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Image registration, as a special form of signal warping, is an important task in image processing. Given the many
current developments in algorithms and techniques in image registration, it is desirable to have fundamental perfor-
mance criteria to compare the overall optimality of different estimators. This report presents an observation model for
image registration that accounts for image noise more realistically than most formulations, and describes performance
analysis based on Cramér-Rao Bound and its related variant MCRB.

I. M ODEL - THE IDEAL V.S. COMMONLY USED

In a general setting, image registration methods aim to find the motion in an image sequence. Letzi denote theith
observation (frame) of an underlying image. In reality, only sampled observations are available, with spatial sample
spacing∆. Therefore, it is natural to use a discrete spatial index to refer to the sampled location. Without loss of
generality, we takezi[n] = zc

i (n∆) wherezc notates the underlying continuous intensity map. Accounting for additive
observation noise, we formulate the generative model as:

zi[n] = f(n+ τi(n)) + ǫi[n], (1)

where it is standard to assumeǫi are normally distributed I.I.D noise. In principle, the task of registratering theobser-
vation sequence is to find the deformation sequence of continuous maps{τi} for all i. We adopt the parametric setting,
and represent the underlying continuous image intensity as a linear combination of a finite number of basis functions
b with coefficientsc = {ck}, i.e., f(x) =

∑K
k=1 ckb(x, k). For simplicity, we focus on pairwise registration which

requires estimating one deformation fieldτ , and drop the subindex inτi. Furthermore, we assume the deformation field
is properly (sufficiently) parameterized withα, so the estimation performance for deformation and image intensity may
be characterized by that of the parameter set(c, α). For simplicity, we formulate our problem in 1-D format, but the
analysis generalizes to higher dimension (2-D and/or 3-D). The two observed images are modeled as:

z1[n] =
K

∑

k=1

ckb(n, k) + ǫ1[n],

z2[n] =
K

∑

k=1

ckb(n+ τα(n), k) + ǫ2[n] n = 1, 2, . . . , N, (2)

where{b(·, k)} are common intensity bases, andτ parameterized byα captures the pointwise deformation. The
components of additive noiseǫi are zero mean I.I.D Gaussian with varianceσ2.

The formulation in (2) captures the spatial sampling of the observation, the finite representation of the underlying
“true” intensity{ck}K

k=1 andτ denotes the point-wise deformation.
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For comparison purposes, in traditional registration setup, the estimator is often designed to find the transformation
Γ̂ such that1

Γ̂ = arg min
Γ
D(z2, z1 ◦ Γ), (3)

whereD is some difference measure,e.g., sum-of-squared-difference (SSD) or mutual information (MI), andΓ in-
dicates the transformation. In this setting, it is implicitly assumed that thez1 (sometimes called “reference“) is a
noise-free version of the true intensity imagef , andz2 (also called “homologous”) is a deformed image with statistical
noise corresponding to the form of the difference metric. Clearly there is alack of symmetry regarding the presence of
noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSD) as our default choice of the error metricD for (3) hereafter,
to reveal the parallel structure with Gaussian noise assumptions, which is made in many practical cases.

II. CRAMÉR-RAO BOUND AND ITS ASYMPTOTIC BEHAVIOR

We first reformulate (2) in a compact vector form as follows.

z =

[

z1
z2

]

=

[

A0

Aτ

]

c +

[

ǫ1
ǫ2

]

= Aτc + ǫ, (4)

wherez
△
= [z1(1), . . . , z1(N), z2(1), . . . , z2(N)]T ∈ ℜ2N andc

△
= [c1, . . . , cK ]T ∈ ℜK

≥0 are column vectors by
stacking the corresponding elements. The concatenated random noise vector ǫ ∼ N (0,Σ = σ2I2N ). A0, Aτ ∈
M

N×K have elementsA0(i, j) = b(i, j) andAτ (i, j) = b(i + τ(i), j) for i = 1, 2, . . . , N, j = 1, 2, . . . ,K. The
overall system matrixA = [AT

0 , A
T
τ ]T . The Craḿer-Rao Bound (CRB) is a fundamental lower bound on the variance

of any unbiased estimator [1] and serves as a benchmark for estimator performance. When maximum-likelihood (ML)
estimators are applied, which are known to be asymptotically unbiased, it is interesting use CRB to bound their variance.
In [2], it is suggested that when inverting the Fisher information matrix (FIM)corresponding to the parameter of interest
only is not straight-forward, it is feasible to use “complete-parameter” Fisher information matrices. Following a similar
logic, we can write (4) in a more general form,

z = h(τα, c) + ǫ

= h(θ) + ǫ, (5)

whereh(τα, c)
△
= Ac andθ = [α, c] denotes the “complete-parameter” vector. It follows immediately from the i.i.d

Gaussian assumption of noiseǫ that the ML estimator̂θML minimizes theL2 distance between observationz and
system responseh(θ) as follows:

θ̂ML = arg min
θ

‖z − h(θ)‖2 .

Before we delve into the detailed computation, we clarify our goal and the structure of FIM here. We are ultimately
interested in the performance of estimators for the deformation parameterα, and the image intensity parameterc is
chosen to augment the data to simplify expression. Withθ ∈ ℜN+K , the FIM corresponding toθ takes on the form:

F (θ∗) = E
z|θ=θ∗

{

−
∂2

∂θ2
Λ(z|θ)|θ=θ∗

}

,

whereΛ is the log-likelihood functionΛ(z|θ)
△
= log f(z|θ).

Moreover, if we defineJx,y = E
{

[ ∂
∂xΛ(z)]T [ ∂

∂yΛ(z)]
}

, then the complete-data FIM can be decomposed into block

form as:

Fθ =

[

Jα,α Jα,c

Jc,α Jc,c

]

. (6)

1There is a slight abuse of notation here. The more precise formulation would be:Γ̂ = arg minΓ D(z2, P (zc

1
◦ Γ)), wherezc

1
the underlying intensity map

that agrees withz1 on sampling grids, andP is the sampling function such thatP (zc)(n) = zc(n∆). Even so, the cost function is still incomplete, as onlyz1 is
observed and the interpolatorI : z1 → zc

1
needs to be specified. The de facto objective function is thusD(z2, P (I(z1) ◦ Γ)).
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The sub-blockJτ,τ is the FIM with respect to the quantity of interest - the deformation parameters.As CRB is the
inverse of the FIM, we can invoke the formula for partitioned-matrix inverse[3] to obtain:

CRB(α) = [Jα,α − Jα,cJ
−1
c,cJc,α]−1

CRB(c) = [Jc,c − Jc,αJ
−1
α,αJα,c]

−1. (7)

This form can be further simplified using its symmetry - a fact that we will utilize later in our computation.
The likelihood function with respect toθ is :

f(z; θ) =
1

(2π)2N/2|Σ|1/2
exp

(

−
1

2
e

T Σ−1
e

)

,

wheree = z − h(θ) = z −A(τα)c.
The log-likelihood turns out to be:

Λ = log f(z; θ)

= −N log(2π)−2N log σ −
1

2σ2
‖z −A(τα)c‖2 . (8)

Now we compute each term of the FIM.

∇τΛ = −
1

2σ2
∇τ ‖z −A(τα)c‖2

=
1

σ2
(z −A(τα)c)T∇τ (A(τα)c) (9)

Notice that

∂

∂τ(l)
{Aτ [n, :]c} =

∂

∂τ(l)

K
∑

k=1

c(k)Aτ (n, k)

=
∂

∂τ(l)

K
∑

k=1

c(k)b(n+ τ(n), k)

=

{
∑K

k=1 c(k)ḃ(n+ τ(n), k), l = n;
0 else,

(10)

whereḃ(·, ·) denotes the derivative ofb(·, ·) with respect to the first variable.
Plugging (10) into (9), we obtain

∂

∂τ(l)
Λ =

1

σ2
(z2(l) −Aτ [l, :]c)

K
∑

k=1

ḃ(l + τ(l), k)c(k). (11)

Therefore, the gradient ofΛ with respect toτ is:

∂

∂τ
Λ =

1

σ2
[(z2 −Aτc) ⊙ (Dc)]T =

1

σ2
[diag{Dc}(z2 −Aτ (c))]T , (12)

whereD is the matrix whose elements areD(i, j) = ḃ(i + τ(i), j), 1 ≤ i ≤ N, 1 ≤ j ≤ K, and “⊙” denotes the
Schur/Hadamard product.

By chain rule, the gradient ofΛ with respect toα is given by:

∇αΛ =
∂

∂τ
Λ
∂

∂α
τ

=
1

σ2
[(z2 −Aτc) ⊙ (Dc)]T [

∂

∂α
τ ], (13)
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where ∂
∂ατ ∈ M

N×L is the derivative matrix with element[ ∂
∂ατ ](i, j) = ∂

∂α(j)τ(i), andL corresponds to the length
of the deformation parameterα.

Now we compute the FIMJα,α with

E

{

∂2

∂α2
Λ

}

= −E

{

[
∂

∂α
Λ]T [

∂

∂α
Λ]

}

= −
dτ

dα

T

E

{

[
∂

∂τ
Λ]T [

∂

∂τ
Λ]

}

dτ

dα
(14)

= −
1

σ2

dτ

dα

T

E

{

diag{Dc}(z2 −Aτc)[
1

σ2
(z2 −Aτc)T diag{Dc}]T

}

dτ

dα

= −
1

σ2

dτ

dα

T

diag2{Dc}
dτ

dα
(15)

To calculateJc,τ andJc,c, we take the derivative ofΛ with respect toc:

∂

∂c
Λ = −

1

2σ2

∂

∂c
||z −Ac||2

=
1

σ2
(z −Ac)TA. (16)

It is now straight forward to compute the entries for the complete FIM:

E

{

∂2

∂c∂c
Λ

}

= −
1

σ2
ATA (17)

E

{

∂2

∂τ(l)∂c(m)
Λ

}

=
1

σ2
E {−Aτ [l,m]D[l, :]c + ǫ2(l)D[l,m]}

= −
1

σ2
Aτ [l,m]D[l, :]c. (18)

The matrixJα,c can be represented in compact form as:

E

{

∂2

∂α∂c
Λ

}

= −
1

σ2

dτ

dα

T

diag{Dc}Aτ . (19)

With symmetry, the complete FIM is obtained:

Fθ =
1

σ2

[

dτ
dα

T
diag2{Dc} dτ

dα
dτ
dα

T
diag{Dc}Aτ

AT
τ diag{Dc} dτ

dα ATA

]

. (20)

As a special case, whenτ is parameterized with rect functions,i.e., τ(n) = α[n], we havedτ
dα = I. The FIM for

(τ, c) is then given by:

F(τ,c) =
1

σ2

[

diag2{Dc} diag{Dc}Aτ

AT
τ diag{Dc} ATA

]

. (21)

At this point, we make the following observations:

1. With the commonly used model (3), it is assumed that the observed reference imagez1 corresponds to the ground
truthc. In other words, most existing methods solve for the ML estimatorτ with the generative model:

z2 =

K
∑

k=1

ckb(n+ τ(n), k) + ǫ2(n), (22)
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by plugging in theck’s that best fitsz1. It is easy to derive the CRB for the log-likelihood functionΛcom(z2; τ) =
−N/2 log(2π)−N log σ − 1

2σ2 ||z2 − Aτc||
2. The FIM matrixFcom

τ = Jτ,τ as we derived in (15). Therefore,
CRBcom(τ) = J−1

τ,τ . Notice that2 asJτ,cJ
−1
c,cJc,τ ≥ 0 , CRBcom(τ) ≤ CRB(τ) as extra information (known

{ck}) is assumed in the case of (22). In other words, the plug-in operation provides a “looser” bound for the
variance than the “true” CRB corresponding to model (2).

2. For asymptotically large SNR,i.e., σ2 → 0, we do expect a decent estimate ofc directly from the reference
image only, assuming no model mismatch in the generative basis. In this case, theplug-in estimator as used in the
traditional model, even though not a true ML estimator, is expected to performsimilarly to the real ML estimator.
Indeed, [4] shows that the “fake” bound approximates the true CRB3.

3. The above points may be interpreted better with a slight modification of the model in (2). Instead of i.i.d noise,
we assume that noise level in the two images are not symmetric, more specifically,we assumeǫ1 ∼ N (0, σ2

1IN )
andǫ2 ∼ N (0, σ2

2IN ).
The log-likelihood is given by:

Λ = −
1

2σ2
1

‖z1 −A0c‖2 −
1

2σ2
2

‖z2 −Aτc‖2 + some constant. (23)

The partial derivatives of the log-likelihood with respect toτ ( thusα) is not affected by target image model, and
the second-order derivative the log-likelihood with respect toc is given by:

E

{

∂2

∂c∂c
Λ

}

= −
1

σ2
1

AT
0A0 −

1

σ2
2

AT
τ Aτ .

We thus obtain the complete FIM with respect to(τ, c) as:

F(τ,c) =

[

1
σ2

2

diag2{Dc} 1
σ2

2

diag{Dc}Aτ

1
σ2

2

AT
τ diag{Dc} 1

σ2

1

AT
0A0 + 1

σ2

2

AT
τ Aτ .

]

. (24)

Whenσ1 → 0, corresponding to high SNR in the template image, thenJc,c → ∞ and

CRB(τ) = [Jτ,τ − Jτ,cJ
−1
c,cJc,τ ]

−1 → J−1
τ,τ ,

which reduces to theCRBcom.
4. To computeCRB(τ) exactly could be challenging, asATA may not be easy to invert for arbitraryτ . Notice that

the sub-matrixA0 of A has nice shift-invariant structure, yetAτ depends on the deformation. In special cases,
such as when the whole image (signal) experience uniform transformationτ(i) = const for i = 1, 2, . . . , N , then
Jc,c is block-shift-invariant, and efficient inversion is possible.

5. As a special case, we consider when the whole image experiences uniform transformation, where a natural pa-
rameterization is to useα to describe the global transformation,i.e., τα(i) = α for ∀i.
Under the uniform transformation assumption, we have

dτ

dα
= 1,

where1 indicates a column vector (of lengthN in our case) with all unity elements.
Substituting this relation into (15), (19) respectively and we obtain:

Fθ =
1

σ2

[

1
T diag2{Dc}1 1

T diag{Dc}Aτ

AT
τ diag{Dc}1 ATA

]

=
1

σ2

[

c
TDDT

c [Dc]TAτ

AT
τ [Dc] ATA

]

. (25)

2In most cases, we assume it is nonsingular, so it is in fact positive definite.
3In particular, the parameters to be estimatedτ is not coupled with the nuisance parametersc in our case, and the asymptotic behavior of the bound can be

shown with ease.
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III. RELATING TO MCRB

The modified Craḿer-Rao Bound (MCRB) was first introduced [5] to resolve the synchronization issues in decoding
systems. Rather than seeking the variance around the estimator for the “true” augmented data (“complete data”) which
includes both the quantity of interest and the nuisance parametersc, MCRB choose to look on the other parameters
as “unwanted”. Instead of using the true CRB, the MCRB may be regardedas an approximation via “marginalizing”
over the nuisance parameters. In fact, MCRB is always lower than CRB, thus a looser bound. In some cases, MCRB
approaches the true CRB [4].

The central idea is the following. Instead of computing the true FIM

F = Ez

{

[
∂

∂τ
log f(z; τ)]2

}

,

it uses

Ez,c

{

[
∂

∂τ
log f(z; τ, c)]

}

. (26)

The rationale for MCRB is the following:

Ez,c

{

[ ˆτ(z) − τ ]2
}

= Ec

{

Ez|c[(
ˆτ(z) − τ)2]

}

≥ Ec

{

1

Ez|c[(
∂
∂τ log f(z; τ, c))2]

}

≥
1

Ec

{

Ez|c[(
∂
∂τ log f(z; τ, c))2]

}

=
1

Ez,c

{

[ ∂
∂τ log f(z; τ, c)]2

} . (27)

The first inequality comes from the application of CRB to the estimatorτ̂(z) for a fixedc and second is Jensen’s
inequality.

IV. A N ALTERNATING M INIMIZATION ALGORITHM

For registration purposes, we want to minimize the negative log-likelihood in (23). We assume the underlying image
intensityf (and thusc are fixed unknown) and adopt the frequentist point of view. It is natural to ask for the solution
of the augmented problem:

(τ̂ , ĉ) = arg min
τ,c

−Λ.

Here, we describe an alternating minimization algorithm to solve this problem.

Algorithm 1 Alternating minimizing the nagetive log-likelihood in (23).
1: Initialize ĉ

2: repeat
3: For givenc = ĉ, minimize‖z2 −Aτc‖2 overτ . This step coincides with conventional registration methods by

assumingc known. Obtain̂τ .
4: For givenτ = τ̂ , minimize 1

2σ2

1

‖z1 −A0c‖
2
2 + 1

2σ2

2

‖z2 −Aτc‖
2
2. This is a typical quadratic minimization

problem, and the solution is given by:

ĉ =
[ 1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ

]†( 1

σ2
1

AT
0 z1 +

1

σ2
2

AT
τ z2

)

, (28)

where(·)† indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

We make the following remarks:
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• As σ1 → 0, the contribution ofA0 andz1 dominates (28), and the solution reduces to

ĉ =
[

AT
0A0

]†
AT

0 z1, (29)

which corresponds to the conventional method wherez1 is considered to be a highly reliable “template” and the
image intensity is solely obtained by fittingz1.

• More generally, alternating descent may be used instead of requiring the achieving minimizer at each iteration.
This could be particularly beneficial for the step in updatingτ conditioned on̂c, as the quadratic form in the other
step makes the minimization overc trivial. Relaxing conditional maximization to increase in log-likelihood may
has potential computational advantage as well as better behavior to local maxima.

• As σ1 → 0, the alternating descent algorithm reduces to exactly any conventional descent algorithm in solving (3)
with l2 difference metric. In the asymptotic case, the conditional minimization ofc given by (29) is independent
of τ and the whole alternating descent algorithm reduces to using the plug-in estimator (29) and descend−Λ with
respect toτ .

V. COMPARISON WITH CONVENTIONAL METHODS: CRB V.S. M-ESTIMATE

As we have commented briefly in the previous sections, the conventional methodestimate the intensityf from the
source imagez1 only. With l2 difference metric, we can write the solution to the conventional method as:

ĉ = arg min
c

‖z1 −A0c‖
2
2 ;

τ̂ = arg min
τ

‖z2 −Aτ ĉ‖
2
2 , (30)

wherez1, z2 are discrete observations for the source and target image in vector form,A0 andAτ are defined as in (4).
The first equation in (30) can be solved in closed form given its quadraticform:

ĉ = A†
0z1,

and we can rewrite (30) as:

τ̂ = arg min
τ

∥

∥

∥
z2 −AτA

†
0z1

∥

∥

∥

2

2
. (31)

We can also stack the expression as before, and defineA
△
= [−AτA

†
0 I] and write the objective as:

τ̂ = arg min
τ

Φ(τ, z) = ‖A(τ)z‖2
2 . (32)

In the following derivations, we will use the most convenenient and use theabove equivalent expressions inter-
changably.

Our goal is to derive the covariance of the minimizer defined above and we use similar philosophy as in [6]. By
implicit function theorem, the partial derivative ofΦ with respect toτ are uniformly zero:

∂

∂τ(i)
Φ(τ, z)|τ=τ̂ = 0, ∀ spatial locationi, (33)

for any given dataz.
Differentiating (33) again with respect toz and applying the chain rule yields:

∇20Φ(τ̂(z), z))∇z τ̂(z) + ∇11Φ(τ̂(z), z) = 0. (34)

Where, the components of∇20Φ(τ̂(z), z) are ∂2

∂τ(i)∂τ(j)Φ(τ̂(z), z), and the elements of∇11 are ∂2

∂τ(i)∂z(j)Φ(τ̂(z), z).

We consider the case when∇20Φ(τ̂(z), z) is invertible, or more precisely positive definite. Note thatΦ(τ̂(z), z) is
locally strictly convex. This assumption is true if the following regularity condition is satisfied: There∃ a compact
neighborhoodN(τ̂) such thatΦ(τ, z) > Φ(τ̂(z), z) for all τ 6= τ̂ . Then we obtain:

∇Y τ̂(z) = [−∇20Φ(τ̂ , z)]−1∇11Φ(τ, z).
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and so the covariance matrix forτ̂ would beCov{z} transformed by local linearizion [7],i.e.,

Cov{τ̂} ≈ ∇z τ̂(z)Cov{z}[∇z τ̂(z)]
′.

By substitution, we obtain

Cov{τ̂} ≈ [∇20Φ(τ̂ , z)]−1∇11Φ(τ̂ , z)Cov{z}[∇11Φ(τ̂ , z)]′[∇20Φ(τ̂ , z)]−1. (35)

By assumption, we assume the covariance ofz is of the form:

Cov{z} =

[

σ2
1IN 0
0 σ2

2IN

]

. (36)

It remains to derive the expressions for∇20Φ(τ̂ , z) and∇11Φ(τ̂ , z).
We first adopt the objective function form in (31) to take derivative with respect toτ(l).

∂

∂τ(l)
Φ(τ, z) =

N
∑

n=1

(Aτ [n, :]A
†
0z1 − z2(n))

∂2

∂τ(l)2
{Aτ (n)A†

0z1}. (37)

Similar to (10),

∂

∂τ(l)

{

Aτ [n, :]A
†
0z1

}

=
∂

∂τ(l)

K
∑

k=1

(A†
0z1)(k)Aτ (n, k)

=
∂

∂τ(l)

K
∑

k=1

(A†
0z1)(k)b(n+ τ(n), k)

=

{
∑K

k=1(A
†
0z1)(k)ḃ(n+ τ(n), k), l = n;

0 else,
(38)

whereḃ(·, ·) denote the derivative ofb(·, ·) with respect to the first variable.
Plugging (38) into the expression in (37) yields:

∂

∂τ(l)
Φ(τ, z) = (Aτ [l, :]A

†
0z1 − z2(l))

K
∑

k=1

(A†
0z1)(k)ḃ(l + τ(l), k). (39)

To obtain∇20Φ, we take derivative with respect toτ(n). Noticing that the dependence of∂∂τ(l)Φ on τ is only via
τ(l), we obtain:

∂2

∂τ(l)∂τ(n)
Φ(τ, z) =











{
∑K

k=1(A
†
0z1)(k)ḃ(l + τ(l), k)

}2
+ · · ·

+ (Aτ [l, :]A
†
0z1 − z2(l))

∑K
k=1(A

†
0z1)(k)b̈(l + τ(l), k), l = n;

0 else.

whereb̈(·, ·) denotes the second-order partial derivative with respect to the first argument inb(·, ·).
To compute∇11Φ(τ̂ , z), we need to take derivative of (39) with respect to each element ofz. We perform this by

distinguishing the among elements inz1 andz2 respectively.
Noting that ∂

∂z1(n) [A
†
0z1](k) = A†

0[k, n], we obtain:

∂2

∂τ(l)∂z1(n)
Φ(τ, z) = Aτ [l, :]A

†
0[:, n]

K
∑

k=1

(A†
0z1)(k)ḃ(l + τ(l), k) + · · ·

+ (Aτ [l, :]A
†
0z1 − z2(l))

K
∑

k=1

A†
0[k, n]ḃ(l + τ(l), k). (40)
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∂2

∂τ(l)∂z2(n)
Φ(τ, z) =

{

−
∑K

k=1(A
†
0z1)(k)ḃ(l + τ(l), k), l = n;

0 else.

We assume that at the point of evaluation(τ̌ , z̄), the samples of the warpedzc
1 approximates the observationz2, more

specifically:
AτA

†
0z̄1 ≈ z̄2.

This is a reasonable assumption for most registration results. For simplicity, wedenotec̄
△
= A†

0z̄1, Ď(i, j)
△
= ḃ(i +

τ̌(i), j), and the warping mapW
△
= Aτ̌A

†
0, then we can rewrite in matrix form:

∇20Φ(τ̌ , z̄) = diag2
{

Ďc̄
}

∇11Φ(τ̌ , z̄) =
[

diag
{

Ďc̄
}

W − diag
{

Ďc̄
} ]

. (41)

Plugging (41) and (36) into the expression forCov{τ̂} in (35), we obtain:

Cov{τ̂} |τ̂=τ̌ ≈ diag
{

Ďc̄
}−1

[σ2
1WWT + σ2

2I] diag
{

Ďc̄
}−1

. (42)

Remark: asσ2
1 → 0, z1 approaches the noise-free observation of a template imagef , and the conventional method

should yield the same estimate as the more realistic model. In fact,

Covσ1→0{τ̂} = σ2
2 diag2

{

Ďc̄
}

,

which agrees with our previous analyis forCRB(τ) → J−1
τ,τ for asz1 asymptotically becomes noise-free in (24).

It makes sense to compare the covariance prediction for the M-estimate of theconventional method and the Cramér-
Rao Bound obtained from the more realistic model from (2). For simplicity, we assume thatA0 to be invertible so that
A−1

0 = A†
0 and consequently the warping mapW = AτA

−1
0 is invertible.

To studyCRB(τ), we plugJτ,c, Jc,c from (24) and obtain:

CRB(τ) = [Jτ,τ − Jτ,cJ
−1
c,cJc,τ ]

−1

=
{ 1

σ2
2

diag2{Dc}−
1

σ2
2

diag{Dc}Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1 1

σ2
2

AT
τ diag{Dc}

}−1

= σ2
2 diag{Dc}−1 {

I −
1

σ2
2

Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1AT
τ

}−1
diag{Dc}−1 . (43)

With theW = AτA
−1
0 ,Aτ = WA0 and we can write:

1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ =

1

σ2
1

AT
0A0 +

1

σ2
2

AT
0 W

TWA0.

The middle part of (43) can be rewritten as:
{

I −
1

σ2
2

Aτ [
1

σ2
1

AT
0A0 +

1

σ2
2

AT
τ Aτ ]

−1AT
τ

}−1

=
{

I − σ2
1Aτ [σ

2
2A

T
0A0 + σ2

1A
T
0 W

TWA0]
−1AT

τ

}−1

=
{

I − σ2
1AτA

−1
0 [σ2

2I + σ2
1W

TW]−1A−T
0 AT

τ

}−1

=
{

I − σ2
1W[σ2

2I + σ2
1W

TW]−1WT
}−1

. (44)

By Woodbury-Sherman-Morissey identity:

[σ2
2I + (σ1W)σ1W

T ]−1 =
1

σ2
2

I −
1

σ4
2

σ2
1W[I +

σ2
1

σ2
2

WWT ]−1WT ,

thusσ2

{

I − 1
σ2

2

Aτ [
1
σ2

1

AT
0A0 + 1

σ2

2

AT
τ Aτ ]

−1AT
τ

}−1
= σ2

2I + σ2
1WWT .

Substituting into (43), we obtain:

CRB(τ) = diag{Dc}(σ2
2I + σ2

1WWT ) diag{Dc} . (45)

This result coincides with the covariance estimate for the M-estimate evaluated at (Ď, c̄) in (42).
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VI. A B ABY EXAMPLE

This section uses a simple example to illustrate the results from previous sectionsand also motivate discussion about
performance comparison. In particular, it is expected that the proposedmodel in (4) has advantage over the traditional
model in (3) as the estimation forc which parameterizes the underlying image intensity should be more reliable as it
combines the information from both the source and the target observations.Consider the model

z =

[

z1
z2

]

=

[

I
αI

]

c +

[

ǫ1
ǫ2

]

, (46)

where we assume bothz1 andz2 are vectors of the same size as the underlying (unknown)c. The scaling parameter
α which relatesz1 andz2 in the noise-free case is the quantity of interest.ǫ ∼ N (0, σ2

1I) andǫ2 ∼ N (0, σ2
2I) are

independent Gaussian additive noise.

.1 M-estimator for the Conventional Method

In the conventionally method, the parameterc is estimated solely from observationz1:

ĉ(z) = arg min
c

‖z1 − c‖2
2 = z1. (47)

Sincez1 ∼ N (c, σ2
1I), ĉ is an unbiased estimator forc with covarianceσ2

1I.
The objective function that̂α minimizes is

Φ(α,z)
△
= ‖[αI − I]z‖2

2 = ‖z2 − αz1‖
2
2 . (48)

α̂(z) = arg min
α

Φ(α,z)

= arg min
α

‖z2 − αĉ‖2
2

= arg min
α

‖z2 − αz1‖
2
2

=
z1

T z2

‖z1‖
2
2

. (49)

Hereafter, we discuss two approaches in approximating the mean and variance ofα̂: a direct method based on the
explicit solution in (49); and an indirect approach that relies on implicit function theorem and M-estimate. The explicit
method is straightforward, requires less manipulation, and should be reasonably accurate. On the other hand, explicit
solutions are not available in general (as we will see for the ML estimator), so the implicit method is more universally
applicable. In this study, the direct method serves as a good baseline reference for approximation performance, and the
derivation based on indirect approach is of didactic value.

.2 Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariance ofα̂ based on the explicit solution in (49).
The expected value of̂α from (49) is given by:

E[α̂] = E

{

(c̄ + ǫ1)
T (ᾱc̄ + ǫ2)

(c̄ + ǫ1)T (c̄ + ǫ1)

}

,

whereǫ1 ∼ N (0, σ2
1I) andǫ2 ∼ N (0, σ2

2I). We compute the above expression using conditional expectation:

E[α̂] = Eǫ1 {Eǫ2 [α̂]|ǫ1}

= ᾱEǫ1

{

(c̄ + ǫ1)
T
c̄

(c̄ + ǫ1)T (c̄ + ǫ1)

}

. (50)
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where the second line follows from the independence betweenǫ1 andǫ2.
Let ci denote theith element of̄c andei denote theith element ofǫ1. Thenci are constants andei are scalar i.i.d

Gaussian variablesei ∼ N (0, σ2
1).

We can rewrite (50) as:

E[α̂]/ᾱ = E

{∑n
i=1(ci + ei)ci

∑n
i=1(ci + ei)2

}

. (51)

Define functionf : ℜn → ℜ via f(x) = x
T

c

x
T

x
. We perform second-order Taylor expansion off around the point

x = c̄ and then take expectation with respect tox = c̄ + ǫ1:

E[α̂]/ᾱ = E[f(c̄) +
1

2
(x − c̄)T∇2

x
f(c̄)(x − c̄)]

= 1 +
1

2
E[(x − c̄)T∇2

x
f(c̄)(x − c̄)]

= 1 +
1

2
E[ǫT1 ∇

2
x
f(c̄)ǫ1]. (52)

Now we focus on the termE[ǫT1 ∇
2fx(c̄)ǫ1] whose sign determines the bias. The gradient∇xf and the Hessian

∇2
x
f of f are derived as follows:

∇xf = ‖x‖−2
2 c̄

T − 2 ‖x‖−4
2 (xT

c̄)xT .

Theith element of∇xf is
[∇xf ]i = ‖x‖−2

2 ci − 2 ‖x‖−4
2 (xT

c̄)xi.

Taking derivative with respect toxj yields:

∂

∂xj
[∇xf ]i = −2 ‖x‖−4

2 cixj − 2
{

−4 ‖x‖−6
2 x

T
c̄xixj + ‖x‖−4

2 (xicj + x
T
c̄δ[i− j]

}

,

whereδ is the kronecker impulse function defined as

δ[x] =

{

1 x = 0;
0 otherwise.

The equivalent matrix representation of the Hessian is given by:

∇2
x
f = 8 ‖x‖−6

2 x
T
c̄xx

T − 2 ‖x‖−4
2 (xc̄

T + c̄x
T ) − 2(xT

c̄) ‖x‖−4
2 I. (53)

Evaluating the Hessian atc̄ and noting that the i.i.d structure of the noiseǫ1 made the computation ofE[ǫ1∇
2f(c̄)ǫ1] =

σ2
1 trace

{

∇2f(c̄)
}

depend only on the diagonal elements of the Hessian, we obtain:

[∇2
x
f(c̄)]ii = 2 ‖c̄‖−4

2 (2c2i −
n

∑

j=1

c2j ).

Subsequently:

E[ǫT1 ∇
2
x
f(c̄)ǫ1] = σ2

1

n
∑

i=1

[∇2
x
f(c̄)]ii

= 2σ2
1 ‖c̄‖

−2
2 (2 − n), (54)

which is negative for alln > 2.
Subsequently,

E[α̂]/ᾱ ≈ 1 − (n− 2)σ2
1 ‖c̄‖

−2
2 . (55)

As (54) describes the difference betweenE[α̂/ᾱ] and unity, this indicates that forn > 2, α̂ is an estimate of̄α that
biases towards smaller magnitude.
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Similarly, we computeVar{α̂} viaE[α̂2] − E[α̂]2. The correlation reads:

E

{

(c̄ + ǫ1)
T (ᾱc̄ + ǫ2)(ᾱc̄ + ǫ2)

T (c̄ + ǫ1)

‖c̄ + ǫ1‖
4
2

}

.

As before, we first use conditional expectation to separate out the uncertainty in ǫ2 via:

E[α̂2] = Eǫ1Eǫ2 [α̂
2|ǫ1] = E

{

(c̄ + ǫ1)
T (ᾱ2

c̄c̄
T + σ2

2I)(c̄ + ǫ1)

‖c̄ + ǫ1‖
4
2

}

.

Define a deterministic symmetric matrixH
△
= (ᾱ2

c̄c̄
T + σ2

2I) and a functionf(x) = x
T Hx

‖x‖4

2

, and we aim to find

E[f(x)] for x = c̄ + ǫ1. We expand the functionf(x) aroundx = c̄ and approximateE[α̂2] via:

E[α̂2] ≈
c̄

TH c̄

‖c̄‖4
2

+
1

2
E[(x − c̄)T∇2

x
f(c̄)(x − c̄)]

=
c̄

TH c̄

‖c̄‖4
2

+
1

2
E[ǫT1 ∇

2
x
f(c̄)ǫ1]. (56)

The deterministic termf(c̄) simplifies to:

f(c̄) =
c̄

TH c̄

‖c̄‖4
2

= ᾱ2 +
σ2

2

‖c̄‖2
2

.

Sinceǫ1 is componentwise independent,E[α̂2] only depends on the diagonal element of∇2
x
f(c̄), which we derive

as follows.
∇xf(x) = −4 ‖x‖−6

2 x
T (xTHx) + 2 ‖x‖−4

2 x
TH.

Theith element of∇xf(x) reads−4 ‖x‖−6
2 xi(x

THx)+2 ‖x‖−4
2 x

TH(:, i)., whereH(:, i) indicates theith column
of H. We may explicitly writexTH(:, i) =

∑

j xj [ᾱ
2cicj + σ2

2δ[i− j]]. The second-order derivative is given by:

∂2

∂x2
i

f(x) = −4 ‖x‖−6
2 [xTHx+2xix

TH(:, i)]+24 ‖x‖−8
2 x2

i x
THx+2 ‖x‖−4

2 (ᾱ2c2i +σ2
2)−8 ‖x‖−6

2 xix
TH(:, i).

(57)
To evaluate∂2

∂x2

i

f(x) atx = c̄, we use the following relations:

c̄
TH(:, i) = ci(ᾱ

2 ‖c̄‖2
2 + σ2

2);

c̄
TH c̄ = ‖c̄‖2

2 (ᾱ2 ‖c̄‖2
2 + σ2

2).

Substituting these relations into the expression (57) for∂2

∂x2

i

f(x), we obtain:

∂2

∂x2
i

f(x)|x=c̄ = 8 ‖c̄‖−6 c2i (ᾱ
2 ‖c̄‖2

2 + σ2
2) − 4 ‖c̄‖−4 (ᾱ2 ‖c̄‖2

2 + σ2
2) + 2 ‖c̄‖−4 (ᾱ2c2i + σ2

2).

By the independence of the elements inǫ1, we obtain:

E[ǫT1 ∇
2
x
f(c̄)ǫ1] = σ2

1

∑

i

∂2

∂x2
i

f(c̄)

= ‖c̄‖−2 (10 − 4n)ᾱ2σ2
1 + ‖c̄‖−4 (8 − 2n)σ2

1σ
2
2. (58)

Substituting this quantity into (56) provides:

E[α̂2] ≈ ᾱ2 + ‖c̄‖−2 σ2
2 + ‖c̄‖−2 (5 − 2n)ᾱ2σ2

1 + ‖c̄‖−4 (4 − n)σ2
1σ

2
2.
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Together with the estimation forE[α̂] obtained in (55), this equation yields an approximation forVar{α̂} as:

Var{α̂} = E[α̂2] − E[α̂]2

= ᾱ2 + ‖c̄‖−2 σ2
2 + ‖c̄‖−2 (5 − 2n)ᾱ2σ2

1 + ‖c̄‖−4 (4 − n)σ2
1σ

2
2 − (1 + ‖c̄‖−2 (2 − n)σ2

1)
2ᾱ2

= ‖c̄‖−2 (ᾱ2σ2
1 + σ2

2) − ‖c̄‖−4 σ2
1[(n− 4)σ2

2 − (n− 2)2ᾱ2σ2
1]. (59)

Expressions (55) and (59) reveal some interesting structure. For large enoughn (in fact for n > 6), the variance
estimate(59) becomes upper-bounded by‖c̄‖−2 (ᾱ2σ2

1 + σ2
2), which we will show later is the Craḿer-Rao Bound for

the statistical model. This implies that it cannot be unbiased. In fact, the bias quantity measured by(2− n) ‖c̄‖−2 σ2
1ᾱ

also increases accordingly.
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(b1) bias approximationn = 50 (b2) variance approximationn = 50

Fig. 1. Bias and variance approximation obtained from explicit solution for conventional M-estimate.

Alternatively, we can follow [6], use implicit function theorem and Taylor expansion to approximate the bias and
variance of̂α as the minimizer of (48). The data pointž at which to perform Taylor expansion about is mainly a choice
of convenience rather than considerations of asymptotic behavior. One natural choice of the expansion point would be
the noiseless data. Let̄z denote the noiseless observation andc̄ andᾱ denote the true parameter values, withč andα̌
denoting the resulting estimation in (47) and (49) whenz̄ is observed. Then̄z = [c̄; ᾱc̄], and

č = ĉ(z̄) = c̄;

α̌ = α̂(z̄) =
ᾱc̄

T
c̄

‖c̄‖2
2

= ᾱ. (60)
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As the minimizer for (48),̂α satisfies:

∂

∂α
Φ(α,z)|α=α̂ = 2z

T

[

I
0

]

[

αI −I
]

z = 0 ∀z.

Taking derivative with respect toz and invoking the chain rule, we obtain:

∂2

∂α2
Φ
∂

∂z
α+

∂2

∂α∂z
Φ = 0,

where
∂2

∂α2
Φ = 2 ‖z1‖

2
2 = 2z

T

[

I 0
0 0

]

z, (61)

and
∂2

∂α∂z
Φ = 2z

T

{[

αI −I
0 0

]

+

[

αI 0
−I 0

]}

= 2z
T

[

2αI −I
−I 0

]

. (62)

Therefore,
∂

∂z
α̂(z) = −

∂2

∂α2
Φ−1 ∂2

∂α∂z
Φ = −‖z1‖

−2
2 z

T

[

2αI −I
−I 0

]

. (63)

Evaluating (63) atz = z̄, we obtain an estimate of covarianceCov{α} at α̌ = α̂z as

Cov{α̂(z)} ≈
∂

∂z
α(z̄)Cov{z}

∂

∂z
αT (z̄)

=
−1

‖c̄‖2
2

c̄
T

[

ᾱI −I
]

[

σ2
1I

σ2
2I

]

−1

‖c̄‖2
2

[

ᾱI
−I

]

c̄

=
ᾱ2σ2

1 + σ2
2

‖c̄‖2
2

. (64)

This quantity (64) coincides with the Cramér-Rao Bound obtained from the statistical model as we will show later.

To estimate the bias for̂α, we present the first and second-order Taylor expansion forE[α̂] as:

E(1)[α̂] = E[h(z)]

≈ E {h(ž) + ∇zh(ž)(z − ž)}

= h(ž) + E {∇zh(ž)(z − ž)} . (65)

E(2)[α̂] ≈ E

{

h(ž) + ∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

= h(ž) + E {∇zh(ž)(z − ž)} +
1

2
E

{

(z − ž)T∇2
z
h(ž)(z − ž)

}

. (66)

Notice that wheňz is chosen to bēz, z−ž is zero mean Gaussian. It follows that the first order termE {∇zh(ž)(z − ž)} =
0 in (65) and (66). Therefore, the first order Taylor approximation yields:

E(1)[α̂] = h(ž) = h(z̄) = ᾱ, (67)

corresponding to zero bias.
The second-order approximation (66) requires computing∇2

z
h(ž), which can be be obtained up to second order [6]

via:

∇2
z
h = [−

∂2

∂α2
Φ]−1

{

∂3

∂α3
Φ∇zh

T∇zh+
∂3

∂α2∂z
ΦT∇zh+ ∇zh

T ∂3

∂α2∂z
Φ +

∂

∂α
∇2

z
Φ

}

. (68)
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Terms involved in the above expression are computed as follows:

∂3

∂α3
Φ = 0.

Taking derivative of (61) with respect toz yields

∂3

∂α2∂z
Φ = 2z

T

[

I 0
0 0

]

= 2
[

zT
1 0

]

.

Taking derivative of (62) with respect toz yields

∂3

∂α∂z2
Φ = 2

[

2αI −I
−I 0

]

.

Evaluating atz = ž = z̄ and substituting into (68) yields:

∇2
z
h(z̄) = −

1

2 ‖c̄‖2
2

{

−2

‖c̄‖2
2

[

c̄

0

]

[

ᾱc̄
T −c̄

T
]

+
−2

‖c̄‖2
2

[

ᾱc̄

−c̄

]

[

c̄
T 0

]

+ 2

[

2ᾱI −I
−I 0

]

}

. (69)

Sincez − ž ∼ N (0,

[

σ2
1I 0
0 σ2

2I

]

, the second-order term in (66) only involves the diagonal elements of∇2
z
h(z̄).

We extract the corresponding blocks from (69) as:

∂2

∂z1(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−4

‖c̄‖2
2

ᾱc2i + 4ᾱ

}

;

∂2

∂z1(i)2
h(z̄) = 0.

Thus

E
{

(z − z̄)T∇2
z
h(z̄)(z − ž)

}

=
∑

i

σ2
1

∂2

∂z1(i)2
h(z̄)

=
σ2

1

‖c̄‖2
2

(2ᾱ− 2ᾱn)

= 2(1 − n)ᾱ
σ2

1

‖c̄‖2
2

. (70)

It follows that the second-order estimation forE[α̂] is

E(2)[α̂] = E(1)[α̂] +
1

2
E

{

(z − z̄)T∇2
z
h(z̄)(z − ž)

}

= ᾱ+ (1 − n)
σ2

1

‖c̄‖2
2

ᾱ =

{

1 + (1 − n)
σ2

1

‖c̄‖2
2

}

ᾱ. (71)

Forn > 1 and reasonable signal-to-noise ratio,E(2)[α̂] implies shrinkage in magnitude, which WLOG, we refer to as
“negative bias” hereafter.

Notice that the choice of̌z = z̄ is mainly due to computation convenience (so thatz − ž is zero mean Gaussian). It
is feasible to perform the same routine for different data pointž. [8,9] proved that under certain regular conditions, the
M-estimate is asymptotically normal with meanα̃ where

E[
∂

∂α
Φ(α̃,z)] = 0.



16

0 0.2 0.4 0.6 0.8 1
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

1st−order Approx. \bar{z}
2nd−order Approx. with \bar{z}
Numerical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4
x 10

−3

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

Approx with \bar{z} (= CRB)
Numerical Result

(a1) bias approximationn = 5 (a2) variance approximationn = 5

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

0

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

1st−order Approx. \bar{z}
2nd−order Approx. with \bar{z}
Numerical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5
x 10

−4

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

Approx with \bar{z} (= CRB)
Numerical Result

(b1) bias approximationn = 50 (b2) variance approximationn = 50

Fig. 2. Bias and variance approximation for M-estimate obtained from expansion about(ᾱ, z̄).

Under reasonable regularity conditions, we can exchange the order ofexpectation and differentiation, and take

∂

∂α
E[Φ(α̃,z)]] = 0.

Note thatα̃ can be interpreted as a local minima for an “average” cost functionE[Φ(α,z)], i.e.,

α̃ = arg min
α
E[Φ(α,z)]. (72)

The expectation of the objective function with respect to the distribution of theobservation noise

E[Φ(α,z)] = E[

∥

∥

∥

∥

[

−αI I
]

[

c̄ + ǫ1
ᾱc̄ + ǫ2

]∥

∥

∥

∥

2

2

]

= E[
[

c̄
T + ǫT1 ᾱc̄

T + ǫT2
]

[

−αI
I

]

[

−αI I
]

[

c̄ + ǫ1
ᾱc̄ + ǫ2

]

]

= (α− ᾱ)2 ‖c̄‖2
2 + n(α2σ2

1 + σ2
2)

= (‖c̄‖2
2 + nσ2

1)α
2 − 2ᾱ ‖c̄‖2

2 α+ ᾱ2 ‖c̄‖2
2 (73)

is convex quadratic inα and the minimizer reads

α̌ = arg min
α
E[Ψ(α,z)]

=
‖c̄‖2

2

‖c̄‖2
2 + nσ2

1

ᾱ. (74)
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For simplicity, letβ
△
=

‖c̄‖2

2
+nσ2

1

‖c̄‖2

2

, thenα̌ = 1
β ᾱ. Sinceβ > 1, the expansion poinťα is a shrinkage with respect to the

true scalēα.
We can construct an expansion pointž = [βc̄; ᾱc̄]. Then the minimizer ofΦ(ž) = 1

β ᾱ = α̌, which satisfies the
requirement (72).

Evaluating (63) at(č, ž) results in:

∂

∂z
α(ž) = −‖z1‖

−2
2 z

T

[

2αI −I
−I 0

]

= −
1

β2 ‖c̄‖2
2

[

βc̄
T α̌c̄

]

[

2α̌I −I
−I0

]

= −
c̄

T

β2 ‖c̄‖2
2

[

2β−1
β ᾱI −βI

]

. (75)

The approximated covariance ofα̂ evaluated at the point(α̌, ž) is given by:

Cov{α̂} |z=ž,α̂=α̌ =
∂

∂z
α(ž)Cov{z}

∂

∂z
α(ž)

= β−4 ‖c̄‖−4
2 c̄

T
[

2β−1
β ᾱI −βI

]

[

σ2
1I 0
0 σ2

2I

]

[

2β−1
β ᾱI

−βI

]

c̄

= ‖c̄‖−2
2 β−4((2 −

1

β
)2ᾱ2σ2

1 + β2σ2
2). (76)

We know from previous analysis that the M-estimate is asymptotically unbiased,so its variance is to be bounded be-
low by Craḿer-Rao Bound asymptotically. Therefore, it is curious to find whether there exists a consistent relationship
between the pre-asymptotic variance in (76) and the Cramér-Rao Bound ,i.e.,

‖c̄‖−2
2 β−4((2 −

1

β
)2ᾱ2σ2

1 + β2σ2
2) ≷ ‖c̄‖−2

2 (ᾱ2σ2
1 + σ2

2)? (77)

The quantity on the right-hand-side is the Cramér-Rao Bound obtained from the statistical generative model (to be
shown later).

Claim 1: The covariance of the M-estimator is boundedaboveby the Craḿer-Rao Bound . Moreover, it asymptoti-
cally approaches the Cramér-Rao Bound asσ1 → 0.

Proof: To compare the left and right hand sides in (77), it suffices determine the sign of their difference:

RHS− LHS = ‖c̄‖−2
2 β−2(β6 − 4β2 + 4β − 1)ᾱ2σ2

1 + (β4 − 1)σ2
2.

For simplicity, we drop the positive quantity‖c̄‖−2
2 in later analysis as it does not affect the sign. LetA

△
= ᾱ2σ2

1,

B
△
= σ2

2, and we want to determine the sign for:

π(A,B;β) = β−2(β6 − 4β2 + 4β − 1)A+ (β4 − 1)B.

The polynomial(β6 − 4β2 + 4β − 1) factors into

β6 − 4β2 + 4β − 1 = (β − 1)(β2 + β − 1)(β3 + 2β − 1).

By construction,β > 1, thus(β6 − 4β2 + 4β− 1) > 0, soπ is linear inA,B with positive coefficients. Meanwhile,
A,B are both positive, soπ(A,B;β) > 0. This result translates into the claim that in nondegenerative case (σ1 6= 0),
the variance of the M-estimate is bounded above by the Cramér-Rao Bound . It is easy to check that whenσ1 = 0, the
variance equals the Cramér-Rao Bound .
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Now we approximateE[α̂] with (65) and (66) by expanding corresponding terms about(α̌, ž).
The first order coefficient∇zh is obtained in (75), and the corresponding first-order approximation forthe mean is:

E(1)[α̂] = h(ž) + E∇zh(ž)(z − ž)

=
ᾱ

β
+ E

{

−
c̄

T

β2 ‖c̄‖2
2

[

2β−1
β ᾱI −βI

]

[

c̄ + ǫ1 − βc̄

ᾱc̄ + ǫ2 − ᾱc̄

]

}

=
ᾱ

β
+

ᾱ

β3 ‖c̄‖2
2

c̄
T (2β − 1)(β − 1)c̄

=
ᾱ

β
[1 +

(2β − 1)(β − 1)

β2
]

=
3β2 − 3β + 1

β3
ᾱ. (78)

Sinceβ > 1, (β−1)3 = β3−3β2 +3β−1 = β3−(3β2−3β+1) > 0. Consequently3β2−3β+1
β3 < 1. Equivalently,

E[α̂]
ᾱ < 1, indicating a shrinkage in magnitude, which agrees qualitatively with the resultfrom exact solution.
Expression in (78) can be rewritten as:

E[α̂] =
3β2 − 3β + 1

β3
ᾱ

= [1 −
(β − 1)3

β3
]ᾱ. (79)

Denote the signal-to-noise ratio inz1 ass
△
=

‖c̄‖2

2

nσ2

1

and

E[α̂]

ᾱ
= 1 −

1

(s+ 1)3
.

To approximate the bias with second-order Taylor expansion, we use (68) and evaluate at(ᾱ/β, ž =).

∇2
z
h(ž) = −

1

‖βc̄‖2
2

{

−
1

β2 ‖c̄‖2
2

[

βc̄

0

]

[

2β−1
β ᾱc̄

T −βc̄
T

]

−
1

β2 ‖c̄‖2
2

[

2β−1
β ᾱc̄

−βc̄

]

[

βc̄
T 0

]

+ . . .

+

[

2 ᾱ
β I −I

−I 0

]

}

.

To compute(z − ž)T∇2
z
h(ž)(z − ž) in (66), it suffices to use only the diagonal blocks of∇2

z
h(ž), because the

components ofz−ž =

[

c̄ + ǫ1 − βc̄

ᾱc̄ + ǫ2 − ᾱc̄

]

=

[

(1 − β)c̄ + ǫ1
ǫ2

]

are independent. Partitionz−z into the deterministic

ψ and random partη so thatψ =

[

(1 − β)c̄
0

]

andη =

[

ǫ1
ǫ2

]

. Then the quadratic term in the second-order Taylor

expansion in (66) can be written as:

E[(ψ + η)T∇2
z
h(ž)(ψ + η)] = ψT∇2

z
h(ž)ψ + E[ηT∇2

z
h(ž)η],

where expectation of cross terms betweenψ andη are dropped sinceη is zero-mean.
The diagonal portion of∇2

z
h(ž) reads:

∇2
z
h(ž) =

2

β2 ‖c̄‖2
2

{

1

β2 ‖c̄‖2
2

[

β(2β − 1)ᾱc̄c̄
T

0

]

−

[ ᾱ
β I

0

]

}

. (80)
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It follows that

ψT∇2
z
h(ž)ψ =

2(β − 1)2

‖z1‖
2
2

{

(β − 1) ‖c̄‖4
2

β2 ‖c̄‖2
2

ᾱ−
‖c̄‖2

2

β
ᾱ

}

=
2(β − 1)2

β3
[
(2β − 1)

β
− 1]ᾱ

=
2(β − 1)3

β4
ᾱ. (81)

ηT∇2
z
h(ž)η =

2

β2 ‖c̄‖2
2

{

β(2β − 1)σ2
1 ‖c̄‖

2
2

β3 ‖c̄‖2
2

ᾱ−
nσ2

1

β
ᾱ

}

=
2σ2

1

β6 ‖c̄‖2
2

[(2β − 1) − nβ]ᾱ. (82)

Summing (81) and (82) yields:

E[(z − ž)T∇2
z
h(ž)(z − ž)] =

2(β − 1)3

β4
ᾱ+

2σ2
1

β6 ‖c̄‖2
2

[(2β − 1) − nβ]ᾱ. (83)

Combining (83) with the first order estimation ofE[α̂], we obtain the second order approximation forE[α̂] as:

E(2)[α̂] = h(ž) + E

{

∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

= E(1)[α̂] +
1

2
E[(z − ž)T∇2

z
h(ž)(z − ž)]

=

{

β3 − (β − 1)3

β3
+

(β − 1)3

β4

}

ᾱ+
(2 − n)β − 1

β5

σ2
1

‖c̄‖2
2

ᾱ

=
β4 − (β − 1)4

β4
ᾱ+

(2 − n)β − 1

β5

σ2
1

‖c̄‖2
2

ᾱ (84)

Recall thatβ =
‖c̄‖2

2
+nσ2

1

‖c̄‖2

2

, so for reasonable SNR,(2−n)β−1
β ≈ 1 − n. Using thes =

‖c̄‖2

2

nσ2

1

, we can rewriteE(2)[α̂]

approximately as:

E(2)[α̂] = [1 −
1

(s+ 1)4
+

(1 − n)s3

n(1 + s)4
]ᾱ. (85)

Notice that when SNR is high (larges), then

E(2)[α̂] = [1 −
1

(s+ 1)4
+

(1 − n)s3

n(1 + s)4
]ᾱ

≈ [1 +
1 − n

n(1 + s)
]ᾱ

= [1 −
1 − n

n

nσ2
1

‖c̄‖2
2 + nσ2

1

]ᾱ

≈ [1 + (1 − n)
σ2

1

‖c̄‖2
2 + nσ2

1

]ᾱ, (86)

which closely resembles the result (71) obtained from expanding about noiseless datāz. In fact, for high enough SNR,
‖c̄‖2

2
+nσ1

σ2

1

≈
‖c̄‖2

2

σ2

1

so that (86) and (71) are approximately equal. This relation is expected, as for small SNR,̌z ≈ z̄ and

α̌ ≈ ᾱ, the small error analysis is essentially performed on the same neighborhood!
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(b1) bias approximationn = 50 (b2) variance approximationn = 50

Fig. 3. Bias and variance approximation of M-estimate obtained from expansion about(α̌, ž).

.3 ML Estimator for the Statistical Model

The maximum likelihood estimator from (23) aims to jointly estimatec andα via:

[α̂, ĉ] = arg min
α,c

1

σ2
1

‖z1 − c‖2
2 +

1

σ2
2

‖z2 − αc‖2
2 . (87)

Note that conditioned onα, (87) is quadratic inc with the solutionĉ(α,z) given by:

ĉ =

{

[

I
αI

]T
[

1
σ2

1

I 0

0 1
σ2

2

I

]

[

I
αI

]

}−1
[

I αI
]

[

1
σ2

1

I 0

0 1
σ2

2

I

]

z

= (
1

σ2
1

+
α2

σ2
2

)−1(
1

σ2
1

z1 +
α2

σ2
2

z2)

=
1

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2). (88)

Remark:

• In the limiting case whenσ1 → 0 (with non-vanishingσ2), z1 is a noise-free observation ofc, it is natural to
estimatec solely onz1 as (88) reduces to

lim
σ1→0

ĉ = z1,
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which coincides with (47) in the conventional method. On the other hand, as the noise level inz2 becomes small
relative to that inz1 (σ2 → 0 with non-vanishingσ1), the estimate reduces to:

lim
σ2→0

ĉ = z2/α,

which corresponds to the case of estimatingc solely fromz2.
More precisely,

lim ĉ = z1 asσ1/σ2 → 0;

lim ĉ = z2/α asσ1/σ2 → ∞. (89)

• It is easy to check the estimator in (88) is unbiased with variance

Var{ĉ} =
σ2

1σ
2
2

α2σ2
1 + σ2

2

I =
σ2

1

1 + α2 σ2

1

σ2

2

I.

It immediately follows that this quantity is upper-bounded by the covarianceσ2
1I of the estimator forc (47)

resulting from conventional methods.

Now we can plug in the expression ofĉ in (88) and (87) reduces to a minimization problem overα only:

α̂ = arg min
α

Ψ(α,z)

= arg min
α

1

σ2
1

∥

∥

∥

∥

z1 −
1

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2)

∥

∥

∥

∥

2

2

+
1

σ2
2

∥

∥

∥

∥

z2 −
α

α2σ2
1 + σ2

2

(σ2
2z1 + ασ2

1z2)

∥

∥

∥

∥

2

2

= arg min
α

1

α2σ2
1 + σ2

2

‖αz1 − z2‖
2
2 (90)

This functionΨ is nonlinear inα. Note thatΨ ≥ 0. In the case of noise-free observationz = z̄, ᾱ achieves the zero
value and is the global minimizer (we will justify this more precisely later). Therefore, we can utilize the techniques
for M-estimate as before, and analyze the behavior ofα̂ in the neighborhood̂α(z̄) = ᾱ.

Let α̂ be the minimizer of the functionΨ(α,z), then it is true that

∂

∂α
Ψ(α,z) =

∂

∂α

1

α2σ2
1 + σ2

2

∥

∥

[

αI −I
]

z
∥

∥

2
= 0 ∀z.

∂

∂α
Ψ(α,z) =

1

(α2σ2
1 + σ2

2)
2
(αz1 − z2)

T [2z1(α
2σ2

1 + σ2
2) − 2ασ2

1(αz1 − z2)]

=
2

(α2σ2
1 + σ2

2)
2
z

T

[

αI
−I

]

[

σ2
2I ασ2

1

]

z. (91)

LetQ
△
=

[

αI
−I

]

[

σ2
2I ασ2

1

]

=

[

ασ2
2I α2σ2

1I
−σ2

2I −ασ2
1I

]

, then the derivative of∂∂αΨ with respect toz is given by:

∂2

∂α∂z
Ψ =

2

(α2σ2
1 + σ2

2)
2
z

T (Q+QT )

=
2

(α2σ2
1 + σ2

2)
2
z

T

[

2ασ2
2I (α2σ2

1 − σ2
2)I

(α2σ2
1 − σ2

2)I −2ασ2
1I

]

. (92)

Evaluating (92) atz = z̄ andα = ᾱ yields:

∂2

∂α∂z
Ψ(ᾱ, z̄) =

2

ᾱ2σ2
1 + σ2

2

c̄
T

[

ᾱI −I
]

(93)
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Now we compute the derivative of∂∂αΨ with respect toα and evaluate at the minimizer̂α = ᾱ with z = z̄:

∂2

∂α2
Ψ = 2

∂

∂α

{

(αz1 − z2)
T (σ2

2z1 + ασ2
1z2)

(α2σ2
1 + σ2

2)
2

}

(94)

= 2

{

−2
2ασ2

1

(α2σ2
1 + σ2

2)
3
(αz1 − z2)

T (σ2
2z1 + ασ2

1z2) +
1

(α2σ2
1 + σ2

2)
2
[zT

1 (σ2
2z1 + ασ2

1z2) + (αz1 − z2)
Tσ2

1z2]

}

This is a convenient form to be evaluated atz = z̄, and we obtain:

∂2

∂α2
Ψ(z̄) =

2

ᾱ2σ2
1 + σ2

2

‖c̄‖2
2 . (95)

To prepare for future use, we simplify the general form of (95) into:

∂2

∂α2
Ψ =

2

(α2σ2
1 + σ2

2)
3

{

(−3α2σ2
1 + σ2

2)σ
2
2 ‖z1‖

2
2 + 2(3σ2

2 − α2σ2)ασ2
1z

T
1 z2 + (3α2σ2

1 − σ2
2)σ

2
1 ‖z2‖

2
2

}

=
2

(α2σ2
1 + σ2

2)
3
z

T

[

(−3α2σ2
1 + σ2

2)σ
2
2I (3σ2

2 − α2σ2)ασ2
1I

(3σ2
2 − α2σ2)ασ2

1I (3α2σ2
1 − σ2

2)σ
2
1I

]

z. (96)

Estimating ∂
∂z
α yields:

∂

∂z
α̂|z̄,ᾱ = −

∂2

∂α2
Ψ−1 ∂2

∂α∂z
Ψ

= −
1

‖c̄‖2
2

c̄
T

[

ᾱI −I
]

. (97)

The covariance evaluated at(ᾱ, z̄) is

Cov{α̂} |(z̄,ᾱ) =
∂

∂z
α(z̄)Cov{z}

∂

∂z
α(z̄)

= ‖c̄‖−4
2 c̄

T
[

ᾱI −I
]

[

σ2
1I 0
0 σ2

2I

] [

ᾱI
−I

]

c̄

= ‖c̄‖−2
2 (ᾱ2σ2

1 + σ2
2) (98)

.4 Lower Bound for Covariance From Cramér-Rao Bound

The negative log-likelihood is given as the objective function in (87). It isstraight-forward to compute the sub-
matrices for the Fisher-Information Matrix.

∂

∂α
Λ = −

1

σ2
2

(αc − z2)
T
c;

∂2

∂α2
Λ = −

1

σ2
2

c
T
c.

∂2

∂α∂c
Λ =

−1

σ2
2

(2αc
T − zT

2 ),

resulting in

E[
∂2

∂α2
c] =

−1

σ2
2

αc
T .

The Fisher-information matrix (FIM) is thus given by:

FIM =
1

σ2
2

[

c
T
c αc

T

αc (α2 +
σ2

2

σ2

1

)I

]

.
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Invoking block-matrix inversion, we obtain:

Cov{α̂} ≥ σ2[cT
c − αc

T (α2 +
σ2

2

σ2
1

)−1αc]

= ‖c‖−2
2 (α2σ2

1 + σ2
2). (99)

Since the ML estimator is known to be asymptotically unbiased, the coincidence between (98) and (99) justifies the
well-known fact that the ML estimator is asymptotically efficient (thus is asymptotically a uniformly minimal variance
and unbiased estimator (UMVUE)).

.5 Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the ML estimator, it is often of great interest to analyze
the bias and variance before the the estimator enters the asymptotic zone. Hereafter, we focus on deriving analytical
approximation for the bias of the ML estimator. As in the covariance analysis previously, we assume the estimate is over
continuous parameter’sα and is computed by “completely” maximizing the objective function (likelihood in this case)
without “stopping rules” that terminates the iterations before the maximum is reached. We derive the approximation
using implicit function theorem, the Taylor expansion (with different ordersof approximation accuracy), and the chain
rule.

The objective functionΨ in (90) implicitly defines the M-estimatêα as a function ofz. Yet the absence of an explicit
analytical expression of the form̂α = h(z) (as the one in (49)) makes it difficult to study the mean ofα̂ directly. As
in the previous section, we apply Taylor expansion, chain rules and implicit function theorem to estimate the bias with
the first and second order approximation given by:

E[α̂] ≈ h(ž) + E {∇zh(ž)(z − ž)} . (100)

E[α̂] ≈ h(ž) + E

{

∇zh(ž)(z − ž) +
1

2
(z − ž)T∇2

z
h(ž)(z − ž)

}

. (101)

We now determine the point of expansionž and the approximation for first (linear) and second order (Hessian)
coefficients∇zh, ∇2

z
h. To obtain the best choice fořα

α̌ = arg min
α
E[Ψ(α,z)], (102)

whereα̌ andž in the Taylor expansions are related byα̌ = h(ž), we computeE[Ψ(α,z)] as follows:

E[Ψ(α,z)] =
1

α2σ2
1 + σ2

2

n
∑

i=1

(αz1(i) − z2(i))
2.

For each indexi,

E[(αz1(i) − z2(i))
2] = E[α2z1(i)

2 − 2αz1(i)z2(i) + z2(i)
2]

= α2(c̄2i + σ2
1) − 2αᾱc̄2i + ᾱ2c̄2i + σ2

2

= (α2 − 2αᾱ+ ᾱ2)c̄2i + (α2σ2
1 + σ2

2), (103)

wherec̄i andᾱ are the underlying “true” parameter values.
Substituting (103) yields:

E[Ψ(α,z)] =
1

α2σ2
1 + σ2

2

(α− ᾱ)2 ‖c̄‖2
2 + n. (104)

Even thoughE[Ψ(α,z)] is nonlinear inα, its global minimizer is immediately observed asα = ᾱ, becauseE[Ψ(ᾱ,z)] =
n achieves the lower bound forE[Ψ(α,z)] as a function ofα. Thus we have found the proper point to expand around
α̌ = ᾱ.
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Note that when noise free data is observed,i.e., z = z̄, the minimizerα̂ in (90) is obtained as:

α̂(z̄) = arg min
α

1

α2σ2
1 + σ2

2

‖αz̄1 − z̄2‖
2
2

= arg min
α

1

α2σ2
1 + σ2

2

‖αc̄ − ᾱc̄‖2
2

= arg min
α

(α− ᾱ)2 ‖c‖2
2

α2σ2
1 + σ2

2

. (105)

Note this function is nonnegative, its global minimizer is obtained atα = ᾱ, i.e., h(z̄) = ᾱ = α̌. This indicates that
ž = z̄ is the proper choice to expandh around, without requiring to know the precise value ofᾱ.

In this case, the bias analysis with first-order Taylor expansion as in (100) is simple by noting that(z − z̄) ∼

N (0,

[

σ2
1I

σ2
2I

]

), so that

E[α̂] = h(z̄) + E {∇zh(z̄)(z − z̄)}

= ᾱ (106)

This states that the estimator is unbiased if we approximate its first moment up to first order dependence on the data.
The first order expansion is usually sufficient in practice and has beenextensively used. However, there are situations

where (100) may be inadequate. We next derive a mean approximation based on the second-order Taylor expansion
(101) which is expected to be more accurate, but also computationally more intensive.

The first two (0th and1st order) terms in (101) are (100), so it suffices to study the Hessian∇2
z
.

For scalarα, we follow the simplified expression in [6] to obtain the Hessian ofh(z) as:

∇2
z
h = [−

∂2

∂α2
Ψ]−1

{

∂3

∂α3
Ψ∇zh

T∇zh+
∂3

∂α2∂z
ΨT∇zh+ ∇zh

T ∂3

∂α2∂z
Ψ +

∂

∂α
∇2

z
Ψ

}

. (107)

Some of the key gradients are already available:∇zh is given in (97) as well as∂2

∂α2 Ψ in (95) (before evaluation)

and ∂2

∂α∂z
Ψ in (92). We still need to compute∂

3

∂α3 Ψ(ᾱ, z̄), ∂3

∂α2∂zΨ(ᾱ, z̄) and ∂
∂α∇

2
z
Ψ.

Evaluating (95) at(ᾱ, z̄) yields:
∂2

∂α2
Ψ(ᾱ, z̄) =

2 ‖c̄‖2
2

ᾱ2σ2
1 + σ2

2

.

Taking derivative of (96) with respect toz yields:

∂3

∂α2∂z
Ψ =

4

(α2σ2
1 + σ2

2)
3
z

T

[

(−3α2σ2
1 + σ2

2)σ
2
2I (3σ2

2 − α2σ2)ασ2
1I

(3σ2
2 − α2σ2)ασ2

1I (3α2σ2
1 − σ2

2)σ
2
1I

]

(108)

Evaluating (108) at(ᾱ, z̄) yields:

∂3

∂α2∂z
Ψ(ᾱ, z̄) =

4

(ᾱ2σ2
1 + σ2

2)
3
c̄

T
[

(σ4
2 − ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 + σ2

2)I
]

(109)

Taking derivative of (95) with respect toα yields:

∂3

∂α3
Ψ =

−12ασ2
1

(α2σ2
1 + σ2

2)
3
zT
1 (σ2

2z1 + ασ2
1z2) +

2

(α2σ2
1 + σ2

2)
3
[−4ασ2

1z
T
1 (σ2

2z1 + ασ2
1z2) + . . .

+2ασ2
1z

T
1 (σ2

2z1 + ασ2
1z2) + 2(α2σ2

1 + σ2
2)σ

2
1z

T
1 z2]. (110)

Evaluating (110) at (110) at(ᾱ, z̄) yields:

∂3

∂α3
Ψ(ᾱ, z̄) =

−12ᾱσ2
1 ‖c̄‖

2
2

(ᾱ2σ2
1 + σ2

2)
. (111)
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The term ∂
∂α∇

2
z
Ψ is obtained by taking derivative of∂

2

∂α∂z
Ψ in (92) with respect toz as:

∂

∂α
∇2

z
Ψ = 2(

1

α2σ2
1 + σ2

2

)2
[

2ασ2
2I (α2σ2

1 − σ2
2)I

(ασ2
1 − σ2

2)I −2ασ2
1I

]

(112)

Evaluating at̄α yields:

∂

∂α
∇2

z
Ψ(ᾱ) = 2(

1

ᾱ2σ2
1 + σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1 − σ2
2)I

(ᾱσ2
1 − σ2

2)I −2ᾱσ2
1I

]

. (113)

Substituting the expressions of all components into the right-hand-side of (107) yields:

∇2
z
h(z̄) = −

ᾱ2σ2
1 + σ2

2

2 ‖c̄‖2
2

{ −12ᾱσ2
1

(ᾱ2σ2
1 + σ2

2)
2 ‖c̄‖2

2

[

ᾱI
−I

]

c̄c̄
T

[

ᾱI −I
]

+ . . .

−
4

(ᾱ2σ2
1 + σ2

2)
3 ‖c̄‖2

2

[

(σ4
2 − ᾱ4σ4

1)I
2ᾱσ2

1(ᾱ
2σ2

1 + σ2
2)I

]

c̄c̄
T

[

ᾱI −I
]

+ . . .

−
4

(ᾱ2σ2
1 + σ2

2)
3 ‖c̄‖2

2

[

ᾱI
−I

]

c̄c̄
T

[

(σ4
2 − ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 + σ2

2)I
]

+ . . .

+2(
1

ᾱ2σ2
1 + σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1 − σ2
2)I

(ᾱσ2
1 − σ2

2)I −2ᾱσ2
1I

]

}

. (114)

The second order term in (101) depends on the Hessian∇2
z
h(z̄) via (z − z̄)T∇2

z
h(z̄)(z − z̄) sincež = z̄, where

z− z̄ are exactly the noise componentǫ ∼ N (0,

[

σ2
1I

σ2
2I

]

). Because the elements ofǫ are mutually independent,

E
{

(z − z̄)T∇2
z
h(z̄)(z − z̄)

}

only depends on the diagonal elements of the Hessian∇2
z
h(z̄).

When a component is located in thez1 portion ofz, the noise componentǫ(i) ∼ N (0, σ2
1), and taking the corre-

sponding element in the Hessian, we obtain:

∂2

∂z1(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−12ᾱ3σ2
1c

2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

−
8ᾱ(σ4

2 − ᾱ4σ4
1)c

2
i

(ᾱ2σ2
1 + σ2

2)
2 ‖c̄‖2

2

+ 4ᾱσ2
2

}

. (115)

Similarly,

∂2

∂z2(i)2
h(z̄) = −

1

2 ‖c̄‖2
2

{

−12ᾱσ2
1c

2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

+
16ᾱσ2

1c
2
i

(ᾱ2σ2
1 + σ2

2) ‖c̄‖
2
2

− 4ᾱσ2
1

}

. (116)

Combining the above to obtain:

E[ǫT∇2
z
h(z̄)ǫ] = σ2

1

n
∑

i=1

∂2

∂z1(i)2
h(z̄) + σ2

2

n
∑

i=1

∂2

∂z2(i)2
h(z̄)

= −
1

2 ‖c̄‖2
2

{

−12ᾱ3σ4
1

(ᾱ2σ2
1 + σ2

2)
−

8ᾱ(σ4
2 − ᾱ4σ4

1)σ
2
1

(ᾱ2σ2
1 + σ2

2)
2

}

−
1

2 ‖c̄‖2
2

{

−12ᾱσ2
1σ

2
2

(ᾱ2σ2
1 + σ2

2)
+

16ᾱσ2
1σ

2
2

(ᾱ2σ2
1 + σ2

2)

}

=
ᾱσ2

1

‖c̄‖2
2

. (117)

The second order approximation of the estimator yields:

E[α̂]/ᾱ = 1 +
σ2

1

‖c̄‖2
2

,

which indicates a bias toward positive magnitude. Comparing with the bias analysis for the conventional M-estimate,
the bias of the ML estimate is independent of the data lengthn, which indicates that even though both estimators are
asymptotically unbiased, they approach the asymptotic region with different rate (roughly1 : n).
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(a1) bias approximationn = 5 (a2) variance approximationn = 5

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

1st−order Approx. with \bar{z}
2nd−order Approx. with \bar{z}
Numerical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5
x 10

−4

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

L−
es

tim
at

e

 

 

Approx with \bar{z} (= CRB)
Numerical Result

(b1) bias approximationn = 50 (b2) variance approximationn = 50

Fig. 4. Bias and variance approximation of ML-estimate obtained from expansion about(α̌, ž).
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