)) = r: Moreover, a constant cl(r) is found such that

limn!1 Lbe(l; n; r)=n = cl(r); which shows the asymptotic behavior of Lbe(l; n; r)

for large n. We will also need the result, shown in Appendix B, that if l satis�es

Kraft's inequality and L < nlmax; then4

1

n
log2

���Cbcq(q; l; n; L��� <
L

n
: (8)

This kind of block constrained quantization will be called block encoded BCQ

(be-BCQ). Its OPTA is

�bebcq(r)
4
= inf

n;m;q;l;L:Rbe
bcq

(l;n;L)�r
Dbcq(q; l; n; L):

Laroia and Farvardin [2] showed5

�bebcq(r) � �entsq (r): (9)

Therefore, be-BCQ is, asymptotically, at least as good as optimum, entropy-

constrained scalar quantization. Moreover, for any �xed q and l; they show that the

limiting performance of be-BCQ cannot be better than entropy-constrained scalar

quantization, i.e.

lim inf
n!1

Dbcq(q; l; n; L
be(l; n; r)) � �entsq (r): (10)

4See [16] for a more general version that does not require Kraft's condition.
5Although they do not explicitly mention it, this, and the following, result require �entsq to be

continuous at r:
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They also make the plausible conjecture that, even for small values of n; be-BCQ

cannot do better that �entsq (r): Assuming so, then �bebcq(r) = �entsq (r): One should com-

pare this result to (7), which shows that the best performance of pe-BCQ is �pesq (r).

Alternative, more constructive proofs for (9) and (10) are given in [16].

In view of the above, a be-BCQ based on an optimum, entropy-constrained scalar

quantizer seems a good idea. Speci�cally, given r; let q and t achieve �entsq (r); i.e.

H(t) � r and Dsq(q; t) � �entsq (r) and let lj = � log2 pj ; where pj is the probability of

the j-th level qj: Then, �l(t; l) = H(t) � r: Now consider6 be-BCQ(q; l; n; nr): From

(5), we have, for large n;

Dbcq(q; l; n; nr) � Dsq(q; t) � �entsq (r);

and using (8) and the fact that l (as chosen) satis�es Kraft's inequality, we have

Rbe
bcq(l; n; nr)

<� r;

So, this BCQ operates at approximately �entsq (r); i.e. it is a good BCQ. Accordingly,

we consider the lengths lj = � log2 pj to be ideal lengths.

We make a last remark. As demonstrated in Section 3, when l consists of positive

integers satisfying Kraft's inequality, a BCQ based on l can be encoded, in a very

simple manner, using a pre�x code with lengths l. (This is pe-BCQ.) In this case, L

(an integer) becomes the number of produced bits and r = L=n: By (8), we can see

that, r � Rbe
bcq(l; n; L): Indeed, in most cases, r > Rbe

bcq(l; n; L); which results in some

loss in performance versus a system using block encoding of the BCQ codebook.

This loss, which is an example of what we call a code-space loss, and other losses

encountered in BCQ will be discussed later.

6For this case, as shown in [16], cl(r) = 1; so Lbe(l; n; r) � nr is a good choice.
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Laroia-Farvardin Approach

As we have seen, the pe-BCQ's introduced in Section 3 inherited the redundancy loss

of �rst-order pre�x codes. Laroia and Farvardin's approach su�ers less from this kind

of loss because it uses non-integer lengths l, which make it better able to approximate

the ideal lengths of the form � log2 pj : However, because of this choice, they cannot

simply do sample-by-sample, binary encoding of the levels with a pre�x code. Instead,

they use the block encoding described earlier, which also reduces the code-space loss

mentioned earlier.

To simplify the search in (3), they make the lengths rational with a relatively

small denominator b (typically 4). Moreover, this enables the block encoding to make

use of a lexicographic ordering, which is a substantial simpli�cation. The larger b;

the less the redundancy loss, but the more complex the search and the lexicographic

encoding.

They used the threshold Lbe(l; n; r), introduced before, and reported it to be

approximately equal to 1:5bnr:

Henceforth, we will use lf-BCQ to refer to the Laroia-Farvardin quantizer. (It is

be-BCQ with rational lengths and lexicographic encoding.)

Losses in BCQ

Since BCQ's asymptotically achieve the performance of entropy-constrained scalar

quantization, it is interesting to explore the losses incurred by BCQ's due to practical

considerations. Below, we give a brief account of such losses.

First, we note from the above that, in general, for BCQ's to achieve �entsq (r); ideal,

real lengths must be used. Therefore, when, for practical reasons (such as simplifying
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the implementation of (3) and/or the binary encoding), the lengths are restricted to a

subset of the reals (e.g. integers in the case of pe-BCQ and rationals with denominator

b in lf-BCQ), then some loss is incurred.

Another loss su�ered by BCQ systems is that their rates are generally larger thann
log2

���Cbcq(q; l; n; L)���o =n, by an amount that we call a code-space loss. Generally

speaking, the code-space loss is larger for BCQ's that use a suboptimal binary en-

coding scheme (e.g. the sample-by-sample, pre�x binary encoding in pe-BCQ) than

for block-encoded BCQ's, which have the the least possible code-space loss. Indeed

their code-space loss goes to zero as n tends to in�nity. For pe-BCQ, the sum of the

two losses (length-restriction and code-space loss) corresponds to the redundancy of

the pre�x code.

Finally, there is a �nite-dimensional loss when n is not large enough for the law

of large numbers to entirely dictate performance.

Relationship to Permutation Codes

Permutation codes are �xed-rate, block codes that have been shown to achieve �entsq (r)

[13, 7, 9]. Therefore, it is interesting and important to compare them to BCQ.

Speci�cally, Cbcq(q; l; n; L) can be viewed as a union of permutation codebooks. To

see this, we de�ne the type of a codevector y 2 fq1; q2; : : : ; qmgn as the m-tuple n =

(n1; n2; : : : ; nm) where nj is the number of times qj appears in y: We denote the type

of y by T (y): Let Cnq (n) 4
= fy 2 fq1; q2; : : : ; qmgn : T (y) = ng: Given L and l de�ne the

set of admissible types N (l; n; L)
4
= fn : nj � 0; integer, j = 1; 2; : : : ;m;

Pm
j=1 nj =

n;
Pm

j=1 nj lj � Lg: Then, the block-constrained quantizer codebook is given by

Cbcq(q; l; n; L) =
[

n2N (l;n;L)

Cnq (n):
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Moreover, for any n; Cnq (n) is a the codebook of a variant-I permutation code [13].

Thus, a BCQ codebook is the union of permutation codebooks. It is interesting to

note that the lengths l and L determine which types are included and which are not.

Thus, careful choice of l and L can be used to construct codes with special features.

Shannon theory indicates that for very large n; optimal codes can be restricted

to the surface of an n-dimensional sphere. Permutation codes do this. However, if n

is not su�ciently high, then it is better to distribute the codewords over a spherical

shell whose thickness increases with rate. This explains the observation in [13] that

for a given dimension n; the distortion of permutation codes diverges from �entsq (r)

as r increases. BCQ's overcome this problem by mixing into the codebook multiple

permutation codes lying on spheres of di�erent radii.

5 Dynamic Programming Implementation of
BCQ Search

The goal is to e�ciently perform the minimization in (3) that de�nes the quantization

rule of a block constrained quantizer BCQ(q; l; n; L): First, consider the case where

l consists of positive integers. In this case the minimization can be implemented

using dynamic programming as in [2]. For completeness and for future reference, we

describe it here. Assume that a source sequence x is given. Let y� denote a minimizing

sequence of levels and D� denote the resulting distortion. The minimization in (3)

is simpli�ed by the introduction of the notion of state. Speci�cally, the \state" of a

k-tuple of quantization levels (y1; y2; : : : ; yk) 2 fq1; q2; : : : ; qmgk is de�ned to be

sk = s(y1; y2; : : : ; yk)
4
=

kX
i=1

l(yi);
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and we take s0 = 0: Let Sk denote the set of possible values for sk: Since we are only

interested in y = (y1; y2; : : : ; yn) that satisfy the length constraint
P

i l(yi) � L; we

remove from Sk any values larger than L: Thus, there are at most L states in Sk:

In dynamic programming one recursively solves for y� and D�: Speci�cally, for

k 2 f1; 2; : : : ; ng and s 2 Sk; let

D�
k;s = min

(y1;y2;:::;yk):s(y1;y2;:::;yk)=s

kX
i=1

(xi � yi)
2;

and let y�
k;s

denote the k-tuple that achieves the minimum in the above. Given that

one has already found D�
k;s and y�

k;s
for a given k and all s 2 Sk; one recursively �nds

D�
k+1;s and y�

k+1;s
as follows:

D�
k+1;s = min

j2f1;2;:::;mg

D�
k;s�lj + (xk+1 � qj)

2; s 2 Sk+1;

y�
k+1;s

= (y�
k;s�l|̂

; q|̂); s 2 Sk+1;

where |̂ solves the above minimization and D�
k;s =1; for any s � 0; except D�

0;0 = 0:

Then

D� = min
s2f1;:::;Lg

D�
n;s

and

y� = y�
n;ŝ
;

where ŝ solves the above minimization.

The above can be viewed as a search over a non-uniform trellis as illustrated in

Figure 5. At depth k; the trellis has a state corresponding to every possible sum of

k lengths, e.g. state s represents all the quantizer k-tuples whose total length is s:

Thus, every state has m branches entering it, where the branch labeled with qj (or
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(xk � qj)2) comes from the state s � lj at depth k � 1: The maximum number of

states at any depth is no larger than the maximum allowable total length L. Roughly

speaking, this search requires storage proportional to nL (which is, approximately,

the total number of states in the trellis) and computational e�ort proportional to mL

arithmetic operations per source sample.

For rational lengths with denominator b; the search is performed on the equivalent

codebook Cbcq(q; bl; n; bL); so that bL replaces L in the algorithm and, hence, in the

storage requirements and the computational e�ort.

6 Design and Optimization

Although for large n, as discussed earlier, the block-constrained quantizers can be

based on the levels and lengths of an optimum entropy-coded/entropy-constrained,

scalar quantizer, for moderate values of n, it helps to optimize the levels and lengths

for the given n and r. To do so, one may alternately optimize the lengths l for given

levels q; and vice versa.

1. Optimizing q given l; n and L

Given l; one can optimize q using the method described in [2]. This is, actually,

a generalized LBG [14, 15] algorithm for trellises, which guarantees monotonic

decrease in distortion per every iteration.

We describe this algorithm very briey. Given a training sequence

fx1; x2; : : : ; xKg of n-dimensional source vectors. Let yk be the output of

BCQ(q; l; n; L) corresponding to xk. The algorithm replaces q by ~q =
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(~q1; ~q2; : : : ; ~qm) where

~qj =
1

jSj j
X

(k;i)2Sj

xik; j = 1; 2; : : : ;m; (11)

and Sj = f(k; i) : yki = qj; i = 1; : : : ; n; k = 1; : : : ;Kg; i.e. qj is replaced by the

centroid of the set fxki : (k; i) 2 Sjg:

Now, let ~yk be such that ~yki = ~qj if yki = qj. Thus,

KX
k=1

kxk � ~ykk2 =
KX
k=1

nX
i=1

(xki � ~yki )
2

=
mX
j=1

X
(k;i)2Sj

(xki � ~qj)
2

�
mX
j=1

X
(k;i)2Sj

(xki � qj)
2

=
KX
k=1

nX
i=1

(xki � yki )
2;

=
KX
k=1

kxk � ykk2:

Noting that ~yk 2 Cbcq(~q; l; n; L), we can easily see that the distortion of the next

iteration will not be larger than
P

k kxk� ~ykk2=K and hence, the distortion will

be non-increasing.

2. Optimizing l given q; n and L

As before, consider a training sequence fxkg and let fykg be as above. Let p̂j

be the frequency with which the level qj is used, i.e. p̂j
4
= nj=nK, where

nj
4
= jSjj =

KX
k=1

nkj ;

nkj
4
=

���f(k; i) : yki = qj; i = 1; 2; : : : ; ng
��� :

For the moment, suppose that K = 1, i.e. we have only one training vector.

Then, (n1; n2; : : : ; nm) is the type of y1 and
P

j njlj � L: Now, we replace l
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by ~l such that
P

j nj~lj is minimum over all possible l of interest (e.g. positive

integers satisfying Kraft's inequality in the case of pe-BCQ, or positive rationals

with denominator b in the case of lf-BCQ, etc.). Note that this is equivalent

to minimizing
P

j p̂j lj. Thus, we have
P

i
~l(y1i ) =

P
j nj~lj � P

j njlj � L and,

therefore, y1 2 Cbcq(q;~l; n; L): Consequently, in the next iteration the distortion

can be at most kx1 � y1k2. It is interesting to note that the problem of �nding

~l is the same as �nding lengths ~l that minimize the average length for a source

that has probabilities fp̂1; p̂2; : : : ; p̂mg. Therefore, if fl1; l2 : : : ; lmg � IR
+ then

~lj can be chosen as � log2 p̂j and if ~l must contain positive integers satisfying

Kraft's inequality, then ~l corresponds to the lengths of codewords produced by

Hu�man's procedure applied to a source with probabilities fp̂1; p̂2; : : : ; p̂mg, etc.

The above argument no longer holds if K > 1, since, in this case, minimizing

P
j nj lj =

P
k

P
j n

k
j lj � KL does not guarantee that the individual sums

P
j n

k
j lj

are reduced. Thus, yk is no longer guaranteed to belong to Cbcq(q;~l; n; L).
Nevertheless, this algorithm can be tried. In many cases, it results in a reduction

in distortion.

Another less intuitive algorithm has been proposed by Laroia and Farvardin

in [2], which they argue is asymptotically optimum in n:

3. Choice of initial q and l

Initially, q and l can be obtained using a good ECSQ design algorithm and a

Hu�man design for the lengths for the case of pe-BCQ. The method of Chou, et

al., [11] (which is a generalization of Algorithm 2 in [10]) is quite a good choice.

We tried both the training-sequence and density versions of such. For high rates,
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we found that a uniform scalar quantizer with a Hu�man code is a su�ciently

good initial choice. Also, the optimized q; l found for high dimensions are good

initial choices for smaller dimensions.

For BCQ's using other encoding schemes similar considerations may still hold,

as in the case of lf-BCQ [2].

7 Comparison of pe-BCQ and lf-BCQ

Complexity

Table 1 gives rough complexity estimates for the dynamic programming implementa-

tion of the codebook search for pe-BCQ (L = nr) and lf-BCQ using rational lengths

with denominator b (L � 1:5bnr:) Only the dominant terms are shown. Also, the

table shows corresponding estimates for the complexity of the binary encoding. From

the table, we see that, a pe-BCQ with dimension approximately 1:5bn has almost

the same search complexity as lf-BCQ with dimension n: Moreover, pe-BCQ has a

trivial binary encoding complexity as compared to lf-BCQ, particularly in storage

requirements.

Performance

Table 2 shows the signal-to-noise ratios of pe-BCQ for rates 1:5; 2; 2:5; 3 and dimen-

sions 48; 96; 144; 192; for IID Gaussian and Laplacian sources. The signal-to-noise

ratio of lf-BCQ with dimension 32 and b = 4, as reported in [2], is also included, to

compare with the pe-BCQ with dimension 192. In this case, pe-BCQ has the same

search complexity as lf-BCQ, while the former has comparatively negligible encoding

complexity and the latter requires six times less storage for the search. Overall, the

pe-BCQ is less complex and requires less storage. Also, included in Table 2 are the
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performances of entropy-constrained7 and entropy-coded scalar quantizers (using the

Chou, et al., algorithm mentioned in Section 2).

According to (5)-(7), the performance of pe-BCQ should approach that of entropy-

coded scalar quantization (ECSQ) as n gets large. We see from the table that with

n = 192, the signal-to-noise ratio of pe-BCQ is less than that of ECSQ by about .1

to :6 dB. As explained earlier, entropy-constrained quantization has higher SNR than

ECSQ, typically two or three tenths of a dB. (An exception is the Laplacian source

at rate 1.5.)

The decrease in rate that would result by replacing the pre�x encoding with block

encoding is shown in parentheses in Table 2. Notice that these numbers decrease with

dimension n, which corresponds to the fact that, generally speaking, less code-space

loss is incurred by pe-BCQ at larger dimensions, so there is less to be recovered by

block encoding. Multiplying these numbers by 6 gives, approximately, the gain in dB

that would result from block encoding. Typically, it is about :1 dB.

For the Gaussian source the table shows that at rates 1:5 and 2, lf-BCQ with

n = 32 is better than pe-BCQ with n = 192. However, at rates 2:5 and 3, pe-BCQ is

slightly better than lf-BCQ. For the Laplacian source, the performance is similar but

tilts in favor of pe-BCQ. For example, at rate 3 pe-BCQ is about :5 dB better. The

table also shows that the performance of pe-BCQ degrades gracefully as n decreases.

The abovementioned behavior can be explained in terms of the previously men-

tioned BCQ losses. While pe-BCQ su�ers more length-restriction loss than lf-BCQ,

it su�ers less �nite-dimensional loss, because of the larger n at which it can operate

with reasonable complexity. Moreover, its larger dimension reduces its code-space

loss. The fact that pe-BCQ performs better, relative to lf-BCQ, on the Laplacian

7These are quoted from [2].
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source can be understood by noting that the Laplacian density has heavier tails than

the Gaussian (in a sense, it's more nearly uniform), so the codeword lengths are

more uniform. This causes the variance of the length produced by a nearest neighbor

quantizer to be smaller, which in turn causes the law of large numbers to activate

at smaller dimensions, which makes the dimension advantage more pronounced for a

Laplacian source than for a Gaussian. (Notice that the SNR increases more with n

for the Laplacian than for the Gaussian.)

The degradation of the performance of pe-BCQ as the rate gets smaller can be

understood in view of the fact that performance of pe-BCQ follows that of ECSQ,

which, as shown in Figure 1, degrades as the rate approaches one. On the other hand,

lf-BCQ is not so limited, and performs better than ECSQ at small rates.

Finally, we comment on the e�ect of m on the performance of BCQ's. One is

tempted to believe that the performance of a BCQ must improve as m increases.

However, the subtle behavior of the number of levels in entropy-constrained quantizers

[12, 10], as well as entropy-coded quantizers, makes the issue less trivial. Moreover,

the e�ects of m on the code-space loss is not at all clear. For these reasons, we feel

that the e�ect of m needs to be extensively investigated and, thus, we did not try to

investigate it here. We leave it for future research. The reader is referred to [2] for

some discussion of the e�ect of m on be-BCQ's.

8 Reduced-Complexity Almost-Optimal Search

Motivation

Consider a block-constrained quantizer BCQ(q; l; n; L); and let �Q(�) be the nearest-

neighbor, scalar quantization rule corresponding to q: Given a source vector x; if
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l( �Q(x)) � L; then �Q(x) solves the minimization in (3). Therefore, in practice, nearest-

neighbor quantization is performed �rst and the BCQ search is performed only if the

resulting total length exceeds L:With this in mind, we ask the question: Can we make

use of �Q(x) to simplify the BCQ search? In this section, we answer this question in

the a�rmative.

Di�erential search

The basic idea is that given a source sequence x = (x1; x2; : : : ; xn); equation (3) has

an optimal solution ŷ whose state is close to that of the output y0 = �Q(x) of the

nearest neighbor quantizer at each time k: We call �Q(x) the unconstrained output.

Speci�cally, we show in Appendix C that (3) has an optimum solution y� such that

s0k � (l(y0)� L+ lmax� lmin) < sk � s0k; k = 1; 2; : : : ; n; (12)

where s0k = s(y01; y
0
2; : : : ; y

0
k)

4
=
Pk

i=1 l(y
0
i ) and sk = s(y�1; y

�
2; : : : ; y

�
k)

4
=
Pk

i=1 l(y
�
i ): It

follows, then, that at any time k; we can restrict attention (in the dynamic program-

ming search) to a subset of (l(y0)� L+ lmax� lmin) states determined by s0k and the

excess length ~l(x)
4
= l(y0)� L:

Since the storage and number of arithmetic operations required by the dynamic

programming is proportional to the number of states that need to be considered, the

complexity of the search has now been reduced by the factor L=(~l(x)+ lmax� lmin): If,

as usually happens, ~l(x) is small, this is a sizable reduction. On the other hand, ~l(x)

will occasionally be quite large, and for most applications the cost of implementation

is determined by the maximum required storage and number of arithmetic operations.

Therefore, it is necessary to put an upper limit on the number of states that will be

considered. Speci�cally, we �x a number ~L that is much smaller than L but large
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enough that ~l(x) is no larger than ~L most of the time. When ~l(x) is less than

~L; we restrict attention to the subset, described above, containing no more than

~L + lmax � lmin states. When ~l(x) > ~L; we use some simple suboptimal strategy; for

example in the case of pe-BCQ, we use the naive approach described in Section 3. A

better strategy would be to use one of the simple suboptimal methods described in

Sections 9 and 10.

An interesting way to look at the above results from de�ning the di�erential state

as

s0k = s0k � sk:

Then, we see that s0k 2 f0; 1; : : : ; ~l+ lmax� lmin�1g: Therefore, we call the search per-

formed as above the di�erential search in contrast to the search described in Section 5

which we will, henceforth, call the direct search. As before, the di�erential search can

be viewed as a search over a di�erential trellis which has, at depth k; a state corre-

sponding to each possible reduction in length from the length of (y01; y
0
2; : : : ; y

0
k); i.e.

state s0 at depth k represents all k-tuples (y1; y2; : : : ; yk) of quantization levels which

satisfy
Pk

i=1 l(y
0
i ) � l(yi) = s0 and every state has at most m branches entering it,

where the branch labeled with qj (or (xk � qj)2) comes from the state s0� (l(y0k)� lj)

at depth k � 1: Figure 6 shows a section of a typical di�erential trellis. Table 3 sum-

marizes the complexity of the di�erential search in comparison to the direct search,

as well as two suboptimal methods to be introduced later.

It remains to demonstrate that ~L can be chosen so large that most of the time,

~l(x) is no larger, but ~L is small enough to adequately limit the complexity. Figure 7

shows how the performance of the di�erential search varies with (~L +m)=L for the

pe-BCQ's considered above for an IID Gaussian source, rate 3 and several dimensions.
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We assume that when ~l(x) exceeds ~L; the naive approach of Section 3 is used. In this

case, the maximumnumber of states in the di�erential trellis is ~L+lmax�lmin � ~L+m:

Thus, (~L+m)=L measures the fractional reduction in complexity resulting from the

di�erential search. In each case, the performance of the di�erential search improves

with increasing ~L and \saturates" at the performance of the direct search. We also

see that the value of ~L=L needed to insure negligible loss (relative to the direct search)

decreases with n; which indicates that the savings in complexity increase with n: For

example, for n = 192; choosing ~L = 70; yields about a 6-fold reduction in complexity

with :03 dB loss in signal-to-noise ratio.

Some idea of why it is possible to choose ~L much smaller than L is gained from

the following lemma which is proved in Appendix D.

Lemma 1 Given lengths l such that lmin < lmax; a quantization rule Q(�); and 0 <

� < 1; then for any IID source fXig; there exists a constant K (usually reasonably

small) such that for all su�ciently large n (usually not very large),

Pr

(
nX
i=1

l(Q(Xi))� L � K
p
n+ n(�l � L

n
)

)
� �;

for any L; where �l = El(Q(X)): 2

To study the choice of ~L; we apply the above lemma to the nearest-neighbor quanti-

zation rule �Q(�); upon which the di�erential search is based. We see that choosing �

small and ~L = K
p
n+n(�l�L=n) su�ces to guarantee that ~l(X) is not larger than ~L

most of the time. Now, we examine how this choice of ~L compares to L: If �l � L=n;

then ~L � K
p
n; whereas L is ordinarily chosen to be proportional to n: However, if

�l > L=n (and this is often the case), it generally happens that �l is close enough to

L=n that for moderately large values of n; the term K
p
n dominates and ~L is again

much less than L; as con�rmed by the results in Figure 7.
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On the other hand, for very large values of n; we need not be concerned. For

one thing, the naive approach described in Section 3 works well and it has trivial

complexity. Moreover, as indicated in Figure 4, the naive approach works best with

optimized thresholds for which �l is smaller than for nearest-neighbor quantization.

This suggests a compromise where a di�erential search is based on a quantization

rule with �l close enough to L=n that ~L can be chosen small relative to L: So, by

the above lemma, the di�erential search will rarely give up (i.e. ~l(X) > ~L with small

probability). Of course, in this case, the di�erential search is no longer guaranteed to

�nd an optimum solution for (3), since the nearest-neighbor quantization rule is not

used. However, this is not expected to degrade the performance signi�cantly.

9 Low-Complexity Greedy Search

The previous section illustrated the value of using the unconstrained output y0 to

guide the search. Another way to use the unconstrained output is the following:

Given x and y0 = �Q(x) such that l(y0) > L; one may perturb y0 by changing one

or more of its components, e.g. y0i ; to quantization levels that are assigned shorter

lengths, while taking care not to cause a large increase in distortion. Of course, the

dynamic programming discussed previously does this optimally. However, in this

section, we describe much simpler suboptimal methods that work nearly as well.

Consider a greedy way to perturb the unconstrained output. The basic idea is

to �nd the component of y0 which can be replaced by another quantization level of

smaller length in such a way that the reduction in length per unit distortion increase

is maximized, i.e. we are looking for the most return in terms of length reduction

from the increase in distortion that we incur. Equivalently, one may perturb the
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component of y0 that minimizes the distortion increase per unit length saved. After

removing this component from consideration, this process is repeated until the total

length has been reduced to L or all the components of y0 are exhausted.

We describe the method in more detail. De�ne

�j
i

4
=

8>><
>>:

(xi�qj)2�(xi�y0i )
2

l(y0
i
)�l(qj)

; if l(y0i ) > l(qj)

+1; otherwise:

Note that �j
i is the increase in distortion per unit of length saved if y0i is replaced by

qj: Then, the greedy search is described as follows: For i = 1; 2; : : : ; n; the algorithm

�nds the value of j (call it |̂i) that minimizes�j
i : Then, for every iteration, the value of

i (call it {̂) that minimizes �|̂i
i is found. The {̂-th component y0{̂ of y

0 is, then, replaced

by q|̂{̂ and this component is removed from consideration for future iterations. This

process continues until the total length of the perturbed y0 is no larger than L; the

number of iterations reached some speci�ed maximum ~N; or no more components of

y0 are available for change (i.e. every component has been visited by the algorithm

or has a length of lmin that cannot be reduced).

In the above algorithm, there are two cases where the algorithm stops without

producing a valid y (i.e. l(y) � L). One case occurs when ~N iterations are not enough

to reduce the length to L: The limit ~N can be carefully chosen to ensure that this

occurs with low probability. Another case occurs when the algorithm would fail to

reduce the length to L even if it were to make changes at all possible components.

This is possible because the algorithm is allowed to make a change only once in any

component. Moreover, the tentative change in a component i is determined aperiori

in a greedy fashion. It can be argued that this kind of failure occurs with very low

probability, and the simulations veri�ed this in all cases tried. In case of failure, some
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suitable action has to be taken, e.g. for the case of pe-BCQ, the naive approach may

be used.

There are a variety of ways to actually organize the computations involved in the

greedy search, with various tradeo� between storage and computation. However, to

give a feeling for its complexity, we mention that one straightforward implementation

requires approximately 5m arithmetic operations per source sample, 2m+ ~N binary

comparisons per source sample and 3(n + m) storage locations. These are much

less than for direct or di�erential search provided that ~N is not too large, which is

normally the case, as seen from Figure 8. Table 3 summarizes the complexity of

several search methods, including the greedy search.

The design and optimization approaches described for the direct search can also

be applied here, with the main di�erence being that the level optimization algorithm

described previously no longer guarantees a monotonic decrease in distortion. If n is

not too large, a clever approach is to optimize the direct search system for a given n

and use the optimum parameters with the greedy search provided n is not too large.

This gives excellent results. If n is very large, we use the resulting parameters for

the direct search with the largest n that we can run. Further, \�ne tuning" can be

attempted by trying the optimization methods mentioned above.

Figure 8 shows the performance of the greedy search applied to optimum pe-BCQ

systems obtained for the direct search case for an IID Gaussian source and rate 3:

The �gure shows the variation in SNR as the value of ~N is varied. We see that the

performance improves with increasing ~N and it saturates at a value of ~N much less

than n: For example, for n = 192; saturation occurs at ~N = 60: This gives ~N=n � :31;

and due to the simplicity of the greedy search, this means a tremendous reduction
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in complexity compared to the direct search. Moreover, we observe that the value of

~N=n where saturation occurs decreases with n:

Finally, comparing the \saturation" levels in Figures 7 and 8, we see that the

greedy search works very well compared to the di�erential (or direct) search, e.g. for

n = 192; the greedy search achieves SNR of 16:02 dB vs. 16:08 dB for the direct

search. It should be noted that, contrary to the case of the di�erential search, the

\saturation" of the greedy search does not necessarily correspond to the performance

of the direct search. This is due to the suboptimality of the greedy search.

10 A Lagrange-Multiplier-Based (LM-Based)
Suboptimal Search

Another low complexity method is based on the following lemma, which shows that

BCQ e�ectively does a scalar quantization but the scalar quantizer that is used de-

pends on the input source vector.

Lemma 2 Let x be a source vector and y the corresponding output of BCQ(q; l; n; L).

Then, there exists a set of thresholds t such that

kx� yk2 = kx�Qt(x)k2

and

l(Qt(x)) � l(y):

2

Proof : First we show, by contradiction, that xi < xj implies that yi � yj: Suppose,

xi < xj but yi > yj: Let z = (z1; z2; : : : ; zn) be such that zi = yj; zj = yi and
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zk = yk; k 62 fi; jg: Then, Pi l(zi) =
P

i l(yi) � L and

kx� zk2 � kx� yk2 = (xi � yj)
2 + (xj � yi)

2 � (xi � yi)
2 � (xj � yj)

2

= 2(yj � yi)(xj � xi)

< 0;

which contradicts the fact that y minimizes kx�yk2 subject toPi l(yi) � L: The proof

is, now, completed by sorting the source samples in ascending order and grouping the

ones which are mapped to the same output levels (which occur in clusters by the

result just proven) and setting thresholds between the clusters. If there is a common

point between two clusters (an event of probability zero for a continuous source), then

it can be assigned to the level with shortest length or arbitrarily if the two levels have

the same length.

The lemma suggests that for given levels q and lengths l; one might try to quantize

a source vector x by �nding the thresholds of the scalar quantizer that gives an

equally good output as BCQ(q; l; n; L) and using them to perform scalar quantization

of x: Finding such a scalar quantizer might be a complex task. However, a good

approximation might su�ce. Another approach is to have a collection of quantizer

threshold sets, to quantize the source samples using each and to choose the output

that gives minimum distortion with total length no larger than L: In this approach, a

good collection of threshold sets is needed. In the following, we show how to choose

such a collection that is indexed by just one parameter.

Motivated by the Lagrange-multiplier formulation of entropy-constrained, scalar

quantization and by the work of Chou, et al.[11], we consider scalar quantizer thresh-

olds that minimize the quantity (x � qj)2 + �lj for di�erent values of the Lagrange

multiplier �: To further motivate this collection of scalar quantizers, consider the
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Lagrangian relaxation [17] of (3):

Minimize
nX
i=1

(xi � yi)
2 + �l(yi); (13)

subject to yi 2 fq1; q2; : : : ; qmg for all i;

where � � 0 is a Lagrange multiplier. A well-known fact from non-linear programming

theory is that a solution y(�) to (13) solves (3) with L = L(�)
4
=
P

i l(yi(�)): This

suggests that a possible way to solve (3) is to solve (13) for several values of � and

keep the solution that results in the smallest distortion D(�)
4
=
P

i(xi � yi(�))2 with

L(�) � L:

It can be easily seen that a solution to (13) is given by:

yi(�) = qj;

where

(xi � qj)
2 + �lj � (xi � qk)

2 + �lk; for all k 2 f1; 2; : : : ;mg;

i = 1; 2; : : : ; n; where ties are broken arbitrarily, i.e. solving (13) is equivalent to

performing scalar quantization on x with a quantizer that minimizes the quantity

(xi�qj)2+�lj: It is shown in Appendix E that, for � � 0; L(�) is non-increasing with

� and thatD(�) is non-decreasing with �:Moreover, it is easy to see that L(�) = nlmin

for su�ciently large �:

Finally, the scalar quantization to minimize (xi�qj)2+�lj can be performed using

thresholds t(�) = ft1; t2; : : : ; tm�1g; given by

t1 = min

(
q1 + qk

2
+
�

2

lk � l1
qk � q1

: k > 1

)
; (14)

tj = max

(
tj�1;minfqj + qk

2
+
�

2

lk � lj
qk � qj

: k > jg
)
; j = 2; 3; : : : ;m� 1:
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Therefore, we can try to solve (3) by solving (13) for values of � starting at

zero and increasing gradually until L(�) � L: If L(�) = L; the solution obtained is

optimum. Otherwise, it might not be. However, it would be a good approximation.

The goodness of the approximation is a function of the �neness of the step by which

� is varied. In order to limit the number of steps needed, we might start with a

larger step and then reduce the step size to get a �ner approximation. And to limit

the complexity, we limit the number values of � to be tried. The performance of

such an algorithm for an IID Gaussian source is shown in Figure 9, where � is varied

in steps of 0:1 and if the total length gets below L; the step size is divided by 10

an so on, until the total length equals L or some maximum allowable number of

iterations N̂ is exceeded. We did not spend any e�ort in optimizing the strategy of

varying �: Methods from non-linear programming can also be used to optimize the

strategy, e.g. bisection and related methods (see [18]). Also, it should be noted that

in the above method, iterations continue until L(�) = L or the maximum number

of iterations is exceeded. In many cases, no improvement is obtained after a certain

number of iterations. Thus, better stopping criteria are possible and need to be,

further, investigated.

Finally, we comment on the complexity of the above method. For each iteration

(i.e. for each value of � we try), the thresholds t(�) have to be calculated. Since q and l

are �xed, the quantities (qj+qk)=2 and (lk�lj)=(2(qk�qj)); j; k 2 f1; 2; : : : ; ng; k > j

in (14) can be calculated o�-line and stored. This requiresm(m�1) storage locations.

Then, the calculation of t(�) needs no more than m(m�1) arithmetic operations and

m(m � 1)=2 binary comparisons. Once the thresholds t(�) are found, the source

samples are quantized using these thresholds. This, in turn, requires no more than
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n(m�1) binary comparisons and computing the total length requires no more than n

arithmetic operation. For N̂ iterations, the method performs, approximately,m(m�

1)N̂=n+ N̂ arithmetic operations per source sample and (m� 1)(m+2)N̂=2n binary

comparisons per source sample. Therefore, the complexity is controlled by N̂:

Figure 9 shows the performance of this method applied to pe-BCQ with rate 3

for an IID Gaussian source. As in the case of the greedy search, we notice that the

performance improves with increasing N̂ and saturates at values of N̂ much less than

n: For example, for n = 192; this method achieves a performance within :03 dB of

the direct search performance with N̂ = 20: Again, this is a tremendous reduction in

complexity. It is even simpler than the greedy search. Indeed, from Table 3, we see

that, in contrast to the greedy search, the LM-based search needs storage independent

of n: Moreover, for large n; the arithmetic operations dominate the complexity of

the LM-based method while the binary comparisons dominate the complexity of the

greedy search. So, the two methods have features that satisfy di�erent needs. Finally,

comparing Figures 8 and 9, we see that in general, the LM-based method performs

better than the greedy method. The reason is that, most of the time, the LM-based

method produces an optimal or near-optimal solution, while the greedy method has

no such optimality features.

A �nal remark is that, in contrast to the direct and di�erential search methods,

the greedy and LM-based methods work for any values of l; i.e. they do not require l

to be rational.
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11 A Node-Varying, Block-Constrained Quan-

tizer

In this section, we propose a method to reduce the code-space loss of pe-BCQ and,

thereby, improve its performance. The basic idea is introduced by means of an ex-

ample.

Consider pe-BCQ with dimension n = 6, rate r = 2, threshold L = nr = 12,

quantization levels q = (q1; q2; : : : ; q5) (whose speci�c values are of little concern in this

discussion), and pre�x code C = f0; 10; 110; 1110; 1111g with lengths l = (1; 2; 3; 4; 4).

Figure 10 shows the corresponding trellis8. A bold branch (solid or dashed) indicates

that this state transition corresponds to two codewords of the same length (in this

case 1110 and 1111). A dotted branch is a useless branch; i.e. one that is not used

in any BCQ codevector. For example, the node corresponding to state 6 at depth

2 (called \node (6; 2)" from now on) has one bold dotted branch emerging from it,

due to the fact that any path from this node that begins with a codeword of length

4 will have length at least 6 + 4 + 1 + 1 + 1 + 1 = 13. Since this is greater than the

threshold, no such path corresponds to a codevector in the BCQ codebook. On the

other hand, it is possible to have paths beginning with codewords of length 1, 2 or 3

leaving this node. Thus, three solid branches are shown.

This BCQ has 1107 codevectors and, consequently, code-space loss (L �
log2

���Cbcq(q; l; n; L)���)=n = (12 � log2 1107)=6 = :31; which is fairly large. In fact,

the useless branches are a substantial cause of this loss. Speci�cally, a useless branch

wastes bits because if it were not assigned a codeword, then shorter codewords could

be assigned to the other branches stemming from the same node. The new BCQ

8See the discussion in Section 5 for a description of the trellis.
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codebook would have more codevectors employing these other branches. Hence, the

codebook would be enlarged, the distortion would be decreased, but the rate r = L=n

would remain the same.

In this section, we explore such node-varying BCQ's (nv-BCQ), in which each

node of the trellis is assigned a subset of the original quantization levels (or the

original set itself) and a pre�x code for just these levels. It should be noted that

just as with ordinary pe-BCQ, dynamic programming can be used to perform the

trellis search, because the level subset and pre�x code to be used at any given node

is uniquely determined by the node. Moreover, the binary sequence produced by any

path on such a trellis is uniquely decodable, because the pre�x code to be used at

given node is uniquely determined by the node, and the node is uniquely determined

from previously decoded symbols.

As a concrete example, suppose node (6; 2) is assigned the level subset fq1; q2; q3g

and the pre�x code f0; 10; 11g. Further, suppose all other nodes are assigned the full

set of levels and the original pre�x code C. One may easily check that the resulting nv-

BCQ codebook contains the original pe-BCQ codebook plus additional codevectors,

such as the level sequence (q4; q2; q3; q2; q1; q1) whose length has been reduced from 13

to 12. In a sense, the pruning of the branches corresponding to levels q4 and q5 has

resulted in a \denser" trellis, in somewhat the same way that careful pruning of a

(biological) plant produces a denser plant.

As another example, notice that node (11; 5) has only one useful branch stemming

from it, corresponding to level q1 and the binary codeword 0. Accordingly, this node

can be assigned the level subset fq1g and the degenerate pre�x code containing only

the empty string with zero length. This means that when this node is reached, no
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further bits need be sent, because q1 is necessarily the next level. Unfortunately, while

seeming bene�cial, this change adds no new codevectors. On the other hand, if we

assign the level subset fq1; q2g and the pre�x code f0,1g, then new codevectors will

be added to the codebook.

As a �nal example, consider assigning the subset fq1g and the pre�x code con-

taining just the empty string to node (12; 5). In this case, all level sequences that

lead to this node and then are followed by q1 are added to the codebook. One may,

similarly, add more codevectors by assigning the subset fq1g and the the empty string

codebook to nodes (12; 3) and (12; 4).

A basic principle is that given a pe-BCQ (or, for that matter, an nv-BCQ) and

a node in its trellis, if one assigns to this node a subset of the levels that contains

all levels presently useful for this node, and one assigns a new pre�x code for this

subset such that the new codeword assigned to a useful level is no longer than the

previous codeword assigned to it, then the new nv-BCQ codebook will contain the

previous codebook, the resulting average distortion will be less than or equal to the

the present distortion (usually strictly less), and the rate will remain the same.

This basic principal notwithstanding, optimizing an nv-BCQ is a di�cult task.

One might try nodewise optimization. That is, for any given node, one might try

all possible level subsets and all possible pre�x codes to �nd the one that results in

the largest codebook or the smallest distortion. But such nodewise optimization is

not likely to be the best solution. For example, assigning (as above) the level subset

fq1; q2g and the pre�x code f0; 1g to node (11; 5) gives the best codebook among

all those produceable by changes only at this node. However, it causes the branch

from node (6; 2) corresponding to q4 and q5 to no longer be useless, which eliminates
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the justi�cation for assigning level subset fq1; q2; q3g to this node. So it is not clear

whether it is better to make the change to node (11; 5), to make the change to node

(6; 2) (described previously), or to make both changes.

Moreover, even if an nv-BCQ could be truly optimized, considerable storage would

be needed for the level subsets and pre�x codes assigned to each of the approximately

nL nodes. To reduce storage, one might limit the level subsets and pre�x codes to

members of some relatively small collections of such. Nevertheless, for each node one

would still need to specify the index of some subset and pre�x code. To avoid such

added storage, in the following we propose the use of a simple rule for assigning level

subsets and pre�x codes to nodes.

Given scalar quantization levels q = (q1; q2; : : : ; qm) with probabilities p1 � p2 �
: : : � pm; for 1 � k � m, let qk = (q1; q2; : : : ; qk), and let Ck be a Hu�man code

for probabilities (p1; p2; : : : ; pk). (C1 contains only the empty string.) Let lkj denote

the length of the j-th codeword of Ck, and let lkmin and lkmax denote the minimum

and maximum lengths, respectively. To node (s; i) assign the level subset qk and the

pre�x code Ck for the largest k such that

lkmax � L� (n� i)lkmin� s :

One may easily check that this guarantees that the branches corresponding to

q1; : : : ; qk will all be useful, assuming that each can be followed by a path whose

branches all have length lkmin or less
9.

Applying this approach to the pe-BCQ example in Figure 10 leads to the nv-BCQ

whose trellis is shown in Figure 11. The (nontrivial) pre�x codes are C2 = f0; 1g, C3 =

f0; 10; 11g, C4 = f0; 10; 110; 111g and C5 = f0; 10; 110; 1110; 1111g. The codebook of

9We don't actually look ahead to see if there is such a path because this would add to the
complexity.
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this nv-BCQ has 2342 codevectors. (approximately twice the original number), and

the code-space loss has been reduced to :13.

Table 4 shows the SNR's resulting from applying this nv-BCQ approach to IID

Gaussian and Laplacian sources. We chose m = 20. To design the quantization

levels q1; : : : ; q20, we started with uniformly spaced levels and thresholds, found level

probabilities p1; : : : ; p20, and Hu�man codebooks C2; C3; : : : ; C20 for the level subsets

q2; q3; : : : ; q20. We then found a new set of quantization levels (i.e. centroids) in the

manner described in Section 6, and a new set of Hu�man codes. This process was

iterated until the performance no longer improved signi�cantly.

As shown in Table 4, the performance of such nv-BCQ, is better than that of

pe-BCQ. For example, comparing with Table 2, we see that the SNR of nv-BCQ with

n = 128 is comparable to that of ordinary pe-BCQ with n = 192. Moreover, for

n = 48; the SNR of nv-BCQ is :06-:6 dB higher SNR for the IID Gaussian source

than for pe-BCQ with the same n, and :2-:5 dB higher for the IID Laplacian source.

The gains tends to be larger at smaller rates, because varying the pre�x codes allows

the e�ective average length to be closer to, or even less than, one. Finally, we note

that the gains in nv-BCQ come at the expense of only a slight increase in complexity.

The implementation of the suboptimal search methods discussed in Sections 8-10

for the node-varying case is not straightforward and needs to be further investigated.

We leave this for future research.

Motivated by the above nv-BCQ, one may de�ne more general classes of node-

varying/time-varying BCQ's. As shown in the examples above, there are numerous

possible strategies for designing such BCQ's. Such strategies need to be investigated

further. Our discussion here does no more than scratch the surface. The richness of
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such schemes necessitates deeper understanding. this to future studies. We leave this

to future studies.

12 Conclusion

In this paper, we have explored a quite general class of �xed-rate quantizers that

we called block-constrained quantizers, motivated by the work of Laroia and Far-

vardin [2]. We proposed methods to reduce the binary encoding complexities of such

quantizers.

We have discussed the relationship between block-constrained quantizers, entropy-

coded/entropy-constrained quantizers and permutation codes. Moreover, we have

explored some basic properties of BCQ's that give insight into their behavior.

Di�erent methods to reduce the search complexity of BCQ's have also been in-

vestigated. In particular, very low-complexity, suboptimal search methods have been

proposed and shown to perform very close to the optimal while providing a large

reduction in complexity.

Node-varying BCQ's have been proposed as a means of reducing the code-space

loss of pe-BCQ's. The results show signi�cant gains.

The investigation of BCQ's is by no means complete. The optimization of BCQ's,

particularly the lengths, is still an open problem. The e�ects of the number of lev-

els need further investigation. Node-varying BCQ's need to be further studied and

the application of the low-complexity search methods to node-varying BCQ's is of

particular interest.
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A Convergence of the Performance of the Naive

System

Consider an IID source fXig with mean � and �nite variance �2; and a naive system

based on q; t; l with blocklength n and rate r: Let X = (X1;X2; : : : ;Xn) and qmax =

maxj jqjj: Assume that the decoder produces Qt(X) = (Qt(X1); Qt(X2); : : : ; Qt(Xn))

if l(Qt(X)) � nr and, otherwise, produces (�; �; : : : ; �): We denote the distortion of

this naive system by Dnaive(q; t; l; n; nr): We will show that

lim
n!1

Dnaive(q; t; l; n; nr) = Dsq(q; t);

if �l(t; l) < r:

To this end, de�ne

An
4
= fx = (x1; x2; : : : ; xn) :

1

n

nX
i=1

l(Qt(xi)) � rg:

and let t; l and r be such that �l(t; l) < r: Then, by the weak law of large numbers,

P(Ac
n)

4
= PrfX 2 Ac

ng ! 0 as n!1:

Now,

Dnaive(q; t; l; n; nr) =
1

n

Z
An

kx�Qt(x)k2p(x)dx+ 1

n

Z
Ac
n

kx� �k2p(x)dx;

where � = (�; �; : : : ; �): It follows that

Dnaive(q; t; l; n; nr) = Dsq(q; t) +
1

n

Z
Ac
n

(kx� �k2 � kx�Qt(x)k2) p(x) dx

= Dsq(q; t) + E[fn(X)];

where

fn(x)
4
=
kx� �k2 � kx�Qt(x)k2

n
IAc

n
(x);
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and IA is the indicator function. It su�ces to show that E [fn(X)] ! 0 as n ! 1:

We can easily see that

fn(X)! 0; in probability, as n!1;

jfn(X)j � gn(X)
4
=

2kX��k2+n(�2+q2max)

n
;

E[gn(X)] = 2�2 + �2 + q2max <1; for all n;

and

gn(X)! 2�2 + �2 + q2max; with probability 1, as n!1:

De�ne an
4
= E[fn(X)]: First, we show that for any convergent subsequence ank ; ank !

0 as k !1: Note that fnk(X)! 0; in probability, as k !1: Then, by Proposition

4.18 of [19], there exists a further subsequence fnki (X) such that fnki (X) ! 0; with

probability 1, as i ! 1: Now, by Theorem 4.17 of [19], anki = E[fnki (X)] ! 0 as

i!1 and since ank is convergent, then ank ! 0 as k !1:

Now, it su�ces to show that an ! 0 as n ! 1: To show this, note that an is

bounded. Thus, for any subsequence ank ; there exists a convergent subsequence anki

and by the result above, anki ! 0 as i ! 1: Therefore, any subsequence of an has

a further subsequence that converges to 0: A standard result in real analysis implies

that an ! 0 as n!1:

B Proof of (8)

Consider l satisfying Kraft's inequality and L < nlmax: Then

1 � (
mX
j=1

2�lj)n

=
X
a

na2
�a;

45



where na is the number of sequences of n quantization levels having total length a:

Now,

X
a

na2
�a =

X
a�L

na2
�a +

X
a>L

na2
�a;

>
X
a�L

na2
�a

� 2�L
X
a�L

na

= 2�L
���Cbcq(q; l; n; L)��� ;

where the �rst inequality follows since nlmax > L and the last equality follows from

the de�nitions of na and Cbcq(q; l; n; L): Therefore,
���Cbcq(q; l; n; L)��� < 2L:

The result (8) follows by taking log2 of both sides and dividing by n:

C Proof of (12)

Let y0 = �Q(x) and ~l = l(y0) � L: If l(y0) � L; then y� = y0 satis�es (12). Thus,

we assume l(y0) > L: First, we observe that there always exists an optimum solution

ŷ to (3) such that l(ŷi) � l(y0i ) for all i: This can be seen as follows: Suppose �y is

an optimum solution to (3). Let ŷ be such that ŷi = �yi if l(�yi) � l(y0i ) and ŷi = y0i ;

otherwise. Then, we can easily see that ŷ satis�es the hypothesis, i.e.

nX
i=1

l(ŷi) � L;

and

kx� ŷk2 � kx� �yk2:
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Now, let ŷ be as above, then
Pk

i=1(l(y
0
i ) � l(ŷi)) is non-decreasing in k and

Pn
i=1(l(y

0
i )� l(ŷi)) � ~l: Therefore, there exists K, 1 � K � n; such that

K�1X
i=1

l(y0i )� l(ŷi) < ~l �
KX
i=1

l(y0i )� l(ŷi):

Moreover, y� = (ŷ1; ŷ2; : : : ; ŷK; y0K+1; : : : ; y
0
n) also solves (3) and for any 1 � k � n;

kX
i=1

l(y0i )� l(y�i ) < ~l + lmax� lmin:

Also, since l(ŷi) � l(y0i ); we have

kX
i=1

l(y�i ) �
kX
i=1

l(y0i ):

The above two equations imply that y� satis�es (12).

D Proof of Lemma 1

Consider a quantization ruleQ(�) applied to an IID source fXig and let the lengths l =
(l1; l2; : : : ; lm) correspond to the quantization levels q = (q1; q2; : : : ; qm); respectively.

Without loss of generality, we assume that minj lj
4
= lmin < lmax

4
= maxj lj and

Prfl(Q(X1)) = ljg 6= 0 if lj 2 flmin; lmaxg: Also, let pmax = Prfl(Q(X1)) = lmaxg and

�l = E[l(Q(X1))]: De�ne the moment generating function M(s) by

M(s)
4
= E [expfsl(Q(X1))g] =

mX
j=1

pj exp(slj);

where pj
4
= Prfl(Q(X1)) = ljg; and de�ne the large deviation rate function I(u) by

[20]

I(u)
4
=

8>><
>>:

sups�0(su� lnM(s)); u � �l

sups<0(su� lnM(s)); u < �l

:
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It can be easily shown that I(u) is convex
S
and continuous on [lmin; lmax]: More-

over, I(�l) = 0; I 0(�l) = 0; and I(lmax) = ln(1=pmax) > 0. Finally, 1=I 00(u) is bounded.

Let K1 = supu(1=I
00(u)) <1:

Let � = I(lmax). Now, given 0 < � < 1 and N large enough that ln(1=�)=N � �,

then by the intermediate value theorem, for every n � N; there exists un > �l such

that I(un) = ln(1=�)=n or exp(�nI(un)) = �. By Cherno�'s bound,

Pr

(
nX
i=1

l(Q(Xi)) � nun

)
� exp(�nsun)M(s)n; for all s � 0;

= exp(�n(sun � lnM(s))); for all s � 0;

which implies

Pr

(
nX
i=1

l(Q(Xi)) � nun

)
� inf

s�0
exp(�n(sun � lnM(s)));

= exp(�nI(un))

= �;

Since I(�l) = I 0(�l) = 0; then by the second-order Taylor's theorem (e.g. [17, p. 504]),

there exists n; �l < n < un; such that

I(un) =
1

2
I 00(n)(un � �l)2;

or

un =

vuut2I(un)

I 00(n)
+ �l =

vuut2 ln(1=�)

I 00(n)

1p
n
+ �l �

q
2 ln(1=�)K1

1p
n
+ �l =

Kp
n
+ �l;

where K
4
=
q
2 ln(1=�)K1: Thus, for any L; we have

Pr

(
nX
i=1

l(Q(Xi))� L � K
p
n+ n(�l � L

n
)

)
= Pr

(
nX
i=1

l(Q(Xi)) � n(
Kp
n
+ �l)

)

� Pr

(
nX
i=1

l(Q(Xi)) � nun

)

� �:
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E Proof of Properties of L(�) and D(�)

It is su�cient to show th following:

Lemma 3 Let ~� > �̂ � 0: Given x; let ~q and q̂ be such that

(x� ~q)2 + ~�l(~q) � (x� q)2 + ~�l(q); for all q 2 q; (15)

(x� q̂)2 + �̂l(q̂) � (x� q)2 + �̂l(q); for all q 2 q: (16)

Then,

1. (x� ~q)2 � (x� q̂)2:

2. l(~q) � l(q̂):

2

Proof :

1. Suppose

(x� ~q)2 < (x� q̂)2: (17)

Then,

(x� ~q)2 � (x� ~q)2 + �̂l(~q); since �̂ � 0; l(~q) > 0;

< (x� q̂)2 + �̂l(~q); by (17),

< (x� q̂)2 + ~�l(~q); since ~� > �̂; l(~q) > 0;

� (x� ~q)2 + �̂l(~q)� �̂l(q̂) + ~�l(~q); by (16),

= (x� ~q)2 � (~�� �̂)l(~q)� �̂l(q̂);

� (x� ~q)2 � �̂l(q̂); since ~� > �̂; l(~q) > 0;

� (x� ~q)2; since �̂ � 0; l(~q) > 0;
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which is a contradiction.

2. From (15),

~�(l(~q)� l(q̂)) � (x� ~q)2 � (x� q̂)2;

� 0; by part 1:

Since ~� > 0; then l(~q)� l(q̂)) � 0; and the result follows.
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Table 1: Rough complexity comparisons for lf-BCQ's and pe-BCQ's.

lf-BCQ pe-BCQ

Trellis Depth n n

Number of States 1:5bnr nr

Trellis Branching Factor m m

Search Operations per Branch 2 2

Arithmetic Operations
per Source Sample 3bmnr 2mnr

Storage Locations 1:5bn2r n
2
r

Binary Arithmetic Operations
per Source Sample mnr insigni�cant

Encoding Storage Locations bn
3
r
2 insigni�cant

Table 2: SNR, in dB, for pe-BCQ and several other methods.

Rate pe-BCQ Entropy- lf-BCQ

r n = 48 96 144 192 ECSQ Const. SQ n = 32

IID Gaussian Source

1:5
6:34
(0:19)

6:48
(0:16)

6:52
(0:15)

6:54
(0:14) 7:16 7:55 7:58

2:0
9:82

(0:063)
10:04
(0:042)

10:12
(0:028)

10:16
(0:021) 10:25 10:55 10:43

2:5
12:91
(0:063)

13:05
(0:031)

13:15
(0:028)

13:22
(0:021) 13:44 13:54 13:21

3:0
15:49
(0:063)

15:86
(0:042)

15:98
(0:035)

16:08
(0:026) 16:35 16:56 16:01

IID Laplacian Source

1:5
7:18
(0:19)

7:42
(0:16)

7:54
(0:15)

7:59
(0:14) 7:69 8:55 8:22

2:0 10:00
(0:063)

10:51
(0:042)

10:65
(0:028)

10:80
(0:021) 11:26 11:31 10:73

2:5 12:78
(0:15)

13:16
(0:11)

13:33
(0:097)

13:42
(0:094) 14:03 14:32 13:31

3:0
15:79
(0:063)

16:21
(0:042)

16:43
(0:028)

16:52
(0:021) 17:08 17:20 16:05
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Table 3: Rough complexity comparisons for di�erent BCQ search methods.

Direct Di�erential Greedy LM-based

Trellis
Depth n n N.A. N.A.

Number of
States L / nr ~L+ lmax� lmin N.A. N.A.

Branching
Factor m m N.A. N.A.

Operations per
Branch 2 2 N.A. N.A.

Arithmetic
Operations per
Source Sample

2mL 2m(~L+ lmax � lmin) 5m m(m�1)N̂
n

+ N̂

Binary
Comparisons per
Source Sample

2m+ ~N (m�1)(m+2)N̂
2n

Storage
Locations nL n(~L+ lmax� lmin) 3(n+m) m(m� 1)

Table 4: SNR, in dB, for node-varying BCQ.

Rate nv-BCQ pe-BCQ lf-BCQ Entropy-

r n = 32 48 64 128 n = 192 n = 32 Const. SQ

IID Gaussian Source

1:0 4:40 4:40 4:40 4:40 4:67 4:64

1:5 6:99 6:95 6:92 6:83 6:54 7:58 7:55

2:0 9:92 10:01 10:07 10:16 10:16 10:43 10:55

2:5 12:85 12:97 13:07 13:20 13:22 13:21 13:54

3:0 15:52 15:68 15:82 15:99 16:08 16:00 16:56

IID Laplacian Source

1:0 3:05 3:06 3:06 3:06 5:61 5:76

1:5 7:55 7:64 7:66 7:70 7:59 8:22 8:55

2:0 10:56 10:77 10:86 11:03 10:80 10:73 11:31

2:5 12:67 12:94 13:04 13:30 13:42 13:31 14:32

3:0 15:64 15:97 16:15 16:44 16:52 16:05 17:20
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Figure 1: Performance of entropy-coded and entropy-constrained scalar quantizers
for an IID Gaussian source.

q
1

2
q

3
q

4
q

5
q

6
q

7
q

l1

2
l

3l

4l

6l

5l

7l

Source Samples
Quantization Levles
Nearest-Neighbor Output
BCQ Output 

Figure 2: Relationship between nearest-neighbor quantization and BCQ.
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Figure 3: Performance of BCQ and the naive system for �xed q and l and several
values of n:
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Figure 4: Performance of pe-BCQ and optimized naive system for an IID Gaussian
source.

55



L

Time

0 1 2 .....

L

i-1 i .....

j
q
k

kj-l

n

2lmin

2lmax

  lmin

  lmax

Figure 5: Trellis for the dynamic programming search.
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Figure 6: A section of a typical di�erential trellis.
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Figure 7: Performance of di�erential search for an IID Gaussian source.
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Figure 8: Performance of greedy search for an IID Gaussian source.
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Figure 9: Performance of the LM-based search for an IID Gaussian source.
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Figure 10: BCQ trellis example.
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Figure 11: A node-varying BCQ trellis.
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