
Performance Analysis of Physical Layer Network

Coding

by

Jinho Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2009

Doctoral Committee:

Professor Wayne E. Stark, Chair
Professor Kim A. Winick
Associate Professor Achilleas Anastasopoulos
Associate Professor Harm Derksen



ABSTRACT

Performance Analysis of Physical Layer Network Coding

by

Jinho Kim

Chair: Wayne E. Stark

Network coding has emerged as an innovative approach to network operation that

can significantly enhance network throughput. The key goal of this thesis is to under-

stand fundamental aspects of physical layer network coding, where network coding is

performed at the physical layer.

As a simple but typical example of network coding, we consider a network scenario

where two users transmit messages through a common channel and the receiver recon-

structs the exclusive-or of the two messages. For this channel, we investigate the error

exponent which can provide guidelines for the design of efficient communication systems

using network coding. From a practical point of view, we examine the performance of

channel codes for this problem. Assuming that each user transmits data using the same

low-density parity-check (LDPC) code and each link is an additive white Gaussian noise

channel, we evaluate the noise thresholds of LDPC codes via density evolution methods.

Other important issues considered in this thesis are related to transmission over

fading channels. First, we study the performance of LDPC codes over non-ergodic

fading channels. In non-ergodic channels, reliable communication at a constant rate is

impossible. Assuming that the fading coefficient is randomly chosen but fixed during

transmission of an LDPC codeword, we derive the outage probability of LDPC-coded

systems. We also propose an accurate frequency domain channel estimator based on the



Slepian basis expansion. The proposed scheme operates with high accuracy requiring

only the knowledge of the maximum delay spread of the channel. Finally, we inves-

tigate the capacity achieving input of non-coherent Rayleigh fading channels taking

into account power constraints imposed by a non-linear power amplifier. We show that

the optimal input is discrete with finite support which indicates that capacity can be

computed using finite dimensional optimization.
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CHAPTER 1

Introduction

For decades, the demand in network capacity has continued to increase to support

high data rate services such as high speed internet and multimedia applications. The

future wireless communication systems are required to meet such growing demands

with high spectral efficiency, low energy consumption and high mobility. Consider a

network consisting of source nodes, destination nodes and intermediate nodes. Each

source node wants to distribute its own message to a set of destination nodes with

help of intermediate nodes. Given limited resources such as bandwidth and energy,

questions of what is the best performance that the network can support and how it can

be achieved efficiently are central problems in wireless network design.

In traditional communication networks, information to be sent from a source node to

a destination node is conveyed through a series of intermediate nodes in the network by

store-and-forward switching. This method has been a dominant technique for sending

data over a network, in which relay nodes decode the received data and merely forward

these to the next node without modifying the contents of the original data.

Recently, network coding has emerged as a new paradigm for communication in

networks which provides the potential to increase network capacity significantly [1]-[3].

Due to its broad range of potential applications, network coding has received increasing

research interest in information theory, networking and many other fields. In contrast to

store-and-forward approaches where the function at an intermediate node is restricted
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Figure 1.1: Example for network coding (butterfly network)

to that of a switch, the key idea of network coding is to allow an intermediate node to

mix and process information from multiple links. In this way, the amount of information

transmitted through the network can be reduced and hence the network throughput can

be increased. This is well illustrated by the butterfly network example in Fig. 1.1 in [1].

In Fig. 1.1, a source node S wants to transfer two bits a and b to both receivers R1 and

R2 through the network. Each link in the network is assumed to be error free with unit

capacity. When store-and-forward is used, each intermediate node replicates what it

receives and then forward it to neighborhood nodes. With store-and-forward switching,

the network throughput of the butterfly network is dictated by the bottleneck node W .

Since the capacity of the link between W and X is one, the node W transmits one bit at

a time. In this way, 10 transmissions are required to complete data transfer. However,

when network coding is applied, the bottleneck node W can mix incoming data a and

b and compute the exclusive-or (XOR) of the two. Since R1(R2) knows both a(b) and

a ⊕ b it can also figure out b(a) by taking the XOR of a(b) and a ⊕ b. With network

2



coding, only 9 transmissions are needed hence we can save bandwidth and energy. For

multicast problems in lossless wired networks, it has been shown that the max-flow

min-cut upper bound can be achieved with network coding while it is not possible with

traditional store-and-forward technique [1].

Network coding was first introduced in wired networks. Recently there have been

efforts to apply network coding to wireless networks. In [4], by utilizing broadcast-

ing nature of wireless medium, physical layer network coding (PNC) was proposed

which can further improve the network performance. In PNC, the relay computes the

desired function from simultaneously transmitted signals by suitable modulation and

demodulation. In [6], Nazer et al. studied the problem of recovering a function of

data simultaneously transmitted from multiple number of sources through a common

channel and found an achievable rate for this channel.

For this type of channel, the capacity is unknown in general. Therefore, it is im-

portant to study other meaningful performance measures such as an error exponent so

that the system behavior can be understood and used for efficient system design. This

is the motivation of a major part of this thesis. Another important issue in this prob-

lem is the performance of practical channel codes combined with network coding. We

analyze the performance of PNC with each user using low-density parity-check (LDPC)

codes. The rest of research topics discussed in this thesis are related to communication

over fading channels. First, we consider LDPC-coded systems operating in slow fading

channels and derive a closed form of the outage probability. Such analysis is required

to evaluate the performance of communication systems in slow fading channels. Next,

we propose an effective frequency domain channel estimation scheme for orthogonal

frequency division multiplexing (OFDM) systems. This channel estimator is based on

the Slepian basis expansion and can operate with less complexity and without much

prior information about the channel. Finally, we investigate the capacity-achieving in-

put of non-coherent Rayleigh fading channels subject to practical power constraints.
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To reflect practical power constraints, we consider the effect of the characteristic of the

non-linear power amplifier on the channel input.

1.1 Research Topics and Contributions

In this section, we present research topics covered in this thesis and contributions

in each topic.

1.1.1 Error Exponent of Exclusive-Or Multiple Access Chan-

nels

Since the seminal work of Ahlswede et al. [1], there has been considerable interest in

understanding fundamental aspects of network coding due to its potential to improve

the efficiency of wireless networks. In [1], it was demonstrated that network coding has

advantages over conventional store-and-forward for multicast problems where one source

node distributes data to multiple destination nodes through the network. Furthermore,

it was proved that the max-flow min-cut upper bound on the capacity can be achieved

with network coding for multicast networks. In [2], this problem was formulated in

an algebraic framework and linear network coding, in which relay nodes compute and

forward linear combinations of incoming data they receive, was shown to be good enough

to achieve the capacity of multicast networks. Similar results were also given in [3].

In the work of [1]-[3], each node in the network transmits information at a rate

below the channel capacity so that each link is assumed to be error-free. Then network

coding is employed at the network layer for subsequent transmission. Recently several

studies suggested that network coding can be performed at the physical layer for further

performance improvement [4]-[6]. In [4], physical layer network coding (PNC) was

first introduced, in which network coding is performed by suitable modulation and

demodulation at the relay. The main idea is to recognize that the relay does not

4



need to determine each message but to compute the desired function of transmitted

messages. In [5], analog network coding (ANC) was considered where the relay does

not compute the desired function but simply amplifies and forwards incoming signals

from multiple links so that the destination node can compute the desired function of

messages. However with these approaches, error control coding is not possible at the

relay. From an information theoretic point of view, Nazer et al. considered the problem

of recovering a function of sources over a multiple-access channel (MAC) [6]. In [6],

an achievable rate was provided and furthermore the usage of structured codes for this

channel was investigated.

A typical example of network coding scenarios is a three-node network in which the

receiver wants to compute the XOR of two users’ information bits transmitted through

a MAC. We call this type of channel the exclusive-or multiple access channel (XMAC).

In our study, we address a fundamental problem of understanding the performance of

network coding over the XMAC. The capacity of the XMAC is still unknown in general

except for special cases. In [6], the capacity for a specific class of MAC, called the

symmetric linear MAC was found. In this study, we are interested in finding other

meaningful performance measures such as the error exponent and the cutoff rate of the

XMAC.

We consider two possible network strategies. First, given the channel output, the re-

ceiver recovers transmitted messages from two user nodes separately and then computes

the XOR of the two messages. We call this approach a multiple-access channel (MAC)

strategy and this strategy converts the original problem into a standard MAC problem.

In the MAC strategy, we allow time-sharing of the channel among two users so that

the interference from the other user can be avoided. Another strategy considered is one

where the receiver obtains the XOR directly from the channel output. We call this ap-

proach a physical layer network coding (PNC) strategy. Since the error exponent of the

MAC has been well studied in the literature [10]-[15], we focus on the PNC strategy in

5



our work. For both random codes and linear codes, we derive the error exponent of the

XMAC when the PNC strategy is applied. For random codes, an upper bound on the

error probability is obtained using Gallager’s random coding technique [16]. For linear

codes, we extend the Shulman-Feder bound [17] to the XMAC. Moreover, we introduce

the cutoff rate of the XMAC and evaluate it for the Gaussian XMAC. Analytical and

numerical results indicate that in terms of cutoff rate, the PNC strategy shows better

performance than the MAC strategy in the high rate region while the MAC strategy

performs better in the low rate region.

1.1.2 Performance of LDPC Codes over Exclusive-Or Multiple

Access Channels

Most studies of physical network coding have focused on finding the maximal achiev-

able rate for various operations at the relay node including decode-and-forward and

amplify-and-forward. However, the problem of how to achieve reliable communication

with practical channel codes has not attracted much attention in the literature. This

motivates us to investigate the use of error correcting codes over the XMAC. If the

same linear codes are applied to both user nodes, the XOR of the two users’ message

can also be protected by error correcting codes since the mod 2 sum of two codewords,

in this case, is also a valid codeword.

In point-to-point communication systems, low-density parity-check (LDPC) codes

are one of the most promising error correcting codes and show reliable performance

close to channel capacity. In this study, we analyze the performance of LDPC codes

over the XMAC. We consider a Gaussian XMAC in which the output at the relay is

the sum of transmitted signals plus Gaussian noise. In this work, we only consider the

PNC strategy such that two user nodes transmit signals simultaneously and the relay

node computes the XOR of the two users’ data directly from the channel output.

In [29], density evolution was proposed to analyze the asymptotic performance of
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LDPC codes under message passing decoding algorithm. This tool is based on the as-

sumption that the density of messages to be exchanged does not depend on codewords.

However, in the Gaussian XMAC, we may have different likelihoods of the two users

transmitting different information (0 and 1 or 1 and 0) than we do about them transmit-

ting the same data (both 0 or both 1). In this case, the density of messages can depend

on the codeword. For such asymmetric cases, Wang et al. proposed a modified density

evolution technique which keeps track of the density of messages averaged over all valid

codewords [25]. Using this technique, we calculate the noise thresholds of LDPC codes

over the XMAC. Our numerical results show that LDPC codes have reliable perfor-

mance at rates close to the achievable rate which can be obtained from error exponent

results. In the Gaussian XMAC, transmitted signals from two user nodes may arrive

with different phases. In this work, we also evaluated the effect of phase difference on

the performance of LDPC codes via density evolution techniques.

1.1.3 Outage Probability of LDPC-coded Systems

Due to the growing interest in mobile wireless communications, it is important to

determine the performance limit over the time-varying channel. Ergodic capacity, which

is concerned with maximizing transmission rate averaged over all channel states, is a

good performance measure in a fading environment. Depending on the assumptions on

the availability of channel side information (CSI), there have been many studies on the

capacity of fading channels [26]-[28]. In [26], Goldsmith et al. obtained the capacity of

fading channels with CSI at both transmitter and receiver and at the receiver alone.

They showed that when CSI is available at both transmitter and receiver, the capacity

can be achieved by adapting resources such as transmission power and rate based on the

channel state. In [27], Caire et al. presented capacity results for some fading channels

(with or without memory) under various assumptions on CSI. The effect of imperfect

CSI on the capacity was evaluated in [28]. To achieve ergodic capacity, an infinite
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codeword length is required so that the codeword can experience all possible channel

states. However, for non-ergodic channels, a codeword may face deep fading during its

transmission and the number of errors may be beyond the error-correcting capability

of the channel code employed. For such cases, outage capacity, the maximal achievable

rate with an acceptable outage probability, can be a more useful performance measure

than ergodic capacity.

In this work, we study the outage probability of LDPC-coded systems over slow

fading channels. We assume that channel state is randomly chosen but fixed during

transmission of an LDPC codeword. We also assume that the transmitter knows the

statistics of fading process while the receiver has perfect or imperfect CSI. The outage

occurs when the signal-to-noise ratio (SNR) falls below an acceptable threshold hence

the successful decoding under message passing algorithm is not possible. Under these

assumptions, the outage probability is derived for both Rayleigh and Rician fading

channels in a closed form. The effect of imperfect CSI at the receiver on the outage

probability is also investigated. Then a similar method is applied to LDPC-coded

code-division multiple-access (CDMA) systems to determine the outage probability.

1.1.4 Frequency Domain Channel Estimation Based on the

Slepian Basis Expansion

The presence of multipath between the transmitter and the receiver causes severe

performance degradation. Orthogonal frequency division multiplexing (OFDM) has

been widely used in wireless communication systems due to its robustness against fre-

quency selective fading and inter-symbol interference (ISI). Although OFDM can con-

vert the frequency selective fading channel into a set of flat fading subchannels, data

conveyed on each subchannel still suffer from fading. Therefore accurate channel esti-

mation is required to achieve the maximum transmission rate or the minimum energy

consumption.
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Many channel estimators for OFDM systems have been proposed in the literature.

For some channel estimation schemes such as minimum mean square error (MMSE)

channel estimator, it is required for a receiver to know the channel statistics. However,

it may be difficult or unavailable to obtain in many practical systems. Furthermore, it

is known that a mismatch in channel modeling imposes limitations on the performance

of such channel estimators. In a situation where channel statistics are not available at

the receiver, the basis expansion model (BEM) can be useful since it requires limited

information about the channel such as Doppler frequency and the maximum delay

spread. In this model, the wireless channel is approximated with a limited number

of basis functions. In [40], an accurate and efficient channel estimation scheme was

proposed in which the doubly selective channel (both time and frequency) is expressed

as a linear combination of a finite number of complex exponentials. In [39], observing

that the channel impulse response is both time- and frequency-concentrated, Zemen et

al. proposed a time domain channel estimator by approximating the channel with a set

of Slepian sequences. They also demonstrated that Slepian sequences are more effective

than complex exponentials in the modeling of time-varying channels.

Although wireless channels can be accurately represented with Slepian sequences,

when the Doppler frequency is small, the length of required Slepian sequences should

be very long for accurate channel estimation. In other words, both decoding delay and

complexity are increased. This is because any sequence peaky in the frequency domain is

spread widely in the time domain. In this case, it is better to exploit channel correlation

in the frequency domain. This motivates us to design a new frequency domain channel

estimator based on the Slepian basis expansion. In our channel estimation scheme, the

channel frequency response is approximated with a finite number of Slepian sequences.

Then the channel is estimated via least square estimation. Simulation results show

that the proposed scheme outperforms the channel estimator using the exponential

basis expansion.

9



1.1.5 Capacity of Non-coherent Rayleigh Fading Channels un-

der Practical Power Constraints

For a fading channel, when the channel condition varies slowly, the transmitter can

send known pilot symbols to help the receiver to estimate fading coefficients. However,

when the channel coherence time is very short, it may be difficult to obtain accurate

channel estimation. Furthermore, in such a case, it is required to send more pilot sym-

bols for accurate channel estimation which results in low spectral efficiency. Therefore

non-coherent reception can be required for systems operating over fast fading channels.

In this study, we consider transmission of information over the Rayleigh fading chan-

nel and non-coherent reception, where each symbol experiences independent fading. In

[50], Abou-Faycal et al. showed that the capacity achieving input distribution of this

channel, subject to an average power constraint, is discrete with finite support. Hence

finding the capacity is equivalent to a finite dimensional optimization problem. Mo-

tivated by this work, we investigate the structure of the capacity achieving input for

non-coherent Rayleigh fading channels subject to practical power constrains induced

by a non-linear power amplifier. In communication systems, a power amplifier is nec-

essary to obtain enough signal power to combat background noise and fading. The

characteristic of a power amplifier imposes power constraints on input signals. First,

due to the limit on output power, there exists a peak power constraint on the transmit

signal. Second, there is an average power constraint on the consumed power, which is

required to operate a power amplifier. In general, the consumed power is greater than

the output power due to the inefficiency of the amplifier. Assuming that the consumed

power is a deterministic function of the output power, we show that the optimal input

is also discrete with finite support.
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1.2 Outline of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present results on

the error exponent of the XMAC. We then analyze the performance of LDPC codes

over the Gaussian XMAC via density evolution techniques in Chapter 3. In Chapter

4, we derive the outage probability of LDPC-coded systems for slow fading channels

under the assumption that the transmitter knows only the channel statistics while the

receiver has perfect or imperfect CSI. In Chapter 5, we propose a new frequency domain

channel estimator based on the Slepian basis expansion which can compensate for the

effects of a multipath fading channel. In Chapter 6, we investigate the capacity of non-

coherent Rayleigh fading channels subject to power constraints induced by a non-linear

power amplifier. We prove that the capacity achieving input distribution is discrete in

amplitude with a finite number of mass points. Conclusions and discussions on future

research are given in Chapter 7.
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CHAPTER 2

Error Exponent of Exclusive-Or Multiple-Access

Channels

In this chapter, we consider the problem of communicating over an exclusive-or

multiple-access channel (XMAC) where a receiver wants to reconstruct the exclusive-or

(XOR) of the incoming messages from two user nodes. By allowing an intermediate

node to mix incoming data from multiple links, network coding can increase network

throughput significantly. For this problem, we consider two possible network strategies.

First, two users can transmit data through a multiple-access channel (MAC) so that

the receiver recovers each user’s message separately and then computes the XOR of

the two messages. We call this strategy a MAC strategy. Next, the receiver can also

reconstruct the XOR of the two concurrently transmitted messages directly from the

channel output. We call this a physical layer network coding (PNC) strategy. In this

study, we investigate the error exponent and the cutoff rate of the XMAC. Assuming a

Gaussian XMAC, we show that the MAC strategy performs better (in terms of cutoff

rate) than the PNC strategy in the low rate region while the PNC strategy performs

better in the high rate region.
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Figure 2.1: Exclusive-or multiple access channel

2.1 Introduction

Network coding has been proposed as a promising technique at the network layer of

the protocol stack to improve the network capacity [1]-[3]. In contrast to conventional

approaches to network operation, where an intermediate node replicates the received

information and delivers it to its neighbor nodes, network coding allows an intermediate

node to process incoming data from multiple sources. With network coding the required

number of transmissions to send data from a source to a destination can be reduced

[1]-[4]. One potential application of network coding would be heartbeat type of packets

that are distributed throughout the network, in which individual node has limited

battery power. In this application reducing the amount of time a node is transmitting

or receiving can significantly enhance the lifetime of the network.

The typical example of network coding is illustrated in Fig. 2.1. An intermedi-

ate node receives messages from S1 and S2 and computes the exclusive-or (XOR) of

the incoming messages from two user nodes. In standard network coding, each user

transmits data to the receiver in a time-division multiple-access (TDMA) manner. The

receiver then computes the XOR of the two packets. Recently there has been efforts

to further reduce the transmission (and thus also the reception) times. In [4], physical

layer network coding (PNC) was proposed where the XOR operation is performed at

the physical layer by suitable modulation and demodulation. In PNC, the receiver maps

simultaneously transmitted signals from two users into the XOR of the two users’ data

bits. We call this type of channel the exclusive-or multiple-access channel (XMAC).

However, error control coding was not considered in [4]. If the intermediate node has
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the ability to use error control coding then the XOR of the data can benefit from the

coding gain.

We consider two network strategies: a multiple-access channel (MAC) strategy and

a physical layer network coding (PNC) strategy. In the MAC strategy, two users send

data through a MAC. Then the receiver estimates each user’s message separately and

computes the XOR of the two messages. In the PNC strategy, the receiver extracts the

XOR of the incoming messages directly from the channel output. The capacity of the

XMAC is still unknown except for special cases. In [6], the capacity for a specific class

of MAC, called the symmetric linear MAC was found. They also found the achievable

rate for reliable transmission of arbitrary functions of sources over arbitrary MACs.

For arbitrary MACs, Nazer et al. [6] considered a systematic transmission where in

the first phase, a multiple number of users send uncoded information bits using the

PNC strategy and in the second phase they send parity bits using the MAC strategy.

This can be seen as time-sharing between the MAC strategy and the PNC strategy.

In contrast, in our PNC strategy all the coded bits are transmitted using the PNC

strategy. Since the capacity of the XMAC is unknown in general, in this study we are

interested in investigating the error exponent and the cutoff rate of the XMAC so that

we can provide an insight into communication system design for the XMAC including

modulation, coding and network strategy.

Since the capacity region and error exponents for the MAC are well studied in the

literature [9],[11]-[15], we focus on the PNC strategy in our study. The challenge in the

PNC strategy is that signals from two users can arrive with different carrier phases and

at different times. In this study we assume that the symbol duration is sufficiently long

so that the receiver is able to synchronize the arrival times of incoming symbols from

two users. This can be easily accomplished by using an orthogonal frequency division

multiplexing (OFDM) type of modulation so that higher data rates are achieved by

using multiple frequencies but each symbol has a relatively long duration. Thus we
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assume that two users’ symbols are perfectly time synchronized in our study. Unlike

time synchronization, it is not realistic to achieve phase synchronization in many prac-

tical systems. When phase synchronization is not possible, we study the impact of the

relative phase difference on the system performance.

The remainder of this chapter is organized as follows. We address the problem of

communicating over an XMAC in Section 2.2. Assuming the PNC strategy is applied,

the error exponent of the XMAC is derived in Section 2.3. As a special case, we

investigate the cutoff rate of an Gaussian XMAC with both MAC and PNC strategies

in Section 2.4. The effect of phase difference between two signals on the cutoff rate is

considered in Section 2.5. Numerical examples and discussions are provided in Section

2.6. Finally conclusions are given in Section 2.7.

2.2 Problem Formulation

y
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Figure 2.2: System description of an XMAC

We consider a communication system described in Fig. 2.2. In this system, two

users transmit encoded messages. The channel probabilistically combines the encoded

signals to produce a received signal. The receiver wants to extract from the received

signal the XOR of the two messages. This is a special case of computation over a MAC

where the receiver reconstructs a function of messages from a multiple number of users

[6]. We assume that each user has 2K possible messages and each message is a binary

sequence of length K. Let mi denote a message of the i-th user. We assume that

m1 and m2 are independent and each message is uniform over {0, 1}K . At the i-th

transmitter, the message mi is encoded into a binary codeword ci(mi) by an encoding
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function ei

ei : {0, 1}K → Xi
N , i = 1, 2, (2.1)

where Xi is the channel input alphabet of the i-th user. In this study, we assume

X1 = X2 = {0, 1}. Note that both channel codes have the same code rate and the same

codeword length. Both users’ codewords are transmitted to the receiver over a noisy

channel with channel transition probability given by

p(y|x1,x2), (2.2)

where xi ∈ Xi and y ∈ Y are vectors of length N corresponding to the channel input by

the i-th user and the channel output at the receiver respectively and Y is the channel

output alphabet. Given the channel output y, the receiver estimates the XOR of the

two transmitted messages by a decoding function d

d : YN → {0, 1}K . (2.3)

The error probability is defined as

Pr (w 6= ŵ) , (2.4)

where w = m1 ⊕m2, ŵ = d(y) and ⊕ denotes the bitwise XOR. A rate R = K/N is

said to be achievable if there exist encoding functions e1, e2 and a decoding function d

such that error probability goes to zero as the codeword length goes to infinity.

As a general assumption, we assume that both users can cooperate in the sense

that they are aware of each other’s encoding function but not each other’s message to

be sent at any given time. One simple strategy to reconstruct the XOR of the two
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messages, called a multiple-access channel (MAC) strategy, is that each user transmits

its message and the receiver estimates each user’s message independently as would be

done in a MAC then creates the XOR of the two messages. Another possible network

strategy, which is our main interest, is that two users send their messages through the

common channel and the receiver computes the XOR of the two messages directly from

the channel output. We call this type of strategy a physical layer network coding (PNC)

strategy. In the PNC strategy, we consider the following cases:

• A random code is generated by each user independently of the other user.

• The same linear code is employed by both users.

In point-to-point communication systems, random codes are known to achieve Shannon

limit performance. However, to the best of our knowledge, finding the best achievable

performance of random codes in the network coding scenario is still an open problem. In

[6]-[8], it has been shown that for some network coding problems, we can achieve fairly

good performance close to the capacity upper bound with lattice codes by exploiting

their linear structure.

2.3 Error Exponent: Physical Layer Network Cod-

ing Strategy

In this section, we investigate the error exponent of the XMAC when the PNC

strategy is applied. For random codes, an upper bound on the error probability is

obtained using Gallager’s random coding technique [16]. For linear codes, we extend

the Shulman-Feder bound [17] to the XMAC and obtain an upper bound on the average

error probability. In our analysis, we assume that the channel is discrete but the

extension to discrete input, continuous output channels is straightforward.
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2.3.1 Random Codes

Consider an ensemble of random codes Ei, where each code in the ensemble has 2K

binary codewords of length N and each codeword x is chosen at random according to

the probability assignment on the channel input by the i-th user, Qi(x) for i = 1, 2.

Suppose that the i-th user selects a codebook Ci ∈ Ei at random. With some abuse of

notation, we will write

C1 ⊕ C2 = {x : x = x1 ⊕ x2, ∀x1 ∈ C1,∀x2 ∈ C2}, (2.5)

i.e., C1⊕C2 is a set of vectors of length N , each of which is a binary sum of a codeword

in C1 and a codeword in C2. Now define a new code ensemble Ẽ as

Ẽ = {C : C = C1 ⊕ C2, ∀C1 ∈ E1,∀C2 ∈ E2}. (2.6)

Suppose that an arbitrary message mi enters the i-th user’s encoder and is encoded into

a codeword ci(mi). Let wj be the j-th lexicographically smallest element of {0, 1}K ,

e.g., w1 = 000 and w2 = 001 when K = 3. Let Sj denote a set of binary sequences as

Sj = {x : x = c1(m1)⊕ c2(m2), m1 ∈ {0, 1}K , m2 ∈ {0, 1}K , m1 ⊕m2 = wj}.(2.7)

Then Sj’s are collectively exhaustive with respect to C ∈ Ẽ , i.e., C =
⋃

j Sj. Let xj,k be

the k-th element of Sj. Let us introduce the conditional probability P (y|xj,k) as

P (y|xj,k) =
∑

(c1(m1),c2(m2))∈T

P (y|c1(m1), c2(m2))
Q1(c1(m1))Q2(c2(m2))

Q3(xj,k)
, (2.8)

where

T = {(c1(m1), c2(m2)) : c1(m1)⊕ c2(m2) = xj,k} (2.9)
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Table 2.1: Example: Codebooks C1 and C2

source C1 C2

00 0100 0011

01 1101 1011

10 0010 0001

11 1010 0110

0111,0110,

0011

1100

0010,1001,

1001

1111,1110,

1011

0001,0101

0100

1
(00)S

2
(01)S

4
(11)S

3
(10)S

1 2
C C C

Figure 2.3: Codebook C

and

Q3(xj,k) =
∑

(c1(m1),c2(m2))∈T

Q1(c1(m1))Q2(c2(m2)). (2.10)

Assuming that y is received, the decoding function d is defined as

d(y) = wj, (2.11)

if ∃xj,k ∈ Sj s.t. P (y|xj,k) ≥ P (y|xj′,k′) ∀xj′,k′ /∈ Sj.

For example, assume that each user generates a codebook as in table 2.1. Then

the receiver generates a codebook C = C1 ⊕ C2 as shown in Fig. 2.3. Each set Si
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is a collection of vectors which correspond to the identical XOR message. Given the

channel output, the receiver computes the likelihood of each element in C. If the

codeword 0100 is most probable, then the decoder decides the XOR bit is 01. If 1011 is

most probable, the decoder selects one of 01 and 10 randomly. Note that this decoder is

not optimal since it selects the most probable element xj,k not the most probable XOR

message which we are interested in. However this suboptimal decoder not only makes

the analysis easier but also enables us to obtain a meaningful performance measure.

Given that the i-th user transmitted mi resulting in wj = m1⊕m2, the probability

of error averaged over the ensemble Ẽ can be expressed as

P̄e,j =
∑
xj,k

∑
y

Q3(xj,k)P (y|xj,k)Pr(error|wj,xj,k,y), (2.12)

where Pr(error|wj,xj,k,y) is the probability of decoding error conditioned on the XOR

message wj, selection of xj,k and the channel output y. To find an upper bound on the

average error probability, we define the following events:

• Ej,j′ = {(C1, C2,m1,m2, y) : c1(m1)⊕ c2(m2) = xj′,k′ , for some xj′,k′ ∈ Sj′ ,

P (y|xj′,k′) ≥ P (y|xj,k), ∀xj,k ∈ Sj }

• Ej,j′,k′ = {(C1, C2, m1,m2,y) : c1(m1)⊕ c2(m2) = xj′,k′ ∈ Sj′ ,

P (y|xj′,k′) ≥ P (y|xj,k), ∀xj,k ∈ Sj }

• Ej,j′,l,k′ = {(C1, C2,m1,m2,y) : c1(m1)⊕ c2(m2) = xj′,k′ ∈ Sj′ ,

P (y|xj′,k′) ≥ P (y|xj,l),xj,l ∈ Sj }.

Let Pc(·) denote a conditional probability conditioned on wj,xj,k and y. Observing that

Ej,j′ =
⋃

k′ Ej,j′,k′ and Ej,j′,k′ =
⋂

l Ej,j′,l,k′ ⊆ Ej,j′,k,k′ , the conditional error probability
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Pr (error|wj,xj,k, y) in (2.12) is upper bounded by

Pr(error|wj,xj,k,y) ≤ Pc

(⋃

j′ 6=j

Ej,j′

)
≤

(∑

j′ 6=j

Pc (Ej,j′)

)ρ1

, 0 < ρ1 ≤ 1

=


∑

j′ 6=j

Pc



|Sj′ |⋃

k′=1

Ej,j′,k′







ρ1

≤

∑

j′ 6=j



|Sj′ |∑

k′=1

Pc (Ej,j′,k′)




ρ2



ρ1

, 0 < ρ2 ≤ 1

=


∑

j′ 6=j



|Sj′ |∑

k′=1

Pc



|Sj |⋂

l=1

Ej,j′,l,k′







ρ2



ρ1

≤

∑

j′ 6=j



|Sj′ |∑

k′=1

Pc (Ej,j′,k,k′)




ρ2



ρ1

, (2.13)

where |A| is the cardinality of a set A. From the definition of the event Ej,j′,k,k′ , for

any s > 0 we have

Pc (Ej,j′,k,k′) =
∑

xj′,k′ :P (y|xj′,k′ )≥P (y|xj,k)

Q3(xj′,k′)

≤
∑
xj′,k′

Q3(xj′,k′)

(
P (y|xj′,k′)

P (y|xj,k)

)s

. (2.14)

Since xj′,k′ is a dummy variable of summation in (2.14), the subscripts can be dropped.

From (2.12)-(2.14) we have

P̄e,j ≤
(∑

j′ 6=j

|Sj′|ρ2

)ρ1 ∑
y

(∑

x′
Q3(x

′)P (y|x′)1−sρ1ρ2

)

×
(∑

x

Q3(x)P (y|x)s

)ρ1ρ2

. (2.15)
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By choosing s = 1
1+ρ1ρ2

, we can minimize (2.15) over s and the upper bound becomes

P̄e,j ≤
(∑

j′ 6=j

|Sj′|ρ2

)ρ1 ∑
y

(∑
x

Q3(x)P (y|x)
1

1+ρ1ρ2

)1+ρ1ρ2

. (2.16)

After some manipulation, it can be shown that the random variables |Sj|’s are i.i.d with

the following probability mass function

P (|Sj| = l) =

(
2N

l

) l∑
m=1

(−1)l+m

(
l

m

)
m2K

2−N2K

. (2.17)

Lemma 2.1: If R = K
N

< 1
2
, the cardinality of Sj converges to 2K in probability as

N →∞ , i.e., for any arbitrarily small ε > 0,

lim
N→∞

Pr
(||Sj| − 2K | ≥ ε

)
= 0. (2.18)

Proof : See Appendix A.

Since for each j ∈ {1, · · · , 2K} there exist 2K pairs of (m1,m2) which satisfy m1⊕
m2 = wj, we have |Sj| ≤ 2K and by Lemma 1, |Sj| ≈ 2K when 0 < R < 1

2
. Then the

average error probability over all pairs of (m1,m2) can be upper bounded by

P̄e ≤ 2ρ1(ρ2+1)K
∑

y

(∑
x

Q3(x)P (y|x)
1

1+ρ1ρ2

)1+ρ1ρ2

. (2.19)

Suppose we have a discrete memoryless channel, i.e.,

P (y|x1,x2) =
N∏

n=1

P (y(n)|x1(n),x2(n)), (2.20)

and choose the distributions Q1(x), Q2(x) and Q3(x) as

Qi(x) =
N∏

n=1

qi(x(n)), i = 1, 2, 3, (2.21)
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where x(n) is the n-th element of the sequence x, q1 (q2) is a probability assignment on

the channel input alphabet at the first (second) user and q3 is a probability assignment

on the XOR bit. Then we have

P (y|x) =
N∏

n=1

P (y(n)|x(n)), (2.22)

where P (y(n)|x(n)) can be obtained by replacing each vector and probability assign-

ments Qi’s with its n-th element and qi’s respectively in (2.8). Now the upper bound

on the average error probability in (2.19) can be expressed as

P̄e ≤ 2ρ1(ρ2+1)K


∑

y∈Y

(
1∑

x=0

q3(x)P (y|x)
1

1+ρ1ρ2

)1+ρ1ρ2



N

≤ 2−N(E0(ρ,q3)−ρ1(ρ2+1)R), (2.23)

where P (y|x) denotes P (y(n) = y|x(n) = x), ρ = ρ1ρ2 and E0(ρ, q3) is given by

E0(ρ, q3) = − log2


∑

y∈Y

(
1∑

x=0

q3(x)P (y|x)
1

1+ρ

)1+ρ

 . (2.24)

Finally, the random coding error exponent can be obtained as

Er(R) = max
q3

max
0<ρ1,ρ2≤1

(E0(ρ, q3)− ρ1(ρ2 + 1)R) . (2.25)

The maximization in (2.25) is over all probability vectors q3 = (q3(0), q3(1)).

2.3.2 Linear Codes

The random coding exponent for the XMAC suffers from the fact that there exist

exponentially many codewords for each XOR message wj. If the same binary linear

code is applied at both transmitters, there is only one codeword assigned to each XOR
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message wj. In [17], for point-to-point communication systems, an upper bound on the

average error probability of binary linear codes was provided. We extend the results to

the XMAC and obtain an upper bound on the average error probability.

Lemma 2.2[17]: Consider a discrete memoryless channel with input x, output y

and transition probability p(y|x). Suppose that each codeword is selected indepen-

dently with the distribution Q(x) and the receiver decodes the received signal y into

c(mi), one of the codewords. For any i 6= j, x and x′, assume

Pr(c(mi) = x, c(mj) = x′) ≤ αPr(c(mi) = x)Pr(c(mj) = x′), α ≥ 1, (2.26)

Pr(c(mi) = x) ≤ βQ(x), β ≥ 1, (2.27)

where Q(x) =
∏N

n=1 q(x(n)). Then the average error probability is upper bounded by

P̄e ≤ αρβ1+ρ2−N(E0(ρ,q)−ρR), 0 < ρ ≤ 1. (2.28)

Let E denote an ensemble of binary linear codes. Assume that both users transmit

their messages using the same binary linear code C ∈ E and each coded bit is mapped

to one of the binary signals s0 and s1. Receiving the channel output y, the receiver

reconstructs the codeword corresponding to the XOR of two messages. Depending on

the channel, the error probability may depend on the codeword which makes finding an

upper bound on the average error probability complicated. In such a case, we randomize

the signal mapping for each coded bit. The signal mapping can be different for each

user. Then we find the average error probability over E and all possible signal mapping

rules.

Theorem 2.1: Let El be an ensemble of binary linear codes satisfying the following

property:

Pr (c(mi)⊕ c(mj) = x) ≤ α2−N , ∀i 6= j, α ≥ 1, ∀x. (2.29)
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Consider both users transmitting their information using the same binary linear code

C ∈ El over a binary input XMAC. Then the average error probability over El and all

signal mapping rules is bounded by

P̄e ≤ αρ2−N(E0(ρ,q)−ρR), 0 < ρ ≤ 1, (2.30)

where q is the uniform distribution.

Proof : The proof is parallel to that of Lemma 1 in [17]. The random signal mapping

is equivalent to adding (mod 2) a random vector to each codeword under a fixed signal

mapping rule. Define a new ensemble Ẽ as

Ẽ = {C ⊕ v : ∀C ∈ El, ∀v ∈ {0, 1}N}, (2.31)

where C ⊕ v denotes a code generated by adding a vector v to each codeword of C.

Now consider that the i-th user selects a code C̃i = C ⊕ vi ∈ Ẽ . Assume that v1 and v2

are independent. Then receiving y, the receiver decodes y into one of the codewords

of C̃3 = C ⊕ v3 ∈ Ẽ where v3 = v1 ⊕ v2. Using the fact that v3 is a random vector, it

is easy to show that the followings are satisfied for all codebooks in Ẽ :

Pr(c̃(mi) = x) = 2−N , (2.32)

Pr(c̃(mi) = x|c̃(mj) = x′) ≤ α2−N . (2.33)

Then we can see that (2.26) and (2.27) are satisfied with β = 1 and Q(x) = 2−N . Hence

by applying Lemma 2.2 to the XMAC, we have (2.30).

For any specific linear code C with weight distribution Al,∀l ∈ {1, · · · , N}, generate

a code ensemble E ′ by word permutation which changes the order of codewords. Then

we can further enlarge code ensemble by symbol permutation which changes the order

of symbols in each codeword. Let us call the new ensemble E ′′. Then it was shown that
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[17]

Pr (c′′(mi)⊕ c′′(mj) = x) =
Al

(2K − 1)
(

N
l

) . (2.34)

Then by Theorem 2.1, the average error probability over E ′′ and all signal mapping

rules is upper bounded by

P̄e ≤ 2−N(E0(ρ,q)−ρR−ρ(log2 α)/N), 0 < ρ ≤ 1, (2.35)

where q is the uniform distribution and α is given by

α = max
0<l≤N

Al2
N

(2K − 1)
(

N
l

) . (2.36)

For linear codes, the error exponent is given as

El(R) = max
0<ρ≤1

(E0(ρ, q)− ρR− ρ(log2 α)/N) . (2.37)

Example 2.1: If we select a linear code whose weight distribution is close to average

weight distribution of random linear code i.e., Al ≈ 2K−N
(

N
l

)
, we have α ≈ 1.

Example 2.2: Suppose that we generate a parity check matrix such that each element

is 1 with probability p and each element is independent of the other. Then for such

linear codes, the weight distribution averaged over all possible parity check matrix is

given by [19]

Al =

(
1 + (2p− 1)l

2

)N−K (
N

l

)
. (2.38)

Hence if we select a linear code whose weight distribution is close to (2.38), we have

α ≈ (4p2 − 4p + 2)N−K .
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Figure 2.4: The error exponent El(R) in the Gaussian XMAC with BPSK modulation
and Es/N0 = 3 dB

Example 2.3: Consider a Gaussian XMAC where the channel output is given as

y = x1 + x2 + n, (2.39)

where n is a Gaussian noise with zero mean and variance of N0

2
. Assume that binary

phase-shift keying (BPSK) is used at each user node with the same signal power Es

and α = 1 in (2.37). For this channel, the error exponent El(R) is shown in Fig. 2.4.

In Fig. 2.4, E0(ρ, q)− ρR is also plotted for various values of ρ.

In Fig. 2.5, error exponents with random codes and with random linear codes are

compared for the Gaussian XMAC with BPSK modulation. For this channel, random

linear codes show higher error exponent than random codes.
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2.4 Cutoff Rate

In this section, we derive the cutoff rate when each user’s signal is transmitted over

a Gaussian XMAC. The cutoff rate, R0 is a parameter for which there exists an upper

bound on the average error probability of the form P̄e ≤ 2−N(R0−R). The cutoff rate

can be also seen as a lower bound on the capacity. If the uniform distribution on the

XOR bit maximizes the error exponent with random codes, assuming α ≈ 1 in (2.36),

we can see that the error exponent with linear codes is larger than the random coding

error exponent. In general, however, it is not straightforward that one is larger than

the other since the random coding exponent is maximized over all possible distributions

on the XOR bit. In this study when we derive the cutoff rate, we restrict to the case

of linear codes.

Assume that both users employ the same linear code whose weight distribution is

close to that of random linear codes. Let RPNC
0 denote the cutoff rate in the PNC
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strategy defined by

RPNC
0 = E0(1, q), (2.40)

where q is the uniform distribution. Then by Theorem 2.1, any rate R < RPNC
0 is

achievable with a linear code. By applying the sphere packing bound to the XMAC

and assuming channel input is uniform, it can be shown that RPNC
0 is the parameter

for which there is the tightest upper bound on the average error probability of the form

P̄e ≤ 2−N(RPNC
0 −R).

2.4.1 Binary Phase-shift Keying

Consider both users using BPSK modulation such that 0 is mapped into
√

Es and 1

is mapped into −√Es. The receiver attempts to detect in each symbol interval the XOR

signal which is one of {−2
√

Es, 0, 2
√

Es}. If 0 is detected, the receiver decides that one

of the two users transmitted a 1 and the other transmitted a 0. On the other hand,

if one of {−2
√

Es, 2
√

Es} is detected, the receiver decides that both users transmitted

the same bit. Assuming a Gaussian XMAC, the received signal y can be expressed as

y = x1 + x2 + n, (2.41)

where xi is a BPSK symbol of the i-th user and n is Gaussian noise with variance

σ2 = N0

2
. Assuming equal priors on the inputs, the conditional density of y, the received

signal, given that the XOR bit W = i is

p(y|W = i) =





1
2
√

2πσ

(
e

�
− (y−2

√
Es)2

2σ2

�
+ e

�
− (y+2

√
Es)2

2σ2

�)
, i = 0,

1√
2πσ

e−
y2

2σ2 , i = 1.

(2.42)

29



Then the cutoff rate can be simplifies as

RPNC
0 = 1− log2

(
1 +

∫ ∞

−∞

1√
2π

e−
y2

2
−Es

σ2 cosh
1
2

(
2

√
Es

σ2
y

)
dy

)

= 1− log2

(
1 +

∫ ∞

−∞

1√
2π

e
− y2

2
−2R

Eb
N0 cosh

1
2

(
2

√
2R

Eb

N0

y

)
dy

)
, (2.43)

where Eb is the energy per information bit defined by Eb = Es/R. From Theorem 2.1,

there exist a linear code with arbitrarily small error probability provided R < RPNC
0 .

For a fixed R, let
(

Eb

N0

)∗
denotes the minimum information bit signal-to-noise ratio

(SNR) required to achieve the cutoff rate.

Lemma 2.3 (Low rate analysis - PNC strategy/BPSK): Assuming that each user

transmits its data using the same linear code and BPSK modulation over an Gaussian

XMAC, as RPNC
0 → 0+,

(
Eb

N0

)∗
→∞ .

Proof : See Appendix B.

Both users can also transmit their own data in a multiple-access manner. In [10],

based on the error exponent derived by Slepian and Wolf [11], the cutoff rate region of

the MAC was introduced. Although there have been many results on the error exponent

which improved the one of Slepian and Wolf [12]-[15], we follow the definition of the

cutoff rate region introduced in [10]. The cutoff rate region of the MAC is defined as

the convex hull of the union of the set of all rate pairs (R1, R2) satisfying [10]

R1 ≤ − log2


∑

y

∑
x2

q2(x2)

(∑
x1

q1(x1)P
1/2(y|x1, x2)

)2

, (2.44)

R2 ≤ − log2


∑

y

∑
x1

q1(x1)

(∑
x2

q2(x2)P
1/2(y|x1, x2)

)2

, (2.45)
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and

R1 + R2 ≤ − log2


∑

y

(∑
x1

∑
x2

q(x1, x2)P
1/2(y|x1, x2)

)2

, (2.46)

where Ri is the i-th user’s rate, q(x1, x2) = q1(x1)q2(x2) and qi(x) is the distribution on

the i-th user’s channel input alphabet. When both users’ code rates are the same, the

cutoff rate with the MAC strategy, RMAC
0 can be obtained as

RMAC
0 = −1

2
log2


∑

y

(∑
x1,x2

q(x1, x2)P
1/2(y|x1, x2)

)2

. (2.47)

For BPSK case, the transition probability P (y|x1, x2) is given as

p(y|x1 = i, x2 = j) =
1√
2πσ

exp

(
−

(
y − (−1)i

√
Es − (−1)j

√
Es

)2

2σ2

)
, (2.48)

where i, j ∈ {0, 1}. Assuming equal priors on the inputs, the cutoff rate in the MAC

strategy RMAC
0 is

RMAC
0 =

3

2
− 1

2
log2

(
3 + 4e

−EbR

N0 + e
− 4EbR

N0

)
. (2.49)

Lemma 2.4 (Low rate analysis - MAC strategy/BPSK): Assuming that each user

transmits its data using the same linear code and BPSK modulation over an Gaussian

XMAC, as RMAC
0 → 0+,

(
Eb

N0

)∗
→ 2 ln 2 .

Proof : See Appendix C.

This result indicates that the minimum signal-to-noise ratio necessary to reach the

cutoff rate when the rate goes to 0 is finite in the MAC strategy while it is infinite in

the PNC strategy. Therefore the MAC strategy is more energy efficient than the PNC

strategy in the low rate region. However, note that with binary input, the maximum

achievable rate for the MAC strategy is less than 1 while it is 1 for the NC case. Hence
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we cannot simply say that one network strategy outperforms the other.

2.4.2 Binary Frequency-shift Keying

Consider each user using binary frequency-shift keying (BFSK) modulation. The

receiver attempts to detect in each symbol interval the presence of each of the possible

two frequencies used by the transmitters. If each frequency is detected then the receiver

knows that one of the two users transmitted a one and the other transmitted a zero.

On the other hand if only one frequency is detected then the receiver knows that both

users transmitted the same bit. If xi ∈ {0, 1} is the channel input by the i-th user

and xi = j, the i-th user transmits a signal sj(t) with energy Es at frequency ωj for T

seconds:

sj(t) =

√
2Es

T
cos (ωjt). (2.50)

Assuming a Gaussian XMAC, when x1 = j, x2 = k, the received signal can be repre-

sented as

r(t) =

√
2Es

T
cos (ωjt) +

√
2Es

T
cos (ωkt) + n(t), (2.51)

where n(t) is a Gaussian process with zero mean and two-sided spectral density N0

2
.

The receiver computes four dimensional vector y = (y0c, y0s, y1c, y1s) where

yic =

√
2

T

∫ T

0

cos (ωit)r(t)dt,

yis =

√
2

T

∫ T

0

sin (ωit)r(t)dt.
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Conditioned on x1 = j, x2 = k, θ1 and θ2, yic and yis are Gaussian random variables

with means

E [yic|x1 = j, x2 = k] =
√

Es (δi,j + δi,k) ,

E [yis|x1 = j, x2 = k] = 0,

where δi,j = 1 if i = j or zero otherwise. The variances are the same as σ2 = N0

2
.

Assuming equal priors on the inputs, the conditional density of y given W = i is

p(y|W = i) =





1
8π2σ4 e

(−Ω+4Es
2σ2 )

(
e

2
√

Esy0c
σ2 + e

2
√

Esy1c
σ2

)
, i = 0

1
4π2σ4 e

�
−Ω+2Es−2

√
Es(y0c+y1c)

2σ2

�
, i = 1

(2.52)

where Ω = y0c
2 + y0s

2 + y1c
2 + y1s

2. Then the cutoff rate RPNC
0 is given as

RPNC
0 = 1− log2

(
1 +

∫ ∞

−∞

∫ ∞

−∞

1

2π
e
− y2

0+y2
1

2
−R

Eb
N0 cosh

1
2

(√
2R

Eb

N0

(y0 − y1)

)
dy0dy1

)

= 1− log2

(
1 +

∫ ∞

−∞

1

2
√

π
e
− y2

4
−R

Eb
N0 cosh

1
2

(√
2R

Eb

N0

y

)
dy

)
. (2.53)

Lemma 2.5 (Low rate analysis - PNC strategy /BFSK): Assuming that each user

transmits its data using the same linear code and BFSK modulation over an Gaussian

XMAC, as RPNC
0 → 0+,

(
Eb

N0

)∗
→∞ .

Proof : See Appendix D.

In the MAC strategy, two users transmit data through a MAC with transition
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probability given by

p(y|x1 = 0, x2 = 0) =

(
1√
2πσ

)4

e−
(y0c−2

√
Es)

2
+y2

0s+y2
1c+y2

1s
2σ2 ,

p(y|x1 = 1, x2 = 1) =

(
1√
2πσ

)4

e−
y2
0c+y2

0s+(y1c−2
√

Es)
2
+y2

1s
2σ2 ,

p(y|x1 = 0, x2 = 1) = P (y|x1 = 1, x2 = 0)

=

(
1√
2πσ

)4

e−
(y0c−

√
Es)

2
+y2

0s+(y1c−
√

Es)
2
+y2

1s
2σ2 .

Assuming equal priors on the inputs, the cutoff rate in the MAC strategy, RMAC
0 can

be computed as

RMAC
0 =

3

2
− 1

2
log2

(
3 + 4e

−EbR

2N0 + e
− 2EbR

N0

)
. (2.54)

Lemma 2.6 (Low rate analysis - MAC strategy/BFSK): Assuming that each user

transmits its data using the same linear code and BFSK modulation over an Gaussian

XMAC, as RMAC
0 → 0+,

(
Eb

N0

)∗
→ 4 ln 2 .

Proof : The proof is parallel to that of Lemma 2.4 and hence omitted.

2.5 Effect of Relative Phase Difference

Due to the characteristic of wireless medium, it may be unrealistically stringent

to assume that two users’ signals arrive with identical phase. Here we investigate the

impact of nonzero relative phase difference on the cutoff rate.
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2.5.1 Binary Phase-shift Keying

We assume that phase of each user is random and phase information is perfectly

known at the receiver. Then the received signal y can be represented as

y = x1e
jθ1 + x2e

jθ2 + n = yc + jys, (2.55)

where θi is the i-th user’s phase, n is a zero mean circularly symmetric complex Gaussian

random variable with variance σ2 = N0

2
per dimension, yc and ys are real and imaginary

part of y respectively. Then the conditional density of y given the XOR bit W = i and

phase information θ = (θ1, θ2) is given by

p(y|W = i,θ) =
1

2πσ2
e(−Γi) cosh (Λi), for i = 0, 1, (2.56)

where

Γi =
y2

c + y2
s + 2Es(1 + (−1)i cos (θ1 − θ2))

2σ2
, for i = 0, 1,

Λi =

√
Es ((cos θ1 + (−1)i cos θ2)yc + (sin θ1 + (−1)i sin θ2)ys)

σ2
, for i = 0, 1.

Letting y
′
c = cos

(
θ1+θ2

2

)
yc +sin

(
θ1+θ2

2

)
ys and y

′
s = − sin

(
θ1+θ2

2

)
yc +cos

(
θ1+θ2

2

)
ys, by the

change of variable we obtain an equivalent channel with input W , output y
′
= y

′
c + jy

′
s

and transition probability

p(y
′|W = i,θ) = P (y

′|W = i, φ) =
1

2πσ2
e−Γ

′
i cosh (Λ

′
i), for i = 0, 1, (2.57)
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where

φ = θ1 − θ2,

Γ
′
i =

y
′
c

2
+ y

′
s

2
+ 2Es(1 + (−1)i cos (φ))

2σ2
, for i = 0, 1,

Λ
′
0 =

2
√

Es cos
(

φ
2

)
y
′
c

σ2
,

Λ
′
1 =

2
√

Es sin
(

φ
2

)
y
′
s

σ2
.

For a given φ, the cutoff rate RPNC
0 (φ) is given by

RPNC
0 (φ) = 1− log2

(
1 +

∫

y′

√
(p(y′|W = 0, φ)p(y′|W = 1, φ))dy

′
)

.

Then it is guaranteed that there exists a channel code with arbitrarily small error

probability regardless of φ if R < min
0≤φ<2π

RPNC
0 (φ). It can be easily seen that the

worst case occurs when cos
(

φ
2

)
= ± sin

(
φ
2

)
, i.e., φ = π

2
or 3π

2
. Note that RPNC

0 (φ) is

maximized when cos
(

φ
2

)
sin

(
φ
2

)
= 0, i.e., φ = 0 or π. We also notice that RPNC

0 (φ) =

RPNC
0 (φ + π).

2.5.2 Binary Frequency-shift Keying

Assuming a Gaussian XMAC, when x1 = j, x2 = k, the received signal can be

represented as

r(t) =

√
2Es

T
cos (ωjt + θ1) +

√
2Es

T
cos (ωkt + θ2) + n(t). (2.58)

The receiver computes four dimensional vector y = (y0c, y0s, y1c, y1s) where

yic =

√
2

T

∫ T

0

cos (ωit)r(t)dt,

yis =

√
2

T

∫ T

0

sin (ωit)r(t)dt.
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Conditioned on x1 = j, x2 = k and θ = (θ1, θ2), yic and yis are Gaussian random

variables with means

E [yic|x1 = j, x2 = k, θ] =
√

Es (cos θ1δi,j + cos θ2δi,k)

E [yis|x1 = j, x2 = k, θ] = −
√

Es (sin θ1δi,j + sin θ2δi,k) ,

where δi,j = 1 if i = j or zero otherwise. The variances are the same as σ2 = N0

2
. Let

us define a sufficient statistic y
′
=

(
y
′
0c, y

′
0s, y

′
1c, y

′
1s

)
as

y
′
ic = cos

(
θ1 + θ2

2

)
yic − sin

(
θ1 + θ2

2

)
yis,

y
′
is = sin

(
θ1 + θ2

2

)
yic + cos

(
θ1 + θ2

2

)
yis.

By the change of variable we obtain an equivalent channel with input W, output y
′
and

transition probability

p(y
′|W = i, φ) =





1
8π2σ4 e

(−Ω+2Es(1+cos φ)

2σ2 )

(
e

2
√

Esy
′
0c cos

φ
2

σ2 + e
2
√

Esy
′
1c cos

φ
2

σ2

)
, i = 0

1
4π2σ4 e

0@−Ω+2Es−2
√

Es

�
y
′
0c+y

′
1c

�
cos

φ
2

2σ2

1A
cosh

(√
Es

�
y
′
0s−y

′
1s

�
sin φ

2

σ2

)
, i = 1

(2.59)

where Ω = y
′
0c

2
+ y

′
0s

2
+ y

′
1c

2
+ y

′
1s

2
. Note that RPNC

0 (φ) = RPNC
0 (−φ).

2.6 Numerical Results and Discussions

In this section, we compare MAC and PNC strategy with respect to the cutoff rate.

In Fig. 2.6, the necessary information bit SNR to achieve the cutoff rate over a Gaussian

XMAC with BPSK is plotted. In the range of code rate R . 0.4, we notice that the

MAC strategy outperforms the PNC strategy. In the MAC strategy, the achievable rate

is upper bounded by about 0.71 while the rate of 1 is achievable with the PNC strategy.
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The numerical results indicate that in the PNC strategy, there exists an optimal code

rate for which the energy per information bit necessary to achieve the cutoff rate is

minimized. Similar results for the BFSK case are shown in Fig. 2.7. The cutoff rate

can be further improved by using time-sharing between two strategies, i.e., each user

exploits the MAC strategy for the first tN channel uses and the PNC strategy for the

next (1− t)N channel uses.

The error exponent of Slepian and Wolf [11], on which the cutoff rate region is

based, does not count the possibility of time-sharing between two users. Therefore the

cutoff rate with the MAC strategy, RMAC
0 dose not capture the performance of time-

division multiple-access scheme. The performance with TDMA can be easily computed

as follows. In the point-to-point communication system that employs BPSK modulation

with symbol energy Es , the cutoff rate R0 is given by [22]

R0 = 1− log2

(
1 + e

−Es
N0

)
.

Consider that for a given time slot, each user transmits its own data using BPSK

modulation such that 0 is mapped to
√

2Es and 1 is mapped to −√2Es. Note that the

average power used by each user is set to be the same as the NC and MAC cases for a

fair comparison. Then the cutoff rate with TDMA, RTDMA
0 is given by

RTDMA
0 =

1

2

(
1− log2

(
1 + e

− 2Es
N0

))
, binary antipodal signals. (2.60)

Similar to the BPSK case, for the BFSK modulation we can find the cutoff rate in

the TDMA as follows. In point-to-point systems the cutoff rate with binary orthogonal

signals is given as [22]

R0 = 1− log2

(
1 + e

− Es
2N0

)
. (2.61)
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Figure 2.6: Necessary Eb/N0 to reach the cutoff rate for the Gaussian XMAC with
BPSK

Then assuming that symbol energy is 2Es and time-sharing is applied, the cutoff rate

can be expressed as

RTDMA
0 =

1

2

(
1− log2

(
1 + e

−Es
N0

))
, binary orthogonal signals. (2.62)

In Fig. 2.6 it can be seen that in case of BPSK, TDMA shows better performance than

the MAC strategy in the low rate region. In the high rate region, the MAC strategy

performs better than TDMA and the cutoff rate with TDMA is inherently limited by

0.5. For the BFSK case we can see the similar result in Fig. 2.7.

In Fig. 2.8 we show the cutoff rate when the PNC strategy is applied with BPSK

for various values of the phase difference φ. Numerical results support our observation

in Section V that the cutoff rate is maximized when the phase difference φ = 0 and

minimized when φ = π
2
. At the code rate R = 0.5, there is less than 1 dB difference

in the required information bit SNR. In Fig. 2.9 the corresponding results for the
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BFSK case are shown. In the BFSK case, we have not shown that when the cutoff rate

is maximized or minimized with respect to the phase difference. Instead we plot the

cutoff rate for φ = 0, π
2

and π.

In the Gaussian XMAC, we cannot simply say that one strategy is better than

the other in general. In [6] it was indicated that when the channel is well matched

to the function (XOR in our case) of users’ information sources, the PNC strategy

is advantageous over the MAC strategy. An example is that the channel output is

given as y = x1 ⊕ x2 ⊕ e where xi is a binary input by the i-th user and e denotes

a channel error, Bernoulli distributed with parameter ε. In this channel, RPNC
0 =

1 − log2

(
1 + 2

√
ε(1− ε)

)
and RMAC

0 = 1
2
RPNC

0 . Note that the PNC strategy shows

better performance than the MAC strategy regardless of the value of ε. For this special

case, using Theorem 1 in [6], the capacity can be achieved with the PNC strategy and

be computed as C = 1− hB(ε) where hB(ε) = −ε log2(ε)− (1− ε) log2(1− ε).
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2.7 Conclusion

In this chapter, we have considered the XMAC as a typical example of network cod-

ing. For this type of channel, the error exponent and the cutoff rate were investigated.

These metrics provide meaningful guidance for designing an efficient communication

system in the XMAC. Two network strategies, the physical layer network coding (PNC)

strategy and the multiple-access (MAC) strategy have been considered. For the PNC

strategy, both random codes and linear codes were considered and an upper bound

on the average error probability was derived for each case. For the Gaussian XMAC,

analytical and numerical results indicate that in the low rate region, the MAC strategy

performs better than the PNC strategy while in the high rate region the PNC strategy

performs better. In the PNC strategy, the impact of relative phase difference of two

users’ signal on the performance has been evaluated. Although we assumed binary

input channels, the methodology introduced in this chapter can be applied to the case

of M -ary signaling where k coded bits are mapped to one of M signal waveforms.

Many aspects of the XMAC are still unexplored. Finding the maximal achievable

rate of the XMAC is an open problem. The optimal performance in the XMAC is

only known for very limited cases yet. Another interesting issue is related to coding

and implementation. In point-to-point communications, turbo codes and low-density

parity-check (LDPC) codes show capacity-approaching performance. Hence it will be

interesting to examine the performance of such practical codes over the XMAC.
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CHAPTER 3

Performance Analysis of LDPC Codes over

Exclusive-Or Multiple-Access Channels

In the previous chapter, we investigated the error exponent and the cutoff rate of

exclusive-or multiple-access channels (XMAC) where a common receiver reconstructs

the exclusive-or (XOR) of incoming data from two users. If two transmitters apply the

same binary linear code, the receiver can also apply error correction to the XOR of the

transmitted data. In point-to-point communication systems, low-density parity-check

(LDPC) codes are one of the most promising error correcting codes and achieve near

Shannon limit performance. In this chapter, assuming each link is an additive white

Gaussian noise channel, we evaluate noise thresholds of binary LDPC codes via density

evolution. Both binary phase-shift keying (BPSK) and binary frequency-shift keying

(BFSK) modulation schemes are considered. Numerical results shows that LDPC codes

provide reliable performance very close to the achievable rate with linear codes found

in Chapter 2.

3.1 Introduction

Originally introduced in wired networks, the concept of network coding has been

extended to wireless networks in [4]. In [4], physical layer network coding (PNC) was
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proposed. The idea is to recognize that the receiver does not need to determine each

user’s data bits but only the exclusive-or (XOR) of the two users’ data bits. In PNC,

two users send data simultaneously. Then the receiver maps the received signal into the

XOR of the two messages. In this scheme, network coding is performed through proper

modulation and demodulation techniques. However, channel coding was not considered

in [4]. Without the coding, the energy would need to be increased significantly to achieve

the same error probability. If the same error control is applied by each user then the

intermediate node can also apply error correction to the XOR of the transmitted data.

This can be accomplished if the same binary linear code is used at each user since

the mod 2 sum of two codewords is also a codeword. Of interest is the performance

with each user using advanced coding techniques such as turbo codes and low-density

parity-check (LDPC) codes.

In point-to-point communication systems, it is well known that LDPC codes show

excellent performance at rates very close to the Shannon limit over various channels in

the literature [29]-[31]. Since the capacity of the XMAC is unknown in general, it is

interesting to examine the performance of LDPC codes over the XMAC. In [29], the

density evolution algorithm was introduced to analyze the performance of LDPC codes

using the belief propagation algorithm. This method was extended to asymmetric

channels in [25]. In this chapter, we analyze the performance of LDPC codes over

the Gaussian XMAC by evaluating the threshold via the density evolution technique

introduced in [25]. Both binary phase-shift keying (BPSK) and binary frequency-shift

keying (BFSK) are considered.

The remainder of this chapter is organized as follows. We describe the communi-

cation system and channel model in Section 3.2. In Section 3.3, we review the density

evolution technique for asymmetric channels. We then apply this technique to calculate

thresholds on the Gaussian XMAC. Numerical examples are provided in Section 3.4 and

we present the conclusion in Section 3.5.
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3.2 System Model

In this section, we describe the system model and compute quantities necessary to

apply density evolution techniques in Section 3.3. Consider the three-node network

model described in Fig. 2.1. Two user nodes S1 and S2 generate independent binary

messages m1 and m2 respectively. The common receiver R wants to reconstruct the

XOR of the two messages from the received signal. Assume that both users apply

the same binary LDPC code. Each user encodes its message mi ∈ {0, 1}K into an

LDPC codeword ci of length N . Then each coded bit xk = i ∈ {0, 1} of the k-th

user corresponds to transmitting a signal sk
i (t). Both users’ signals are transmitted

simultaneously to the receiver over a noisy channel. Assuming x1 = i, x2 = j and a

Gaussian XMAC, the received signal r(t) can be expressed as

r(t) = s1
i (t) + s2

j(t) + n(t), (3.1)

where n(t) is a white Gaussian noise process with two-sided spectral density N0/2. Since

LDPC codes are linear, the modulo 2 sum of any two codewords is also a codeword.

The receiver decodes the received signal into a codeword cw which corresponds to the

XOR message w such as

cw = c1 ⊕ c2 = m1G⊕m2G

= (m1 ⊕m2)G

= wG,

where G denotes the generator matrix of the LDPC code. Therefore the receiver can

apply a decoder for the same error correction code used by each user to reconstruct w.
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3.2.1 BPSK

Assume that each user employs BPSK modulation. Then the transmitted signal for

user k with data bit i, sk
i (t) is given as

sk
i (t) =

√
2Es

T
cos (2πfct + iπ + θk), 0 ≤ t ≤ T (3.2)

where Es is the symbol energy, T is the symbol duration, fc is the carrier frequency

and θk is the carrier phase of the k-th user. We assume that θ1 and θ2 are fixed and

known at the receiver. The receiver computes sufficient statistics y = (yc, ys) as

yc =

√
2

T

∫ T

0

r(t) cos (2πfct)dt,

ys =

√
2

T

∫ T

0

r(t) sin (2πfct)dt. (3.3)

Conditioned on x = (x1, x2) and θ = (θ1, θ2), yc and ys are independent Gaussian

random variables with means

E [yc|x,θ] =
√

Es ((−1)x1 cos θ1 + (−1)x2 cos θ2) ,

E [ys|x,θ] = −
√

Es ((−1)x1 sin θ1 + (−1)x2 sin θ2) ,

and the same variance N0/2. Assuming that each user’s channel input is equiprobable

and independent of the other, the conditional density of channel output y given θ and

the XOR bit W = x1 ⊕ x2, p(y|W = i,θ) is given by

p(y|W = i, θ) =
∑

(x1,x2):x1⊕x2=i

p(y|x,θ)

2
. (3.4)
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The conditional density p(y|W = i, θ) can be expressed for i = 0, 1 as

p(y|W = i, θ) =
1

πN0

e(−Γi) cosh (Λi), (3.5)

where

Γi =
y2

c + y2
s + 2Es(1 + (−1)i cos (θ1 − θ2))

N0

,

Λi =
2
√

Es(cos θ1 + (−1)i cos θ2)yc

N0

− 2
√

Es(sin θ1 + (−1)i sin θ2)ys

N0

.

Letting y
′
c = cos

(
θ1+θ2

2

)
yc − sin

(
θ1+θ2

2

)
ys and y

′
s = sin

(
θ1+θ2

2

)
yc + cos

(
θ1+θ2

2

)
ys, by

change of variables we obtain the conditional density of the sufficient statistic y
′

=

(y
′
c, y

′
s) given W and θ as

p(y
′|W = i, θ) = p(y

′|W = i, φ)

=
1

πN0

e−Γ
′
i cosh (Λ

′
i), (3.6)

where

φ = θ1 − θ2,

Γ
′
i =

y
′
c

2
+ y

′
s

2
+ 2Es(1 + (−1)i cos (φ))

N0

, for i = 0, 1,

Λ
′
0 =

4
√

Es cos
(

φ
2

)
y
′
c

N0

,

Λ
′
1 =

4
√

Es sin
(

φ
2

)
y
′
s

N0

.

Note that the conditional density depends on θ only through the phase difference φ.
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3.2.2 BFSK

When each user employs BFSK modulation, the transmitted signal sk
i (t) is given by

sk
i (t) =

√
2Es

T
cos (2πfit + θk), 0 ≤ t ≤ T. (3.7)

The receiver computes sufficient statistics y = (y0c, y0s, y1c, y1s) given by

yic =

√
2

T

∫ T

0

cos (2πfit)r(t)dt,

yis =

√
2

T

∫ T

0

sin (2πfit)r(t)dt.

Conditioned on x = (x1, x2) and θ = (θ1, θ2), yic and yis are independent Gaussian

random variables with means

E [yic|x,θ] =
√

Es (cos θ1δi,x1 + cos θ2δi,x2)

E [yis|x,θ] = −
√

Es (sin θ1δi,x1 + sin θ2δi,x2) ,

where δi,j = 1 if i = j or zero otherwise. The variances are N0/2. Similar to the BPSK

case, let us define a sufficient statistic y
′
=

(
y
′
0c, y

′
0s, y

′
1c, y

′
1s

)
as

y
′
ic = cos

(
θ1 + θ2

2

)
yic − sin

(
θ1 + θ2

2

)
yis,

y
′
is = sin

(
θ1 + θ2

2

)
yic + cos

(
θ1 + θ2

2

)
yis.
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Figure 3.1: An example of signal constellations in the XMAC

By change of variables we obtain the conditional density of sufficient statistic y
′
given

W and θ as

p(y
′|W = i, θ) = p(y

′|W = i, φ)

=





1
2π2N2

0
e

�
−Ω+2Es(1+cos φ)

N0

�(
e

4
√

Esy
′
0c cos

φ
2

N0 + e
4
√

Esy
′
1c cos

φ
2

N0

)
, i = 0

1
π2N2

0
e

0@−Ω+2Es−2
√

Es

�
y
′
0c+y

′
1c

�
cos

φ
2

N0

1A
cosh

(
2
√

Es

�
y
′
0s−y

′
1s

�
sin φ

2

N0

)
, i = 1

(3.8)

where Ω = y
′
0c

2
+ y

′
0s

2
+ y

′
1c

2
+ y

′
1s

2
and φ = θ1 − θ2.

3.3 Density Evolution

In [30], a density evolution technique was introduced to evaluate the asymptotic

performance of LDPC codes. The density evolution technique tracks the density of

messages passed through the underlying Tanner graph so that the performance of LDPC

codes can be analyzed. This method depends on the channel symmetry assumption that

the density of messages does not depend on codewords. However, in the XMAC, the

density of messages can be codeword-dependent. An example of signal constellations

in the XMAC is shown in Fig. 3.1. This is the case when both users employ BPSK

modulation so that 0 and 1 are mapped into
√

Es and −√Es respectively and carrier

phases θ1 = θ2 = 0. In this case the density of messages depends on the codeword

transmitted. For such asymmetric channels, Wang et al. proposed a modified density
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evolution technique [25]. This method keeps track of the density of messages averaged

over all valid codewords. Using this density evolution technique, we can calculate the

threshold, the maximum channel parameter for which the bit error probability under

density evolution converges to zero.

Here we briefly review the density evolution technique for asymmetric channels. Let

ql be the message from a variable node to a check node in the l-th iteration. Then ql is

defined as

ql = ln
p(yl|x = 0)

p(yl|x = 1)
, (3.9)

where yl is the received signal on the tree-like subset of the Tanner graph spanned from

the given variable node with depth 2l. Let f(ql; x) be the density of the message ql at

the variable node corresponding to a coded bit x averaged over all valid codewords in

the l-th iteration. Define the Chernoff bound on the error probability of message from

a variable node corresponding to x in the l-th iteration as [25]

CBP l(x) =

∫
e−

(−1)xql

2 f(ql; x)dql. (3.10)

The averaged Chernoff bound 〈CBP l〉 can be expressed as

〈CBP l〉 =
1

2

(
CBP l(0) + CBP l(1)

)

= CBP l(0) = CBP l(1). (3.11)

In [25] for an LDPC code ensemble with a degree distribution pair (λ(x), ρ(x)) such as

λ(x) =
dv∑
i=2

λix
i−1 and ρ(x) =

dc∑
i=2

ρix
i−1

where dv and dc denote the maximum variable degree and the maximum check degree
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respectively, it was shown that lim
l→∞

〈CBP l〉 = 0 if λ2ρ
′(1)〈CBP 0〉 < 1 and ∃ l′ s.t.

〈CBP l′〉 < ε∗ where ε∗ is the smallest strictly positive root of the following equation:

λ (ρ′(1)ε) 〈CBP 0〉 = ε. (3.12)

Rather than computing 〈CBP l〉 directly, the following iterative upper bound on 〈CBP l〉
can be used to check whether the error probability converges to zero or not [25]

〈CBP l+1〉 ≤ 〈CBP 0〉λ (
ρ′(1)〈CBP l〉) . (3.13)

Therefore we only need to compute f(q0; 0), the density of the initial message observed

from the channel at a variable node corresponding to a coded bit 0. For more details

we refer to [25]. Now we use this method to find the threshold on the Gaussian XMAC.

3.3.1 BPSK

From (3.6), the initial message q0 is given as

q0 = ln
p(y

′|W = 0, φ)

p(y′|W = 1, φ)

= −4Es cos φ

N0

+ ln

(
cosh

(
4
√

Es cos
(

φ
2

)
y
′
c

N0

))

− ln

(
cosh

(
4
√

Es sin
(

φ
2

)
y
′
s

N0

))
. (3.14)

assuming W = 0,

q0 = ln
p(y

′|W = 0, φ)

p(y′|W = 1, φ)

= −4Es cos φ

N0

+ ln

(
cosh

(
4
√

Es cos
(

φ
2

)
y
′
c

N0

))
− ln

(
cosh

(
4
√

Es sin
(

φ
2

)
y
′
s

N0

))
.
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Let A = ln

(
cosh

(
4
√

Es cos(φ
2 )y

′
c

N0

))
and B = ln

(
cosh

(
4
√

Es sin(φ
2 )y

′
s

N0

))
. Then as-

suming that the XOR bit W is 0, the corresponding density function of A, fA(a) can

be obtained as

fA(a) =
1

8

√
N0

Esπ

∑

k=0,1

∣∣∣∣∣∣∣∣

sec
(

φ
2

)

tanh

(
4
√

Es cos(φ
2 )αk

N0

)

∣∣∣∣∣∣∣∣

×
(

e
−(αk−2

√
Es cos(φ

2 ))
2

N0 + e
−(αk+2

√
Es cos(φ

2 ))
2

N0

)
, (3.15)

where α0 = N0

4
√

Es cos (φ
2 )

ln
(
ea +

√
e2a − 1

)
and α1 = N0

4
√

Es cos (φ
2 )

ln
(
ea −√e2a − 1

)
. Sim-

ilarly given W = 0, the density function of B, fB(b) can be expressed as

fB(b) =
1

4

√
N0

Esπ

∑

k=0,1

∣∣∣∣∣∣∣∣

e
− β2

k
N0 csc

(
φ
2

)

tanh

(
4
√

Es sin(φ
2 )βk

N0

)

∣∣∣∣∣∣∣∣
, (3.16)

where β0 = N0

4
√

Es sin (φ
2 )

ln
(
eb +

√
e2b − 1

)
and β1 = N0

4
√

Es sin (φ
2 )

ln
(
eb −√e2b − 1

)
. Now

the density function of the initial message q0 given W = 0, f(q0; 0) can be computed as

f(q0; 0) =

∫ ∞

0

fB

(
a− q0 − 4Es cos φ

N0

)
fA(a)da. (3.17)

When φ = 0, the initial message q0 is

q0 = −4Es

N0

+ ln

(
cosh

(
4
√

Esy
′
c

N0

))
(3.18)

with the density function f(q0) as

f(q0; 0) = fA

(
q0 +

4Es

N0

)
. (3.19)
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When φ = π, we have

q0 =
4Es

N0

− ln

(
cosh

(
4
√

Esy
′
s

N0

))
(3.20)

with the density function f(q0) as

f(q0; 0) = fB

(
−q0 +

4Es

N0

)
. (3.21)

3.3.2 BFSK

When both users employ BFSK modulation, from (3.8) the initial message q0 can

be expressed as

q0 = −2Es cos φ

N0

+ ln

(
cosh

(
2
√

Es cos
(

φ
2

)
zc

N0

))

− ln

(
cosh

(
2
√

Es sin
(

φ
2

)
zs

N0

))
, (3.22)

where zc = y
′
0c − y

′
1c and zs = y

′
0s − y

′
1s. Note that given W = 0, the density functions

of zc and zs are given by

fzc(z) =
e
−(z−2

√
Es cos

φ
2 )

2

2N0 + e
−(z+2

√
Es cos

φ
2 )

2

2N0

2
√

2πN0

, (3.23)

fzs(z) =
1√

2πN0

e
− z2

2N0 . (3.24)
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In (3.22), let M = ln

(
cosh

(
2
√

Es cos(φ
2 )zc

N0

))
and N = ln

(
cosh

(
2
√

Es sin(φ
2 )zs

N0

))
. Then

from (3.22)-(3.24), the density function of M given W = 0 is

fM(m) =
1

4

√
N0

2Esπ

∑

k=0,1

∣∣∣∣∣∣∣∣

sec
(

φ
2

)

tanh

(
2
√

Es cos(φ
2 )µk

N0

)

∣∣∣∣∣∣∣∣

×
(

e
−(µk−2

√
Es cos(φ

2 ))
2

2N0 + e
−(µk+2

√
Es cos(φ

2 ))
2

2N0

)
,

(3.25)

where µ0 = N0

2
√

Es cos(φ
2 )

ln
(
em +

√
e2m − 1

)
and µ1 = N0

2
√

Es cos(φ
2 )

ln
(
em −√e2m − 1

)
.

Similarly the density function of N given W = 0, fN(n) is given as

fN(n) =
1

2

√
N0

2Esπ

∑

k=0,1

∣∣∣∣∣∣∣∣

e
− ν2

k
2N0 csc

(
φ
2

)

tanh

(
2
√

Es sin(φ
2 )νk

N0

)

∣∣∣∣∣∣∣∣
, (3.26)

where ν0 = N0

2
√

Es sin(φ
2 )

ln
(
en +

√
e2n − 1

)
and ν1 = N0

2
√

Es sin(φ
2 )

ln
(
en −√e2n − 1

)
. Fi-

nally given W = 0, the density function of the message q0, f(q0; 0) is given by

f(q0; 0) =

∫ ∞

0

fN

(
n− q0 − 2Es cos φ

N0

)
fM(m)dm. (3.27)

When φ = 0, the initial message q0 is

q0 = −2Es

N0

+ ln

(
cosh

(
2
√

Eszc

N0

))
(3.28)

with the density function f(q0) as

f(q0; 0) = fM

(
q0 +

2Es

N0

)
. (3.29)
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When φ = π, q0 is given as

q0 =
2Es

N0

− ln

(
cosh

(
2
√

Eszs

N0

))
(3.30)

with the density function

f(q0; 0) = fN

(
−q0 +

2Es

N0

)
. (3.31)

3.4 Numerical Results

In this section, we present numerical examples showing the performance of LDPC

codes over the Gaussian XMAC. Based on the density evolution technique discussed

in Section 3.3 and , we calculate the threshold of LDPC code codes. Using numerical

optimization techniques called differential evolution, we found good distribution pairs

with a maximum variable degree of 30 and a maximum check degree of 20. In our

numerical analysis, we determine the threshold as the largest channel parameter for

which the evolved average Chernoff bound 〈CBP l〉 hits ε∗, the smallest strictly positive

root of (3.12), in 300 iterations.

In the previous chapter, assuming that both users transmit their messages simulta-

neously using binary random linear codes, we derived the error exponent of the XMAC,

El(R) as

El(R) = max
0<ρ≤1

{E0(ρ,Q)− ρR}, (3.32)

where

E0(ρ,Q) = − log2

∫

y∈Y

( ∑
W=0,1

Q(W )p(y|W )
1

1+ρ

)1+ρ

dy,
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Figure 3.2: Performance of LDPC codes and R∗(ρ,Q) with BPSK (φ = 0)

Q is the uniform distribution on the XOR bit W and Y is the channel output alphabet.

This implies that there exists a binary linear code such that the receiver can recover

the XOR of the simultaneously transmitted data over the XMAC with arbitrarily small

error probability if its code rate R < max
Q

max
0<ρ≤1

R∗(ρ, Q) where

R∗(ρ,Q) =
E0(ρ,Q)

ρ
.

Note that given distribution Q, R∗(ρ,Q) is a decreasing function of ρ.

In Fig. 3.2 we plot the signal-to-noise ratio (SNR) per information bit Eb/N0 =

Es/(N0R) as a function of code rate R for LDPC codes and compare it with R∗(0.001, Q)

and R∗(1, Q) assuming BPSK modulation and uniform distribution on W . The phase

difference φ is assumed to be zero. It shows that LDPC codes performs better than

R∗(1, Q). This is similar to the result in the point-to-point communication case where

LDPC codes show reliable performance at rates above the cutoff rate. We can also see

that the performance of LDPC codes is less than 1.5 dB away from R∗(0.001, Q) over
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Figure 3.3: Performance of LDPC codes and R∗(ρ,Q) with BFSK (φ = 0)

wide range of rates. Similar results for BFSK case are shown in Fig. 3.3.

3.5 Conclusion

In this chapter, we considered the problem of reconstructing the XOR of simulta-

neously transmitted data from two users. This is a basic structure of wireless networks

where network coding can offer advantages over conventional routing. We investigated

the performance of binary LDPC codes on the Gaussian XMAC where the capacity

is not well established yet. Both BPSK and BFSK modulation schemes were consid-

ered. The noise thresholds of LDPC codes on the Gaussian XAMC were calculated via

the density evolution technique. Numerical results showed that the noise thresholds of

LDPC codes are very close to the values theoretically achievable with linear codes.
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CHAPTER 4

Outage Probability of Low-Density Parity-Check

(LDPC) Coded Systems

In this chapter, we study the outage probability of low-density parity-check (LDPC)

coded systems for slow fading channels (nonergodic channels) under the assumption

that the transmitter knows only the channel statistics while the receiver has perfect or

imperfect channel side information (CSI) about the fading level. To reliably transmit

information through fading channels, adequate signal-to-noise ratio (SNR) is essential.

Therefore, outage probability is an important performance measure of wireless com-

munication systems operating in a fading environment. We define the outage event

as the set of channel realizations which results in unsuccessful decoding. The fading

coefficient is assumed to be random but stays constant over a LDPC codeword. Based

on a density evolution analysis, closed-form outage probabilities are derived for both

Rayleigh and Rician fading channels. In many practical communication systems it is

impossible to obtain perfect CSI. When channel estimation is required and imperfect

the effect of channel estimation errors on the outage probability is investigated assum-

ing the estimation error is Gaussian distributed. We further extend this work to the

LDPC-coded direct-sequence code-division multiple-access (DS-CDMA) systems.
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4.1 Introduction

The capacity of a fading channel is a performance measure which indicates the

maximum rate of information flow at an arbitrarily small error probability. There have

been many studies on the channel capacity of time-varying channels in the literature

[26]-[28]. Goldsmith et al. [26] considered the capacity of fading channels with channel

side information (CSI) at both transmitter and receiver and at the receiver alone. In

[27], the capacity of time-varying channels was investigated under different assumptions

of channel knowledge. In [28], bounds on the mutual information with imperfect CSI at

the receiver were derived. For ergodic channels, ergodic capacity is a good performance

measure which defines the maximum achievable rate based on averaging instantaneous

mutual information over all channel realizations. However, in nonergodic channels,

there is a nonzero probability that the channel experiences deep fading over a codeword

transmission hence a given rate R cannot be supported by the channel. In such cases,

outage probability, which is defined as the probability of signal-to-noise ratio (SNR)

falling below an acceptable threshold, is a more meaningful performance measure in

the design of wireless communication systems.

In this study, we investigate the outage probability of low-density parity-check

(LDPC) codes over slow fading channels. Recently, LDPC codes have drawn significant

attention due to their capacity-approaching error-correcting capabilities and simple de-

coding algorithm called belief propagation. In [29], the density evolution algorithm was

introduced to analyze the performance of LDPC codes under belief propagation decod-

ing. Density evolution techniques describe the evolution of message distributions that

are passed on the Tanner graph of the code ensemble. In [30], density evolution was

applied to irregular LDPC codes for various channels such as binary erasure channels,

binary symmetric channels and additive white Gaussian channels. Then for each type

of the channel, the stability condition was derived which can be interpreted as a suffi-

cient condition so that the average error probability converges to zero as the number of
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iterations tends to infinity. In [31], assuming perfect CSI at the receiver, the stability

condition for uncorrelated Rayleigh fading channels was derived.

The aforementioned previous works considered fast fading channels (ergodic chan-

nels) where an infinitely long codeword can experience all the channel realizations during

the transmission of a codeword. However, in slow fading channels (nonergodic channels)

where a codeword may face deep fading during whole transmission time, reliable trans-

mission at a constant rate is impossible. Therefore the outage probability can be a more

important performance measure than capacity for nonergodic channels. We assume that

the fading is fixed during the transmission of an LDPC codeword but varies randomly

at the next transmission. We also assume that the statistics of fading process are known

both at the transmitter and the receiver while the receiver obtains channel estimate. In

this study, the outage is defined to be the case where the stability condition, a sufficient

condition such that the error probability converges to zero as the number of iterations

tends to infinity, does not hold due to fading. Under these assumptions, closed-form

outage probabilities for Rayleigh and Rician fading channels are derived. In addition,

the channel estimation error is modeled as Gaussian and the effect of imperfect CSI on

the outage probability is investigated. We also consider LDPC-coded direct-sequence

code-division multiple-access (DS-CDMA) systems. Using the same technique used for

the single user case, we derived a closed-form outage probability, which is a function of

the signal-to-interference ratio (SIR).

The remainder of this chapter is organized as follows. We outline the communication

system and channel models in Section 4.2. In Section 4.3, we describe the outage model

and derive an analytical expression for the outage probability over fading channels. In

Section 4.4, we extend to the LDPC-coded CDMA systems and derive the corresponding

outage probability. Finally conclusions are addressed in Section 4.5.
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4.2 System Model

We consider data transmission over fading channels using binary LDPC codes with

a degree distribution pair (λ(t), ρ(t)) such as

λ(t) =
dv∑
i≥2

λit
i−1 and ρ(t) =

dc∑
i≥2

ρit
i−1

where λi is the fraction of edges connected to a variable node of degree i and ρi is the

fraction of edges connected to a check node of degree i. The maximum variable degree

and check degree are denoted by dv and dc respectively. The received signal can be

expressed as

y = hx + n, (4.1)

where x, h and n are the transmitted signal, a fading coefficient and a complex Gaussian

noise with variance σ2
n per each dimension respectively. The channel fading coefficient

h is a complex Gaussian random variable with independent real and imaginary parts

each distributed as N (µ/
√

2, σ2
h). Let r and θ be the magnitude and the phase of h

respectively. Then the magnitude r is Rician distributed with density function

p(r) =
r

σ2
h

exp

(
−(r2 + µ2)

2σ2
h

)
I0

(
rµ

σ2
h

)
, (4.2)

where I0 is the modified Bessel function of the first kind and zero order and µ represents

specular component of the channel and the phase θ is uniformly distributed in the

interval (0, 2π]. Since we focus on slow fading channels, h is assumed to be random

but stay constant over an LDPC codeword. It is also assumed that the transmitter

only knows the statistics of h and no other channel information is available at the

transmitter. The transmitter is assumed to send its information at a constant code
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rate and with a fixed power level. In this study, BPSK modulation is considered so

that 0 and 1 are mapped into
√

Es and −√Es respectively.

At the receiver, for successful decoding, the receiver estimates h and obtains the

channel estimate ĥ which can be perfect or imperfect. The estimate ĥ can be obtained

by using pilot symbols. Then the channel realization h can be written as

h = ĥ + e, (4.3)

where e denotes the channel estimation error. We assume that h and ĥ are jointly

Gaussian and the real (imaginary) components of h and ĥ are correlated with correlation

coefficient ρh,ĥ. We also assume that h and ĥ are identically distributed with the same

mean and variance. Since the estimation error e is a linear combination of jointly

Gaussian random variables h and ĥ, it is a zero-mean circularly symmetric Gaussian

random variable. In [32], it was shown that the channel estimation error is Gaussian

distributed when the minimum mean-square error (MMSE) estimator is used. From

(4.1) and (4.3), the received signal can be rewritten as

y = hx + n

= ĥx + xe + n

= ĥx + w, (4.4)

where w = xe + n. Note that w is a zero-mean circularly symmetric Gaussian random

variable with variance σ2
w = 2Esσ

2
h(1 − ρh,ĥ) + σ2

n per dimension since x takes a value

from the set {√Es,−
√

Es} with equal probability and a sum of independent Gaussian

random variables is also Gaussian. Let r̂ and θ̂ be the magnitude and the phase of

the estimate ĥ. Note that random variables r and r̂ are identically distributed with

the same density function given in (4.2) and θ̂ is uniform in (0, 2π]. Then the decision
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statistic y′ is given as

y′ = Re
{

ye−jθ̂
}

= r̂x + Re
{

we−jθ̂
}

= r̂x + w′. (4.5)

The additive noise term w′ is a zero-mean scalar Gaussian random variable with variance

σ2
w. Note that the channel estimation error is related to σ2

w in the form of ρh,ĥ.

4.3 Outage Probability

In this section, we first describe the outage model based on analytical tools such as

density evolution and stability condition. Then we compute the outage probabilities

for both Rayleigh and Rician fading channels.

4.3.1 Outage Model

The density evolution technique tracks messages passed through the underlying

Tanner graph so that the performance of LDPC codes can be analyzed. Let u0 be the

initial message from a bit node to a check node and P0 be the density function of u0.

Then for a given r̂ = |ĥ|, u0 is defined as

u0 = log

(
P (x =

√
Es|y′, r̂)

P (x = −√Es|y′, r̂)

)

=
2y′r̂

√
Es

σ2
w

. (4.6)

Assuming the all zero codeword is transmitted, a change of variable in (4.6) yields

P0(u0|r̂) =
σw

2r̂
√

2πEs

exp

(
− σ2

w

8r̂2Es

(
u0 − 2r̂2Es

σ2
w

)2
)

. (4.7)
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It is easy to show that P0(u0|r̂) is symmetric as

P0(u0|r̂) =
σw

2r
√

2πEs

exp

(
− σ2

w

8r̂2Es

(
u0 − 2r̂2Es

σ2
w

)2
)

=
σw

2r
√

2πEs

exp

(
− σ2

w

8r̂2Es

(
−u0 − 2r̂2Es

σ2
w

)2

+ u0

)

= P0(−u0|r̂) exp(u0). (4.8)

In [30], it was also shown that with symmetric P0(u0|r̂), the error probability converges

to zero under density evolution if

λ′(0)ρ′(1) < es, (4.9)

where s = − log
(∫∞

−∞ P0(u0|r̂)e−u0/2du0

)
.

Definition 4.1: Let (λ(t), ρ(t)) be a distribution pair of an LDPC code. Then

R∗(θ) is defined as

R∗(θ) = max
(λ(t),ρ(t))

(
R = 1−

∑dv

i≥2
ρi

i∑dc

i≥2
λi

i

: λ′(0)ρ′(1) < θ

)
.

The code rate R∗(θ) can be interpreted as the maximum achievable code rate of LDPC

codes satisfying the stability condition given the channel condition which is parameter-

ized by θ.

Lemma 4.1: R∗(θ) is a strictly increasing function of θ.

Proof : Suppose that R∗(θ) is not a strictly increasing function of θ. Then there exist

a > 0 and an arbitrary small number ε > 0 such that

R∗(a) ≥ R∗(a + ε).
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Let λa(t) =
∑dv

i≥2 λa,it
i−1 and ρa(t) =

∑dc

i≥2 ρa,it
i−1 such that

R∗(a) = 1−
∑dc

i≥2
ρa,i

i∑dv

i≥2
λa,i

i

and λa
′(0)ρa

′(1) < a.

(Case1 : λa,2 6= 0) Consider the following distribution pair (λb(t), ρb(t)):

λb(t) = λa(t),

ρb,i =





ρa,i − ε/λa,2, if i = j ≥ 2 and ρa,j 6= 0

ρa,i + ε/λa,2, if i = j + 1 ≥ 3

ρa,i, else

.

Note that ε should be carefully chosen so that ρb,j = ρa,j − ε/λa,2 > 0. Then

λ′b(0)ρ′b(1) = λ′a(0)ρ′a(1) + ε < a + ε,

and the code rate R(b) corresponding to the distribution pair (λb(t), ρb(t)) is given by

R(b) = 1−
∑dc

i≥2
ρb,i

i∑dv

i≥2
λb,i

i

.

By the assumption,

R(b) ≤ R∗(a + ε) ≤ R∗(a).
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However,

R(b)−R∗(a) =

∑dc

i≥2
ρa,i

i∑dv

i≥2
λa,i

i

−
∑dc

i≥2
ρb,i

i∑dv

i≥2
λb,i

i

=
1∑dv

i≥2
λa,i

i

(
ε

jλa,2

− ε

(j + 1)λa,2

)
> 0,

which is a contradiction.

(Case2 : λa,2 = 0) Consider the following distribution pair (λc(t), ρc(t)):

λc(t) = λa(t),

ρc,i =





ρa,i − ε, if i = j ≥ 2 and ρa,j 6= 0

ρa,i + ε, if i = j + 1

ρa,i, else

.

Note that ε should be carefully chosen so that ρc,j = ρa,j− ε > 0. Then the distribution

pair (λc(t), ρc(t)) satisfies the stability condition as follows:

λ′c(0)ρ′c(1) = λa,2ρ
′
c(1) = 0 < a.

If we define R(c) as the code rate corresponding to the distribution pair (λc(t), ρc(t)),

we have

R(c)−R∗(a) =

∑dc

i≥2
ρa,i

i∑dv

i≥2
λa,i

i

−
∑dc

i≥2
ρc,i

i∑dv

i≥2
λc,i

i

=
1∑dv

i≥2
λa,i

i

(
ε

j
− ε

j + 1

)
> 0,

which contradicts the definition of R∗(a). By contradiction, we conclude that R∗(θ) is
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a strictly increasing function of θ.

Since the transmitter knows only the statistics of h, one simple strategy that the

transmitter can select is to use an LDPC code of code rate R∗(δ) with a degree distri-

bution pair (λ∗(t), ρ∗(t)) such that

R∗(δ) = 1−
∑dv

i≥2
ρ∗i
i∑dc

i≥2
λ∗i
i

, (4.10)

where

δ =

(∫ ∞

−∞
E(P0(u0|r̂))e−u0/2du0

)−1

. (4.11)

By the definition of R∗(θ) and Lemma 4.1, we assume

λ∗′(0)ρ∗′(1) =

(∫ ∞

−∞
E(P0(u0|r̂))e−u0/2du0

)−1

. (4.12)

In (4.11) and (4.12), the density function of the initial message is marginalized with

respect to r̂ (this may be not an optimal choice in terms of minimizing outage probabil-

ity). When the transmitted signal experiences deep fading, the stability condition may

not be satisfied resulting in a decoding error. In this study, we define the outage as an

event that SNR falls below an acceptable level thus the stability condition is violated.

Then the outage probability PRician
out can be expressed as

PRician
out = Pr

(
λ∗′(0)ρ∗′(1) ≥ es

)

= Pr (δ ≥ es) . (4.13)

67



4.3.2 Calculation of Outage Probability

Let A =
∫∞
−∞ E(P0(u0|r̂))e−u0/2du0 and B =

∫∞
−∞ P0(u0|r̂)e−u0/2du0. From (4.2) and

(4.7), A can be computed as

A =
σw

σ2
h

√
2πEs

∫ ∞

0

(∫ ∞

0

exp

(
− σ2

w

8r̂2Es

u2
0

)
du0

)

× exp

(
− r̂2Es

2σ2
w

)
exp

(
−(r̂2 + µ2)

2σ2
h

)
I0

(
r̂µ

σ2
h

)
dr̂

=
1

σ2
h

exp

(
− µ2

2σ2
h

) ∫ ∞

0

r̂ exp

(
−(Esσ

2
h + σ2

w)r̂2

2σ2
wσ2

h

)
I0

(
r̂µ

σ2
h

)
dr̂. (4.14)

Using I0(z) =
∑∞

k=0

�
z2

4

�k

k!2
,

A =
1

σ2
h

exp

(
− µ2

2σ2
h

) ∞∑

k=0

(
µ2

4σ4
h

)k

k!2

∫ ∞

0

r̂2k+1 exp

(
−(Esσ

2
h + σ2

w)r̂2

2σ2
wσ2

h

)
dr̂. (4.15)

Letting ∆ =
Esσ2

h+σ2
w

2σ2
hσ2

w
and t = ∆r̂2 yields

A =
1

σ2
h

exp

(
− µ2

2σ2
h

) ∞∑

k=0

(
µ2

4σ4
h

)k

k!2

∫ ∞

0

r̂2k+1 exp (−∆r̂2)dr̂

=
1

σ2
h

exp

(
− µ2

2σ2
h

) ∞∑

k=0

(
µ2

4σ4
h

)k

k!2
1

2∆k+1

∫ ∞

0

tke−tdt. (4.16)

Using
∫∞

0
tke−tdt = k! yields

A =
1

σ2
h

exp

(
− µ2

2σ2
h

) ∞∑

k=0

µ2kσ2k+2
w

k!2kσ2k−2
h (Esσ2

h + σ2
w)k+1

. (4.17)
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Next, B can be calculated as

B =

∫ ∞

0

σw

r̂
√

2πEs

exp

(
− σ2

w

8r̂2Es

(
u0 − 2r̂2Es

σ2
w

)2
)

e−u0/2du0

=
σw

r̂
√

2πEs

exp

(
− r̂2Es

2σ2
w

) ∫ ∞

0

exp

(
− σ2

wu2
0

8r̂2Es

)
du0

= exp

(
− r̂2Es

2σ2
w

)
. (4.18)

From (4.13), (4.17) and (4.18), the outage probability PRician
out is given by

PRician
out = Pr

(
A−1 ≥ B−1

)
= Pr


 σ2

h exp
(

µ2

2σ2
h

)

∑∞
k=0

µ2kσ2k+2
w

k!2kσ2k−2
h (Esσ2

h+σ2
w)k+1

≥ exp

(
r̂2Es

2σ2
w

)


= Pr(r̂ ≤ α)

=

∫ α

0

r̂

σ2
h

exp

(−(r̂2 + µ2)

2σ2
h

)
I0

(
r̂µ

σ2
h

)
dr̂

= 1−
∫ ∞

α

r̂

σ2
h

exp

(−(r̂2 + µ2)

2σ2
h

)
I0

(
r̂µ

σ2
h

)
dr̂

= 1−Q

(
µ

σh

,
α

σh

)
, (4.19)

where Q(a, b) denotes Marcum’s Q function and α is given by

α =

√√√√√2σ2
w

Es

log


 σ2

h exp
(

µ2

2σ2
h

)

∑∞
k=0

µ2kσ2k+2
w

k!2kσ2k−2
h (Esσ2

h+σ2
w)k+1


. (4.20)

In case of Rayleigh fading, i.e., when µ = 0, (4.17) becomes

A =
σ2

w

Esσ2
h + σ2

w

. (4.21)
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Then the corresponding outage probability PRayleigh
out can be computed as

PRayleigh
out = Pr

(
λ′(0)ρ′(1) > exp

(
r̂2Es

2σ2
w

))

= Pr

(
1 +

Esσ
2
h

σ2
w

≥ exp

(
r̂2Es

2σ2
w

))

= Pr(r̂ ≤ β)

=

∫ β

0

r̂

σ2
h

exp

(
− r̂2

2σ2
h

)
dr̂

= 1− e
− β2

2σ2
h , (4.22)

where β is given by

β =

√
2σ2

w

Es

log

(
1 +

Esσ2
h

σ2
w

)
. (4.23)

4.3.3 Numerical Examples

In this section, we present a set of numerical results for the outage probability of

fading channels in the presence of channel estimation error. Fig. 4.1 shows the outage

probability of Rician fading channels as a function of the average received SNR for

various values of Rician factor K = µ2

2σ2
h
. Note that for different SNR levels, different

LDPC codes are used according to (4.12). The effect of channel estimation error on

the outage probability is illustrated in Fig. 4.2 and Fig. 4.3 for Rayleigh and Rician

fading channels respectively. We can see that the performance loss due to imperfect

channel information is significant for wide range of SNR. It can be seen that at high

SNR, small channel estimation errors induce high outage probability. This is because

the transmitted signal is severely corrupted by the error term due to inaccurate channel

estimation. Table 4.1 shows the outage probabilities of both Rayleigh and Rician fading

channels for various ρh,ĥ at SNR of 30 dB. An interesting observation is that even

when ρ ≈ 1(< 1), incorrect channel information induces considerable performance

70



0 5 10 15 20 25 30
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

O
ut

ag
e 

pr
ob

ab
ili

ty
,  

P ou
t

R
ic

ia
n

K increases

K = 0

K = 30

Figure 4.1: Outage probability of Rician fading channels versus average received SNR
with perfect CSI (σ2

h = 0.5)

loss compared to when ρh,ĥ = 1. For example, in case of the Rician channel, if we

increase ρh,ĥ by 0.01 from 0.99 to 1, the outage probability can be reduced by 77%.

This observation coincides with the results in [33] which indicated that to avoid severe

performance degradation due to imperfect CSI, the second moment of the estimation

error should be negligible compared to the reciprocal of the SNR.

Table 4.1: Outage Probability for various values of ρh,ĥ (σ2
h = 0.5, SNR = 30 dB)

ρh,ĥ PRayleigh
out PRician

out (K = 1)

1 1.24× 10−2 9.60× 10−3

0.99 8.10× 10−2 4.17× 10−2

0.98 1.26× 10−1 6.67× 10−2

0.97 1.62× 10−1 8.79× 10−2

0.96 1.91× 10−1 1.07× 10−1

0.95 2.16× 10−1 1.24× 10−1
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4.4 Outage Probability of LDPC-Coded DS-CDMA

Systems

In this Section, we derive the closed-form outage probability of LDPC coded direct-

sequence code-division multiple-access (DS-CDMA) systems. Both Rayleigh and Rician

fading channels are considered. The channel coefficient is also assumed to be random

but stays constant over a LDPC codeword. We also investigate the effect of the system

load to the outage probability. Based on an asymptotic analysis for large CDMA

systems with processing gain N , i.e. number of active users K → ∞ with a fixed

system load L = K
N

, the outage probability is expressed as a function of system load L.

4.4.1 System Model

We consider a synchronous DS-CDMA system with K users. The transmitted signal

from the k-th user is of the form

sk(t) = Akak(t)bk(t) cos(2πfct + θk), (4.24)

where Ak is the amplitude of the transmitted signal, ak(t) is the random spreading

signal, bk(t) is the data signal, fc is the carrier frequency, and θk is the carrier phase.

The spreading signal ak(t) can be written as

ak(t) =
∞∑

l=−∞
a

(k)
l ψ(t− lTc) (4.25)

where {a(k)
l } is the signature sequence with a

(k)
l ∈ {±1}, and ψ(t) is the chip waveform

with the chip duration Tc. Every signature sequence {a(k)
l } is assumed to be random.
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The k-th user’s data signal bk(t) can be expressed as

bk(t) =
∞∑

j=−∞
b
(k)
j PT (t− jT ), (4.26)

where PT (t) is the rectangular waveform defined as

PT (t) =





1, 0 ≤ t < T

0, otherwise.
(4.27)

where T = NTc is the symbol duration and N is the processing gain. The j-th LDPC-

coded bit of the k-th user is defined as b
(k)
j taking values from {−1, 1}. If we assume

the use of rectangular chip waveform, ak(t) is then expressed as

ak(t) =
∞∑

l=−∞
a

(k)
l PTc(t− lTc). (4.28)

The k-th user’s signal sk(t) is transmitted over a fading channel whose impulse response

is given by

hk(t) = rke
jβkδ(t− τk) (4.29)

where rk is Rician with the probability density function

fR(r) =
r

σ2
h

exp

(−(r2 + µ2)

2σ2
h

)
I0

(
rµ

σ2
h

)
, (4.30)

where µ is the specular component of the channel and σ2
h is the variance of the diffuse

component. The random variable βk represents the phase introduced by the channel,

which is uniformly distributed over [0, 2π). We assume that the receiver has perfect

channel side information (CSI) but the transmitter only knows the statistic of the
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channel. The received signal is given by

r(t) =
K∑

k=1

rkAkbk(t)ak(t) cos(2πfct + φk) + n(t), (4.31)

where φk = βk + θk and is assumed to be an uniform random variable over [0, 2π).

We assume that the channel is slow fading so that rk remains constant over a LDPC

codeword. We also assume that the receiver knows the exact value of rk while the

transmitter knows only the distribution of rk.

4.4.2 Outage Probability

Without loss of generality, we assume that the first user is the desired user and

each user is time synchronous to its own receiver, i.e. individual users are coherently

demodulated. Letting Tc = 1 (hence T = N) and Ak = 2 ∀k, the decision statistic for

user 1 is now given by [36]

Z1 =

∫ T

0

r(t)a1(t) cos(wct)dt.

= r1b
(1)
0 N +

K∑

k=2

rkWk cos(φk) + n1, (4.32)

where

Wk = b
(k)
−1Rk,1(τk) + b

(k)
0 R̂k,1(τk)

with the continuous-time partial cross-correlation functions defined as

Rk,i(τ) =

∫ τ

0

ak(t− τ)ai(t)dt

R̂k,i(τ) =

∫ T

τ

ak(t− τ)ai(t)dt,
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and n1 is a Gaussian random variable with zero mean and variance N0N/4 . The vari-

ance of the multiple-access interference (MAI) term
∑K

k=2 rkWk cos(φk) is
N(2σ2

h+µ2)(K−1)

3
.

If we approximate the MAI as Gaussian, the variance of the interference plus noise is

given by

σ2
I =

N0N

4
+

N(2σ2
h + µ2)

3
(K − 1).

From now on, we simplify the notation and write the decision statistic as

Z1 = r1x + I, (4.33)

where x = b
(1)
0 N and I =

∑K
k=2 rkWk cos(φk) + n1.

Let u0 be the initial message from a bit node to a check node and P0 be the density

function of u0. Assuming the all zero codeword is transmitted, u0 is defined as

u0 = log

(
P (x = N |Z, r1)

P (x = −N |Z, r1)

)

=
2Zr1N

σ2
I

. (4.34)

We also have

P0(u0|r1) =
σI

2r
√

2πN2
exp

(
− σ2

I

8r2N2

(
u0 − 2r2N2

σ2
I

)2
)

. (4.35)

The outage probability Pout is defined as the event where the stability condition is

violated. Following the same technique in Section 4.3, we have

Pout = Pr(λ′(0)ρ′(1) > es)

= Pr

((∫ ∞

−∞
E(P0(u0|r1))e

−u0/2du0

)−1

> exp

(
r2
1N

2

2σ2
I

))

= 1−Q

(
µ

σh

,
β

σh

)
, (4.36)
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where Q(a, b) denotes Marcum’s Q function and β is given by

β =

√√√√√2σ2
I

N2
log


 exp

(
µ2

2σ2
h

)

∑∞
i=0

µ2iσ2i+2
I

i!2iσ2i
h (N2σ2

h+σ2
I )i+1


. (4.37)

If we define the system load L = K
N

and use σ2
I = N0N

4
+

N(2σ2
h+µ2)

3
(K − 1), (4.37)

can be written as

β =

√
N0

2N
+

4σ2
h + 2µ2

3

(
L− 1

N

)(
µ2

2σ2
h

− log C

)
, (4.38)

where

C =
∞∑

k=0

µ2i

i!2iσ2i
h

(
N0

4N
+

(2σ2
h+µ2)

3
(L− 1

N
)

σ2
h + N0

4N
+

(2σ2
h+µ2)

3
(L− 1

N
)

)i+1

.

Based on the asymptotic analysis for large CDMA systems, i.e. K → ∞ with

L = K
N

< ∞, we have

β∗ = lim
K→∞,L=K

N

β

=

√
(4σ2

h + 2µ2)L

3

(
µ2

2σ2
h

− log C

)
. (4.39)

In the Rayleigh fading case, letting µ = 0 results in

β∗ = lim
K→∞,L=K

N

β

=

√
4σ2

hL

3
log

(
1 +

3

2L

)
. (4.40)
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Then corresponding outage probability P ∗
out can be expressed as

P ∗
out = lim

K→∞,L=K
N

Pout

= 1− exp

(
−(β∗)2

2σ2
h

)

= 1− exp

(
−2L

3
log

(
1 +

3

2L

))
. (4.41)

4.4.3 Numerical Examples
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Figure 4.4: Outage probability versus SIR : Rician fading (σ2
h = 0.5, µ2 = 1, N=64)

Fig. 4.4 shows the relation between the outage probability and signal-to-interference

ratio (SIR) defined as SIR =
N2(2σ2

h+µ2)

σ2
I

. The effect of the system load L on the outage

probability for both Rayleigh and Rician channels are shown in Fig. 4.5 and Fig. 4.6

respectively where Es denotes the transmit energy per data symbol. In both Fig. 4.5

and Fig. 4.6, the outage probability saturates as the transmit power increases due to

high interference level.
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4.5 Conclusion

We have studied the outage probability of LDPC-coded communication systems over

slow and flat fading channels. Based on the stability condition, the outage probability

is defined as the probability of the stability condition is violated. The transmitter

was assumed to know the statistics of fading channel while the receiver has perfect or

imperfect CSI. We assumed that the transmitter selects an LDPC code according to

the stability condition computed by marginalizing the density function of the initial

message with respect to the channel coefficient. We also investigated the effect of

channel estimation error on the outage probability. Numerical examples were presented

illustrating the relationship between outage probability and quality of channel. We

extended this work to the LDPC-coded CDMA systems and the corresponding outage

probability was derived. In addition to fading channels, the methodology introduced

in this study is also applicable to cases where there are other parameters (such as

estimated timing, estimated frequency shift and Doppler) that are not accurate and

can be modeled as fixed for the duration of a transmission but may randomly vary

from one transmission to the next.
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CHAPTER 5

Frequency Domain Channel Estimation for OFDM

Based on the Slepian Basis Expansion

In this chapter we propose a low complexity frequency domain channel estimator

for pilot-symbol-assisted (PSA) orthogonal frequency division multiplexing (OFDM)

systems in a low mobility environment. We consider a situation where the receiver

needs to estimate multipath channel with low complexity when only limited channel

information is available. The proposed scheme relies on a recently proposed model,

the Slepian basis expansion model, where Slepian sequences are used to exploit channel

correlation in time. However, in slow fading channels, the length of the required Slepian

sequence is very long and thus decoding complexity increases. To achieve accurate

channel estimation with low complexity, we propose to utilize the Slepian sequences

to exploit the frequency correlation of the channel. Simulation results show that the

proposed channel estimator outperforms the channel estimator based on the exponential

basis expansion model where the channel is approximated as a linear combination of

complex exponential functions.
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5.1 Introduction

Orthogonal frequency division multiplexing (OFDM) has been applied broadly in

wireless communication systems such as digital video broadcasting (DVB) [37] and

wireless local area networks (LANs) [38] due to its advantages of converting frequency

selective fading channels into multiple frequency flat fading subchannels and mitigating

the inter-symbol interference (ISI). Although ISI can be avoided by inserting a cyclic

prefix, the transmitted signal on each subcarrier is affected by fading. Therefore, ac-

curate estimates of the channel condition is required for successful decoding at the

receiver.

Many channel estimation schemes for OFDM systems have been proposed in the

literature [39]-[43]. Pilot-symbol-assisted (PSA) channel estimation is one approach

where the transmitter sends known pilot symbols to allow the receiver to reliably esti-

mate the channel at the expense of spectral efficiency. In [41], a low rank approximation

to the frequency domain linear mean squared error (LMMSE) estimator was proposed

using singular value decomposition. Wiener filter based channel estimators have been

proposed in [42]. In [43], a minimum mean square error (MMSE) channel estimator

exploiting both time and frequency correlation was presented. However, all the pre-

viously mentioned channel estimation schemes require the channel statistics which are

time varying and often unavailable in practice. When there exists a channel mismatch,

the performance of such estimators can be degraded or limited by an error floor.

The basis expansion model (BEM) has been studied to model doubly selective chan-

nels (both time and frequency) [40]. This model approximates doubly selective channels

as a linear combination of a finite number of complex exponentials. Based on the BEM,

channel estimation can be performed with low complexity and with limited channel in-

formation such as the maximum Doppler frequency and the maximum delay spread. In

[39], Slepian sequences were used as a basis instead of complex exponentials and it was

shown that this new basis allows more accurate representation of wireless channels in
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a high mobility environment. However, in a low mobility scenario, the length of the re-

quired Slepian sequences should be very long to accurately represent wireless channels,

which increases decoding delay and complexity.

In this study, we propose a new frequency domain channel estimator based on the

Slepian basis expansion which can compensate for the effects of a multipath fading

channel with low complexity in a low mobility environment. We assume that the

receiver only knows the maximum delay spread but not other channel information such

as the channel distribution and the delay profile. We consider a PSA-OFDM system.

The channel frequency response is expanded over Slepian sequences in the frequency

domain. Then the channel is estimated via least square estimation.

The rest of this chapter is organized as follows. We introduce an OFDM system

and a multipath channel model in Section 5.2. In Section 5.3, we describe the proper-

ties of Slepian sequences and time domain channel estimation using the Slepian basis

expansion. We propose a frequency domain channel estimator based on the Slepian

basis expansion in Section 5.4. The performance of the proposed scheme is evaluated

via computer simulation in Section 5.5. Finally, the conclusion is given in Section 5.6.

5.2 System Model

We consider an OFDM system so that a frequency selective channel is converted

into Ns subchannels. Let Bw denote the total system bandwidth. Then the subchannel

bandwidth is Bs = Bw/Ns. We assume that the subchannel bandwidth Bs, is much

less than the channel coherence bandwidth Bc ≈ 1/τmax, where τmax is the maximum

delay spread. Therefore, each subchannel can be assumed to be frequency flat fading.

We also assume that the maximum delay spread is known at the receiver. At the trans-

mitter, information bits are mapped into a set of constellation points. After inserting

pilot symbols according to a specific pattern, subcarrier symbols X[n, 1], X[n, 2], · · · ,
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X[n,Ns] make up a single OFDM symbol at the n-th time slot. The Ns subchannel

symbols are sent to an inverse discrete Fourier transform (IDFT) block which performs

a Ns-point IDFT as

x[n, k] =
1

Ns

Ns∑
i=1

X[n, i]ej2πki/Ns , k = 1, · · · , Ns. (5.1)

After adding a cyclic prefix to avoid ISI between the OFDM symbols, each OFDM

symbol of duration Ts is transmitted through the frequency selective channel which has

the following impulse response

h(t, τ) =
L∑

l=1

αl(t)e
jθl(t)δ(τ − τl), (5.2)

where L is the number of resolvable multipath components, αl(t) and θl(t) are the

amplitude and phase of the l-th path whose delay is τl (hence τL = τmax) and δ(·)
denotes the Kronecker delta function. We assume that the receiver has no information

about the statistics of αl(t) and θl(t). Furthermore, the channel correlation in time and

frequency is assumed to be unknown a priori so that it cannot be utilized to estimate

the channel. The frequency response of the channel is given by

H(t, f) =

∞∫

−∞

h(t, τ)e−j2πfτdτ . (5.3)

At the receiver, the baseband signal is first sampled. After passing through a

matched filter, the cyclic prefix is removed. Then the discrete Fourier transform (DFT)

is applied and the received sample at time n through the k-th subchannel is given by

Y [n, k] = H[n, k]X[n, k] + W [n, k], k = 1, · · · , Ns, (5.4)

where H[n, k] and W [n, k] are the DFT of the channel impulse response and additive
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white Gaussian noise (AWGN), respectively. The channel frequency response H[n, k]

can be expressed as [44]

H[n, k] , H(nTs, kBs)

=

∞∫

−∞

h(nTs, τ)e−j2πkBsτdτ

=

∞∫

−∞

L∑

l=1

αl(nTs)e
jθl(nTs)δ(τ − τl)e

−j2πkBsτdτ

=
L∑

l=1

αl(nTs)e
jθl(nTs)e−j2πkBsτl . (5.5)

In (5.5), H[n, k] lies on the subspace spanned by a set of complex exponentials. There-

fore with the knowledge of every tap delay τl, H[n, k] can be exactly represented with

finite number of complex exponentials. However, it may be computationally complex to

estimate each tap delay or impractical to obtain both the exact value of each tap delay

and the number of resolvable paths at the receiver. We assume that the receiver knows

the maximum delay spread but not each tap delay. In this case, without knowing the

exact values of τl’s, H[n, k] cannot be expanded accurately using complex exponentials,

which causes significant performance degradation.

5.3 Slepian Basis Expansion Model

5.3.1 Slepian Sequences

Slepian described a set of orthogonal functions that simultaneously optimize energy

concentration in time and frequency when either or both have a definite limit [45].

Let us consider the Slepian sequences of length N , υ[n], which are bandlimited to the

frequency range [−νmax, νmax]. Such sequences are the eigenvectors of the following
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eigenvalue equation

N∑

l=1

sin(2πνmax(l − n))

π(l − n)
υi[l] = λi(νmax, N)υi[n]. (5.6)

The eigenvectors are normalized so that:

N∑
n=1

(υi[n])2 = 1. (5.7)

The eigenvalue, λi indicates the fraction of energy contained in the band [−νmax, νmax]

of the corresponding eigenvector. The eigenvalues are ordered according to their values

starting with the largest one: 1 ≥ λ1 ≥ · · · ≥ λN ≥ 0. Then υi[k] is the i-th most time

concentrated Slepian sequence. In [45], Slepian proved that time concentration measure

λi is close to 1 for i ≤ d2νmaxNe + 1 and decreases rapidly to 0 for i > d2νmaxNe + 1.

Therefore only d2νmaxNe + 1 Slepian sequences are enough to approximate time and

frequency concentrated functions.

5.3.2 Time Domain Channel Estimator Using Slepian Basis

In [39], observing that the variation of wireless channels in the frequency domain

is upper bounded by the maximum Doppler frequency, Zemen and Mecklenbräuker

first applied the Slepian sequences to the BEM for channel estimation. When the

Slepian basis expansion is applied to OFDM systems, the existing scheme utilizes the

channel correlation over the time domain and channel estimation for each subchannel is

performed independently. The authors showed that the channel estimator based on the

Slepian basis expansion outperforms the channel estimator using exponential basis. Let

h(t, τ) and fmax be the channel impulse response and the maximum Doppler frequency

respectively. After sampling is performed at the receiver and observing N channel
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realizations, the sequence of the sampled channel realizations can be expressed as

h = [h[1], · · · , h[N ]], h[n] , h(nTs, 0). (5.8)

Since h(t, τ) is bandlimited over [−fmax, fmax] and sampled with sampling period Ts,

h is bandlimited over [−fmaxTs, fmaxTs]. Therefore, h can be approximated as a

superposition of the Slepian sequences υi[n] of length N which are bandlimited to

[−fmaxTs, fmaxTs] as

h[n] ≈
D∑

i=1

υi[n]γi, n = 1, · · · , N, (5.9)

where D = d2fmaxTsNe + 1. Thus, to estimate h[n], we only need to find suitable

complex coefficients γi. In a high mobility environment, the channel estimator based

on Slepian basis expansion model shows very low mean-square-error (MSE) with low

complexity. However, when the relative mobility between the transmitter and the

receiver is small (i.e., when the Doppler frequency is small), the existing scheme requires

very long Slepian sequences to accurately model the channel. This is because any

sequence peaky in the frequency domain is spread widely in the time domain.

Fig. 5.1 shows that for a given length of Slepian sequences, as the maximum normal-

ized Doppler bandwidth, νmax = fmaxTs decreases, the measure of time concentration,

λi decreases, which means the Slepian basis expansion requires longer sequences to ac-

curately model the channel. It can be seen from Fig. 5.2 that to increase λi, the length

of the Slepian sequences should be increased for a given νmax. This implies we need

to observe more samples to estimate the channel, which causes long decoding delay

and high decoding complexity. Therefore, in a low mobility environment, the existing

Slepian basis expansion model cannot represent the channel effectively. By utilizing the

channel correlation over the frequency domain, such channels can be represented more

accurately and efficiently.
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Figure 5.1: λi’s for different normalized Doppler bandwidth νmax’s when Slepian se-
quence length is 128.
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5.4 Frequency Domain Channel Estimation Based

on Slepian Basis Expansion

Since we focus on a low mobility environment, from now on we omit the time index.

Let H = {H[1], · · · , H[Ns]}. Note that H is a sequence in the frequency domain. Since

the IDFT of H(f) is limited to [0, τmax] and H[k] is the channel frequency response

sampled at the k-th subcarrier frequency with sampling period of Bs, the inverse DFT

of H is limited to [0, τmaxBs]. Therefore H is both time and frequency concentrated.

In order to represent H, it is desirable to find basis functions which are also time

and frequency concentrated so that H can be spanned by them. To construct such

a basis, we first consider the Slepian sequences of length Ns that are bandlimited to

[− τmaxBs

2
, τmaxBs

2
]. Let υi[k] be the i-th most time concentrated Slepian sequence. Then

by the duality between time- and frequency-domain and the time shift property of DFT,

a desired basis function ui[k] can be easily found as

ui[k] = υi[k]e−jπkτmaxBs , k = 1, · · · , Ns. (5.10)

Note that the IDFT of ui[k] is concentrated in [0, τmaxBs] as desired. From [45], among

ui[k], only dτmaxBsNse + 1 sequences are highly concentrated in [0, τmaxBs]. Hence

D = dτmaxBsNse+ 1 sequences are enough to approximate H as

H[k] ≈ Ĥ[k] =
D∑

i=1

ui[k]γi, k = 1, · · · , Ns, (5.11)
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where ui[k] is the i-th most time-concentrated sequence and γi is the corresponding

complex coefficient. Then the received sample can be represented as

Y [k] = H[k]X[k] + W [k]

≈ Ĥ[k]X[k] + W [k]

=
D∑

i=1

ui[k]γiX[k] + W [k], k = 1, · · · , Ns. (5.12)

The basis expansion coefficients γi can be estimated according to the least square

method. Let {X[k]}k∈P be a set of pilot symbols where P is an index set of pilot

symbols and J pilot symbols are inserted among Ns subchannels to estimate channel

(i.e., the cardinality of P is J). Pilot symbols can be optimally designed to minimize

MSE of the channel estimator. In our study, pilot symbols are evenly spaced over Ns

subchannels and have equal energy. We define

Y = [Y [k1], · · · , Y [kJ ]]T ,

U =




u1[k1] u2[k1] · · · uD[k1]

u1[k2] u2[k2] · · · uD[k2]

...
...

. . .
...

u1[kJ ] u2[kJ ] · · · uD[kJ ]




,

Γ = [γ1, · · · , γD]T , for k1, · · · , kJ ∈ P, (5.13)

where the superscript T denotes the transpose of a vector. Letting X[k] = 1, ∀k ∈ P ,

the least square estimates of γi are given by




γ̂1

γ̂2

...

γ̂D




= Γ̂ = (UHU)−1UHY, (5.14)
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where the superscript H denotes the Hermitian of a matrix.

In (5.14), it is required to compute an inverse of matrix of size D ×D where D =

dτmaxBsNse + 1. Since we assume that the coherence bandwidth of the channel Bc is

much larger than the subchannel bandwidth Bs, we have

Bc ≈ 1

τmax

≈ ρBs, (5.15)

where ρ À 1. Hence we obtain

D = dτmaxBsNse+ 1

≈ dNs/ρe+ 1. (5.16)

To evaluate the complexity of this scheme, we consider an actual system as an example.

In IEEE 802.11a 5 GHz wireless LAN standard, the total system bandwidth of 300 MHz

is divided into 20 MHz channels which are assigned to different user [46]. In 802.11a,

the number of subcarriers Ns is 64. Therefore we have the subchannel bandwidth,

Bs = 312.5 kHz, the maximum delay spread, τmax ≈ 0.8 µs and the channel coherence

bandwidth, Bc ≈ 1.25 MHz (i.e., ρ = 4). In this example, we have D = 17 and it

requires low complexity to estimate the channel with high accuracy.

5.5 Performance Evaluation

We illustrate the merits of the proposed channel estimator in terms of MSE by com-

paring with the exponential basis expansion model through computer simulation. The

performance of our scheme is also compared with the case where the receiver has the

perfect knowledge of each tap delay of the channel. In our simulations, the following

parameters are used:
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• Total system bandwidth : Bw = 20 MHz

• Number of subcarriers : Ns = 64

• Subchannel bandwidth : Bs = 312.5 kHz

• OFDM symbol duration : Ts = 3.2 µs

Fig. 5.3 shows two test channels considered in simulations. The maximum delay spread

of the two test channels are 0.2 µs and 0.425 µs. The corresponding coherence band-

widths are 5 MHz and 2.35 MHz, respectively. Note that for each test channel, the

coherence bandwidth is lager than the subchannel bandwidth so that each subchannel

can be assumed frequency flat. To evaluate the performance of the proposed scheme,

the mean square error (MSE) is introduced as

MSE =
1

Ns

Ns∑

k=1

E{|H[k]− Ĥ[k]|2}. (5.17)

To calculate the MSE, we average over 3000 channel realizations in our simulations.

Since we assume that the receiver only knows the maximum delay, for the exponen-

tial basis expansion model, the following complex exponentials with frequencies equally

spaced between [0, τmaxBs] are used as basis functions:

uexp
i [k] =

1√
Ns

e−j2πkBsτmax
i
D . (5.18)

When each tap delay is perfectly known at the receiver, the following complex expo-

nentials are used to approximate the channel:

uperfect
i [k] =

1√
Ns

e−j2πkBsτi , (5.19)

where τi denotes the delay of the i-th path.
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Figure 5.3: Test channels
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Figure 5.4: MSE for test channel 1 with 16 pilot symbols
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Figure 5.5: MSE for test channel 2 with 16 pilot symbols
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with 16 pilot symbols (dτmaxBsNse+ 4 = 12)
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The performance of the channel estimators for the test channel 1 and 2 are com-

pared in Fig. 5.4 and Fig. 5.5 in terms of MSE versus average signal-to-noise-ratio

(SNR). For a fair comparison, dτmaxBsNse + 4 basis functions are used for both the

Slepian basis expansion and the exponential basis expansion. For the two test channels,

the Slepian basis expansion shows lower MSE’s than the exponential basis expansion.

However when each tap delay is exactly known at the receiver, exponential basis ex-

pansion shows better performance than Slepian basis expansion and the performance

gap between these two schemes increases as the average received SNR increases. This

is because the Slepian sequences cannot represent the channel components orthogonal

to the subspace spanned by the Slepian sequences. Compared to this, with the exact

tap delay information, the channel can be exactly represented with complex exponen-

tials whose exponents are well chosen according to the given channel information. Fig.

5.6 shows the performance of Slepian basis expansion for test channel 2 using different

numbers of basis functions. It can be seen that the more Slepian sequences are used,

the lower MSE we can obtain over a wide range of SNR.

5.6 Conclusion

We proposed a frequency domain channel estimator for PSA-OFDM systems which

requires only the knowledge of the maximum delay spread and operates with low com-

plexity in a low mobility environment. Observing that the channel frequency response

is both time- and frequency-concentrated, we applied Slepian sequences to represent

channel frequency response. Slepian sequences are suitably chosen according to the

maximum delay spread τmax and the number of subcarriers Ns. The channel coeffi-

cients are first projected into a subspace spanned by Slepian sequences and then the

least square method is applied to estimate channel coefficients. The proposed scheme

does not depend on the statistics of multipath channels. Hence it can be applied to
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various channels and perform with high accuracy. We have compared the performance

of Slepian basis expansion and exponential basis expansion through computer simu-

lation. Slepian basis expansion shows better performance compared to exponential

basis expansion. The impact of the number of basis functions on the MSE was also

investigated.
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CHAPTER 6

Capacity of Non-coherent Rayleigh Fading

Channels under Practical Power Constraints

In this chapter, we study the capacity of the non-coherent Rayleigh fading channel

subject to power constraints induced by a power amplifier. In practical communica-

tion systems, a power amplifier is necessary to obtain enough signal power to combat

background noise, fading and jamming. Due to the limit on power amplification, there

exists a peak power constraint on the transmitted power. Furthermore, since power is

a limited resource, there is an average power constraint on the consumed power which

is needed to operate an amplifier. Given these power constraints, we prove that the

capacity achieving input distribution for the non-coherent Rayleigh fading channel is

discrete in amplitude with a finite number of mass points. Therefore computing the

capacity is reduced to a finite dimensional optimization problem.

6.1 Introduction

Finding the capacity of communication channels subject to practical input con-

straints is a classic problem in information theory. The most frequently considered con-

straint is an average power constraint. Shannon [47] showed that for a scalar additive

Gaussian channel subject to an average power constraint, Gaussian input distribution
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achieves the capacity.

There have been many studies finding the capacity of the channel subject to an

average power constraint. However, there has not been much attention to the capacity

of the channel subject to a peak power constraint. A peak power constraint was first

considered by Shannon in the scalar Gaussian channel [47]. For this channel, Shannon

derived lower and asymptotic upper bounds on the capacity. Later, Smith showed that

for the scalar additive Gaussian channel with average and peak power limited inputs, the

capacity achieving input distribution is discrete and the number of mass points is finite

[48]. This result is surprising because the capacity can be achieved with discrete input

distributions, which is not possible for the Gaussian channel subject to an average power

constraint. In [49], Shamai et al. considered quadrature Gaussian channels with both

average and peak power constraints. For this channel, they showed that the capacity

achieving input distribution is also discrete with a finite number of mass points. In

[50], Abou-Faycal et al. considered Rayleigh fading channels assuming that neither the

transmitter nor the receiver has channel side information. Subject to an average power

constraint, they showed that the capacity achieving input distribution is discrete. This

result indicates the fact that the discreteness of an optimal input distribution is not

induced only by a peak power constraint.

In the previous research, the characteristic of a power amplifier has not been con-

sidered, which has to be considered to reflect practical power constraints. A power

amplifier is an important device in communication systems, providing enough transmit

signal level for reliable communication. Since the power amplifier has a limit on the

output power level, there is a peak power constraint on the transmitted (output) power.

To operate a power amplifier, we need DC power called consumed power. In general,

the consumed power is greater than the transmitted power because of the power loss

associated with amplifier inefficiency. Hence, there is an average power constraint on

the consumed power.
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Figure 6.1: System model

In our study, we show that the capacity achieving input distribution for the non-

coherent Rayleigh fading channel subject to power constraints induced by a power

amplifier is also discrete with a finite number of mass points. We assume that a power

amplifier operates in the region where the amplified signal is a bijective function of the

input signal. This assumption is reasonable since most power amplifiers operate such

that there is an one-to-one correspondence between the input power and the output

power. Next, we assume that the consumed power is a function of the transmitted

power which has a Taylor series convergent to the function at every point in the real line.

The outline of this chapter is as follows. In Section 6.2, we describe the system model

and set up a mathematical model that specifies the characteristic of a power amplifier.

In Section 6.3, we prove the discreteness of the capacity achieving input distribution.

We also show that for a given peak power constraint, there exists an average power

constraint level at which the capacity does no longer increase. In Section 6.4, numerical

results are presented. Section 6.5 concludes this chapter.

6.2 System Description

In this section, we introduce the communication system model which is analyzed

through this chapter. In Fig. 6.1, the system model is described where Z, U and V de-

note the power amplifier input, the channel input (i.e., the power amplifier output) and

the channel output respectively. With this model, we are interested to find the optimal

input distribution of Z which maximizes the mutual information I(Z; V ). Consider the

following channel,
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V = HU + N, (6.1)

where H is the fading coefficient and N is the channel noise. The random variables

H and N are assumed to be independent complex circular Gaussian random variables

with mean zero and variance σ2
H and σ2

N respectively. Furthermore we assume that

both the transmitter and the receiver know only the statistics of H not the exact value

of H. Conditioned on the channel input U , the channel transition probability is given

by

p(v|u) =
1

π(σ2
H |u|2 + σ2

N)
exp

( −|v|2
σ2

H |u|2 + σ2
N

)
. (6.2)

Note that the density p(v|u) depends on V only through |V |2 and hence |V |2 is a

sufficient statistic for V . Given the channel input U , |V |2 is chi-square distributed with

two degrees of freedom as

p(|v|2|u) =
1

σ2
H |u|2 + σ2

N

exp

( −|v|2
σ2

H |u|2 + σ2
N

)
. (6.3)

Fig. 6.2 shows the characteristic of a non-linear power amplifier which imposes

practical constraints on the channel input. Let Pin and Pout denote input and output

power of the power amplifier respectively. Define Pdc be the consumed power which is

necessary to operate a power amplifier. As shown in Fig. 6.2, due to the characteristic

of the power amplifier, there exists a peak power constraint on the output power. Since

the average power is a limited resource in the system, there also exists an average power

constraint on the consumed power in practical communication systems. Thus we have

corresponding power constraints as

Pout = |U |2 ≤ Pp, (6.4a)
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Figure 6.2: The characteristic of a non-linear power amplifier

E(Pdc) ≤ Pa, (6.4b)

where Pp and Pa denote a peak power constraint and an average power constraint

respectively. Compared to this amplifier model, classic average power constraint models

do not consider the effects of a power amplifier so that there exist an average power

constraint on the transmitted power not on the consumed power. However it is necessary

to consider the characteristic of the power amplifier to accurately reflect the physical

limitation in communication systems.

We first assume that a power amplifier operates in the region where the power

amplifier output is a bijective function of the power amplifier input. This assumption

yields

I(Z; V ) = I(U ; V ). (6.5)

101



The optimal distribution of U can be determined directly from the optimal distribution

of Z.

Next, we assume that the consumed power Pdc can be expressed as a function of the

transmitted power Pout which has a Taylor series convergent to the function at every

point in the real line. Then the transmitted power Pout can be expressed as

Pdc = f(Pout)

=
∞∑

n=0

an(Pout − x0)
n, ∀x0 ∈ R Pout ∈ [0,

√
Pp], (6.6)

where the coefficients an’s are real numbers and the series is convergent in a neighbor-

hood of x0. Letting Y = |V |2
σ2

N
and X = |U |σH

σN
in (6.3), an equivalent channel model can

be obtained with the transition probability given as

p(y|x) =
1

1 + x2
exp

( −y

1 + x2

)
. (6.7)

Now the original problem is equivalent to finding the optimal distribution on X which

maximizes I(X; Y ) subject to the following power constraints:

X2 ≤ σ2
H

σ2
N

Pp. (6.8a)

E

(
f

(
σ2

N

σ2
H

X2

))
≤ Pa. (6.8b)

6.3 Capacity-achieving Input Distribution

6.3.1 Discreteness of the Optimal Input Distribution

We extend the work of Abou-Faycal et al. [50] to the non-coherent Rayleigh fading

channel subject to constraints induced by a power amplifier. For simplicity of calcula-
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tion, assume σ2
H = σ2

N = 1 where σ2
H and σ2

N denote the variance of fading and noise

respectively. Note that since we assume that consumed power can be expressed as a

function of transmitted power which has a Taylor series convergent to the function

at every point, it also has a Taylor series around −1. Let Fap be a set of all input

distribution functions F such that

∫ √
Pp

0

∞∑
n=0

an(x2 + 1)ndF (x) ≤ Pa (6.9a)

and

F (x) = 0 ∀x < 0, F (x) = 1 ∀x ≥
√

Pp, (6.9b)

where an’s are real numbers. Define I(F ) be the mutual information between channel

input and output induced by an input distribution F . Then the capacity of this channel

is given by

C = sup
F∈Fap

I(F ). (6.10)

The following theorems are used to find the optimal input distribution.

Theorem 6.1[Optimization theorem][48],[52]: Let f be a continuous, weakly differ-

entiable and strictly concave mapping from a compact and convex space Ω to R. Then

followings are true.

• C = sup
x∈Ω

f(x) = f(x0) for some unique x0 ∈ Ω.

• A necessary and sufficient condition for f(x0) = C is f
′
x0

(x) ≤ 0 ∀x ∈ Ω, where

f
′
x0

(x) is the weak derivative of f at x0.

The definition of weak differentiability is given as follows.

Definition 6.1[Weak differentiability][48],[50]: Let F be a convex space and f be

a mapping from F into the real line R. Let F0 be a fixed element of F and θ be a real
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number in [0, 1]. Suppose there exits a map f
′
F0

: F→ R such that

f
′
F0

(F ) = lim
θ→0

f((1− θ)F0 + θF )− f(F0)

θ
, ∀F ∈ F. (6.11)

Then f is said to be weakly differentiable in F at F0 and f
′
F0

is the weak derivative

in F at F0. If f is weakly differentiable in F at for all F0 ∈ F, f is said to be weakly

differentiable in F.

Theorem 6.2[Lagrangian theorem][48], [52]: Let f and g be concave mappings

from a convex metric space Ω to R. Assume there exists x0 ∈ Ω such that g(x0) < 0.

Define

C = sup
x∈Ω

g(x)≤0

f(x). (6.12)

If C is finite, then there exists a constant λ ≥ 0 such that

C = sup
x∈Ω

[f(x)− λg(x)]. (6.13)

Furthermore, if the supremum is achieved in (6.12) at x0 ∈ Ω, it is achieved by x0 in

(6.13) and λg(x0) = 0.

We first apply the Lagrangian theorem to our problem and obtain an equivalent

expression for the capacity. Let Fp be a set of distribution functions F which satisfy the

peak power constraint (6.11b). It was shown that Fp is convex and compact by Smith

[48]. The convexity of Fp is straightforward by definition. The compactness comes from

the fact that by Helley’s weak compactness theorem [56], [57], Fp is weakly compact and

on a finite interval, weak and complete convergence are equivalent. Define a mapping

g : Fp → R by g(F ) =
∫ ∑∞

n=0 an(x2 + 1)ndF (x)−Pa. The mutual information I(F ) is

shown to be strictly concave [50]. Since g(F ) is linear in Fp, for any λ ∈ R, I(F )−λg(F )

is strictly concave in Fp. Observing the capacity C is finite, by the Lagrangian theorem,
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the capacity can be expressed as

C = sup
F∈Fp

(I(F )− λg(F )) . (6.14)

Now we apply the optimization theorem to obtain the necessary and sufficient con-

dition for the optimality. In [50], I(F ) is shown to be continuous and weakly differen-

tiable. It is clear that g : Fp → R is continuous and further weakly differentiable in Fp

as g
′
F1

(F2) = g(F2)−g(F1). Thus I(F )−λg(F ) is continuous and weakly differentiable.

Now by the optimization theorem, there exists a unique F ∗ ∈ Fp such that

C = I(F ∗)− λg(F ∗). (6.15)

The necessary and sufficient condition that the optimal input X∗ with distribution

F ∗ ∈ Fp achieves the capacity C is that there exists a λ ≥ 0 such that

λ
( ∞∑

n=0

an(x2 + 1)n − Pa

)
+ C −

∞∫

0

p(y|x) log
p(y| x)

p(y; F ∗)
dy ≤ 0, ∀x ∈ [0,

√
Pp] (6.16)

where the equality holds if x is in the support of X∗ and the marginal density p(y; F )

is given by

p(y; F ) =

∫
p(y|x)dF (x). (6.17)

Theorem 6.3[Discreteness of the optimal input distribution]: The capacity achiev-

ing input distribution of a memoryless Rayleigh fading channel subject to power con-

strains induced by a power amplifier is discrete in amplitude with a finite number of

mass points.

Proof : Following the technique used in [50], we prove the discreteness of the optimal

input distribution. Let us first assume that the capacity achieving input distribution
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has an amplitude which is continuous or discrete with an infinite number of mass points.

Now, let us consider the following change of variable

s =
1

1 + x2
. (6.18)

Then from (6.7), we have

p(y|s) = s exp (−sy), s ∈
[

1

1 + Pp

, 1

]
(6.19)

and (6.16) becomes

λ

( ∞∑
n=0

an

(
1

s

)n

− Pa

)
+ C − log s + 1 +

∞∫

0

s exp (−sy) log p(y; F ∗)dy ≤ 0. (6.20)

The equality in (6.20) holds if and only if s ∈ SS∗ where SS∗ denotes the support of the

random variable S∗ = 1
(1+X∗2)

. Since X∗ is assumed to be continuous or discrete with

an infinite number of mass points, SS∗ is an infinite set. Note that SS∗ is bounded as

SS∗ ⊂
[

1
1+Pp

, 1
]
. Then by the Bolzano-Weierstrass theorem [54], S∗s has a limit point

in
[

1
1+Pp

, 1
]
. Let h(s) be the left-hand side of (6.20). Now let us extend h(s) to the

complex domain and define h(z) as

h(z) = λ

( ∞∑
n=0

an

(
1

z

)n

− Pa

)
+ C − log z + 1 +

∞∫

0

z exp (−zy) log p(y; F ∗)dy.(6.21)

Choosing log z as the principal branch of the logarithm [54], h(z) is analytic in the

domain Re(z) > 0. Furthermore by the optimization theorem,

h(z) = 0 ∀z ∈ SS∗ (6.22)

Since h(z) is analytic and zero on SS∗ which has a limit point in Re(z) > 0, by the
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identity theorem [54] we have

h(z) = 0 ∀z s.t. Re(z) > 0. (6.23)

From (6.21) and (6.23), we have

∞∫

0

exp (−zy) log p(y; F ∗)dy

= −1

z

(
λ

∞∑
n=0

an

(
1

z

)n

− λPa + C − log z + 1

)
, ∀z s.t. Re(z) > 0. (6.24)

Note that the left-hand side of (6.24) is the Laplace transform of log p(y; F ∗). Taking

the inverse Laplace transform of both sides,

log p(y; F ∗) = −λ

∞∑
n=0

an

(
yn

n!

)
+ λPa − C − CE − log y − 1 ∀z s.t. Re(z) > 0, (6.25)

where CE is the Euler’s constant defined as

CE = −
∞∫

0

exp (−y) log ydy ≈ 0.5772.

Hence from (6.25), p(y; F ∗) should be of the form

p(y; F ∗) = K

exp

(
−λ

∞∑
n=0

an
yn

n!

)

y
, (6.26)

where K = exp (λPa − C − CE − 1) < ∞. However this is not a proper distribution

because
∫

p(y; F ∗)dy can not be 1. This can be shown as follows. Let us select a

constant M such that T = max
0≤y≤M

λ

∞∑
n=0

an
yn

n!
< ∞. Such M exists since λ

∞∑
n=0

an
yn

n!
is
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continuous and zero at y = 0. Then we obtain

∞∫

0

p(y; F ∗)dy = K

∞∫

0

exp

(
−λ

∞∑
n=0

an
yn

n!

)

y
dy.

≥ K

M∫

0

exp (−T )

y
dy

= ∞. (6.27)

By contradiction, the capacity achieving input distribution is discrete in amplitude with

a finite number of mass points.

6.3.2 Capacity Saturation Point

It was shown that the capacity of non-coherent Rayleigh fading channels, subject to

an average power constraint, increases as the average power constraint increases [50].

However if there is a peak power constraint also, there exist a capacity saturation point

at which the capacity does not increase any more.

Theorem 6.4[Existence of a capacity saturation point]: The capacity of non-

coherent Rayleigh fading channels, subject to average and peak power constraints, for a

fixed peak power constraint, there exist a capacity saturation point where the capacity

does no longer increase even if the average power constraint increases.

Proof : In [50], it was shown that the optimal input distribution of non-coherent

Rayleigh fading channels subject to an average power constraint has a mass point

at zero. This result follows directly from the fact that the amplitude of the optimal

input distribution is discrete with a finite number of mass points. By theorem 6.3, even

with power constraints induced by a power amplifier, the amplitude of the optimal in-

put distribution is also discrete with a finite number of mass points. Following [50], it

can be easily shown that there exists a mass point at zero when a power amplifier is
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considered. Now let us assume that there does not exist a capacity saturation point.

Equivalently, for a fixed peak power constraint, the capacity increases as the average

power constraint increases. Then the capacity is maximized when the average power

constraint is the same as the peak power constraint. This is possible if and only if

x =
√

Pp with probability 1. (6.28)

In this case, there is not a mass point at zero which contradict the existence of a mass

point at zero. Therefore there exist a capacity saturation point.

6.4 Numerical Results

In this section, we numerically compute the capacity of non-coherent Rayleigh fading

channels. Since the number of mass points is unknown, we first set the number of mass

points to 2 (one mass point at zero and another at x > 0) and find the input distribution

which maximizes the mutual information. Then we check if the necessary and sufficient

condition for optimality (6.16) is satisfied or not. If this condition is violated, then we

increase the number of mass points by one and repeat the previous steps.

Fig. 6.3 shows that the capacity subject only to an average power constraint and

subject to both average and peak power constraints. The peak power constraint is

fixed to 10 dB. In Fig. 6.3, we assume that the consumed power Pdc is the same as

the transmitted power Pout. It can be seen that there exists a capacity saturation point

around at Pa = 6.5 dB when there are both average and peak power constraints. In

contrast, with an average power constraint only, the capacity increases steadily. Based

on the numerical results, the existence of a capacity saturation point can be interpreted

as follows. From numerical results it can be checked that when the average power

constraint, Pa . 6.5 dB, the average power corresponding the optimal distribution is

the same as Pa. However when Pa & 6.5 dB, the average power corresponding to the
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Figure 6.3: The capacity of non-coherent Rayleigh fading channels subject to an average
power constraint and subject to both average and peak power constraints (peak power
constraint is fixed to 10 dB, σ2

H = σ2
N = 1).

optimal distribution is less than the allowed average power, Pa. By the Lagrangian

theorem, the capacity is achieved only if

λ

(∫
x2dF (x)− Pa

)
= 0. (6.29)

When Pa & 6.5 dB, we have

(∫
x2dF (x)− Pa

)
6= 0,

which implies λ = 0. Since λ represents the sensitivity of the objective to small pertur-

bations of constraints, λ = 0 means that the capacity does not change any more even

when the average power constraint increases.

The saturation point also occurs when a power amplifier is considered. A simple

amplifier model is shown in Fig. 6.4. In this case, we model consumed power, Pdc, is
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Figure 6.4: Consumed power modeling, Pdc = Pout + 0.01P 2
out.

a function of transmitted power, Pout such that Pdc = Pout + 0.01P 2
out. This function

has a Taylor series at every point as the assumption in Section 6.2. Fig. 6.5 shows the

capacity of non-coherent Rayleigh fading channels under the amplifier model which is

shown in Fig. 6.4.

In Fig. 6.6, two different input signals are shown: 16-QAM and numerically opti-

mized input X∗ with two mass points (p(0) = 0.6017, p(3.16) = 0.3983). Both constel-

lations satisfy the average power constraint Pa = 6 dB and the peak power constraint

Pp = 10 dB. Let IQAM and IX∗ denote mutual information with respect to 16-QAM

and input signal X∗ respectively. When σ2
H = σ2

N = 1, IX∗ = 0.3606 (nats/channel use)

which is 3 times larger than IQAM = 0.1149 (nats/channel use).
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Figure 6.6: Two input signals: 16-QAM and X∗. (IQAM = 0.1149 (nats/channel use),
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6.5 Conclusion

In this chapter, we considered the non-coherent Rayleigh fading channel subject

to power constraints induced by a non-linear power amplifier which is not considered

before. A non-linear power amplifier imposes a peak power constraint on transmit-

ted power and an average power constraint on consumed power. It was assumed that

consumed power is a function of transmitted power which has a Taylor series at every

point in the real line. With this assumption, it was established that the optimal input

distribution is discrete in amplitude with a finite number of mass points. Then finding

capacity is reduced to a finite dimensional optimization problem and the corresponding

optimal distribution can be found. Furthermore we have shown that a capacity satu-

ration point exists which implies that even though the average power increases over a

saturation point, the capacity remains the same.
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CHAPTER 7

Conclusions

In this thesis, we have considered important problems regarding the performance

limit of physical layer network coding and the communication system design in a fading

environment. In Chapter 2, we have considered the exclusive-or multiple-access channel

(XMAC) where physical layer network coding can provide advantages over conventional

store-and-forward. We have investigated the error exponent for this type of channel

which provides a measure of how fast the error probability decay exponentially as a

function of codeword length. Two different operations at the receiver, the multiple-

access (MAC) strategy and the physical layer network coding (PNC) strategy were

considered. Since the MAC strategy has been well studied in the literature, we mainly

focused on the PNC strategy. With PNC strategy, we derived error exponents for both

random codes and linear codes. We also studied the cutoff rate of the XMAC and

evaluated the cutoff rate of the Gaussian XMAC. It has been shown that the PNC

strategy shows better performance in terms of the cutoff rate than the MAC strategy

in the high rate region while the MAC performs better in the low rate region.

Although we investigated the theoretical performance limit of PNC over the XMAC,

it is also important to evaluate the performance of practical channel codes combined

with network coding. In Chapter 3, we have evaluated the threshold of low-density

parity-check (LDPC) codes over the XMAC via density evolution methods. Assuming

that both users employ the same LDPC codes, the XOR data can also be protected by

114



error correcting codes since LDPC codes are linear. Numerical results were presented

to show that LDPC codes provide reliable performance near theoretically achievable

rates discussed in Chapter 2. We also considered the case where two incoming signals

from two users arrive at the receiver with different phase.

Other research topics considered in this thesis have been concerned with transmis-

sion over fading channels. In Chapter 4, we have derived the outage probability of

LDPC-coded systems. In fading channels, in addition to the ergodic capacity which

characterizes the long-term average achievable rate limit of a fading channel, outage

probability is another important performance measure since practical codeword lengths

are finite due to transmission delay constraints. We assumed that an outage occurs

when signal-to-interference-plus-noise ratio (SINR) falls below an acceptable threshold

so that the message passing decoder fails to decode successfully. Assuming channel state

is fixed for the duration of an LDPC codeword but varies in the next transmission, we

derived the outage probability for both Rayleigh and Rician fading channels. We also

investigated the effect of imperfect channel side information (CSI) at the receiver on

the outage probability. We have also applied this method to LDPC-coded code-division

multiple-access (CDMA) systems.

In Chapter 5, we have proposed an efficient frequency domain channel estimation

scheme for orthogonal frequency division multiplexing (OFDM) systems. Although it

has been known that Slepian sequences are suitable to represent time-varying channels,

in slow fading channels, the length of required Slepian sequences for accurate channel

estimation is very long. This increases decoding complexity and delay at the receiver.

Motivated by this observation, we proposed a channel estimator which exploits channel

correlation in frequency domain using Slepian sequences. In the proposed scheme,

channel coefficients are projected into a subspace spanned by Slepian sequences and then

estimated by the least square method. Our scheme performs with high accuracy and

requires only the knowledge of the maximum delay spread of the channel. Simulation
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results were provided to demonstrate that the proposed channel estimator outperforms

channel estimators using exponential basis expansion.

In Chapter 6, we have studied the capacity achieving input of the non-coherent

Rayleigh fading channel subject to power constraints induced by a non-linear power

amplifier. Due to the limit on the amplification level, there exists a peak power con-

straint on the transmitted power. Furthermore we have noted that there exists an

average power constraint on the power needed to operate a power amplifier, called con-

sumed power which can be different from the transmitted power. Assuming that the

consumed power is a function of the transmitted power which has a Taylor series at

every point in the real line, we have shown that the capacity achieving input is dis-

crete with finite support. Hence we can compute the capacity using finite dimensional

optimization.

There are a number of important issues remaining to be explored regarding practical

implementation of physical layer network coding. An area of future research is to

investigate the performance of physical layer network coding in a fading environment.

In fading channels, more problems can be encountered. Since the receiver needs to

reconstruct the XOR of the two transmitted signals, it is required to obtain accurate CSI

of both links for successful decoding. The imperfect CSI of either link may cause severe

performance degradation. Therefore it is important to study the effect of imperfect

CSI on the achievable rate. It is also interesting to study the performance of network

coding with non-coherent reception.

Another interesting direction of future research is to examine the combination of

network coding with routing and medium access control. Joint design of network coding

with protocols such as routing and scheduling can enable a node to determine whether

interference from other users can be used to increase throughput or is to be avoided.
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APPENDIX A

Proof Of Lemma 2.1

For any arbitrarily small ε > 0,

lim
N→∞

Pr
(||Sj| − 2K | ≥ ε

)

≤ lim
N→∞

Pr
(|Sj| 6= 2K

)

= 1− lim
N→∞

Pr
(|Sj| = 2K

)

= 1− lim
N→∞




(
2N

2K

) 2K∑
m=1

(−1)2K+m

(
2K

m

)
m2K · 2−N2K




using
∑l

m=1(−1)m
(

l
m

)
ml = (−1)l · l!,

= 1− lim
N→∞

((
2N

2K

)
(2K)! · 2−N2K

)

= 1− lim
N→∞

(
2N · (2N − 1) · · · (2N − (2K − 1))

2N2K

)

= 1− lim
N→∞




2K−1∏
i=0

(
1− i

2N

)


≤ 1− lim
N→∞

e
ln
�
1− 2K−1

2N

�2K

= 1− e
limN→∞ ln

�
1− 2K−1

2N

�2K

(A.1)
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Let z denotes the exponent in (A.1). Then, we have

z = lim
N→∞

ln

(
1− 2K − 1

2N

)2K

= lim
N→∞

2NR ln
(
1− 2−N(1−R) + 2−N

)

using L’Hôpital’s rule,

= lim
N→∞

(
1− 1

R

)
2−N(1−2R) + 1

R
2−N(1−R)

1− 2−N(1−R) + 2−N

=





0, 0 < R < 1
2
,

−1, R = 1
2
,

−∞, 1
2

< R < 1.

(A.2)

Therefore from (A.1) and (A.2) we have

lim
N→∞

Pr
(||Sj| − 2K | ≥ ε

) ≤





0, 0 < R < 1
2
,

1− 1
e
, R = 1

2
,

1, 1
2

< R < 1.

(A.3)
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APPENDIX B

Proof of Lemma 2.3

For convenience, let us introduce new random variables and a function as follows:

µ =

(
Eb

N0

)∗
, (B.1a)

ν = R, (B.1b)

λ = µν = R

(
Eb

N0

)∗
, (B.1c)

g(λ) =

∫ ∞

−∞

1√
2π

e−
y2

2 cosh
1
2

(
2
√

2λy
)

dy. (B.1d)

Then from (2.43) we have the following relation

ν = 1− log2

(
1 + e−2λg(λ)

)
. (B.2)

We first show ν → 0+ as λ → 0+. Since cosh
1
2

(
2
√

2λy
)

is non-decreasing with regard

to λ, by the monotone convergence theorem, we have

lim
λ→0+

g(λ) = lim
λ→0+

∫ ∞

−∞

1√
2π

e−
y2

2 cosh
1
2

(
2
√

2λy
)

dy

=

∫ ∞

−∞

1√
2π

e−
y2

2 lim
λ→0+

cosh
1
2

(
2
√

2λy
)

dy

= 1. (B.3)

120



Hence we have lim
λ→0+

e−2λg(λ) = 1. Since e−2λg(λ) = 21−ν − 1 from (B.2), we also have

lim
ν→0+

e−2λg(λ) = 1. Note that 0 < e−2λg(λ) < 1 ∀λ > 0. Therefore ν → 0+ implies

λ → 0+. Then we have

lim
ν→0+

µ = lim
ν→0+

λ

ν

= lim
ν→0+

λ

1− log2 (1 + e−2λg(λ))

= lim
λ→0+

λ

1− log2 (1 + e−2λg(λ))
(B.4)

using L’Hôpital’s rule,

= lim
λ→0+

ln 2
(
1 + e−2λg(λ)

)

2e−2λg(λ)− e−2λg′(λ)

= lim
λ→0+

2 ln 2

2− e−2λg′(λ)
, (B.5)

where

g
′
(λ) =

d

dλ
g(λ)

=
d

dλ

∫ ∞

−∞

1√
2π

e−
y2

2 cosh
1
2

(
2
√

2λy
)

dy

=

∫ ∞

−∞

1

2
√

π
e−

y2

2

sinh
(
2
√

2λy
)

cosh
1
2

(
2
√

2λy
) y√

λ
dy,

=

∫ ∞

0

1√
π

e−
y2

2

sinh
(
2
√

2λy
)

cosh
1
2

(
2
√

2λy
) y√

λ
dy. (B.6)

Now we need to compute

lim
λ→0+

e−2λg
′
(λ)

= lim
λ→0+

∫ ∞

0

1√
π

e−
y2

2
−2λ

sinh
(
2
√

2λy
)

cosh
1
2

(
2
√

2λy
) y√

λ
dy. (B.7)

121



By letting n = 1√
λ

in the integrand of (B.7), we define a sequence of real valued

functions, fn(y) ∀n ∈ N, ∀y ∈ (0,∞), as

fn(y) =
1√
π

e

�
− y2

2
− 2

n2

�
sinh

(
2
√

2y
n

)

cosh
1
2

(
2
√

2y
n

)yn, (B.8)

where N denotes the set of natural numbers. Notice that for a fixed y, as n → ∞,

the sequence {fn(y)}∞n=1 converges almost everywhere to a limit function f(y) which is

given by

f(y) =

√
8

π
e−

y2

2 y2. (B.9)

Note also that fn(y) is upper bounded by

fn(y) <
1√
π

e

�
− y2

2
+
√

2(1− 1
n)y

�
sinh

(
2
√

2y
n

)

cosh
1
2

(
2
√

2y
n

)yn

=

√
8

π
e

�
− y2

2
+
√

2y

�
h

(
2
√

2y

n

)
y2, (B.10)

where

h(x) , e−
x
2 sinh(x)

x cosh
1
2 (x)

.

Since h(x) < 1 ∀x > 0, we have

fn(y) <

√
8

π
e

�
− y2

2
+
√

2y

�
y2. (B.11)

It can be easily seen that the right-hand side of (B.11) is integrable over (0,∞), i.e.,

∫ ∞

0

√
8

π
e

�
− y2

2
+
√

2y

�
y2dy < ∞. (B.12)
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Then by the dominated convergence theorem,

lim
λ→0+

e−2λg
′
(λ)

= lim
n→∞

∫ ∞

0

fn(y)dy

=

∫ ∞

0

f(y)dy

= 2. (B.13)

Hence from (B.5) and (B.13), we obtain lim
ν→0+

µ = ∞.
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APPENDIX C

Proof Of Lemma 2.4

Let µ =
(

Eb

N0

)∗
, ν = R and λ = µν. From (2.49), we obtain

ν =
3

2
− 1

2
log2

(
3 + 4e−λ + e−4λ

)
. (C.1)

It can be easily shown that λ → 0+ as ν → 0+. Then we have

lim
ν→0+

µ

= lim
ν→0+

λ

ν

= lim
ν→0+

λ
3
2
− 1

2
log2 (3 + 4e−λ + e−4λ)

(C.2)

using L’Hôpital’s rule,

= lim
ν→0+

(
3 + 4e−λ + e−4λ

2e−λ + 2e−4λ

)
ln 2

= 2 ln 2. (C.3)
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APPENDIX D

Proof Of Lemma 2.5

Let µ =
(

Eb

N0

)∗
, ν = R and λ = µν. Define a function h(λ) as

h(λ) =

∫ ∞

−∞

1

2
√

π
e−

y2

4 cosh
1
2

(√
2λy

)
dy. (D.1)

Then from (2.53) we have

ν = 1− log2

(
1 + e−λh(λ)

)
. (D.2)

It is easy to show that λ → 0+ as ν → 0+. Now we lower bound h(λ). First, we can

express h(λ) as

h(λ) = EY

(
cosh

1
2

(√
2λY

))

= EZ

(
cosh

1
2

(√
2λZ

))
, (D.3)

where Y is a Gaussian random variable with zero mean and variance of 2, Z = Y 2

and EY (·) denotes expectation over Y . Since cosh
1
2

(
2
√

2λZ
)

is a concave function,
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by Jensen’s inequality,

h(λ) ≥ cosh
1
2

(√
2λEZ(Z)

)

= cosh
1
2

(
2
√

λ
)

=




∞∑
n=0

(
2
√

λ
)2n

(2n)!




1
2

≥
√

1 + 2λ. (D.4)

Thus we obtain

lim
ν→0+

µ = lim
ν→0+

λ

ν

= lim
λ→0+

λ

1− log2 (1 + e−λh(λ))

≥ lim
λ→0+

λ
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)

using L’Hôpital’s rule,
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