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Abstract—In this paper we consider the bandwidth alloca-
tion problem where multiple low power wireless devices share
a common time-slotted channel for transmitting to a single
server/base station. Due to energy constraints, these devices
alternate between a common active period and an inactive
period, the former typically much smaller than the latter. At
the beginning of each active period the server decides which
user(s) can access the common channel. This decision is based
on the knowledge of the current backlog and connectivity of
each queue. In each time slot an active user may or may not be
connected to the server. If a user is connected to the server,
it can transmit with a certain success probability. Arrivals
are arbitrary and there is a cost for holding a packet in the
queue. Different queues have different packet holding costs
leading to differentiated services. We consider the problem of
minimizing the total discounted cost over a finite or an infinite
horizon and provide sufficient conditions under which a greedy
policy is optimal. The greedy policy allocates the channel to the
queue(s) with the goal of minimizing the immediate (next step)
cost. We show via an example that this policy is not necessarily
optimal. We consider two connectivity models: (1) there is no
information about connectivity statistics, and (2) connectivity
probability is independent from one time slot to the other
(memoryless channel). We show that in each of these cases it
is optimal to serve the user with the highest one step reward
(smallest one step cost) if this gain is sufficiently larger than
that from serving the other users. The sufficient condition is
shown to be asymptotically tight in special cases. We then use
numerical examples to study the performance of the greedy
policy as a function of the duty cycle and the length of the
active period. This helps us to better understand and model
the tradeoff between increasing the lifetime and decreasing
the packet delay in such systems.

Index Terms—Resource allocation, Low-power Devices,
Stochastic systems, Optimal control.

I. INTRODUCTION

In this paper we consider the problem of bandwidth
allocation to multiple users that share a common channel
for transmitting to a single server. Users are low power
wireless devices, e.g., wireless sensors. In order to conserve
energy, they are heavily duty cycled, i.e., they alternate
between on/active and off/inactive periods (with the latter
typically much larger than the former). All transmissions
and receptions occur during the active period and the radio
transceivers are turned off during the inactive period. Users’
active/inactive schedules are synchronized, in that they wake
up and utilize the channel during a common active period
and sleep during a common inactive period. An example of
such system is the IEEE 802.15.4 (also known as the ZigBee
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standard for indoor wireless communications) specication,
under which devices can be congured to be off for up to
4 minutes at a time, while active for a small fraction of a
minute.

In this study we assume that the users share the channel
during the common active period via a dynamic TDMA
schedule. Specically, we assume that each active period
consists of one or more transmission slots which are allo-
cated to the users by the server. We consider a two state
channel model, where a user can transmit a packet with a
certain success probability in a slot if it has a good channel.
If it has a bad channel then the success probability is zero
(i.e., it cannot transmit). At the beginning of each active
period, the server is assumed to know the current backlog in
the user queues and the channel state of each user. With this
information the server allocates the slots and the allocation
is announced prior to the transmissions from the users.

In order to measure the performance of the system we
consider a cost for keeping packets in the system. This cost
is charged for each time slot a packet remains in the queue.
Each user may have a different holding cost, which allows
us to study differentiated services. The goal is to minimize
the total discounted holding cost during a nite or an innite
horizon.

We dene a greedy policy that minimizes only the one
step cost. This policy is not always optimal when minimiz-
ing the cost over a long period of time. On the other hand
this policy has a very simple form and only requires the
current backlog and connectivity information of each queue
to make the allocation decision. Due to its simplicity it is
desirable to see under what conditions this policy is optimal
and more generally how it performs when these conditions
are not satised. Furthermore, we are also interested in
understanding the relationship between its performance and
parameters like the duty cycle and the frequency at which
the system duty cycles.

In this paper we rst derive the sufcient conditions under
which this greedy policy is optimal. We also show that the
sufcient condition is tight in certain cases. Via numerical
examples we study its characteristics under scenarios that
do not necessarily satisfy those sufcient conditions. We
also show its performance when the system operates under
different duty cycling frequencies.

Similar resource allocation problems have been exten-
sively studied in the literature. Here we review the ones
most relevant to our study in this paper.

In the case of linear holding cost and constant success
probabilities, the optimality of the greedy policy (also



known as the cµ rule) has been shown in many cases
using different arguments. [1] used a dynamic programming
argument to show the optimality of the cµ rule when N = 2
for innite horizon. [2] used an interchange argument to
further show its optimality for N ≥ 2 in both nite and
innite horizons and for arbitrary arrival processes. Later
[3] showed that the region corresponding to the admissible
policies is a polymatroid. Using this argument and the
results from [4] they proved the optimality of the cµ rule
(also see [5], [6]). In all these scenarios the channel state
(connectivity) is xed and does not change over time.

[7], [8], [9] considered the server allocation problem to
multiple queues with varying connectivity but of the same
service class. Each of these studies determined policies that
maximize throughput over an innite horizon. In particular,
[7] derived the sufcient condition for stability and showed
that the Longest Connected Queue (LCQ) policy stabilizes
the system if system can be stabilized. The same policy
minimizes the delay in the special case of symmetric
queues. [10] further considered a similar problem but with
differentiated service classes where different queues have
different holding costs. We use some of the ideas in this
paper when deriving sufcient conditions for the optimality
of the greedy policy. [11], [12] studied the stability of power
allocation policies. [13] studied the problem of optimal
routing and server allocation for two queues and proved
that the optimal policy is of the threshold type, under linear
cost functions and uncontrolled arrivals.

Also relevant to the optimal bandwidth allocation prob-
lem is the restless bandit problem. A typical such problem
involves a system consisting of N controlled Markov pro-
cesses. At the beginning of each time slot one can activate
one of the processes. A reward is given as a function of
the current state of the activated process and the activated
process changes its state according to a Markov chain. The
goal is to maximize the total discounted reward over time.
This problem was solved by Gittins for the case when
a process does not undergo state transition unless it is
activated and an index policy was shown to be optimal [14],
[15]. For many other problems the state of a process may
change regardless of whether it is activated or not. This class
of problems, also referred to as the restless bandit problem,
were studied in numerous studies, see for example [16],
[17], [18], [19]. An optimal solution for the general restless
bandit problem is not known. The problem considered in
this paper can be viewed as a special case of the restless
bandit problem.

The rest of the paper is organized as follows. In the
next section we explain the system model and state the
optimization problem. We also dene the greedy policy
that has a very simple form and show via an example
that it is not always optimal. In section III we provide
sufcient conditions for the greedy policy to be optimal. In
section IV we study the performance of the greedy policy
under various system parameters and show the tradeoff
between increasing the lifetime and decreasing the queue

cost. Section V concludes the paper.

II. PROBLEM FORMULATION

A. System Description
In this section we describe the model abstraction we

adopted for this study. This model is primarily derived from
the IEEE 802.15.4 specication as mentioned earlier.

Consider N users sharing a common channel to send
packets to a single server. Time is slotted and indexed
by t = 0, 1, 2, · · · . Users alternate between on/active and
off/inactive periods, and the duty cycle is dened as the
fraction of time a user is on/active. An active period is M
slots in length (M ≥ 1), and an inactive period is M ·(L−1)
slots in length (L ≥ 1), resulting in a duty cycle of 1/L.
For simplicity, L is assumed to be an integer. In words,
during each cycle/period, the system is active for M slots
(e.g., from t = 0 to t = M − 1 for the rst cycle) and then
goes to sleep for (L− 1) ·M slots. Then it becomes active
again at the beginning of the LM -th slot and the same cycle
repeats.

The synchronization of users to ensure they adhere to the
same active schedule is typically maintained via a beacon
sent by the server right at the end of each cycle. That is,
a user will wake up right before an active period, wait for
the beacon, and resynchronize (e.g., to x clock drift, etc.).
Since the beacon is typically very short compared to the
slot or the cycle, we will ignore its duration. We assume
that at the beginning of each active period, the server has
the backlog and connectivity information (dened below)
on each user in the system. This is a simplication. In
reality, this information may be communicated via certain
designated mini-slots at the beginning of each active period
(between the beacon and the rst slot). The allocation
decision is then made by the server and announced in a
second beacon. For simplicity, the duration of these mini-
slots are not considered in our formulation, although this
does not affect the applicability of our analysis or results.
The above system is shown in Figure 1.

During each active time slot a user may or may not
be connected to the server. If the user is not connected
to the server, then it cannot transmit. Let qi,t denote the
connectivity of user i at time t. If user i is connected to the
server at time t then qi,t = 1, otherwise it is zero. If user i
is connected to the server and the slot is allocated to it, then
it transmits a packet successfully with probability pi. These
success probabilities are assumed known by the server. At
the beginning of every active period t, the server observes
the queue-size of all the queues, denoted by bt, and their
connectivity qt. The server uses this information to allocate
the M slots among users and announces the allocation
decision. This is achieved via the mini-slots and the second
beacon as described above. The users subsequently follow
the allocation decision and transmit in their designated slots
(if they are assigned any). The whole system then goes to
sleep for (L − 1)M time slots. At time t = LM the cycle
repeats (ignoring the time spent by beacons and mini-slots).
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Fig. 1. The low duty cycle dynamics

We assume that a packet in queue i incurs a holding cost
of ci for every slot it remains in the queue. The cost is
collected at the end of each time slot. For instance the cost
of time slot t (time interval [t, t+1]) of queue i is equal to
cibi,[t+1]− where bi,[t+1]− is the backlog of queue i right
before time t + 1. The objective is to nd an allocation
policy π that minimizes the following cost function:

Jπ
T = Eπ[C|F0], (1)

C =
T−1∑

t=0

βt
N∑

i=1

cibi,[t+1]− ,

where F0 summarizes all the information available at time
t = 0, and β < 1 is the discount factor.

Consider a greedy policy π∗ dened as follows. The
server allocates an active slot at time t to user i such that

i = argmaxj:qj,t=1,bj,t>0cjpj ,

i.e., among the non-empty and connected queues the policy
selects the queue with the largest index cipi, which may be
viewed as the immediate expected cost reduction (In case
of multiple slot assignment we assume that the connectivity
and backlog for each slot are known. More will be discussed
in Section III-B).

This greedy policy is in general not optimal, shown by
the following example.
Example 1: Suppose M = 1. Consider two users with

c1 = 10 and c2 = 5. Assume that there are no arrivals;
queue 1 is always connected; queue 2 is connected with
probability q2 independently in each slot. Suppose there is
one packet in each queue to be transmitted and the success
probability is one for both queues. Obviously queue 1 has
a higher index than queue 2. Suppose both queues are
connected at time t = 0. Consider an innite time horizon,
two policies π and π′ are dened as follows.
(1) π is the greedy policy, i.e. it assigns the slot at time
t = 0 to queue 1 and then allocates the slot to queue 2
until the packet is successfully transmitted.
(2) π′ assigns the slot at t = 0 to queue 2 and assigns
the next active slot to queue 1. Since queue 1 is always
connected and the success probability is one both queues
will be empty after time t = L.

The expected cost from the above policies can be calcu-

lated as follows, denoting by ri = ci +βci + · · ·+βL−1ci:

Eπ[C|F0] =
∞∑

k=0

βkL(1 − q2)kr2 =
r2

1 − βL(1 − q2)

Eπ′
[C|F0] =

L−1∑

t=0

βtc1 = r1 .

β, L and q2 can be easily chosen so that Eπ′
[C|F0] <

Eπ[C|F0] (an example is β = 0.9, q2 = 0.3, L = 2).
Therefore the greedy policy is not in general optimal.

In the next section we provide sufcient conditions
under which this greedy policy is optimal under different
assumptions on the user connectivity processes.

B. Summary of Notations and Assumptions
We consider time evolution in discrete time steps indexed

by t = 0, 1, · · ·T − 1, with each increment representing a
time slot length. Slot t refers to the time interval [t, t + 1).
In subsequent discussions we will use terms slots, steps
and stages interchangeably. A frame consists of an active
interval followed by an inactive interval. The rst frame
starts from t = 0 and ends at t = ML which is the ML-th
time slot. The second frame starts at t = ML and so on.

We will use subscripts to denote the time index and to
denote a specic user/queue. For example bi,t denotes the
buffer occupancy at the beginning of time slot t for the i-th
queue. All boldface letters represent column vectors and all
normal letters represent scalars/random variables. Whenever
we need to distinguish two policies, we show the policy as
a superscript. For example bπ

i,t means the backlog of queue
i at time t under policy π.

A list of important notations is as follows.
M : The length of the active period in number of slots.
L: the length of a cycle in multiples of M slots, i.e.,

a cycle has a length of LM slots. Equivalently, L is the
inverse of the duty cycle.

bt = [b1,t, b2,t, · · · bN,t]′: The column vector of all queue
occupancies at time t.

bi+
t = bt+ei, where ei is the N dimensional vector with

all the values being zero except a one in the i-th position.
at = [a1,t, a2,t, · · · aN,t]′: The number of packet arrivals

during time slot t.
qt: The channel connectivity during the t-th time slot.
pi: The transmission success probability of queue i.
Ft: The σ-eld of the information available up to time t.
Below we summarize important assumptions underlying

our network model.



1) We assume that each user has an innite buffer.
Without this assumption we need to introduce penalty
for packet dropping/blocking. This is an important
extension to the work presented here but is out of
the scope of this paper.

2) We assume that the slot allocation for active period
starting at time t cannot be used to transmit the
possible packet arrival during the tth slot, i.e., within
[t, t+1). This is because the exact arrival time of this
packet is random, and unless it arrives right before t
it cannot be transmitted during that slot.

3) We assume that the channel state does not change
during an active time slot.

4) We assume that the acknowledgments are immediate
(i.e. we nd out whether a transmission is successful
or not at the beginning of the next slot.)

III. SUFFICIENT CONDITIONS FOR THE OPTIMALITY OF
THE GREEDY POLICY

In this section we study the optimality of the greedy
policy discussed earlier. To make the discussion simpler
we start by considering the case where an active period
consists of a single slot M = 1. We then generalize the
results to the case where M > 1. We also assume that T
is an integer multiple of ML, the length of a cycle. This
assumption allows us to keep the results in a simple form,
but it can be easily relaxed.

A. Single Slot Active Period
Let M = 1, i.e. there is only one slot to allocate during

an active period. Note that in this case active time slots
are those at t = 0, L, 2L, · · · , T

L − 1. The following lemma
holds true regardless of any assumptions on the connectivity
of the queues.
Lemma 1: Let π be the optimal policy for state b0 and

let π′ be the optimal policy for state bi+
0 . Then we have,

Eπ′
[C|F0,bi+

0 ] − Eπ[C|F0,b0] ≤
ci(1 − βT )

1 − β
(2)

Proof: π is an optimal policy given the initial state
b0. Let π̂ be a policy dened for the initial state bi+

0 , that
schedules the exact same queues as policy π does for b0. We
now compare applying π starting with b0 with applying π̂
starting with bi+

0 . Since they both schedule the same queue
every slot, in the worst case, the latter would end up having
one more packet in queue i throughout the entire horizon.
Therefore,

Eπ̂[C|F0,bi+
0 ] − Eπ[C|F0,b0]

≤
T−1∑

t=0

βt · ci =
ci(1 − βT )

1 − β
a.s. (3)

On the other hand policy π̂ is not necessarily the optimal
policy for the initial state bi+

0 . Therefore,

Eπ̂[C|F0,bi+
0 ] ≥ Eπ′

[C|F0,bi+
0 ] a.s. (4)

Combining the two inequalities (3) and (4) proves the
lemma.

Below we consider two models for the channel connec-
tivity and derive lower bounds on the value Eπ′

[C|bi+
0 ] −

Eπ[C|b0].
1) No Information on Connectivity: In this part we

assume the following about the channel connectivity.
No-info - At the beginning of each active slot, the server

is informed about the connectivity for that slot, but the
server does not know the statistics of the connectivity
process, e.g., it does not know how the connectivity changes
from one time slot to the other.
Lemma 2: Let π be the optimal policy for the initial

state b0 and let π′ be the optimal policy for state bi+
0 .

If there is no information about the channel connectivity
process, then we have

Eπ′
[C|F0,bi+

0 ] − Eπ[C|F0,b0]

≥ ri(1 − pi)(1 − (βL(1 − pi))
T
L )

1 − βL(1 − pi)
, (5)

where ri = ci + βci + · · ·βL−1ci.

Proof: π′ is an optimal policy given the initial state
bi+

0 . Let π̂ be a policy dened for the initial state b0, that
schedules the exact same queues as policy π′ does for initial
state bi+

0 . We now compare applying π̂ starting with b0

with applying π′ starting with bi+
0 .

Dene stopping time τ1 to be the rst time that queue
i has a successful transmission under policy π

′ starting
with bi+

0 , and that queue i does not have a successful
transmission under policy π̂ starting with b0. Note that since
both policies allocate to the same queue in each slot, this
is also the rst time when queue i is non-empty under π

′

and bi+
0 , and is empty under π̂ and b0.

Then we have

Eπ′
[C|F0,bi+

0 ] − Eπ̂[C|F0,b0] ≥ E[
τ1∑

t=0

βt−1ci] (6)

Dene stopping time τ2 to be the rst time queue i has a
successful transmission under a policy that always transmit
from queue i and given that queue i is always connected
(let τ2 = T if this event does not occur before T −1). It can
be seen that τ2 ≤ τ1 almost surely. Note that τ2 can occur
in one of the time slots 0, L, 2L, · · · and the probability
that it happens in time slot kL < T, k ≥ 0 is equal to
pi(1 − pi)k. Therefore we have:

Eπ′
[C|F0,bi+

0 ] − Eπ̂[C|F0,b0]

≥ E[
τ2∑

t=0

βt−1ci]

=

T
L −1∑

k=0

βkL(1 − pi)k+1ri

=
ri(1 − pi)(1 − (βL(1 − pi))

T
L )

1 − βL(1 − pi)
(7)



On the other hand, policy π̂ is not necessarily optimal
for initial state b0. Therefore,

Eπ[C|F0,b0] ≤ Eπ̂[C|F0,b0] a.s. (8)

Combining the two inequalities (7) and (8) proves the
lemma.

Theorem 1: Suppose the initial backlog state is b0 and
suppose queues i and j are connected and non-empty. Let
π be the policy that allocates the slot to queue i and
let π′ be the policy that allocates the slot to queue j.
If there is no information available on the statistics of
channel connectivity (No-info), but only that they are both
connected in the current slot, then we have

Eπ[C|F0,b0] ≤ Eπ′
[C|F0,b0],

if

piri + βLpi(
ri(1 − pi)(1 − (βL(1 − pi))

T
L −1)

1 − βL(1 − pi)
)

≥ pjrj + βLpj
cj(1 − βT−L)

1 − β
. (9)

(Note that the right hand side is simply equal to pjcj(1−βT )
1−β ,

but we leave it in this form to make it easier to compare
the two sides).

Proof: Let Si denote the event that the transmission
from queue i at time t = 0 is successful and let S′

i denote
the complement of this event, i.e. the transmission is not
successful. Then we have:

Eπ[C|F0,b0] − Eπ′
[C|F0,b0]

= pipj(Eπ[C|F0,b0, Si] − Eπ′
[C|F0,b0, Sj ])

+pi(1 − pj)(Eπ[C|F0,b0, Si] − Eπ′
[C|F0,b0, S

′
j ])

+(1 − pi)pj(Eπ[C|F0,b0, S
′
i] − Eπ′

[C|F0,b0, Sj ])
+(1 − pi)(1 − pj)(Eπ[C|F0,b0, S

′
i]

− Eπ′
[C|F0,b0, S

′
j ]) .

Note that the last term in the above equality is zero.
Rearranging the other terms we get

Eπ[C|F0,b0] − Eπ′
[C|F0,b0]

= pi(Eπ[C|F0,b0, Si] − Eπ′
[C|F0,b0, S

′
j ])

+pj(Eπ[C|F0,b0, S
′
i] − Eπ′

[C|F0,b0, Sj ]) .

Let a =
∑L−1

t=0 at and bL = b0 + a, then we have

Eπ[C|F0,b0] − Eπ′
[C|F0b0]

= −piri + pjrj

+βL{pi(Eπ[C|FL,bL − ei] − Eπ′
[C|FL,bL])

+pj(Eπ[C|FL,bL] + Eπ′
[C|FL,bL − ej ])}

≤ −piri + pjrj

+βL{−pi(
ri(1 − pi)(1 − (βL(1 − pi))

T
L −1)

1 − βL(1 − pi)
)

+pj
cj(1 − βT−L)

1 − β
} ,

where the inequality is a result of Lemmas 1 and 2 (note
that T has been replaced by T−L since the initial condition
starts from time L). It can be seen that if (9) holds then we
have Eπ[C|F0,b0] ≤ Eπ′

[C|F0,b0].

Corollary 1: Suppose the state at t = 0 is b0 and
suppose queue i is connected and non-empty. If there is
no information on the statistics of the channel connectivity
process, then it is optimal to allocate the slot at t = 0 to
queue i if (9) holds for all j $= i such that qj,0 = 1 and
bj,0 > 0.
2) Independent Connectivity: In this part we assume the

following about the channel connectivity.
Indep - At each active time slot, user i is connected to

the server with probability qi independent of all past history.
The quantities qi is known to the server. In addition, at the
beginning of each active time slot the server knows whether
a queue is connected for that slot.

This assumption is valid if for example the length of the
inactive period is very large in comparison with the channel
variations, so that the channel states during successive active
periods appear independent.
Lemma 3: Let π be the optimal policy for state b0 and

let π′ be the optimal policy for state bi+
0 . If the channel

changes state independently at the beginning of each active
slot, then we have

Eπ
′

[C|F0,bi+
0 ] − Eπ[C|F0,b0]

≥ ri(1 − piqi)(1 − (βL(1 − piqi))
T
L )

1 − βL(1 − piqi)
, (10)

where ri = ci + βci + · · ·βL−1ci.

Proof: Dene policy π̂ and stopping time τ1 the same
way as in lemma 2. Dene stopping time τ2 to be the rst
time queue i has a successful transmission under a policy
that always transmit from queue i (let τ2 = T if this event
does not occur before T − 1). It can be seen that τ2 ≤ τ1

almost surely. Note that τ2 can occur in one of the time slots
0, L, 2L, · · · and the probability that it happens in time slot
kL < T, k ≥ 0 is equal to piqi(1 − piqi)k. Therefore we
have:

Eπ′
[C|F0,bi+

0 ] − Eπ̂[C|F0,b0]

≥ E[
τ2∑

t=0

βt−1ci]

=

T
L −1∑

k=0

βkL(1 − piqi)k+1ri

=
ri(1 − piqi)(1 − (βL(1 − piqi))

T
L )

1 − βL(1 − piqi)
(11)

On the other hand, policy π̂ is not necessarily optimal
for initial state b0. Therefore,

Eπ[C|F0,b0] ≤ Eπ̂[C|F0,b0] a.s. (12)

Combining the two inequalities (11) and (12) proves the
lemma.



Theorem 2: Suppose the initial state is b0 and suppose
queues i and j are connected and non-empty. Let π be the
policy that allocates the slot to queue i and let π′ be the
policy that allocates the slot to queue j. Using the channel
model dened by Indep, we have

Eπ[C|F0,b0] ≤ Eπ′
[C|F0,b0] ,

if the following inequality holds:

piri + βLpi(
ri(1 − piqi)(1 − (βL(1 − piqi))

T
L −1)

1 − βL(1 − piqi)
)

≥ pjrj + βLpj
cj(1 − βT−L)

1 − β
. (13)

The proof of this theorem is similar to the proof of
Theorem 1 and is therefore omitted.

Corollary 2: Suppose the state at t = 0 is b0 and
suppose queue i is connected and non-empty. If the channel
model is as Indep, then it is optimal to allocate the slot at
t = 0 to queue i if (13) holds for all j $= i such that qj,0 = 1
and bj,0 > 0.

Remark 1: Note that the sufcient condition in Theorem
2 (Equation (13)) is weaker than the one in Theorem 1
(Eqn (9)), i.e. it is satised more easily. Essentially the
information on the connectivity process allows us to derive
a tighter bound for the optimality of the greedy policy.

Remark 2: As L increases the sufcient conditions (9)
and (13) become weaker. Specically in the limit as L → ∞
it can be seen that it is optimal to serve queue i if pici ≥
pjcj for all j $= i which is essentially the greedy policy.
Therefore in this case the sufcient conditions are tight and
the greedy policy is optimal.

Remark 3: Although all theorems in this section are
based on the optimal allocation at time t = 0, it can
be seen that all the results can be easily extended to the
bandwidth allocation at time t by replacing T with T − t
in all the sufcient conditions. This is due to the fact that
T is essentially the ”time to go” in all these results and if
we start at time t, then the time to go is T − t.

B. Multiple Slot Active Period
In this part we assume M > 1 and nd the sufcient

conditions for the optimality of the greedy policy, using the
same channel connectivity models dened in Section III-A.
Note that in the case of M > 1, the allocation decision
made by the server is delayed, in the sense that the server
uses the backlog information at time t to make the allocation
decision for time t, t + 1, · · · , t + M − 1. By the time the
m-th slot (m > 1) is used (at time slot t + m − 1), the
backlog of the queues may have changed. In order to avoid
complications caused by this information delay we make
the following assumption.

Assumption 1: When M > 1 the server makes the
allocation decision for each active time slot individually.
At each active time slot the server knows the backlog and

connectivity of all the queues during that time slot before
making the allocation decision.

This assumption certainly holds in the case of down-link
communication (from the server to the users). In the uplink,
as long as the length of the active period is small compared
to the arrival probability, this is a good approximation. In
any case this assumption introduces a lower bound on the
cost of the real system (with information delay). Note that
Lemma 1 holds in the case of multiple slot active period as
well.

The proofs of the following results are very similar to
the proofs in Section III-A. Therefore, we have omitted the
proofs in this part.

Lemma 4: Let π be the optimal policy for state b0 and
let π′ be the optimal policy for state bi+

0 . If the channel
state process is not known, then we have

Eπ
′

[C|F0,bi+
0 ] − Eπ[C|F0,b0]

≥
r′i,1(1 − (βML(1 − pi)M ) T

ML )
1 − βML(1 − pi)M

,

where

r′i,m =
M−1∑

k=m−1

βk(1 − pi)k−m+2ci +
LM−1∑

k=M

βk(1 − pi)Mci.

Theorem 3: Let t be the m-th active slot of an active
period and let t′ = t − m + 1 (this is the rst slot of the
active period). Suppose the state at t is bt and suppose
queue i is connected and non-empty. If the channel model
is as dened by No-info and there are M slots per active
period, then it is optimal to allocate the slot at time t to
queue i if the following inequality holds for all j $= i such
that qj,t = 1 and bj,t > 0:

pir′i,m
1 − pi

+ βMLpi

r′i,1(1 − (βML(1 − pi)M )
T−t′+1

ML −1)
1 − βML(1 − pi)M

≥
pjr′j,m
1 − pj

+ βMLpj
cj(1 − βT−t′−ML)

1 − β
. (14)

The following results are for the case of independent
channel connectivity (Indep).

Lemma 5: Let π be the optimal policy for state b0 and
let π′ be the optimal policy for state bi+

0 . If the channel
changes state independently at the beginning of each active
slot, then we have

Eπ
′

[C|bi+
0 ] − Eπ[C|b0]

≥
r′′i,1(1 − (βML(1 − piqi)M ) T

ML )
1 − βML(1 − piqi)M ,

where

r′′i,m =
M−1∑

k=m−1

βk(1 − piqi)k−m+2ci

+
LM−1∑

k=M

βk(1 − piqi)Mci.



Theorem 4: Let t be the m-th active slot of an active
period. Let t′ = t − m + 1. Suppose the state at t is bt

and suppose queue i is connected and non-empty. If the
channel model is as dened by Indep and there are M
slots per active period, then it is optimal to allocate the slot
at t = 0 to queue i if the following inequality holds for all
j $= i such that qj,t = 1 and bj,t > 0:

pi

r′′i,m
1 − piqi

(15)

+βMLpi

(r′′i,1(1 − (βML(1 − piqi)M )
T−t′
ML −1)

1 − βML(1 − piqi)M )

≥
pjr′′j,m
1 − pj

+ βLpj
cj(1 − βT−t′−ML)

1 − β
(16)

Remark 4: All the results presented in this section hold
for all values of T . Specically one can let T → ∞ to derive
the sufcient conditions for the optimality of the greedy
policy in the case of an innite horizon.

IV. NUMERICAL ANALYSIS

As shown earlier, the greedy policy is not necessarily
optimal and in the previous section we found sufcient
conditions for its optimality. In this section we will x this
policy, regardless of whether it is optimal for the scenarios
considered, and study the performance of this policy via a
few numerical examples. In particular, we are interested in
(1) how the performance of this policy (in terms of packet
holding cost) varies as the duty cycle ( 1

L ) changes while
xing the active period M ; and (2) how the performance
varies as M changes while xing L (i.e., xing the duty
cycle but varying the frequency of cycling).

Note that as L increases the duty cycle decreases and
therefore we expect the total cost to increase. On the other
hand large L means longer inactive intervals, which implies
longer lifetime of the system. Therefore it is important to
see how the performance degrades as the lifetime increases.
The effect of M is more complicated. As M increases
(for xed L) the system has longer cycles, i.e., switches
between on and off periods less often. This in turn increases
the system lifetime as turning devices on and off typically
consumes nonnegligible energy especially for low power
devices. But at the same time, longer cycles also increases
the probability that an active slot coincides with empty
queues which causes performance degradation.

We assume that the channel states in different slots
are independent, with a xed connectivity probability. The
server does not need to know this probability (in fact the
greedy policy does not require any information about how
the state changes, it only needs to know the current state and
the current backlog). While it is obvious that a very limited
number of examples considered in this section are certainly
not sufcient for a full characterization of the behavior
of the system in general, they nevertheless provide some
interesting insight on the properties of the greedy policy
and the effect of parameters like M and L.
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Fig. 2. First scenario: a) Cost Variation as a function of L and M , rst
scenario, b) rst queue’s backlog as a function of time

For the rst example consider the following scenario.
There are two queues. Arrivals are Bernoulli, i.e. at each
time slot there is an arrival to queue i with probability ui

and there are no arrivals with probability 1 − ui. Other
parameters are as follows: β = 0.999, T = 1000, c1 =
15, c2 = 5, u1 = 0.05;u2 = 0.05; p1 = 0.9; p2 = 0.6; q1 =
0.7; q2 = 0.9. Figure 2-a illustrates the total cost as a
function of L. Different curves correspond to different
values of M . The curve is an average over 200 simulations.

Note that in this case as M increases the curve shifts
up. This clearly shows that small M , i.e., shorter cycles
or more frequent on/off switching performs better. The
signicance of this observation is made clear in comparison
with the second example below. Figure 2-b shows the
backlog variation of an example sample path for L = 5
and M = 5.

For the second example consider the same scenario above
with the following parameters: β = 0.999, T = 1000, c1 =
15, c2 = 5, u1 = 0.05;u2 = 0.05; p1 = 0.7; p2 = 0.6; q1 =
0.5; q2 = 0.9. Figure 3-a illustrates the total cost as a
function of L. Different curves correspond to different
values of M . The curve is an average over 200 simulations.

Note that in this case increasing M has a much smaller
effect on the cost performance compared to the rst exam-
ple. In this example, the frequency of cycling made little
difference in terms of costs for the same duty cycle. Figure



1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16
x 104

L
(a)

co
st

M = 1
M = 10
M = 15

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

time
(b)

ba
ck

lo
g 

of
 q

ue
ue

 1

Fig. 3. Second scenario: a) Cost Variation as a function of L and M ,
rst scenario, b) rst queue’s backlog as a function of time

2-b shows the backlog variation of an example sample
path for L = 5 and M = 5. In comparison with the
rst example, we note that the only difference in system
parameters is that in the second case queue 1 has a smaller
success probability and a smaller connectivity probability.
This translates into more packets queued up in the system
than in the rst example. As a result, we see that the queues
do not become empty as often as the previous scenario.
Consequently, multiple slot allocation at a time (M > 1) is
well utilized in that there is a highly probability that these
slots are used and the queues are less likely to become
empty. By comparison, the parameters of the rst example
result in empty queues more often and therefore it is less
efcient to allocate multiple slots at a time (it is more likely
that some of the slots are not utilized due to empty queues).
In this case, it is better to have shorter active periods but
cycle the system more frequently; this is the difference
observed in Figure 2 for different values of M .

V. CONCLUSION

In this paper we analyzed the optimality of an in-
dex/greedy policy for allocating time slots in a low duty
cycled system. Each user is associated with a connec-
tivity probability and a transmission success probability.
The greedy policy allocates the channel to the non-empty
connected queue with the largest immediate expected cost

(one step gain). We provided sufcient conditions for this
greedy policy to be optimal. We then studied the effect of
changing the duty cycle and the number of active slots
per frame on the performance of the greedy policy. The
performance degrades as the duty cycle decreases. When
the system is near the boundary (the queues are empty
most of the time) increasing the number of active slots per
frame (M ) degrades the performance. On the other hand
decreasing the duty cycle and increasing M increases the
lifetime of the system. Comprehensive modeling of this
tradeoff is part of our future study.
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