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Image registration, as a special form of signal warping, is an importakinamage processing. Given the many
current developments in algorithms and techniques in image registration, iirgaldle to have fundamental perfor-
mance criteria to compare the overall optimality of different estimators. Thi@tr@pesents an observation model for
image registration that accounts for image noise more realistically than mostl&tions, and describes performance
analysis based on Cr&nRao Bound and its related variant MCRB.

. MODEL - THE IDEAL V.S. COMMONLY USED

In a general setting, image registration methods aim to find the motion in an imagenseq Let; denote theth
observation (frame) of an underlying image. In reality, only sampled ghtens are available, with spatial sample
spacingA. Therefore, it is natural to use a discrete spatial index to refer to thelsdrgration. Without loss of
generality, we take;[n] = z£(nA) wherez¢ notates the underlying continuous intensity map. Accounting for additive
observation noise, we formulate the generative model as:

zi[n] = f(n 4+ 7(n)) + &[n), 1)

where it is standard to assumgare normally distributed I.1.D noise. In principle, the task of registrateringtieer-
vation sequence is to find the deformation sequence of continuous{mager all ;. We adopt the parametric setting,
and represent the underlying continuous image intensity as a linear combin&adinite number of basis functions

b with coefficientsec = {c}, i.e, f(z) = Zk{il cxb(z, k). For simplicity, we focus on pairwise registration which
requires estimating one deformation fieldand drop the subindex ig. Furthermore, we assume the deformation field
is properly (sufficiently) parameterized with so the estimation performance for deformation and image intensity may
be characterized by that of the parameter(sety). For simplicity, we formulate our problem in 1-D format, but the
analysis generalizes to higher dimension (2-D and/or 3-D). The two widénages are modeled as:

K
z1[n] = Z ckb(n, k) + e1[n],
k=1
K
zo[n] = chb(n—i—Ta(n),k)—i—eQ[n] n=1,2,...,N, 2
k=1

where {b(-, k)} are common intensity bases, andoarameterized byv captures the pointwise deformation. The
components of additive noisg are zero mean |.1.D Gaussian with variance

The formulation in (2) captures the spatial sampling of the observation, tite fapresentation of the underlying
“true” intensity {c; }X_, andr denotes the point-wise deformation.



For comparison purposes, in traditional registration setup, the estimatdeirsadsigned to find the transformation
I" such that
I'=arg mrin D(z3,2101), 3)

where D is some difference measureg., sum-of-squared-difference (SSD) or mutual information (MI), &nith-
dicates the transformation. In this setting, it is implicitly assumed thatih@ometimes called “reference") is a
noise-free version of the true intensity imagjeandz, (also called “homologous”) is a deformed image with statistical
noise corresponding to the form of the difference metric. Clearly therégiskaof symmetry regarding the presence of
noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSD) as our teflaoice of the error metrid for (3) hereafter,
to reveal the parallel structure with Gaussian noise assumptions, which simagany practical cases.

[I. CRAMER-RAO BOUND AND ITS ASYMPTOTIC BEHAVIOR
We first reformulate (2) in a compact vector form as follows.

(2]l e ] e

wherez £ [21(1),...,21(N), 22(1), ..., 22(N)]T € ®2N ande 2 [, ...,cx]T € RE, are column vectors by
stacking the corresponding elements. The concatenated random noiseeve- N(O,_Z = 0%lhyN). Ao, A, €
MN*E have elementsiy(i, j) = b(i,5) and A, (i,§) = b(i + 7(i),j) fori = 1,2,...,N,j = 1,2,...,K. The
overall system matrid = [AL, AT1T. The Crangr-Rao Bound (CRB) is a fundamental lower bound on the variance
of any unbiased estimator [1] and serves as a benchmark for estimdimmpance. When maximum-likelihood (ML)
estimators are applied, which are known to be asymptotically unbiased, it isstitey use CRB to bound their variance.
In [2], it is suggested that when inverting the Fisher information matrix (FiMyesponding to the parameter of interest
only is not straight-forward, it is feasible to use “complete-parameter’dfistiormation matrices. Following a similar
logic, we can write (4) in a more general form,

z = h(ra,c)+€
= h(0) +¢, (5)

whereh(r,, c) 2 Ac andd = [a, ] denotes the “complete-parameter” vector. It follows immediately from the i.i.d
Gaussian assumption of noigghat the ML estimato#,;; minimizes theL, distance between observatienand
system responsig(d) as follows: R

Ors = axgmin |z = h(6)]],

Before we delve into the detailed computation, we clarify our goal and thetsteuof FIM here. We are ultimately
interested in the performance of estimators for the deformation paramgegerd the image intensity parameteis
chosen to augment the data to simplify expression. WithRV+% | the FIM corresponding t6 takes on the form:

x s
F(0%) = E.j9—o« {—@A(ze)\eze*} 7

whereA is the log-likelihood functiom\(z|0) 2 log f(210).

Moreover, if we define/,, , = F {[a%A(z)]T[a%A(z)]}, then the complete-data FIM can be decomposed into block
form as:

(6)

F9 _ |: Ja,a Ja,c :| .

Jc,oz Jc,c
IThere is a slight abuse of notation here. The more precise fation would be:I' = arg minr D(z2, P(2§ oT")), wherez{ the underlying intensity map

that agrees withk; on sampling grids, ané is the sampling function such th&t(z¢)(n) = 2¢(nA). Even so, the cost function is still incomplete, as onlyis
observed and the interpolatdr: z; — z{ needs to be specified. The de facto objective function is s, P(I(z1) o I)).



The sub-block/; - is the FIM with respect to the quantity of interest - the deformation parameAsr€&RB is the
inverse of the FIM, we can invoke the formula for partitioned-matrix invgs$¢o obtain:

CRB(0) = [Jaa — Jaeloedeal™
CRB(c) = [Jee— Jeadandael - (7)

This form can be further simplified using its symmetry - a fact that we will utilizer lsx@ur computation.
The likelihood function with respect #is :

16:0) = e 37> ')

wheree = z — h(0) = z — A(7a)c.
The log-likelihood turns out to be:

A = logf(z:;0)
_ —Jng@ﬂ)—ﬂnga——jLﬂz A(ra)el?. (8)

Now we compute each term of the FIM.

1
VoA = —o5Vr 2= Alra)e|’
= (2~ A(r)e) V- (Alra)e) ©
Notice that
9 0 -
orqp) Arl e} = 8ﬂwg;dMAAmk)
) K
= 8dwg;qmun+f()m
K — .
— {0 b1 c()b(n + 7(n), k), . (10)

whereb(-, -) denotes the derivative &f-, -) with respect to the first variable.
Plugging (10) into (9), we obtain

0 1 X
A = —(2(]) Je) Y bl +7(1), k)e(k). (11)
k=1

Therefore, the gradient of with respect tor is:

8 1 T 1 . T
7oA = Sl — Are) © (D))" = ~; [diag{De) (22 — A ()], (12)
where D is the matrix whose elements af¥(i, j) = b(i + 7(i),5),1 < i < N,1 < j < K, and " denotes the
Schur/Hadamard product.
By chain rule, the gradient of with respect tax is given by:
0,0
— A=
oroa
= Ll Ao (Do) 2-a] 13)
o Oa ™’

VoA =



where 27 € M= is the derivative matrix with elemeng: 7)(i, j) = 5457 (i), andL corresponds to the length
of the deformation parameter.
Now we compute the FIM/, , with

E {%A} = -E {[%A]T[a%j\]}

dr T 0 ,.p; 0 dr
= -0 E{[EA] [EA]}E (14)
1drT dr

-~ Lo E {diag{Dc}(zQ - ATC)[%(ZQ - ATC)Tdiag{Dc}]T} =

= ——— diag?{Dc} — (15)
g (6 (6%
To calculateJ,. - and.J. ., we take the derivative of with respect tac:

o, 10 )
1
ﬁ(z — Ac)T A. (16)

It is now straight forward to compute the entries for the complete FIM:

E i Ab= LTy (17)
Ocde o2

0? 1
E{WA} = ;E{—AT[l,m]D[l,.]c+62(l)D[l,m]}
1

- —;AT[l,m]D[l, Je. (18)

The matrix.J, . can be represented in compact form as:

0? 1drT |
E{E)aE)CA} = 1 diag{Dc} A;. (19)

With symmetry, the complete FIM is obtained:

1
Fp=—
6 o2

47 giag?(Dey 4= 927 diag{ De} A,

. 20
AT diag{Dc} g—; AT A (20)

As a special case, whenis parameterized with rect functionise,, 7(n) = a[n], we haveiz = I. The FIM for
(1, ¢) is then given by:

1 [ diag?{Dc} diag{Dc}AT} (21)

Foo =53 [ AT diag{Dc} AT A
At this point, we make the following observations:

1. With the commonly used model (3), it is assumed that the observed red¢dreagez; corresponds to the ground
truth c. In other words, most existing methods solve for the ML estimataith the generative model:

20 =Y cpb(n+7(n), k) + ea(n), (22)



by plugging in thez;,'s that best fits;. It is easy to derive the CRB for the log-likelihood functiaf®M(z,: 7) =
—N/2log(2m) —Nlog o — 513 ||z2 — Arc|[. The FIM matrix F¢9™M = . _ as we derived in (15). Therefore,
CRB®®M(r) = J-L. Notice thaf as.J; cJzLJer > 0, CRB®®M(7) < CRB(r) as extra information (known
{cr}) is assumed in the case of (22). In other words, the plug-in operatioridea “looser” bound for the
variance than the “true” CRB corresponding to model (2).

2. For asymptotically large SNR.e., 02 — 0, we do expect a decent estimatecflirectly from the reference
image only, assuming no model mismatch in the generative basis. In this caskigtie estimator as used in the
traditional model, even though not a true ML estimator, is expected to pedonitarly to the real ML estimator.
Indeed, [4] shows that the “fake” bound approximates the true &RB

3. The above points may be interpreted better with a slight modification of thelnimog®. Instead of i.i.d noise,
we assume that noise level in the two images are not symmetric, more specifieaigsume; ~ N (0,02 1y)
andes ~ N(0,031y).

The log-likelihood is given by:

1

A= ——
20%

1
|21 — Aoclly — 552 ||z2 — Arcl|, + some constant (23)
02

The partial derivatives of the log-likelihood with respectrt§ thusa) is not affected by target image model, and
the second-order derivative the log-likelihood with respeat i®given by:

9? 1 1
E Ap=—SATAg— AT A,
{8080 } 020 0 o3 7

We thus obtain the complete FIM with respec{toc) as:

~ diag®{Dc} “5 diag{Dc} A,
2 2

UL%AZ diag{Dc} Ui%Ag’Ao+oi§AZAT. ' (24)

Fre) =

Wheno; — 0, corresponding to high SNR in the template image, then — oo and
CRB(7) = [Jrr — Jredoeder] ™ — Jrk,

which reduces to the RB*°M

4. To computeCRB(7) exactly could be challenging, a$”.A may not be easy to invert for arbitrary Notice that
the sub-matrix4, of A has nice shift-invariant structure, ydt. depends on the deformation. In special cases,
such as when the whole image (signal) experience uniform transformdtipe- const fori =1,2,..., N, then
Je,c is block-shift-invariant, and efficient inversion is possible.

5. As a special case, we consider when the whole image experiencemutriénsformation, where a natural pa-
rameterization is to use to describe the global transformatiare., 7, (i) = « for Vi.
Under the uniform transformation assumption, we have

dr

a )
wherel indicates a column vector (of lengfi in our case) with all unity elements.
Substituting this relation into (15), (19) respectively and we obtain:

P~ L 1" diag?{Dc}1 17 diag{Dc} A,
O = 52| ATdiag{Dc}1 AT A

1 c"'DDTc [Dc|T A,
2| AT[D¢ ATA |7

g

(25)

2In most cases, we assume it is nonsingular, so it is in factipesiefinite.
3In particular, the parameters to be estimatei$ not coupled with the nuisance parameteri our case, and the asymptotic behavior of the bound can be
shown with ease.



I1l. RELATING TO MCRB

The modified Crarar-Rao Bound (MCRB) was first introduced [5] to resolve the synaizaiion issues in decoding
systems. Rather than seeking the variance around the estimator for tHeatigmented data (“complete data”) which
includes both the quantity of interest and the nuisance paramet&&€RB choose to look on the other parameters
as “unwanted”. Instead of using the true CRB, the MCRB may be regaslieth approximation via “marginalizing”
over the nuisance parameters. In fact, MCRB is always lower than CRB alooser bound. In some cases, MCRB
approaches the true CRB [4].

The central idea is the following. Instead of computing the true FIM

0
F =B { [y on =)}
it uses

Bue {[(;%bg [z c)]}. (26)

The rationale for MCRB is the following:

Eoo{lr() =2} = Ee{Buel(r() -}

1
> E. 5 S
B, cl(77 log f(2:7, ¢))?]
1
> 3 5
Ec{Ec|(5; log f(2:7,¢))?]}
1
= . (27)
E.c{[Zlog f(z7 )%}
The first inequality comes from the application of CRB to the estimétey for a fixed ¢ and second is Jensen’s
inequality.

IV. AN ALTERNATING MINIMIZATION ALGORITHM

For registration purposes, we want to minimize the negative log-likelihoodin {®e assume the underlying image
intensity f (and thusc are fixed unknown) and adopt the frequentist point of view. It is r@étiorask for the solution
of the augmented problem:

(7,€) = argmin —A.
T,C

Here, we describe an alternating minimization algorithm to solve this problem.

Algorithm 1 Alternating minimizing the nagetive log-likelihood in (23).
1. Initialize é

2. repeat
3 For givenc = ¢, minimize ||z — A,cl|, overr. This step coincides with conventional registration methods by
assuming: known. Obtainr.
4; For givenT = 7, minimize # |21 — Aoc|) + # |22 — A,c|l5. This is a typical quadratic minimization
1 2

problem, and the solution is given by:
1 1 1 1
6= [—ATAg+ — ATA N (S ATz + = AT 28
c [U% 0 O+U§ T ] (U% 021+J% 722)7 ( )

where(-)" indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

We make the following remarks:



« As oy, — 0, the contribution ofd; andz; dominates (28), and the solution reduces to
é=[AF 4] AT 2, (29)

which corresponds to the conventional method whegris considered to be a highly reliable “template” and the
image intensity is solely obtained by fitting.

« More generally, alternating descent may be used instead of requiringtireveng minimizer at each iteration.
This could be particularly beneficial for the step in updatingpnditioned org, as the quadratic form in the other
step makes the minimization ovettrivial. Relaxing conditional maximization to increase in log-likelihood may
has potential computational advantage as well as better behavior to lodahaax

« Aso; — 0, the alternating descent algorithm reduces to exactly any conventiort@rdedgorithm in solving (3)
with [, difference metric. In the asymptotic case, the conditional minimizatiangifen by (29) is independent
of 7 and the whole alternating descent algorithm reduces to using the plug-in st{@®) and descend A with
respect tor.

V. COMPARISON WITHCONVENTIONAL METHODS. CRBV.S. M-ESTIMATE

As we have commented briefly in the previous sections, the conventional mestiotate the intensity from the
source image; only. With [, difference metric, we can write the solution to the conventional method as:

é = argminHzl—AOCH%;
C

N

7 = argmin|ze — A4,¢€3, (30)
T

wherez;, z, are discrete observations for the source and target image in vectorfgremd A, are defined as in (4).
The first equation in (30) can be solved in closed form given its quadatit.

¢ = A(];Zl,
and we can rewrite (30) as:

2
7 = arg min H22 — ATAgleQ. (31)

We can also stack the expression as before, and dAfée{—ATAg I] and write the objective as:
7 = argmin ®(r, z) = ||A(7)z])3. (32)

In the following derivations, we will use the most convenenient and usealioye equivalent expressions inter-
changably.

Our goal is to derive the covariance of the minimizer defined above andse/similar philosophy as in [6]. By
implicit function theorem, the partial derivative @ with respect tar are uniformly zero:

0
ot (7)

®(1,2)|,=+ =0, V spatial location, (33)

for any given data.
Differentiating (33) again with respect toand applying the chain rule yields:

V20d(7(2), 2))V.7(2) + VII®(7(2), z) = 0. (34)

Where, the components &2°®(7(z), z) are #;T(j)cb(%(z), z), and the elements o7 !! are Wgz(ﬂ@(%(z), 2).
We consider the case wh&i?’®(7(z), z) is invertible, or more precisely positive definite. Note tigt (z), 2) is
locally strictly convex. This assumption is true if the following regularity condition is §atls There3 a compact

neighborhoodN (7) such thatb(r, z) > ®(7(z), z) for all T # 7 . Then we obtain:

Vy#(z) = [-V2®(7,2)| 7 VId(1, 2).



and so the covariance matrix forwould beCov{z} transformed by local linearizion [7i.e.,
Cov{7} ~ V,7(2) Cov{z}[V.7(2)]’.
By substitution, we obtain
Cov{7} = [V*®(7,2)| ' VI®(7, 2) Cov{z} [V (7, 2)] [VXD(F, 2)] . (35)

By assumption, we assume the covariance isfof the form:

2
Cov{z} = [ 0 o2y } (36)
It remains to derive the expressions 6’ ® (7, z) andV1®(7, 2).
We first adopt the objective function form in (31) to take derivative witbprect tar (7).
) al 0°
_ JAT ., T
5 (l)cp(T, z) = nzlmT[n, JAb21 = 22(n)) 5 (Z)Q{AT(n)AOzl}. (37)
Similar to (10),
) 0 =
JAT _ T
5T {Arngafa ) = 5 ;(Aozl)(k)AT(n, k)
= O STl (k)b(n + (), B)
T or() &0 T
_ [ A (Rb(n + 7(n). k), L= (38)
0 else
wherei(-, -) denote the derivative df(-, -) with respect to the first variable.
Plugging (38) into the expression in (37) yields:
9 K
_ T, T
o (l)cp(T, 2) = (A [l,:] AN 21 — (1 ; Az (R)b(L + 7(1), k). (39)

To obtainV2°®, we take derivative with respect tqn). Noticing that the dependence 97{9(7)(1) on T is only via
7(1), we obtain:

& (DA mb+ 70 Y+
ororm ") = +<A7U~1A$Z1—22<>>Zk (AL BB+ 70, ), L=
0 else

whereb(-, -) denotes the second-order partial derivative with respect to the fistreent inb(-, -).

To computeV!'®(7, 2), we need to take derivative of (39) with respect to each element ¥fe perform this by
distinguishing the among elementsznandz, respectively.

Noting thataz @) [Agzl}(k:) = Ag[k, n|, we obtain:

m@(ﬂ Z) = Aq—[l, .]AO[., n] ;(Aozl)(k)b(l + T(l), k) +
K
+ (Al ATz — 20(0) D Ak, n)b(1 + 7(1), k). (40)



P gy = { S A+ @), 1=
or(Dd25(n) 0 olse
We assume that at the point of evaluatiénz), the samples of the warpe¢] approximates the observaties, more
specifically:
A ANz ~ 7.

This is a reasonable assumptlon for most registration results. For simplicityen@ec = A(T)zl, D(i,j) 2 b(i +
7(4),7), and the warping map) = AfAT, then we can rewrite in matrix form:
V*®(7,z) = diag®’{De}
v'e(7,z) = [ diag{De}W —diag{De} ]. (41)
Plugging (41) and (36) into the expression €@v{7} in (35), we obtain:
Cov{#} |s—s ~ diag{ De} ' [?WWT + 021 diag{ De} . (42)

Remark: aso? — 0, z; approaches the noise-free observation of a template irfiaged the conventional method
should yield the same estimate as the more realistic model. In fact,

Cove,—0{7} = o3 diag?{ De},
which agrees with our previous analyis 16 B(7) — J-1 for asz; asymptotically becomes noise-free in (24).

It makes sense to compare the covariance predlctlon for the M-estimateaafribentional method and the Cram
Rao Bound obtained from the more realistic model from (2). For simplicity, sgeiae thatd, to be invertible so that
Aj' = Al and consequently the warping mip = A, A5 is invertible.

To studyC' RB(7), we plugJ; ¢, Je,c from (24) and obtain:

CRB(1) = [Jor—Jredopder]
= {? diag”{Dc} > diag{Dc} AT[;AO A + ?AT At —2 T diag{ Dc} }
2 2 1 2 2
_ 1 1 1 a1, _
= o3diag{Dc} " {I - ?AT[FAOTAOJr ?AZAT]—lAZ} diag{Dc} . (43)
2 1 2

With theW = A, A;', A, = WA, and we can write:
1 1 1 1
AT A + SATA = S AT A+ S ATWIWA,.
O'% 0 0+O’% T O'% 0 0"‘0_% (]WWO

The middle part of (43) can be rewritten as:

{r- %AT[%AOTAO s ATA ALY
= {I-53A ATAO + ot ATWTW A, *1AT}_1
— {1 — 024, A 03T + oW W) A T ATV
= {I-oiW I+01WTW ST (44)

By Woodbury-Sherman-Morissey |dent|ty.
1
(03] + (W) W = —I — — W + 1WWT] W,
3 73 )
thusoo {1 — L A, [ AT Ag + L AT AT ATY T = 621 + s 2WWT.
92 g1 93
Substituting into (43), we obtain:

CRB(r) = diag{Dc}(o31 + o?WWT) diag{ Dc} . (45)
This result coincides with the covariance estimate for the M-estimate evalugt®da in (42).
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VI. ABABY EXAMPLE

This section uses a simple example to illustrate the results from previous sextsbatso motivate discussion about
performance comparison. In particular, it is expected that the propuseé! in (4) has advantage over the traditional
model in (3) as the estimation ferwhich parameterizes the underlying image intensity should be more reliable as it
combines the information from both the source and the target observaionsider the model

z I €
[2]-[4] L]

where we assume both andz, are vectors of the same size as the underlying (unknawhe scaling parameter
« which relatesz; and z; in the noise-free case is the quantity of interest~ A (0,0%1) andex ~ N(0,031) are
independent Gaussian additive noise.

.1 M-estimator for the Conventional Method
In the conventionally method, the paramatas estimated solely from observatien:

é(z) = argmin ||z — ¢||3 = 2. (47)
Cc

Sincez; ~ N (e, 031), é is an unbiased estimator ferwith covariancer? 1.
The objective function that minimizes is

A
®(a,2) = el —Izll; = |22 — azl;- (48)

a(z) = argmin®(q, 2)
[e%
= argminHzQ—aéHg
o

— argmin |22 — az |3
[e%

ZlTZQ

- . (49)

2
121l

Hereafter, we discuss two approaches in approximating the mean andceaok’: a direct method based on the
explicit solution in (49); and an indirect approach that relies on implicit fiemctheorem and M-estimate. The explicit
method is straightforward, requires less manipulation, and should benad@lg@accurate. On the other hand, explicit
solutions are not available in general (as we will see for the ML estimatthesimplicit method is more universally
applicable. In this study, the direct method serves as a good baselireneddor approximation performance, and the
derivation based on indirect approach is of didactic value.

.2 Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariance based on the explicit solution in (49).
The expected value @ from (49) is given by:

E[@]:E{(CJrﬁl) (ac +€2)}

(c+e)T(e+e)
wheree; ~ N (0,021) andes ~ N(0,031). We compute the above expression using conditional expectation:
Eld] = Eq{Esld]ler}

o (c+e)le
= akq {(a+q)T(a+q)}' (50)
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where the second line follows from the independence betwgandes.

Let ¢; denote theth element ofe ande; denote theth element ok;. Thenc; are constants ang are scalar i.i.d
Gaussian variables ~ N(0, o3).

We can rewrite (50) as:

Eld]/a=E { %?:11((212)){; } . (51)

Define functionf : R" — R via f(x) = ;‘TT; We perform second-order Taylor expansionfoéround the point
x = ¢ and then take expectation with respectcte- ¢ + ¢;:

Elél/a = Elf(@)+ 5@~ &) Vif(e)(w o)
= 14 Bl@ - 9" Vi@ ¢
= 14 B VEf(@e) 2)

Now we focus on the ternir[¢] V2 f,(¢)e1] whose sign determines the bias. The gradiégtf and the Hessian
V2 f of f are derived as follows:
Vaof = |zl3%e" =2 x|, (" e)z".

Theith element oV f is
Vo fli = l2llz? e - 2||2]5* (2" &),

Taking derivative with respect to; yields:

0

g Vel = 2ol eiry — 2 { ol o enia; + 2l (e + o7 edli 5]}

whered is the kronecker impulse function defined as

M:{ 1 a=0;

0 otherwise
The equivalent matrix representation of the Hessian is given by:
Vaf =8llz],’ 2" cxa” 2 |zll,* (we” + ea”) — 2(a"e) =], 1. (53)

Evaluating the Hessian atand noting that the i.i.d structure of the noisenade the computation df[e; V2 f(¢)e1] =
o trace{ V2f(¢)} depend only on the diagonal elements of the Hessian, we obtain:

n

[VZf@i=2ely* 2 = > ).

j=1
Subsequently:
E[efVif(@a]l = o Y [Vaf(@
=1
= 201 [lel;* (2 —n), (54)
which is negative for alh > 2.
Subsequently,
Eld]/a =1~ (n—2)of |le];”. (55)

As (54) describes the difference betweg[iv/a] and unity, this indicates that for > 2, & is an estimate ofi that
biases towards smaller magnitude.
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Similarly, we computé/ar{a} via E[4?] — E[&]2. The correlation reads:

. { e+ e (ae+ ) (ae+ )T (e + ) } |

_ 1
le+ el

As before, we first use conditional expectation to separate out thetaimte in e via:

(¢ +e1)T(aee! + o3I)(e+ 1) } '

E|6®| = E,E.,[6%|e] = E - -
lc+ ey

Define a deterministic symmetric matriX 2 (a%eel + 021) and a functionf (x) = % and we aim to find
Zll2
E[f(z)] for z = & + ¢;. We expand the functiofi(x) aroundz = ¢ and approximaté’[4?] via:

. ¢'He 1 _ _ _
Bl&’] ~ —— + 5 Bl(@ -8 Vif(e)(z - o)
€l
c'He 1
= S S EE V2@l (56)
lelly
The deterministic ternf (¢) simplifies to:
_THc o2
fle) = a? +

2 .
ells e cllz

Sincee; is componentwise independerfit|a?] only depends on the diagonal elementdf f (&), which we derive

as follows.
Vef(x) = —4 x|, a¥ (e He) + 2 |||, * =7 H.

Theith element o, f (x) reads—4 || x|, ® z;(«” Hx)+2 || x|, * 7 H(:,7)., whereH (:, i) indicates theth column
of H. We may explicitly writex” H(:, i) = 25T [a2c;c; + 030]i — j]]. The second-order derivative is given by:

0? _ _ .
Wf(a:) = —4Ha:H26[mTHa:+2xinH( i) +24 |||, 1'2.’13TH.’13+2H:BH2 (azcg—i—ag)—SHa:HZGxia:TH(:,Z).
, (57)
To evaluate”; f(z) atx = &, we use the following relations:

e"H(:,i) = ci(a® ||e]3 + 03);

P — —112 /= —112

' He = |e|3 (6* el + o3).
Substituting these relations into the expression (57%[;‘(@, we obtain:

62 ~1|—6 — ~12 ~11—4 /= =112 ~11—4 /=
572 @)la=e = 8lel ™" ¢i(a” |le]l; + o3) — 4llel ™" (@ [lell; + o3) + 2|l ™" (@%c] + o3).

By the independence of the elementg inwe obtain:

E[e{vif(é)el] = Z Oz 2f
= HCH’ (10 — 4n)a’of + ||e]|~* (8 — 2n)aio3. (58)
Substituting this quantity into (56) provides:

E[6%] = a® + ||el| 7 o3 + €] 7 (5 — 2n)a’o + ||e] T (4 — n)aios.
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Together with the estimation fdr[¢] obtained in (55), this equation yields an approximationar{a} as:
Var{a} = E[&%] — E[a)?
@’ +lef o3 + [|el| 7% (5 — 2n)a’ot + ||e] " (4 — n)ofol — (1+ €| 7* (2 — n)o?)*a®

= el (@%F + 03) — |||~ ail(n — 4)03 — (n — 2)*a%07]. (59)

Expressions (55) and (59) reveal some interesting structure. Fer éargughn (in fact forn > 6), the variance
estimate(59) becomes upper-bounded | 2 (a%0? + 02), which we will show later is the Craér-Rao Bound for
the statistical model. This implies that it cannot be unbiased. In fact, the bimsitpumeasured b2 — n) ||| 2 o?a

also increases accordingly.

3 &
o X 10 2 10
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Fig. 1. Bias and variance approximation obtained from eiimution for conventional M-estimate.

Alternatively, we can follow [6], use implicit function theorem and Tayloparsion to approximate the bias and
variance ofx as the minimizer of (48). The data poihtt which to perform Taylor expansion about is mainly a choice
of convenience rather than considerations of asymptotic behavior. &uneshchoice of the expansion point would be
the noiseless data. Letdenote the noiseless observation @rehda denote the true parameter values, withnd ¢
denoting the resulting estimation in (47) and (49) wkes observed. Thes = [¢; a¢l, and

- —a. (60)
el
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As the minimizer for (48)¢ satisfies:

9 (a2 |oma = 227 [ !

0][@] -I]z=0 V=

Taking derivative with respect te and invoking the chain rule, we obtain:

0% 0 o
902 92"t dapz” ="
where 52
o7 - 2 1|1 0
szt =2lali=2" | { 0= 1)
and 52
oLT al -1 al 0 _our | 220 1
dadz "’ = 2 {[0 o}j{—l 0]}_2z [—I 0 ] (62)
Therefore, , ,
g.,.. 0 _ 4 0 B o 7| 2af —I
Evaluating (63) at = z, we obtain an estimate of covarianCev{a} ata = &z as
. g 0 7,
Cov{a(z)} =~ a—za(z)Cov{z}a—zoz (2)
1 o o2l -1 [ al |._
= ——¢ [ al —I}[l 2]_—[ ]c
lells ol el L =1
=2 2 2
_ @ 0'1—|-0'2. (64)

lells
This quantity (64) coincides with the Cr@&mRao Bound obtained from the statistical model as we will show later.

To estimate the bias fat, we present the first and second-order Taylor expansiofrfar as:

EW[a] = E[h(2)]
~ E{h(2)+ Vih(2)(z — 2)}
= hZ)+E{V:h(2)(z-2)}. (65)

E®a]

Q

E {h(z) + V.h(2)(z — 2) + %(z —2)IV2h(2)(z - z)}
= h(2)+E{V.hZ)(z - 2)} + %E {(z—2)"Vinz2)(z - 2)}. (66)

Notice that wherz is chosen to bg, z—z is zero mean Gaussian. It follows that the first order té&rgV .1 (2)(z — 2)} =
0 in (65) and (66). Therefore, the first order Taylor approximation ygeld

EW[a] = h(z) = h(2) = a, (67)

corresponding to zero bias.
The second-order approximation (66) requires compuigg (2), which can be be obtained up to second order [6]
via:

v2h—[—8—2¢>]‘1 O v nTy h+ U h+ V. h" > o+ 2w (68)
= Pa? A = 0020z * =7 0020z da % |
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Terms involved in the above expression are computed as follows:

83

Taking derivative of (61) with respect toyields

ok r[I 0 T

Taking derivative of (62) with respect toyields

03 200 —1
8a8z2q> =2 [ ] '

—-I 0
Evaluating atz z and substituting into (68) yields:
-2 e Y —
V2h(z) = { c aé’ —éT]+2[O“f][éT o]+2[20‘f OI]}. (69)
2 ||c||2 lelfs leflz L —¢€ -
Sincez — z ~ N(0, OI OI , the second-order term in (66) only involves the diagonal element&af z).

We extract the corresponding blocks from (69) as:

82 h(z) 1 { + 4a }
7 — ac Q
0z1(i)? 2lellz | liells

0? _
o (Z,)zh(z) =0
Thus
T2 > 2 62 >
E{(z—2)"V2h(z)(z - 2)} Z o? 821(i)2h(z)
2
?2 (2a — 2an)
lell
J2
= 2(1-n)a—L. (70)
lell
It follows that the second-order estimation #®fa] is
02 2
E®a) = EWa] + E{ 2)I'Vin(z )(z—z)}:@+(1—n)”_‘1|2 1+(1—n)H T a  (71)
Cll2 2

Forn > 1 and reasonable signal-to-noise rati$f?) [4] implies shrinkage in magnitude, which WLOG, we refer to as
“negative bias” hereafter.

Notice that the choice of = z is mainly due to computation convenience (so that z is zero mean Gaussian). It

is feasible to perform the same routine for different data pgi8, 9] proved that under certain regular conditions, the
M-estimate is asymptotically normal with mearwhere

E[%@(d, 2] = 0.
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Fig. 2. Bias and variance approximation for M-estimate olgtdifiom expansion aboy&;, z).

Under reasonable regularity conditions, we can exchange the ordgpettation and differentiation, and take

o
S~ E[®(a, )] = 0.

Note thata can be interpreted as a local minima for an “average” cost fundii@n(«, z)], i.e.,
& = arg min F[®(a, 2)].
«

The expectation of the objective function with respect to the distribution obliservation noise
_ 2

. B Cc+ €
E[®(a,2)] = E[H [ —al I ] [ GE4 } ]

2

= B[ +d QET“H[_?IM_O‘] I][ac;:fl?]}

= (a—a)|lel; +n(a®o? + 03)
= (lellz +not)a® —2a |y a + a” e
is convex quadratic iv and the minimizer reads
& = argmin F[V(a, z)]
[e%
—~112
el

—n
lellz + na%

16

(72)

(73)

(74)
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2
For simplicity, let3 , thena = %d. Sincel > 1, the expansion point is a shrinkage with respect to the
true scalex.
We can construct an expansion po
requirement (72).

Evaluating (63) atc, 2) results in:

~

t= [f¢; ac]. Then the minimizer ofb(2) = %07 = &, which satisfies the

0 _ 2al I
sea® = —lals" | 2
! [ 2ar -r
TG
=T
= gl T ] (79

The approximated covariance @fevaluated at the poirfty, 2) is given by:

a . g .
ga(z) Cov{z} Ea(z)

2 26-1 -
o 4 =|1—4 -T 28—1 ~ . 0'1[ 0 TCVI _
= [B77|cll;" ¢ 5ol BI} [ 0 O'%I:| [ c

= Jlell* 8742

Cov{a} |z:2,d:d

1
— 2)2a%ol + f%03). (76)

6

We know from previous analysis that the M-estimate is asymptotically unbiasets, variance is to be bounded be-
low by Craner-Rao Bound asymptotically. Therefore, it is curious to find whetheethrists a consistent relationship
between the pre-asymptotic variance in (76) and the @raRao Boundi.e,,

- §ratot + 82 2 el (a0t + )7 77)
The quantity on the right-hand-side is the C&rRao Bound obtained from the statistical generative model (to be
shown later).
Claim1: The covariance of the M-estimator is bound#zbveby the Cranér-Rao Bound . Moreover, it asymptoti-
cally approaches the CramRao Bound as; — 0.
Proof: To compare the left and right hand sides in (77), it suffices determinegheftheir difference:

lelly? 874 ((2

RHS— LHS = |l&||; > 87 2(8° — 462 + 48 — 1)a%o? + (8* — 1)03

For simplicity, we drop the positive quantili},zf:”;2 in later analysis as it does not affect the sign. UeE a’o?,
B = og, and we want to determine the sign for:

m(A,B;B) = B(B° =48> + 43 - 1)A+ (B* - 1)B.
The polynomial(3® — 4% + 43 — 1) factors into
B0 =432 + 46— 1= (B-1)(8° + 5~ 1)(8° + 26 - 1).

By construction3 > 1, thus(8° — 432 4+ 43 — 1) > 0, sor is linear in A, B with positive coefficients. Meanwhile,
A,B are both positive, sa(A, B; 3) > 0. This result translates into the claim that in nondegenerative easg (),
the variance of the M-estimate is bounded above by the €rdao Bound . It is easy to check that whegn= 0, the
variance equals the Cr@nRao Bound . |
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Now we approximate”[&| with (65) and (66) by expanding corresponding terms alfoug).
The first order coefficient/ .4 is obtained in (75), and the corresponding first-order approximatiothéomean is:

EW[a] = h(2)+EV.h(2)(z - 2)
- el o[£ )
- 5+ e ﬁcHSET(% ~1)(8-1e
_ %[1 L2 1;2(5 b
_ o, 7%)

Sincep > 1, (6—1)3 = g2 —3p8%2+33—1 = > — (33> —36+1) > 0. Consequentlm < 1. Equivalently,

E[a] < 1, indicating a shrinkage in magnitude, which agrees qualitatively with the resoitexact solution.

Expressmn in (78) can be rewritten as:

) 362 -36+1_
Ela] R @
B-1)%
= [1- ( 53 ) |a. (79)
Denote the signal-to-noise ratio i#n ass 2 % and
1
[&] 1

1—— 7.
a (s+1)3
To approximate the bias with second-order Taylor expansion, we uyai@&valuate aa /3, z =).

2 /v 1 ge 2611 ] 1 %ac T
V() = g |r2{ ﬁ?Héu%[ H yraet g | ﬂ?HaH%[ e L

281 I
B
+ [ 0 ] }.
To compute(z — 2)TV2h(2)(z — 2) in (66), it suffices to use only the diagonal blocks\W}h(2), because the

€+ e — e }: { (1-pB)e+e

ac+ ey — Qc €92

components ot —z = [ } are independent. Partiticn- z into the deterministic

1 and random pan so thaty) = (1 _Oﬁ)é ] andn = [ il } Then the quadratic term in the second-order Taylor
2

expansion in (66) can be written as:
Bl +n)"VIhE) (W +n)] = 0T VIR(2)$ + Eln" Vih(2)1)],

where expectation of cross terms betweeandr are dropped since is zero-mean.
The diagonal portion o¥2h(2) reads:

9, sy 2 1 B(26 — 1)ace” }_{gl ]
Vah(3) = e {62 ché[ 0 0lf ¢
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It follows that

Sz — 201 { (B-1)lels . ue@a}

(B 52 |lelly p
2(8—1)? (268 -1
_ W@y,
_1)3
(RN e
To21 5\, _ 2 5(25—1)0%”5”;__ not _
TYHE = G { Fle; A"
207 _
= 26—-1) — . 82
Summing (81) and (82) yields:
El(z — 2 92n(z)(z - 5] = 20V 290 105 1) nga. ©3)
p 30 llell;
Combining (83) with the first order estimation 8fa], we obtain the second order approximation fg¢y] as
E®a = hE)+E {Vzh(é)(z —2)+ %(z —2)IVinz)(z - 2)}

= BWa] + 2E[( 2)"Vih(z)(z - 2)]

B —(B-1)° (6—1)3}_ 2-n)B—1 of _
= + a+ @
{ EE EE o el
pr-B-1' (2-npB-1 g7 _
a+ —— @ (84)
pt p° lelfs
Recall thats = H””l so for reasonable SNQL ~ 1 — n. Using thes = Uw”%, we can rewriteF(?)[4]
1
approximately as: ’
R 1 (1-— n)s3 _
E@al =01 -
& =1 (s+1)4 + n(l+ 3)4] (85)
Notice that when SNR is high (larg®, then
. 1 (1-mn)s3 _
E2) - 1=
4] [ (s+1)* + n(1+ 3)4]a
1-n . _
1 n(l+ s)]a
1—n no? _
= [1- ——! Sla
n el + noy
~ [1+(1- n)a—%]d (86)
lell5 +not™

which closely resembles the result (71) obtained from expanding ab@élass dat&. In fact, for high enough SNR,
=112
lelztnos ”°”2 so that (86) and (71) are approximately equal. This relation is expeatdor, small SNRz ~ z and

0.2

& =~ a, the small error analysis is essentially performed on the same neighbdrhood
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Fig. 3. Bias and variance approximation of M-estimate obthfnem expansion aboy, 2).

.3 ML Estimator for the Statistical Model
The maximum likelihood estimator from (23) aims to jointly estima@ndq via:

. 1 1
&, €] = argmin — [|z1 — |3 + — ||z2 — ac]f3. (87)
ac 07 5

Note that conditioned on, (87) is quadratic ire with the solution¢(«, z) given by:

—1
. I T U—I%I 0 I ool UL%I 0
¢ = ol 0 LI al [O‘]OLZIZ
) 03
1 a? 1 a?
= (U—%+O_—%) (U—%Zl+a—§z2)
1
= m(agzq -+ 040'%22). (88)

Remark:

« In the limiting case whemr; — 0 (with non-vanishingrs), z; is a noise-free observation @f it is natural to
estimatec solely onz; as (88) reduces to

lim é= 21,
o1—0
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which coincides with (47) in the conventional method. On the other handeasoike level iz, becomes small
relative to that inz; (o2 — 0 with non-vanishingr;), the estimate reduces to:

lim é= z/a,

o2—0

which corresponds to the case of estimatirgplely from z,.
More precisely,

limé =2 asoi/oy — 0;

limé = z9/a asoy /o9 — 0. (89)

« Itis easy to check the estimator in (88) is unbiased with variance

2 _2 2
o0 o
N 192 _ 1
Var{¢} = 51 = 1.
oy + 05 1+ a22

1

o3

It immediately follows that this quantity is upper-bounded by the covariaxfdeof the estimator fore (47)
resulting from conventional methods.

Now we can plug in the expression &in (88) and (87) reduces to a minimization problem oxemly:

& = argminV¥(q, z)
o
2 2
1 1 9 9 1 o 9 9
= argmin — (|21 — ———5—50521 + oz + = ||z2 — ————= (0521 + aojz
e o? ! aQJ%—i-a%(Ql 12)2 o3 2 0420%—1-03(21 12)2
. 2
= argmin ——-—— |laz] — 2 90
smin 3y o — = (90)

This function¥ is nonlinear ina.. Note that¥ > 0. In the case of noise-free observatigon= z, & achieves the zero
value and is the global minimizer (we will justify this more precisely later). Themefwe can utilize the techniques
for M-estimate as before, and analyze the behaviar of the neighborhood/(z) = a.

Let & be the minimizer of the functio® («, z), then it is true that

0 0 1
2‘;[/(04 z) = ;(azl — 2)T[221(0®0% + 03) — 200} (az; — 29)]
da 7 (a?0? 4 03)?
2 T ol 2 2
= (0207 + 032 +0_§)2z [ 7 } [ 03] aof |z (91)

2 2 2
LetQ 2 [ ol } [ 03] o} | = [ aa%l @ 0121 },then the derivative ofZ- I with respect toz is given by:
i vo= #ZT(Q +Q")
0adz (20} + 03)2

B 2 T 20031 (a?0} — o)1

(2o} + a§)2z [ (@®0? —03)I  —2a03l (92)
Evaluating (92) at = z anda = a yields:

2
2
? U(@,2) = —5—5——e [al —I] (93)

0adz

=2 2 2
a0y + 03
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Now we compute the derivative (%\1; with respect tax and evaluate at the minimizér= a with z = z:

0? 0 { (az1 — 20)T (0321 + ao?zo) }

Yy = 922
da? Ja (a20? 4 03)?

(94)

1

9 9 2040% ( )T( 9 9 )
= 22— = _(az; — 2 0521+ aotz) + ————s—
( 2 ! 2 2« 142 (a20%+a%)2

T, 2 2 __N\T .2
0520'% +o2)P [21 (0521 + aoiza) + (az1 — 22)" 0] 22]}

This is a convenient form to be evaluateckat z, and we obtain:

0?2 _ 2 19
92 (2) = P02 1 o2 lell; - (95)

To prepare for future use, we simplify the general form of (95) into:

9? 2
a2y = (0202 1 02)p {(—30420? +03)03 ||21][5 + 2(303 — @®0®)aotz{ 22 + (3a’aT — 03)at ||Z2H§}
1 2
2 T (=3a20? +032)o3] (303 — a’0?)ac?l (96)
(a20? + 02)3 (303 — a?0?)acil  (3a20} — 03)o?1
Estimating;Z « yields:
0 0? 0?
Fo0lza = —5 VT oW
8za| ’ da? dadz
1
= ———¢é'[al -I]. (97)
lell2
The covariance evaluated @t, z) is
Cov{d}|(za) = %a(i) Cov{z} aiza(i)
2 —
_ _n—4 -T _ o 01[ 0 a.[ —
= |ely;"e' | al I][O agl}[—l}c
= lely® (@%0f + 03) (98)

.4 Lower Bound for Covariance From Cr&mRao Bound

The negative log-likelihood is given as the objective function in (87). Htiaight-forward to compute the sub-
matrices for the Fisher-Information Matrix.

1
A =—-—(ac— z9) 7

C;
da o5

resulting in

9? -1
= —acT.

Bloazd= 52

The Fisher-information matrix (FIM) is thus given by:

1 [ e ac’
FIM = — 7y |

03
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Invoking block-matrix inversion, we obtain:
2
Cov{a} > o?[cTe—acl(a®+ 2 )1040]
1

= |lell3* (a0} + 03). (99)

Since the ML estimator is known to be asymptotically unbiased, the coincideheedie(98) and (99) justifies the
well-known fact that the ML estimator is asymptotically efficient (thus is asymg@tihgia uniformly minimal variance
and unbiased estimator (UMVUE)).

.5 Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the ML estimator, it is offegreat interest to analyze
the bias and variance before the the estimator enters the asymptotic zoeaftétemwe focus on deriving analytical
approximation for the bias of the ML estimator. As in the covariance analysisqursly, we assume the estimate is over
continuous parameteris and is computed by “completely” maximizing the objective function (likelihood in thiseg
without “stopping rules” that terminates the iterations before the maximum ifiedad/Ne derive the approximation
using implicit function theorem, the Taylor expansion (with different oraérspproximation accuracy), and the chain
rule.

The objective functior in (90) implicitly defines the M-estimat# as a function ok. Yet the absence of an explicit
analytical expression of the ford = h(z) (as the one in (49)) makes it difficult to study the meamafirectly. As
in the previous section, we apply Taylor expansion, chain rules and impligitibn theorem to estimate the bias with
the first and second order approximation given by:

Ela] = h(2)+ E{V:h(2)(z—2)}. (100)
o . . . 1 NT 27 7~ .
Elé)~h(2)+ E {Vzh(z)(z —2)+ §(Z —2)"Vih(2)(z — z)} . (101)

We now determine the point of expansiérand the approximation for first (linear) and second order (Hessian)
coefficientsV .k, V2h. To obtain the best choice far

& = arg moin E[¥(a, z)], (102)

wherea andz in the Taylor expansions are related dy= h(2), we compute&[¥(a, z)] as follows:

_ 2
ElV(a,z)] = oﬂol EoT 1 o3 ZE az (i) — z2(7))"
For each index,

E[(az1(z) — zg(i))Z] = E[oz221 (2)2 —2az1 (1) z2(2) + zg(i)Q]
= (12(6? + U%) — 20[07612 + a%? + ag
= (a? —2aa + a?)é + (@®of + 03), (103)

whereg¢; anda are the underlying “true” parameter values.

Substituting (103) yields:
1

E¥(a,z)] = m

(a—a)*|e|3 + n. (104)
Even thoughZ[¥(«, z)] is nonlinear iy, its global minimizer is immediately observedas- a, becaus& [V (a, z)] =

n achieves the lower bound f@[¥(«, z)] as a function ofv. Thus we have found the proper point to expand around
a = Q.
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Note that when noise free data is obsenias, z = z, the minimizera in (90) is obtained as:

A(2) in——— a1 — 23
a(z) = argmin ——— |laz; — 2
s a?0? 4+ 03 ! 2112
. _ 2
= argmin o€ — ac
g 0520%+U% | 12
— a2 el
= argmin%_ (105)

a  a?0?+ 03

Note this function is nonnegative, its global minimizer is obtained at @, i.e.,, h(2) = @ = &. This indicates that
%2 = Zz is the proper choice to expardaround, without requiring to know the precise valuexof
In this case, the bias analysis with first-order Taylor expansion as in) (8Gmple by noting thatz — z) ~

2
N(0, [ o1l }), so that

J%I
Ela] = Wz)+E{V:h(z)(z - 2)}
- a (106)

This states that the estimator is unbiased if we approximate its first moment up tydigs dependence on the data.

The first order expansion is usually sufficient in practice and hasd&densively used. However, there are situations
where (100) may be inadequate. We next derive a mean approximatied baghe second-order Taylor expansion
(101) which is expected to be more accurate, but also computationally mansiirge

The first two (th and1st order) terms in (101) are (100), so it suffices to study the HeS&fan

For scalar, we follow the simplified expression in [6] to obtain the Hessian @f) as:

2 82 -1 83 T 83 T T 83 0 2
Vel =gV g0 VY VT Gz U VR TV g e VY A9

Some of the key gradients are already availaBilgh is given in (97) as well a%\lf in (95) (before evaluation)
and%gzklf in (92). We still need to comput%\lf(d, z), %Gzlll(@, Z) and%Vﬁ\If.
Evaluating (95) ata, z) yields:

12
2 ez - _2lels
Oa? ’ a2o? + 03’
Taking derivative of (96) with respect toyields:
3 B 4 T (=3a202 +02)o3] (303 — a?0?)ao?l (108)
0020z~ (a20? + 03)3 (302 — a?0?)ao?l  (3a20? — 02)oil

Evaluating (108) ata, z) yields:

03 4
— V(a,z)= —————@&! 3 —atoMI 2ac?(ao? + o02)I 109
80(262 (O[, (0_420'% + 0_3)3 [ (02 « Ul) aal (O[ 01 02) ] ( )
Taking derivative of (95) with respect toyields:
o —120“7% T, 2 2 2 2. T/ 2 2
W — mzl (0221+a0122)+m[—4&0121 (0221+040122)+...
+2a022] (0321 + ao?z) + 2(a?0} + 03)otz] 2. (110)

Evaluating (110) at (110) dtv, z) yields:

03 _ —12a0? €|

—U(, z) = .
0o (@ 2) (a%0? + 03) (111)
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The term%viw is obtained by taking derivative %%\If in (92) with respect te: as:

ivixp = 2(

1 20021 (a®0? —02)I
Oa

b e
a?o? + 05) [ (ao? —03)I —2a03l (112)
Evaluating atx yields:

0 20 (a) — 1 9 2a031 (@%0? —02)I

%v (@)= 2(&20% + a%) [ (ao? — o3)I —2a0?1 : (113)

Substituting the expressions of all components into the right-hand-sid@of yields:

=2 2 2 —12a 2 =~
V2h(z) = _a 01_+202{ — a;; [a—IT}CCT[O—J I+
2|ell; (a0 +03)?[lell; L —

4 4 =44
- 2[ (o5 — & or)] ]EET[OJ I ]+...
(@202 + o2)3 ||e||? | 2007 (@07 + 03)]

4 [ al

(@20 +03)% el L —1
1 ~ 2 2 2 2

+2(—— 2)2 B 220402-’2 (a o1° ;72)—7 1.
a’o? + 03 (ao; —o03)1 —2ac07l

] ec’ [ (o5 —ato)] 2ac}(a’ol+o0d)I | +...
(114)

The second order term in (101) depends on the Hes8& z) via (z — z)T V2h(2)(z — 2) sincez = z, where
z — z are exactly the noise component A/ (0, [ oil 027 } ). Because the elements«éire mutually independent,
2

E{(z - 2)"V2h(z)(z — z) } only depends on the diagonal elements of the HesS8tHN(z).
When a component is located in the portion of z, the noise componenti) ~ N (0,0%), and taking the corre-
sponding element in the Hessian, we obtain:

2 _19A342,.2 = 4.4y 2
Lh(i):— 1 {( 12a°07c; 8a(oy — atal)cs —1—40703}. (115)

021(i)? 2lell5 | (@202 + o) [lell;  (a20? + 03)? |ell3
Similarly,
0? _ 1 —12a0ic? 16a02c? ~
5 (_)Qh(z) =—— { 5 — 121 — — a0l b . (116)
z2(1 2|ell; | (@%0f +03) ||cH2 (@%of + 03) [|ell3

Combining the above to obtain:

Ele TV2 N Z 821 )+ o3 Z (922

1 {—120430% 804(02—&40‘11)01 1 —12ac0i03 16ac?os
( (

2(ell} L(@20f +03) (@207 +03)* [ 2l (@%0F +03) * (a%0] +03)
=~ 2

1 (117)
lell?

The second order approximation of the estimator yields:

2

which indicates a bias toward positive magnitude. Comparlng with the bias anfaythe conventional M-estimate,
the bias of the ML estimate is independent of the data lengthhich indicates that even though both estimators are
asymptotically unbiased, they approach the asymptotic region with diffexn{noughlyl : n).

Ela ]/a—1+
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Fig. 4. Bias and variance approximation of ML-estimate oladiffom expansion abo(é, ).
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