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Abstract

Low-order state-space models of collections of head-related trans-
fer functions (HRTFs) are described and found to yield a substantial
computational savings relative to conventional filter arrays. Several
recent binaural displays model multiple HRTFs simultaneously using
an array of independent FIR or IIR filters. As HRTFs are locally
redundant it is possible to model collections of HRTFs with a sin-
gle state-space system. In the present work, high-order state-space
systems are built from measured HRTFs, and two order reduction
methods, balanced model truncation (BMT) and Hankel optimal ap-
proximation (HOA), are used to design efficient approximants. Both
methods are based on the Hankel operator, which is described and
related to the convolution operator. Complete algorithms for both
reduction methods are given. The performance of the two methods is
compared and HOA is found to exhibit favorable properties for HRTF
approximation, although overall performance is similar for both meth-
ods. The performance of the state-space systems is compared to that
of a truncated minimum-phase FIR array of equal net cost for a vari-
ety of binaural display conditions. The state-space methods are found
to outperform the FIR array in many conditions.

1 Introduction

Emerging applications in binaural environment modeling (BEM) present a
unique opportunity for the design of efficient state-space systems. For single-
input single-output (SISO) filter approximation, state-space systems do not
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offer a computational savings over FIR or IIR systems. However, for a fil-
ter that contains either multiple inputs or outputs, a single state-space sys-
tem may outperform an array of independent FIR or IIR filters of equal
net cost. Contemporary approaches to BEM often employ multiple-input
multiple-output (MIMO) systems, but are usually implemented as an array
of independent filters. The transfer functions of each input-output pair of
such systems exhibit similar features, and, in particular, exhibit similar pole
locations. As such, a single low-cost MIMO state-space system may be suit-
able for BEM.

In the present work we demonstrate that a state-space system can offer a
substantial computational savings for binaural environment modeling relative
to conventional filter arrays. We construct high-order state-space systems
from a collection of measured head-related transfer functions (HRTFs) and
explore two methods of model reduction based on the Hankel operator. The
Hankel-operator is not traditionally used to analyze audio filters; we relate
this operator to the more common convolution operator. The two model
reduction methods are closely related, although one is ad hoc and relatively
simple to implement whereas the other is optimal in the Hankel-norm sense
but is somewhat more complicated to implement. The two methods have
been compared extensively for SISO systems, but relatively few comparisons
have been made for the MIMO case. We are not aware of any studies that
compare the two methods for systems as large as those required for binaural
environment modeling. Both methods are adapted to HRTF modeling and
complete algorithms are given in the appendix.

The remainder of this section gives background on BEM and reports
two previous studies that employed state-space systems for this application.
Section 2 develops the Hankel operator and describes the two model reduction
techniques. In section 3 the results of a numerical experiment are reported
in which the two techniques are directly compared to FIR arrays of equal
computational cost.

1.1 Binaural Environment Modeling

An acoustic scene that consists of a single stationary sound source in the far-
field of a listener in an anechoic environment can be modeled using a single
pair of HRTFs [1]. The HRTF represents the acoustic filtering of a plane
wave enroute to a listener’s two ears due to the head, pinna and torso of
the listener, and hence is unique to the listener. Such transfer functions can
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Figure 1: A conventional implementation of a multi-direction binaural dis-
play.

be implemented using appropriately measured head related impulse responses
(HRIRs), which, empirically, require approximately 200 FIR filter coefficients
at a sampling rate of 44.1 kHz. A binaural display that operates in this
manner, by filtering a monaural source with two N = 200 FIR filters and
supplying the two output signals to a pair of headphones, requires about 18
million multiplication and addition operations per second. Because this is
a substantial computational load, considerable effort has been made to find
low-order approximations to measured HRIRs [2].

However, it is well known that binaural displays, as described above,
are perceptually unsatisfying [3]. Several recent studies propose methods
for synthesizing ‘realistic’ auditory scenes. Binaural displays have been de-
signed that account for reflective environments [4–9], source and listener mo-
tion [4–7,10–12], and spatially-extended sources [13]. These examples share a
similar framework: monaural source signals are filtered with multiple HRTF
pairs instead of a single HRTF pair. That is, a monaural source is auralized
at D directions simultaneously, and then the D binaural signals are com-
bined so as to model the desired auditory scene. This framework compounds
the computational burden however, as the overall computational cost scales
linearly with D if individual filters are employed for each HRTF. A common
architecture for such binaural displays is shown in Figure 1. In the present
work we consider a D-input 2-output state-space system that models the
HRTFs shown in the gray box in Figure 1.
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1.2 State-Space Modeling of HRTFs

HRTFs measured for different directions, and for different listeners, are lo-
cally redundant. Even if the common transfer function (CTF) is removed
from a collection of HRTFs, leaving only the directional transfer functions
(DTFs), the transfer functions still exhibit similar spectral features, espe-
cially for nearby directions [1]. Numerous studies have found that collections
of HRTFs can be reasonably represented in low dimensional spaces. In [14]
it is shown that most of the HRTF variance can be accounted for with the
first five principal components of a measured dataset. However, such repre-
sentations do not necessarily yield low cost filters for individual HRTFs. A
system that models HRTFs at many directions simultaneously may be able
to utilize the redundancy of HRTF datasets to reduce the net cost of the sys-
tem. Indeed, it has been shown that HRTFs can be accurately approximated
using IIR filters with common poles [15]. This implies that a collection of
HRTFs can be reasonably approximated using a single MIMO state-space
system, as the rational transfer functions between each input and output of
the state-space system share a common denominator polynomial [16].

At first glance, modeling HRTF filters as state-space systems may not
appear computationally efficient. Any order N state-space system can al-
ways be converted to an equivalent array of order N IIR filters [16]. For
SISO systems an IIR implementation is necessarily lower cost than a equiv-
alent state-space system. Nonetheless, state-space techniques can be used
to design low-order IIR filters from high-order FIR filters [17]. Several pre-
vious studies use one such technique, balanced model truncation (BMT), to
design IIR filters from measured HRIRs [11,13,18]. These studies do not con-
sider MIMO state-space systems however, hence the computational cost still
scales linearly with the number of directions D. Furthermore, converting fil-
ters from state-space form to transfer function form may yield IIR filters that
are sensitive to coefficient quantization errors [16,19]. In the present work we
avoid this problem by leaving the reduced-order system in state-space form
and considering its net computational cost.

Two recent studies propose state-space systems that model HRTFs at
multiple directions simultaneously. In [19] MISO systems are designed that
model multiple HRTFs for each ear. HRTF redundancy is not fully ex-
ploited in this work however, as separate state-space systems are designed
for each HRTF individually, and then combined into one large system. In
contrast, [20] considers a MIMO state-space design that directly models mul-
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tiple HRTFs in the horizontal plane. Both studies employed BMT to design
low-order systems [21]. It was shown that, for sufficiently large system or-
der, listeners demonstrate similar localization performance with state-space
systems as with conventional high-order FIR systems [20]. However, nei-
ther study considered in detail the computational advantages of state-space
implementations. One goal of the present work is to demonstrate that a
substantial computational savings can be achieved for binaural environment
modeling using reduced-order state-space systems.

2 Methods

Consider a stable, causal, discrete-time MIMO state-space system1

x[n+1] = Ax[n] + Bu[n]

y[n] = Cx[n] (1)

where x[n] is the state vector of size N0, u[n] is the input vector of size M , and
y[n] is the output vector of size P . To simplify notation, let Σ =

(
A,B,C

)
represent the state-space system. The matrix impulse response of Σ is

h[n] =

⎡⎢⎣ h11[n] . . . h1M [n]
...

. . .
...

hP1[n] . . . hPM [n]

⎤⎥⎦
=

{
CAn−1B n > 0
0 n ≤ 0

(2)

For a D-input 2-output systems that models the HRTFs shown in Figure 1
the block impulse response is

h[n] =

[
hL

1 [n] hL
2 [n] . . . hL

D[n]

hR
1 [n] hR

2 [n] . . . hR
D[n]

]
(3)

1For convenience the systems considered here have no feed-through term (the Du[n]
term), similar to [19, 20]. The Hankel operator, described below, is not influenced by the
D matrix, hence the choice of D is somewhat arbitrary for this class of model reduction
methods. In the present work we simply set D = 0. The interested reader is referred
to [22] for a detailed discussion of this term.
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where hL
d [n] and hR

d [n] are the HRIRs for the left and right ears for direction
d. It is straightforward to design a state-space system Σ that implements
the collection of 2D HRIRs exactly2. However, such a state-space system
is high order and computationally prohibitive. As such, we explore model
reduction techniques to design low-cost approximants Σ̂ =

(
Â, B̂, Ĉ

)
with

order N < N0. The two reduction methods that we explore are based on the
Hankel operator, which is described next.

2.1 The Hankel Operator

Relative to SISO systems, there are few methods for reducing the order of
MIMO systems such that the resulting low-order approximation is optimal
in some sense. One metric for which optimal solutions can be found is the
Hankel norm. However, interpreting this metric for audio applications, such
as binaural displays, is somewhat subtle. The Hankel norm is a lower bound
to the 2-induced, or L∞, norm, which has a clear spectral interpretation. Fur-
thermore, it is often observed in practice that Hankel-optimal methods often
yield solutions for which the Hankel error is a fortuitously tight lower bound
on the L∞ error. As such, we explore Hankel-based model reduction tech-
niques in the next section. To clarify the interpretation of these techniques,
the L∞ and Hankel norms are described below along with the corresponding
convolution and Hankel operators. The development below is general for all
MIMO systems, not only D-input 2-output systems. The interested reader
is referred to [23] for an excellent review.

Consider a matrix X ∈ R
p×m. The 2-induced norm of this matrix is

defined as

‖X‖2·ind � sup
u�=0

‖Xu‖2

‖u‖2
(4)

where ‖·‖2 is the standard Euclidean or 2-norm of a vector. If the matrix
is viewed as a linear map, X : R

m → R
p, then the 2-induced norm is the

maximum gain of the map. The singular value decomposition (SVD) of X is

X = USV∗ (5)

where U and V are square unitary matrices. S is a diagonal rectangular
matrix with the singular values of X arranged along the diagonal, (σ1≥σ2≥

2For example, the controller canonical form, as described in the appendix, can be used
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· · ·σN0), where N0≤ min(p, m) is the rank of X. The SVD can be viewed as
a dyadic decomposition of X into a sum of rank one matrices,

X =

N0∑
k=1

σkukv
∗
k (6)

where uk and vk are the kth columns of U and V. It is simple to show
that ‖X‖2·ind = σ1. Furthermore, for a matrix X̂ with size p × m and rank
N < N0, then

‖X− X̂‖2·ind = σ1

(
X − X̂

) ≥ σN+1

(
X

)
(7)

where σ1

(
X − X̂

)
is the largest singular value of X − X̂ and σN+1

(
X

)
is

the (N + 1)th largest singular value of X. This inequality is known as the
Schmidt-Mirsky theorem and gives a lower bound on how well any low-rank
matrix X̂ can approximate X in the 2-induced norm.

Consider the state-space system Σ with M inputs and P outputs given in
(1). Associate the following convolution operator L : u �→ y with Σ:

y[n] =
n−1∑

k=−∞
h[n − k]u[k], n ∈ Z (8)

where h[n] is the matrix impulse response defined in (2). The convolution
operator can be expressed in matrix form as⎡⎢⎢⎢⎢⎢⎣

...
y[−1]
y[0]
y[1]

...

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
. . .

... . .
.

0 0 h[1]
. . . 0 h[1] h[2] . . .

h[1] h[2] h[3]

. .
. ...

. . .

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

L

⎡⎢⎢⎢⎢⎢⎣
...

u[0]
u[−1]
u[−2]

...

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

U
The 2-induced norm of the system Σ is defined as

‖Σ ‖2·ind � ‖L‖2·ind = sup
U �=0

‖LU‖2

‖U‖2

(9)

The discrete-time Fourier transform can be applied to each element of
the impulse response h[n], yielding the P × M matrix frequency response
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H(ω). Due to the equivalence between time and frequency domains, it is
straightforward to show that

‖Σ ‖2·ind = sup
ω

σ1

(
H(ω)

)
� ‖Σ ‖L (10)

where σ1

(
H(ω)

)
is the largest singular value of H(ω). Hence the 2-induced

norm is also known as the L∞ norm. For SISO systems, this norm is equal
to the maximum spectral magnitude.

Optimal causal approximations of MIMO systems in the L∞ norm are
not currently known3. However, if the domain and range of the convolution
operator are restricted, then optimal solutions are known. For this reason,
we consider the Hankel operator of Σ, H : u− �→ y+, which maps past inputs
to future outputs:

y[n] =
−1∑

k=−∞
h[n − k]u[k], n ∈ Z+ (11)

The Hankel operator can be expressed in matrix form as⎡⎢⎢⎢⎣
y[0]
y[1]
y[2]

...

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h[1] h[2] h[3]
h[2] h[3] h[4] . . .
h[3] h[4] h[5]

...
. . .

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

H

⎡⎢⎢⎢⎣
u[−1]
u[−2]
u[−3]

...

⎤⎥⎥⎥⎦

The matrix H, while potentially infinite in size, has rank not greater than N0.
The rank is exactly N0 iff the system Σ is minimal. Let (σ1 ≥ σ2 ≥ · · · ≥ σN0)
be the singular values of H. The Hankel norm of the system Σ is defined as
the maximum singular value of H

‖Σ ‖H � σ1 = ‖H‖2·ind (12)

It can be shown that the Hankel norm lower bounds the L∞ norm. It can
also be shown that twice the sum of the Hankel singular values upper bounds
the L∞ norm

σ1 ≤ ‖Σ ‖L ≤ 2(σ1 + · · ·+ σN0) (13)

3In some instances, such as one-step model reduction, L∞ optimal approximations are
known [23].
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Let Σ̂ be another state-space system with M inputs, P outputs, and order
N < N0. Then

σN+1 ≤ ‖Σ − Σ̂ ‖H ≤ ‖Σ − Σ̂ ‖L (14)

where the first inequality follows directly from (7) and (12) for finite Hankel
operators4, and the second inequality follows from (13). It can also be shown

that the L∞ error is upper bounded by both the 1-norm applied to h[n]−ĥ[n]
as well as twice the sum of the Hankel singular values of the error system
Σ − Σ̂ [24, 25], although we have found in practice that these bounds are
typically loose.

Remarkably, it can be shown that there exists a low-order system that
achieves the lower bound on the Hankel error in (14). This result was proven
for Hankel operators by Adamjan, Arov and Krein and is known as the AAK
theorem [26]. Later, Glover [22] extended this result to state-space systems

and developed a method for computing all optimal Σ̂. In the next section
we describe both Glover’s method, as well as a simpler suboptimal method.

2.2 Model Reduction

Two order reduction techniques are considered, balanced model truncation
(BMT) and Hankel-norm optimal approximation (HOA). In the SISO case,
the two methods have been directly compared for IIR filter design [27]. Both
methods are briefly reviewed below, and detailed algorithms are described in
the appendix.

BMT is a state-space model reduction technique that operates by discard-
ing all but the N largest singular values of a balanced system [21]. Balancing
a state-space system transforms the system such that the controllability and
observability Gramians are identical diagonal matrices, with the singular val-
ues of H contained along the diagonal [28]. In this case, any state x0 that
results in a ‘small’ amount of energy output (with the input set to zero) also
requires a ‘large’ amount of energy at the input to move the system from zero
to state x0. Such states contribute little to the input-output behavior of the
system, and hence can be truncated without greatly affecting the transfer
function matrix H(ω).

For our application it is not necessary to explicitly balance a state-space
system to perform BMT, as the original system is specified by a collections of
measured HRIRs. In this case, the Hankel matrix H is constructed directly

4The inequality holds for infinite Hankel operators as well.
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from the measured HRIRs. The SVD of H is then computed, and the N < N0

largest singular values, along with the corresponding singular vectors, are
used to construct a balanced order N state-space system.

While BMT is convenient, it is not optimal in any specific sense. The
HOA method is also based on the theory of balanced systems. However,
rather than simply truncate the N0−N least significant states, HOA operates
in a more sophisticated manner. The N + 1th state is removed directly by
means of an all pass dilation, and the remaining N0 − N − 1 states are
transformed so as to be both antistable and anticausal, in which case they
no longer influence the Hankel operator of the system. The order N stable
subsystem is then extracted, yielding a Hankel-optimal approximant Σ̂ [22]

‖Σ − Σ̂‖H = σN+1

(H)
(15)

The following bounds apply to order N < N0 systems reduced using either
BMT or HOA5

‖Σ − Σ̂ ‖H ≤ ‖Σ − Σ̂ ‖L ≤ 2(σN+1 + · · ·+ σN0) (16)

In practice, the upper bound on the L∞ error is often loose, whereas the
Hankel error is often a relatively tight lower bound on the L∞ error.

Both the Hankel error and the L∞ error are reported in Section 3 for
several state-space and FIR systems that approximate HRTF filter arrays.
As we are primarily interested in state-space systems that are more efficient
than FIR systems, we must consider a definition of computational cost that
is consistent for both system types.

2.3 Computational Cost

In the next section, state-space systems are compared to FIR filter arrays of
equal computational cost. A measure of computational cost that is consistent
for both system types must be defined. We define the cost C as the number
of multiplication operations required per sample period, or equivalently, the
total number of non-zero coefficients in the system. This measure of com-
putational cost is common in filter design applications when comparing FIR
and IIR filters [2, 13, 29]. An FIR filter array of order N with M inputs and

5If the state-space system is given a feed-through path, then the upper bound on the
L∞ error is halved for the HOA method [22].
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P outputs requires C = PM(N+1) multiplies per sample period. For exam-
ple, consider a N = 255 FIR array that models HRIRs at D = 10 directions.
This system has M = 10 inputs and P = 2 outputs, and has cost C = 5120.

For state-space systems, the computational cost depends on the choice
of system realization, as there are many state-space systems with the same
input-output behavior. In general, a state-space system of order N with M
inputs and P outputs, and no feed-through path, requires C = N2+(P+M)N
multiplies per time step. However, it is possible to apply a similarity trans-
form to the system matrices (A,B,C) such that the A matrix becomes more
sparse. For example, a modal decomposition can be used to diagonalize the
A matrix [30], reducing the system cost to C = (P +M +1)N . However, in
this case the system matrices are complex. Alternatively, the A can be trans-
formed to Jordan canonical form, a real and nearly diagonal form. Unfor-
tunately, the Jordan form is difficult to compute in general, and notoriously
prone to quantization error.

A more practical alternative is to employ a Schur decomposition to trian-
gularize the A matrix [30]. Because we seek system matrices that are strictly
real, the new A matrix is only quasitriangular, with either 1 × 1 or 2 × 2
blocks down the main diagonal. An algorithm for computing the real Schur
decomposition can be found in [31], and is implemented in several numerical
software packages. In this case the cost of the final state-space system is not
greater than C = N2/2 + (P +M+1)N .

3 Performance Characterization

To characterize the performance of the state-space systems described above,
a numerical experiment is conducted in which multiple HRTF systems of
varying size D, but fixed cost C, are constructed. The number of directions
D that are required for a binaural display depends on the application. As
such, we view D as an independent variable and choose the largest system
order N ∈ Z+ such that the total computational cost of the system, as defined
in Section 2.3, does exceed Cmax.

An FIR filter array is used as a baseline for comparison with the state-
space systems. For any given cost bound, two FIR arrays are constructed,
one with cost bounded by Cmax, and the other with cost bounded by 2Cmax.
We include the ‘double-cost’ FIR array to gauge the relative improvement
in approximation quality of the state-space systems. In so doing, we will
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demonstrate that for some configurations, a state-space system not only out-
performs an FIR array of equal cost, but also outperforms an FIR array of
twice the cost. This would seem to be a large enough margin of improve-
ment to warrant the use of state-space systems in practical binaural displays.
FIR filters of order N are constructed by truncating all but the first N +1
samples of minimum-phase HRIRs. Hence the FIR filters are optimal FIR
approximations in terms of L2 error [29].

Two approximation errors are reported: the Hankel error and the L∞

error. Perceptually weighted error metrics are reported in a companion
study [32], in which different state-space architectures are considered for
binaural display applications. In addition to the two error metrics, a few
specific error responses are shown to compare BMT and HOA.

3.1 HRTF Measurements

The HRTFs used to design the low-order systems were measured at the Naval
Submarine Medical Research Laboratory in Groton, CT. The HRTFs of eight
individuals were measured. Using a vertical-polar coordinate system, HRTFs
were measured in 10◦ increments in azimuth around the listener, and in 18◦

increments in elevation from −36◦ to +90◦, yielding a total of 253 pairs of
HRTFs for each listener. For the experiment below, systems are designed
that model D of the 253 measured directions. For every system, D direc-
tions are chosen randomly subject to a constraint that the D directions be
approximately uniformly distributed around the listener.

Golay codes are employed to minimize bias in the measurement and iden-
tification process. The HRTF measurement process is described in detail
in [33]. At a sampling rate of 44.1 kHz the measured HRIRs have length
256, order N = 255. The measured HRIRs are nearly minimum-phase. To
simplify the analysis, and to guarantee the performance of the truncated
FIR filters, all HRIRs are reconstructed as strictly minimum-phase for this
experiment6.

3.2 Hankel and L∞ Results

For the main experiment, we select a cost bound of Cmax = 4000, which is
approximately the cost of eight full-order HRIR pairs. Separate systems are

6We also applied the state-space methods to the nearly measured HRIRs and observed
that performance did not change significantly.
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Figure 2: System order for three systems as a function of the number of
directions D.

designed for each of the eight measured HRTF datasets for each number of
directions. The results are then averaged across the eight individuals. We
found that the approximation measures varied little across individual, so we
report only mean values without standard deviation bars. For each HRTF
dataset, 25 systems are approximated, with 1≤D≤110. For the state-space
approximats, low-order systems are designed using both BMT and HOA, as
described in Section 2.2. Two FIR arrays are designed for each as well.

Figure 2 shows the order N for three systems: a MIMO state-space with
cost C ≤ Cmax, an FIR array with cost C ≤ Cmax, and a second FIR array
with cost C ≤ 2Cmax. Note that for the FIR filter arrays, it is not necessary
to truncate the HRIRs if D ≤ 8 in order to satisfy the cost constraint. And
for the ‘double-cost’ array no truncation in required for D ≤ 16. Hence the
approximation error for the two FIR arrays will be zero for D ≤ (8, 16).

To compute the Hankel error, the Hankel matrix of the error system
for each low-order system is constructed and its largest singular value com-
puted. Several efficient techniques for computing the L∞ error have been
published [34], although we found that a brute-force search over a finely
sampled frequency grid yields accurate estimates of the L∞ error with man-
ageable computation time.

Figure 3 shows the Hankel error of state-space and FIR systems with
order given by Figure 2. The performance of the FIR systems is shown with
dashed lines, and the performance of the state-space systems is shown with
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Figure 3: Hankel error as a function of D.

solid lines. The performance of the BMT state-space systems is shown in
black, and that of the HOA systems is shown in gray. The performance of
the ‘single-cost’ FIR systems is shown in black, and the ‘double-cost’ FIR
systems in gray. Figure 4 shows the corresponding L∞ error.

Both errors are non-decreasing functions of D for all systems. For small
D ≤ 8, the FIR systems exhibit no error. However, for larger D the error
of the FIR systems increases rapidly relative to the error of the state-space
systems. For D > 20 the error of the state-space systems is less than that
of even the ’double-cost’ FIR array. As expected, the Hankel error lower
bounds the L∞ error in all cases. For the FIR systems, the Hankel error
is a relatively loose bound on the L∞ error for D > 40, with the L∞ error
being 20-30% greater than the Hankel error. In contrast, for the state-space
systems, the Hankel error is relatively tight, with the L∞ error being 15-20%
greater than the Hankel error.

3.3 Comparison of BMT and HOA

Overall, BMT and HOA exhibit similar performance in the design of low-cost
state-space models of HRTFs. The HOA designs are found to yield slightly
lower Hankel error and L∞ error than the BMT designs. However, we have
also found that BMT yields slightly lower L2 error [32,35]. This inconsistency
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Figure 4: L∞ error as a function of D.

is due to the difference between the ∞-norm and the 2-norm. The HOA
method is known to ‘distribute’ the error approximately uniformly across
frequency. In contrast, the error spectrum that results from the BMT method
exhibits peaks and dips. The average (2-norm) spectral error exhibited by
the BMT method is often smaller than that of the HOA method, but the
peaks in the BMT error response rise above the relatively flat error response
of the HOA method.

The performance trends outlined above may be observed in HRTF ap-
proximation, but are not strong. In the design of simple SISO filters, however,
these trends are clear. A direct comparison of BMT and HOA for IIR filter
design is given in [27]. Figure 5 shows the magnitude error for two examples.
Two N = 100 FIR filters are constructed, one models a narrow notch filter,
while the other models a wide band-pass filter. Low-order state-space sys-
tems are designed for these two FIR filters using both BMT and HOA. The
HOA method exhibits relatively flat magnitude error. The BMT method
exhibits lower magnitude error at most frequencies, but also exhibits sub-
stantial peaks. As has been previously observed [27], the BMT method often
concentrates error near spectral notches, or near transition bands, although
this trend is not universal. This property may be undesirable for binaural
applications, as spectral notches are important for spatial hearing [36].

The trends outlined above for the SISO case can also be observed in simple
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Figure 5: The bottom two panels show the magnitude response for two order
100 FIR filters; a notch filter (left) and a band-pass filter(right). The top two
panels show the magnitude error of low-order state-space systems designed
using either HOA or BMT. For the notch filter N = 6 state-space systems
are designed, and for the band-pass filter N = 10 systems are designed.

MIMO filters. Figure 6 shows the magnitude response of four N = 100 FIR
filters. The filters are simple in shape: band-pass, band-stop and low-pass.
Two N = 20 state-space systems are constructed using BMT and HOA. The
resulting error magnitude responses are shown in the top panel of Figure 6.
The error peaks of the BMT system again occur near the transition bands
of the original filters. Indeed, the highest error peak exhibited by the BMT
approximant occurs at the frequency where all four transfer functions exhibit
transitions between stop bands and pass bands. These performance trends
are less clear when we examine measured HRTF approximations, however.

Figure 7 shows the magnitude response of one HRTF on a linear scale.
The error magnitude for two N = 6 state-space systems is shown in the
top panel, and for two N = 30 state-space systems is shown in the bottom
panel. To facilitate comparison, the error magnitudes are shown in the same
panel as the HRTF magnitude; the error magnitude values are given on the
left of the figure, and the HRTF magnitude values are given on the right of
the figure. The differences between the error magnitudes for the BMT and
HOA systems are not as significant in this example as in the previous filter
approximations. The HOA systems exhibit a flatter error magnitude than

16



0

0.2

0.4

0.6

0.8

M
IM

O
 E

rr
or

 M
ag

ni
tu

de HOA
BMT

0 0.25 0.5 0.75 1

0

1
0

1
0

1
0

1

Normalized Frequency

F
IR

 M
ag

ni
tu

de
 R

es
po

ns
es

Figure 6: The bottom two panels show the magnitude responses for two-
input, two-output FIR array with order N = 100. The top two panel shows
σ1

(
H(ω) − Ĥ(ω)

)
, for two N = 20 state-space systems designed using HOA

and BMT.

the BMT systems, although at most frequencies the BMT error magnitude
is lower than the HOA error. The BMT error magnitude exhibits peaks in
the error at or near spectral notches in the original HRTF. For example, the
errors of both the N = 6 and N = 30 BMT systems exhibit a peak near the
HRTF notch at 5.5 kHz.

If MIMO HRTF systems are considered, the BMT and HOA methods
yield similar performance. Figure 8 shows an example for a MIMO system
that models D = 44 HRTF pairs. In this case the magnitudes shown are
the maximum singular value of the matrix transfer functions. State-space
systems with order N = 40 are designed with both BMT and HOA, and
both systems yield error magnitudes between 1 and 1.3 for most frequencies.
The BMT error magnitude again yields greater fluctuations than the HOA
error magnitude. The BMT error exhibits several small peaks, some of which
are located at or near notches in the HRTF response. Nonetheless, the two
methods yield similar results and both are suitable for HRTF approximation.
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Figure 7: HRTF magnitude response for location (θ, φ) = (30◦,−36◦), ipsilat-
eral ear. Also shown are error magnitudes for four low-order approximations.
The top panel shows the error responses for two N = 6 state-space systems
designed using HOA and BMT. The bottom panel shows error responses for
two N = 30 systems.
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Figure 8: MIMO HRTF magnitude response for 44 directions surrounding
the listener, σ1H(ω), where H(ω) is a 2 × 44 matrix function. Also shown

are MIMO error responses, σ1
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)
, for two N = 40 state-space

systems designed using HOA and BMT.
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3.4 Psychophysical Results

While the Hankel and L∞ results presented above are promising, additional
experiments are necessary to evaluate the perceptual efficacy of the proposed
state-space methods. We have conducted experiments that employ simple
models of auditory perception, based on a warped L2 norm [35]. Informal
listening tests confirm the numerical results presented above: for a fixed C
we are able to construct state-space systems that are perceptually indiscrim-
inable from min.-phase HRIRs, whereas FIR arrays with the same cost C
are discriminable from min.-phase HRIRs. A formal experiment is currently
being conducted. The audible artifacts that sometimes appear in the design
of low-order IIR filters for audio applications [13,19] are not apparent in any
of the state-space HRTF systems.

The results presented above do not reflect a perceptually critical feature
of the HRIRs: the interaural time delay (ITD). We have found that in the
design of low-order MIMO systems, the impulse responses are often smeared
such that there is no longer a precise time-delay in the contralateral responses
after model reduction. We have found that this problem can be mitigated
by either employing a different state-space architecture or using a hybrid
state-space/FIR system. Remarkably, we have found that the Hankel and
L∞ results are similarly promising with the alternative architectures. The
alternative architectures and issues associated with the ITD are described in
detail in [32].

4 Conclusion

The present work explores low-order state-space models of HRTFs. Many
contemporary binaural environment models are implemented with an array
of HRTF filters. If more than 20 directions are included in the array, we
found that the array can be replaced with a state-space system of lower
computational cost. Two order-reduction techniques are explored, BMT and
HOA. Both methods are based on the Hankel operator and balanced systems
theory, although HOA is optimal in the Hankel-norm sense whereas BMT is
not optimal in any sense. In practice, the two methods are found to yield
similar approximation quality for HRTFs. In terms of the Hankel error and
L∞ error, the HOA method yields slightly lower error. The BMT method
often yields peaks in the error response near spectral notches in the original
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HRTFs, although this effect is slight in the MIMO case.
Binaural displays are an ideal candidate for reduced-order state-space

models, as there is a clear need to model multiple similar transfer functions
simultaneously. We have demonstrated that for this application and state-
space systems can achieve a significant computational savings relative to
conventional filter arrays.

Appendix: Model Reduction Algorithms

Algorithms have been previously published for both Balanced Model Trun-
cation (BMT) [20,21] and Hankel-norm Optimal Approximation (HOA) [22,
37]7. In the interest of completeness and reproducibility the algorithms have
been adapted to the binaural display application and are described below in
detail. In particular, the HOA algorithm is somewhat involved. Published
HOA algorithms typically only provide a broad overview that does not de-
scribe several difficult steps. Each step of the HOA method is described
below, with additional references for individual sub-algorithms as necessary.

The principal step in BMT is the computation of the SVD of Hankel
matrix H. This computation is straightforward, but H is often a large ma-
trix and memory consumption may be an issue. In contrast, HOA operates
entirely on the system matrices, hence memory consumption is not an issue.
However, HOA may be more time consuming to compute, as solving Lya-
punov equations and stable projections are computationally intensive steps
for large systems.

Balanced Model Truncation

Balanced Model Truncation (BMT) is a state-space model reduction tech-
nique that operates by discarding all but the N largest singular values of a
balanced system [21]. If the original system is given in state-space form, then
it is balanced before truncation. For HRTF modeling, this is not necessary
as the original system is a collection of transfer functions. In this case the
Hankel matrix H is given by the block impulse response of the HRTFs. A
balanced system is then constructed from the SVD of H [21].

7Both algorithms are included in the Robust Controls Toolbox, an extension of the
Controls Toolbox, which is itself an extension of the MATLAB software package.
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The BMT algorithm described below constructs an order N state-space
system from a collection of measured HRIRs of order N0. Both the originial
HRIR filter array and the reduced-order state-space system have M inputs
and P outputs.

1. Prepend a single zero to the beginning of each HRIR, as the state-space
system in (1) has no feed-through path [20, 21]. For the MIMO archi-
tecture, the time-delay of the contralateral HRIRs must be included,
but is removed for the SIMO and MISO architectures. In all other
respects, the BMT algorithm is independent of system architecture.

2. Arrange the HRIRs into the desired matrix impulse response, h[n=
0, 1, · · · N0+1], where h[n] is P × M , and construct the finite Hankel
matrix H

H =

⎡⎢⎢⎢⎢⎢⎣
h[1] h[2] h[3] . . . h[N0+ 1]
h[2] h[3] h[4] . . . 0
h[3] h[4] h[5] . . . 0

...
...

...
. . .

...
h[N0+ 1] 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦
The size of H is P (N0+1) × M(N0+1)8.

3. Compute the singular value decomposition (SVD) of H

H = USVT (17)

where U and V are unitary matrices with dimensions P (N0+1)×P (N0+
1) and M(N0+1)×M(N0+1), respectively, and S is a diagonal matrix of
size P (N0+1)×M(N0+1) with the singular values, (σ1 ≥ σ2 ≥ · · · ≥ σR),
arranged along the main diagonal, where R = min

(
P (N0+1), M(N0+

1)
)
.

8H may be very large depending upon (P, M, N0), and computing its singular value
decomposition may require a prohibitive amount of memory. However, almost half of H is
zero, and given that the HRIRs are minimum-phase, most of the energy in H is contained
in the upper-left corner. We found that the results are not affected substantially if only
the upper-left quarter of H is used for BMT. All results given in the present study are
computed using the full Hankel matrix.

21



4. Weight the singular vectors, given by the rows of U and V, with the
square root of the singular values9: Ũ = US1/2 and ṼT = S1/2VT . Ũ
and Ṽ both have dimensions P (N0+1)×M(N0+1). Hence H = ŨṼT ,

where Ũ and Ṽ are orthogonal but not orthnomornal.

5. Partition the SVD so as to retain only the N largest singular values10

Ũ =

⎡⎢⎣ Ũ1 . . .

Ũ2 . . .

Ũ3 . . .

⎤⎥⎦ , Ṽ =

[
Ṽ1 . . .
...

. . .

]
(18)

where Ũ1 and Ũ3 have dimension P × N , Ũ2 has dimension P (N0 −
1) × N , and Ṽ1 has dimension M × N .

6. Construct an order N state-space system from Ũ and Ṽ. The system
matrices

(
Â, B̂, Ĉ

)
are given by

Â =

⎛⎝[
Ũ1

Ũ2

]T [
Ũ1

Ũ2

]⎞⎠−1 [
Ũ1

Ũ2

]T [
Ũ2

Ũ3

]

B̂ = ṼT
1 , Ĉ = Ũ1 (19)

where Â is N × N , B̂ is N × M , and Ĉ is P × N .

Hankel-Norm Optimal Approximation

The Hankel-norm Optimal Approximation (HOA) algorithm also designs a
low-order system by discarding all but the N largest singular values of the
original system, albeit in such a way as to minimize the Hankel error of
the resulting system. For the SISO case, closed-form HOA algorithms have
been published [27, 38]. These studies use HOA to construct low-order IIR
filters from FIR filters. For the MIMO case the algorithm is considerably

9The square-root operation is ‘element-wise,’ as S is not necessarily square.
10The SVD is the most computation-intensive part of the BMT algorithm. Because only

the N largest singular values are used to construct the final state-space system, there is
no need to compute the entire SVD. Only the N largest singular values, along with their
singular vectors, need to be computed.
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more dense. The HOA algorithm is further complicated if the original sys-
tem contains repeated singular values. This complication is neglected in the
algorithm below, as measured HRIRs invariably contain sufficient white ob-
servation noise to preclude any repeated singular values [23]. The observation
noise also guarantees that the system is minimal.

The HOA algorithm described below constructs an order N state-space
system from a collection of measured HRIRs of order N0. Both the original
HRIR filter array and the reduced-order state-space system have M inputs
and P outputs.

1. Prepend a single zero to the beginning of each HRIR, as in the BMT
algorithm. In addition to removing the need for a feed-through path in
the state-space system, prepending a zero also transforms the transfer
functions so as to be strictly proper, a requirement for HOA [22]. For
the MIMO architecture, the time-delay in the contralateral HRIRs must
be included, but is removed for the SIMO and MISO architectures.

2. Construct a high-order state-space system that implements the mea-
sured HRIRs exactly. The HOA algorithm operates directly on the
system matrices (A,B,C), hence it is necessary to realize the HRIR fil-
ter array as a state-space system prior to performing order reduction.
This is readily accomplished with the controller canonical form [39].
Without loss of generality, consider a system with more outputs than
inputs11, P ≥ M . The controller canonical realization of this filter
array is an order M(N0 + 1) state-space system. The A0 matrix is
M(N0 + 1) × M(N0 + 1), the B0 matrix is M(N0 + 1) × M , and both
matrices are block diagonal

A0 =

⎡⎢⎢⎢⎣
I′ 0 . . . 0
0 I′ . . . 0
...

...
. . .

...
0 0 . . . I′

⎤⎥⎥⎥⎦ B0 =

⎡⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎦
11If M > P , swap inputs with outputs, perform HOA, and swap back when done:

Â = AT , B̂ = CT , Ĉ = BT .
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where

I′ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 ·
1 0 0 ·
0 1 · 0
0 · 0 0

· 1 0 0
· 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ 1 =

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ (20)

I′ has dimension (N0 +1)× (N0 +1), and 1 has dimension (N0 +1)×1.
The C0 matrix is P ×M(N0 +1) and is constructed from the measured
HRIRs

C0 =

⎡⎢⎢⎢⎣
h11[1] h11[2] . . . h11[N0 + 1]
h21[1] h21[2] . . . h21[N0 + 1]

...
...

. . .
...

hP1[1] hP1[2] . . . hP1[N0 + 1]

. . .

h12[1] h12[2] . . . h1M [N0 + 1]
h22[1] h22[2] . . . h2M [N0 + 1]

...
...

. . .
...

hP2[1] hP2[2] . . . hPM [N0 + 1]

⎤⎥⎥⎥⎦
where hpm[n] is the impulse response between input m and output p.

3. Convert the discrete-time system above to continuous-time. The HOA
algorithm is simpler in continuous-time, and it is common even when
designing low-order discrete-time systems to convert the original system
to continuous-time using a bilinear transform, and then convert back to
discrete-time after performing HOA [22, 23, 40]. A discrete-time HOA
algorithm is given in [37], although it is more dense than the algorithm
below. The bilinear transform to continuous-time is

Ac =
(
I + A0

)−1 (
A0 − I

)
Bc =

√
2
(
I + A0

)−1
B0

Cc =
√

2C0

(
I + A0

)−1
(21)

4. The controllability and observability Gramians, P and Q, of the system
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(Ac,Bc,Cc) are defined as

P �
∫ ∞

0

eAct Bc B
∗
c eA∗

ct dt

Q �
∫ ∞

0

eA∗
ct C∗

c Cc eAct dt (22)

Both Gramians are size M(N0+1)×M(N0+1). The system (Ac,Bc,Cc)
is stable, and the eigenvalues of Ac are strictly in the left half of the
complex plane. Hence the integrals above converge. However, this
is a numerically prohibitive integral to evaluate. The Gramians are
typically computed by considering the corresponding matrix differential
equations, which yield the following linear equations, known as the
Lyapunov equations

AcP + PA∗
c + BcB

∗
c = 0

A∗
cQ + QAc + C∗

cCc = 0 (23)

An efficient algorithm for solving matrix equations of this form is given
in [41]. Because the system (A0,B0,C0) is in controller canonical form,
the controllability Gramian is simply the identity matrix, and this sim-
plifies the computation of a balancing transform somewhat [22]. The
observability Gramian Q must be computed by solving the Lyapunov
equation.

5. Find a balancing transform T from the observability Gramian Q. There
are many balancing transforms, however care must be taken in choosing
a transform, as they may be ill-conditioned [17]. The transform below is
well-conditioned for all of the HRTF data used in the present study [28].

Compute the SVD of Q
Q = VSVT (24)

where V is a unitary matrix and the singular values of Q, (σ1 > σ2 >
· · · > σM(N0+1)), are arranged along the diagonal of S. The symmetry
of the SVD in this case is due to the symmetry of the Q. Let

U = VS1/4 (25)

The matrix UT is itself a balancing transform. However, we seek to
isolate the state that corresponds to the (N+1)th largest singular value.
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We move this state to the end of the state-vector by permuting the
columns of the transform matrix

Ũ =
[
u 1 · · · uN , uN+2 · · · uM(N0+1), uN+1

]
where uk is the kth column of U. The balancing transform is then given

by T = ŨT .

6. Balance the system using similarity transform T

Ab = T Ac T
−1

Bb = T Bc

Cb = Cc T
−1

7. Partition the matrices so as to isolate the state corresponding to the
(N+ 1)th singular value

Ab =

[
A11 A12

A 21 A22

]
Bb =

[
B1

B 2

]
CT

b =

[
CT

1

CT
2

]
where A11 has dimensions

(
M(N0 + 1) − 1

) × (
M(N0 + 1) − 1

)
, A12

and A 21 are vectors, and A22 is a scalar. Matrix B1 has dimensions(
M(N0 +1)−1

)×M , matrix C1 has dimensions P ×(
M(N0 +1)−1

)
,

and B 2 and C 2 are vectors.

8. Let Γ = Σ1 − σN+1I, where

Σ1 = diag
(
σ1 · · · σN , σN+2 · · · σP (N0+1)

)
and σk is the kth singular value of Q. Also let W = (CT

2)
†B 2, where †

represents the Moore-Penrose pseudoinverse12 .

9. Construct the following order M(N0 + 1) − 1 system

Ã = Γ−1
(
A11σN+1 + Σ1A11Σ1 + σN+1C

T
1 WBT

1

)
B̃ = Γ−1

(
Σ1B1 −√

σN+1C
T
1 W

)
C̃ = C1Σ1 −√

σN+1WBT
1 (26)

12This step is commonly stated as: find a unitary matrix W that satisfies CT
2W = B 2.

The pseudoinverse provides one possible solution [22, 42].
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which is referred to as an all pass dilation of
(
Ab,Bb,Cb

)
, as the spec-

tral error between the two systems is constant

σmax

(
Tb(jω) − T̃(jω)

)
=

√
σN+1 (27)

where Tb(jω) and T̃(jω) are the matrix transfer functions for the two
systems.

10. The system
(
Ã, B̃, C̃

)
is not stable. Of the M(N0 + 1)− 1 eigenvalues

in this system, exactly N of them are stable. It is necessary to extract
the stable order N subsystem from

(
Ã, B̃, C̃

)
. There are several meth-

ods for accomplishing this. The most direct method is to compute the
modal decomposition of Ã [30], and constructing a diagonal Âc from
the N eigenvalues with negative real part. The N corresponding eigen-
vectors similarly transform B̃ and C̃. A more involved method that
yields real system matrices is described below [22, 42].

(a) Compute the complex Schur decomposition of Ã. Find a unitary

matrix U such that U∗ÃU = Ãt is a triangular matrix with
diagonal elements given by the eigenvalues of Ã.

(b) It is necessary to transform Ãt such that the N stable eigenvalues
appear as the first N diagonal elements. This can be accomplished
by applying a sequence of Givens rotations to the Ãt and U ma-
trices [31], yielding a new unitary transform matrix Ũ

Ũ∗ÃŨ = Ãp =

[
Ã11 Ã12

0 Ã22

]
(28)

where Ãp is real and Ã11 is N × N .

(c) Find a matrix X that satisfies

Ã11X −XÃ22 + Ã12 = 0 (29)

This is similar to solving the continuous-time Lyapunov equations,
and the algorithm in [41] can be used.
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(d) The system matrices of an order N HOA continuous-time system
are given by

Âc = Ã11

B̂c =
[
I, −X

]
Ũ∗ B̃

Ĉc = C̃ Ũ

[
I
0

]
(30)

where I is N × N .

11. The system matrices of the final order N discrete-time system are given
by the bilinear transformation of the continuous-time solution

Â =
(
I + Âc

) (
I − Âc

)−1

B̂ =
√

2
(
I − Âc

)−1
B̂c

Ĉ =
√

2 Ĉc

(
I − Âc

)−1
(31)

References

[1] C. Cheng and G. Wakefield, “Introduction to Head-Related Transfer
Functions (HRTFs): Representations of HRTFs in Time, Frequency,
and Space,” J. Audio Eng. Soc., vol. 9, no. 4, pp. 231–249, 2001.

[2] J. Huopaniemi, N. Zacharov, and M. Karjalainen, “Objective and Sub-
jective Evaluation of Head-Related Transfer Function Filter Design,” J.
Audio Eng. Soc., vol. 47, no. 4, pp. 218–239, 1999.

[3] B. Shinn-Cunningham and A. Kulkarni, “Recent Developments in Vir-
tual Auditory Space,” in Virtual Auditory Space: Generation and Ap-
plications, S. Carlile, Ed. Berlin, Germany: Springer-Verlag, 1996.

[4] D. Begault and E. Wenzel, “Direct Comparison of the Impact of
Head Tracking, Reverberation, and Individualized Head-Related Trans-
fer Functions on Spatial Perception of a Virtual Speech Source,” J. Au-
dio Eng. Soc., vol. 49, no. 10, pp. 904–916, Oct. 2001.

[5] D. Zotkin, R. Duraiswami, and L. Davis, “Rendering localized spatial
audio in a virtual auditory space,” IEEE Trans. Multimedia, vol. 6,
no. 4, pp. 553–564, Aug. 2004.

28



[6] L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, “Creating In-
teractive Virtual Acoustic Environments,” J. Audio Eng. Soc., vol. 47,
no. 9, pp. 675–705, Sept. 1999.

[7] S. Takane, Y. Suzuki, T. Miyajime, and T. Sone, “ADISE: A new
method for high definition virtual acoustic display,” in Proc. Int. Conf.
on Auditory Display, 2002, Kyoto, Japan.

[8] H. Hacihabiboglu, “A fixed-cost variable-length auralization filter model
utilizing the precedence effect,” in Proc. IEEE Workshop of App. of
Signal Processing to Audio and Acoust., 2003, New Paltz, NY.

[9] R. Heinz, “Binaural Room Simulation Based on an Image Source Model
with Addition of Statistical Methods to Include the Diffuse Sound Scat-
tering of Walls and to Predict the Reverberant Tail,” Applied Acoustics,
vol. 38, pp. 145–159, 1993.

[10] V. Algazi, R. Duda, and D. Thompson, “Motion Tracked Binaural
Sound,” J. Audio Eng. Soc., vol. 52, no. 11, pp. 1142–1156, Nov. 2004.

[11] F. Freeland, L. Biscainho, and P. Diniz, “Interpositional Transfer Func-
tion for 3D-Sound Generation,” J. Audio Eng. Soc., vol. 52, no. 9, pp.
915–930, Sept. 2004.

[12] C. Cheng and G. Wakefield, “Moving Sound Source Synthesis for Bin-
aural Electroacoustic Music Using Interpolated Head-Related Transfer
Functions (HRTFs),” Computer Music Journal, vol. 25, no. 4, pp. 57–80,
2001.

[13] N. Adams and G. Wakefield, “The binaural display of clouds of point
sources,” Proc. IEEE Workshop on App. of Signal Processing to Audio
and Acoust., October 2005, New Paltz, NY.

[14] D. Kistler and F. Wightman, “A model of head-related transfer func-
tions based on principal components analysis and minimum-phase re-
construction,” J. Acoust. Soc. Am., vol. 91, no. 3, pp. 1637–1647, Mar.
1992.

[15] Y. Haneda, S. Makino, Y. kaneda, and N. Kitawaki, “Common-
Acoustical-Pole and Zero Modeling of Head-Related Transfer Func-
tions,” IEEE Trans. Speech and Audio Processing, vol. 7, no. 2, pp.
188–196, Mar. 1999.

29



[16] J. Bay, Fundamentals of linear state space systems. Boston, MA:
McGraw-Hill, 1999.

[17] B. Beliczynski, I. Kale, and G. Cain, “Approximation of FIR by IIR
Digital Filters: An Algorithm Based on Balanced Model Truncation,”
IEEE Trans. Signal Processing, vol. 40, no. 3, pp. 532–542, Mar. 1992.

[18] J. Mackenzie, J. Huopaniemi, V. Välimäki, and I. Kale, “Low-Order
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