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Abstract. Using image hierarchies for visual categorization has shown
to have a number of important benefits. For instance it enables a sig-
nificant gain in efficiency (e.g., logarithmic with the number of cate-
gories [1, 2]). Moreover, arranging visual data in a hierarchical structure
echoes the way how humans organize data and enables the construction
of a more meaningful distance metric for image classification [3] (see
figure 1). However, a critical question still remains controversial: would
structuring data in a hierarchical sense also help classification accuracy?
While our intuition suggests that the answer may be positive, up to date
no method have shown conclusive results that can demonstrate the cor-
rectness of this claim for the most general case of large scale databases.
In this paper we address this question and show that the hierarchical
structure of a database can be indeed successfully used to enhance clas-
sification accuracy using a sparse approximation framework. We propose
a new formulation for sparse approximation problem where the goal is
to discover the sparsest path within the hierarchical data structure that
best represents the query object. Extensive quantitative and qualita-
tive experimental evaluation on a number of branches of the Imagenet
database [4] as well as on the Caltech 256 [2] demonstrate our theoreti-
cal claims and show that our approach produces the best categorization
results (in term of a number of hierarchical-based distance functions)
over a number of competing large scale classification schemes that do
not exploit the hierarchical structure of the database.

1 Introduction

Recent advances in computer vision and image-based search have enabled the
design of recognition methods that are capable to classify images into large
number of visual categories (typically, hundreds) [5–8]. In a current paradigm
for image categorization, image classes are organized in a flat structure and the
problem is the one of discovering the class (among all those in the flat structure)
that best represents (in term of a distance function) the visual content of a
given query image. The classification error is measured by inspecting whether
the recognized class label is equal to the ground truth one or not. While this
classification paradigm has shown promising classification results, a number of
questions remain unanswered: i) how well classification scales as the number of
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categories increases? Typical schemes lead to linear or even quadratic complexity
[9, 10]; ii) is this the correct metric (distance function) to measure a classification
error? We can argue that having a dog been misclassified as a stapler is ”worse”
than having a dog misclassified as a cat (Fig. 1); iii) is this the ”natural” way to
organize visual data for classification? iv) would a different structure (than flat)
help improve the classification accuracy?
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Fig. 1. The similarity between two objects can be measured as a distance between two
paths in the trees - such distance is measured as the TED as discussed in Sec. 4.

An emerging paradigm has advocated the idea of organizing visual data in a
hierarchical structure rather than in a flat one. This paradigm addresses some of
the questions raised above: i) it enables a significant gain in efficiency, typically
logarithmic with the number of categories [1, 2]; ii) it enables the construction of
a more meaningful distance metric for image classification ; iii) arranging visual
data in a hierarchical structure echoes the way how humans organize data [3].
However, a critical question still remains controversial: would structuring data
in hierarchical sense also help classification accuracy? Up to date there is no
definite answer to that question. For instance, top-down classification schemes
(applied on hierarchical structures) such as [1, 2] have produced inconclusive ev-
idence as for whether hierarchy has a beneficial effect on classification accuracy.
Classification methods based on Hierarchical Support Vector Machines can be
used to trade off accuracy against speed [2]. Methods based on combining mod-
els from different levels of the hierarchy [11] have shown some positive signal
but some of the assumptions (related to the precision/recall rate associated to
child/parents) are not verified and the hierarchical structure should be deeper
and larger than the one tested in [11] (which comprises a handful of categories
only).
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In this paper we attempt to address the issues discussed above and show
that the hierarchical structure of a database can be successfully used to enhance
classification accuracy using a sparse approximation framework. The key idea is
to introduce a distance function that takes into account the hierarchical structure
of the visual categories (Fig. 1) and identify two images to be similar if they
share a similar path in the hierarchy. We show that this distance function (or
similarity metric) is equivalent to the Tree Edit Distance (TED). This allows to
cast the categorization problem as the one of discovering the category in the tree
structure that has the smallest TED from the query category label. We solve
this problem via sparse approximation and introduce a new formulation of the
sparse approximation problem which we call hierarchical sparse approximation.
In the typical sparse approximation problems, [12–14], a query image can be
identified as the sparsest representation over the set of training images for all
object classes; that is, the sparsest solution is one (or a combination of a few)
image out of all possible images in the dataset. We call this the flat sparse
approximation problem. The key novelty of our approach relies on the idea of
that the sparse representation is not constructed over a flat structure of object
classes (as in the classic sparse sensing problem) but rather by enforcing that
the solution must be one (or a combination of a few) path out of all possible
paths on a given hierarchy of object classes (training set).

Since our method relies on the sparsity of the representation, our approach is
suitable for large scale classification problems; i.e., the conditions underlying the
sparsity assumptions are best verified when the dataset is large and distribution
of visual categories is diversified. In this work we present sufficient conditions
under which our hierarchical sparse formulation can be used with success and
small error bounds are guaranteed. Furthermore, a crucial property of our clas-
sification framework is that it is capable to classify multiple object instances at
the same time if more than one (dominant) object appears in the query image
(Fig. 2).
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Fig. 2. Multi-instance classification. Given an image that contains multiple object in-
stances from different categories, our algorithm is capable to discover the path associ-
ated to each of these objects.

We have carried out extensive quantitative and qualitative experimental eval-
uation on a number of branches of the Imagenet database [4]. Each branch
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comprises hundreds of visual categories organized in the hierarchical structure.
All the experiments demonstrate that our hierarchical sparse sensing framework
yields much better classification accuracy over a number of benchmark clas-
sifications schemes: i) flat sparse approximation; ii) flat sparse approximation
modified according [12]; iii) Support Vector Machines; iv) Hierarchical Support
Vector Machines. Evaluation was carried out by comparing average precision
measured in term of TED as well as by measuring the actual classification accu-
racy at each level of the hierarchy. Our method achieves a performance increase
ranging from 10% to 40% for the most critical levels of the hierarchy. Additional
experiments on multi-instance classification also show very promising results.

The rest of this paper is organized as follows. In Section 3, we will briefly
review how sparse approximation can be used for image classification problem.
The formal definition of hierarchical classification and embedding scheme is pro-
vided in the Section 4. Number of experiments are performed to validate our
scheme in the Section 5. Finally, we summarize our proposal in the Section 6.

2 Related Work

The usage and construction of hierarchies for object categorization has received
substantial interest in the vision and machine learning community. While the
contributions discussed above [11], [15], [2], [1] focussed on using hierarchical
structures to help or speed up classification, several other works proposed tools
for learning of hierarchies of visual categories (i.e. constructing taxonomies) in
unsupervised or semi-supervised fashion [16], [15], [2] as well as for exploiting
multi-level structures of classifiers [17], [18]. Researchers also presented methods
for organizing low (i.e., feature or part) level object representations organized in
hierarchical fashion so as to increase descriptiveness and discrimination power
[19], [20].

Sparse approximation for an image classification was first introduced by [12]
for face recognition. Authors [12] framed the face classification problem as the
one of finding a query class among large number of candidates (classes are or-
ganized in a flat structure) using sparse approximation and demonstrated that
their framework is robust to noise and can handle occlusions. Recently, concepts
from sparse coding were introduced to construct more descriptive dictionaries
to represent visual categories [21].

3 Image Classification using Sparse Approximation

In this section, we describe our image representation and the introduce the basic
formulation of the flat image classification problem based on sparse approxi-
mation. We assume a database of images is available. Further we assume that
such database comprises a large number of categories and each category has
large number of images of object instances. We assume that each image has a
dominant object instance as in Caltech-101, Caltech-256 or the ImageNet [4]. In
classification, we assume that the query image (with unknown category label)
contains an object whose category label is included in the dataset. Of course, the
query object itself is not included in the dataset. The classification problem can
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be solved by seeking, among all the images (object instances) in the database,
the one that is closest to the query object. The class such image belongs to is
the classification result.

Object representation. Assessing whether an image is close to another re-
lies on the construction of a distance function, and such distance function relies
on the way we represent objects and the visual content of an image. Following
a common representation used in the computer vision community, we describe
an image using a normalized histogram of codewords (bag of words represen-
tation) [7] or, equivalently, a histogram capturing a spatial pyramid of code-
words [8, 9]. In either cases, we denote such histogram by vector a x. Codewords
are drawn from a learnt dictionary of vector quantized features as described
in [7–9]. The size of the dictionary is denoted by K. Thus x is a column vector
of size K, if we use a basic bag of words representation as in [7]. Notice that
other type of representations are also possible.

Distance function. The similarity between two images represented by xi
and xj can measured by computing the ln norm distance between xi and xj ,
where n can be 0, 1, etc. Thus, similar images will have a small distance function.

Model matrix. Let us stack all the images in the database in a matrix H.
Columns of H will correspond to column vectors x. Thus, H will be K × N ,
where N is the number of images in the dataset. We call this matrix H the
model matrix. Any query image can be then interpreted as a superimposition of
one or a few images in the training data. That is, a query image can be expressed
as

x = Hm, (1)

where m is an indicator function that is 1 in correspondence of the images in
the database that contribute to represent the query image by superposition. m
will be zero otherwise.m is called the mixing matrix and is 1×N vector. A similar
representation was introduced in [12] in the context of face recognition. Under
the assumption that the database is large, the number of images that contribute
to the construction of any query image will be extremely small, hence m is highly
sparse as most the its entries will be zero.

Classification. Clearly m contains the information that allows us to esti-
mate the class label of the query image. Therefore, the classification problem
(what is the object class? ) is recast into the problem of estimating the vector m
(where is a nonzero entry? ). Intuitively this formulation allows us to discover
multiple dominant object instances in the image. Suppose the image contains
three objects as in the Fig. 2. Then this query image can be expressed as a su-
perposition of K = 3 training histograms (one may come from the dog class, one
from human class, and one from vaccum class). Hence, the nonzero entries of m
will return the 3 classes appearing in x. Note that the sparsity assumption still
holds as long as the number of objects appearing in the query image is small.
(We will study this condition in details later.)

Solving the Equation 1 is challenging because the system is underdetermined
and has infinite number of solutions (note that we assume that the matrix H
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has full rank). Because we postulate or seek a sparse mixing vector m, we can
formulate this problem as a sparse approximation problem and seek to find the
sparsest solution that best approximates (in `2 error) the observed instance.
(The pseudo-norm ‖ · ‖0 counts the number of non-zero entries in a vector.)

Problem 1

min ‖m‖0 subject to ‖Hm− x‖2 ≤ ε.

Unfortunately, the above problem is an NP-hard problem in general (given
an arbitrary matrix H). We can, however, solve this problem in polynomial time
with appropriate geometric assumptions on the matrix H. Let us assume for
now that the training set containes the query image x. As proposed by [22,
12], one method is to observe that Equation 1 is an optimization problem with
a non-convex objective function and that a convex relaxation of this problem
yields a problem which can be solved efficiently with standard optimization
techniques [13],

Problem 2

min |‖m‖1 subject to ‖Hm− x‖2 ≤ ε.

A second algorithmic approach is to use a greedy algorithm, one that iden-
tifies image instances iteratively, such as Orthogonal Matching Pursuit (OMP).
See [14] and the references therein for details on this algorithm. Both algorithmic
approaches are valid under the same geometric conditions on H. Because we use
different flavors of a greedy algorithm, we focus on those results only. In order to
interpret these algorithmic results, we must first define an important geometric
quantity, the coherence of the database µ(H).

Definition 1 The coherence µ(H) of the learned database is the maximum inner
product between distinct histograms

µ(H) = max
i6=j
|〈Hi, Hj〉|.

Suppose that our observed instance x consists of k instances in the learned
database H and let Λ be the index set of those instances. The following theo-
rem provides us a geometric constraint on H and the similar set Λ, the Exact
Recovery Condition, that guarantees OMP will recover the similar set.

Theorem 1 (ERC). A sufficient condition for OMP to identify Λ after k steps
is that

max
`/∈Λ
‖H+

ΛH`‖1 < 1

where H+ = (H∗H)−1H∗ [14].

We can guarantee that the ERC holds as long as the

Theorem 2. The ERC holds whenever k < 1
2 (µ−1 + 1). Therefore, OMP can

recover any sufficiently sparse signals [14].
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If, instead of exact replication of learned instances, the observed instance
consists of only very similar instances in the learned set H, i.e. training set
does not contain the query image, we cannot hope to exactly recover x. Instead,
we aim to find a mixing vector m with k non-zero entries that gives us the
closest approximation to x. Let us call that mixing vector mk and the smallest
approximation error ‖x−Hmk‖2 = ‖x− xk‖2. If we do not seek to identify too
many similar objects, then OMP will find k instances that are close to the most
similar ones.

Theorem 3. Assume k ≤ 1
3µ(H) . For any observed instance x, the approxima-

tion Hm̂ = x̂ after k steps of OMP satisfies

‖x− x̂‖2 ≤
√

1 + 6k‖x− xk‖2

Note that we do not get a guarantee on the quality of the recovered m vector.
We do know that ‖Hm̂ − x‖2 is close to the best k-term approximation. This
should be contrasted with a guarantee that m̂ is close to mk.

4 Hierarchical Classification with Sparse Approximation
In this section, we investigate the relationship between hierarchical classification
and the sparse approximation. We start with the theoretical argument that a
small error in the mixing vector ‖m̂ −m‖|2 or in the reconstruction of the ob-
servation x does not guarantee hierarchical similarity between m̂ and m. This
problem is depicted in a toy example in the Figure 2. In the figure, the ground
truth label is the dog. Consider two estimation stapler and cat. Given the hier-
archical structure of the database, we can say that the sparse approximation by
cat is better than the approximation by stapler. The errors in the mixing vector,
however, are the same. This means that our method of assessing the quality
of the approximation does not take into account the hierarchical structure of
the database. In order to obtain a more appropriate sparse approximation, we
observe that the learned database is organized in a (rooted, labeled, recursive)
tree and that we can group instances in the same category into nodes of the
tree. See Figure 1 for an illustration. Furthermore, the tree structure induces a
different distance metric than that implied by the previous discussion of sparse
approximation. Our previous model assumes a flat index structure of the object
instances; the histograms for the objects are numbered 1 to N and concatenated
as column vectors into the matrix H. This indexing structure does not reflect
the distance between nodes in the tree—all instances are equally far apart, re-
gardless of the node to which they are associated. To exploit this structure, we
introduce an embedding of the tree structure into the flat index scheme that
more closely captures the hierarchical structure.

4.1 Hierarchical Embedding
To embed the structure of the database in our indexing scheme, first we convert
individual isolated nodes into paths in the tree by augmenting the definition of
a representation. Let I denote the set of object instances in the observed image.
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For each object i ∈ I, we create a path pi from i to the root of the tree and we
let P be the union of all paths pi. Next, we observe that two different sparse
representations with two different sets I1 and I2 of object instances give rise
to two different sets of paths P1 and P2. As P1 and P2 are themselves trees, a
natural way to measure the distance between them and one that incorporates
our intuition that objects from “nearby” nodes are more similar than those that
are “far away” is tree edit distance (TED) [23].

There are three possible tree edit operations: rename, delete, and insert. For
formal definition of TED, assume that we are given a cost function defined on
each edit operation. An edit script S between two trees P1 and P2 is a sequence
of edit operations that turn P1 into P2. The cost of the script S is the sum of
the costs of the operations. An optimal edit script between the two trees is an
edit script of minimum cost and we define this cost as the tree edit distance.

To capture the notion of small tree edit distance in the mixing vector, given
an instance set I, we form the set of paths P from each object instance to the
root (counting multiplicities of the paths) and encode the characteristic function
of the (multiset) P in a new vector l. That is, l(j) counts the number of paths
from some object instance i ∈ I to the root that pass through node j.

We claim that the `2 distance between two such embedded vectors l1 and l2
is close to the TED of their respective augmented trees. Furthermore, for a given
instance set I, we can obtain the vector l from the mixing vector m associated
to I in a linear fashion by multiplying by a sparse matrix E (i.e., l = Em).
A second useful property of the vector l is that if m is sparse, then l remains
fairly sparse; the increase in the number of non-zero entries is no more than a
factor D where D is the maximum depth of the tree. Therefore, we can solve
an embedded sparse approximation problem that more accurately reflects the
hierarchical structure of the database.

Problem 3
min ‖l‖0 subject to ‖H̃l − x‖2 ≤ ε,

where H̃ = HF and l = Em. Here, F is a matrix such that FE = Id holds. A
complete optimization of both the embedding matrix E and its left-inverse F is
beyond the scope of this paper. We use F = E+ for our purposes. Problem 3
can be solved efficiently by a greedy algorithm referred to as Tree-OMP [24].
Tree-OMP is similar to the greedy algorithms we discussed previously with the
additional step that for all non-zero components in the vector l, the algorithm
assumes that all the components that correspond to ancestors in the tree are
non-zero as well and computes their values (instead of assuming they are zero as
in OMP). Unlike OMP, no theoretical analysis of this algorithm exists; it does,
however, perform well in practice on hierarchical data as we shall see next.

4.2 Sparse Path Selection Algorithm
After the vector l is returned by solving problem 3, we obtain an estimate of
the path in the hierarchical database associated to the query image. We perform
a post processing step which we call Sparse Path Selection (SPS). The reason
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for doing this is the following. Ideally, the sparsest solution of problem 3 should
return a vector of ”1” and ”0” where the non-zero elements in l allows to estimate
the category labels of the query object as well as its parents. Unfortunately, this
not always the case and values between ”0” and ”1” can also found because of
the estimation noise. To solve this issue, we introduce a threshold and interpret
as a positive response any value that is above such threshold (and as negative
response, otherwise). Finding this threshold, however, is not trivial as it may
be different if different datasets are used. Thus, in our experiments, we propose
to automatically learn this thresholds using a binary MAP estimator trained
using a validation set. Such evaluation set is then removed from the dataset
so as to avoid contamination during testing. Our classification scheme can be
summarized as follows:
Algorithm 1 Sparse Path Selection Algorithm SPS
1. Input: form the matrix H of training vectors collected from all images in the
dataset
2. Encoding: l = Em, H̃ = HF , where F = E+

3. Normalize the columns of H̃ to have unit l2-norm.
4. Solve the hierarchical sparse approximation problem 3 using Tree-OMP and
estimate l
5. Truncate noise by learned thresholds value and return classification results.

5 Experiments
In this section, we present quantitative and qualitative experimental results to
validate our theoretical claims. We test our algorithm using different hierarchical
databases. These are: i) 3 branches of the ImageNet [4] each comprising hun-
dreds of categories; ii) The hierarchical Caltech-256 dataset [2]. We use different
metrics to evaluate the performances of our algorithm: i) Overall average Tree
Edit Distance (TED); ii) Average classification accuracy for each levels of the
hierarchy; iii) Overall average classification accuracy. We benchmark our results
using two state-of-the art large scale classification methods. These are: i) SRC:
the sparse approximation technique introduced by [12]; ii) Pyramid Matching
SVM [8].

In each of these experiments we used 16 grid patches with spacing of 8 pix-
els to generate SIFT descriptors. BoW histograms are constructed using 500
codewords generated from K-means clustering. Finally, we used SPH (Spatial
Pyramid Histogram) up to the resolution level 4 to represent each image.

In each experiment we sample (at most) 100 images for each node of the
working database and use these for learning. (E.g. to build the H matrix) As
an example, for the domesticAnimal tree of ImageNet we collected about 21000
images for training. We sample an additional 10 images per node for testing. This
way testing images are guaranteed to be different from those in the training set.
In all these experiments, we tested the case where a query image contains only a
single category. We show anecdotal examples of multi-instance classification in
the last section.

ImageNet Subsets ImageNet [4] is a hierarchical image database with
10, 000, 000 images across over 10, 000 categories. It organizes the different classes
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Fig. 3. Average Tree Edit Distance (TED) for different subcategories is drawn.

of images according to the WordNet [25] structure, and ”IS-A” relationship exists
between parents and children. In the experiments, we used 3 different branches
from the ImageNet: Home Appliances, Domestic Animals, and Fruits. These
subsets are chosen to see the performance changes according to differences in
the number of classes (48, 212, 320, respectively). Also, they have different hier-
archical structure: Domestic animals has a deep hierarchy and Home Appliances
has relatively small hierarchy. Moreover, we created a new version of Domestic
animals where images only reside in the leave nodes, and no images are in the
internal nodes.

Hierarchical Caltech-256 The Caltech-256 is rearranged in a hierarchy
according to best matches in the WordNet. In this Hierarchical Caltech-256,
every categories lies on the leave of the hierarchy and internal nodes have no
images.

Benchmarks We use use two state-of-the-art methods for large scale clas-
sification: 1) the sparse approximation technique introduced by [12] (SRC). We
use problem 1 (Sec.3) to find the solution m via sparse approximation (simi-
larly to [12]). We use the post-processing procedure in [12] to estimate the final
class label. Notice that this method does not exploit the hierarchical structure
of the database and ”sees” the database as flat. Notice that SRC returns a sin-
gle class label (not a path in the tree) which can be used to form the mixing
matrix mSRC . In order to compare SRC results with ours, we transform m into
its corresponding path lSRC = mSRC ; 2) the SVM Pyramid Matching classifi-
cation scheme ([8]). Given a query image, we use this technique to return the
class label by SVM classification using all the categories in the training tree as
a model. This approach was also tested by [2] for Caltech 256. Similarly to the
SRC case, the output mSVM can be converted to its corresponding path using
lSVM = EmSVM .

Hierarchical Similarity Verification
In this part, we give empirical results of hierarchical similarity in terms of

TED (which is a natural distance function to compare the similarity of two paths
in a tree). Thus, if ground truth path and the estimated path are similar, the
TED will be small. In Fig. 3 we show average TED between ground truth paths
and estimated path for all our testing images using our approach (SPS). In the
same figure we also report the TED distance between ground truth path and
path estimated by both SRC and SVM (i.e., lSRC and lSVM as discussed above).
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Note that the TED associated to our approach is systematically smaller than
that of SRC or SVM for all the datasets. This result supports our argument that
the proposed framework actually guarantees small TED bounds. Notice that this
bound is not guaranteed in the original flat sparse approximation formulation
(i.e., without encoding scheme). Also, notice that when the hierarchical structure
is relatively flat, the effect of encoding and the advantage from our framework
becomes less significant.

Effect on Different Hierarchicy Levels TED returns a global measure-
ment of path similarity regardless of the level and position in the tree. In this
experiment we explore the performance of our framework at different levels of
the tree. In the Fig. 4, the accuracy versus the levels of the hierarchy is drawn
for different datasets. The plot reports the average number of correctly esti-
mated nodes (categories) for each level (x-axis) for all testing image. A node j
is estimated correctly if the ground truth path evaluated at j is equal to the
estimated path at j for a given test image. Clearly, the root node is always clas-
sified correctly. As we go down toward the bottom of the tree, the likelihood of
classifying nodes correctly becomes smaller and smaller. Note that this graph is
always monotonically decreasing because whenever the estimation of the child
category is correct, then parent category estimation is correct too. When the hi-
erarchical level is low, the performance of our SPS is similar to SRC and SVM.
However, when the hierarchical level increases the gap between our SPS and
SRC or SVM become larger.
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Fig. 4. Average accuracy of classification for different hierarchical levels. We tested on
five different categories, Caltech-256, Fruits, Domestic animals, Home applications and
Domestic animals (leaves only)
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[Test 2]

Input1: Persian cat > domestic cat > dom. animal

Input2: Golden retriever > retriever > sporting dog > hunting dog > dog > dom. animal

Output1: domestic cat > domestic animal

Output2: spitz > dog > domestic animal

[Test 1]

Input1: home appliance > kitchen appliance > oven > gas oven

Input2 : home appliance > vacuum > hoover

Output1 : home appliance > toaster oven

Output2 : home appliance > vacuum

Fig. 5. Example of multiple object instance recognition.

In the Table 1, the average accuracy is shown as a function of number of
nodes in each datasets. It is clear that in average, our proposal outperforms the
competing classification schemes (see text for details).

Table 1. Average Accuracy

Algorithm Fruits D-Animals D-Animals(Leave) Home App Caltech-256

SPS 0.46 0.40 0.43 0.46 0.31
SRC 0.28 0.31 0.34 0.39 0.21
SVM 0.27 0.35 0.34 0.42 0.24

Contribution from Internal and Leave Categories In this section, we
investigate the contribution of internal nodes and their impact to classification
accuracy. For this purpose, we generated a dataset called ”Domestic Animals-
Leave Only”, which has the same hierarchy to the original ”Domestic Animals”
category, but where no images are included in the internal nodes (thus, only leaf
nodes contain images). This means that the model matrix H is learnt as well
as the testing is performed using leaf nodes only. Likewise, SVM and SRC will
be tested and trained on such nodes only. The accuracy curve for this dataset
is shown in the Fig. 4. Note that the accuracy performance of both ”Domestic
Animals” and ”Domestic Animals-Leave Only” have very similar performance.
This suggests that our method still works well if the hierarchical dataset does
not contain images in the internal nodes. This is an useful property in real
applications, as it is easier to make such a hierarchical tree without internal
nodes when we generate a hierarchy structure from a flat structure. For example,
the Hierarchical Caltech-256 can be easily constructed under these assumptions.

Multiple Object Recognition As discussed in the introduction, in this
section we present anecdotal examples showing that our framework is able to
classify images containing multiple instances. In such examples the histogram
representing the query image can be expressed as a superimposition of multiple
object category histograms. So, as discussed in the technical section, our SPS
method will return multiple paths – a path for each of category in the query
image. Examples in the figure 6 show some successful cases. Paths are reported
in text format. We plan to extensively evaluate this capability in future work.

Examples: Hierarchical Classification In this section, we present anec-
dotal examples showing some the paths returned by our SPS compared with
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 fruit >  edible fruit >  grape >  vinifera grape 
 >  muscat, muscatel, muscat grape

SPS
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 fruit >  edible fruit >  berry >  acerola, barbados 
cherry, surinam cherry, West Indian cherry
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 fruit > olive

SVM
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 home appliance, household appliance 
>  kitchen appliance >  oven >  gas oven

Ground Truth

0
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 home appliance, household appliance >  
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l ll
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 domestic animal, domesticated animal >  dog, domestic dog, 
 Canis familiaris >  hunting dog >  hound, hound 

Ground Truth

0

0.5
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 domestic animal, domesticated animal > 
 dog, domestic dog, Canis familiaris >  
hunting dog >  hound, hound dog >  elkhound

SPS

0
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1

 domestic animal, domesticated animal >  
dog, domestic dog, Canis familiaris > 
 working dog >  watchdog, guard dog >  pinsc

SRC

0

0.5

1

 domestic animal, domesticated animal l

SVM

Fig. 6. The hierarchical path is estimated as nonzero entries in the encoded mixing
vector l. Note that the path estimated by SPS (ours) is closer to ground truth path
than SVM or SRC is.

those returned by SVM or SRC. Note that estimated parent nodes returned by
SVM and SRC are much less accurate than those returned by SPS. Paths are
reported in text format. See figure 6 and supplementary material.

6 Conclusion
In this work, we introduced a new framework for hierarchial classification using
a new formulation of the sparse approximation problem. We demonstrated, for
the first time (up to our knowledge), that the hierarchical structure of a large
and complex database can be indeed successfully used to enhance classification
accuracy. Experimental results on several large scale dataset were used to support
our claims.
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