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Abstract — In this work, we consider a source coding
model with feed-forward. We analyze a system with a noise-
less feed-forward link where the decoder has knowledge of
all previous source samples while reconstructing the present
sample. The rate-distortion function for an arbitrary source
with feed-forward is derived in terms of directed informa-
tion, a variant of mutual information. The special case of
Gaussian sources with feed-forward is further examined.
We also derive an error exponent which is used to bound
the probability of decoding error for a source code (with
feed- forward) of finite block length. Source coding with
feed-forward may be considered the dual problem of chan-
nel coding with feedback.

I. INTRODUCTION

With the recent emergence of applications involving sensor net-
works [1], the problem of source coding with side-information
at the decoder gained special significance [2]. Here, the encoder
represents the source with an index based on the knowledge that
the decoder has access to some correlated side-information. In
a typical setting, at each instant of time, the source produces
a symbol and a sample of the side-information appears
at the decoder. We are interested in considering a variant of
this problem, where there is a delay in the side-information
available at the decoder. For instance, if the delay is time
units, the sequence of events at the (encoder, decoder) would be

and so on. We
would like to analyze this problem of source coding with de-
layed side-information.

Frequently the side information is a noisy version of .
Thus, we would expect that be strongly correlated with ,

with and so on. Such a model would be relevant in
applications involving estimation of an information field (e.g a
seismic/acoustic signal) in a sensor network. A node may have
to estimate (compressed) signals received from other nodes and
process these signals in real-time. However, the signal to be es-
timated might be available at the node in a delayed and perhaps,
noisy form, i.e., there is a feed-forward path from the source
to the decoder. Thus an efficient decoder must take into account
all the information available while decoding a particular sample.
In this work, we consider an idealized version of this problem
called source coding with feed-forward [3]. In this model, we
assume that noiseless source samples are available with a delay
at the decoder, i.e. .
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Related Work: The problem of source coding with noiseless
feed-forward arose in the context of competitive prediction in
[4], where it was shown that for IID discrete sources feedfor-
ward does not reduce the optimal rate-distortion function and
the optimal error-exponent with block coding. Around the same
time, the model of source coding with feed-forward was defined
in [3] as a variant of the problem of source coding with side
information [2] at the decoder, and a simple and determinis-
tic block-coding scheme to achieve the optimal rate-distortion
bound for arbitrary rates for an IID Gaussian sources with feed-
forward was described. At the time of writing this paper, we
also became aware of another work [5] which gives a variable-
length coding strategy to achieve the rate-distortion bound for
any finite-alphabet, IID source with feed-forward. The prob-
lem of source coding with feed-forward is also related to source
coding with a delay-dependent distortion function [6] and causal
source coding [7].

The main results of the present paper can be summarized as
follows:

1. The optimal rate-distortion function for a general discrete
source with general distortion measures and with noise-
less feed-forward, , is given by the minimum of
the directed information function [8] between the source
and the reconstruction. , where
denotes the optimal Shannon rate-distortion function for
the source without feed-forward.

2. The performance of the best possible source code (with
feed-forward) of rate , distortion and block length

is characterized by an error exponent .
is greater than or equal to the error expo-

nent without feed-forward.

3. Feed-forward does not decrease the rate-distortion func-
tion of general discrete memoryless sources with memo-
ryless distortion measures.

II. THE SOURCE CODING MODEL

The model is shown in Figure 1. Consider a discrete source
with th order probability distribution , alphabet

and reconstruction alphabet . There is an associated distor-
tion measure for pairs of sequences
of length . We assume that is normalized with re-
spect to and is uniformly bounded in . The distortion mea-
sure is said to be memoryless if and ,
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Figure 1: Source coding system with feed-forward.
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Figure 2: Code function represented as a tree. The reconstruction
is represented on the branches of the tree.

for some ,
.
For a source code of block length and rate R, the encoder

is a mapping to an index set: . The
decoder receives the index transmitted by the encoder, and to re-
construct the th sample, it has access to all the past ( ) sam-
ples of the source. In other words, the decoder is a sequence of
mappings . Let

denote the reconstruction of the source sequence . We
want to minimize the distortion for a given rate . For any ,
let denote the infimum of over all encoder decoder
pairs for any block length such that the distortion is less than

. It is worthwhile noting that source coding with feed-forward
can be considered the dual problem [9, 10] of channel coding
with feedback.

We describe the set-up in Section III. Section IV contains
the heart of this work- rate-distortion functions for sources with
feed-forward. Section V deals with the performance of the best
possible source codes for a finite block length. Due to con-
straints of space, most theorems are stated without proof. How-
ever, we attempt to give a broad idea of the proof wherever pos-
sible.

III. SOURCE, ENCODER AND DECODER SET-UP

In this section, we describe the apparatus we will use for proving
coding theorems for sources with feed-forward. We introduce
code-functions, which map the feed-forward information to a
source reconstruction symbol . The idea of code-functions
was introduced by Shannon in 1961 [11]. We first give a formal
definition of a code-function and then see how it is useful in
analyzing systems with feed-forward.

Definition 1. A source code-function is a set of N functions
such that maps each source sequence

to a reconstruction symbol . Denote the
space of all code-functions by

is a code function .

Definition 2. A source codebook of rate and block
length is a set of code-functions. Denote them by

.

For each source sequence of length , the encoder sends an
index to the decoder. Using the code-function corresponding
to this index, the decoder maps the information fed forward
from the source to produce an estimate . A code-function
can be represented as a tree. Figure 2 shows a code-function
for a binary source with a binary reconstruction alphabet. Us-
ing the code-function shown in the figure, a source sequence

would be reconstructed as and would be re-
constructed as . In a system without feed forward, a code-
function generates the reconstruction independent of the past
source samples. In this case, the code-function reduces to a
codeword. In other words, for a system without feed-forward, a
source codeword is a source code-function
where for each , the function is a constant
mapping.

Figure 3: Representation of a source coding scheme with feed-
forward.

A source code with feed-forward can be thought of as having
two components. The first is a usual source coding problem with

as the reconstruction for the source sequence . In other
words, for each source sequence , the encoder chooses the
best code-function among and sends
the index of the chosen code function. This is the part inside the
dashed box in Figure 3. If we denote the chosen code-function
by , the second component (decoder in Fig. 3) produces
the reconstruction given by

(1)

IV. CODING THEOREMS

A. Discrete Memoryless Sources: We start with the simplest
kind of source, viz. a discrete memoryless source. The optimal



Shannon rate distortion function for an IID source without feed-
forward is given by

(2)

We state the following theorem without proof for a discrete
memoryless source with feed-forward with expected distortion
constraint.

Theorem 1. Feed-forward does not decrease the optimal rate-
distortion function of a general discrete memoryless source with
memoryless distortion measures.

It parallels the well known result that feedback does not
increase the rate-distortion function of a discrete memoryless
channel [12].

B. Arbitrary Sources: This section contains the main contri-
bution of this paper- the optimal rate-distortion function for an
arbitrary source with feed-forward. For a source without feed-
forward, the rate-distortion function is characterized by the mu-
tual information between and . It turns out that for sources
with feed-forward, the rate-distortion function is characterized
by directed information, a variant of mutual information.

B.1 Directed Information

The directed information function was introduced by Massey [8]
and has been used to characterize the capacity of channels with
feedback [13] [14].

Definition 3. The directed information flowing from a sequence
to a sequence is defined as

(3)

Note that the definition is similar to that of mutual informa-
tion except that the mutual information has in-
stead of in the sum on the right.

The directed information has a nice interpretation in the con-
text of our problem. The directed information flowing from
to can be written as

(4)

We know that for the usual source coding problem (with-
out feed-forward), the mutual information repre-
sents the minimum number of bits needed to represent
by . With feed-forward, the decoder knows the symbols

to reconstruct . This is reflected in the terms subtracted
from in (4). (4) says that since the information
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Figure 4: Source coding system with feed-forward.

is already known through the feed-forward
link, we need not spend bits to code this information. Conse-
quently, it is reasonable to expect that the directed information
characterizes the rate-distortion function for sources with feed-
forward.

We can also interpret the directed information in terms of the
backward test-channel . A source code with feed-
forward can be thought of as having feedback in the test-channel
and the directed information gives the information flow through
the channel with feedback.

B.2 Rate Distortion function for sources with Feed-
Forward

We now give the rate-distortion function for arbitrary sources
with feed-forward. Before stating the general result, we need
the following definitions of a few quantities (see [15],[14]).

Definition 4. The limsup in probability of a sequence of random
variables is defined as the smallest extended real number
such that

The liminf in probability of a sequence of random variables
is defined as the largest extended real number such that

Definition 5. For any sequence of joint distributions
, define



As pointed out in [14], the directed information rate, defined
by may not exist for an arbi-
trary random process which may not be stationary. But the sup-
directed information rate and the inf-directed infor-
mation rate always exist. Tatikonda and Mitter [14]
showed that for arbitrary channels with feedback, the capacity
is an optimization of , the inf-directed information
rate. Our result is that the rate distortion function for an arbitrary
source with feed-forward is an optimization of , the
sup-directed information rate.

The source distribution, defined by a sequence of finite-
dimensional distributions [16], is denoted by

(5)

Similarly, a conditional distribution is denoted by

(6)

Theorem 2. For an arbitrary source characterized by a dis-
tribution , the rate-distortion function with feed-forward, the
infimum of all achievable rates at a distortion , is given by

(7)

where

From [14], we have the following result. For any sequence of
joint distributions , we have

(8)

If

we say that the process is information stable [17],
and all four quantities in (8) are equal. Note that if the joint
process is information stable, the rate-distortion
function becomes

(9)

We do not give the detailed proofs of the direct and converse
parts of Theorem 2. Instead, we give a brief idea of the direct
part here. For the sake of intuition, assume information stability.
We want to show the achievability of all rates greater than the

in (9).

Let be the distribution that maximizes
, subject to the constraint. Our goal is

to construct a joint distribution over and , say
, such that the marginal over and satis-

fies
(10)

We also impose certain additional constraints 1 on
so that

(11)

Using (10) in the above equation, we get

(12)

Using the usual techniques for source coding without feed-
forward, it can be shown that all rates greater than

can be achieved. From (12), it follows that all
rates greater than . The bulk of the proof lies in
constructing a suitable joint distribution .

C. Gaussian Sources with feed-forward: In this section, we
study the rate-distortion function for the special case of Gaus-
sian sources with feed-forward. A source is Gaussian if
the random process is jointly Gaussian. A Gaus-
sian source is continuous valued unlike the sources hitherto dis-
cussed. However, it is straightforward to extend the results de-
rived earlier for discrete sources to continuous sources. In par-
ticular, feed-forward does not decrease the rate-distortion func-
tion of a memoryless Gaussian source. Interestingly though,
feed-forward in a memoryless Gaussian source enables us to
achieve rates arbitrarily close to the rate-distortion function with
a low complexity coding scheme involving just scalar quantiza-
tion [3]. We have the following result for a general Gaussian
source.

Theorem 3. Gaussian conditional distributions achieve the
rate-distortion function for Gaussian sources with feed-forward
and with expected quadratic distortion constraint.

We give a sketch of the proof. Let be a Gaussian source
with distribution and let be any conditional distribu-
tion. We show that there exists a jointly Gaussian conditional
distribution such that
is a jointly Gaussian distribution that has the same second or-
der properties as and the following
hold.

1.

2. The average distortion is the same under both distribu-
tions, i.e.,

(13)

1For clarity, wherever necessary, we will indicate the distribution used to
calculate the information quantity as a subscript.



This means we can restrict our attention to Gaussian conditional
distributions to evaluate the rate-distortion function of a Gaus-
sian source.

V. ERROR EXPONENTS

We now consider error exponents for sources with feed-forward
and show that the feed-forward error exponent is no smaller than
the exponent for the same source without feed-forward.

A. Upper bound on the probability of error: The error-
exponent for a source code of block-length for a discrete
memoryless source was derived by Blahut[18] and by Marton
in [19]. A procedure identical to the proof of Theorem 6.5.1 in
[18] yields the error exponent for an arbitrary source (without
feed-forward). Therefore, we have the following fact for dis-
crete sources without feed-forward.

Given a source with -th order distribution , there ex-
ists a source code (without feed-forward) such that
the probability that a source sequence of length cannot be
encoded with distortion satisfies

(14)

where is the error exponent for the source (without
feed-forward) and is given by

(15)

and for large enough , .
The proof of this in [18] involves choosing random code-

words with distribution . For a source code with feed-
forward, the decoder knows to decode . So we can
choose codewords with distribution

By randomly picking codewords with the above distribution, we
can derive the error exponent for a source with feed-forward.

Theorem 4. Given a source with -th order distribution ,
there exists a source code with feed-forward so that
the probability that a source sequence of length cannot be
encoded with distortion satisfies

(16)

where is the error exponent for the source (with
feed-forward) and is given by

(17)

where

We now compare the error exponents for a source with and
without feed-forward given by Eqs.(17) and (15), respectively.
Denote the space of all distributions of the form by and
the space of all distributions of the form by . The
only difference between the expressions for the error exponents
with and without feed-forward is that the former involves a max-
imization over distributions in , while the latter involves a
maximization over .

Now, every distribution be-
longs to the space of distributions of the form

. Therefore,

Thus in the no feed-forward case, we are maximizing over a
subset of the distributions available to us in the feed-forward
case. Equivalently, we have proved the following theorem.

Theorem 5. For any source , the error exponent with feed-
forward is at least as large as the error exponent without feed-
forward.

Equation (16) guarantees an exponentially small probability
of error only when is positive. An alternate def-
inition of the error exponent is better suited to determine the
values of for which is positive. We first have
the following definition.

Definition 6.

where the subscript denotes the joint distribution used to calcu-
late the directed information.

We state the following theorem without proof.

Theorem 6. An equivalent representation of is

(18)
where

(19)

The quantity on the right hand side of (18) is a discrimina-
tion. It is iff the source distribution and positive
otherwise. From the definition of , it follows that if

. Thus we have the following theorem.



Theorem 7. is strictly positive only for rates
such that
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