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Abstract

The model of source coding with noiseless feedforward deals with efficient representation (quantization)
of information sources into indexes belonging to a finite set, where to reconstruct a source sample, the
decoder in addition to this index, has access to all the previous noiseless source samples. This problem has
applications in sensor networks, economics and control theory. In the fist part of this paper we consider a
deterministic block coding scheme for independent and identically distributed (IID) Gaussian sources with
noiseless feedforward. We show that this scheme is asymptotically optimal in terms of its rate-distortion
function and the source coding error exponent.

In the second part of this paper we consider 2-channel multiple description source coding with noiseless
feedforward. In particular we consider IID Gaussian sources and obtain the optimal rate-distortion region,
by giving a deterministic scheme that is asymptotically optimal. The key result is that unlike the case
where there is no feedforward, here there is no penalty to be paid for constraining the descriptions to be
mutually refineable. That is when one of the channels is active, the decoder which operates on one of
the descriptions achieves the optimal rate-distortion function, and when both channels are active, the joint
decoder still attains the optimal rate-distortion function. This implies that for memoryless sources with
additive distortion measures, unlike the case of point-to-point source coding where noiseless feedforward
does not improve the optimal rate-distortion function, in the case of multiple description source coding,
noiseless feedforward does indeed improve the optimal rate-distortion region. The proposed scheme is based
on linear processing and uniform scalar quantization. We then show that the proposed scheme achieves
the optimal multiple description source coding error exponents for the symmetric case where the rates of
the descriptions are equal and the reconstruction distortion is only a function of the number of descriptions
received.

1 Introduction

With the recent emergence of applications related to sensor networks [1], efficient encoding of information signals
in a multiterminal setting has received special attention. One such problem is that of source coding with side
information at the decoder [2], where the encoder wishes to represent a source X with an index belonging to a
finite set to be transmitted to a decoder which has access to some correlated side information Y. The decoder

wishes to obtain an estimate of the source with the help of the received index and the side information. In
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many applications involving estimation of some information field (such as seismic, acoustic), the signal to be
estimated at the decoder is delay-sensitive, and might be available to the decoder either in a delayed and/or
noisy form. Thus an efficient encoder must take into account all the information available at the decoder at the
time of decoding a particular sample.

The implicit assumption in the model of source coding with side information is that the underlying sample
pairs (X;,Y;) are instantaneously observed respectively at the encoder and the decoder. So after an encoding
delay of [ samples, when the decoder gets the message W (say being transmitted instantaneously using electro-
magnetic waves), it has access to the corresponding I samples of Y, so that the decoding can begin immediately.
The time-line of the samples of the source, the message and the side information is depicted in Fig. 1 for [ = 5.
Note that in this model, for example, at the 6th time unit, the decoder reconstructs Xl, X5 simultaneously

as a function of W and Y7, ...Y5, though it may display them as shown in Fig. 1.

Time 1 2 3 4 5 6 7 8 9 10
Source X1 X2 X3 X4 X5 X6 X7 Xg X9 X]()
Encoder - - - - w - - - - W

Sideinfo Y, Y, Y, Y, Y5 Yy Y, Y, Y, Y,

<>
l\-)><>
w><>
4>><>
m><>

Decoder

Figure 1: Time-line: instantaneous observations

What happens if the underlying signal field is traveling slowly (compared to the velocity of electromagnetic
wave propagation) from the geographical location of the encoder to that of the decoder, so that a there is a delay
between the instant when ith sample of X is observed at the encoder and the instant when corresponding ith
sample of Y is observed at the decoder, with the additional constraint that the reconstruction be realtime. In
that case, we need a different dynamic compression model which is depicted in Fig. 2. Here it is assumed
that the signal field delay is 6 time units, so that for real-time reconstruction of the ith source sample, all the
past samples of the side information are available. In other words, now the decoding operation consists of a
sequence of functions such that the ith reconstruction is a function of W and (i — 1) side information samples.
The encoding operation, however, remains as in [2], i.e., a mapping from the [-product source alphabet to an
index set of size 2V where R is the rate of transmission. This general compression model takes this important
physical signal delay into account in its real-time reconstruction. We refer to this model as source coding with

feedforward [3, 4]. Note that in this problem, the encoder is not realtime and the decoder is realtime. In this



Time 1 2 3 4 5 6 7 8 9 10

Source X1 X2 X3 X4 X5 X6 X7 Xg X9 X10

Encoder - - - - W - - - - A\

Side info - - - - - - Y1 Y2 Y3 Y
A A A A A

Decoder X X, X, Xy X5

Figure 2: Time-line: delayed observations

work, as a first step, we consider an idealized version of this problem called source coding with noiseless feed-
forward [5]. In this model, we assume that noiseless source samples are available with a delay at the decoder, i.e.
Y = X. From Fig. 2, it is clear that the model with Y = X is meaningful only when the delay is at least [ + 1,
where the block length is [. However, for a general Y, any delay leads to a valid problem. In the first part of this
paper we consider Gaussian source coding with noiseless feedforward in a point-to-point setting. We provide a
deterministic block-coding scheme with linear processing and scalar quantization that is asymptotically optimal
in terms of achieving the rate-distortion function and the source coding error exponents.

In the second part we consider a multiterminal extension of this problem. In this paper we formulate the
problem of multiple description source coding with noiseless feedforward and obtain the optimal rate-distortion
region and the optimal error exponent region for the Gaussian sources. Here the encoder wishes to represent
the source into 2 descriptions (for the case of 2-channel multiple descriptions) which are mutually refineable.
The decoding structure involves three decoders having access to 3 different subsets of these two descriptions
(except the null set). The goal is to produce these descriptions which simultaneously give as low distortions
for the three decoders as possible. All the decoders are realtime while having access to delayed noiseless source
samples. In other words, the two descriptions can be synergistically combined to give a reconstruction of the

source that is more enhanced than that produced individually.

Related and prior Work: The problem of source coding with noiseless feedforward arose in a different
context of competitive prediction in [4], where it was shown that for IID discrete sources with additive distortion
measures, feedforward does not reduce the optimal rate-distortion function and does not increase the optimal
error exponent with block coding. The model of source coding with general feedforward was defined in [3, 5]
as a variant of the problem of source coding with side information at the decoder, and preliminary results

of Gaussian source coding with noiseless feedforward were reported. In [6], an elegant variable-length coding



strategy to achieve the optimal Shannon rate-distortion bound for any finite-alphabet IID source with feed-
forward was presented, along with a beautiful illustrative example. In [7], the optimal rate-distortion function
and the random coding error exponents for general discrete sources were obtained for noiseless feedforward with
arbitrary delay. Loosely speaking, for the case when the delay is (I + 1), the optimal rate-distortion function is
given by the minimum of directed information [8, 9, 10] from the reconstruction sequence to the source sequence,
which is given by l

I(X' = X1 =3 I(XR X xR, (1)

k=1

where I(-;-) denotes mutual information [11]. It was also shown that feedforward does improve the optimal
rate-distortion function and the optimal error exponents for sources with memory and/or with non-additive
distortion measures.

The problem of source coding with feedforward is also related to source coding with a delay-dependent
distortion function [12] and causal source coding [13] and real-time source coding (see [14] and references
therein). Further, note that the notion of directed information is also very similar to certain measures of linear
dependence used in economics to determine causality of certain interaction between two time series [15, 16, 17].
For example, one may wish to measure the amount by which prime interest rates affects unemployment rate.
Hence the model of source coding with feedforward might have further connections to economics and control
theory.

Multiple description source coding without feedforward has been studied in great detail in the literature
[18, 19, 20, 21, 22, 23, 24, 25] motivated by applications to robust information transmission over packet erasure
networks. The optimal rate-distortion region for Gaussian sources with mean squared error distortion measure
was determined by [19] for the case of two descriptions. A design of multiple description quantizers was proposed
in [22]. For a recent tutorial on the constructive approaches see [26]. In [27], multiple description source coding
with side information at the decoder is considered.

In summary, the main contribution of this paper are the following:

(1) We obtain a deterministic block coding scheme which achieves the optimal Shannon rate-distortion function

for IID Gaussian sources with mean squared error distortion measure.
(2) We show that this scheme is optimal in terms of its source coding error exponent.

(3) We give a formulation of the problem of multiple description source coding with noiseless feedforward
and evaluate the optimum rate-distortion region for Gaussian sources with mean squared error distortion

measure for two channels with a deterministic block coding theorem. In particular it is shown that there is



no penalty to be paid for constraining the descriptions to be mutually refineable. That is, each of the three

decoders can achieve their respective optimal point-to-point rate-distortion functions simultaneously.

(4) In the case of symmetric multiple descriptions, we show that the above deterministic coding is optimal
in terms of its multiple description source coding error exponents. In particular, it is shown that each
of the three decoders can achieve their respective optimal point-to-point source coding error exponents

simultaneously.

In this paper, we consider only fixed-rate source coding error exponents along with block quantization
systems. However, we refer to them as just error exponents for conciseness. We remark here that although in the
point-to-point setting, the presence of feedforward does not improve upon Shannon’s rate-distortion function and
the optimal source coding error exponents for IID sources with additive distortion measures, there is a dramatic
reduction in the complexity of the encoding and decoding operations. Further, in the multiterminal setting,
even for IID sources with additive distortion measures, feedforward does improve the optimal rate-distortion
region. We also note that the problem of source coding with feedforward can be considered as a functional
dual [11, 28, 29, 30, 31] of the problem of channel coding with feedback. Hence the block-coding schemes that
are proposed for source coding with feedforward in this paper can be considered as some sort of duals to the
schemes considered in [32, 33, 34] (also see [35]) for channel coding with feedback both for the point-to-point
as well as the multiterminal settings.

The paper is organized as follows. In Section 2 we formulate the two problems as mentioned above. In
Section 3 we consider point-to-point source coding with noiseless feedforward, and in Section 4 we consider

2-channel multiple description source coding with noiseless feedforward, and Section 5 concludes the paper.

2 Problem Formulation

Consider a stationary discrete memoryless source X with a probability distribution p(z) with some alphabet
X, and a reconstruction alphabet X'. The encoder observes a sequence of independent realizations of the source
from the given distribution. Associated with the source, there is a distortion measure d : X' x X — R*. The
distortion measure for a pair of sequences of length [ is the average of the distortions of [ samples: d(x,%x) =

(1/0) 2221 d(x;, %;), where x; and Z; denote the ith samples of x and % respectively.

Definition 1: A code with parameters (I, 0, ®) for source coding with noiseless feedforward would involve an
encoding function:

F: X' {1,2,...,0}, (2)



and a sequence of decoding functions for k =1,2,...,1,
Gr:{1,2,...,0} x X' 5 &, (3)

such that Ed(X, G(X)) < ®, where G(X) denotes the [-length reconstruction vector.
That is, the decoder receives the index transmitted by the encoder, and to reconstruct the ith sample
(for i = 1,2,...,1), it has access to all the past samples of the source till (i — 1). The goal is to minimize

E[d(X,G(X))] for a given rate R = (1/1)log®.

Definition 2: A tuple (R, D) is said to be achievable for source coding with feedforward if Vv > 0, there exists
a code for sufficiently large [, with parameters (I,0, ®) such that %log@ <R+vand ® <D +v.
Let Rys(D) denotes the infimum of R such that (R, D) is achievable. A schematic of this problem is shown

in Fig. 1. In this paper we consider a special case of IID Gaussian source with zero-mean and variance o2, and

A
X Rate R X
Encoder Decoder

Delay

Figure 3: Source coding with feedforward: the decoder, to reconstruct any source sample, has access to all the
previous samples in addition to the quantized version of the source.

with mean squared error as the distortion measure.

Consider multiple description source coding in the presence of noiseless feedforward as shown in Fig. 4. The

Decoder 1 XL
1
X Rate R, ),\(
Encoder Decoder 0 —2%~
Rate R, T
X
Decoder 2 —2~
Delay T

Figure 4: A schematic of 2-channel multiple description source coding with noiseless feedforward: delay=Il + 1,
blocklength of the encoder=l.



general problem of 2-channel multiple description source coding with noiseless feedforward can be formulated as
follows. Let X for £ = 1,2,... be a sequence of IID random variables drawn according to a known distribution
p(z), and let X' denote its alphabet. We are given three reconstruction alphabets /’\?0, X, and X». There are
three distortion measures: d; : X x X; — Rt for i = 0,1,2. The distortion measure on I-sequences is given by

the average per-symbol distortion.

Definition 3: A code with parameters (I, 01,05, ®9, P;, ®5) for the problem of 2-channel multiple descriptions

source coding with noiseless feedforward would involve two encoding functions:

Fi: X' = {1,2,...,0;} fori=1,2, (4)
and three sequences of decoding functions for £k =1,2,...,1:
Gir ={1,2,...,0;} x X' 5 X, fori=1,2, and (5)
Gor ={1,2,...,0:} x {1,2,...,0,} x X' 5 X, (6)
such that for i = 0,1, 2,
Ed(X,Gi(X)) < ®;. (7)

In other words, for i = 0, 1, 2, the ¢th decoder has access to previous noiseless source samples to reconstruct

the present sample. The encoders are not real-time, whereas the decoders are so.
Definition 4: A tuple (R1, R2, Do, D1, D2) is said to be achievable if for arbitrary v > 0, there exists for
sufficiently large I, a code with parameters (1,01, ©2, ®o, ®1, ®2) such that

0; < 2!E:+v)  and ®; <Dj+vifori=1,2and j =0,1,2. (8)

The goal is to find the optimal rate-distortion region which is given by the convex closure of the set of all
achievable tuples. For the rest of the paper we will devote our attention to IID Gaussian sources with mean

squared error distortion measure.

3 Point-to-point source coding with noiseless feedforward

Notation: The proofs of all lemmas in this paper appear in the Appendix. All logarithms are with respect to the

natural number e. Upper case letters denote random variables and matrices. Bold faced letters denote vectors.



Recall that the optimal Shannon rate-distortion function R(D) at distortion D, without feedforward for IID
Gaussian sources with zero mean and variance o2 is given by

R(D) = % log %. (9)

In the following we describe a deterministic fixed-rate block-coding scheme involving an encoder-decoder
pair with a structure as given above. Consider a parametrized version of this function where for any 5 > 1, the
rate and distortion point (R(8), D(8)) on this function is given by (log(83),0%/3%). When 8 = 1, then rate is
nearly zero and when 8 & oo, then distortion is nearly zero. In the following we show that Ve’ > 0 and € > 0
and 8 > 1, there exists a sufficiently large number [(8, €, €'), such that the proposed scheme achieves distortion
of D < 0?/3? + € with rate R = (1 + ¢') log(3) when the block-length [ associated with the scheme is chosen

such that [ > I(8,¢,¢€').
3.1 Encoder and decoder

Note that the encoder has to quantize [ source samples taking into account the fact that to reconstruct any
source sample, all the past source samples are available. Further, after the reconstruction of each source sample,
the decoder observes the corresponding sample for the reconstruction of the next sample. Hence the decoder
has access to the exact value of the quantization noise unlike the case when there is no feedforward, where the
decoder never learns about the quantization noise. The encoder has to exploit this and communicate important
information to the decoder through this quantization noise. In essence, the encoder has to anticipate the
information that would be requested by the decoder, and slowly convey it through the quantization noise of
each source sample, in addition to the index transmitted.
Fix # > 1, and sufficiently small € > 0 and €' > 0. Consider the following function of I source samples:

Xo X3 X4 X
Y:X1+?+ﬁ+ﬁ+...+w,

where [ denotes the block-length of the scheme.

(10)

It can be easily shown that Y is Gaussian with mean 0 and variance given by

0.2(1 _6—2l) 0262
7 SET

For the first block of I source samples, ¥ will be a function of {X;, X»,...,X;}. Consider a uniform scalar

E(Y?) =

(11)

quantizer with M levels and bounded between —A/2 and A/2, where A and M will be determined later. Thus
the step size of this quantizer is A/M. The encoder quantizes only Y using the above quantizer and the index
of the cell containing it is sent to the decoder without entropy coding. Let Y denotes the quantized version of

Y, where the set of mid-points of the quantization cells denote the alphabet of Y.



The decoder reconstruction is given by the following scheme:

A

Xi=B(X; 1 —eXi), (12)

fori=2,...,1 and X, = cf/', where c is a constant which will be determined later. The encoder and decoder
start over for the next block of [ samples.

The intuition behind this strategy is that since the later source samples get more help in terms of feedforward,
we give a boost for the initial source samples by choosing the coefficients in the linear combination to follow a

geometric progression.

3.2 Asymptotic Analysis

Theorem 1: For the proposed quantization scheme, if we choose ¢ = 62 , M = pl0+<) and A = B¢’ then

the average expected distortion satisfies

2
~ o
E(Xk - Xp)? =

lim -5 (13)

l—o0

1
[ 4

™~

Proof: Let us denote the quantization noise as Q =Y — Y. Now we calculate the average expected distortion

which is given by

l
Y B(X; - X,»)Z’] . (14)

Note that each of the terms in this average expected distortion, constitutes three components: a) distortion
due to quantization, b) distortion due to the collapse of the I-length source vector into a scalar YV, and ¢) a
crossterm induced by the first two components. To simplify the exposition, we consider these three constituents
separately, and evaluate them.

Let for k= 1,2,...,1,

X
Sp=(1-0c)Xp —c Z = (15)
m=k+1
Now the kth term in this summation can be written as
E(Xy — X3)? = E(Sp —c8"1Q)? (16)
< E(SP) + P VEQ?) + 2085 [E(SHE@Y)]. (17)
Note that
2 2 (1 _ p-2(—k)
2 _ 2 2, C0 (1 B )
ESy)=(1—-c¢)c" + 71 . (18)
Hence the average distortion can be written as
l 2.2 2 —a1 2 2\ (321
1 G \2 2 2 o’ ﬂca(l—ﬂ ) cE(Q*) (B - 1)
— L — < (1= —
l;E(Xk X2 <(1-e)’o T 1) + 1 1) +¢, (19)



where £ denotes the crossterm. Our strategy is to make the contribution of the quantization noise in the average
distortion to go to zero asymptotically as a function of the block-length [. This then implies that £ also goes to
zero as | — 0o. We then optimize the rest of the terms (which are asymptotically non-zero) with respect to c.

Let us choose M = pI+¢) A = gl¢'_ Let E denote the event that |Y| > A/2. Thus we have

A? 1
E(Q*|E%) < 2 (20)
We have the following lemma for the complementary event.
Lemma 1:
S(E(Yz))3/2 A2
PE)E(Q*|E) < ——~— —_—— 21
( ) (Q | ) — \/ﬂA exp 32E’(Y2) ( )
Using this lemma we note that
621 /82l 621
TEQ) < SBE@E)+-P®mEQE (22
1 3133 nl(2—¢") 2le' (2 _ 1
I 1V2r(B2 —1)3/2 32022
— 0asl— oo. (24)

2o

571

Further, it can be easily shown that (1 —¢)%0? + achieves its minimum of g—z when ¢ = (82 —1)/3%. Next
by noting that

E(S}) <o?, Vk=1,2,...,1, (25)

and using (24) we provide an upper bound on the cross term ¢ as follows:

l
£ = T BB (26)
k=1
l
< EE@Y (1)
k=1
2co 5
< mﬂlvE(Q) (28)
— 0asl— oo. (29)

Hence
2
s O

=

Thus we have shown that the proposed scheme is asymptotically optimal in terms of achieving the optimal

l
1 N

I—so00 |
k=1

(30)

rate-distortion function.

10



Before proceeding further, in summary, we note that with noiseless feedforward, for arbitrary rates, the
proposed scheme uses uniform bounded scalar quantization followed by linear processing to asymptotically (as
a function of blocklength) achieve the optimal rate-distortion function. Although the fraction of the average
distortion contributed by the quantization noise is asymptotically zero, enough bits have to be expended to
make this contribution decay to zero sufficiently fast as a function of blocklength. Hence the parameters of the

scalar quantizer have been chosen such that this behavior is manifested.
3.3 Source coding error exponents with noiseless feedforward

In this section we consider the source coding error exponent of the proposed scheme. Note that for the above
scheme the cross-term &£ goes to zero for large blocklength I. To make the large deviation analysis tractable, we
consider a small modification to the above quantization scheme which results in the cross term being exactly

equal to 0.

Definition 5: For a given rate R and target distortion D, a real number E is said to be an achievable error
exponent for source coding with feedforward, if Vv > 0, sufficiently small, there exists a source code with
feedforward with parameters (I, ©, ®) such that

1
—logO < R+v, and ——logP

l >FE—v. (31)

[

1

72 (Xp—Xp)?>D
k=1

The optimal source coding error exponent E¢¢(R, D) is defined as the infimum of E such that E is an achievable
error exponent for rate R and distortion D.
Recall that the source coding error exponent [36, 37, 38] (also see [39] and the references therein) without

feedforward for the same source is given by

D2%E D
—1—log <;> - QR] . (32)

Modified encoder and decoder: Fix 8 > 1 and block-length [ as before, and let

X X X
YI:aX1+72+ﬂ_§+m+/3’—j“

where a is some constant which will be determined later. The encoder quantizes Y’ using a uniform scalar

(33)

quantizer with M levels and bounded between —A/2 and A/2. Let Y denote the quantized version of Y with
mid-points of the cells being used as before. Let M = BIA+e) and A = B¢ as before. The decoder is given by

A

Xi=B(X; 1 —eXi), (34)

11



fori=3,4,...,1, X; = (1/a)Y", and X5 = Bac(X; — X;). Let ¢ = (82 —1)/%, and Q =Y’ —Y".
Our goal is to choose a such that the crossterm is exactly equal to 0. Further, the asymptotic behavior of

this scheme is the same as that of the scheme of the previous section. It is evident that only the reconstruction

of X is different in these two schemes. Hence, for the modified scheme define S}, = Sy, for k =2,3,...,l and
1 X
S == E —_ 35
1 a — Bm,1 ( )

Now by noting that E(X — X;)? = B(S} — 5 1Q)? for k=2,3,...,1, and E(X, — X,)? = E(S} — (1/a)Q)?,

we have
25’ QQ Xm
B Z ﬂm 1’ and (36)
! Ly
=3 28,Q8" " = =2eQ > Gt (37)
k=2 m=2
Hence to make the crossterm equal to 0, we choose
32
a g (38)
Now, one can note that the asymptotic performance remains unchanged as
1< o?
fim 7> B(Xe = %) = 25 (39)

Now we present the main result of this section.
Theorem 2: The above scheme achieves the optimal source coding error exponent with feedforward, which is
given by

De*f 1 1 D

Proof: First we prove that (i) VR > log(3), the probability that a source word is not reconstructed with average
distortion less than (’BLQ, for any 6 > 1, decays exponentially fast with block-length, and the exponent depends
only on #, and is independent of R, o2 and 3, and (ii) the exponent for R = log(3) is 0 V6§ > 1.

Now, the source distortion has only two components, one contributed by quantization and the other by the
dimensional collapse. In other words

l

[ 1 62[
z:: X, — Xp)? <7 2:(5’,'6)2 + TQ2. (41)

k=1

N|,_;

By using the following two lemmas we get an exponential bound on the first component and a doubly exponential

bound on the second component.

12



Lemma 2: V6 > 1, we have

1 T o
7802 < e Ol (42)
=1
where
-1 1
E* =(—)—=1 4
0= (45 - lose. (43)

and o(z) denotes a function where Vg > 0, 3zo > 0, such that VY > x, implies 0 < o(z) < gz. Note that E*(0)
is a monotone increasing function of 6 for 6 > 1.

Lemma 3: For any § > 0, sufficiently small,

VW Q> 5] < spe 20 (44)

where s1, $o and s3 are functions of 3, [ and €”:

B 4003 B B? -1
RNV 2 S T e

Note that s; > 0 for i = 1,2, 3. Now, the error exponents of the proposed scheme can be evaluated as follows.

and s3 = 2¢' log 3. (45)

Fix some 6 > 1, and a sufficiently small 6 > 0 such that (02;?”2 > §. Consider the following set of inequalities:
!
]. > N2 902 2 ,82 902
P|s ;(Xi - X2 > F] Zs > 5 (46)
0 21
< 252>i—5 [ﬂ Q2>6] (47)
* 5 R
< e (= (efi)]ﬂ’( ) 4 sem 2" (48)

2
Since the above inequality is true V4§ such that (0 62) > & > 0, the source coding error exponent is given by

E*(#). Further note that this exponent is valid for R > log(5). When R = log(8), we have s3 = 0, implying
that the exponent is 0.

We will now restate this in the standard form. Fix a target distortion D and rate R, such that R > % log [%] .
Fix also a perturbation parameter v > 0, and sufficiently small. We now need to choose parameters § and
such that 1) 8 is as large as possible, 2) GBL; = D, and 3) R > logp.

Choosing 3 = e~ we have

De2(R—V)
== (49)
Hence, Yv > 0, and sufficiently small, we have
!
1 1 5o De*B=v) 1 1. D
_Z Z X >-— - _°Z - _ — ).
Jim —2log P | 5 Y (Xi-X)?>D| > o= 5~ 5loe— —(R-v) (50)

i=1

13



This implies that for distortion D and rate R such that R > 1log(c?/D), the source coding error exponent for

the proposed scheme is equal to

De2B 1 1 D
A a3 51
202 2 2 B85 (51)

The optimality follows from the fact that in the case of point-to-point source coding, noiseless feedforward does
not increase the error exponent for IID sources with additive distortion measures [4, 7].
O

At a high level, note that the error event, i.e., the event that a source word is not reconstructed with
distortion less than D, is the union of two error events. The first error event, which can be considered as the
encoder error event, happens when Y’ goes beyond the bound of the scalar quantizer. The second event, which
can be considered as the decoder error event, happens when the first event does not occur and the distortion
due to dimensional collapse exceeds D. The first event decays doubly exponentially fast (which follows from
the proof of Lemma 3) and the second event decays exponentially fast with blocklength.

It is also worth noting the following interesting properties of the proposed deterministic scheme. The index of
the quantization cell containing Y is transmitted to the decoder without any entropy coding, yet the proposed
scheme approaches the optimal rate-distortion bound. This implies that the entropy of the quantization index

per source sample asymptotically approaches R nats for all sufficiently large I.

4 2-channel Multiple description source coding with noiseless feed-
forward

First, recall from [19] that the optimal rate-distortion region for 2-channel multiple description source coding

without feedforward for the IID Gaussian source with variance o is given by D; > o2e™251, Dy > o%e~2F2 and

2,-2(R1+R2) . —_
gZe 2R1HR2) )

Dy > 1—(VII-VE)? if 1T > (52)
o2e 2(Fithz) otherwise,

where %I = (02 — D1)(0% — D) and 0*Z = DDy — ote 2(Fathz),

In this paper we restrict our attention to Gaussian sources with mean squared error criterion, i.e., X3 ~
N(0,02), with X; = R and d;(z,#) = (z — ) for i = 0,1,2. In the following we obtain the optimal rate-
distortion region for this problem. We provide a deterministic scheme that achieves the boundary of this
region. We also evaluate the multiple description source coding error exponents for the proposed scheme for the

symmetric case.
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4.1 Asymptotic Analysis

Theorem 3: For an IID Gaussian source with variance 0% and squared error distortion measure, the optimal
rate-distortion region for the problem of 2-channel multiple description source coding with noiseless feedforward
is given by

Dy > cg%e 21 D, > o2 22 Dy > gl 2(Fath) (53)

In the following we provide a direct and a converse coding theorems. One of the implications of this theorem
is that although for memoryless sources with additive distortion measures, the presence of noiseless feedforward
does not reduce the optimal rate-distortion function in the point-to-point source coding, it does improve the
optimal rate-distortion region for such sources in the multiterminal setting. Further, there is no penalty to
be paid for constraining the descriptions to be mutually refineable for the Gaussian sources. It remains to be
seen whether the following proposed method can be extended for general n-channel multiple descriptions where
n > 2.

Deterministic direct coding theorem: Consider a parametrized version of the boundary of the above
rate-distortion region. Let 81 > 1 and f2 > 1. We propose to achieve the rate-distortion tuple:

(1os(61) box(62), 772,22 %) (54

o
'BRB3 By B3
In other words, we show that Ve’ > 0 and € > 0, and 81 > 1, B2 > 1, there exists a sufficiently large number
1(B1, B2, €, €) such that the proposed scheme will achieve distortions of Dy < 0%/8? +¢€, Dy < 02/B3 + €,
Do < 0%/(B%53) + €, with rates R; = (1 + €')log(5;) for i = 1, 2.
Fix 81 > 1, B2 > 1 and sufficiently small ¢ > 0 and ¢’ > 0. Consider the following linear combinations of
X1, X,, ..., X for all large even [:

Xy X3 Xy X5 Xg X;

Vi=Xi+ 224+ 22+ o+ 24+ 22+ 55

TR TE TR = (55)
X X3 Xu X5 X X

Vo=-Xi+ =242 -4 24 56
h RTE AR = (56)

204 _ =2l
Note that for i = 1,2, Y; is Gaussian with zero mean and variance 051—766’2)

above by 0237 /(37 — 1). Now for i = 1,2, consider a uniform scalar quantizer E; with M; levels and bounded

. The variance of Y; is bounded from

between —A;/2 and A;/2, where M; and A; will be determined later. The encoder simply scalar quantizes Y;
with F;, and the index of the cell containing Y; is sent on the ¢th channel without entropy coding for i = 1, 2.
Note that the step size of E; is A;/M;. Let Yl denote the quantized version of Y;, where the midpoints of the

quantization cells denote the alphabet of Y; fori = 1,2.
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Consider the following three decoders. Let Xik denote the reconstruction of Decoder-i for the kth source

sample. Decoder-1 uses the following reconstructions:

Xip =Xy (hor) — a1 Xp1) fork=2,3,...,1, (57)
and Decoder-2 uses the following reconstructions:

Xo = —fo(Xob_1) — c2Xp—1) for k=2,3,...,1, (58)

Xu = C1Y1, and X21 = —02572- (59)

Decoder-0 uses the following reconstructions:
S C3 Cq o
Xor = =X+ —Xop, fork=1,2,3,...,L (60)
C1 C2

In the following we optimize the distortions over ¢, ¢z, c3 and c4.

The intuition behind this strategy of encoding is the following. Since later samples get more help from
noiseless feedforward, we want to give a boost for the initial samples as in the case of point-to-point source
coding. Hence the weights in the linear combination are chosen to satisfy a geometric progression. Further, it
turns out that the asymptotic performance of such a system for point-to-point transmission does not depend
on the sign of these weights. So to help Decoder-0, we choose the signs of these weights in such a way that the
distortion due to the dimensional collapse for Decoder-0 is minimized. Further, as in the case of point-to-point
source coding, here too, the encoder has to slowly communicate important information to the three decoders
through the quantization noises of each source sample, in addition to the two descriptions transmitted, while
maintaining the ability of these descriptions to be mutually refineable.

Since we are quantizing only two random variables, Y7 and Y5, there are three components in the distortions
of the decoders (as in the previous section): the first due to the quantization noise, the second due to the dimen-
sional collapse, and the third due to the crossterm. In the following we carry out the analysis of the distortions
for the three decoders. At a high level, our strategy is to make the contribution due to the quantization and
the crossterm to go to zero as [ — co. One more point which is worth noting here is that we do not use entropy
coding while attaining the optimal rate-distortion region as in the previous section.

Let us denote the quantization noise as Q); = Yl — Y;. Using the analysis of Section 3, by choosing ¢; =
(82 — 1)/82, My = B0 and A; = B¢, it can be shown that

l 2

1 A o
lim =Y E(Xp - X11)? = =.
fim, 7 2 B = X =
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Using similar analysis it can be shown that

l
.1 f oy O
fim 737 B(Xe = Xo0)* = 73, (62)
k=
by choosing ¢ = (83 —1)/63, M, = BQ(HEI) and Ay = . Note that for the chosen quantizers, E(Q2) =0
as [ — oo.
Now let us consider the average distortion for Decoder-0. Let for k = 1,2,...,1,
l . .
Su=(-eo—e)Xe- 3 (o4 0t ) X (63)
m=k+1 1 2
Note that
(S ) (1 — 5 — 04)202 n o C%(]_ — 61—2(1—’9)) N 026421(1 _ 62—2(1—/6)) B 20.20304 (1 _ (_6162)7071«:)) (64)
o At -1 g3 —1 Bifz +1
Hence note that
l
1 o2c2 0202 250402 2¢3¢402 P11 P2
SNTESw)? < (l-cs—c)od 4 ot g 65
2.2 2.2 9 2
= (1—c3—cs)?0? + 7% g GBUT a5l 0. (66)

+ —
Bi—1 p5—1 pifa+1
It can now be shown that this limiting expression achieves its minimum value when c3 and ¢4 are chosen as

(B =1D)(B1B2+ 1) (B3 = 1)(B1B2+ 1)

c3 = , and ¢4 = , 67
"= BB 6+ B) = BB (B + Bo) (67
which results in
1< o2
i, 7 2 B(Son)” < g o
Now let us look at the contribution of the quantization noise in the average distortion:
!
1 . 2 EE(Q?)B?  cAE(Q2)B3  2c3c4(Bif2) /E(Q?)E(Q32)
- E e k—1 + -1 kc k—1 < 3 1/M1 + 2 + 1 2 69
D R Ny e {51 G-y
— 0 asl— oo, (70)

where we have used the fact that as [ — oo, (B2 E(Q?))/l — 0 for i = 1,2. Looking at the cross term in the

average distortion,

l § E(0O32)A!
T3 T B SR + Vet BlSuQu)] < T |G i Y
— 0 asl— oo, (72)
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where we have used the fact that

2.2 2.2
ocy o°cy
+

E(Sgk) S (1 —C3 — C4)2 Bl _ 1 ,8% _

. £9. (73)

Hence it follows that in the distortion for Decoder-0, the contribution due to the quantization noises )1 and Q-
also goes to zero as [ — oo, and the contribution due to the cross terms (i.e., terms like E(SoQ;) for i = 1,2)

also goes to zero as [ — oo. Using these results it follows that

2
< .
- BB

Hence we have shown that the tuple (Ry, Ry, 0227 2(F1tHz2) 529-2F1 529—-2F2) is achievable.

Converse: The converse coding theorem follows immediately by noting the following fact [4, 7]. In the point-
to-point case, the optimal rate-distortion function for a memoryless source with additive distortion measure

with noiseless feedforward is the same as the Shannon rate-distortion function.

4.2 Multiple description source coding error exponent region for the symmetric
case

To obtain the error exponents for the above system, we need a more refined argument. In the following

we consider the case of symmetric multiple description source coding where Ry = Ry = R and D; = Ds,

and evaluate the optimal multiple description source coding error exponents. Hence let 1 = 2 = . The

corresponding analysis for the more the general asymmetric case is highly cumbersome and intractable at the

time when this paper is written. The key idea is to make the crossterms in the average distortions exactly equal

to zero for all the three decoders, only then the large deviation analysis becomes tractable.

Definition 6: For a given rate pair Ry, Ry and a tuple of target distortion D; for i =0, 1,2, a tuple (Ey, E1, Es)
is said to be an achievable error exponent tuple for multiple description source coding with noiseless feedforward,
if Vv > 0, sufficiently small, there exists a multiple description source code with noiseless feedforward with
parameters (I, ©1, Os, o, P1, ®2) such that for i =1,2 and j =0,1,2,

l
1
71080; < Ri+v, and ——logP Zxk— 2> D;| >Ej—v (75)

The optimal error exponent region &,,q4¢y denotes the convex closure of the set of such achievable error exponent

tuples.
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Consider the following modified encoder and decoders.

Encoder and decoder: Fix 8 > 1, even [, M = p!+<) and A = g''. The encoder is given in the following.

Let
X X, X X,
Yl':aX1+bX2+cX3+74+6—§+B—§+...+B,—f3, (76)
Xy X5 X X
Yg:—aXl-f-bX2—CX3+7—§+§—---,+W, (77)

where constants a, b, and ¢ will be determined later. The joint encoder quantizes Y, and Y using two uniform
scalar quantizers with M levels and bounded between —A/2 and A/2. Let Y} denote the quantized version of
Y,/ for i = 1,2 with midpoints of the corresponding quantization cells denoting the alphabets of Yi’ . Then the

encoder sends the index of the cells containing Y/ on the ith channel. The ith decoder for i = 1,2 is given by

) o 2_1

Xik = (—l)l 16 (Xl,(kl) — %Xk_1> 5 for k= 4, 5, . ,l, and (78)
o i1 o i1 (1 o i1 L s
Xn =(-1)"dY), Xp=(-1)""e mXil -Xi), Xs=(C1)"'f EXQ -X5, (79)

where the constants d, e, and f will be determined later. The reconstructions for Decoder-0 is given by

. B2 +1r, .
KXok = 257 [Xlk +X2k] ; (80)
for k=4,5,...,1, and
N .5 N ~ h A N ~ 7 A N
Xo1 = E[Xn + X Xoz = E[XH + Xpo]  Xos = ?[Xm + Xas), (81)

where g, h,i are another set of constants to be determined later. In the sequel we will choose these 9 constants
such that the crossterms in the distortions of the three decoders are exactly equal to 0.

Note that in (76,77) we have modified the coefficients of the first three source samples. One might ask why
three? It turns out that if we had modified the coefficients of only the first two samples, then there would be 6
unknowns and 7 equations. For the case of three, the number of unknowns is equal to the number of equations,
which is 9. For the case of 4, there would be 12 unknowns and 11 equations, and so on. Hence for the case of
4, we have more degrees of freedom in choosing these coefficients.

The following theorem gives the main result of this subsection.

Theorem 4: The above scheme achieves the optimal multiple description source coding error exponent region

Emars(R, R, Dy, D1, Dy), which is given by the set of all tuples (Eop, E1, E>) such that for i = 1,2,

E; < -2 , 2

S5 T3 gl R (82)
D064R 1 1 DO

By < - Zlog=22 _9R 83

0= T3 3 %R (83)



Proof: First let us consider the average distortion of Decoder-1. Define for k = 4,5,...,1,

l

Xk ﬂ2 -1
§to= Tk , 84
1k BQ ka:Jrl Bm k ( )
and
Sty = (1 - ad) X, — dbXs — deXs — gf 5 (85)
l

Sty =(1—be)Xs —ecXs— > % (86)

m=4

[
Xm

Sts=(1—fo)Xs— Y gm_3. (87)

m=4

Now note that

Ly 1y ~ (52— 1)
72 (X5 — X11)? :jz [(S16)*]+ [(@® +€* + f )+2Tﬂ2(k73) E(Q) +2B(Q:&)  (88)
k=1 k=1 =

k=4

where & denotes the crossterm, which can be evaluated as

l
& = —d(1—ad) X1 + (d®b—e(1 —be)) Xo+ (d*c+e’c— f(1— fc)) X3+ {CF +e* + f2 - B - 1} > X (89)

2 k—3
g =B
Hence to make ¢ = 0, we need
2
-1
ad =1, d2+62:§, d2+e2+f2:£, d2+62+f2:ﬁ62 ) (90)
Similarly, for Decoder-2, by defining for k =4,5,...,1,
X, -1 ¢ X
! m—~k m
2k = p9 T 2 Z (_1) m—k and (91)
B B S g
d dxX
Spy = (1 — ad)X; + dbX, — deXs — > (—1)m*35mf§3, (92)
m=4
l l
4 eX o fX
Sy = (1 —be) Xy +ecXz— » (=)™ 4,8’”1713’ and Sjy=(1-fo)Xz— Y (-1)™ 3ﬂmj”3, (93)

m=4 m=4

it can be shown that to make the corresponding cross term in the average distortion of Decoder-2 exactly equal
to 0, we again need the conditions given in (90).
Next let us look at the average distortion for Decoder-0. Let us define for & = 4,5, ...,
1

X, Bt-1
m=k+1

Bm (14 (=1)m ), (94)
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and

Sor = (1 —29a) Xy — 2g¢X3 — Z Bm (L (=1, (95)
Shy = (1 — 2hb) X, — Z Bm L+ (1)), (96)
Sp3 = (1 — 2ic) X3 — Z Bm 3 (—1)™~3), (97)

Using these definitions, we can rewrite the average distortion of Decoder-0 as

% kil:l (Xi — Xox)? = % zl: E[(Sor)?] + K0 + 2E(Q1&h1) + 2E(Q2&,), (98)
where _ _
&y = —9(1 —2ga) Xy — h(1 — 2hb) X5 + (2¢°c — i(1 — 2ic)) X5 + [h2 - B4B_6 1] 264 Bf(n’fg (1+(=1)"""*) (99)
o =
+ {(g +i 454 } mg (—1)™®y, (100)

4 _
€y = g(1 —2ga)X; — h(1 — 2hb) Xy — (2g%c — i(1 — 2ic)) X3 + {h2 _b 1} Z X"_’3 (14 (=1)™"%) (101)

!
. 64 - ]- Xm m—
-l - T | S g e, (102)
and ky, denotes the term involving moments of the quantization noises. Note that we have used the following

two facts in deriving the above expressions for £j; and &},:

l l

4 4 !
g 3 Stwam = P [Z A )+ Y X’”5<1+<—1>m—5>], (103)

m—3 m
m=4 m=4 B m=>5 6

l

4 l 4 _ l
I G [Z sy - Y B§T5<1+<—1>’”5>] - G0y

m=4 m=>5

Thus to make the cross terms exactly equal to 0, we need

4_1 4_1
2ga=1, 2hb=1, ¢*+i® = — 64/34 ; h2:64,86 :

2, .2
) +17 =
2c g !

(105)

Consider the following lemma.
Lemma 4: There exists a solution, where all the 9 variables are real and finite, to the 9 equations as defined

n (90) and (105), V3 > 1.
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Distortion analysis of Decoder-1: Let us consider the rest of the terms in the average distortion of Decoder-1.

The condition that £ = 0 can be rewritten as
-1

S = “Tdg lz Bm_451m] —eSiy — fSis. (106)

m=4
Using this relation we have the following lemma:

Lemma 5: V6 > 1, we have

< efl[E*(G)]Jro(l)‘ (107)

l
1
Pt S st > 2
k=1

Using the analysis of the previous section, one can show that P(EE}) goes to zero doubly exponentially fast as

a function of the block-length I, where E] denotes the event that ¥/ > A/2. This in turn implies that Yv > 0,

!
De*F—v) 1 1. D
hm——logP ZXk—Xlk >D]2627———§10g§—(]%—1/), (108)

[—o0

2

which is the desired result. A similar result can be obtained for Decoder-2.

Distortion analysis of Decoder-0: Now we can analyze the rest of the terms in the average distortion of Decoder-

0. Note that the condition given by &), = 0, and &), = 0 as discussed above, can be rewritten as

4 1 l
9541 + hShy +1iShs = —’82? Z Sp,3™ 2, and (109)
m=4
B-1y !
~9Sp1 + hSpe —iSp3 = g Z (=)™ *Sh, 8™ 2. (110)
m=4
Using these two relations, we can get the following result:
Lemma 6: V6 > 1, we have
1¢ fo?
P s > ISkl > T < e HETO)+e), (111)
k=1

Now looking at the contribution to the average distortion from the quantization noise, we get

I
fo =7

(9 + %)@ - Q2 + (@1 + Q) +§j{%4

B Q1 + (—1)’“4622)} ] : (112)

We have the following lemma about P(ko > §), V§ > 0, the probability of the event regarding the quantization
noise:

Lemma 7: V§ > 0 sufficiently small, we have
Plity > 8] < sore >, (113)
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where

22571 1 1
So1 = 7\/_’67; a?+ b2+ + o1 So2 =
- 8(a2+b2+c2+

- ) , Soz = 2¢€ log 3. (114)
BoT

Using Lemma 6 and 7, it follows that Yv > 0,

!
1 1 5 \n DeltE=2v) 1 1 Dy
_Z — - . > 0 - __Z - _ _
llir(r)lo llogP lkg_l(Xk Xok)” > D] > 572 5 2log = (2R —v), (115)
which is the desired result.
O

As in the point-to-point case, here too, the error event associated with each decoder is essentially the union
of two error events. In the symmetric case, for Decoder-0, exactly half of the terms that contribute to the
distortion due to dimensional collapse vanish because of the alternating signs. Since the contribution of the
quantization noise to the average distortion is asymptotically zero, it is as if a single description of rate 2R is

handed over to Decoder-0 with noiseless feedforward.

5 Conclusions

We have obtained a block coding scheme for Gaussian sources in the point-to-point setting for source coding
with noiseless feedforward. This scheme achieves the optimal rate-distortion function and the optimal source
coding error exponents. Further, we have formulated the problem of multiple description source coding with
noiseless feedforward, and studied the case of Gaussian sources in detail. It is rather surprising that a simple
linear processing and uniform scalar quantization can achieve the boundary of the optimal rate-distortion region
for the problem of 2-channel multiple description source coding with noiseless feedforward for Gaussian sources
with mean squared error criterion. The take-home message is that feedforward does indeed improve the optimal
rate-distortion region and the optimal error exponents for memoryless sources with additive distortion measures
in multiterminal settings. Several questions are in order. Can this method be extended to the case of more
than 2 descriptions? What is the information-theoretic characterization of the optimal rate-distortion region
for general discrete memoryless sources for multiple descriptions with noiseless feedforward? Can the proposed

method be extended for noisy feedforward?
Acknowledgments: The author gratefully acknowledges the discussions he had on this topic with Professor

Prakash Ishwar, Dr. Emin Martinian, Professor David Neuhoff, Professor Kannan Ramchandran, Professor

Sekhar Tatikonda and Dr. Vinay Vaishampayan.

23



Appendix

Proof of Lemma 1: First consider the following expression for some ¢ > 0,

> 2 2 /6 | & 2 2 5| & 2
/ (x —1b)? exp <_:r_> dr = —ze ® /2‘ +/ e " 2de 4 pe /2‘ +w2/ e " /2dz  (116)
¥ 2 vy v ¥
= (W*+1) / e " 2dy — e V72 (117)
¥
= (% + 1)V2rerfe, () — e V772 (118)
2 2 2
< we*d’ 12 _qpe=¥"/? (119)
= %eﬂf/?, (120)

where we have used the fact [40] that erfc.(y) < d)\}ﬁ exp(—%z). Now using this result, and by noting that
when |Y| > A/2 it is quantized to either (A/2 — A/(2M)) or (A/(2M) — A/2) depending on whether Y is

positive or negative respectively, we have

L o S CE) T P
ol b (220 s Ll o
D

Proof of Lemma 2: Let Z = 22:1 (S!)2. Using the Chebyshev inequality we have

P {Z > 9;;'22} < exp [—%:2] Elexp(AZ)], (125)

for any 8 > 1, A > 0. Now let us evaluate the second term on the right hand side. Note that using (36,37), we

can obtain the following relation among S}, for k =1,2,...,1
!
St+ > VB — 185728, = 0. (126)
k=2

Using this, Z can be rewritten as

=ST[I+ (8 -1)KKT]S, (127)

l

Z=Y (S)°+

=2

14
>V I8,
=2
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where 7 denotes transposition, S is the column vector formed by S5, S%,...,S;, I is the identity matrix of size
(I—1) and K is the column vector given by K = [1 g p* ...372]T.

Using the relation between the vectors S5, S5, ..., S] and X»,..., X;, it can be noted that
S = OX, (128)

where X is the column vector formed by Xz, X3, ..., X;, and © is an upper triangular square matrix with all the
diagonal elements equal to 1/ and its (ij)th element is given by ©;; = (1 — 32)/8U=#2) for 1 <i < (I —2),
and2<j<(l—1)and i <j.

Now, the second term of the right hand side of (125) can be evaluated as

1 1
Elexp)\Z] = e /exp [—WXT [I-2)0?0T [I+ (B - 1)KK'] 0] X|dX (129
= |[I-2)x"070 -2X0?(B* - 1)0"KK"0| 2, (130)

where the only conditions on X are that A > 0 and the matrix (I — 2A02070 — 2X\o?(3?> — 1)0TKKT0O) be
positive definite.

Let us first evaluate K7'© by noting that its ith term for 1 < i < (I — 2), is given by

1 g gt i i i —2i 1
(1- 5% [B"“ +§+"'+ P } +8 =g =g [1-57Y] = T (131)
Hence, we have K7© = (1/3%)NT, where N is the column vector given by N7 =[1 1/8 1/8% ... 1/p72.
Further, one can evaluate ©7© by computing the ith diagonal term as
1 9 5|1 1 1 1 (B2-1) 1
@4‘(,8 —].) {@‘f‘@‘f‘...ﬂ-m = @4‘7 I—W (132)
1 (8-
- B a3

and by computing the (ij)th term for 1 <i,j < (I — 1) and i < j as

(8% -1) 1 1 1 (1-p5% , B>-1 —2(i—
g T (8 - 1) [ﬂjwa toms bt amm| T g T [1 - B~ 1)] (134)
_ a-m (135)

Bi+j+2 )

Using these results, the matrix ©©7 can be rearranged to be expressed as 007 = Bl—zf— (B;—ZDNNT. Collecting

all the above results regarding K7 © and ©70, we have

2
I-2)02070 — 2002(8? —1)0TKKTO = (1 - 223 ) I. (136)

25



This implies that the only condition on A is that 0 < A < % Thus, the second term of the right hand side of

(125) can be expressed as

Emwkmzﬁﬂﬁ4k@ywﬁ (137

Now using this we have,

flo? Mo A2 (D2
Plz>"] < oo (555)| -] (139
_ e UBO)o(l) (139)
where
_ 602 IN\o2
E(A\60) =log |e 7 ([1— %1 . (140)

To get the best upper bound on the probability P[Z > %‘22] among the above class, we maximize E(),6) with

respect to A to get:

P [Z > elﬂ;';] < e HETO)]+o) (141)
where
E*(0) = <(9 ; 1)> - %logﬁ, (142)
and the maximization is achieved when \ = 2 22(52_91), which is clearly smaller than 32 /(20?).
g
Proof of Lemma 3: Define E' as the event that |Y'| > A/2. Now for sufficiently large I, we have
21 21
P {Tqﬁ > 5] < P {TQQ > 5‘ (]E’)C} + P[E'] (143)
- (144)

where we have used the fact that the square of step size of the quantizer satisfies the following relation:

A? 1 ol
e Lo (143)
for sufficiently large [. Note that
a2(B*+1 20232
By s T < B (146)
Now let us analyze the probability P(E'):
ﬂle' Ble'
P(E)="Pr ||V > = 2erfc, | ——— (147)
2 2\/E(Y")?
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le /32 _ 1
< 2erfc, prvh-t (148)
2\/§U,B
< se (149)
where
_ 403 _ B% -1 o
S1 = WW—\/W’ S2 = 16,3202 and S3 = 2¢ lOgB, (150)
and we have used the following fact [40]:
erfc, (z) < e ( 1 2) (151)
rfc. X —z° ).
oo p
Note that this bound is meaningful only when ¢’ > 0.
g

Proof of Lemma 4: Since h is already determined, we can reduce the above system of equations to the

following system of 5 equations consisting of 5 independent variables ¢, d, e, f,:

2.1 2i 41
& +e® =2eh, d*+e*+ f? = % P+ e? + f2 = % d? + 4i% = ?Z & + 442 = BB (152)
By repeating this procedure, we arrive at one single nonlinear equation in ¢ as given by
4 4 1\2 2002 2 2 2 2 1\2
34 38 B2 +1 32 32 34 )
which can be simplified as a quadratic equation in ¢? as
BO(B% = 1)%c — (8% — 1)(28% +28* + 357 + 1) + B4 (8% + B> + 1) = 0. (154)
The other 8 variables can be obtained by solving the above equation for ¢ as
41 3 21 | VB2 =1
h= b , bzﬂi, f:’B c, i:ﬂ c, e:ﬂi[ﬁz—(ﬂ2—l)cz], (155)
4p° VB -1 B2 24 BVB* +1
41 4 —1)2 1 41 -1 1
d:JB,B‘* (B = )cg, gZ?Jﬁﬂ‘* _(BB )? o _ (156)
R

By observing all of this information, we can deduce that the minimum number of constraints we need to put on

the solution of the quadratic equation (154) such that all 9 variables are real and finite is 2, and are given by

(i) ¢ > 0 and (ii) 545 > ¢?. In the following we will show that both of these constraints are met.
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First note that the coefficient of ¢? in (154), given by the polynomial —(3% —1)(238% +28* + 352+ 1) < 0 for

all B > 1. Next, for ¢2, the solution of (154), to be real for all 8 > 1, we need to satisfy the following condition:
[28% +28* +38% + 1] > 48'°(8° + > + 1), (157)

which is true if and only if V3 > 1,
4812 + 8410 18488 +126% + 138 + 662 +1 > 0, (158)

which is true. This is the required condition for the solution ¢® to be real. Further, since (3% — 1) > 0, and
B8+ B%+1 >0 for all B> 1, and using the above argument, we deduce that ¢?, the solution of (154), is always
positive for 8 > 1. Thus there is a real ¢ which satisfies (154), i.e., (154) has two positive roots and two negative

roots. In other words,

o (288 428" +362+1) £ /(26° + 281 + 382 +1)2 —4810(85 + 52 + 1) (150)
° T 26%(6% = 1) '

Next we need to show that 1 > ((8* — 1)c?)/3% for one of the above two values of ¢®. In the following we

choose the smaller of the two values of ¢. The required condition on ¢? can be rewritten as

2 10
V(288 + 264 + 382+ 1)2 —4B10(B6 + B2 + 1) > (288 +26* +38% + 1) — % (160)
First note that the right hand side of the above equation satisfies
2310 26% +26% +58% +45% +1
2% + 23 241) - = 161
(26 +28' 4367 +1) = 7o i (161)
> 0, (162)

V3 > 1. Using this, and the fact that the term inside the square root is positive for § > 1, the required condition
is implied if V8 > 1

2/310 2

(26% +281 + 3682+ 1)2 4B  + 82+ 1) > |(28° + 281+ 3% +1) — Pl

(163)

This equation can be simplified as

284 + 5% > 0, (164)

which is true if and only if for all g > 1.
In summary there exists a finite ¢ that satisfies (154) such that ¢* > 0 and 1 > ((3*—1)c?)/3%, which implies
that d is real. This implies that the rest of the constants that satisfy the 9 equations are all real and finite.

O
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Proof of Lemma 5: By defining

B -1

A= €, f: B ’ (62_1)) 6(62_1)> "'7(62_1)6175 ’ (165)
we note that
1
Si = —ZA"Sy, (166)
where S! =[S}, Sj; ...S!;]. We can write S} as a function of the source samples as S} = O©X, where

X = [Xs, X3, ..., X;] and © is an upper triangular matrix with (ij)th term given by ©;; = (1 — 82)/87~2 for
j >i> 2, the (ii)th term is given by O = 1/82 for i > 2. The first two rows of © are respectively given by
[(1—be), —ec,—eNT/B] and [0, (1 — fc),—fNT/B], where NT =[11/8 1/82...1/8"*]. Hence we have

l

PN 1 - ~
SIS =x" {@T@ + ﬁ@TAAT@] X. (167)
k=1

Using arguments similar to Lemma 2, it can be shown that

(1 — be)? —ec(1 — be) —e(lgbe) NT
OTO = | —ec(1—be) €2c®+ (1 — fe)? (Fe=fl1fe) gr . and (168)
e(1—=be) Aj (e2e—f(1=fc)) 3 1 e24f2 B2=1] xr T
—eazte) Aso) iy FIJr[T—B—AL]NN
OT AATO is given by
(1 — be)?e? (1 — fe)(1 —be) fe — e*c(1 — be) (BZgl — 82—}'&> (1 —be)eNT
(1— fe)(1 —be)fe —e3c(1 —be) (1 — fe)’f? +e'c? —2e%cf(1 — fc) (3251 — %ﬁ) (f(1 = fe) —e?e)NT
(%_ezgfz)(l_be)e]v (%_ezzﬁz)(f(l—fC)_BQC)N [%_82;52]2]?]971
(169)

Hence it can be shown that ©70 + %C:)TAATC:) is a diagonal matrix with the first diagonal element given by
(1 — be), the second diagonal element given by (1 — fc¢) and the rest of the elements of the diagonal are equal

to 1/8%. Now following Chebyshev inequality, V8 > 1, and A > 0, we have

! —(1-3)/2
1 , _ Bo? _2eig? 2\o? 9 ) —1/2
P 7 ;[S{k] > F] < e #° [1 -5 [(1 —2Xo*(1 —be))(1 — 2Xo°(1 — fc))] (170)
< ElET O]t (171)
by choosing A = 2 22(;9;01) as in Lemma 2. But, in the above set of inequalities, we have implicitly assumed that

the value of A > 0 is such that the following condition is met:
A A 1 - N
I —2\o? (@Te) + ﬁ@TAAT@> > 0. (172)
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This implies that A has to be chosen such that the following constraints are met

LA S P - (173)
2027 202(1 — be)’ 202(1 — fc)’

A<

Since we do not want to sacrifice our freedom in choosing #, we need to prove that > < 1/(1 — be), and
B% <1/(1 — fc). In the following we do just that.

First note that since f > 1, we have Bi < Bi Using this relation, and the values of b and e from Lemma

4_1 2_1

4, we deduce that be > 0. Next observe that V3 > 1,
B B2 (8 - 1)

1—be = 1_B2+1+ BTi1 (174)
= /821+ : (B -1)(B*—1)+1) (175)
> 0, (176)

which requires ¢> > 1 V3 > 1. Substituting the value of ¢ from (159), this condition is equivalent to 23%+1 > 0
which is true V3 > 1.
Thus the required condition is satisfied if and only if 3?(1 — be) < 1. By substituting the values of b and e
in terms of 8 and c?, it can be shown that we require the following condition
66 Bt+1
S -

By substituting the value of ¢? as obtained in (159) in the above equation, it can be shown that the required

(177)

condition is equivalent to the condition 8* + 382 + 1 > 0, which is true V3 > 1. Hence we have shown that
B2 < 1/(1 - be).

Now the other required condition is 3% < 1/(1— fc). By noting that fc = 02(5;{1), and ¢ < 5261 (as shown
in the above paragraph), we can deduce that 0 < (1 — fc) < 1. Substituting the value of f as obtained from

Lemma 4, it can be shown that this is equivalent to the condition that ¢? > 1, which is true V3 > 1 as shown

above. In essence, the only condition on A is that 0 < A < 26—2

(|
Proof of Lemma 6: Solving the two equations given by (109,110), and using (103,104) we get,
' i i 54 -1 m—3
Sopp = _5503 Z SomB™ (1 + (=1)"7?) (178)
— —ETX[), (179)
and similarly

Sy, = -5 = ' \I!TX 180
02 2h,87 1, ( )
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where X! = [X3, X5,..., X;_1], XT = [X4, X6, ..., X], and
—i(1—2ic) [2® pt-1
ET = {“7 (— - ol 181
g B2g 2988 ) ° (181)
where U8 =[11/8% 1/8* ... 1/, and ¥{ =[1 1/8% 1/8* ... 1/8"7*]. Next, we can express Sy, = GoXo

and Sp; = G1 Xy, where (Spg)" = [Sg3 Sps -+~ Sp_1]s (So1)™ = [Sa St --- Sil, and Gy is an upper triangular
matrix with diagonal entries given by 1/4* and (ij)th entry is given by —(3* — 1)/%U~9%% for j > i, and G,
is also an upper triangular matrix with the first diagonal entry given by (1 — 2ic¢), and the rest of the diagonal
entries given by 1/3%, and (ij)th entry is given by —(3* —1)/%U=9%% for j > i and i > 2, and (1j)th entry is

given by —2i/3% =2 for j > 2. Hence

! 4 2
-1
> ISk = XJ(BET + GoGg)Xo + XT {%qw{ +G6GT| X, (182)
k=1
Now, let us evaluate the above summation. First note that
1 |
G.GT = @I _B o v, ul, (183)
Hence
B =1%o or | _ 1
Now let us look at the second part of the right hand side of (182). By noting that
i2(1722ic)2 i(1—2ic) [645?1 _ gé] \Ilg
T _ Y Y 2B%g g
EE" = i(1—2ic) [6471 _ i] o [6471 _ i]Q g7 (185)
9 2859 — B%g| 0 28%g ~ B%g 0%0
and ) .
ooor_ [ (=20 S g 156)
fr 919 . 4 Pl
0l 2z(é2 2ic) U, %14_ [%f _ 5681} \I’O‘I—'g

and using the properties of g, i and ¢, we get EET + GoGY equal to a diagonal matrix with the first diagonal
entry given by (1 — 2ic) and the rest given by 1/8*. Let © denote the diagonal matrix of size (I — 1) with the
first diagonal entry given by (1 — 2ic) and the rest given by 1/4*. Now we can evaluate the required probability

using Chebyshev inequality as follows: YA > 0, we have

P %kZ[ ak12>%f] ~r ;[ssk12>";%2 (187)
=1 =1

< exp {— AZZZT E [e*Zizl[SékV] (188)

— exp {—%32} [1—2x0%(1 — 2ic)] /* [1 - 2’;‘12} R (189)

. (log[@e%bﬂm (190)

< e UE @) +olD) (191)

31



B*(6-1)
2020

by choosing A = . But as in Lemma 5, we have assumed that the following condition is met

1—20°X0 >0, (192)
which is equivalent to the following conditions:
B 1
A< —, A< =77 1
S22 S 2 —2i0) (193)

As in Lemma 5, to avoid the loss of freedom in the choices for 8, we prove that for the values of i and ¢ obtained
in Lemma 4, we have * < 1/(1 — 2ic). Using arguments similar to those used in the proof of Lemma 5, for
the value of ¢? obtained from (159), it can be shown that 0 < (1 — 2ic) < 1. Hence we need to prove that
B*(1 — 2ic) < 1. This is equivalent to ¢®> > 1. This condition is satisfied V3 > 1 as proved in Lemma 5. In

4
essence the only condition that A needs to satisfy is 0 < A < 5?

Proof of Lemma 7: Consider the following set of inequalities:

171 2 1 2 62l 2 2 2
7[1(@1_Q2) + 1@+ @) +m[Q1+Q2]+g|Q1||Q2|}

1 1 21 /82! 21 21
< lf(Qf +Q3) + =1 [TQ% + TQ%} +\ e TQ%] : (195)

Now let us evaluate the required probability as follows: Vd§ > 0, we have

Ko

(194)

Plrg > 0] < Plrg > 0|(E)° N (E)] + P(E} UE;) (196)
21 41
(@t o+ s o+ 0+ etaz) >4 @ ey

Now note that the two quantizers have been chosen such that given the event (E;)¢ N (I, )¢, we have that

P

IN

+2P(E,). (197)

|Qi| < A/M = B!, for i = 1,2, which implies that |3'Q;| < 1. Hence V7 > 0, Jly such that VI > Iy, the

following are true
1 21 )2 20 )2
- i <7, and - ! F7Qy
min{(3 —1),1] 1 min{(3% —1),1} 1

Choose 7 such that 57 = 4, hence the first term in (197) is exactly zero. The second term goes to zero doubly

<7 (198)

exponentially fast as a function of block-length ! using Lemma 3. By noting that
1
E(Yg)? <a®+bv +c + o1 (199)

the desired result follows directly.
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