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I. ABSTRACT

This works considers the problem of efficient energy allocation of resources in a continuous fashion in

determining the location of targets in a sparse environment. We extend the work of Bashan [1] to analyze

the use of non-uniform prior knowledge for the location of targets. We show that in the best-case scenario

(i.e., when the known prior knowledge is also the underlying prior), then we can get significant gains

(several dB) by using a two-level piecewise uniform prior over using the uniform prior that is assumed

in [1]. Moreover, even when we have uncertainty in our prior knowledge, we show that we can always

do at least as well as the uniform alternative in terms of worst-case and expected gains. In future work,

we plan to extend our analysis to general piecewise uniform priors in order to develop multistage (i.e.,

greater than 2) adaptive energy allocation policies.

II. INTRODUCTION

In many situations, it might be desirable to allocate a limited amount of energy to a small region of

interest (ROI) within a larger environment by using adaptive sampling techniques. For example, consider

the problem of minimizing communication costs when tracking a target in a distributed sensor network.

Clearly, when a node in our sensor network is far from our previous estimate of the target, we would

like to reduce the communication from that node in order to preserve its battery life. On the other hand,

we would like all sensors within a region near the previous target estimate to be used to estimate the

target’s position at the next time step. For this purpose, then, we can use adaptive sampling to provide

both smart sensor management and improved tracking performance.

In another application, we may be interested in locating and estimating the content of tumors in early

cancer detection. In this situation, the ROI consists of the tumor location, which in early cancer detection

is assumed to be much smaller in area than the entire image. Moreover, the total amount of energy used
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by CT scans and X-rays for this purpose is limited by safety constraints. Thus, an adaptive sampling

scheme could be used to allocate energy efficiently only to the regions where a tumor may exist.

Lastly, we may be interested in the detection and estimation of airplanes in an airport landing field

using active radar systems. We assume that airplanes are much more likely to approach from one direction

than some others. In this case, it would be desirable to search for airplanes in an optimal manner that

reduces the amount of energy spent searching the low probability regions and augments the amount of

energy spent searching the high probability regions.

In this work, we consider the problem of estimating a sparse ROI where we may have prior knowledge

for the locations of the targets. Bashan [1] showed that under a total energy constraint, an adaptive resource

allocation policy (ARAP) can be used to form a two-stage energy allocation policy that optimally allocates

energy according to a uniform prior with respect to a suitable cost function. ARAP was developed for

a general prior, but all of the previous analysis focused on the uniform case (i.e., targets distributed

uniformly across the entire signal), where analysis was straightforward.

Fig. 1. This plot compares the performance of energy policies using uniform prior information for the locations of targets

(circles) versus the performance of energy policies using non-uniform prior information (stars). For low SNR, we see enhanced

performance for all sparsity levels when using the non-uniform prior information. For high SNR, we see that the performance

of either adaptive policy converges to −10 log p, (where p is the sparsity level), the predicted asymptotic gain.

This work, then, focuses on relaxing the assumption of a uniform prior in detecting/estimating the ROI.

Moreover, we are interested in developing intuition for when to use our prior knowledge as opposed to
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just assuming a uniform prior (i.e., how much margin for error do we have). Figure 1 shows the gain in

expected cost over using an exhaustive search as a function of SNR. The circles represent the gains when

using a uniform prior, while the stars represent the gains when using a two-level piecewise uniform prior.

We see that for low SNR values, we can get significant gains when using non-uniform prior knowledge.

It should be noted that much of the previous work in resource allocation has been directed towards

inhomogeneous signals [2] [3] [4] [5], though in this work we consider signals with a small ROI. Thus,

our signals could be considered sparse in the sense that the ratio of the ROI to the entire signal is small. In

compressed sensing [6] [7], the goal is also to reconstruct a sparse signal with reduced energy. Resource

allocation and sensor management is considered for choosing between a discrete set of events (where

to point the sensor, which sensing modality, etc.) in [8]. Resource allocation for multi-target tracking is

also considered in [9] and [10]. In this work, though, we focus on the continuous allocation of energy.

For an extended literature review, see section II-A.

The rest of the paper is organized as follows: Section II-A provides an extended literature review of

resource allocation and adaptive sampling research. Section II-B specifically details the work of Bashan.

Section III includes a formal statement of the problem. Section IV presents a performance analysis

for when to use possibly incorrect prior knowledge rather than the uniform prior. Section V provides

conclusions and future work. Lastly, appendices are provided to present the derivations of the analytical

expressions and densities used for the analysis in this work.

A. Extended literature review

Adaptive sampling (also referred to as active learning) was studied by Castro, Nowak, and Willet [3]

[5] [4] in the context of estimating inhomogeneous functions from noisy measurements. They developed

a method called backcasting that involved an initial ”preview” step that distributed energy uniformly

to estimate borders, followed by a ”refinement” step to refine the boundary points. It was found that

fast convergence rates in terms of the mean square error (MSE) could be obtained if the complex

regions are relatively small compared to the rest of the signal. Castro also showed [2] that compressive

sampling techniques can approach the performance of reconstruction of piecewise constant functions with

adaptive sampling for high SNR. Castro et al. considered different applications that were characterized

by inhomogeneous signals for which adaptive sampling would be efficient. However, in this work we

consider general signals only restricted to have a small ROI.

Since we consider signals with a small ROI, we can refer to our signals as sparse. Compressive

sampling to reconstruct sparse signals has been researched extensively over the past years. Tropp and
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Gilbert [6] showed that m-sparse signals can be recovered with high probability while using many fewer

measurements than the size of the signal. Moreover, efficient algorithms exist (orthogonal matching

pursuit, etc.) that are both easy to implement and converge to the solution fast. However, compressive

sampling does not lend itself easily to incorporating Bayesian knowledge into determining the location

of sparse signals. Bayesian compressive sensing (BCS) [7] incorporates relevance vector machines that

assume a prior on the signal in order to estimate both the signal and the confidence in the reconstructed

signal. Moreover, BCS provides a means to determine if a sufficient number of measurements have been

taken. However, since BCS relies on relevance vector machines [11], the prior information is governed

by hyperparameters of a Bayesian linear model, and thus does not reflect the true prior information1.

Resource allocation is considered in the context of sensor scheduling/management by Kastella [8]

and Kreucher [9] [10]. Sensor management considers the problem of choosing between a discrete set

of actions, such as choosing which cell to search at the next time step and in what mode. Kastella

showed that under a myopic strategy, pointing the sensor to the cell that maximizes the discrimination

gain (based on the Kullback-Leibler information) decreases the target misdetection probability. Kreucher

et al. show that by combining sensor management with the joint multi-target probability density (JMPD)

for target tracking, one can predict which measurement provides the most information gain. In our work,

we consider distributing resources continuously.

B. Review of ARAP

Bashan [1] explored the problem of estimating a sparse ROI where prior knowledge is known in the

form of a Bayesian prior on the existence of a target at a given cell. In particular, if we assume that

targets may exist at a discrete set of Q points, then the prior knowledge can be represented as the set

of Bernoulli probabilities {p1, p2, . . . , pQ}, where Pr(Ii = 1) = pi and Ii is an indicator variable for the

existence of a target at cell i.

Bashan considered random measurements at time t, Y (t) = {y1(t), y2(t), . . . , yQ(t)}, where Y (t)

depends on the energy allocation policy at that time2, {λ(i, t)}Qi=1, the target locations, {Ii}Qi=1, and

the random returns from each cell, {θi}Qi=1. Moreover, Bashan considered λ(i, t) to be a deterministic

mapping from the past observations of Y (1) through Y (t − 1). Lastly, optimal solutions were derived

1In essence, this model assumes that the posterior is a multivariate Gaussian. In our work, we do not wish to restrict our

attention to just this case.
2λ(i, t) is the amount of energy allocated to cell i at time t
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for both 1-stage and 2-stage energy allocation policies (henceforth referred to as ARAP), where the total

energy was constrained to λT :
T∑
t=1

Q∑
i=1

λ(i, t) = λT (1)

Optimality was defined through the cost function3:

J =
Q∑
i=1

νIi + (1− ν)(1− Ii)∑T
t=1 λ(i, t)

(2)

where ν controls the percentage of energy devoted to the ROI or to its complement. In particular, since

J is a random variable, the optimal energy allocation policies minimized E[J ]. Note that for T = 1,

the energy allocation policies are just deterministic, since they don’t depend on random measurements.

Bashan showed that the optimal allocation for T = 1 is given by:

λ(i, 1) =
λT
√
pi

Q∑
j=1

√
pj

(3)

However, the problem is much more interesting when we consider T > 1. It was shown that given the

energy allocation at T = 1, the optimal allocation of resources for T = 2 is a quantity that can be

computed in O(Q) time. In particular, it was found that given {λ(i, 1)}Qi=1 and Y (1)

λ(i, 2) =


λT −

Q∑
j=1

λ(j, 1)

Q∑
j=k0+1

√
w(j)

√
w(i) − λ(i, 1)

 I(i > k0) (4)

where wi is a realization of the random variable Wi = Pr(Ii = 1|Y (1)), w(i) is an ordered version of wi,

and k0 defines a cutoff point based upon that ordering. Noting that λ(i, 2) depends on ordered random

variables, Bashan also developed a suboptimal allocation policy whose performance paralleled closely

that of the optimal policy, where

λ(i, 2) =

λT − Q∑
j=1

λ(j, 1)

 √
wi

Q∑
j=1

√
wj

(5)

3Bashan provided several reasons for the selection of this particular cost function. He showed that the cost function was lower

bounded by a value that, and the bound could be attained by using an intuitive optimal resource allocation. Moreover, Bashan

showed that by minimizing the cost function, one also minimized the CRB lower bound of estimating a deterministic quantity

θiIi in additive Gaussian noise, as well as uniformly minimizing the Chernoff bound on the misdetection probability over the

ROI [1].
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In both the optimal and suboptimal resource allocation policies, the second stage allocations, {λ(i, 2)}Qi=1

determined by equation (4) or (5), is a function of the first stage allocations, {λ(i, 1)}Qi=1. Thus, in general,

the minimization problem involves Q degrees of freedom in determining the first stage allocations (which

consequently determine the second stage allocations). Since Q is large by assumption, this minimization

is infeasible for general prior information.

Bashan proposed two solutions to this problem. First, for uniform prior information (i.e., pi = Pr(Ii =

1) = p for all i), λ(i, 1) is constant for all i. Therefore, the minimization problem reduces to determining

the percentage of energy to allocate at the first and second stages, which can be done by grid search to

provide the optimal allocation.

Second, in the general prior case, Bashan proposed to use a myopic approach, in the sense that one

should distribute a total effort of (αλT , 1 − αλT ) to each stage for α ∈ (0, 1), and then distribute

effort optimally within each step according to equations (3-5). Lastly, one should grid search over α to

determine the best allocation.

This research is primarily concerned with the case where the prior information is not uniform for

multiple reasons. First, in many applications we know more than just a general sparsity constraint. For

example, in active radar imaging, geopolitical constraints (mountains, oceans, country borders, etc.) may

restrict the locations of targets. The next section describes one possible application where this applies

directly. Second, for the case of T > 2, the measurements at times 1 through T − 1 will provide

prior information that is non-uniform in just about all possible cases. Therefore, in this work, we aim

to provide a theoretical basis for non-uniform prior information in order to potentially create adaptive

resource allocation policies for multi-stage effort allocations. This work considers simple models for these

non-uniform priors, and we show that under reasonable conditions, one can gain significant improvement

over using uniform priors. Moreover, we discuss the extension to general priors and possible future work.

C. Motivating application: Active radar in an airport landing field

Consider the problem of using an active radar system to detect and estimate the location of airplanes

at an airport landing field. In this situation, we could expect that airplanes will approach the landing

field from certain directions with much higher probability than others (due to geographic and safety

constraints, for instance). In Figure 2 we show a possible configuration of probability regions for this

application, where p0 ≤ p1 ≤ p2 ≤ p3 and p0 is much smaller than p1.

In such a situation, we would expect that ARAP will provide significantly better results if we use this

prior knowledge rather than just a uniform allocation, since we can allocate more resources to the higher
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Fig. 2. Possible probability regions for the approach direction of airplanes at a landing field. We would expect that for

many instances of this application, the prior information would lead to highly non-uniform applications. Thus, we would have

p1, p2, p3 >> p0. As will be seen later in this report, significant gains can be had over a uniform alternative if we choose to

use (possibly incorrect) non-uniform prior information for these applications.

probability regions and less resources to the lower probability regions.

Indeed, the more extensive our knowledge is about the locations of targets, the better our performance

through ARAP. In the limiting case, we propose prior knowledge of the form:

Pr(Ii = 1) =

 1, i ∈ Ψ

0, i /∈ Ψ
(6)

Clearly, in this case, we would allocate all of our resources to the ROI, and none outside of it. This

energy allocation policy is denoted as Λo in [1] and is the optimal resource allocation policy with respect

to the cost function. However, since we don’t know the ROI, this is clearly not a feasible solution.

From this discussion, we can easily see that the more knowledge we know about the locations of the

targets, the better our performance gains will be in ARAP with respect to just using the uniform prior.

On the other hand, as the amount of prior knowledge increases, so does the restrictiveness of our model.

Thus, if our prior knowledge is inaccurate, we risk missing or badly estimating targets that lie in regions

that we assumed to be improbable. For this reason, the following work also considers the problem of

determining when it is advisable to use possibly incorrect prior knowledge versus the uniform alternative.
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III. PROBLEM STATEMENT

Let X = {1, 2, . . . , Q} be a discrete space containing Q cells equipped with a probability measure P .

Let Ψ ⊆ X be a ROI that we are interested with an associated indicator function:

Ii =

 1, i ∈ Ψ

0, else
(7)

and {pi = Pr(Ii = 1)}Qi=1 is an associated set of prior probabilities. Let λ(i, t) be the amount of energy

allocated to cell i at time t. Let T be the number of stages in the energy allocation policy. Then, the

total amount of energy is constrained to λT according to equation (1) with 0 ≤ λ(i, t) ≤ λT . Let

Λi =
T∑
t=1

λ(i, t) (8)

be the total energy allocated to cell i. Then let Λ = {Λ1,Λ2, . . . ,ΛQ} be the associated energy allocation

policy, and define the cost function as:

J(Λ) =
Q∑
i=1

νIi + (1− ν)(1− Ii)
Λi

(9)

Let measurements at time t be defined as

yi(t) =
√
λ(i, t)θi(t)Ii + γi (10)

where θi(t) is the random return from cell i and normally distributed with mean µθ and variance σ2
θ ,

and νi(t) is normally distributed with zero mean and unit variance. We assume that νi(t) is independent

for varying i and t, and θi(t) is independent for varying i, but possibly dependent for different t. Note

that we also are assuming that we are dealing with a static scenario, since the indicator function does

not vary with time.

A. Prior knowledge parameterization families

Let us assume that we are dealing with simple two-level piecewise uniform priors. Under this assump-

tion, very few parameters actually describe all of our knowledge. In fact, four parameters, (n0, n1, p0, p1)

describe this knowledge, where

Pr(Ii = 1) =

 p0, i ∈ {1, 2, . . . , n0}

p1, i ∈ {n0 + 1, . . . , n0 + n1}
(11)

Let (n0, n1, p0, p1) accurately describe the locations of targets, and let (n̂0, n̂1, p̂0, p̂1) be the prior

knowledge that we know. We will make a couple of assumptions in order to make our analysis easy.

These include:
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1) The number of cells is constant, so that Q = n0 + n1 = n̂0 + n̂1.

2) The number of expected targets over the entire region is known, where

E[|Ψ|] = Qpunif = p0n0 + p1n1 = p̂0n̂0 + p̂1n̂1. (12)

3) The low probability regions will assigned the same value p0 = p̂0.

4) The high probability region (i.e., i ∈ {n0 + 1, n0 + 2, . . . , Q}) may be underestimated or overesti-

mated, but not missed altogether.

Note that the first two assumptions do not require any additional knowledge than in the uniform prior

case. The third assumption results from the fact that in the applications that we are interested in, p0 << p1

and so in terms of our cost function, only the high probability region is really important to us. Thus, we

simplify our parameterization by setting p̂0 = p0. The last assumption is really a statement that we have

some confidence in our prior knowledge. Clearly, if our prior knowledge is so bad that we don’t include

any of the high probability region, then we should use the uniform prior instead.

Let g = (n̂0, n̂1, p0, p̂1) be a particular parameterization of our prior knowledge. Let punif be the fixed

sparsity level. Then, let us define a family of prior knowledge parameterizations, G to be

G = {(n̂0, n̂1, p0, p̂1) | n̂0p0 + n̂1p̂1 = Qpunif , n̂0 + n̂1 = Q} , (13)

where n̂1 is uniformly distributed over a discrete set of values:

Pr(n̂1 = k) =

 (nmax
1 − nmin

1 )−1, k ∈
{
nmin

1 , nmin
1 + 1, . . . , nmax

1

}
0, else

(14)

Note that in this family, n̂1 will define n̂0 and p̂1 as well due to the constraints on G and fixed p0. In

particular, we know

n̂1 = n̂1 (15)

n̂0 = Q− n̂1 (16)

p̂0 = p0 (17)

p̂1 =
Qpunif − n̂0p̂0

n̂1
=
Q(punif − p0) + n̂1p0

n̂1
(18)

Figure 3 presents a possible implementation of G for fixed Q and p0. The red curve represents the prior

information with the smallest high probability region. Note that since the number of expected targets is

equal for all elements of G, this parameterization also has the highest probability in region 1. Thus, this

is the most non-uniform prior, in the sense that p1 and p0 have the largest absolute difference from punif .

The blue curve, on the other hand, represents the prior information with the largest high probability
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region (and smallest p1), thus being the least non-uniform prior in G. The maximum difference between

nmax
1 and nmin

1 will be determined by the application and will be representative of the confidence that

the user has in their prior knowledge.

Fig. 3. A possible implementation of a two-level family of prior parameterizations for a given sparsity level. Denote ni to be

the number of cells in region i, and pi to be the sparsity level within region i. In this analysis, we consider families of two-level

uniform prior information, where p0 is fixed to be a small value (i.e., a low probability region), the size of the high probability

region n1 is distributed uniformly over a discrete set of values in
{
nmin

1 , . . . , nmax
1

}
, and the number of expected targets is

constant across all parameterizations. Under these constraints (discussed in Section III-A), the parameter n1 determines all of

the other descriptive parameters through equations (15-18).

It should be noted that our prior knowledge is NOT a Bayesian prior on the locations of targets, since

it does not sum to one. Rather, our knowledge is a set of Bernoulli probabilities for each cell in X .

For this reason, we will henceforth refer to our knowledge only as parameterizations, even though they

contain Bayesian information.
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IV. PERFORMANCE ANALYSIS

A. Performance measures

For the purposes of comparison, we will draw a distinction between the underlying model denoted as

g∗ = {pi}Qi=1, and the assumed prior denoted as ĝ = {p̂i}Qi=1. Note that in general, allocations formed by

ARAP will depend on both the assumed and underlying priors, since the first stage allocation depends only

on the assumed prior, while subsequent allocations depend on both models. Moreover, u := {p̂i = p}Qi=1

will be referred to as a uniform prior and will be used as a base for comparison.

We will consider as a performance measure, the function that is minimized by ARAP, E[J(Λ)|g∗, ĝ, α],

where α is assumed to be known. In practice, α can be computed by doing a line search over the minimum

expected cost for each g∗ and ĝ.

Two quantities are explicitly computed in this analysis: (1) the expected cost, C(ĝ; g∗), and (2) the

worst-case gain when compared with using a uniform prior, K(ĝ). Expressions for these quantities are

given below.

C(ĝ; g∗) = E[J(Λ)|g∗, ĝ, α] (19)

K(ĝ) = max
g∗∈G

−10 log
C(ĝ; g∗)
C(u; g∗)

(20)

B. Results and Discussion

1) Derivation of density on
(
Λi
∣∣g): The details of this derivation are shown in Appendix A. However,

it is important to note a couple of points. First, λ(i, 1) is deterministic, but λ(i, 2) depends on random

measurements and therefore is random. Moreover, since Λi = λ(i, 1) + λ(i, 2), it suffices to find the

density on λ(i, 2).

For optimal ARAP, λ(i, 2) is a random variable that depends on ordered statistics, as well as the

measurement and target models. This makes it unwieldy to find a useful analytical expression for this

density. Thus, we consider suboptimal ARAP, where λ2(i) is defined as

λ(i, 2) =
(1− α)λT

√
Wiy

Q∑
j=1

√
Wjy

, (21)

where Wiy = Pr(Ii = 1|y(1)). Using our knowledge of the measurement and target models, deriving a

density on Wiy is straightforward. Moreover, since Q is very large, the denominator can be approximated

by the central limit theorem (CLT) or strong law of large numbers. Combining these points, we are able
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to derive an explicit expression for the density on λ2(i) with few approximations. Moreover, this density

has been verified to be accurate by performing Kolmogorov-Smirnov tests on various instances of g ∈ G.

However, the expression for the density involves integrals that are impossible (or at least, very difficult)

to evaluate analytically. Thus, for the results presented next, numerical approximations to the integrals

were used.

2) Description of G used in the simulations: We considered five parameterization families who differed

only in their sparsity level, punif . In particular, we considered punif = {0.01, 0.0325, 0.055, 0.0775, 0.10}.

Since the considered G differ only by sparsity level, we will abuse notation slightly by referring to the

family only by its sparsity level.

Moreover, we fixed p0 = 0.002, nmin
1 = 1, 500 and nmax

1 = 4, 000 for all parameterization families,

and set the SNR to 8 dB. For a discussion on the choice of these parameters, see Section IV-B6. Lastly,

we set the distribution parameters for the random cell returns to µθ = 1 and σ2
θ = 0.0625.

It is important to note that we refer to the following results as simulations, even though they based on

evaluating the analytical expressions derived in Appendices A and B. However, since we must rely on

numerical approximations to some of the integrals, we denote our results as simulations to emphasize

that we are approximating the theoretical results.

3) Performance of uniform parameterization: Recall that C(u,g∗) is the expected cost of using the

uniform parameterization in ARAP when the underlying parameterization is actually g∗. Figure 4(a)

presents C(u,g∗) versus g∗ for all of the considered sparsity levels 4. Clearly, we see that for each

sparsity level, C(u,g∗) remains nearly constant as a function of g∗. Figure 4(b) plots C(u,g∗) for

punif = 0.055, from which we can conclude that the expected cost is not constant everywhere. However,

the variations are insignificant enough within a particular sparsity level to ignore their dependence on

g∗.

4) Best-case performance: when the underlying parameterization is known: The best we can do should

intuitively occur when our energy allocation policy is derived by using the underlying parameterization.

Figure 5 plots the gains in expected cost when the underlying parameterization is known with respect to

the uniform parameterization alternative.

We see that the performance gain increases as n1 decreases. Moreover, since C(u,g∗) is approximately

constant over G, we can conclude that the expected cost decreases as n1 decreases. This is equivalent

4Recall that for fixed p0 and Q, we can equivalently represent g∗ = (p0, p̂1, n̂1, n̂0) with just n̂1, due to the constraints of

g∗ ∈ G. Therefore, in all remaining plots, we will refer to a particular g∗ only by its associated n1.

September 13, 2009 DRAFT



13

Fig. 4. We display the expected cost of using the uniform parameterization in ARAP as a function of the underlying

parameterization in our family of prior knowledge, G. The results are plotted against n̂1, which is a sufficient parameter

for describing our prior knowledge by equations (15-18). In (a), the expected cost is plotted for several sparsity levels. We have

scaled the axes by the maximum expected cost for punif = 0.055 in order to easily interpret the results. We see that across

all possible prior parameterizations, the expected cost when using a uniform prior is nearly constant. Moreover, the expected

cost looks to be a largely linear function of sparsity level. In (b), we zoom in on the behavior for punif = 0.055. We see that

although the expected cost is not uniform everywhere, the maximum variation is less than 1.2e-4 dB (i.e., less than 0.003%

difference), which is practically insignificant in our analysis.

to saying that the expected cost is inversely proportional to the uniformity of the parameterization; i.e.,

as the parameterization becomes more non-uniform, its performance increases.

Note also that performance gains increase as the sparsity level increases. This point is interesting,

in particular, because this is the reverse pattern from the results in [1]. However, the explanation for

this discrepancy is simple: In [1], Bashan considered the alternative energy allocation policy to be an

exhaustive search where higher percentages of energy is wasted as punif decreases. On the other hand,

in these simulations, we consider the alternative energy allocation policy to be ARAP with the uniform

parameterization. Thus, as punif decreases, there are fewer targets for which we can adaptively sample,

and the margin for performance gains decrease. Section IV-B6 discusses the phenomenon in more detail.

Since our primary goal of this research is to determine when it makes sense to use a non-uniform

parameterization over the uniform alternative, we are still mostly interested in the gains shown in Figure

5 (as opposed to comparing to an exhaustive search). However, it should be remarked that a 2 dB gain

over the uniform alternative truly represents a much larger gain over an exhaustive search policy.
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Table 1 shows the expected and worst-case gains with respect to the uniform alternative as well as the

exhaustive search policy. We see that we get expected gains over an exhaustive search of more than 4

dB for all sparsity levels.

Fig. 5. We show the gain in expected cost over the uniform alternative in the best-case scenario, when the underlying prior

parameterization is known. We see that as n̂1 decreases for all sparsity levels (and hence, the prior becomes more non-uniform),

the gains in expected cost over the uniform alternative increase. It is important to observe that these gains are shown with

respect to another adaptive resource allocation policy that already has significant gains over an exhaustive search. See Table 1

for additional discussion. Lastly, note that the gains over the uniform alternative increase as punif increases, which is the reverse

of the pattern found by Bashan [1]. In the limiting case, as punif → 0, we expect there to be no gain by using non-uniform

prior knowledge over a uniform alternative. Section IV-B6 discusses an explanation for this phenomenon.

5) Practical case: when the underlying parameterization is approximated: Now we consider the

practical case, when we have to approximate the underlying parameterization with an element from G. To

get an intuitive sense for the best approximate element, we chose 5 possible approximate parameterizations

for each sparsity level. Figure 6 shows the gain in dB over the uniform alternative as a function of the

underlying parameterization for the case of punif = 0.055. We see several interesting and intuitive patterns

here. First, the gain of an approximate parameterization never outperforms the true parameterization

gain. Second, when an approximate parameterization overestimates the high probability region of the

underlying parameterization, the gain is approximately equal to the best case gain of the approximate

parameterization. This leads us to a lemma:
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TABLE I

GAINS WHEN UNDERLYING PRIOR IS KNOWN

Sparsity Level
Uniform Alternative Exhaustive Search

Expected Gain (dB) Min. Gain (dB) Expected Gain (dB) Min. Gain (dB)

0.01 2.2047 1.6119 4.6261 4.2294

0.0325 3.3999 2.5622 5.4071 4.8460

0.055 3.6257 2.7486 5.3962 4.8028

0.0755 3.7165 2.8053 5.2823 4.6785

0.10 3.7503 2.8217 5.1538 4.5431

Fig. 6. For a fixed sparsity level (punif = 0.055), we show the gain in dB over the uniform alternative when using several

prior parameterizations to approximate all other possible underlying prior parameterizations. This figure presents one of the key

results of this work: when n̂1 > n1, then the gain in expected cost is nearly constant and equal to C(ĝ, ĝ), the gain in expected

cost when ĝ is also the underlying prior. By Lemma 2, we can conclude that minimax solution to equation (20) will always

be the prior parameterization with the largest n1 = nmax
1 . This basic result tells us that we only need to construct our family

of prior knowledge parameterizations, G, so that nmax
1 is greater than the uncertainty we have in our prior knowledge on the

location of the probability regions. If this is done appropriately, then we can always do at least as well as the uniform alternative

(which is just a special case with nmax
1 = Q).

Lemma 1. Let ĝ = (p0, p̂1, n̂1, n̂0) ∈ G be an approximate parameterization. Let g∗ = (p0, p
∗
1, n
∗
1, n
∗
0) ∈

G be an underlying parameterization. If n∗1 < n̂1, then

C(ĝ,g∗) ≈ C(ĝ, ĝ) (22)
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Fig. 7. We display here the worst-case gains over the uniform alternative for several potential approximating prior

parameterizations. For each sparsity level, five approximating prior parameterizations were chosen that were evenly distributed

across
{
nmin

1 , . . . , nmax
1

}
. We see that the worst-case gains are maximized when n1 = nmax

1 for all sparsity levels, which agrees

with Lemma 2.

We are working on proving this formally, but currently we leave it as heuristic knowledge. Moreover,

we see that when n̂1 < n∗1 (i.e., the high probability region is underestimated), then the gains decay

rapidly and drop below zero in some cases.

Figure 7 shows the worst-case gains as a function of the approximating parameterization (i.e., K(ĝ)).

We see that for all sparsities, the worst-case gain is maximized by the element with the highest n1 value.

In other words, the element that overestimates the high probability region for all other parameterizations

in G should be used as the approximating prior if the worst-case criterion is used. This leads us to

another lemma:

Lemma 2. Let ĝ = (p0, p̂1, n̂1, n̂0) ∈ G be an approximate parameterization. Let g∗ = (p0, p
∗
1, n
∗
1, n
∗
0) ∈

G be an underlying parameterization. Then the ĝ that minimizes equation (20) is given by ĝ with n̂1 < n∗1

for all g∗ ∈ G.

Once again we leave this as heuristic knowledge for now. However, we see that the worst-case

gain shown in Figure 7(b) is a monotonically increasing function in n1. The lemma follows from this

observation.
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6) Note on simulations: As mentioned earlier, we fixed particular values for nmin
1 and nmax

1 for the

simulations described above. These values were chosen to satisfy two constraints:

p̂1 ≥ γpunif (23)

p̂1 ≤ β < 1 (24)

For γ > 1, the first constraint enforces that all possible parameterizations are non-uniform. In particular,

for fixed p0 and punif , we see that γ is inversely proportional to nmax
1 . We see intuitively that as nmax

1

approaches Q, γ approaches 1. For the simulations above, we set nmax
1 = 4, 000 so that γ > 1.5 for all

sparsity levels (note that as the sparsity level increases, so does γ).

The second constraint enforces that our prior knowledge is valid for the applications we are looking

at. Clearly, since p̂1 ≤ 1, since it represents a Bernoulli probability. Moreover, for our simulations we

set β < 0.5, so that we don’t violate the sparsity assumption that motivates this research.

Another point is important with regard to selecting nmax
1 in particular. We have seen in our previous

discussion that the approximate element with maximum worst-case gain is the parameterization with

n̂1 = nmax
1 (in the case of uniformly distributed elements in G, this generalizes to the element that

maximizes expected gain as well). Moreover, that gain is approximately equal to the best-case gain of

the parameterization with n∗1 = nmax
1 . Since we have shown that the best-case performance increases as

n∗1 decreases, we can conclude that as nmax
1 decreases, our worst-case (and possibly expected) gain will

increase.

Also, since the performance in Figure 5 is approximately linear, we can conclude that our uncertainty

in nmax
1 will be have a inversely proportional relationship to the worst-case performance. This relationship

may depend on several parameters, such as SNR, Q, and p0, and it may be worthwhile to investigate

this further.

We also decided to fix the SNR to 8 dB for the presented simulations. Bashan [1] showed that for

very low SNR, there was little room for performance gain over an exhaustive search alternative. This

intuitively makes sense, since at very low SNR, all measurements will provide little information since

they will be dominated by noise.

Now consider the situation when we have very high SNR. Bashan showed that as SNR and Q

approach infinity, the gain of using ARAP with a uniform energy allocation at the first step converges to

−10 log punif . Moreover, we can easily see that this result generalizes if assume any prior information

(i.e., not just uniform). This leads us to a third Lemma.
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Lemma 3: The gain of using ARAP with any prior will asymptotically (in SNR) approach −10 log punif

if the number of expected targets is given by Qpunif .

Proof: See Appendix C, which proves a two-fold result. First, ARAP is consistent in the sense that

the posterior probabilities converge to Pr(Ii = 1) in probability with asymptotic SNR. Second, the gain

asymptotically approaches the optimal gain.

Thus, as SNR approaches infinity, we would expect that ARAP will perform nearly identically regard-

less of the assumed prior information. This is corroborated by Figure 1, where we see that the gain in

expected cost asymptotically approaches −10 log punif .

Combining these thoughts, we see that there should be an optimal SNR operating point for which we

can obtain the largest performance gains over using the uniform parameterization alternative. To illustrate

this point, Monte-Carlo simulations were performed for several priors who differed only in their sparsity

level. Figure 8 shows the gains in MSE5, respectively, of using the true parameterization over using the

uniform parameterization. We see that when minimizing MSE we have the largest margin for gain with

SNR values between 8 and 16 dB.

We will now discuss the interesting behavior with respect to decreasing gains in expected cost over the

uniform alternative as punif → 0. Let us consider the limiting situation where punif is very small. Note

that in this case, our measurements will be dominated by noise, since our measurement model gives

yi(1) =
√
λ(i, 1)θiIi + ni (25)

where θi and ni are normally distributed, and E[θi] ≤ 1 (i.e., it doesn’t amplify the signal on average).

Thus, in order to get good performance, we must have high values of SNR. From our previous discussion,

though, we know that when SNR is high, the performances of all ARAP policies with arbitrary priors

will converge to the same value.

For an illustrative example, consider screening for terrorists in an airport. In this situation, we might

expect there to be a terrorist in with probability 1e−7. We could provide a non-uniform prior by assuming

that foreigners were 3x more likely to be terrorists than citizens of that country. However, since the

likelihood of either of these events is still remarkably small, the very large majority of Wi = Pr(Ii = 1)

will be nearly zero, regardless of our prior knowledge. Thus, the second stage allocation will skewed

to favor measurements from cells with targets (i.e., decreasing punif is similar to increasing the SNR).

5MSE is calculated in an identical way to [1]; i.e., we use a naive Bayes estimator based on the measurements at both time

steps to get θ̂i, an estimate of θi, and then calculate the MSE accordingly
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Fig. 8. We display here the results of Monte-Carlo simulations for MSE when comparing using a non-uniform prior versus

the uniform alternative. In (a), we show the absolute MSE versus SNR for three sparsity levels (punif = 0.01, 0.055, 0.1). In

(b), we plot the dB gain of using the non-uniform prior over the uniform alternative. We see that for small SNR values or large

SNR values, the performances are very similar. However, these simulations show that for SNR values in the range of 8-16 dB,

we can get significant gains when using non-uniform prior information.

Therefore, all adaptive energy allocation policies will do very well when comparing against an exhaustive

search as punif decreases.

V. CONCLUSIONS AND FUTURE WORK

In this research, we have extended the work of Bashan regarding optimal allocation of resources

using adaptive sampling. In particular, we have looked at the case where our prior knowledge can be

represented as two-level piecewise uniform that is drawn from a family of parameterizations describing

that knowledge. Analytical expressions have been derived for the density on energy allocation policies

obtained from suboptimal ARAP, as well as the expected cost.

We have shown that if the underlying parameterization is known, then significant gains over using

uniform prior knowledge can be attained. These gains were seen to decrease in an approximately linear

fashion with the size of the high probability region, and the slope of the decrease was not dependent on

the sparsity level.

In any practical application, however, the underlying parameterization is unknown. In this case, we

have shown heuristically that we can find a particular parameterization that maximizes the worst-case gain
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and the expected gain under certain assumptions. This ”minimax” solution depends solely on a single

parameter (nmax
1 ) of the overarching family of parameterizations, and thus, we have observed that the

uncertainty in our prior knowledge is inversely proportional to the maximum worst-case performance; i.e.,

a linear increase in our uncertainty (represented through an increase in nmax
1 ) will result in a proportional

decrease in the maximum worst-case performance.

Our future work consists of several goals. In the near future, we would like to prove the lemmas

described in this paper, as well as apply our analysis (at least in a Monte-Carlo sense) to more realistic

cost functions, such as MSE and detection probability of error. Moreover, we would like to explore

the performance difference between using suboptimal ARAP (for which analysis was tractable) and

optimal ARAP. More importantly, we would like to show that we can extend our analysis to more

general families of prior knowledge, so that we can broaden ARAP to a general multi-stage energy

allocation policy. Monte-Carlo simulations have led us to believe that general priors can be decomposed

into approximately piecewise uniform priors, for which the analysis in this paper would be useful.

APPENDIX A. DERIVATION OF PRIOR DENSITY ON ENERGY ALLOCATION POLICIES

A. Assumptions:

For this derivation, we will assume that the following are known a priori:

1) g∗ = (n∗0, n
∗
1, p
∗
0, p
∗
1), the underlying prior distribution parameters for which the targets follow the

model:

Pr(Ii = 1) =

 p∗0, i ∈ {1, 2, . . . , n∗0}

p∗1, i ∈ {n∗0 + 1, . . . , n∗0 + n∗1}
(26)

2) g = (n0, n1, p0, p1), the assumed prior distribution parameters.

3) i, the cell whose energy allocation prior we are calculating. Note that this defines p∗i , the underlying

Bernoulli probability for the existence of a target in this cell, and pi, the assumed Bernoulli

probability for the existence of a target in this cell.

4) λT , the total amount of energy allocated across all time steps

5) α, the percentage of energy allocated at the first time step (i.e.,
∑Q

j=1 λ(i, 1) = αλT ).

6) Q = n∗0 + n∗1 = n0 + n1 is very large (in the thousands).

7) n0, n1, n
∗
0, n
∗
1 are quite large (at least in the hundreds)

8) The measurements follow the model:

yi(t) =
√
λ(i, 1)θiIi + νi(t) (27)
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where θi ∼ N (µθ, σ2
θ), νi(t) ∼ N (0, 1), θi and νi(t) are independent of each other, and νi(t) is

independent across time.

9) {λ(i, 1)}, the deterministic set of energy allocations at the first time step, based on the assumed

prior information, where

λ(i, 1) =
αλT
√
pi

Q∑
j=1

√
pj

(28)

We also assume that we are allocating energy at the second step based on the suboptimal ARAP algorithm,

in order to ignore ordered statistics. Note that [1] found that suboptimal ARAP to have nearly the same

performance as optimal ARAP. Under this assumption, we have

λ(i, 2) =
(1− α)λT

√
Wi

Q∑
j=1

√
Wj

=
(1− α)λTZi

Q∑
j=1

Zj

(29)

where Zi =
√
Wi =

√
Pr(Ii = 1| {yj(1)}Qj=1)6.

B. Monotonic transformation

First, we note that Zi is a function of the measurements {yj(1)}Qj=1 only through yi(1). Then, from

Bayes rule, we can rewrite

Wi = Pr(Ii = 1|yi(1)) =
Pr(yi(1)|Ii = 1) Pr(Ii = 1)

Pr(yi(1)|Ii = 1) Pr(Ii = 1) + Pr(yi(1)|Ii = 0) Pr(Ii = 0)
(30)

=
1

1 + Pr(yi(1)|Ii=0) Pr(Ii=0)
Pr(yi(1)|Ii=1) Pr(Ii=1)

(31)

From our assumptions above, we have Pr(Ii = 1) = pi = 1− Pr(Ii = 0) where pi is equal to p1 or p0

depending on i. Moreover, from our measurement model, we know

yi(1)|Ii ∼ N (
√
λ(i, 1)µθIi, 1 + λ(i, 1)σ2

θIi) (32)

Therefore, we have

Zi =
(

1 +
1− pi
pi

√
1 + λ(i, 1)σ2

θ exp
{
− 1

2(1 + λ(i, 1)σ2
θ)

(
y2
i (1)λ(i, 1)σ2

θ + 2µθ
√
λ(i, 1)yi(1)− λ(i, 1)µ2

θ

)})−0.5

(33)

6In [1], Wi is given in a more general form with a tunable parameter for determining how much energy should be devoted

to the ROI as well as its complement. We are looking at the specific case where all energy is devoted to estimating the ROI

only, which gives this specific form for Wi
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To make this derivation easier, let us define another variable

Xi = − 1
2(1 + λ(i, 1)σ2

θ)

(
y2
i (1)λ(i, 1)σ2

θ + 2µθ
√
λ(i, 1)yi(1)− λ(i, 1)µ2

θ

)
(34)

Then, we see that we can write Zi as a monotonic transformation of Xi, so that Zi = h(Xi), where

h(x) =
(

1 + ex
1− pi
pi

√
1 + λ(i, 1)σ2

θ

)−0.5

(35)

Since h is monotonic, we can write our density on Z(i) as

fZi(z) = fXi(h
−1(z)) · |(h−1)′(z)| (36)

= fXi

ln(z2 − 1) + ln

 pi
1− pi

· 1√
1 + λ(i, 1)σ2

θ

 · 2
z3 − z

(37)

C. Density on Xi

From equation (34), we see that Xi is a quadratic function of yi(1). In particular, we can write

Xi = ayi(1)2 + byi(1) + c (38)

for

a = −
λ(i, 1)σ2

θ

2(1 + λ(i, 1)σ2
θ)

(39)

b = −
2µθ
√
λ(i, 1)

2(1 + λ(i, 1)σ2
θ)

(40)

c =
λ(i, 1)µ2

θ

2(1 + λ(i, 1)σ2
θ)

(41)

Noting that a is negative, we see that Xi is a concave function, and has a maximum at

dXi

dyi(1)
= 0↔ yi(1) = −b/2a = −

2µθ
√
λ(i, 1)

λ(i, 1)σ2
θ

(42)

Thus, FXi(x) = Pr(Xi ≤ x) = 0 for x ≥ −2µθ
√
λ(i,1)

λ(i,1)σ2
θ

. Equivalently, fXi(x) = 0 for x ≥ −2µθ
√
λ(i,1)

λ(i,1)σ2
θ

.

For any other x, we have

FXi(x) = Pr(Xi ≤ x) (43)

= Pr(ayi(1)2 + byi(1) + c− x ≤ 0) (44)

= Pr(r1(x) ≤ yi(1) ≤ r2(x)) (45)
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where {r1(x), r2(x)} = −b∓
√
b2+4a(x−c)

2a are the roots of ayi(1)2 +byi(1)+c−x = 0, and r1(x) ≤ r2(x).

Noting that yi(1) is conditionally Gaussian given Ii, we have the following expression for the density

on yi(1):

fyi(1)(y) = fyi(1)|Ii(y|1)p∗i + fyi(1)|Ii(y|0)(1− p∗i ) (46)

=
p∗i√

2π(1 + λ(i, 1)σ2
θ)

exp

{
−

(y −
√
λ(i, 1)µθ)2

2(1 + λ(i, 1)σ2
θ)

}
+

1− p∗i√
2π

exp
{
−y

2

2

}
(47)

where p∗i is the underlying Bernoulli probability of the location of a target (i.e., the ideal probability, not

the assumed one). With this density, we can define

fXi(x) =
d

dx
FXi(x) =

d

dx

∫ r2(x)

r1(x)
fyi(1)(y)dy (48)

Lastly, by Leibniz’s rule, we see that for x < −2µθ
√
λ(i,1)

λ(i,1)σ2
θ

we have

fXi(x) =
fyi(1)(r1(x)) + fyi(1)(r2(x))√

b2 + 4a(x− c)
(49)

yielding the final density on Xi as

fXi(x) =


fyi(1)(r1(x))+fyi(1)(r2(x))√

b2+4a(x−c)
, x < −2µθ

√
λ(i,1)

λ(i,1)σ2
θ

0, else

(50)

Putting equations (37) and (50) together provide the density on Zi.

D. Beta density approximation

Looking at the shape of fZi(z), it was suggested that we could possibly use the beta density defined

by

f(k;α, β) =
kα−1(1− k)β−1

B(α, β)
(51)

for random variable K. where B(α, β) is the beta function. For this distribution, we know that

E[K] =
α

α+ β
(52)

E[K2] =
α(α+ 1)

(α+ β)(α+ β + 1)
(53)

Since our earlier derivations give us analytical solutions to find E[Z] and E[Z2], we can use the previous

two equations to solve a system of 2 equations with 2 unknowns, yielding the beta density parameters, α

and β. However, when this is done, we have found that Kolmorogov-Smirnov tests rejected these densities
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as being good approximations to fZi (and hence fλ2(i) or fΛi). Thus, we conclude that we cannot use

the beta density for our analysis.

On the other hand, an eye test shows that the shape of the beta density still resembles fZi , which we

may find useful for theoretical proofs further in our analysis.

E. Density on λ(i, 2)

In general, the denominator of equation (29) involves the summation of thousands of independent

random variables. An explicit density could theoretically be calculated as the convolution of the densities

of each of the r.v.’s, but this is not possible in practice. However, since Q is large, we can exploit laws

of large numbers in order to create an approximation to the density. First, we note that
Q∑
j=1

Zj =
∑
j∈R00

Zj +
∑
j∈R01

Zj +
∑
j∈R10

Zj +
∑
j∈R11

Zj , (54)

where we define the regions Rmn to be the region where the underlying model has the Bernoulli

probability pm, while the assumed model has the Bernoulli probability pn. Within each region, the

Zj are identically distributed and independent. Moreover, we can reasonably assume the following:

1) Either a region will have a very large number of i.i.d. random variables, in which case a law of

large numbers will apply, or

2) The region will have few i.i.d. random variables, but the overall sum will be dominated by the

other partial sums. Thus, even a bad approximation to this partial sum will result in little overall

error.

1) CLT approximation: Let us assume that E[Zj |j ∈ Rmn] = µmn, V ar[Zj |j ∈ Rmn] = σ2
mn, and

nmn = |Rmn|. Then, by the CLT we have

1
√
nmn

∑
j∈Rmn

Zj − µmn
σmn

∼ N (0, 1) (55)

or equivalently ∑
j∈Rmn

Zj ∼ (nmnµmn, nmnσ2
mn) (56)

Thus, our denominator is normally distributed since it is the linear combination of normal variables:
Q∑
j=1

Zj ∼ N (µden, σ2
den) (57)
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where µden =
∑

m∈{0,1}
n∈{0,1}

µmn and σ2
den =

∑
m∈{0,1}
n∈{0,1}

σ2
mn Since both the numerator and denominator is random

in equation 29, we must compute the density of a ratio of two dependent variables 7. Let us consider the

ratio

A =
βZ

T
(58)

Then we know that

fA(a) =
d

da
Pr(A ≤ a) =

d

da

{∫ ∞
−∞

Pr
(
βZ

T
≤ a|T = t

)
fT (t)dt

}
(59)

=
d

da

{∫ ∞
−∞

Pr
(
Z ≤ at

β

∣∣T = t

)
fT (t)dt

}
(60)

=
∫ ∞
−∞

d

da

{
FZ|T

(
at

β

∣∣t)} fT (t)dt (61)

=
∫ ∞
−∞

t

β
fZ|T

(
at

β

∣∣t) fT (t)dt (62)

=
∫ ∞
−∞

t

β
fT |Z

(
t
∣∣at
β

)
fZ

(
at

β

)
dt (63)

(64)

From this, we see see that for T =
∑Q

j=1 Zj and β = (1− α)λT , we have

fλ(i,2)(λ) =
∫ ∞
−∞

t

(1− α)λT
fT |Z

(
t
∣∣ λt

(1− α)λT

)
fZ

(
λt

(1− α)λT

)
dt (65)

Note that given Zi = z, T =
∑Q

j=1 Zj ∼ N (µden+(z−µi), σ2
den−σ2

i ) for E[Zi] = µi and V ar[Zi] = σ2
i ,

so all of the quantities in the equation above are known.

2) Strong law of large numbers approximation: The CLT gives a good approximation to the distribution

of the denominator. However, using this method also requires that we calculate an additional integral

that is not easily computable (or numerically approximated). Since we have thousands of observations,

however, we can use the SLLN to approximate the denominator as just the mean of all of the elements

of the sum. Then,

fλ(i,2)(λ) =
µden

(1− α)λT
fZi

(
µdenλ

(1− α)λT

)
(66)

3) Chebyshev’s law of large numbers: This is actually identical in form to the CLT above, except that

we use Chebyshev’s justification for using the mean, since from his notes On mean values, he shows

that as the number of independent variables goes to infinity, the sample mean approaches the average of

the means of the variables almost surely.

7Note that we can make the approximation that the denominator is independent of the numerator. This does not reduce the

complexity greatly though, so we include the full analysis here
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APPENDIX B. DERIVATION OF CLOSED-FORM EXPRESSION FOR EXPECTED COST

F. A note on Wi = Pr(Ii = 1|Y (1))

Recall that we defined Wi = Z2
i = Pr(Ii = 1|Y (1)). In the absence of a true model, we had to

approximate the true quantity Pr(Ii = 1) = p∗i with Pr(Ii = 1) ≈ pi. Let M2
i = Pr(Ii = 1|Y (1)), where

we note that Z2
i ≈M2

i if pi ≈ p∗i . Then, we can write

M2
i =

(
1 +

Pr(yi(1)|Ii = 0) Pr(Ii = 0)
Pr(yi(1)|Ii = 1) Pr(Ii = 1)

)−1

(67)

=
(

1 +
1− p∗i
p∗i

· Pr(yi(1)|Ii = 0)
Pr(yi(1)|Ii = 1)

)−1

(68)

and

Z2
i =

(
1 +

1− pi
pi

· Pr(yi(1)|Ii = 0)
Pr(yi(1)|Ii = 1)

)−1

(69)

Clearly, we see that if we let γ = Pr(yi(1)|Ii=0)
Pr(yi(1)|Ii=1) , then

Z2
i =

(
1 +

1− pi
pi

γ

)−1

(70)

or equivalently

γ =
pi

1− pi
(Z−2

i − 1) (71)

So that we can write M2
i explicitly in terms of Zi:

M2
i =

(
1 +

1− p∗i
p∗i

· pi
1− pi

(Z−2
i − 1)

)−1

=
(
1 + β(Z−2

i − 1)
)−1 =

Z2
i

β + (1− β)Z2
i

(72)

for β = 1−p∗i
p∗i
· pi

1−pi . Let us define g(x) as

g(x) =
x2

β + (1− β)x2
(73)

Then, clearly we have M2
i = g(Zi), which will be useful in the next section.

G. An expression for the expected cost

Now let’s explore the quantity

E[J(Λ)] = E

 Q∑
j=1

Ij
Λj

 =
Q∑
j=1

E

[
Ij
Λj

]
(74)

We assumed that Ij are independent for all j. Thus, we can write

E[J(Λ)] =
Q∑
j=1

E

[
Ij
Λj

]
=

∑
n∈{0,1}
m∈{0,1}

 ∑
j∈Rmn

E

[
Ij
Λj

] (75)
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where all j ∈ Rmn are identically distributed. Once the expectation has been taken, the quantity is no

longer random. Thus, we can find a final expression for the expectation as:

E[J(Λ)] =
Q∑
j=1

E

[
Ij
Λj

]
=

∑
n∈{0,1}
m∈{0,1}

nmnE

[
Ij
Λj

∣∣∣∣j ∈ Rmn] (76)

Now consider the quantity inside the sum. We can find an equivalent representation as

E

[
Ij
Λj

∣∣∣∣j ∈ Rmn] = E

[
E

[
Ij
Λj

∣∣∣∣Y (1), j ∈ Rmn
]]

(77)

= E

[
E[Ij |Y (1)]

Λj

∣∣∣∣j ∈ Rmn] (78)

= E

[
Pr(Ij = 1|Y (1))

Λj

∣∣∣∣j ∈ Rmn] (79)

= E

[
R2
j

Λj

∣∣∣∣j ∈ Rmn
]

(80)

Dropping the conditioning on region for clarification in notation, we see that we can write

E

[
Ij
Λj

]
= E

[
R2
j

Λj

]
= E

[
g(Zj)

Λj

]
(81)

=
∫ ∞
−∞

E

[
g(Zj)

Λj

∣∣∣∣Λj = k

]
fΛj (k)dk (82)

=
∫ ∞
−∞

1
k
E

[
g(Zj)

∣∣∣∣Λj = k

]
fΛj (k)dk (83)

Now we note that Λj = λ(j, 1) + λj(2) so that fΛj (k) = fλj(2)(k − λ(j, 1)). Making the change of

variables k′ = k − λ(j, 1), we can rewrite the integral as:

E

[
Ij
Λj

]
=
∫ ∞
−∞

1
k′ + λj(1)

E

[
g(Zj)

∣∣∣∣λj(2) = k′
]
fλj(2)(k

′)dk′ (84)

Now we just need to deal with the conditional expectation. In particular, since we are dealing with

expectation of a function of Zj given λj(2), we just need the distribution on Zj |λj(2). Clearly, by

equation 29, we can write

(1− α)λTZi = λ(i, 2)
Q∑
j=1

Zj (85)

Zi ((1− α)λT − λ(i, 2)) = λ(i, 2)
Q∑
j=1
j 6=i

Zj (86)

Zi =
λ(i, 2)

(1− α)λT − λj(2)

Q∑
j=1
j 6=i

Zj (87)
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Thus, if we know λ(i, 2), then Zi is random only through the summation term. This quantity can be

easily seen to be the same quantity approximated in sections 1.5.1 through 1.5.3. Thus, either Zi|λ(i, 2)

will be normally distributed with mean β(λ(i, 2)) · (µden − µi) and variance β2(λ(i, 2)) · (σ2
den − σ2

i )

(CLT approximation) for

β(λ) =
λ

(1− α)λT − λ
, (88)

or it will be a deterministic quantity with value β(λ(i, 2)) · (µden−µi) (Strong Law of Large Numbers)8.

In the former case, we have

E
[
g(Zj)|λj(2) = k′

]
=
∫ ∞
−∞

g(z)√
2πβ2(k′)(σ2

den − σ2
i )

exp
{
−(z − β(k′)(µden − µi))2

2β2(k′)(σ2
den − σ2

i )

}
dz (89)

In the latter case

E
[
g(Zj)|λj(2) = k′

]
= g

(
β(k′) · (µden − µi)

)
(90)

Plugging either of these into equation (84) yields the quantity E[Ij/Λj ] for any j. Plugging these quantities

into equation (76) yields the expected cost.

APPENDIX C. PROOF OF ASYMPTOTIC SNR RESULT

We will show that as SNR goes to infinity, the gain of using optimal ARAP approaches −10 log punif

where punif = E
[
|Ψ|
Q

]
. Note that we do not make any assumptions on pi. If pi = q for all i, then we

have a uniform prior knowledge.

a) Consistency: Define H0 to be the event that a target does not exist at cell i (i.e., Ii = 0) and

H1 to be its complement event (i.e., Ii = 1). Then we see that the posterior probabilities {pIi|Y (1)} can

be rewritten as

pIi|y(1) =
pif1(y(1))

pif1(y(1)) + (1− pi)f0(y(1))
(91)

Under H0, we know that Pr(Ii = 1) = pi = 0, which by the above equation yields pIi|y(1) = 0 = pi.

Otherwise, we have

pIi|y(1) =
1

1 + 1−pi
pi

f0(y(1))
f1(y(1))

, (92)

where fj(y(1)) denotes the probability density function (pdf) of a specific observation conditioned on

Hj for j = 0, 1, and noting pi > 0. Moreover, according to equation (32) we see that y(1) is Gaussian

when conditioned on either H0 or H1, and 1−pi
pi

f0(y(1))
f1(y(1)) ∝

1
LRT , where the likelihood ratio test (LRT) is

8As before, µi = E[Zi] and σ2
i = V ar[Zi].
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between two Gaussian distributions. Therefore, the posterior probability pIi|y(1)|H1 → 1 since it follows

the performance of an LRT for a simple binary hypothesis testing problem with a Gaussian distribution.

Recall that an LRT is the uniformly most powerful test for distinguishing between two Gaussians with

µ1 > µ0, where µr is the mean conditioned on Hr and r = 0, 1. Therefore, under either H0 or H1, we

have shown pIi|y(1) → pi, which concludes the proof of consistency.

b) Asymptotic gain: Now that we know pIi|y(1) → pi, we can show that the gain using any general

prior approaches the optimal gain as SNR increases asymptotically. Following the proof of a similar

result in [1], we know that we can order the posterior probabilities so that wi (i.e., a realization of Wi)

is equal to 0 for all τ(i) ≤ k̃ and 1 for all τ(i) > k̃, where (̃·) represents an ordering transformation. In

this case, k̃ = Q−
∑Q

i=1 I(wi = 1). Thus, we see that |Ψ| = Q− k̃.

Assume that we know the 1st stage allocations, {λ1(i)}Qi=1. Then, from [1], equation (136), we know

that

λ2(i) =


λT −

k̃∑
j=1

λ1(τ(j))

Q∑
j=k̃+1

√
wτ(j)

√
wτ(i) − λ1(τ(i))

 I(τ(i) > k̃) (93)

But we know that wτ(j) = 0 for j ≤ k̃ and wτ(j) = 1 for j > k̃, giving:

λ2(i) =


λT −

k̃∑
j=1

λ1(τ(j))

Q− k̃
− λ1(τ(i))

 I(τ(i) > k̃) (94)

Since, Λi = λ1(i) + λ2(i), we have

Λi =


λ1(i), τ(i) ≤ k̃

1
Q−k̃

(
λT −

k̃∑
j=1

λ1(τ(j))

)
, else

(95)

So the expected cost is

E[J(Λ)] = E

[
Q∑
i=1

Ii
Λi

]
= E

 k̃∑
i=1

Iτ(i)

Λτ(i)

+ E

 Q∑
i=k̃+1

Iτ(i)

Λτ(i)

 (96)

Note in the first sum, we know that wτ(i) = 0 and Wi → Ii. Thus, for high SNR, the first sum is equal

to 0, yielding:

lim
SNR→∞

E[J(Λ)] = E

 Q∑
i=k̃+1

1
Λτ(i)

 = E


Q∑

i=k̃+1

Q− k̃

λT −
k̃∑
j=1

λ1(τ(j))

 (97)
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Since the term inside of the expectation operator is monotonically increasing in {λ1(τ(j))}k̃j=1, the

expected cost will be minimized when all of λ1(i) = 0 (note that the expected cost does not depend on

τ(i) > k̃). Thus, we have

lim
SNR→∞

E[J(Λ)] = E

 Q∑
i=k̃+1

Q− k̃
λT

 = E

[
(Q− k̃)2

λT

]
= E

[
|Ψ|2

λT

]
(98)

Noting that |Ψ| is a Binomially distributed variable with mean Qpunif , we arrive at our final expression

for the asymptotic cost:

lim
SNR→∞

E[J(Λ)] =
(Qpunif )2 +Qpunif (1− punif )

λT
(99)

which we now recognize as the minimal cost from [1]. Thus, we have G(Λ) = G(Λ0) = −10 log punif ,

where Λ0 is the optimal energy allocation policy that distributes energy equally across the ROI, and G(·)

is the gain in expected cost over the exhaustive search.
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