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Abstract

One formulation of the anomaly detection problem is to build a detector based
on a training sample consisting only on nominal data. The standard approach to this
problem has been to declare anomalies where the nominal density is low, which reduces
the problem to density level set estimation. This approach is inductive in the sense
that the detector is constructed before any test data are observed. In this paper, we
consider the transductive setting where the unlabeled and possibly contaminated test
sample is also available at learning time. We argue that anomaly detection in this
transductive setting is naturally solved by a general reduction to a binary classification
problem. In particular, an anomaly detector with a desired false positive rate can be
achieved through a reduction to Neyman-Pearson classification. Unlike the inductive
approach, the transductive approach yields detectors that are optimal (e.g., statisti-
cally consistent) regardless of the distribution on anomalies. Therefore, in anomaly
detection, unlabeled data can have a substantial impact on the theoretical properties
of the decision rule.

1 Introduction

Several recent works in the machine learning literature have addressed the issue of anomaly
detection. The basic task is to build a decision rule that distinguishes nominal from anoma-
lous patterns. The learner is given a random sample x1, . . . , xm ∈ X of nominal patterns,
obtained, for example, from a controlled experiment or an expert. Labeled training anoma-
lies, however, are not available. The standard approach has been to estimate a level set of
the nominal density [1, 2, 3, 4, 5], and to declare test points outside the estimated level set to
be anomalies. We refer to this approach as inductive anomaly detection, since the decision
rule is constructed before test data are observed.

In this paper we develop a transductive approach to anomaly detection, and argue that it
offers substantial advantages over the inductive approach. In particular, we assume that in
addition to the nominal data, we also have access to an unlabeled test sample xm+1, . . . , xm+n

consisting potentially of both nominal and anomalous data. We assume that each xi, i =
m + 1, . . . , m + n is paired with an unobserved label yi ∈ {0, 1} indicating its status as
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nominal (yi = 0) or anomalous (yi = 1), and that (xm+1, ym+1), . . . , (xn, yn) are realizations
of the random pair (X,Y ) with joint distribution PXY . The marginal distribution of an
unlabeled pattern X is the contamination model

X ∼ PX = (1− π)P0 + πP1,

where Py, y = 0, 1, is the conditional distribution of X|Y = y, and π = PXY (Y = 1) is the
a priori probability of an anomaly. Similarly, we assume x1, . . . , xm are realizations of P0.
We assume nothing about PX , P0, P1, or π, although in Section 6 we do impose a natural
“resolvability” condition on P1. Our specific objective is to build a decision rule with a small
false negative rate subject to a fixed constraint α on the false positive rate.

Our basic contribution is to develop a general solution to the transductive anomaly
detection (TAD) problem by reducing it to Neyman-Pearson (NP) classification, which is
the problem of binary classification subject to a user-specified constraint on the false positive
rate. In particular, we argue that TAD can be addressed by applying a NP classification
algorithm, treating the nominal and unlabeled samples as the two classes. We argue that our
approach can effectively adapt to any anomaly distribution P1, in contrast to the inductive
approach which is only optimal when anomalies happen to be uniformly distributed, as
discussed below. Our learning reduction allows us to import existing statistical performance
guarantees for Neyman-Pearson classification [6, 7] and thereby deduce generalization error
bounds, consistency, and rates of convergence for TAD.

We also discuss estimation of π and the special case of π = 0, which is not treated
in our initial analysis. We present a hybrid approach (blending inductive and transductive
ideas) that automatically reverts to the inductive approach when π = 0, while preserving the
benefits of the NP reduction when π > 0. In addition, we discuss distribution-free one-sided
confidence intervals for π, consistent estimation of π, and testing for π = 0, which amounts
to a general version of the two-sample problem in statistics.

The paper is structured as follows. After reviewing related work in the next section, we
present the general learning reduction to NP classification in Section 3, and apply this reduc-
tion in Section 4 to deduce statistical performance guarantees for TAD. Section 5 presents
our hybrid inductive/transductive approach, while Section 6 applies learning-theoretic prin-
ciples to inference about π. Conclusions and future work are discussed in Section 7, and
some of the longer proofs are gathered in Section 8.

2 Related work

Inductive anomaly detection: Described in the introduction, this problem is also known
as one-class classification [1] or learning for only positive (or only negative) examples. The
standard approach has been to assume that anomalies are outliers with respect to the nominal
distribution, and to build an anomaly detector by estimating a level set of the nominal
density [2, 3, 4, 5]. As we discuss below, density level set estimation implicitly assumes
that anomalies are uniformly distributed. Therefore these methods can perform arbitrarily
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poorly (when P1 is far from uniform), whereas the transductive approach optimally adapts
to P1.

Transductive classification: In transductive classification, labeled training data
{(xi, yi)}m

i=1 from both classes are given and the objective is to assign labels to the test
points {xi}m+n

i=m+1 [8]. The setting proposed here is a special case where training data from
only one class are available. Unlike the two-class problem, where unlabeled data typically
do not impact theoretical properties such as consistency and rates of convergence, we argue
that for anomaly detection, unlabeled data are essential for these properties to hold.

Learning from positive and unlabeled examples: Classification of an unlabeled sample
given data from one class has been addressed previously, but with certain key differences
from our work. This body of work is often termed learning from “positive” and unlabeled
examples (LPUE), although in our context we tend to think of nominal examples as negative.
Terminology aside, a number of algorithms have been developed which proceed roughly as
follows: First, identify a reliable set of negative examples in the unlabeled data. Second,
iteratively apply a classification algorithm to the unlabeled data until a stable labeling is
reached. Several such algorithms are reviewed in [9], but they tend to be heuristic in nature
and sensitive to the initial choice of negative examples.

A theoretical analysis of LPUE is provided by [10, 11] from the point of view of computer-
theoretic PAC learnable classes in polynomial time. While some ideas are common with the
present work (such as classifying the nominal sample against the contaminated sample as
a proxy for the ultimate goal), our point of view is considerably different and based on
statistical learning theory. In particular, our input space can be non-discrete and we assume
the distributions P0 and P1 can overlap, which leads us to use the NP classification setting
and study universal consistency properties.

We highlight here one strand of LPUE research having particular relevance to our own.
The idea of reducing LPUE to a binary classification problem, by viewing the positive data
as one class and the unlabeled data as the other, has been treated by [9, 12, 13, 14]. Most
notably, Liu et al. [12] provide sample complexity bounds for VC classes for the learning
rule that minimizes the number of false negatives while controlling the proportion of false
positives at a certain level. Our approach extends theirs in several respects. First, [12] does
not consider approximation error or consistency, nor do the bounds established there imply
consistency. In contrast, we present a general reduction that is not specific to any particular
learning algorithm, and can be used to deduce consistency or rates of convergence. Our work
also makes several contributions not addressed previously in the LPUE literature, including
our results relating to the case π = 0 and to the estimation of π.

Multiple testing: The multiple testing problem is also concerned with the simultaneous
detection of many anomalies (viewed as rejected null hypotheses). A frequently considered
model in that framework, called the random effects model, (see, e.g., [15]), is essentially
identical to our contamination model. Some related ideas can be found in our proposed
method for estimating the proportion of anomalies and for estimating the corresponding
parameter in the random effects model as in [16, 17]. However, a crucial difference between
this setting and TAD is that the null distribution P0 is assumed to be known in advance,
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and via the choice of some statistic the problem is then usually reduced to a one-dimensional
setting where P0 is uniform and P1 is often assumed to have a concave cdf. In our setting, we
don’t assume any prior knowledge on the distributions, the observations are in an arbitrary
space, and we attack the problem through a reduction to classification, thus introducing
broad connections to statistical learning theory.

3 The fundamental reduction

To begin, we first consider the population version of the problem, where the distributions
are known completely. Recall that PX = (1 − π)P0 + πP1 is the distribution of unlabeled
test points. Adopting a hypothesis testing perspective, we argue that the optimal tests for
H0 : X ∼ P0 vs. H1 : X ∼ P1 are identical to the optimal tests for H0 : X ∼ P0 vs.
HX : X ∼ PX . The former are the tests we would like to have, and the latter are tests we
can estimate by treating the nominal and unlabeled samples as labeled training data for a
binary classification problem.

To offer some intuition, we first assume that Py has density hy, y = 0, 1. According
to the Neyman-Pearson lemma [18], the optimal test with size (false positive rate) α for
H0 : X ∼ P0 vs. H1 : X ∼ P1 is given by thresholding the likelihood ratio h1(x)/h0(x) at
an appropriate value. Similarly, letting hX = (1− π)h0 + πh1 denote the density of PX , the
optimal tests for H0 : X ∼ P0 vs. HX : X ∼ PX are given by thresholding hX(x)/h0(x).
Now notice

hX(x)

h0(x)
= (1− π) + π

h1(x)

h0(x)
.

Thus, the likelihood ratios are related by a simple monotone transformation, provided π > 0.
Furthermore, the two problems have the same null hypothesis. Therefore, by the theory of
uniformly most powerful tests [18], the optimal test of size α for one problem is also optimal,
with the same size α, for the other problem. In other words, we can discriminate P0 from
P1 by discriminating between the nominal and unlabeled distributions. Note the above
argument does not require knowledge of π, aside from the assumption that π > 0.

The hypothesis testing perspective also sheds light on the inductive approach. In particu-
lar, estimating the nominal level set {x : h0(x) ≥ λ} is equivalent to thresholding 1/h0(x) at
1/λ. Thus, the density level set is an optimal decision rule provided the anomaly distribution
has a constant density. In other words, the inductive approach implicitly assumes anomalies
are uniformly distributed. This ideas has been employed previously to reduce anomaly de-
tection to classification by generating artifical anomalies from a uniform distribution [2, 19].

We now argue more generally, and drop the requirement that P0 and P1 have densities.
Let f : Rd → {0, 1} denote a classifier. For y = 0, 1, let

Ry(f) := Py(f(X) 6= y)

denote the false positive rate (FPR) and false negative rate (FNR) of f , respectively. The
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optimal FNR for a classifier with FPR ≤ α, 0 ≤ α ≤ 1, is

R∗
1,α := inf R1(f) (1)

s.t. R0(f) ≤ α

where the inf is over all measurable functions f : X → {0, 1}. Similarly, introduce

RX(f) := PX(f(X) = 0) = πR1(f) + (1− π)(1−R0(f))

and let

R∗
X,α := inf RX(f) (2)

s.t. R0(f) ≤ α,

where again the inf is over all measurable functions. In this paper we will always assume
that the infima in (1) and (2) are achieved by some classifier having exactly R0(f) = α (in
Section 4, we will correspondingly assume that this holds when the inf is over a class F of
classifiers). It can be shown that this assumption is always satisfied if randomized classifiers
are allowed.

The following result establishes formally the equilance between optimal tests discussed
above. Furthermore, one direction of this equivalence also holds in an approximate sense. In
particular, approximate solutions to X ∼ P0 vs. X ∼ PX translate to approximate solutions
for X ∼ P0 vs. X ∼ P1. This result constitutes our main learning reduction in the sense
of [20]. Let L1,α(f) = R1(f) − R∗

1,α and LX,α(f) = RX(f) − R∗
X,α denote the excess losses

(regrets) for the two problems.

Theorem 1. Consider any α, 0 ≤ α ≤ 1 , and assume π > 0 . Let f be such that R0(f) = α.
Then RX(f) = R∗

X,α iff R1(f) = R∗
1,α.

More generally, let f now be arbitrary, and assume π > 0. If R0(f) ≤ α + ε, then

L1,α(f) ≤ π−1(LX,α(f) + (1− π)ε) .

Proof. Suppose RX(f) = R∗
X,α but R1(f) > R∗

1,α. Let f ′ be such that R0(f
′) = α and

R1(f
′) < R1(f). Then

RX(f ′) = (1− π)(1−R0(f
′)) + πR1(f

′)

= (1− π)(1− α) + πR1(f
′)

< (1− π)(1− α) + πR1(f)

= RX(f) = R∗
X,α

contradicting minimality of R∗
X,α. The converse is similar, and can also be deduced from

the final statement. To prove the final statement, for any f we have RX(f) = (1 − π)(1 −
R0(f)) + πR1(f) . Also, R∗

X,α = πR∗
1,α + (1− π)(1−α), by the first part of the theorem. By

subtraction we have

L1,α(f) = π−1(LX,α(f) + (1− π)(R0(f)− α))

≤ π−1(LX,α(f) + (1− π)ε)).
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4 Statistical performance guarantees

Theorem 1 suggests that we may estimate the solution to (1) by solving an “artificial” binary
classification problem, treating x1, . . . , xm as one class and xm+1, . . . , xm+n as the other. If a
learning rule is consistent or achieves certain rates of convergence for the Neyman-Pearson
classification problem X ∼ P0 vs. X ∼ PX [6, 7], then those properties will hold for the same
learning rule viewed as a solution to X ∼ P0 vs. X ∼ P1. In other words, if LX,α, ε → 0,
then L1,α → 0 at the same rate. Although π will not affect the rate of convergence, Theorem
1 suggests that small π makes the problem harder in practice, a difficulty which cannot be
avoided.

As an illustrative example, we consider the case of a fixed set of classifiers F having finite
VC-dimension [8] and consider

f̂τ = arg min
f∈F

R̂X(f)

s.t. R̂0(f) ≤ α + τ ,

where R̂ is the empirical version of the corresponding error quantity. Define the precision of
a classifier f for class i as Qi(f) = P (Y = i|f(X) = i) . Then we have the following result
bounding the difference of the quantities Ri and Qi to their optimal values over F :

Theorem 2. Let F be a set of classifier of VC-dimension V . Denote f ∗ the optimal classifier
in F with respect to the criterion in (1). Assume π > 0 and P (f ∗(X) = i) > 0, i = 0, 1.

Fixing δ > 0 define εk =
√

V log k−log δ
k

. There exists absolute constants c, c′ such that, if we

choose τ = cεn , the following bounds hold with probability 1− δ :

R0(f̂τ )− α ≤ c′εn ; (3)

R1(f̂τ )−R1(f
∗) ≤ c′π−1(εn + εm) (4)

Qi(f
∗)−Qi(f̂τ ) ≤ c′

PX(f ∗(X) = i)
(εn + εm) , for i = 0, 1 . (5)

In the proof of this theorem, we show that under the constraint R0(f) ≤ α , the best
attainable precision in the set F for both classes is attained for f = f ∗ , so that in (5), we

are really comparing the precision of f̂τ against the best possible precision.
The above theorem shows that the procedure is consistent inside the class F for all criteria

considered, i.e., these quantities decrease (resp. increase) asymptotically to their optimal
value over the class F . This is in contrast to the statistical learning bounds previously
obtained ([12], Theorem 2) for the related problem of learning from positive and unlabeled
examples, which do not imply consistency. Also, following [7], by extending suitably the
argument and the method over a sequence of classes Fk having the universal approximation
property, we can conclude that this method is universally consistent. Therefore, although
technically simple, the reduction result of Theorem 1 allows us to deduce stronger results
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than the existing ones concerning this problem. This can be paralleled with the result that
inductive anomaly detection can be reduced to classification against uniform data [2], which
made the statistical learning study of that problem significantly simpler.

5 The case π = 0 and a hybrid inductive/transductive

approach

The preceding analysis only applies when π > 0. When π = 0, the learning reduction is
trying to classify between two identical distributions, and the resulting decision rule could
be arbitrarily poor. In this situation, perhaps the best we can expect is to perform as well
as an inductive method. Therefore we ask the following question: Can we devise a method
which, having no knowledge of π, shares the properties of the learning reduction above when
π > 0, and reduces to the inductive approach otherwise? Our answer to the question is “yes”
under fairly general conditions.

The intuition behind our approach is the following: The inductive approach essentially
performs density level set estimation. As shown in [2], level set estimation can be achieved
by generating an artificial uniform sample and performing weighted binary classification
against the nominal data. Thus, our approach is to sprinkle a vanishingly small proportion
of uniformly distributed data among the test points. When π = 0, the uniform points
will influence the final decision rule, but when π > 0, they will be swamped by the actual
anomalies.

To formalize this approach, let 0 < pn < 1 be a sequence of real numbers. Assume that
S0 is a set which is known to contain the support of P0 (obtained, e.g., through support
estimation), and let P2 be the uniform distribution on S0. Consider the following procedure:
Let k ∼ binom(n, pn). Draw k independent realizations from P2, and redefine xm+1, . . . , xm+k

to be these values. (In practice, the uniform data would simply be appended to the test
data, so that information is not erased. The present procedure, however, is slightly simpler
to analyze.)

The idea now is to apply the TAD learning reduction from before to this modified test
data. Toward this end, we introduce the following notations. We refer to any data point
that was drawn from either P1 or P2 as an operative anomaly. The proportion of operative
anomalies in the modified test sample is π̃ := π(1− pn) + pn. The distribution of operative

anomalies is P̃1 := π(1−pn)
π̃

P1 + pn

π̃
P2, and the overall distribution of the modified test data is

P̃X := π̃P̃1 + (1 − π̃)P0. Let R2, R
∗
2,α, R̃1, R̃

∗
1,α, R̃X , and R̃∗

X,α be defined in terms of P2, P̃1,

and P̃X , respectively, in analogy to the definitions in Section 3. Also denote L2,α(f) =
R2(f)−R∗

2,α, L̃1,α(f) = R̃1(f)− R̃∗
1,α, and L̃X,α = R̃X(f)− R̃∗

X,α.
By applying Theorem 1 to the modified data, we immediately conclude that if R0(f) ≤

α + ε, then

L̃1,α ≤ 1

π̃
(L̃X,α(f) + (1− π̃)ε) =

1

π̃
(L̃X,α(f) + (1− π)(1− pn)ε). (6)
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By previously cited results on Neyman-Pearson classification, the quantities on the right-
hand side can be made arbitrarily small as m and n grow. The following result translates
this bound to the kind of guarantee we are seeking.

Theorem 3. Let f be a classifier with R0(f) ≤ α + ε. If π = 0, then

L2,α(f) ≤ p−1
n (L̃X,α(f) + (1− pn)ε).

If π > 0, then

L1,α(f) ≤ 1

π(1− pn)
(L̃X,α(f) + (1− π)(1− pn)ε + pn).

To interpret the first statement, note that L2,α(f) is the inductive regret. The bound
implies that L2,α(f) → 0 as long as both ε = R0(f) − α and L̃X,α tend to zero faster than
pn. This suggests taking pn to be a sequence tending to zero slowly. The second statement
is similar to the earlier result in Theorem 1, but with additional factors of pn. These factors
suggest choosing pn tending to zero rapidly, in contrast to the first statement, so in practice
some balance should be struck.

Proof. The first statement follows from (6) because, when π = 0, L̃1,α(f) = L2,α(f), and the
right-hand side of (6) simplifies to the stated bound.

To prove the second statement, denote βn := π(1−pn)
π̃

, and observe that

R̃∗
1,α = inf

R0(f)≤α
R̃1(f)

= inf
R0(f)≤α

[βnR1(f) + (1− βn)R2(f)]

≤ βnR
∗
1,α + (1− βn).

Therefore

L̃1,α(f) = R̃1(f)− R̃∗
1,α

≥ βnR1(f) + (1− βn)R2(f)− βnR∗
1,α − (1− βn)

≥ βn(R1(f)−R∗
1,α)− (1− βn)

= βnL1,α(f) + (1− βn)

and we conclude

L1,α(f) ≤ 1

βn

L̃1,α +
1− βn

βn

≤ 1

π(1− pn)
(L̃X,α(f) + (1− π)(1− pn)ε + pn).

We remark that this hybrid procedure could be applied with any a priori distribution on
anomalies besides uniform. In addition, the hybrid approach could also be practically useful
when n is small, assuming the artificial points are appended to the test sample.
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6 Estimating π and testing for π = 0

We first treat the population case. For convenience, we assume that the support of P1 does
not entirely contain the support of P0. This restriction can be relaxed, with some additional
work, by alternately assuming that it is impossible to write P1 = (1 − p)P ′

1 + pP0 for some
P ′

1 and p > 0.

Theorem 4. For any classifier f , we have the inequality

π ≥ 1−RX(f)−R0(f)

1−R0(f)
. (7)

Optimizing this bound over all classifiers for a fixed value of R0(f) = α , we obtain for any
α > 0:

π ≥ 1− R∗
X,α

1− α
.

Furthermore,

π = 1 +
dR∗

X,α

dα

∣∣∣
α=1

.

Proof. For the first inequality, just write for any classifier f

1−RX(f) = PX(f(X) = 1)

= (1− π)P0(f(X) = 1) + πP1(f(X) = 1)

≤ (1− π)R0(f) + π ,

resulting in the inequality. For a fixed α = R0(f(X)) , optimizing the bound over possible
classifiers is equivalent to minimizing RX(f) , yielding R∗

X,α. By Theorem 1,

R∗
X,α = (1− π)(1− α) + πR∗

1,α.

By assumption on the supports of P1 and P0, we know that R∗
1,α = 0 for all α > α0 for some

α0. Taking the derivative of both sides at 1− establishes the result.

6.1 Distribution-free lower bounds on π

The last part of the previous theorem suggests estimating π by estimating the slope of R∗
X,α

at its right endpoint. This can be related to the problem of estimating a monotone density at
its right endpoint [21]. Rather than pursue this approach here, however, we instead employ
learning-theoretic techniques to use (7) for deriving a lower confidence bound on π:

Theorem 5. Consider a classifier set F for which we assume a uniform error bound of the
following form is available: for any distribution Q on X , with probability at least 1− δ over
the draw of an i.i.d. sample of size n according to Q , we have

∀f ∈ F
∣∣∣Q(f(X) = 1)− Q̂(f(X) = 1)

∣∣∣ ≤ εn(F , δ) , (8)
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where Q̂ denotes the empirical distribution built on the sample.
Then the following quantity is a lower bound on π with probability 1 − δ (over the draw

of the nominal and unlabeled samples) :

π̂−(F , δ) = sup
f∈F

1− R̂X(f)− R̂0(f)− (εn + εm)

(1− R̂0(f)− εm)+

. (9)

where the expression is formally defined to be −∞ whenever the denominator is 0, so that
the corresponding classifier is in fact discarded.

Note that if we define f̂α = arg minf∈F R̂X(f) under the constraint R̂0(f) ≤ α , this can
be rewritten

π̂−(F , δ) = sup
α∈[0,1]

1− R̂X(f̂α)− R̂0(f̂α)− (εn + εm)

(1− R̂0(f̂α)− εm)+

.

Note that there are two balancing forces at play. From the population version, we know
that we would like to have α as close as possible to 1 for estimating the derivative of R∗

X,α

at α = 1. This is balanced by the estimation error which makes estimations close to α = 1
unreliable because of the denominator. Taking the sup along the curve takes in a sense the
best available tradeoff.

Proof. As in the proof of the previous lemma, write for any classifier f :

PX(f(X) = 1) ≤ (1− π)P0(f(X) = 1) + π ,

from which we deduce after applying the uniform bound

1− R̂X(f)− εn = P̂X(f(X) = 1)− εn ≤ (1− π)(R̂0(f) + εm) + π ,

which can be solved whenever 1− R̂0(f)− εm ≥ 0 .

Below this result is applied to testing the hypothesis π = 0. The following result shows
that π̂−(F , δ) leads to a strongly universally consistent estimate of π. The proof relies on
Theorem 5 in conjunction with the Borel-Cantelli lemma.

Theorem 6. Consider a sequence F1,F2, . . . of classifier sets having the universal approxi-
mation property: for any measurable function f ∗ : X → {0, 1} , and any distribution Q , we
have

lim inf
k→∞

inf
f∈Fk

Q(f(X) 6= f ∗(X)) = 0 .

Suppose also that each class Fk has finite VC-dimension Vk, so that for each Fk we have a

uniform confidence bound of the form (8) for εn(Fk, δ) = 3
√

Vk log(n+1)−log δ/2
n

. Define

π̂−(δ) = sup
k

π̂−
(Fk, δk

−2
)

.

If δ = (mn)−2, then π̂− converges to π almost surely as m,n →∞.
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6.2 There are no distribution-free upper bounds on π

The lower confidence bounds π̂−(F , δ) and π̂−(δ) are distribution-free in the sense that they
hold regardless of P0, P1 and π. We now argue that distribution-free upper confidence bounds
do not generally exist.

Formally, we call a distribution-free upper confidence bound π̂+(δ) a function of the
observed data such, for any P0, any identifiable P1, and any π < 1, we have π̂+(δ) ≥ π
with probability 1− δ over the draw of the two samples. By “identifiable” we mean that P1

cannot be itself decomposed as P1 = αP0 + (1− α)P ′
1 for some α > 0 . This ensures that π

is unique. This occurs, for example, under the running assumption that the support of P1

does not entirely contain the support of P0 .
We will show essentially that such a universal upper bound does not exist unless it is

trivial. The reason is that the anomalous distribution can be arbitrarily hard to distinguish
from the nominal distribution. Looking at Section 6, this means that the slope of the straight
line between (α, PX(f ∗α = 1)) and (1, 1) can be made arbitrarily close to one for very small
values of α while its derivative at α = 1 remains bounded away from one. We can detect
with some certainty that there is some proportion of anomalies in the contaminated data
(see Corollary 2 below), but we can never be sure that there are no anomalies. This situation
is similar to philosophy of hypothesis testing: one can never accept the null hypothesis, but
only have insufficient evidence to reject it.

We will say that the nominal distribution P0 is weakly diffuse if for any δ > 0 there
exists a set A such that 1− δ < P0(A) < 1 . We call a confidence bound π̂+(δ) non-trivial if
there exists at least a weakly diffuse nominal distribution P0, an anomalous distribution P1,
constants π > 0, δ > 0 such that

P (π̂+(δ) < 1) > δ .

This assumption demands that there is at least a specific setting where the upper bound
π̂+(δ) is significantly different from the trivial bound 1, meaning that it is bounded away
from 1 with larger probability than its allowed probability of error δ .

Theorem 7. There exists no distribution-free, non-trivial upper confidence bound on π .

The non-triviality assumption is quite weak and relatively intuitive. The only not directly
intuitive assumption is that P0 should be weakly diffuse, which is satisfied for all distributions
having a continuous part. This assumption effectively excludes finite state spaces. We believe
it is possible to obtain a non-trivial upper confidence bound on π on a finite state space.

Corollary 1. The rate of convergence of any distribution-free lower bound π̃− towards π can
be arbitrarily slow.

Proof. If there was a universally valid upper bound δn on the convergence rate of π̃−, then
π̃− + δn would be a distribution-free upper confidence bound on π .

To achieve some prescribed rate of convergence, some model assumptions on the gener-
ating distributions must be made. This parallels the estimation of the Bayes risk in classifi-
cation [22].
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6.3 Testing for π = 0

The lower confidence bound on π can also be used as a test for π = 0, i.e., a test if there are
any anomalies in the test data:

Corollary 2. Let F be a set of classifiers. If π̂−(F , δ) > 0, then we may conclude, with
confidence 1− δ, that the unlabeled sample contains anomalies.

It is worth noting that testing this hypothesis is equivalent to testing if P0 and PX

are the same distribution, which is the classical two-sample problem in an arbitrary input
space. This problem has recently generated attention in the machine learning community
[23], and the approach proposed here, using arbitrary classifiers, seems to be new. Our
confidence bound could of course also be used to test the more general hypothesis π ≤ π0

for a prescribed π0, 0 ≤ π0 < 1 .
Note that, by definition of π̂−(F , δ), testing the hypothesis π = 0 using the above lower

confidence bound for π is equivalent to searching the classifier space F for a classifier f such
that the proportions of predictions of 0 and 1 by f differ on the two samples in a statistically
significant manner. Namely, for a classifier f belonging to a class F for which we have a
uniform bound of the form (8), we have the lower bound PX(f(X) = 1) ≥ P̂X(f(X) = 1)−εn

and the upper bound P0(f(X) = 1) ≤ P̂0(f(X) = 1)+εm (both bounds valid simultaneously
with probability at least 1−δ). If the difference of the bounds is positive we conclude that we
must have PX 6= P0 hence π > 0 . This difference is precisely what appears in the numerator
of π̂−(F , δ) in (9) . Furthermore, if this numerator is positive then so is the denominator
since it is always larger. In the end, testing π̂−(F , δ) > 0 is equivalent to testing

sup
f∈F

(
(P̂X(f(X) = 1)− εn)− (P̂0(f(X) = 1) + εm)

)
> 0 .

7 Conclusions

We have shown that transductive anomaly detection reduces to Neyman-Pearson classifi-
cation, thereby inheriting the properties of NP classification algorithms. We have applied
techniques from statistical learning theory, such as uniform deviation inequalities, to establish
distribution free performance guarantees for TAD, as well as a lower bound and consistent
estimator for π, and test for π = 0. Our transductive approach optimally adapts to the
unknown anomaly distribution, unlike inductive approaches, which implicitly assume the
anomalies are uniformly distributed. Indeed, our analysis strongly suggests that in anomaly
detection, unlike traditional binary classification, unlabeled data are essential for attaining
optimal performance in terms of tight bounds, consistency, and rates of convergence. Fu-
ture work will explore learning-theoretic approaches to multiple testing, monotone density
estimation, and the two-sample problem.
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8 Proofs

8.1 Proof of Theorem 2

For the two first claims of the theorem, we directly apply Theorem 3 of [7] to the problem
of NP classification of P0 versus PX , and obtain that for a suitable choice of constants c, c′

we have with probability at least 1− δ :

R0(f̂τ )− α ≤ c′εn ; RX(f̂τ )−RX(f ∗) ≤ c′εm .

From this, we deduce (3)-(4) by application of Theorem 1. Note that in Theorem 1, the
optimal errors R∗

1 and R∗
X were defined as the best out of all possible classifiers; however it

is easy to check that Theorem 1 is still valid when we restrict our attention to a fixed class
F of classifiers and compare the errors of any f ∈ F to the the best attainable errors in that
class.

For the second claim, note that by application of Bayes’ rule we have for any classifier
f :

Q0(f) =
(1− π)(1−R0(f))

πR1(f) + (1− π)(1−R0(f))

and

Q1(f) =
π(1−R1(f))

(1− π)R0(f) + π(1−R1(f))
.

Note that these relations imply, under the constraint R0(f) ≤ α , that the best attainable
precision in the set F for both classes is attained for f = f ∗ (see also [24]), so we are really

comparing the precision of f̂τ against the best possible precision.
We now derive a lower bound on Q0(f̂τ ) as follows:

Q0(f̂τ ) =
(1− π)(1−R0(f̂τ ))

πR1(f̂τ ) + (1− π)(1−R0(f̂τ ))

≥ (1− π)(1− α− c′εn)

π(R1(f ∗) + c′π−1(εn + εm)) + (1− π)(1−R0(f ∗)− c′εn)

≥ (1− π)(1− α)

PX(f ∗(X) = 0) + c′(εm + πεn)
− c′(1− π)εn

PX(f ∗(X) = 0)

≥ (1− π)(1− α)− c′(1− π)εn

PX(f ∗(X) = 0)
− (1− π)(1− α)c′(εm + πεn)

PX(f ∗(X) = 0)2

≥ Q0(f
∗)− c′(εn + εm)

PX(f ∗(X) = 0)
.

The first inequality is valid using the first two claims of the theoren, because the function
(x, y) 7→ a(1−x)

by+a(1−x)
is decreasing in both variables. The second is elementary. In the third

inequality we used the fact that the function g : ε 7→ g(ε) = A
B+ε

is convex for A,B, ε positive

and has derivative −A/B2 in zero, so that g(ε) ≥ A
B
− ε A

B2 , with A = (1 − π)(1 − α), B =

13



PX(f ∗(X) = 0), ε = c′(εm + πεn) . In the last inequality we used (with the same definition
for A,B) that A

B
= Q0(f

∗) ≤ 1 . The treatment for Q1 is similar.

8.2 Proof of Theorem 6

Denote S1 the support of P1 and f ∗ = 1S1 . We have P1(f
∗(X)) = 1 and, by the assumption

made on the supports at the beginning of Section 6, S1 does not entirely contain the support
S0 of P0 so that 0 < P0(f

∗(X) = 1) =: α0 . Then we have

π =
PX(f ∗(X) = 1)− α0

1− α0

.

Fix γ > 0 and define P̃ = 1
2
(P0 + P1) . Using the assumption of universal approximation,

pick k such that there exists f ∗k ∈ Fk with P̃ (f ∗k (X) 6= f ∗(X)) ≤ γ . Since P̃ ≥ 1
2
P0 and

P̃ ≥ 1
2
P1 this implies also P0(f

∗
k (X) 6= f ∗(X)) ≤ 2γ as well as PX(f ∗k (X) 6= f ∗(X)) ≤ 2γ .

From now we only work in the class Fk and so we omit the parameters in the notation
εi ≡ εi(Fk, δk

−2) .
By the uniform control, we have with probability 1− c(mn)−2:

P̂0(f
∗
k (X) = 1) ≤ P0(f

∗
k (X) = 1) + εm ≤ α0 + 2γ + εm .

Consider now the estimated classifier f̂ defined as the NP-classifier at level α0 + 2γ + εm

on class k . From the above property and the definition of f̂ , we have with probability
1− c(mn)−2:

P̂X(f̂(X) = 1) ≥ P̂X(f ∗k (X) = 1)

≥ PX(f ∗k (X) = 1)− εn ≥ PX(f ∗(X) = 1)− 2γ − εn .

From this we deduce that with probability 1− c(mn)−2 :

π̂−(δ) ≥ π̂−(Fk, (mn)−2k−2) ≥ PX(f ∗(X) = 1)− α0 − 4γ − 2εm − 2εn

1− α0 − 2γ − 2εm − εn

.

Since εn, εm go to zero as min(m,n) goes to infinity we deduce that a.s. (using the Borel-
Cantelli lemma, and the fact that the error probabilities are summable over (m,n) ∈ N2)

lim inf
min(m,n)→∞

π̂−(δ) ≥ PX(f ∗(X) = 1)− α0 − 4γ

1− α0 − 2γ
= π

1− α0

1− α0 − 2γ
− 4γ

1− α0 − 2γ
.

This is true for any γ > 0 , hence the conclusion.
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8.3 Proof of Theorem 7

Let P0, P1, δ, π be given by the non-triviality assumption. Fix some γ < 0 and a set A
such that 1 − γ < P0(A) < 1 . Consider the distribution P0 conditional to belonging to

A, denoted P̃0 = 1x∈A

P0(A)
P0. This is a legitimate anomalous distribution as it has it support

strictly included in the support of P0 .
Consider the fully anomalous distribution P̃X = (1 − π)P̃0 + πP1 . Since it is fully

anomalous, the anomaly proportion of P̃X with respect to P0 is π̃ = 1 . Finally, define the
joint distribution on nominal and contaminated data P̃ = P⊗m

0 ⊗ P̃⊗n
X .

By the non-triviality assumption, there exists a set B of (m,n) samples such that π̂+(δ) <

1 on the set B and P (B) = δ0 > δ . Denote Ã = Xm×An . By assumption, P (Ã) ≥ (1−γ)n ;

furthermore by definition of P̃ it can be verified straightforwardly that for any set D ⊂ Ã ,
P̃ (D) ≥ P (D) . Define now B̃ = B∩ Ã ; we have P (B̃) ≥ δ0− (1−γ)n . Since for all samples

in B̃ , all points of the contaminated set belong to A , we have

P̃ (B̃) ≥ P (B̃) ≥ δ0 − (1− γ)n.

Hence for γ small enough, we have P̃ (B̃) > δ which contradicts the fact that π̂+(δ) is a 1− δ

confidence upper bound, since on B̃ we have π̂+(δ) < 1 = π̃ .
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