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Abstract
In this work, we consider a source coding model with feed-forward. We analyze a system with a noiseless,
feed-forward link where the decoder has knowledge of all previous source samples while reconstructing the
present sample. The rate-distortion function for an arbitrary source with feed-forward is derived in terms
of directed information, a variant of mutual information. We further investigate the nature of the rate-
distortion function with feed-forward for two common types of sources- discrete memoryless sources and
Gaussian sources. We then derive a random coding error exponent which is used to bound the probability
of decoding error for a source code (with feed- forward) of finite block length. The results are then extended
to feed-forward with an arbitrary delay larger than the block length.
Keywords
Source coding with feed-forward, Real-time reconstruction, Side Information, Directed Information, Random
Coding
1 Introduction

With the recent emergence of applications involving sensor networks [1], the problem of source coding with
side-information at the decoder [2] has gained special significance. Here the source of information, say modeled
as an independent identically distributed (IID) random process {X,}32,, needs to be encoded in blocks of
length N into a message (description) W. W is to be transmitted over a noiseless channel of finite rate to
a decoder, which has access to some information {Y;,}52,; (referred to as side information and also modeled
as an IID random process) that is correlated to the source X. The ith sample of X is correlated to the ith
sample of Y for all i. The decoder with the help of the side information Y and the bit stream W obtains an
optimal estimate of IV samples of the source at once, and hence, over time, a reconstruction of the process X.
The goal is to minimize the reconstruction distortion for a fixed transmission rate. The optimal rate-distortion
performance limit is obtained by Wyner and Ziv in [2]. The encoder and the decoder are in time-synchrony. To

reconstruct a set of IV samples of X, the decoder uses the corresponding set of N samples of Y. This is used to
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model the compression problem in general sensor networks where X and Y are the correlated signals captured
by the sensor and the destination nodes.

As one can see, the implicit assumption is that the underlying sample pairs (X;,Y;) are instantaneously
observed respectively at the encoder and the decoder. So after an encoding delay of N samples, when the
decoder gets the message W (say being transmitted instantaneously using electromagnetic waves), it has access
to the corresponding N samples of Y, so that the decoding can begin immediately. The time-line of the samples
of the source, the message and the side information is depicted in Fig. 1 for N = 5. Note that in this model,
for example, at the 6th time unit, the decoder reconstructs X Ty +e- X; simultaneously as a function of W and
Y1,...Y;, though it may display them as shown in Fig. 1.

Time 1 2 3 4 5 6 7 8 9 10
Source X1 X2 X3 X4 X 5 X(, X7 Xg X9 X10

Encoder - - - - W - - - - \%

Sideinfo Y, Y, Y5 Y, Y5 Y, Y, Yy Y, Y,

Decoder
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Figure 1: Time-line: instantaneous observations

The key question that we would like to ask is what happens if the underlying signal field is traveling slowly
(compared to the speed of electromagnetic wave propagation) from the geographical location of the encoder to that
of the decoder, so that a there is a delay between the instant when ith sample of X is observed at the encoder
and the instant when corresponding ith sample of Y is observed at the decoder, with the additional constraint

that the reconstruction be real-time. In that case, we need a new dynamic compression model which is depicted

Time 1 2 3 4 5 6 7 8 9 10

Source X1 X2 X3 X4 X5 X6 X7 Xg Xg X10

Encoder - - - - W

- - - - 'Y

Side info - - - - - - Y1 Y2 Y3 Y4
A A A A A

Decoder X X, X5 Xy X5

Figure 2: Time-line: delayed observations

in Fig. 2. Here it is assumed that the signal field delay is 6 time units, so that for real-time reconstruction of the

1th source sample, all the past samples of the side information are available. In other words, now the decoding



operation consists of a sequence of functions such that the ith reconstruction is a function of W and (i — 1) side
information samples. The encoding operation, however, remains as in [2], i.e., a mapping from the N-product
source alphabet to an index set of size 2V where R is the rate of transmission. This general compression model
takes this important physical signal delay into account in its real-time reconstruction. We refer to this model
as source coding with feed-forward. Note that in this problem, the encoder is non-causal and the decoder is
causal. In this work, as a first step, we consider an idealized version of this problem called source coding with
noiseless feed-forward. In this model, we assume that noiseless source samples are available with a delay at the
decoder, i.e. Y = X.

From Fig. 2, it is clear that the model with Y = X is meaningful only when the delay is at least N + 1,
where the block length is N. However, for a general Y, any delay leads to a valid problem.

Related Work: The problem of source coding with noiseless feed-forward was first considered by Weissman
and Merhav in the context of competitive prediction in [3, 4], where a complete characterization of attainable
performance is provided for any source that can be represented auto-regressively with an IID innovation process,
as well as any innovation process satisfying the Shannon lower bound (SLB) with equality. In particular, it
was shown that for IID sources, as well as all sources that satisfy SLB with equality and with single-letter
difference distortion measures, feed-forward does not reduce the optimal rate-distortion function and does not
increase the optimal error exponent with block coding. Later, the model of source coding with general feed-
forward was considered in [5] as a variant of the problem of source coding with side information at the decoder,
and a quantization scheme with linear processing for IID Gaussian sources with mean squared error distortion
function and with noiseless feed-forward was reported. It was also shown that this scheme approaches the optimal
rate-distortion function. In [6], an elegant variable-length coding strategy to achieve the optimal Shannon rate-
distortion bound for any finite-alphabet IID source with feed-forward was presented, along with a beautiful
illustrative example. The problem of source coding with feed-forward is also related to source coding with a
delay-dependent distortion function [7] and causal source coding [8].

The main results of this paper can be summarized as follows:

1. The optimal rate-distortion function for general discrete sources with a general distortion measure and
with noiseless feed-forward, Rys(D), is given by the minimum of the directed information function [9]
flowing from the reconstruction to the source. Rys(D) < R(D), where R(D) denotes the optimal Shannon

rate-distortion function for the source without feed-forward.

2. The performance of the best possible source code (with feed-forward) of rate R, distortion D and block

length N is characterized by an error exponent. We provide a random coding error exponent Ex_s¢(R, D)
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Figure 3: Source coding system with feed-forward.

and show that it is greater than or equal to the random coding error exponent without feed-forward.

3. Feed-forward does not decrease the rate-distortion function of general discrete memoryless sources with

memoryless distortion measures.

The paper is organized as follows. In Section 2 we give a fairly formal definition of the above source coding
model and the intuition behind the proposed approach. Instead of giving the main result for the most general
sources and then considering the special cases, we first consider the special case when the source and the
reconstruction processes are jointly stationary and ergodic and give a direct coding theorem in Section 3 which
captures the essence of this problem. We then give the direct and the converse coding theorems for general
sources in Section 4. In that section we also consider some special cases such as discrete memoryless sources
and Gaussian sources. Random coding error exponents are considered in the general setting in Section 5. We

extend our results to arbitrary delays in Section 6 and finally, concluding remarks are given in Section 7.

2 The Source Coding Model

2.1 Problem Statement

The model is shown in Figure 3. Consider a general discrete source X with Nth order probability distribution
Py~ , alphabet X and reconstruction alphabet X. There is an associated distortion measure dy : XN x AN -
Rt on pairs of sequences. It is assumed that dy(z™,2") is normalized with respect to N and is uniformly
bounded in N. For example dy(2"V,2") may be the average per-letter distortion, i.e., % Ei\; d'(x;,&;) for
some d' : X x X — R

For an (N,2V%) source code of block length N and rate R, the encoder is a mapping to an index set:
e: AN = {1,...,2NEY The decoder receives the index transmitted by the encoder, and to reconstruct the ith
sample, it has access to all the past (i — 1) samples of the source. In other words, the decoder is a sequence
of mappings ¢; : {1,...,2VB} x Xi=1 5 X i=1,...,N. Let 2V denote the reconstruction of the source

N

sequence z'¥. We want to minimize R for a given distortion constraint. We consider two types of distortion

constraints in this work: 1) expected distortion constraint and 2) probability-1 distortion constraint. These



constraints are formally defined in the sequel. For any D, let R;;(D) denote the infimum of R over all encoder
decoder pairs for any block length N such that the distortion is less than D. It is worthwhile noting that source
coding with feed-forward can be considered the dual problem [10, 11] of channel coding with feedback.

The relevance of this problem extends beyond the application outlined in Section 1. As an example, consider
a stock market game in which we want to predict the share price of some company over an N—day period. Let
the share price on day i be X;. On the morning of the i—th day, we have to make our guess X;. In the evening,
we know X;- the actual closing price of the share for that day. Let d(X;, X i) be a measure of our guessing error.
Note that to make our guess Xi, we know X*~!, the actual share prices of the previous days. We want to play
this guessing game over an N day period.

Further suppose that at the beginning of this period, we have some a priori information about different

possible scenarios over the next N days. For example, the scenarios could be something like
e Scenario 1: Demand high in the third week, low in the fifth week, layoffs in sixth week.

e Scenario 2: Price initially steady; company results expected to be good, declared on day m, steady increase

after that.

e Scenario 2VE,

The a priori information tells us which of the 2VF scenarios is relevant for the N —day period. The question we

ask is: Over the N-day period, if we want our average prediction error to satisfy
1N
N > d(w;, i) < D, (1)
i=1

what is the minimum a priori information needed? Note that it makes sense for the number of possible scenarios

2NR

to grow as since we will need more information to maintain the same level of performance D as N gets larger.

Clearly, this problem of ‘prediction with a priori information’ is identical to source coding with feed-forward.
2.2 Intuition behind the proposed approach

To analyze the problem of source coding with feed-forward we need a directional notion of information. This is
given by directed information, as defined by Massey [9]. This notion was earlier studied in [12, 13, 14] in the
context of dependence and feedback between random processes. More recently, directed information has been

used to characterize the capacity of channels with feedback [15, 16].



Definition 2.1. [9] The directed information flowing from a random vector AN to another random vector B

is defined as
N

I(AN —» BN) =Y I(A"; B,|B""). (2)

n=1

Note that the definition is similar to that of mutual information I(A~; BV) except that the mutual informa-
tion has A" instead of A" in the summation on the right. The directed information has a nice interpretation
in the context of our problem.

An interesting way to understand any source compression system is to analyze the corresponding backward
test channel [17, 18, 19]. This is a fictitious channel which connects the source with the reconstruction, charac-
terized by the conditional distribution of the source given the reconstruction. The decoder first gets the index
W (sent by the encoder) containing the information about the first (say) N samples of X. The process of
reconstruction starts by first spitting out the reconstruction of the first sample X, = g1 (W) as a function of
W alone. In the next clock cycle, the decoder has W and X;. This can be interpreted as follows: X, goes
through a non-anticipatory fictitious channel to produce X; and is fed back to the decoder. Now the decoder
reconstructs the second sample X, = g92(W, X1) as a function of W and X;. As before, we can interpret it
as X, going through the test channel to produce X5 which is fed back to the decoder and so on. So this test
channel can be thought of as having Xl, X2, cs ,XN as input and X7, X5,..., Xy as output with a sequence of

conditional distributions given by
Q1(X1]X1), Qa(Xa| X1, X1, Xa), ..., Qi( X X1 X7), ., Qu (XX V71 XN,

where X* denotes the vector of Xi,Xs,...,X;. This sequence of conditional distributions is related to the
source and the encoder transformation in the following way. Note that the source distribution Py~ (X7)
and the quantizer transformation Py )y~ (XN|XN) fix the joint distribution Pyn gn (XN, XN). This can be

factored into two components as follows:

N N N
Pyn on (XN, XY) = [[ Pi(X3, XXX = T Qu(X) XL X [T QX5 X1 X,
i=1 =1 i=1

where () characterizes the decoder reconstruction function, whereas Q denotes the test channel conditional
distribution, and both of them are assumed to have memory. This is illustrated in Fig. 4. The rate required
to quantize X to XN (i-e., the rate of transmission of the message W) can now be interpreted as the rate of
flow of information through this test channel. This is given by directed information as follows: I(XN — XN) =
Zfil I(X'% X;|X=1). Using simply the chain rule, we get

N

XN = xN) = (XY V) = 310 L. )

=2
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Figure 4: Backward test channel interpretation

We know for the standard source coding problem (without feed-forward) that the mutual information I(XN; XN)
is the number of bits required to represent XV with XN, Since the decoder knows the symbols X*~! to recon-
struct Xi, we need not spend I(X?~1; X,|X’*1) bits to code this information, hence this rate comes for free. In

other words, the performance limit on this problem is given by the minimum of the directed information.

3 Stationary and ergodic joint processes

In this section, we will provide a direct coding theorem for a general source with feed-forward assuming that
the joint random process {Xn,f(n} is stationary and ergodic. This assumption leads to a rather simple and
intuitive proof of the rate-distortion theorem on the lines of the proof of the rate distortion theorem for discrete
memoryless sources in [18]. The purpose of this section is give intuition about how feed-forward helps in source
coding before going into full generality in the following sections. We will use a new kind of typicality, tailored
for our problem of source coding with feed-forward. A word about the notation before we state the theorem. All
logarithms used in the sequel are assumed to be with base 2, unless otherwise stated. The source distribution,

defined by a sequence of finite-dimensional distributions [20] is denoted by
Px = {Px~};L;. (4)
Similarly, a conditional distribution is denoted by

A
P)‘(\x = {P‘n\xn Foe1- (5)
Finally, for stationary and ergodic joint processes, the directed information rate exists and is defined by

I(X - X) = lim %I(XN - XM, (6)

N —o00
We use an expected distortion criterion here. For simplicity, we assume dy(zV,2V) = % Ef\;l d(z;, &;), where
d: XxX — RT.Let dynq, be the maximum of dz,z) Ve e X,z € X. Since the distortion measure is bounded,

limpy o0 E[dy (XN, XN)] exists.



Definition 3.1. R is an achievable rate at expected distortion D if Ye > 0, for all sufficiently large N, there
exists an (N,2NE) code such that

Exn |dn(XN, XM)| < D +¢,
where XN denotes the reconstruction of XN.

Theorem 1. For a discrete stationary and ergodic source X characterized by a distribution Px, all rates R

such that

>
>

R>R*(D) 2 inf I(X = X)
Py x:limy e Eldn (XN, XN)|<D

are achievable at expected distortion D.

Proof. Since the AEP holds for stationary and ergodic processes [18], we have
1 N
N log P(X") - H(X) w.pr.1,
_%bgp(XN,X'N) -~ H(X,X) w.pr.l,
where

1
H(X)= lim HXn|XV1 = lim NH(XN),

N—o0 N—o0

N N ~ 1 ~
H(X,X)= lim H(Xy, Xy XML, XN1) = lim NH(XN,XN).

N—o0 N—00

We now define two ‘directed’ quantities, first introduced in [16] in the context of channels with feedback. These

will be frequently used in the rest of this paper. V¥ € AN 2N € /'?N,

N
ﬁXNp(N (@N|$N) £ H PXi|Xi—17Xi—1(i’i|i’i71,mi71)’ (8)
i=1
N
PXN\XN (me'N) 2 H PXil)A(i,Xifl(xim'l)xlil)- 9)
i=1

These can be pictured in terms of the test channel from X to X. (8) describes the sequence of input distributions

to this test channel and (9) specifies the test channel. Recall that the joint distribution can be split as

N
Pyn v = HPXHX“HXI'” Py xir (10)
i=1

The basic ingredient in our proof is the following Lemma which says that a property analogous to the AEP

holds for the directed quantities defined in (8) and (9). Let H(XN||XN) = Zi\il H(X;| X1, X,

Lemma 3.1. If the process {Xi,Xi};’il is stationary and ergodic, we have

1 N A~
—NlogP(XN|XN)—>H(X||OX) w.pr.1, (11)



where

~ 1 N
H(X]|0X) éNlim NH(XNHOXN*)
—00

N

— 1 1 % i—1 yi—1 12

=, gy 2 HOGXT X0 -
1=

= lim H(Xy|XN~1 XN,

N—00

where 0XN =1 denotes the sequence [, X1, X2,..., XN _1]-

The proof of the lemma is similar to the Shannon-McMillan-Breiman Theorem in [18] and is given in Ap-
pendix A. We now define a new kind of joint distortion typicality. Given the source Px, fix any conditional
distribution lex to get a joint distribution Py ¢ = {P n Xn }o° ;. Also recall that the distortion is given by

dn(aN,2N) = L SN d(x;, ).

Definition 3.2. An ordered sequence pair (x™V,3") with 2V € AN and 2V € XN is said to be directed distortion
e-typical if:
1 N
_NIOgPXN(.'If )—H(X)| < e
1
‘_N logPXN’XN(a:N,:EN) —H(X,X)| < e€

1 L . .
‘_N log PXNlXN(meN) —HX||0X)| < €

‘dN(mN,ﬁsN) ~Edn(XN, XN < e
We denote the set of directed distortion e-typical pairs by AN .
Lemma 3.2. If an ordered pair (XN,XN) is drawn from Pyn g~ , then
Pr(XV, XMy e AN) 51 as N — . (13)

Proof. From the AEP for stationary and ergodic processes, the first, second and fourth conditions in Definition
3.2 are satisfied with probability 1 as N — co. From Lemma 3.1, the third condition is satisfied with probability

1 as N — oo, proving the lemma. O

Lemma 3.3. For all (zV,2V) € AV,

Py xw (@N[2Y) > Pynjyn (#V]a) - 27 NIE X430, (14)



Proof.

L Py~ 5
> SN CAF. S
XN |Xx P P
i xn - Pxw (15)
2—N(H(X,X)—e)

< P, : :
= PXN\XN 9—N(H(X|[0X)+e€) . 9—N(H(X)+e)

_ ﬁXN\XN(jN|xN) . 2N(I(XaX)+3e),
from which the lemma follows. For the last inequality in (15), we have used the fact [9] that I(XN;XN) =
I(XN = XN) + I(0XN- - XN). Hence
H(XN0XxN=Y) + H(XN) — H(XN, XNy = HXN|joxN-1) — HXN|XN)
— H(XN) - HXN|XY) - [H(XN) - HEV]jox V")
(16)
=I1(XN; XNy —1(0xN=t = XN

=I(XN - XM,
O

We are now ready to prove the achievability of R*(D). At this point, it is worth comparing the expression

in Theorem 1 for R*(D) with the optimal rate-distortion function for a source without feed-forward. The
constraint set for the infimum is the same in both cases, but the objective function in R*(D) is less than or
equal to that in the no-feed-forward rate-distortion function since I(XN — XN) < I(XN; XM).
Codebook generation: In source coding with feed-forward, to produce the ith reconstruction symbol Z;, the
decoder knows the first i source samples z°~'. This means that we could have a different reconstruction &; for
each x'~1. Thus we can have a codebook of code-trees rather than codewords. A code tree is constructed as
follows.

Pick a joint distribution Py yx = {P‘n,)?" }oe ., such that the X —marginal has the distribution Px and
limpy o0 EdN(XN,X'N) < D. This joint distribution is stationary and ergodic by assumption. Fix e and the
block length N. Pick the first input symbol #; randomly according to the distribution Pg . To choose the next
symbol, the encoder knows z;. Therefore we have |X| choices for the Z» depending on the z; observed. Thus,

& is chosen randomly and independently according to the distribution Py, ) for each possible z;. For each

|i1,$
of these &o, there are |X| possible #3’s (depending on the x5 observed) picked randomly and independently
according to the distribution PX’sI s2 ,2- We continue picking the input symbols in this manner and finally we
pick zx according to PXN\iN—l ~~—1. The process of choosing a code-tree for a binary alphabet in shown in

Figure 5. We obtain 2V such independent and randomly chosen code-trees in the same fashion to form the

codebook.

10
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Figure 5: Code function for a binary source.

Encoding: We will use jointly typical encoding. The encoder has the sequence zV. It traces the path deter-

N—=1 on each of the 2VE trees of the codebook. Each of these paths corresponds to a reconstruction

mined by x
sequence #V[i] (i € {1,...2VE}). The encoder chooses a #™V[W] that is directed distortion e-typical with zv
and sends W to the decoder. If no such typical &V is found, an encoding error is declared.

Decoding: The decoder receives the index W from the encoder (W € {1,...,2N}). It uses the Wth
code-tree and obtains the reconstruction symbols along the path traced by {xk}i};l that are fed-forward. For
instance, suppose X and X are binary alphabets and the code-tree in Figure 5 is used. If the fed-forward
sequence, ¥ 1, is the all zero sequence, the decoder traces the upper-most path on the tree and obtains the
reconstruction symbols along that path.

Distortion: There are two types of source sequences zV- a) Good sequences "V, that are properly encoded
with distortion < D +¢, b) Bad source sequences 2"V, for which the encoder cannot find a distortion-typical
path. Let P, denote the probability of the set of bad source sequences for the code. The expected distortion

for the code can be written as

Bldy(XN,XN)] < D + € + Pedmaz- (17)
We calculate the expected distortion averaged over all random codebooks. This is given by
EC[E[dN(XNvXN)]] <D +6+?edmaz; (18)

where P, is the expected probability of the set of bad XV sequences, the expectation being computed over all
randomly chosen codes. We will show that when R satisfies the condition given by Theorem 1, P, goes to 0 as

N — oo. This would prove the existence of at least one rate-R code with expected distortion < D + e.

11



Average Probabilty of Error P,: P, is the probability that for a random code C and a random source sequence
XN none of the 2V codewords are jointly typical with X V. Let .J(C) denote the set of good (properly encoded)

source sequences for code C. Now,

P. = Y Pr(C) Y  P@Y) (19)
c zN:xN¢J(C)

= Y P@E™) > Pr©). (20)
zN C:aN¢J(C)

The inner summation is the probability of choosing a codebook that does not well represent the 2V specified in
the outer summation. The probability that a single randomly chosen codeword does not well represent 2% is
Pr ((mN,XN) ¢ AﬁV) —1- 3 PEMREY). (21)
EN:(zN, &N )eAN

Thus the probability of choosing a codebook that does not well represent z?V is

2NR

1- > PEN|zN) : (22)

eN:(zN,zN)eAN

Substituting this in (20), we get

2NR
Pe=> PE")|1- > PEN|z™) . (23)
zN EN:(zN,2N)eAN
We can now use Lemma 3.3 to obtain
2NR
P, <Y P@) {1 — 9~ NU(X=X)+30) > PN |2 . (24)
N EN:(aN,gN)eAN
As shown in [18], the inequality

(I-—a2y)"<l-y+e ™ (25)

holds for n > 0 and 0 < z,y < 1. Using this in (24), we get

— R _oN(R—I(X—=X)—3¢)
P, < |y P@EV) > PEN|zNY| +e7?
aN EN:(aN ,&N)¢g AN (26)

R _oN(R—I(X—=X)—3¢)
= Z PN, #N) +e72 .
(N, 2N)gAY

The first term is the probability that a pair (zV,#") chosen according to the distribution P,y ¢~ is not
directed distortion e-typical. From Lemma 3.2, this vanishes as N — oco. Therefore, P, — 0 as long as
R > I(X — X) + 3e. Thus we have shown that there exists a code with rate arbitrarily close to R*(D) that

has expected distortion arbitrarily close to D. O

12



Remark: We now make some observations connecting the above discussion to channel coding with feedback.
Consider a channel with input X,, and output Y,, with perfect feedback, i.e. to determine X,, the encoder
knows Y71, The channel, characterized by a sequence of distributions ﬁy‘x = {Py,|x» y»-1}pz1, is fixed.

What the encoder can control is the input distribution 13x|Y = {Pxn\ xn-1yn-1}52 . Note that
Px vy = Pyix - Px)y-

Under the assumption that the joint process {X,,,Y,,}52, is stationary and ergodic, we can use methods similar
to those used in this section to show that all rates less that 3“p13x|yl (X — Y) are achievable with feedback.
Comparing this with the no-feedback capacity of the channel, given by supp, I(X;Y"), we see that although the
objective function with feedback is smaller (I(X" — Y) <I(X¥;Y)), the constraint set of optimization is
larger when feedback is present since the space of Px is contained in the space of ﬁx‘y.

Compare this with the source coding problem where Px is fixed. With or without feed-forward, the constraint
set, of optimization remains the same (PX\X subject to distortion constraint). But the objective function with
feed-forward- I (X — X)- is smaller than in the no-feed-forward case, I (X ; X). In summary, for channels, the
boost in capacity due to feedback is due to a larger constraint set of optimization. In contrast, for sources, the

decrease in the rate-distortion function due to feed-forward is due to a smaller objective function.

4 General sources

4.1 Rate-distortion theorem

In this section, we first describe the apparatus we will use for proving coding theorems for general discrete
sources with feed-forward. We introduce code-functions, which map the feed-forward information to a source
reconstruction symbol X. The idea of code-functions was introduced by Shannon in 1961 [21]. We first give a

formal definition of a code-function and then see how it is useful in analyzing systems with feed-forward.

Definition 4.1. A source code-function f~ is a set of N functions {f,}N_, such that f, : X"~ — X maps
each source sequence z"~' € X" to a reconstruction symbol %, € X. Denote the space of all code-functions

by FN = Fi x Fo x ... Fn 2{fN : fN is a code function}.

Definition 4.2. A (N,2V%) source codebook of rate R and block length N is a set of 2N code-functions.

Denote them by fN[w], w=1,...,2NE

For each source sequence of length N, the encoder sends an index to the decoder. Using the code-function
corresponding to this index, the decoder maps the information fed forward from the source to produce an

estimate X. A code-function can be represented as a tree as in Figure 5. In a system without feed forward,
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a code-function generates the reconstruction independent of the past source samples. In this case, the code-
function reduces to a codeword. In other words, for a system without feed-forward, a source codeword is a

source code-function fN = {fi,..., fy} where for each n € {1,..., N}, the function f, is a constant mapping.

|__________I

| Ind W A
X Encoder nees Decoder 1 lEN Decoder 2——>X

Figure 6: Representation of a source coding scheme with feed-forward.

A source coding system with feed-forward can be thought of as having two components. The first is a usual
source coding problem with FV as the reconstruction for the source sequence X”. In other words, for each
source sequence x'¥, the encoder chooses the best code-function among fVN[i], i€ {1,...,2V%} and sends the
index of the chosen code function. This is the part inside the dashed box in Figure 6. If we denote the chosen

code-function by fV, the second component (decoder 2 in Figure 6) produces the reconstruction given by

A

X = fi(Xh, i=1,...,N. (27)

In the sequel, we will use the notation X~ = fN(X~1) as shorthand to collectively refer to the N equations
described by (27). In source coding with feed-forward, the encoder induces a conditional distribution VfV €

FN N ¢ XN given by

N~y [ 1, if fV = the code-function chosen by the encoder.
PFN‘XN(f o) = { 0, otherwise. (28)
The reconstruction £ is uniquely determined by f~ and z¥. Thus
Pynixn o @V [N, 0N) = Spanpn vy (29)

Therefore, given a source distribution Py~ and a source code with feed-forward, a unique joint distribution @
of XN, FN and XV is determined: VaN € XN, fN e {fN[i]:1<i <2NB} N e XN,
QXN,FN,XN(xN> fN,ﬂAfN) = PXN(@“N) : PFN|XN(fN|mN) : PXN\FN,XN(QA?NVN:@“N)
= Pxn (@) - Ogpvmaanyy - Oan =gy @v-n))s

where e(2"V) denotes the code-function chosen by the encoder for a sequence z¥ € A'N.
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We now give the general rate-distortion theorem - for arbitrary discrete sources with feed-forward without
the assumptions of stationarity or ergodicity. For this, we use the machinery developed in [22] for the standard
source coding problem, i.e., without feed-forward. The source distribution is a sequence of distributions denoted
by Px = {Px~};2;. A conditional distribution is denoted by Pg x = {Pg. x. }nz;- We consider a sequence
of distortion measures d,(z™,z"), and, as before, we assume d,(.,.) is normalized with respect to n and is
uniformly bounded in n.

We give the result for two kinds of distortion criteria. The first is a constraint on the expected distortion.
The second criterion is a probability of error criterion- the restriction is on the probability that the distortion
is > D. The probability of error criterion may be more useful for a general source, which may not be ergodic

or stationary.

Definition 4.3 (a). (Expected distortion criterion) R is an e-achievable rate at expected distortion D if for all

sufficiently large N, there exists an (N,2N%) source codebook such that

Exn~ [dN(a:N,:EN)] <D +e,

where N denotes the reconstruction of x™ .

R is an achievable rate at expected distortion D if it is e-achievable for every e > 0.

(b) (Probability of error criterion) R is an e-achievable rate at probability-1 distortion D if for all sufficiently
,2VE)

large N, there exists an (N source codebook such that

Pxn (¥ 1dn(2V,3V) > D) <,

where N denotes the reconstruction of x™N .

R is an achievable rate at probability-1 distortion D if it is e-achievable for every e > 0.

We now restate the definitions of a few quantities (see [23],[16]) which we will use in our coding theorems. A
word about the notation used in the remainder of this paper. We will use the usual notation Px (z) to indicate
the probability mass function of X evaluated at the point x. Often, we will treat the p.m.f of X as a function
of the random variable X . In such situations, the function is also random variable and we will use the notation

P(X) and Px(X) interchangeably to refer to this random variable.

Definition 4.4. The limsup in probability of a sequence of random variables {X,} is defined as the smallest

extended real number « such that Ve > 0

lim Pr[X, >a+¢=0.

n—o0
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The liminf in probability of a sequence of random variables {X,,} is defined as the largest extended real number
B such that Ye > 0

lim PriX, <f8—¢=0.

n—o0

Definition 4.5. For any sequence of joint distributions {PxN,)‘(N}(I)VO:U define VzN € AN 2N € AN

P N N(l’ i‘N)
.. N AN A XN X )
= 1 31
— a 1
R R SN .
PR 1
HEO = Wi v e pamm (3
o Pon on (N, &N
¥e™) 2 og oo ) , (34)
Pynxn (@N]zN) Py (z)
I(X - X) £ limsup l;()E'N;XN) , (35)
inprob
I(X > X) 2 liminf i{(XN;XN) , (36)
inprob N
where ﬁXN‘XN(ﬁstN) and ﬁXN‘XN(mN|£N) are given by (8) and (9) respectively.
We also note that the directed information from X~ to XV can be written as
I(XN -5 xN) = Z PXN’XN(xN,aA:N);(:EN;mN). (37)

N &N
As pointed out in [22], the entropy rate and the mutual information rate, defined by lim, %log H(X™)
and lim,,_ %log I(X ";X ™) respectively, may not exist for an arbitrary random process which may neither

be stationary nor ergodic. But the sup-entropy rate, inf-entropy rate (H(X) and H(X) defined above) always

exist, as do the sup-information rate and the inf- information rate (I(X;X) and I(X;X) defined in [20]).

Lemma 4.1. [16] For any sequence of joint distributions {Py, ¢.}pe;, we have

I(X - X) <liminf — (X" — XV) < limsup iI(XN - XN <T(X - X). (38)
If
I(X - X)=T(X - X) (39)

we say that the process {Py. . }p2; is information stable [24]. We are now ready to state and prove the rate
distortion theorem for an arbitrary source with feed-forward. In [23], Verdu and Han showed that the capacity
formula for arbitrary channels without feedback is an optimization(sup) of the inf-information rate over all
input distributions. Analogously, it was shown in [22] that the rate distortion function (without feed-forward)
for an arbitrary source is given by an optimization(inf) of the sup-information rate. Tatikonda and Mitter [16]

showed that for arbitrary channels with feedback, the capacity is an optimization of I(X — Y'), the inf-directed
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information rate. Our result is that the rate distortion function for an arbitrary source with feed-forward is an

optimization of T(X — X)), the sup-directed information rate.

Theorem 2 (a). (Expected Distortion Constraint) For an arbitrary source X characterized by a distribution

Px, the rate-distortion function with feed-forward, the infimum of all achievable rates at expected distortion D,

s given by
R%.(D) = inf I1(X - X), 40
ff( ) PX|x:>‘(P)‘c\x)SD ( ) ( )
where
A(Pg x) £ limsup E[d, (X", X™)]. (41)
n—oo

(b) (Probability of Error Constraint) For an arbitrary source X characterized by a distribution Px, the rate-

distortion function with feed-forward, the infimum of all achievable rates at probability-1 distortion D, is given

by
Rs¢(D) = inf I(X = X), 42
D)=, et TE - X) (42)
where
p(PX|X) = liir;;il)lbp dy (2™, 2"™) = inf {h : nll_}Holo PxnPgnxn ((z™,2") 1 dp(z™,2™) > h) = O} . (43)

Note that if the joint process {X,,X,}52, is information stable (see (39)), from Lemma 4.1, the rate-
distortion function becomes

Rss(D) = inf lim %I(XN - XN, (44)

N —oc0

where the infimum is evaluated according to the distortion constraint used. The detailed proofs of the direct
and converse parts of Theorem 2 are found in Appendix B and C, respectively. The proofs for parts (a) and
(b) are very similar. We only give a brief outline here of the direct coding theorem. For the sake of intuition,
assume information stability. We want to show the achievability of all rates greater than Ry;(D) in (44).

Let P% = {P*

X|x } be the conditional distribution that achieves the infimum (subject to the constraint).

n|xn

Fix the block length N. The source code with source X and reconstruction F¥ does not contain feed-forward
(see Figure 6). Our goal is to construct a joint distribution over XV, XV and FN, say Q un y~ gn, such that

the marginal over X~ and XN satisfies

QXN7XN:PXNP;(N|XN‘ (45)
We also impose certain additional constraints on @y~ y~ ¢~ SO that 1

Ig(FN: XN) = Io(XN — xN). (46)

IFor clarity, wherever necessary, we will indicate the distribution used to calculate the information quantity as a subscript of I.
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Using (45) in the above equation, we get

Io(FN; XN) =1Ip_y p- (XN = XN). (47)

XN|xN

Using the usual techniques for source coding without feed-forward, it can be shown that all rates greater than
+1o(FN; XN) can be achieved. From (47), it follows that all rates greater than Iprp;N‘XN (XN = XN) are

achievable. The bulk of the proof lies in constructing a suitable joint distribution Q.
4.2 Discrete Memoryless Sources

Consider an arbitrary discrete memoryless source (DMS). Such a source is characterized by a sequence of
distributions {Px=}2,, where for each n, Px» is a product distribution.
We prove the following result for a DMS with expected distortion constraint and a memoryless distortion

measure dy(zV,&V) = & Ei\; di(zi,Z;)-
Theorem 3. Feed-forward does not decrease the rate-distortion function of a discrete memoryless source.

The proof is found in Appendix D. It should be noted that Theorem 3 may not hold for a general distortion
measure dy(zV,2") . In other words, even when the source is memoryless, feed-forward could decrease the
rate-distortion function when the distortion constraint has memory. The theorem may also not hold when the
probability of error distortion constraint (Theorem 2(b)) is used instead of the expected distortion constraint

regardless of the nature of the distortion measure dy (zV,2").

4.3 Gaussian sources with feed-forward

In this section, we study the rate-distortion function for the special case of Gaussian sources with feed-forward.
A source X is Gaussian if the random process {X,,}22, is jointly Gaussian. A Gaussian source is continuous
valued unlike the sources hitherto discussed. However, it is straightforward to extend the results derived earlier
for discrete sources to continuous sources. In particular, feed-forward does not decrease the rate-distortion
function of a memoryless Gaussian source with expected mean-squared error distortion criterion. Interestingly
though, feed-forward in an ITD Gaussian source enables us to achieve rates arbitrarily close to the rate-distortion
function with a low complexity coding scheme involving just linear processing and uniform scalar quantization
(without entropy coding) at all rates [5].

In this section, we consider the commonly used mean-squared error as the distortion measure for Gaussian
sources, ie. dy(zV,&V) = Ei\il(a:, — #;)%. As in the case of discrete memoryless sources, we use the
expected distortion constraint. We now show that for a Gaussian source, R}f(D) is achieved by a jointly

Gaussian conditional distribution.
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Proposition 4.1. Let X be a Gaussian source with distribution Px and let PX|X be any conditional distribution.
Let G yn yn = Pxn~ 'GXN\XN be a jointly Gaussian distribution that has the same second order properties as

PXN,XN = PXN - PXN|XN' Then:
1. Ig(XN = XN) < Ip(XN = XN)
2. The average distortion is the same under both distributions, i.e.,

Epldy (X", XV)] = Bgldw (X, X)), (48)
Proof. 1. 'We denote the densities corresponding to Pyn xn and G XN XN by

pXN’j(N :prpXN‘XN
Ixn XN =PXNIZN|xN

Using the representation of directed information given in (37), we have the following chain of inequalities

Ip(XN = XN) — I(XN = XN
/\N)

N
Pxn~ ~N(x » &
N AN XN, X
= [ px~n g~ (27,27 )log = =
/XN’XN pXN|XN(mN|mN)pXN(1'N)
N A~
A gXNXN(m y L
N N
— [ 9x~ g~ (x7,27 ) log = -
/XN,XN ) gXN‘XN(mNLTN)pXN(mN)
/\N)

N
Pxn~ ~N(x » &

N ~N XN X

= [ px~ xnv(z7,27)log = >
/XN,XN ) pXleN(mN|mN)pXN(xN)

da™N dzN

M)

dzN dzN

da™N dzN

AN)

N
. gxn xn (@, 8
N ~N
- p X (.’17 y L )IOg = =
[ vz T VT T ()

dz™ dz™
where the last equality is due to the fact that py~ ¢~ and gy~ g~ have the same second order properties.

Continuing the chain, we have

Ip(XN = XN) — I (XN - XN

—/p A (;L’N iN)logpr7XN(xN,ijN)nglxN(xN|xN N gaN
XN, XN ) gXleN(AN|‘TN)qu‘XN(iijjN)
= N AN
R PXN\XN(@” |Z™) .
N AN N AN
= on (2,27 ) log = ——dz" dx
/pr,XN( ;&) ggXleN(xN|xN)
/ (@ AN)logﬁXN\XN(kaEN)_‘XN|XN('%N|'TN)d N ggN
= | Px~n xn\T ,T = NS —~ T
X Goonxon (@N|EN)Pyn yon (BN |2N)
N AN
N pXN,XN(m ,BY) R
= /pr’j(N(l'N,xN) log — @ ZEN)dede’

where p’XN is the joint distribution §XN‘XN (zN2N) 'ﬁXN\XN' Then last expression is the Kullback-Leibler

XN
distance between the distributions p and p’ and is thus non-negative.

2. Since Pyn ¢~ and G yn 4~ have the same second order properties, it follows that the expected distortion

is the same under both distributions. O
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Thus for Gaussian sources with expected mean-squared error distortion criterion, the optimizing conditional
distribution can be taken to be jointly Gaussian.
We also have the following result from [16] for jointly Gaussian distributions. For any jointly Gaussian distri-
bution Pyn g~ = { Py~ gv}nts,

N 1 ~
I(X = X) = limsup = I(X — X). (49)

N—o0
This property follows from the asymptotic equipartition property, which is valid for an arbitrary Gaussian
random processes (Theorem 5, [25]). Thus the rate-distortion function for an arbitrary Gaussian source with

expected mean-squared error distortion criterion can be written as

1 ~
Rs¢(D) = inf limsup — I (XY — X)), 50
ff( ) Py x MPg x)<D N*}O()p N ( ) (50)
where
1 XN
AMPgx) =limsup E[= » (X; — Xi)% (51)
N—o00 N i—1

and Py y can be taken to be jointly Gaussian without loss of generality.
5 Error Exponents

In this section we obtain the random coding error exponent for the problem of source coding with feed-forward.
The error-exponent for a source code of block-length N for a discrete memoryless source is derived by Blahut[26]
and by Marton in [27]. Error exponents for discrete sources have also been studied in [28, 29, 30, 31, 32]. A
procedure identical to the proof of Theorem 6.5.1 in [26] yields the error exponent for an arbitrary discrete
source (without feed-forward). Therefore, we have the following fact for discrete sources without feed-forward.
,2VF)

Given a source with Nth order distribution Py~ , there exists a (N source code (without feed-forward)

such that the probability that a source sequence of length N cannot be encoded with distortion < D satisfies

Pe S e*NE;v(R,D)#»O(N), (52)

where En (R, D) is the random coding error exponent for the source (without feed-forward) and is given by

. 1 . 2N &N -
En(R,D) = maxmin max |sR — stD — N log, ZNP)(N (™) (Z dxnN (mN)etNdN( ’ )) ] , (53)

s>0 t<0 g¢nN ~
and for large enough N, o(N) = 0. We state the result in the following theorem, whose proof is found in

Appendix E.

Theorem 4. Given a source with Nth order distribution Pxx~, there exists a (N,2N) source code with feed-

forward so that the probability that a source sequence of length N cannot be encoded with distortion < D satisfies

P. < e*NEff—N(RyD)JrO(N), (54)
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where Ers_n(R, D) is the random coding error exponent for the source with feed-forward and is given by

520 t<0 N xN

Efj_n(R,D) = maxmin max [sR—stD — %log2 prN (z™) (Z Ty~ xN (a%N|xN)etNdN(“”N’iN)> ] , (55)
=N &N

where Gy~ x~ (@N|zN) = Hiil %, |xi-1 cio1 (&i|21,27Y) and for large enough N, o(N) = 0.

We now compare the error exponents for a source with and without feed-forward given by (55) and (53),
respectively. Denote the space of all distributions of the form g4~ by S; and the space of all distributions of
the form Q'XN‘ x~ by Sz. The only difference between the expressions for the error exponents with and without
feed-forward is that the former involves a maximization over distributions in S,, while the latter involves a
maximization over Sy.

Now, every distribution g4~ = Hfil I, xi-1 belongs to the space of distributions of the form (j’XNlXN =
Hilil U, %i-1,xi-1- Therefore,

Sq - Sq‘.

Thus in the no feed-forward case, we are maximizing over a subset of the distributions available to us in the

feed-forward case. Equivalently, we have proved the following theorem.

Theorem 5. For any source X, the error exponent with feed-forward is at least as large as the error exponent

without feed-forward.

Equation (54) guarantees an exponentially small probability of error only when E;;_n (R, D) is positive. An
alternate definition of the error exponent is better suited to determine the values of R for which E;¢_n(R, D)

is positive. We first have the following definition.

Definition 5.1.

1
Bn(px~,D) 2 i Sy N
N(pXN7 ) qXN‘XNIEﬁqI{Ll‘llI\IIl(INyiN)SD] N prqXN|xN(

XN 5 xN), (56)
where the subscripts denote the joint distribution used to calculate the directed information.

Theorem 6. An equivalent representation of E¢y_n(R, D) is

By n(BD) = min 3w (aV)log 22 (57)
’ Py~ EP(R,D) N .S Psz (;[ZN))
where
P(R,D) = {px~ : BN(px~,D) > R}. (58)

The proof of the above theorem is found in Appendix F. The quantity on the right hand side of (57) is a

discrimination. It is O iff the source distribution Px~ € P and positive otherwise. From the definition of P, it
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follows that Px~ € P if R < By(Px~, D). Therefore, Efs_n(R, D) is strictly positive for rates R such that
R>BN(PXN,D). (59)

Using the representation of the error exponent in Theorem 6, it is easy to see that the error exponent for a

discrete memoryless source does not change with feed-forward. This result was obtained in [4].
6 Feed-Forward with Arbitrary Delay

Recall from the discussion in Section 1 that our problem of source coding with noiseless feed-forward is mean-
ingful for any delay larger than the block length N. Our results in the preceding sections assumed that the
delay was N + 1, i.e., to reconstruct the ith sample the decoder had perfect knowledge of first i — 1 samples.

We now extend our results for a general delay N + k, where IV is the block length. The encoder is a mapping
to an index set: e : XN — {1,...,2VF} The decoder receives the index transmitted by the encoder, and to
reconstruct the ith sample, it has access to all the past (i — k) samples of the source. In other words, the decoder
is a sequence of mappings g; : {1,...,2VF} x XY=k )?, i=1,...,N.

The key to understanding feed-forward with arbitrary delay is the interpretation of directed information in
Section 2.2. Recall from (3) that the directed information can be expressed as

N
I(XN = XN) = 1(XN; XN) = Y 1T XX, (60)

=2

When the feed-forward delay is N + k, the decoder knows X*~* to reconstruct X;. Here, we need not spend
I(X=k; X;|X=1) bits to code this information, hence this rate comes for free. In other words, the performance

limit on this problem is given by the minimum of

N
(XN » xM) & (XN XN) - 3 (xR AIXT (61)
i=k+1
= (XN, XNy - 1(0F XNk 5 XN, (62)
where 0¥ XN=* is the N—length sequence [, _, ..., X1, Xo,..., Xn_g].

Observing (61), we make the following comment. In any source coding problem, the mutual information
I (X N XN) is the fundamental quantity to characterize the rate-distortion function. With feed-forward, the
rate-distortion function is reduced by a quantity equal to the information we get for free because of the feed-
forward. One can use very similar arguments to characterize the capacity of channels with feedback delay
kE>1.

We now state our two main theorems- the rate-distortion theorem and the random coding error exponent-
for feed-forward with general delay. We omit the proofs since they are similar to the ones in the preceding

sections.
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Definition 6.1.

N
B(XNXN) & [[PEX X, (63)
i=1
N
(XN - xN) £ (XN xN) - Y (xR XX (64)
i=k+1
_ X N AN PXN,XN(mN:ZEN)
- Z Pyn gn(@™,3V)log = a—
on N ’ Py~ (2V) P (XN |XN)
o 1 P on (2, 2N
T.(X > X) 2 limsup — log v ) (65)

inprob N Pyn (¢N) By (XN|XN)
Theorem 7 (Rate-Distortion Theorem).

(a) (Expected Distortion Constraint) For an arbitrary source X characterized by a distribution Px, the rate-
distortion function with N + k delayed feed-forward, the infimum of all achievable rates at expected distortion
D, is given by

Ri; (D) = lex:ﬁg;x)Ska(X - X), (66)

where

A(Pg x) £ limsup E[d, (X", X™)]. (67)

n—o0

(b) (Probability of Error Constraint) For an arbitrary source X characterized by a distribution Px, the rate-
distortion function with N +k delayed feed-forward, the infimum of all achievable rates at probability-1 distortion
D, is given by

Ryp(D) = lex:p%g;x)@ Ip(X — X)), (68)

where

p(Px) 2 limsupd, («",&") = inf{h: lim Py Py, g (2",87) : dy(2",&7) > h) = o}. (69)

inprob n—0o0
Theorem 8 (Error Exponent). Given a source with N-th order distribution Px~, there exists a (N,2NE)
source code with N + k delayed feed-forward so that the probability that a source sequence of length N cannot be

encoded with distortion < D satisfies
Pe S e_NEff—N(RyD)JFO(N), (70)

where Ers_n(R, D) is the error exponent for the source with feed-forward and is given by

1 ) —s
Eff_n(R,D) =maxmin max |sR—stD — NlogQZPXN(xN) (Zq"kXNlXN(ﬁN|xN)etNdN(mN’IN)> :| , (71)
z N N

520 t<0 @ ¢ N xN

where @i g x~ (@N2N) = Hfil g, xi—* sio1(Zi|z"*, 2771 and for large enough N, o(N) = 0.
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7 Conclusions

In this work, we have defined and analyzed a source coding model with feed-forward. This is a source coding
system in which the decoder has knowledge of all previous source samples while reconstructing the present sam-
ple. We have shown that feed-forward does not decrease the rate-distortion function of a discrete memoryless
source. For an arbitrary source with feed-forward, we have derived the rate-distortion function and a bound
on the worst-case performance of a source code with finite block length. We proved that the random coding
error exponent for a source with feed-forward is at least as large as the exponent for the same source without
feed-forward and found the range of rates for which the error exponent is strictly positive. We then extended
our results to the feed-forward model with an arbitrary delay larger than the block length. The problem of
source coding with feed-forward can be considered the dual of channel coding with feedback. Extensions to

accommodate practical constraints such as a noisy feed-forward path are part of future work.
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APPENDIX

A Proof of Lemma 3.1(AEP)

The proof is similar to that of the Shannon-McMillan Breiman theorem in [18, 33]. We first state the definitions

and three lemmas required for the proof. Recall that

&N = (581,532 S EN),

PN |2N) HP ),
PN |&N) H P(x;|2t, 2"~
We want to show that
—% log P(XN|XN) - H(X||0X) & A}iinooH(XMXN*l,XN*l) (72)

Definition A.1. Let

H=(X]|0X) = [—logP(X0|X X X, Xy )]
H'=E [—logP(X0|X 1x- )}
N . .
PHXNXN) = P(X*x%) T] PGIXiZL, X0,
i=k+1

2

P(XNXN, X0) = [[ PRI XL, X0,

i=1
Lemma A.1.

1 oA
—Nlong(XN|XN) — HF,
1 5 A . .
— log P(XN|IXN_ X° ) — H>®(X]|0X).
Proof.

N
1. 1 s oriope 1 il i
—NlogP"(XN|XN) - —NP(X’”|X") -~ > log P(XG|X[Z), X))

i=kt1 (73)
— 0+ H* by the ergodic theorem.
1. o 1 & iy
_NlogP(XN|XJ_VOO,X0 )—_NglogP(Xﬂ,Xl__o}),XZ_;) (74)
— H>(X||0X) by the ergodic theorem.
o

Lemma A.2.

H*  H®(X||0X), H(X||0X)=H>(X]|0X).
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Proof. We know that H* — H(X||0X), since the joint process is stationary and {H;} is a non-increasing se-
quence of non-negative numbers. So we only need to show that H* — H°(X||0X). The Martingale convergence
theorem says that

P(#0| X}, X~} = P(ao|X =L, X-L).

— 00

Since X is a finite alphabet and plogp is bounded, by the dominated convergence theorem,

lim H* = lim E |- P(io| X~ X~ 1og P(2o| X, X1
8, Jin B = 3 P@IXZ, X5y log Pl =y, X54)
ToEX

E|= Y Plio| XL, X~L)log P(#0| X%, X L)

ioe.)e
= H>*(X|0X).

Thus H* — H>®(X]|0X). O

Lemma A.3.

: PEXNIXN)
hmsup—log_.Ai 0,
Nooo N7 P(XN|XN)
B(XN|xN
lim sup — log =—— (X A) < 0,
Nooo N T P(XN|IXN_ X0 )
where
N . .
P(XNXN X0 )& P(Xlx L XD, (75)
i=1
Proof.
Sk k o 1Al i N o aie i
PUENXN | _ 5~ pa oy i P@IE D at ) - i P@AE 7o)
13(XN|XN) &N N , Hzlil P(jimi_lvxi_l)
N . . . . (76)
= Y P@Ehat) - I Plile™" ) P&}, 2 })
N zN i=k+1
=1

)

where the last equality follows by evaluating the sum first over zy, then over Zy, then over zny_; and so on.

Using the above in Markov’s inequality, we have

PE(XN|XN 1
P(XN|XN) N
or
1. PHXNIxN) 1 ) 1
Pr{ —log—————= > —logN" ) < —.
1F{N ®BEN ANy TN BT (= (78)
Since Y- N_, % < 00, the Borel-Cantelli lemma, says that, with probability 1, the event

1. PHXNXN) 1
—log e ) > 2 jog N?
{N EBENxN) N ®
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occurs only for finitely many N. Thus

PHXN|xN
PATIXT) o with probability 1

1
lim sup — log ———= <
P(XN|XN)

N—o0 N

The second part of the lemma is proved in a similar manner. Using conditional expectations, we can write

P(XN|xN P(XN|xN
ICSlb SO N DR _PEMEY) o ] -
BRENXN, X0 )|~ XX [T BN AN, X0,
The inner expectation can be written as
B(XN|xN N p Bl @i it
_PATIXNT) g0 xo |- S PEN, VR0, X0 ) = Uiy P@ife” o)
P(XNIXN_ X0 ) N N [Tio, P(&;|&—", 2=, X0, X0 )

N
S I Pl 2 X0, X0 Plaild 2t )

.’EN,.tN =1

=1,

where the last equality is obtained by evaluating the sum first over zy, then over Z, then over zy_; and so

on. Using the Borel-Cantelli lemma as in the previous part, we obtain

P(XN|xN
limsup — log PAXTIXT)

= <0.
Novoo B(XNIXN_ X0 )

Proof of Lemma 3.1- AEP. We will show that the sequence of random variables — % log P(XN |XN) is

sandwiched between the upper bound H* and the lower bound H>(X||0X) for all k£ > 0. From Lemma A.3,

we have
PrH(XN|XN)
lim sup - log —-= 0 81
N N B BN XN) (8D
Since the limit 4 log PE(XN|XN) exists (Lemma A.1), we can write (81) as
1 1 1
limsup — log =——— < lim —1 7:H’“. 82
N N B BXN|XN) = N N 08 Br(XN|xN) 82)
The second part of Lemma A.3 can be written as
1., PXNXN_ X0
lim inf — log ( = |A —00) X o) (83)
N—oo N P(XN|XN)
Since the limit 4 log P(X V| XN, X0 ) exists (Lemma A.1), we can rewrite (83) as
1 1 . 1 1 .
hm inf —log =————— > lim —log—= - = H*(X||0X) (84)
o NP P(XN|XN) = Novoo NP P(XN|XN, X0 )
Combining (82) and (84), we have
1 1 .
H>(X]|0X) < hm 1nf — log ————— <limsup — log ————— < H" forall k. (85)
P(XN|XN) = Nooo N 7 B(XN|XN)
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By Lemma A.2, H* — H(X||0X) = H>(X||0X). Thus

1 N N
lim —— log P(XN|X™N) = H(X]|0X). (86)
Nooo N

B Proof of Direct Part of Theorem 2

The approach we will take is as follows. We build a source code for the X — F' block in Figure 6 (Section 4), a
system without feed-forward. Here, the code-functions themselves are considered ‘reconstructions’ of the source
sequences. We will then connect the X — F and the X — X systems to prove the achievability of Ry (D).

For the sake of clarity, we present the proof in two parts. The first part establishes the background for
making the connection between the X — F and X — X systems. This part is common to parts (a) and (b) of
Theorem 2. In the second part, we will construct random codes for the system without feed-forward and show
the achievability of Ry(D) using the results of the first part. We describe the second part in detail for the
probability of error criterion. The proof for the expected distortion case is omitted since it is similar.

Part I

Let P% _ = {P*

XX 122, be the sequence of distributions that achieves the infimum in Theorem 2. We want

n|xn

*

7~ x~ g~ such that the marginal over XN and

to construct a joint distribution over X%, XN and FN say Q
XN satisfies

= Py~ P (87)

*
XN XN XN|XN®

For any N, the joint distribution Py~ P} can be split, as in (10), as

N‘XN

N

* _ dec . pch

PXNPXleN_ HPanXn—17Xn—l PXﬂan,Xn—l’ (88)
n=1

where the marginals, given by P and P, can be considered the fictitious test-channel from X to X and the
set, of ‘decoder’ distributions to this channel, respectively.

Let Pp~ be any distribution on the space of code-functions. We now define a joint distribution over
Qx~ px g OVer (XN, FN_ xN), imposing the following constraints. @ is said to be nice with respect to

Ppx and {Pg o 10y if VaN € AN, fN e FN iV € XN the following hold:
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1. Forn=1,...,N,

. A~ n—1\ __ ]-7 lf i.n = fn(mnil)
an|Fn,Xn—1($n|fna$ )= { 0, otherwise. (89)
2.
QFn|Fn_17Xn_1(fn|f”’1,a:”’1) :PFn|Fn_1(fn|f”’1) n=1,...,N. (90)
3. For 2" = f*(z" 1),
QXH‘Fan’Xn_l(mn|f",§:",a:"_1) = P§z‘xn7xn,1(mn|£",mn_l), n=1,...,N. (91)

It is important to note that for a given problem of source coding with feed-forward, the joint distribution
on XN, FN ,X' N induced from an arbitrary pair of encoder and decoder does not satisfy these conditions in
general. We just want to construct an arbitrary joint distribution ) over the variables of interest satisfying the
above conditions for the direct coding theorem. Given a code-function distribution Pr~ and the test channel

{P)C(’h)“(",xn—l}%o:l’ there exists a unique joint distribution @z~ y~ x~ that is nice with respect to them. This

follows from the following arguments.

N

QFN7XN7XN = {H QX”F",X"‘1 'QFn|F"—1,X"—1} . QXN‘FN7XN
n=1

N (92)
= {H Qx,|Fr xn1 'PFn|F"1} OgN_pN(xN-1)

n=1
where we have used (89) and (90) to obtain the second equality. Now we can use the fact that &, = f, (2" 1)
to write

Qx,jrm xn=1 (@ [ 2" = Q. pn g xn (@l [ 8", 2" 7)

(93)
= P s (e L @),
where we have used (91) for the second equality. Thus the unique nice joint distribution is given by
N N
QFN,XN,XN (fNaxNaj'N) = H PFn\anl(fannil) . H P)C(};‘Xn—l,j(nfl(zn|fn(xn71)axnil) . J{iN=fN(zN_1)}'
n=1 n=1
(94)

Keeping P°" fixed, (94) says that choosing a Pp~ determines a unique nice distribution. We want to choose

Ppy such that the resulting nice joint distribution @7y y 4~ satisfies
N N
* — dec
H Qan)A(nfl’anl - H PXn‘jph%anu (95)
n=1 n=1

so that (87) is satisfied.
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Definition B.1. For a test-channel {P¢ we call a code-function distribution Pp~x ‘good’ with

}N
X |Xn xn—-1Jn=1>

respect to a decoder distribution {Pdec‘Xn 1 xn- N if the following holds for the nice induced distribution

QFN7XN7)‘(N-'

IT Qx.jxn-1 s (@ald™ 1 et = H P g xna @82 7h), Ve Tl e AN N € AN
n=1

(96)

This definition of ‘good’ is equivalent to, but slightly different from that in [16]. The next Lemma says that
it is possible to find such a good Pp~. For the sake of clarity, we give the proof although it is found in [16] in

a different flavor.

Lemma B.1. There exists a code-function distribution Prp~x good with respect to a decoder distribution

{Pdejxn 1 Xn- 1}n 1

Proof. Define Vn € {1,--- ,N}

A

graph(fn) = {(@"L&n): fula" ) =2} CAMTI XX (97)
La(@™ &) 2 {fa: fule =&}, (98)
(" Ha") & {f":fila" =%, i=1,...,n}. (99)
Now for all N, define forn=1,...,N
Pp, a1 (Fal 1) £ II P gnt o @nlfiy ooy fama (077%), 077, (100)

(b™~1,an)Egraph(fn)
We will show that Ppny = H 1 Pr, | pn-1 is good with respect to {Pdean_17Xn_1}$LO:1- We first need to show
that for all n, Pp,|pn—1 defined above is a valid probability distribution. This can be shown using arguments
similar to those in Part B of this proof. We give the proof in two parts. In part A, we obtain an expression for
the induced decoder distribution given Pp~ and P°". Part B uses this expression to show that (100) defines a
good code-function distribution.
Part A

Given the test-channel {PCh 1 and a code function distribution Pp~, a unique nice distribution

‘Xn 1Xn}n

Qp~ x~ x~ is determined. We now show that the induced decoder distribution is given by
Q. |xn-1 n-1(Enle" 12" 7Y) = Pppn- (Ca(a" ™1, 2,) 0 (272, 277Y) n=1,...,N. (101)

This is Lemma 5.2 in [16], but we repeat the proof here for the sake of completeness.

Note that (2”1, 2z" 1) uniquely determines (I 1(z" 2,27 1), 2" !) and vice versa. Therefore,
QXH‘Xn,ljn,l(:i“n|:r”71,i-”71) = an|pn—1,xn71(in|rn71(mni2:§3nil),1'”71)- (102)
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n—1 4 n—l)

Now (z"7!,,) uniquely determines (T, (2"~ !, 2,), and vice versa. Thus we must have

QanFn_l’Xn_l(£n|rn—1(mn—2’i,n—l),mn—l) — Qpn|pn717xn71(Fn(m"_l,ﬁ:n)|F"_1(:v"_2,a?"_l),:v"_l). (103)
Since @ is nice, it satisfies (90). Hence
F,|F"— n— n n—’ n B ) ) = UFy|FN-1{1ln ybn ’ .
Qr,pot xn-1 (D (@Y 2,) D71 (272, 271), 2770 = Ppy e (Do (2", ) [T (@772, 7)), (104)

Combining (102), (103) and (104), we obtain the expression in (101).
Part B
We now show that Pp~ defined by (100) is good with respect to P". For a pair zV~1 € AN~ 2N ¢ AN,

consider

> Ppn (fN) = Ppn (DN (2N 71, 27))
fN:fN(zN—l):iN

= Ppvy (D1(21),...,Da(@" 1, 80), ..., Tn(@V 1, 24)) (105)

N
= [1 2 jeees (a0 2,2 71))
n=1

Substituting (101) in the above equation, we get

N
> Ppx (fN) = T[ Qe jxvnmt s (@nla™ ™ 5770). (106)
n=1

fN:fN(xN—l):é‘jN =

We can also write

N
Yoo Pen(fM)= ) o > Z ];IIPFH\F"*(fnUn_I)

FN: fr:fi=d1 fn: N
fN(xN—l):_%N fn(xnfl):mn fN(xN—l):_%N
= > Pr(f)ee Y Prge(falf"Nn YD Prygena (NN
fiifi=21 Fn in:
fo(zn—N)=a, In(@N-1)=@n
(107)

We evaluate the Nth inner summation in the above equation as

S P UnNHY S [T P owms s anlfin o vt (BV72),8 1)
eV (e Hiymgy OIS
= P§f|;ew—1,xw—1 (n]zN 2N
> II P en-s xn-a(anlfiseoos iy (08 72), 087
In (@ T)=may i)
Q) pee (x| 1 2N

Xn|XN-1 xN-1
H Zpgifp‘(w—l onvoa(an|fiy o o (0N 72), 6N
bN—14gN-1 an ’
= P enms o @EN[EV TN,
(108)
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where f1,..., fx—1 are specified by the N — 1 outer summations and ‘gr’ has been used as shorthand for graph.
(a) follows from (100) and (b) follows from an observation similar to
)DREEED DD 3D o
zeX,yeY,zeZ zeEX yey zZEZ

Now, the (N — 1)th inner sum in (107) can be shown to be equal to Pdec X N-2 XN~ L(@n 13N 72,2V 72) in

a similar fashion. Thus we can compute the summations in (107) sequentially from n = N down to n = 1.
Substituting in (107), we get

> Pen(fM)= HP;“W - |zn L Y. (109)

fN(zNZjl:):jN

From (106) and (109), we have

N
I Qx, -1 s (Enl2™ " 8" H PEe s xnma (@37 2"T) =1, N (110)
=1

completing the proof of the lemma. O

To summarize, we have the following:

N
e The code-function distribution Py and the test-channel {P;h X X1 } determine a unique nice joint

distribution QFN x~ g given by (94).

e We can find a code function distribution P}y to be good with respect to Pdec je., the set of induced

‘decoder’ distributions of Q* satisfying the relation

N
HQ}n‘Xn—17Xn—1:HP;eC‘Xn 1 xn-1) n=1,...,N. (111)
n=1 n=1

Hence we have

* *
QXN7XN HQX |Xn—1, Xn-1 'QXn‘Xn717Xn

N
— H pdec . pch (112)
- X‘X"anl X|X"1X"

= Px~ - Piy v

Equation (112) is the key to connect the X — F source code without feed-forward to the X — X code with

feed-forward. We are now ready to prove Theorem 2.

Part II (The probability of error constraint)
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For any N, pick M = 2V% N-length code-functions independently according to Pjy. Denote this (IV,2V5)

codebook by Cn. Define the “distortion” diy (zV, fV) = d (¥, fN(zV~1)). Let
ACn)={aN e N :3fN ey with dy(=N, fN) < D +6} (113)

The set A°(Cn) represents the set of z™V’s that are not well represented by the chosen codebook. We will show
that Px~(A°(Cn)), averaged over all realizations of Cn, goes to 0 as N — oo as long as R > R (D). Indeed,

E[Pxx(A°(CN))] = Y Ppn(Cn) Y Pxx(aV)
Cw eNEA(CN)

D Pxn(a™) > Pin(Cw). (114)

CN:mNeA(CN)

The last sum on the right-hand side of (114) is the probability of choosing a codebook that does not represent

the particular "V with a distortion D + . Define the set

1

Bs = {5 Ay ) < P 40 a0 < Teey (X X) 46} (115)

where p(P;i(‘X) is as in Theorem 2, and T(X — X) is computed with the distribution PXP;"qX and is therefore

equal to R;¢(D). Define an indicator function

1, if (™, fN) € By s

0, otherwise. (116)

K6, ) = {
We will also need the following Lemma, whose proof is given in Appendix B.1.

Lemma B.2 (a). Qjx xx (FV oY) < Ppn (F¥) expo[N(By (D) +9)], V(@™ V) € B,

(b)Q;(N’FN(BN,(S) —1as N — o0 .

Since P;Z\x achieves Ryy(D) we have p(P;{lX) < D. Hence, for any fV that does not represent a given
o with distortion < D + 4, the pair (zV, f¥) does not belong to By s. The probability that a code function

chosen randomly according to P.x does not represent a given 2V with distortion within D + ¢ is

i (dy (@™, FN) > D+46) < Phv (K@Y, FN)=0)

= 1= Pin(fMK@EY, ). (117)
fN

Thus, the probability that none of 2V code functions, each independently chosen according to P, represent

a given zV with distortion D + ¢ is upper bounded by

2NR

1= Pin(fM)K (N, fY)
fN
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This implies

2NR

E[Pxn(A°(Cn))] < Y Pxn(aM) (1 - ZP}N(f")K(xN,fN))

fN

where the last inequality follows from Lemma B.2(a). Using the inequality
(1—azy)N <1—z 4279V for 0 <z,y <1,
in (118), we get
B[Pen (A°Cn)] < 1+ expy [- expo[N(R — Ry (D) ~ )]
— > Pxn (@) Qo xn (fN M) K (2, 1Y)
.TN,fN
= 1= Qpw xv (Bns) + expy (= expy[N(R — Ry (D) - 9)]).

When R > R;¢(D) + 0, using part(b) of Lemma B.2, we have

lim E [Px~(A°(Cx))] = 0.

N —o00

Therefore, there exists at least one sequence of codes {Cn} such that

lim sup Px~ (A°(Cn)) = 0.

N—00

In other words, there exists a sequence of codebooks {Cn} of code-functions for which
lim Pr{z" e X" : dy(@@", fN@@""")>D+5, VN ecny} =0.
N—o00
The theorem follows.
B.1 Proof of Lemma B.2

Proof: (a) From the definition, we have

Q;N\XN (fN|1'N)
Qpn (fN)

a5 fV) =log

Qi o (

Therefore,

Qi (FNEY) = Qi (FY) expiliae, o, (3 1Y) = Pi (FY) expaliae, o (3 £V)),

where the second equality follows because Py is used to construct Q*. Moreover,

1 — .
Fiar @V Ny <Tegpy (X = X) 40, V(" fY) € Byg.

X|x
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< ) Pxw(aN) (1 —expy {~N(Ry;(D) +0)} Y Qo x (fN 2V K (27, fN)) (118)
N fN

(119)

(120)

(121)

(122)

(123)



Substituting the above in (122), we get part (a) of the lemma.

N
(b)The code function distribution Py, the test-channel {P;h Xn-1 %n } determines a nice joint distribution

wn x~ g~ 8iven by (94). Under these conditions Q" satisfies

N
Q;‘N,XN _ Hn:l Q;(”X"*l,FN
Qin Qw Q%
N
Hn:l Q;(n|X"—1,F"
Qxw~
Hn IQX | xn—1 Xn
Qxw~

*
XN XN

|=

(124)

|

XN|XNQXN
where, as before, QXN|XN = Hn 1 QX X1 ot (a) holds because it can be shown [34] that the condition
Qx, | x»-1,pv = @Qx,|x»-1,p» is equivalent to (90) , while (b) follows from (90) and (91). (124) is essentially
Lemma 5.1 in [16]. Thus we have

QFN XN XN XN - N
—log =————— = = 1Q%n on @N;z™). (125)

iQy (52 =
Qun QFNQXN N XN|XNQXN

Define
N
pdec _ dec
PxN‘xN - HPX |Xn 1Xn 1
n=1
h h
P)C(N\XN HP)C( |Xn—1,%n"
Since Pj.y is chosen to be good with respect to P;GJS‘XN for the test channel P°"  we have from (112)
;(NJ“(N = Q*XN|XNQ*XN‘XN = P;(EI\?‘XN‘P;(hN‘XN = PXNPXN‘XN (126)
Using (126) in (125), we get
i@y o (FV52™) =ipps  @Y27), (127)
Now,
Qo o v (Bis) = Qv v o ((FV,0Y,8Y) 0 di@, fY) > p(Pxix) +9
or lZQ*(x 7fN)>IPxP;i(‘ (X-)X)+(5>
< Qv (V2,8 0 di(@™, 1) 2 p(Pyx) +9)
* ~ 1 . — A~
+QrN xN %N <(fN,a:N,xN) s @ ) 2 Texpy (X = X) + a) . (128)
Since

dy (N, f) = dn (@™, fY @V 7) = dn (2N, 2Y), (129)
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the first term in (128) equals

e (@Y28N) 2 dn (@Y, Y) 2 (P ) +9)

(130)
= Py~ Plin ((mN,i“N) Ly (@, 5Y) > p(Py ) + 5) ,
where we have used (126). Since p(P;”qx) is the lim sup in probability of dy(zV,zV),

Jim Pen Piy o (08,8Y) 1 dn(@,6Y) > p(Py ) +8) = 0. (131)

The second term in (128) equals

* 5 I A T
PN XN XN <(fN,l“N,ﬂ?N) PN Pin on (zN;2N) > Ipyps
: (132)

_ * N ANy, 7 .
_PXNPXleN <(1‘ » L )'NZPXNPXleN

(2N;2N) > Tp,p: (X = X) + 5) :

-
X |x

where we have used (127) for the first equality and (126) for the next. Since Tpxp;qx()z — X) is the limsup

in probability of %prNp;leN (@N;zN),
Jim Pyen Py o ((mN’g:«N) : %ﬁwa;N‘XN («"52") > Toxpy (X = X) + 5) =0. (133)
Equations (131) and (133) imply
A}iinoo Qpn xn g~ (Bis) =0, (134)
proving part (b) of the lemma. O

C Proof of Converse Part of Theorem 2

Let {Cn}3_; be any sequence of codes, with rate R, that achieve distortion D (either expected distortion D or
probability-1 distortion D depending on the criterion used). For any given block length N, there is an induced

2NE _ 1 code

Ppnix~. (equal to 1 for the code function fN chosen to represent X and 0 for the other
functions). This, along with the source distribution P(X"), determines Pp~, a 2V f-point discrete distribution.

Thus, given the source distribution and the encoding and decoding rules, a joint distribution is induced. Vz¥ €

AN @N e XN fN e {fN[i],i =1,--- ,2NB}, the induced distribution is given by
Qxn pr gn (@Y, fN,EN) = Pyn (@) - Ppwxen (PN [2N) - Sgan— v on-1)y. (135)

All probability distributions in the remainder of this section are marginals drawn from the induced joint distri-

bution in (135). We first show that for any such induced distribution, we have

_ 1 1
H(F) =limsup — log ————~ < R. 136
( ) inprobp N & P(FN) - ( )
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Equivalently, we show that for any § > 0,

1
lim Pr| —
im Pr (N

N—o0

1

We have
Pr l log# >R+6) =Pr (P(FN) < Q—N(R+5))
N P(FN)
= Z Pp~ (fN)
fN:0<PFN (fN)<2—N(R+6)
< Z 9—N(R+3) (138)

fN:Pen (fN)>0
— 9NR  9=N(R+d)

=27 50 as N — o,

thereby proving (136). Thus we have
R > T(F) > F(F) - H(FIX) > T(F; X), (139)

where the last inequality follows from Lemma 2 in [22]. We need the following lemma, whose proof is found in

Section C.1.

Lemma C.1. For any sequence of codes as defined above, we have
I(F;X) > 1(X = X), (140)

where the above quantities are computed with joint distribution induced by the code.

Using this lemma in (139), we obtain

R>T(X = X). (141)

By assumption, the sequence of codes with rate R achieves distortion D. This means that the induced output

distribution P)‘(|X satisfies the distortion constraint in Theorem 2. Therefore, we have

R>T(X = X) > Rs¢(D). (142)

C.1 Proof of Lemma C.1

Let QXN g~ g~ be the joint distribution induced by the source code as in (135). From Definition 4.5, we have

(CMEY) | POXVIEY)
(XNIXN) T I PG X

. P
i(FN; XN) — (XN, XN) = log B (143)
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where the distributions are those induced from the source code. The upper-case notation we have used indicates
that we want to consider the probabilities and the information quantities as random variables. We will first
show that

1 .
lim inf — (i(FN;XN) - i(XN;XN)) > 0. (144)

inprob

This is equivalent to proving that for any § > 0,

N|pN
lim P | —log — PXXCTIFT) — < —0 | =0. (145)
N—o0 N [, P(X,|Xn=1 Xn)

Since F"(X" 1) = X", we have

N N
P(XNFN) = [[ P(Xulx™ 1 FN) = [T P(XalX™ 1 FN, X, (146)
n=1

n=1

Therefore,

1 P(XN|FN) N X N A
P —log ~ — <—0| =P H P(Xn|Xn71’FN,Xn) < 9—Né H P(Xn|Xn71,Xn)
N TII—, P(X,| X1 Xn)

n=1

(fN,zN,EN)eg
(147)
where
N N
G = {(fN,mN,ﬁ:N) : H Py |xn—1pn o (zn|z™ L, fN, &%) < 27N H Py |xn-1 xn (wn|m”1,§:”)} .
n=1 n=1

In the remainder of this section, we drop the subscripts of the probabilities since the arguments make it clear

what P refers to in each case.

ZQFN7XN7XN(fNa~TN75&N) = ZP(fN)P(wN7£N|fN)
g

_ZP fN H |wn I’An’f ) ( n|mn—1’£,n—1,fN)

N

<27 MY P(fY) [T Planla"", ") Pan|e"~", 2", )
g

n=1

N
<27V 3T PN ] Plaale™t @) Paalem" &t )

N fN &N n=1
N
22NN () 2 [T Plaala™ " 3" Planla™ 3", 1Y)
fN (N, ‘%N).fN(fol)—_@N n=1
D) o N‘SZP (™) ZHPmnlw" L)
N n=1
©9-No

(148)
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where (a) follows from the fact that £V = fN(zV~1) and (b) since the term P(&,|z"~!, 2", fV) is equal to 1
when #, = f,(z™ 1) and zero otherwise. (c) is obtained by evaluating the inner summation first over xx, then

over zy_1 and observing that all the f,,’s are constant in the inner summation. Therefore (147) becomes

N| N
P(llog - P(X™|FTY) ] <—6> _ Z O(fN, 2N, &)
N Hn:l P(Xn|Xn_1’Xn) (fN,xN,.%N)Eg
< 27N9 (149)
Hence
N| N
lim P<ilog ~ PXXTIFT) - <—6> =0. (150)
N—oo N Hn:l p(Xn|Xn—1, Xn)

Thus we have proved (144). Now, using the inequality

liminf(a, + b,) < limsup a,, + liminf b, (151)

inprob inprob inprob
in (144), we get

1 . 1 1.
0 < liminf — (i(FN;XN) - i(XN;XN)) < limsup +i(FN; X™) + lim inf ——7(XY; )

inprob inprob inprob

1 1. (152)
= limsup —i(FN; XV) — limsup —i(XV; XN).
inprob inprob
Or,
I(F;X) >T(X = X), (153)
completing the proof of Lemma C.1. |

D Proof of Theorem 3

The source distribution is a sequence of distributions Px = {Px=}5°,, where for each n, Px» is a product

distribution. The rate-distortion function for an arbitrary memoryless source without feed-forward is

Rpus(D) = me:)\tg;x)SDI X; X), (154)
where
1 N
AMPsg ) Zlimsup E[— Y di(X;, X;)]. 155
(Pgx) m sup [N.Z ( )l (155)

Part 1: We first show that for a memoryless distortion measure with an expected distortion constraint,

a memoryless conditional distribution achieves the infimum. Let lex = {Pﬁn‘ xn Iz be any conditional
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distribution, for which the sup-directed information is T(f( ; X) and expected distortion is D. We will show that

there exists a memoryless conditional distribution P]‘){";( such that Tprp(X; X) < T(X; X) and the expected

distortion with P)A{ﬁ( is the same, i.e., D. From the corresponding joint distribution Pxlex = {P nj(n},

form a memoryless joint distribution PxPg% = {PME_ 1 as follows. Set

XX
n
ML
Pl =1 Prxo (156)
i=1
where Py ¢ i € {1,---,n} are the marginals of Py, ¢.. Clearly, for any N, the expected distortion with
PXN7XN
1 & 1 &
Ep n ¢n [N Z di(Xi, Xi)] = N Z Ep ¢ di(Xi, X5) (157)
i=1 i=1
is the same for PML We need to show

XN XN*
Tvp(X;X) <T(X;X)  or

1 N 1 .
lim sup — iz (XV; XV) < limsup —i(XV; XV).

inprob inprob
To prove that
lim sup a,, > lim sup by, (158)
inprob inprob

it is enough to show that lim inf;yprop @, — by, > 0. This would imply

0 < liminf a, — b, < limsup a, + lim inbf —by,

inprob inprob inpro (159)
= lim sup a,, — limsup b,,.
inprob inprob
We have
1, . . 1 P(XN, XN P(X;)P(X;
L (XY — i (£ X)) = o dog LX) T PP
P(XM L., P(Xy) ;= P(Xi,X5) (160)

L, P(XN|XN)

08 —x —.
N Hi:l P(Xi|Xi)

We want to show that the lim inf;, .0 of the expression in (160) is > 0. This is equivalent to showing that for

any é > 0,

N—00

lim Pr {% (i(XN;XN) - z’ML(XN;XN)) < —5} =0. (161)
Let

i=1

N
g= {(»’L‘N,i“N) : Pyn gn (2N18Y) <27V [T Py 5, (ﬂfilﬂ?i)} -
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Then,

o

ON. L oN. B 1 P(XN|XN)

2=

=Pr

N
P(XN|XNy <27 N0 HP(Xi|X,»)]
i=1
= Y Pen(@V)Pyngn (@ |EY) (162)
(zN,2N)eg

N
27V Y I Peyjim (@l ) Py, (il 22)

(N, 2N)eg i=1

,\
INE

©g-Ns g,
where (a) follows from the definition of G and (b) is obtained by evaluating the sum first over x, then over &y
and so on. The arguments in (158) and (159) complete the proof that the infimum achieving distribution can
be assumed to be memoryless in source coding without feed-forward. We now show that feed-forward does not
change the rate-distortion function of the memoryless source.

Part 2: Let {Cn}%—, be any sequence of codes with feed-forward, with rate R, that is achievable at distortion

D. For any given block length N, a joint distribution described by (135) is induced:

QXN,FN7XN = PXN . PFN‘XN . 6{XN:FN(XN*1)}' (]_63)

All probability distributions in the remainder of this section are marginals drawn from this induced joint

distribution. As in Part 1, define a memoryless distribution Qj‘)g; o 211V, 0Q x, %, The subscript ML on
an information quantity will imply that Aggj 4~ 18 the distribution being used to compute it. As shown in

Appendix C ((136) to (139)), for this joint distribution we have
R > T(F) > F(F) - H(F|X) > T(F; X). (164)

It remains to show that when the source is memoryless,
I(F;X) > Typ(X;X) or
1 1 . (165)
lim sup —4(F™; X™) > lim sup NZ.ML(XN;XN).

inprob inprob
As in Part 1 of this proof, it suffices to show that lim inf;y,pr0p % (i(FN; XNy — z'(X'N; XN)) > 0 or equivalently
that for all 6 > 0,

lim Pr [% (i(FN;XN) —z‘ML(f(N;XN)) < —5} = 0. (166)

N—o0

. AMI .
Noting that XN g 18 memoryless, we have

1N N _i SN Ny L QFN, X™N) ) N P(X)Q(X)
w () = s () = o G e 1 gk, 5 167
1 QXNIFN) Hen
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Hence, we have

o

N
—Pr [Q(XN|FN) <27V 1] Q(anf(n)]

(i(FN;XN) - z'ML(XN;XN)) < —5] =Pr H log Hﬁ“;ﬁff;{ ) < —5]
n=1 n|An

2|~

N
=Pt l(wN,fN,a?N) Qe (N <27V I @, (mnm)]
el (168)

= ZQFN(fN) Z QXN|FN($N|fN)QXN\XN,FN(ﬂAfN|fN;iL“N)

~ (@, &N)ev(fN)
N
<MY Qe ()Y lHanxn(“'i‘")l Qoo e (B 17,27,
R (@M, 2N)ev(fN) Ln=1

where
N
V(fN) £ {(CENJA?N) : QXN|FN(35N|fN) <27M HQXilXi (Cﬂz|53z)} -
i=1
Since fN and z"V determine the reconstruction ", QXN\XN,FN @N|fN,zV) = 1if 2V = fN(@@V~!) and 0

otherwise. Thus we have

N
ZQFN(fN) Z [H QXan(xn|£n)] QAXN‘XN’FN(QNUN::EN)
(f™)

N (@) ev n=1

N (169)
=S Qe (M T @, 5, @l fale™h) = 1,
N 2N n=1
where the inner summation is computed first over z, then zx_1 and so on up to x1. Thus
1 N
Pr {— i(FN; XNy — (XN xN) < =6 ] < 2=N?
N ( ) (170)

-0 as N — o0,

proving (166). We have shown that any achievable rate R (with feed-forward) satisfies
R > IML (X, X) .

This implies that the rate-distortion function with feed-forward is the same as that without feed-forward. [

E Proof of Theorem 4

As shown in Figure 6, X — F is a system without feed forward with FV considered to be the ‘reconstruction’

of XN, The distortion between FN and X% is defined as dy (XY, FN(XN-1)). As in (53) in Section 5,
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by randomly choosing code-functions with distribution 7p~, we know there exists a code of 2V# N-length

code-functions FV with error exponent

s>0 t<0

1 -
En(R,D,7ry) = maxmin |sR — stD — N log, g Pyn (z™) ( E TN (fN)etNdN(”N’fN(XN 1))) :| ) (171)
=N fN

In the summation over fV on the right hand side, 2 is constant. Noting that the reconstruction is given by

#NV = fN(2N1), we can write the previous equation as

En(R,D,rp~) = maxmin {SR —stD — %log2 Z.PxN (™) (Z Z rn (fN)e NN (mN’iN)> 7 } (172)

s>0 t<0
&N fN:fN (EN—l)ZEAN

Let rj}N‘XN = ngl q;?n‘X"’l,X"*l be the distribution that achieves the maximum in the definition of
E¢¢_n(R,D) in (55). Fix any test-channel distribution {P;(’hxvl,)%" }_,. For this channel, choose ¢~ to be
good with respect to the distribution {¢% X1 Xn_l}fj:l. Recall from Definition B.1 in Appendix B that rp~

is good with respect to {¢% xno1 411y for a channel P if the unique, nice joint distribution Q px xn g

determined by rp~ and the channel P* has induced decoder distribution that satisfies

N N
11 Qx| xn-1,%n-1 = II 3, | xn-1 gn-1" (173)
n=1 n=1
Define Vn € {1,--- ,N}
Lo(a™ Y an) £ {fo:fal@” b)) =2,}, (174)
r(z" 3" & {f": fila"™ =%, i=1,...,n}. (175)

Now, for any pair 2Vt € XN-1 &N ¢ XN we have

> rpx (FY) = rpx (DY (@Y1, 2Y))
NN (pN—1)=gN
=rp~ (T1(81), ..., Tn(@” 1, 2), ..., Dn (@™ 1 2N)) (176)
N
— H TR, |Fo-t (Fn(wn—l,in)|rn—1(mn—2’§;n—1)) )
n=1
It was shown in Part A of the proof of Lemma B.1 that the input distribution induced from @ FN XN %N IS

given by
2" 1) =rp, -t (Ca(a™ ™, 80) 0" (2"72,2"7Y), n=1,...,N. (177)

R, xn-1 i1 (En]e" ", 2

Using this in (176), we have

N
Z rpN (fN) = H Q)‘(”Xn—l’j(nq(i'n|1'n71;ii'nil)- (178)
n=1

fN:fN(fol):é‘jN
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Since rpn~ is good with respect to rj}N‘XN, combining (178) and (173), we get
N
Z rpN (fN) = H q;‘(”anl Xn71('%n|wn_1a'%n_1) = (j;(Np(N ('%N|xN) (179)
fN:fN(zN—l):iN n=1 ’

Substituting the above in (172), we get
En(R,D,rp~) = Efy_n(R, D). (180)

Since there exists a rate R source code with error exponent En (R, D, rgn~), the theorem follows from the above

equation. O

F Proof of Theorem 6

We start with the definition of the error exponent E;¢_n(R, D) given by Theorem 6 and show that it is the
same as that given by Theorem 4. This is a generalization of Theorem 6.6.5 in [26]. The proof requires three

lemmas, first two of which are needed to prove the third.

Lemma F.1. Given the distributions Px~ and PXN|XNf the directed information can be written as

PXN|XN (@N]z™)

I(XN - XN) = min Py~ (V) Py (&N |2) log = _ , (181)
TeN|xN sz: mzzv: XX x| xN (1’N|1’N)
where G| x~ (@N]aN) = ngl ‘an\xn—l,)zn—l(3A5n|35n_1:5&n_1)-
Proof. The joint distribution Pxn~ PXN‘ xn~ can be split as
Pxx Pywixn (@™ 8Y) = Pynn (Y [2N) Pyn v (@ [2Y)
N N
= 11 Py xn-t gno1(@nle" 1,277 - II Py xn-1 o (@271, 37). (182)
n=1 n=1
As in (37), we can write the directed information as
. A Pynixn (@ ]2N)
IXN = XN) =35 Pyn Pew g (@™, 3) log = | s (183)
N @GN XN|XN

44



Therefore,

N N N AN PXN\XN(ZEN|ZEN)
-I(X" - X )+ZZPXNPXN|XN(:L“ ,2%) log =

N N qXN\XN (£N|mN)
ﬁXN XN (@N]z™)

= Pxn Ponyyn (2N, 3N) log —1X" 7

;; XN|XN qXleN(mN|mN)
(2) R i”N N(ZEN|ZUN) (184)
> DY PxwPynjyn (@™, 3Y) (1 - L

N N pXN|XN(m |£L’ )
=>> Pxn Py xn (2™, 2V) — > Z5XN|XN(§3N|$N)PXN|XN($N|~’3N)

zN N N N
Qi-1=0,

where we have used the inequality logz > 1 — 1 to obtain (a), and (b) follows because ﬁXN\XN Ty~ xv I8 a

valid joint distribution. The lemma follows. O

Our next two lemmas express By(Px~, D), described in Definition 5.1, in terms of a parameter s. This
parameterization is then used to show that the expressions for the error exponent in Theorems 4 and 6 are the

same.

Lemma F.2. For a given source distribution Pxn, the function By(Px~, D), described in Definition 5.1, can

be represented in terms of a parameter s as

1 N

By (Px~,Dg) = sDg + _min N ZPXN(:nN) logZ(j}(NlXN (§3N|wN)eSNdN(””N””N) ) (185)

XN |xN =N #N
where (o 4%
—x AN |,.N\,sNdn(z™ ,&
q4n N(x |1‘ )6 N ’
— Ny | XNX . N AN
b= Z\;;PXN =) DN q}(N\XN(i”NMN)eSNdN(rN@N) dn(z™,27), (186)
x x

where (j}leN achieves By (Pxn~,Dy).

Proof. It can be shown that By(Px~,D) is convex in D for a fixed Py~. This follows from the fact that
I(XN — XN) is a convex function of the distribution P(X™|X™). From Definition 5.1, it also follows that
Bn(Pxn~, D) is a nonnegative, non-increasing function which is zero at D = D,;,4,, the maximum distortion.
This, along with convexity implies that By (Px~, D) is strictly decreasing in D, which means the constraint
on D in the definition must be satisfied with equality. Thus we can write By (Px~, D) in terms of a Lagrange

multiplier as

M)

~ ~N
. 1 qXN‘XN (ZU |ZU
Bn(Px~,D,) = min |— Pxn~iy (N, V) log =
R sz: sz: A Pynixn (@N]zN)

—s (ZZPXN@XN|XN(:UN,:%N)dN(:rN,:f:N) - Ds>] : (187)

N N
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where PXN|XN is induced from Py~ Gy~ xn and

D, = ZZPXNq}(leN(:L’N,:i’N)dN(:L’N,:i’N),

N N

(188)

where g% N XN achieves the minimum. Using the previous lemma, we can write (187) as a double minimum

Qg n @V ]eY)

1
Bn(Pxn~,Dy) =sDy+ min - min | =Y Y Pxnggwyn (@™, V) log = —
N QXN|XN(35 |zV)

IgN|xN 9xN|xN N aN

—5 > Y Pyvdgn v @, V) dn (N, 2V) |,

N &N
where now
1 - . R
D, = N Z ZPXNqXN‘XN(a:N,:rN)dN(a:N,a:N).
2N N
For a fixed q"'XNlXN, we find the optimal qXNlXN. Introducing Lagrange multipliers A,~ to constrain
San (jXNlXN(ﬁsz:N) = 1, and differentiating to obtain the minimum, we get
M)

d 1 R R dx (@N]x
A (ﬁZZPXNQXNXN(fN,fN)IOgL

OQXN\XN &N N (j‘ffNP"N (@"]a™)

=53 > Pxvdgn v (@™, 3N)dn (@, EN) D Aen Y dgnxw (azN|xN)> =0.
N N

N &N

1 . R 1 . R
P (eV) g e o (Y [2Y) = P (™) Tog T v (0o

1
+NPXN(;I;N) — 5Py~ (zM)dn (2N, 2Y) + Ayn = 0.

M)

Solving for @XN\ x~ and choosing A,~ so that

Y dgnxn (@V]2N) =1
@N

gives
@XN|XN(ﬁ:N|xN)esNdN(zN,@N)
5 T e GV N

Substituting the above in (189) and (190), we get the lemma.

qA;(N‘XN (£N|mN) =

Lemma F.3. An alternate representation of By(Pxn~,D) is given by

1 R
Bn(Px~,D) = max min lsD - N z]\;PxN(mN) logzlf;@qxw (§5N|a:N)eSNdN(“N’wN)]

5<0 N |xN py=

Proof. From the definition of By (Pxn~, D) (see Definition 5.1), for any s < 0, we can write

AN N
: 1 N N Q)‘(N|XN($ lz™)

Bn(Pxn~,D) > min —EEPNQ’ z ,z ) log m/————————
(Px~, D) QN XN €D [N L X XN\XN( ;) log PXN|XN(9%N|$N)

=S (Z > PunQin xn (@, 2V )dn (@, 2Y) - D)] ,

N @N
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(190)

(191)

(192)

(193)

(194)

(195)



where

IN

QD = QXN‘XN H ZZPXNQXleN(.TN,.’%N)dN(.’EN,.’%N) D .
N @N
The inequality holds because the term multiplying s is always negative for s < 0. If the constraint set is
enlarged, the minimum cannot increase and hence we have,

2N |z

1 . Qg~ XN(
Bn(Px~,D) > min [NZZPXNQXNXN(xN;xN)IOg _'X |

QxN\XN N aN PXNlXN(.’f}N|$N)

—s (ZZPXNQXleN(mN,i“N)dN(mN,i“N) - D)] : (196)

N &N

Now, using Lemma F.1, we can write the directed mutual information (the first term in the above equation) in

terms of a double minimum and explicitly evaluate the minimum over @ ¢ N xN a8 in the previous lemma. This

gives
1 N
By(Px~,D;) > min |sDy— =3 Pxn(aV)log Y Ggnpyn @V eV )erNin @ a0 | (197)
9N |xN N =N #N
where Dy is as in (186). The above holds for all for all s < 0. Therefore,
1 N 4N
Bn(Px~,Dy) > Dy — = Pxn(z™)1 7x N |z )es N v (@20 1
~N(Px~, Dy) r?gOXquLlTI;N [s s NEN: xn (@) og;qxw‘xw(x |z e ; (198)

with Dy as in (186). But Lemma F.2 says that for some value of the Lagrange multiplier s < 0, the inequality
is achieved with equality, thereby completing the proof. O
We are now ready to prove Theorem 6.

Proof of Theorem 6

We start with the representation given by Theorem 6. We can show that E;s_n(R, D) is convex and increasing
in R. (For this, we use an alternate representation similar to Definition 6.6.1 and Theorem 6.6.4 in [26]) Hence,
in the range of R for which E;¢_n(R, D) is strictly increasing, we can express E;¢_n(R, D) using a Lagrange

multiplier as

px~ (zV) -
Esp-n(R,D) _;)I;(IS_ZPXN )logm + s[R— Bn(px~,D)]. (199)
Equivalently for each s > 0, we can write
E;; n(R,D) > min Zp ~(z™) log ﬂ +s[R— Bx(px~,D)]|, (200)
- Pen P X Pyn (aV) bx

since for s > 0, the term multiplying s is non-positive. Here, P is as in (58) given by
P ={px~ : Bn(px~,D) > R}. (201)

The inequality is still valid if the constraint set is enlarged to include all px~. Further, since the inequality

holds for all s > 0, we can choose the maximizing s to give

E;r—n(R,D) > maxmin ZPXN

+ s [R — BN(ﬁXN,D)] . (202)
§20 pyn

10 -
gPXN< N)
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But, from the Lagrange multiplier formulation in (199), we see that E;s_n(R, D) has the form on the right
side for some value of s > 0. Therefore, the inequality can be replaced by equality

I‘N
E¢f n(R, D) = maxmin [ ZpXN 1ogPXN7(()) +s[R - BN(ﬁXN,D)]] . (203)

s>0 pynN
We now use Lemma F.3 to express By (pxn~, D). Using t in place of the s used in Lemma F.3 and noting that

Bn(pxn~,D) appears with a negative sign, we can write

ﬁXN(mN)
FE R,D) = maxminmin max Ylog =————~ + sR
rr-~n(R,D) = R g max [N > pxn (N gPXN( )

S N — ~ s &
—stD + N ZpXN(:rN) longXN‘XN (&N |2V )es N ( N.a™) (204)
N

N

Now, the argument is convex in p¥ and concave in Q'XN‘ x~- This implies that the solution occurs at a saddle

and evaluate

point, i.e., the minimax equals the maximin. Therefore we can interchange min; , and maxz_
X XN |xN

the minimum over pyx~. By differentiation it can be verified that the minimum occurs at

—S
Pxn~ (zN) [le\’ iXN|XN(§3N|mN) sNdN(zN’IN)jI
pxw (@) = . (205)
N ~ N AN s
S P (@) [ T on (38 |V jesVin %)

Substituting this into the previous equation, we get the expression for Ej;_n(R,D) given by Theorem 4,

completing the proof of the theorem. O
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