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Abstract—This paper studies the problem of distributed com-
putation over a wireless network of resource constrained sensor
nodes. In particular, we focus our attention on sensor networks
used for structural health monitoring. Within this context, the
heaviest computation is to determine the singular value decompo-
sition (SVD) to extract mode shapes (eigenvectors) of a structure.
Compared to collecting raw vibration data and performing SVD
at a central location, computing SVD within the network can
result in a significantly smaller energy consumption and delay.
Recent results have proposed methods to decompose SVD, which
is a well-defined centralized operation, into components that
can be carried out in a distributed way. What is missing,
and is the focus of this paper, is how to determine a near-
optimal communication structure that enables the distribution
of this computation and the reassembly of the final results, with
the objective of minimizing energy consumption subject to a
computational delay constraint. We show that this reduces to a
generalized clustering problem; a cluster forms a unit on which a
component of the overall computation is performed. We establish
that this problem is NP-hard. By relaxing the delay constraint,
we derive a lower bound to this problem. We also show that
the optimal solution to the unconstrained problem has a simple
structure that reveals insights into the solution of the original
constrained problem. We then propose an integer linear program
(ILP) to solve the constrained problem exactly as well as an
approximate algorithm with a proven approximation ratio. We
also present a distributed version of the approximate algorithm.
Numerical results are presented to demonstrate the effectiveness
of the approximate and distributed algorithms.

Index Terms—Networked Computing, Wireless Sensor Net-
works, Degree-Constrained Data Collection Tree, Singular Value
Decomposition.

I. I NTRODUCTION

Over the past decade, the research community has made
tremendous progress in understanding and using wireless
sensor networks (WSNs). Of particular relevance to this paper
are extensive studies on in-network processing, e.g., finding
efficient routing strategies when data compression and aggre-
gation are involved. However, many emerging applications,
e.g., body sensor networks, structural health monitoring sensor
network, and various other cyber-physical systems, require far
more sophisticated data processing beyond data compression
and collection, in order to enable real-time diagnosis and
control.

This motivates the following question: how do we perform
arbitrary (and likely complex) computational tasks using a
distributed network of wireless sensors, whose inputs originate

A. Jindal and M. Liu are with the Department of Electrical Engineering
and Computer Science at University of Michigan, Ann Arbor. E-mail: apoor-
vaj@umich.edu,mingyan@eecs.umich.edu.

from this network of sensors, while each sensor individu-
ally has limited resources both in energy and in processing
capability? The ultimate goal isfully-automated in-network
computing, a natural progression from the networked sensing
paradigm. This question poses the following two challenges.
The first is the decomposition of complex computational tasks
into smaller operations, each with its own input and output and
collectively related through a certain data-flow or dependency
graph. The second challenge is to distribute or place these
operations among individual sensor nodes so as to incur
minimal energy consumption and delay.

In this paper we will focus on the latter challenge within the
context of using WSNs for structure health monitoring (SHM).
This is an area of growing interest due to the growing need
to provide low-cost and more timely monitoring and inspec-
tion of deteriorating infrastructure, but also as an appealing
application of wireless sensor technologies.

The most common approach in SHM to detect damage is
to collect vibration data using a set of wireless sensors in
response to white/free input to the structure, and then use the
singular value decomposition (SVD) to determine the set of
modes [1]–[3]. Amodeis a combination of a frequency and
a shape, which is the expected curvature (or displacement) of
a surface vibrating at a mode frequency.

In this study, we will use SVD as a primary example
to illustrate an approach to determine how to perform such
a complex computational task over a network of resource-
constrained sensors. Compared to collecting raw vibration
data (or the FFT of raw data) and performing the SVD
computation at a central location, directly computing SVD
within the network can result in a significant reduction in both
energy consumption and computational delay. Conceptually,
this reduction occurs because the output of SVD, a set of
eigenvectors, is much smaller in size than its input, FFTs
from individual sensor data streams, and evaluating multiple,
smaller SVDs in parallel is much faster than evaluating the
SVD on the input from all sensors.

How to decompose the SVD computation, which a well-
defined classical centralized operation, into components that
can be carried out in a distributed way was studied by Zimmer-
manet al. [4]. In this paper, we focus on the next step which
is to determine a near-optimal communication structure that
enables the distribution of this computation and the reassembly
of the final results. We define an optimization framework that
seeks the best computation and communication structure with
the objective being to minimize energy consumption subject
to a computational delay constraint. We show that this reduces
to a generalized clustering problem; a cluster forms a unit on
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which a component of the overall computation is performed.
Previous results on establishing the communication structure

for in-network computation either consider only very simple
functions like max/min/average/median [5]–[8] that do not
fully represent the complex computational requirements de-
manded by practical engineering applications like SVD com-
putation, or study scaling laws which do not yield algorithms
to determine the optimal communication structure [9]. Finally,
note that SVD computation is an essential ingredient in a broad
class of signal processing applications, including classification,
identification and detection [4], [10]–[14].

We first formally define the above problem and establish
that it is NP-hard in Section II-E. By relaxing the delay
constraint, in Section III we derive a lower bound to this
problem, and show that the optimal solution to the uncon-
strained problem has a simple structure that reveals insights
into the original problem. We then propose an integer linear
program (ILP) to solve the constrained problem exactly as
well as an approximate algorithm with a proven approximation
ratio in Section IV. We also present a distributed version of
the approximate algorithm. Numerical results are presented in
Section V to demonstrate the effectiveness of the approximate
and distributed algorithms. Note that even though our presen-
tation, for the most part, is focussed specifically on SVD, the
methodology itself is generic. In Section VI, we discuss howa
similar approach can be used for other computational tasks in
SHM like distributed optimization using simulated annealing.
Finally, we conclude in Section VII.

Before we end this introduction, we present a simple ex-
ample to illustrate that the optimal communication structure
can differ depending on the computational objective, and
hence, prior work on deriving the routing structure for data
aggregation cannot be applied here. We will compare the
optimal routing structure for data compression and that of
computing the SVD. Assume that data compression converts 2
input streams of sizeR bits each to an output stream ofR+ r
where r < R [15]. The SVD operator, as discussed in detail
in Section IV, convertsk input streams of sizeR bits each, to
k eigenvectors of sizer bits each withr < R. Now consider
the simple 4-node topology of Figure 1 and the two possible
communication structures, with node 0 being the base station
(or data collector/processor) and assuming all links are of
unit length/cost. As derived in [15], data compression requires
an exchange (or incurs a cost) of 3R+ 3r (using successive
encoding) and 4R+ r bits respectively for the communication
structures (a) and (b). Hence, ifR> 2r, the one on the left
is better. On the other hand, in the case of SVD if we do
not perform in-network computation, then sending all raw
data to node 0 results in a cost of 6R and 5R over the two
structures, respectively. If we perform in-network computation,
then as detailed in Section IV, the resulting costs are 3R+6r
and 3R+ 3r for the two structures, respectively. Hence, the
second communication structure is always better for the SVD
computation.

II. PROBLEM FORMULATION

In this section, we first introduce the relevant background on
structural health monitoring, then present the network model

Fig. 1. In-network computation and compressed sensing can have a different
optimal communication structure. (a) and (b) represent the twopossible
communication structures for a simple 4-node topology.

and formally introduce the problem.

A. Background on Structural Health Monitoring

During the past two decades, the SHM community has
become increasingly focussed on the use of the structural
vibration data for identifying degradation or damage within
structural systems. The first step in determining if the vibration
data collected by a set of sensors represents a healthy or an
unhealthy structure is to decompose the spectral density matrix
into a set of single degree of freedom systems. Assuming a
broadband white input to the system, this can be accomplished
by first obtaining an estimate of the output power spectral
density (PSD) matrix for each discrete frequency by creating
an array of frequency response functions using the Fast Fourier
Transform (FFT) information from each degree of freedom in
a system. Early studies in this field focussed on identifying
changes in modal frequencies or the eigenvalues of the PSD
matrix using the peak picking method [16] to detect damage
in large structural systems [17]. More recent studies have
observed that viewing changes in modal frequencies in combi-
nation with changes in mode shape information (eigenvectorof
the PSD matrix) makes it increasingly possible to both detect
and locate damage within a variety of structural types and con-
figurations [1]–[3]. One of the most widely used method for
mode shape estimation is the frequency domain decomposition
(FDD) method which was proposed by Brinckeret al. [18].
This method involves computing the SVD1 of the PSD matrix
to extract the eigenvectors/mode shapes.

The most common implementation of the FDD method
over a wireless sensor network is to have each sensor send
its vibration data to a central sensor node which computes
the SVD of the PSD matrix and then distributes the mode
shapes back to each sensor. This method requires significant
computational power and memory at the central sensor node
as well as a significant energy consumption in the network to
communicate all this data to the sensor node. For example, if
there are 100 sensor nodes in the network, this implementation
requires the central sensor node to compute the SVD of a
100×100 PSD matrix as well as having each of the 100 sensor
nodes send all their vibration data to one central node.

Within a wireless sensing network, where processing power,
energy and memory at each node is limited, Zimmermanet
al. [4] proposed an alternative implementation by decompos-
ing the computation of SVD using in-network computation

1Please see Appendix A for a detailed description of the SVD computation.
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(graphically represented in Figure 2). Each sensor node is
assumed to be aware of the eigenvalues of the PSD matrix
(which have already been determined using the peak-picking
method2) and the FFT of its own sensed data stream. Now,
if a sensor has the FFT ofN ⊂V, |N| > 1 sensors and all the
eigenvalues, then it can compute the SVD of the PSD matrix
using |N| sets of FFT results and determine|N| eigenvectors.
Let another sensor node be in possession of the FFT of
N′ ⊂ V, |N′| > 1 sensors. It can do a similar computation to
determine|N′| eigenvectors. To be able to combine results
from these two computations to construct the|N∪N′| eigen-
vectors, one needs to be able to determine the appropriate
scaling factors. We call two computationscombinableif one
can determine the appropriate scaling factors to combine them.
A computation onN nodes and another computation onN′

nodes is combinable if and only if eitherN∩N′ 6= φ (that is,
there is at least one common sensor inN and N′), or there
exists another computation onN′′ nodes which is combinable
with both N andN′.

Fig. 2. Decomposing the computation of SVD using in-network computation.

Each independent in-network computation requires message
exchange with other in-network computations to make them
combinable. Also, ifR denotes the size in bits required to
represent the FFT of a sensor stream andr denotes the size in
bits to represent a eigenvector, each in-network computation
which combines the FFT ofk sensor streams reduces the
number of bits in the network fromkR to kr. Note that the
size of the output stream does not depend onR.

Though Zimmermanet al. [4] proposed a new data-flow
graph for SVD, they assumed a fixed routing structure and did
not consider optimizing the communication structure, which
will be the focus of this paper.

B. Network Model

A network of sensor nodes is represented with an undi-
rected, unweighted graphG(V,E). Each node inV acts as both

2Finding the optimal communication structure to implement peak-picking
in a distributed manner is the same as determining the optimal communication
structure for networked sensing with data compression [15],[19], [20].
And the algorithms developed in these papers can be directly applied to
peak-picking. Hence, to keep the exposition interesting, we do not study
implementing peak-picking distributively here.

a sensor and a relay. If two nodes can successfully exchange
messages with each other, there exists an edgee∈ E between
them. Let there be a weightwe≥ 0 associated with each edge
which denotes the energy expended in sending a packet across
this edge and depends on the number of transmissions required
to send a packet across that edge. Without loss of generality,
we assume node 0 to be the central sensor node or the base
station. We also assume that all sensors (including the base
station) are identical in their processor and radio (and hence
computational time and energy consumption per bit). This is
done to keep the presentation simple and can be easily relaxed.

Each node has a local input vibration stream. The objective
of the network is to evaluate the SVD of the PSD matrix
formed by the input vibration streams of all the sensors. A
sensing cycle is defined to be the time duration in which
each sensor performs the sensing task to generate a vibration
stream, the SVD is computed and the mode shapes are made
known at the base station. The sensing rate depends inversely
on the duration of one sensing cycle. Our objective, as will
be more precisely discussed in Section IV, is to determine
the optimal communication structure to minimize the energy
consumption in a sensing cycle under a constraint on the
maximum duration of a sensing cycle.

C. Metrics of Interest

Energy Consumption: this is defined to be the total commu-
nication energy consumed in the network in one sensing cycle.
Let ETx and ERx denote the energy consumption to transmit
and receive a bit of data. Then we assume that the energy
consumed in transmitting a packet ofB bits over an edgee is
weB(ETx+ERx)

3.
Computational Delay: this is defined to the maximum com-
putational delay at a sensor node. As observed in [4], [21],
the computational time is the chief contributor to delay as
packet sizes in sensor systems tend to be very small. Thus, the
duration of a sensing cycle depends chiefly on the maximum
computational delay amongst all sensor nodes. In other words,
the computational delay constraint imposes a constraint onthe
maximum duration of a sensing cycle.

D. Formal Definition

We now formally introduce the problem. Determining the
optimal communication structure implies finding the setS of
sensor nodes on which the SVD computation will take place,
and for eachs∈ S, finding the corresponding set of sensors
Ns whose FFT will be made available ats. Recall thatR and
r denote the number of bits required to represent the FFT
from a single sensor and a single eigenvector respectively.
The computational delay constraint imposes a constraint on
the maximum number of FFT’s which can be combined at
a sensor node. LetC(|Ns|) be the time it takes to compute

3Our algorithms and the corresponding approximation factors do not
depend on the exact model used for energy consumption providedthe energy
consumed remains a function of the number of bits transmitted over a network.
Thus, nothing changes if a more complex model for energy consumption
which incorporates energy consumed in overhearing is used. We discuss this
in more detail in Section IV-C
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the SVD of the FFT from|Ns| sensors,C(|Ns|) ≤ C,∀s∈ S.
This constraint is equivalent to|Ns| ≤ d, ∀s∈ S whered :=
max {|Ns| |C(|Ns|) ≤C}. Also, recall that another constraint
is that the computation on each pairs1,s2 ∈ S is combinable.

Definition 1: P1. Find the setS and their corresponding
Ns,∀s∈ S, and the routing structure to minimize the total en-
ergy consumed such that|Ns| ≤ d, ∀s∈Sand the computations
on all pairss1,s2 ∈ S are combinable.

Note that it is easy to modify our algorithms to minimize
the maximum computational delay with a constraint on the
energy consumption. Indeed, the dual of the linear programs
we propose will optimally solve this alternative formulation.
However, due to space limitations, we do not explore this dual
formulation in this paper.

E. NP-completeness

A decision version of P1 can be shown to be NP-hard
through a reduction from set cover.

Theorem 1:There is no polynomial time algorithm that
solves P1, unlessP = NP.

Proof: See Appendix B.

III. A L OWER BOUND

We first derive a lower bound on the optimal value. This
lower bound is obtained by studying P1 without the compu-
tational delay constraint. This study also provides valuable
intuition into the development of an approximation algorithm
for P1.

To simplify the presentation, in this section, we assume that
the weight of all edges is equal. Note that this not a stringent
assumption as all the bounds derived in this section can be
easily modified to incorporate different weights for each edge.
With this assumption, the energy consumed to send data from
node i to node j will merely depend on the number of hops
on the shortest path between these two nodes.

Definition 2: [Data Collection Tree] A data collection tree
for G(V,E) is the spanning tree such that the path from each
nodev∈V to the base station has the minimum weight.

Note that since all edges have the same weight, a path of
minimum weight is equivalent to the path with the minimum
hop count. LetT denote the data collection tree forG(V,E),
and letdT(v) denote the hop count of nodev∈V in T.

The following lemma derives a lower bound on the optimal
energy consumption.

Lemma 1:((|V|−1)R+∑v∈V (dT(v)−1) r)(ETx+ERx) is
a lower bound on the optimal energy consumption.

Proof: For all the nodesv ∈ V\S, a message exchange
of size R from v to one of the nodes inS will occur. This
message will go over at least one hop. If the hop count of
node v from the base station is equal todT(v), and if the
message of sizeR goes over one hop, the message of sizer
will go over at leastdT(v)−1 hops. This will require at least
|V|− |S| message exchanges of sizeR and∑v∈V\S(dT(v)−1)
message exchanges of sizer.

Now, each of theS computations should be combinable,
that is,∀s1,s2 ∈ S, eitherNs1 ∩Ns2 6= φ or there exists another
node s3 ∈ S such that the computation at nodess1 and s3

as well as on nodess2 ands3 are combinable. To understand
how many extra messages are needed to satisfy this constraint,
consider the following graphGS(S,ES). If for nodess1,s2 ∈S,
Ns1 ∩Ns2 6= φ , we introduce an edge betweens1 and s2 in
ES. Each edge in this new graph implies at least one extra
message exchange of sizeR in addition to the|V|−|S| message
exchanges of sizeR. Two nodes ins1,s2 ∈Sare combinable if
and only if there exists a path betweens1 ands2 in GS(S,ES).
For a path to exist between every pair of nodes,GS(S,ES)
should have at least|S| −1 edges. This implies that at least
|S|−1 extra message exchanges of sizeR are required for all
pairs i, j ∈ S to be combinable.

Thus, at least|V| − 1 message exchanges of sizeR will
occur. Also, the computed eigenvectors will go throughdT(v)
hops for all nodesv ∈ S. Thus, messages of sizer will
go through at least∑v∈SdT(v). Thus, the optimal energy
consumption is≥

(

(|V|−1)R+∑v∈V\S(dT(v)−1) r +∑v∈S
dT(v)r)(ETx+ERx) ≥ ((|V|−1)R+∑v∈V (dT(v)−1) r)
(ETx+ERx).

Fig. 3. Two data collection trees for the same network. The solid lines
represent the edges of the tree.TM is the tree in (b).

We now construct the optimal solution to P1 without the
computational delay constraint under the assumption thatR>
2r. (Note that the condition thatR> 2r is satisfied by the SVD
computation for structural health monitoring.) Consider adata
collection tree with the following property. All the children of
a non-leaf nodev ∈ V in the tree cannot be moved to other
nodes of height≤ dT(v). Thus, this tree has the minimum
number of non-leaf nodes. Label this treeTM. (Figure 3 gives
an example to clarify the difference betweenTM and another
data collection tree.)

Theorem 2:The following solution to P1 is optimal without
the computational delay constraint.S consists of all non-leaf
nodes in the data collection treeTM, Ns,s∈ S consists of all
the immediate children ofs and the data collection treeTM is
the routing structure.

Proof: Each sensor node sends its FFT to its parent
(which incurs an energy cost of(ETx+ERx)R). Since, the base
station has no parent, this step incurs an energy cost of
(ETx+ERx)(|V|−1)R. Each non-leaf node computes the SVD
from the FFT of its children’s stream and its own stream, and
then sends the eigenvectors to the base station. It incurs an
energy cost of∑v∈V (dT(v)−1) r + |S|r. The extra energy
cost over the lower bound of Lemma 1 is equal to|S|r.
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Thus, a largerS will only increase the energy consumption.
We next show that a smallerS does not decrease the energy
consumption either. We prove this by contradiction. LetS′

denote a set which solves P1 without the computational delay
constraint, results in a smaller energy consumption thanS
and |S′| < |S|. Using S′ instead of S reduces the energy
consumption by no more than(|S|− |S′|) r. Consider node
s∈ S but not in S′. By definition of TM and sinceR > 2r,
none of its children are being evaluated at a nodes′ ∈ S′ such
that dT(s′) < dT(s) and at least one of its children is being
evaluated at a nodes′′ ∈ S′ which is at height greater than
dT(s). Thus, the increase in energy consumption for anys∈ S
but not in S′ is equal tor. Since there are at least|S| − |S′|
such nodes, the increase in energy consumption is at least
(|S|− |S′|) r. Hence, the energy consumption does not reduce
which is a contradiction.

Finally, we prove that each pair of nodess1,s2 ∈ S are
combinable. Note that removing the leaf nodes and the edges
connecting the leaf nodes to the non-leaf nodes yields
GS(S,ES). Since, there exists a path between each pair of non-
leaf nodes inTM (and this path obviously does not go through
a leaf node), every pair of nodess1,s2 ∈ S are combinable.

To summarize, constructing a data collection tree with
the minimum number of non-leaf nodes yields the opti-
mal solution for P1 without the computational delay con-
straint. Also, note that any other data collection treeTD will
yield a solution which has an additive extra energy cost of
(NL(TD)−NL(TM)) r whereNL(T) represents the number of
non-leaf nodes in the data collection treeT.

IV. A LGORITHMS

In this section, we propose an exact ILP as well as a
Θ(log(|V|)) approximation algorithm for P1.

A. ILP

In this section, we propose an ILP to solve P1. We first
define some extra variables for notational convenience.xi j will
be set to 1 if the FFT of sensor nodei is sent to nodej (i.e.
i ∈ Nj ), otherwise it will be set to 0.xii will be set to 1 only
if i ∈ S. Thus,xi j is the variable which defines both the setS
as well asNs. pi jk is a variable which will be set to 1 if the
FFT of the sensor nodek is evaluated at both nodesi and j.
Finally, we defineci jn as,

ci jn =







1 n = 0 and ∑k∈V pi jk ≥ 1,
1 0< n < |V| and ∑k∈V cik(n−1).c jk(n−1) +ci j (n−1) ≥ 1,
0 otherwise.

(1)
Thus,ci j (|V|−1) will be equal to 1 if pairsi, j ∈ S are combin-
able.

Let Hi→ j denote the sum of the weights of the edges lying
on the shortest path from nodei to node j. Following is the

ILP to solve P1 exactly.

min ∑i∈V, j∈V xi j (ETx+ERx)
(

RHi→ j + rH j→0
)

(2)

s.t.

∑ j∈V, j 6=i
x ji
V ≤ xii ≤ ∑ j∈V, j 6=i x ji ,∀i ∈V (3)

∑ j∈V xi j ≥ 1,∀i ∈V (4)

pi jk ≤
xki+xk j

2 ,∀i, j,k∈V (5)

ci j0 ≤ ∑k∈V pi jk ,∀i, j ∈V (6)

ci j (|V|−1)) ≥
xii +x j j

2 ,∀i, j ∈V (7)

ti jkn ≤
cik(n−1)+c jk(n−1)

2 ,∀i, j,k∈V,0 < n < |V| (8)

ci jn ≤ ci j (n−1) +∑k∈V ti jk(n−1),∀i, j ∈V,0 < n < |V| (9)

ciin = 0,∀i ∈V,0≤ n < |V| (10)

∑i∈V xi j ≤ d,∀ j ∈V (11)

xi j ,ci jk , pi jk , ti jkn ∈ {0,1}∀i, j,k∈V,0≤ n < |V| (12)

We now explain in detail how the objective is set up as well as
the implication of each constraint. We first look at the objective
(Equation (2)). If the FFT from sensor nodei is sent to
node j, it consumesRHi→ j (ETx+ERx). Node j evaluates the
SVD and sends the eigenvector to the base station for putting
all the eigenvectors together. Since, the FFT from sensori
will generate a unique eigenvector of sizer, an additional
rH j→0 (ETx+ERx) amount of energy is consumed in sending
the eigenvector to the base station.

The first constraint (Equation (3)) sets the value ofxii to be
equal to 1 ifNi 6= φ , else it is set to 0. (Note that ifNi 6= φ ,
1 ≤ ∑ j∈V, j 6=i x ji ≤ |V|). The second constraint (Equation (4))
ensures that the FFT of every sensor node is sent to at least
one node. The third constraint (Equation (5)) ensures thatpi jk

is equal to 1 if the FFT from nodek is sent to both nodesi
and j.

The next five constraints set the value ofci jn . Recall that
the purpose of introducingci jn is to ensure that all pairs
i, j ∈ S are combinable. The fourth constraint (Equation (6))
ensures that the value ofci j0 is 1 if there is at least one node
whose FFT is being sent to bothi and j. The fifth constraint
(Equation (7)) states that if bothi, j ∈ S, the computations
at i and j should be combinable. The next two constraints
(Equation (8) and (9)) populate the value ofci jn . Note that
ti jkn is a temporary variable introduced to express the quadratic
condition in Equation (1) as a linear function. Equation (10)
sets the value ofciin to zero for everyi ∈V,0≤ n < |V|. This
prohibits a corner case whereci jn is set to 1 by settingcii(n−1)

to 1 without ensuring that the computation ati and j are
combinable.

Finally, Equation (11) imposes the computational delay
constraint at each sensor node.

B. An Approximation Algorithm

In this section, we propose aΘ(log(|V|)) approximation
algorithm. To simplify the presentation, we again assume
that the weight of all edges is equal. Note that all the
algorithms proposed in this section can be easily modified
without changing their approximation factors to incorporate
different weights for each edge.
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1) Degree-Constrained Data Collection Tree:Using a data
collection tree to build the solution to P1 will violate the
computation delay constraint if the number of immediate
children a node has is greater thand−1. (Note that a node inS
will include the FFT of its own data stream in its computation,
hence, having more thand−1 immediate children will violate
the computational delay constraint.) A data collection tree
with the additional constraint that no sensor node in the
tree has more thand−1 immediate children will satisfy the
computational delay constraint, but may no longer be optimal
even if it has the fewest non-leaf nodes.

Definition 3: P2. Find the data collection tree forG(V,E)
such that no sensor node has more thand − 1 immediate
children.

P2 is also NP-hard. Its APX-hard even when weights on
edges satisfy the triangle inequality [22]. Results for P2
are known only for complete graphs whose weights satisfy
the triangle inequality [22], [23], and our work is the first
to propose approximation algorithms and analytically derive
their approximation factors for P2 in graphs induced by a
communication network.

We will first propose an ILP to solve P2. The advantage
of this new ILP over the ILP presented in Section IV-A
for P1 is that it has much fewer variables and constraints,
and hence takes less time to solve. We then propose a new
approximation algorithm for P2 based on relaxing the ILP
and then appropriately rounding the fractional values. This
algorithm is also an approximation algorithm for P1. We derive
the approximation factor for this algorithm (with respect to
the original problem) in Theorem 3. Finally, based on the
intuition derived while analyzing the approximation algorithm,
we present a simpler, distributed approximation algorithmwith
the same asymptotic approximation factor.

2) The ILP: We first present an ILP to solve P2. We define
the following variables for notational convenience. For a given
G(V,E), define a graphḠ(V, Ē) with directed edges. Each
undirected edge inE is replaced by two directed edges, one
in each direction to construct̄E. For each edgee∈ Ē between
nodes i ∈ V and j ∈ V, the complementary edge ˆe ∈ Ē is
defined to be the edge between nodesj and i. Let Ov,v∈V
denote the set of outgoing edges from nodev in Ē. Similarly,
let Iv,v∈V denote the set of incoming edges into nodev in
Ē.

We next define the variables used in the ILP.xe,e∈ Ē is set
to 1 if the edgee is part of the data collection tree, else it is
set to 0. fe,e∈ Ē denotes the flow value traveling through the
edgee. If an edge is not a part of the data collection tree, the
flow through it should be constrained to be equal to 0.

The following set of equations define the ILP which will

NV = {0}, NE = φ, h = 0, assign hv = −1, ∀v∈V\{0} and
h0 = 0
while (NV! = V) do

h = h+1
Solve the ILP for P2 with fractional variables
and the additional constraint that xe = 1,∀e∈ NE
For ∀v∈ NV and hv = h−1

If the value of xe for more than (d−1)
incoming edges at v is greater than 0

Set the largest (d−1) xe values
amongst the incoming edges at v to 1
(ties are broken arbitrarily)

Otherwise
Set the xe value of all incoming
edges at v to 1

Add the edges for which xe was set to 1
in the previous step to NE
For all edges added to NE in the
previous step, add the node v from
which the edge emanates to NV and
assign hv = h

Fig. 4. Algorithm A1: The LP rounding approximation algorithm for P2.

solve P2 exactly.

min ∑e∈Ē fe (13)

∑e∈I0 fe−∑e∈O0
fe = |V|−1 (14)

∑e∈Iv fe−∑e∈Ov fe = −1,∀v∈V\{0} (15)

fe ≤ (|V|−1)(xe+xê) ,∀e∈ Ē (16)

∑e∈Ē xe = |V|−1 (17)

∑e∈Ov xe = 1,∀v∈V\{0} (18)

∑e∈Iv xe ≤ d−1,∀v∈V (19)

xe ∈ {0,1},∀e∈ Ē (20)

fe ∈ {0,1, . . . , |V|−1},∀e∈ Ē (21)

We now explain in detail how the objective is set up as well as
the implication of each constraint. Minimizing the total flow
forces each node to send its data to the base station through
the shortest path. The first two constraints (Equations (14)and
(15)) ensure that each node sends a unit flow towards the base
station. The third constraint (Equation (16)) forcesfe to be
0 if xe is 0, otherwise, it is redundant. The fourth constraint
(Equation (17)) ensures that the output is a tree with exactly
|V| − 1 edges. The fifth and the sixth constraint (Equations
(18) and (19)) ensure that there is no more than one outgoing
edge per vertex (other than the base station) and no more than
d−1 incoming edges per vertex. This ensures that no sensor
node has more thand−1 immediate children.

3) Algorithm A1: The LP Rounding Approximation Al-
gorithm: We next present a polynomial-time approximation
algorithm which relaxes the ILP presented in Section IV-B2
and then appropriately rounds the fractional values. The ILP
is relaxed by allowingxe and fe to be fractional, and adding
the constraints 0≤ xe ≤ 1 and fe ≥ 0 ,∀e∈ Ē. The fractional
values obtained by solving the linear program are rounded
through the algorithm presented in Figure 4.

4) The Approximation Factor:Even though the approxi-
mation algorithm is general and makes no assumption on the
network, the derivation of the approximation factor makes
the following assumptions. (i)d ≥ 3, (ii) The height of the
unconstrained data collection tree derived from the algorithm
presented in Theorem 2 isO(log(|V|)), and (iii) We assume
that nodes can transmit to each other if the distance between
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them is less than the transmission range. LetRtx denote the
transmission range.

Before presenting the analysis, we first discuss the impli-
cations of these assumptions briefly. (i)d = 2 implies that
only one other sensor’s data stream can be combined at
a node. Then, building an optimal degree-constrained data
collection tree is equivalent to the traveling salesman problem
and the corresponding approximation algorithms [24] with a
better approximation factor can be directly applied here. So,
we exclude this special case from our analysis. (ii) Since
the sensor networks are assumed to be not very sparse, the
assumption on the height of the data collection tree will
be satisfied by most networks. Thus, this assumption is not
restrictive. (iii) For analytical tractability, this is the most
common assumption made to define when two nodes can
transmit to each other. However, our analysis is not heavily
dependent on this assumption as we discuss in the footnote in
the proof of Lemma 3 and the derived approximation factor
will hold for more realistic physical layer assumptions also.

We next show that the approximation factor of the proposed
algorithm with respect to P1 isΘ(log(|V|)). The derivation of
the approximation factor is based on the following observation.
The approximation factor is equal to the ratio of the height of
the data collection tree constructed using algorithm A1 andthe
height of the data collection tree constructed in Theorem 2.
(Note that we have assumed that the height of the data
collection tree constructed in Theorem 2 isO(log(|V|)).)

We first prove a lemma which will be later used in the
derivation of the approximation factor. We define the following
variables for notational convenience. Let there bem nodes,
amongst which the maximum number of nodes which cannot
transmit to each other bep. We run algorithm A1 on this set of
m nodes with a randomly selected base station. Let the height
of the corresponding data collection tree behT . Define a non-
full node to be a node at heighth < hT which has less than
d−1 children. A height 1≤ h< hT is defined to be a non-full
height if there exists at least one non-full node at heighth.

Lemma 2:The data collection tree cannot have more than
p non-full heights.

Proof: We prove by contradiction. Let there bep+1 non-
full heights:h1 < .. . < hp+1. Let vi be a non-full node at height
hi ,1≤ i ≤ p+1. Then,vi ,v j , 1≤ i < j ≤ hp+1 cannot transmit
to each other, otherwise the approximation algorithm would
put v j as the child ofvi . Thus none of the nodesv1, . . . ,vp+1

can transmit to each other. However, by assumption we cannot
have more thanp nodes which cannot transmit to each other.
Hence, a contradiction.

We next derive the height of the tree constructed algorithm
A1. We define the following variables for convenience. Let the
height of the data collection tree constructed using the algo-
rithm of Theorem 2 behorig (= O(log(|V|)) by assumption).

Lemma 3:The height of the tree constructed by algorithm
A1 is Θ(log(|V|)).

Proof: We will first show that the maximum number
of nodes none of which can transmit to each other is no
more than 2πclog(|V|) wherec is a constant. Recall that the
transmission range of sensor nodes is denoted byRtx. Then,
the maximum distance of a node from the base station is

horig.Rtx
4. Using the geometric arguments similar to the ones

used in [27], its easy to show that the maximum number of
nodes none of which can transmit to each other is equal to

2π

cos−1

(

1− 1
2h2

orig

) ≤ 2π

cos−1

(

1− 1

2c2log2
(|V|)

) = 2πclog(|V|) where

c is a constant. (The final equality follows from the small angle
approximation cosx≈ 1− x2

2 .)

We are now ready to prove the lemma. By Lemma 2,
there are no more than 2πclog(|V|) non-full heights. And
the number of full heights isΘ(logd−1(|V|)) by definition.
Hence, the height of the tree constructed by algorithm A1 is
Θ(log(|V|)).

Finally, we derive the approximation factor for algorithm
A1.

Theorem 3:The approximation factor for algorithm A1 is
Θ(log(|V|)).

Proof: The height of the data collection tree constructed
using the algorithm of Theorem 2 isO(log(|V|)); thus its
height can be a constant. However, the height of the tree
constructed by algorithm A1 isΘ(log(|V|)). Hence, the ap-
proximation factor is equal toΘ(log(|V|)).

5) Algorithm A2: A Distributed Approximation Algorithm:
The approximation algorithm presented in the previous section
is a centralized algorithm as it requires solving a global linear
program. We now present a simpler, distributed algorithm
which has the same asymptotic approximation factor.

The proof of Theorem 3 uses the following observation.
At a height h, if there exists a node with more thand− 1
neighbors which are not yet a part of the tree, the algorithm
will add d−1 children to it. Otherwise, all its neighbors not
yet a part of the tree will be added as its children.

Using this intuition, we propose a modified version of
Dijkstra’s shortest path algorithm in Figure 5. This algorithm
satisfies the observation made in the previous paragraph, and,
hence has the same approximation factor ofΘ(log(|V|)) as
the algorithm proposed in Figure 4. This algorithm can be
easily distributed in a manner similar to any shortest path
routing algorithm [28]. The tree is build top down from the
root with each node choosing itsd− 1 children arbitrarily.
Hence, like any shortest path algorithm, it can be built by
message exchanges only between neighboring nodes.

We compare the modified Dijkstra’s algorithm with the
LP rounding approximation algorithm through simulations in
Section V and find that the modified Dijkstra’s algorithm
always outperforms LP rounding and is always within 3% of
the optimal.

4Note that due to fading effects, the transmission range may notbe a
constant; it may be even time-varying. However, there will always exist
distancesR0 andR1 such that if two nodes are within a distanceR0 of each
other, they can transmit to each other with negligible loss, and if they are
at a distance more thanR1, they cannot exchange packets with each other at
all [25], [26]. R0 andR1 may be much smaller and larger respectively than the
actual transmission range, but they will still be a given constant. Replacing
Rtx by these constants appropriately allows the argument to go through for a
more general physical layer model.
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Fig. 6. Simulation Results. (a)|V| = 4 (24576). (b)|V| = 6 (40960). (c)|V| = 10 (163840). (d)|V| = 30 (573440). (e)|V| = 100 (1359872). (f)|V| = 200
(2342912). The number in brackets denotes the number of bytes transmitted in the network without in-network computation. Simulation Results with an
accuracy constraint. (g)|V| = 5,d = 5. (h) |V| = 30. (i) |V| = 200.

NV = {0}, hv = ∞, ∀v∈V\{0}, h0 = 0, Cv = 0, ∀v∈V.
(Cv denotes the number of children of node v.)
while (NV! = V) do

For each edge e∈ E such that e connects
nodes v∈ NV and v′ ∈V\NV and Cv < d−1

h′v = min(h′v,hv +1)
vmin = argminv{hv | ∀v∈V\NV}
Add vmin to NV.
Let the parent of vmin be vparent. Update
Cvparent = Cvparent +1
Set hv = ∞, ∀v∈V\NV

Fig. 5. Algorithm A2: Modified Dijkstra’s approximation algorithm for P2.

C. Discussion: Additional Constraints / Alternative Formula-
tions

Accuracy Constraint: Global eigenvectors are determined by
linearly combining the eigenvectors computed locally at differ-
ent sensor nodes (inS). Now, if there is no noise in the system,
then the global eigenvectors computed using this decomposi-
tion will exactly match the actual eigenvectors. However, the
presence of noise in the sensed values can lead to errors in
the computation [29]. And these errors will accumulate and
propagate if the decentralized (or decomposed) method is used
to compute the SVD. This is due to the fact that in a centralized
implementation, a least-squares effect minimizes the error due

to noise across all the eigenvectors, whereas the decentralized
implementation allows this noise error to accumulate through
each combination of locally computed eigenvectors.

Now, more the number of FFT’s being combined at each
sensor node (that is bigger the value of|Ns|,s∈ S), smaller
will be this error. Hence, a constraint on the desired accuracy
will impose a constraint on the minimum number of FFT’s
being combined at each sensor node, that is, a constraint on
the minimum value of|Ns|,∀s∈ S. We refer to this constraint
as the accuracy constraint.

Incorporating this constraint in our algorithms is straight-
forward. Let the minimum value of|Ns|,∀s∈ S imposed by
the accuracy constraint be equal toda. (The value of da

depends on the noise floor in the sensors as well as the
accuracy desired by the application.) In the ILP presented
in Section IV-A for P1, the following additional constraint
is introduced:∑i∈V xi j ≥ dax j j ,∀ j ∈ V. Similarly, in the ILP
presented in Section IV-B2 for P2, the following constraintis
introduced to incorporate the accuracy constraint:∑e∈Iv xe ≥
(da − 1)lv,∀v ∈ V, where lv ∈ {0,1} is an integer variable
which is set to 1 if v is a non-leaf node. The following
additional constraint ensures thatlv is set 1 only ifv is non-
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leaf node:∑e∈Iv xe/|V| ≤ lv ≤ ∑e∈Iv xe,∀v∈V. Finally, the two
approximation algorithms proposed can be easily modified to
maintain the number of children of each node in the data
collection to be greater thanda−1. This extra constraint has
no impact on the approximation factor of these algorithms as
the fundamental intuition summarized in Section IV-B5 does
not change.
Storage Constraint: As the number of FFT’s being computed
at a sensor node increases, not only the computational delay
but also the storage required at that sensor increases [29].
Since, the available memory on each sensor is also limited, this
storage constraint also bounds the maximum number of FFT’s
which can be combined at a sensor, that is, the maximum
value of |Ns|,∀s ∈ S is bounded by the storage constraint.
Since, the computational delay constraint also results in a
similar constraint, the storage constraint can be incorporated
in a manner similar to the computational delay constraint. Let
ds be the maximum value of|Ns| being imposed by the storage
constraint. Now, the value ofd (defined before Definition 1) is
defined to bed := min {ds,max {|Ns| |C(|Ns|) ≤C}}. With
this new definition ford, no other change is required in
the proposed ILP’s as well as the proposed approximation
algorithms to incorporate the storage constraint.
Alternative Energy Models: The model presented in Sec-
tion II-C to compute the total communication energy does
not incorporate phenomenon like the energy expended in
overhearing packets destined to other nodes etc. However,
as long as the energy model is a linear function of the
number of packet transmissions / bit transmissions occurring
per node (which yields an accurate representation for most
energy consumption models), the proposed algorithms can
be directly applied without any change in their optimality /
approximation factors.

V. SIMULATIONS

In this section, we evaluate the performance of the pro-
posed approximation algorithms using simulations, and com-
pare them to the performance of the optimal communication
structure. We use CPLEX [30] to solve the ILPs. All our
simulations are done on topologies generated by randomly
distributing nodes in an area of 50×50m2 and assuming the
transmission range to be 30m.

We will compare the energy consumed by the communi-
cation structures derived using the algorithms proposed in
Section IV for different values ofd. For the SVD computation,
R= 8192 bytes andr = 32 bytes [4]. Figures 6(a) and 6(b)
compare the lower bound on the number of bytes transmitted
on the network (Lemma 1) to the number of bytes transmitted
in the optimal communication structure derived by solving the
ILP for P1 (Section IV-A), and the number of bytes transmitted
in the communication structure derived using the ILP for P2
(Section IV-B2), algorithm A1 (Figure 4) and algorithm A2
(Figure 5) for different values ofd, with |V| = 4 and|V| = 6
respectively. We observe that the approximation algorithms
perform very close to the optimal.

It takes more than one hour of computation to solve the
ILP for P1 for |V| > 6 on a 2.99 GHz machine with 4 GB

of RAM. Hence, for larger values of|V|, we only compare
the three approximation algorithms against the lower bound
in Figures 6(c) and 6(d). We make the following two obser-
vations, (i) all approximation algorithms are within 3% of the
optimal, and (ii) the algorithm A2 outperforms the algorithm
A1. This simulation also demonstrates the advantage of using
the ILP for P2 over the ILP for P1. Since the former has fewer
variables and constraints, it runs much faster, and on the same
machine, converges within an hour till|V| ≤ 40.

For even larger values of|V|, we compare the performance
of the algorithm A2 (as it consistently outperforms algorithm
A1) against the lower bound in Figures 6(e) and 6(f). And
we observe that it is always within 3% of the optimal. These
results also demonstrate the advantage of in-network compu-
tation as the number of bytes transmitted over the network
are reduced by more than half. Finally, note that Figures 6(e)
and 6(f) demonstrate the trade-off between communication
energy and computation delay. The more the computation
delay allowed per node (larger the value ofd), the smaller
the energy consumed in the network.

In figures 6(g)-6(i), we compare the performance of the dif-
ferent approximation schemes after incorporating an accuracy
constraint in the formulation for different values of|V|,d and
da. In this scenario, we observe that the ILP for P2 yields
results within 5% of the optimal while algorithm A2 yields
values within 40% of the optimal. And the advantage of using
a better centralized algorithm becomes more pronounced as
the value ofda increases.

VI. PARALLEL SIMULATED ANNEALING

In a structural health monitoring system, a common tech-
nique to translate raw sensor data into an estimate of damage
involves comparing system properties in an unknown state
of health to those in a known, undamaged state [31], [32].
This technique is referred to as model updating and involves
adjusting the system parameters iteratively in an analytical
model such that the analytical system produces response
data that matches results obtained experimentally. Using this
method, damage can be detected in a system by periodically
searching for changes in model parameters that can be linked
directly to suboptimal system performance.

A wide variety of model updating techniques have been
developed over the years [33]. One common approach is to
define an objective function,E, which relates the difference
between analytical and experimental data. This function can
be repeatedly evaluated with varying values of the analytical
model parameters until the difference between the analytical
and experimental response is minimized.

Simulated annealing (SA) is one of the most common
algorithms for stochastically searching for the global minimum
of such an objective function. This method has been used
frequently in model-based damage detection techniques [34].
Metropolis et al. [35] developed this algorithm to determine
the global minimum energy state amidst a nearly infinite
number of possible configurations. The Metropolis criterion
expresses the probability of a new system state being accepted
at a given system temperature, and can be stated as: accept the
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new state if and only ifEnew≤ Eold−T ln(U), whereE is the
value of the objective function for a given energy state,U is a
uniformly distributed random variable between 0 and 1, andT
is the temperature of the system. The addition of theT ln(U)
term allows the system to accept an invalid state in the hope
of avoiding premature convergence to a local minima.

A standard SA algorithm begins the optimization process by
assigning an initial temperatureT1, and letting the Metropolis
algorithm run for N1 iterations. During each iteration, cer-
tain analytical model parameters are reassigned in a pseudo-
random fashion, and the objective difference between the
experimental and analytical output is determined. This newly
created state is either accepted or rejected based on the
Metropolis criterion. AfterN1 iterations, the temperature of the
system is reduced toT2 and the process runs forN2 iterations.
This process continues till the temperature drops to a really
low temperature,TM, where very few new states are accepted,
and the system has, in essence, frozen. To summarize, the
process runs forM temperature steps, and forNj ,1≤ j ≤ M
iterations for each temperature stepTj .

Over the years, many parallel SA techniques have been
developed and successfully implemented [36]. Zimmermanet
al. [37] proposed a new parallel SA technique more suited to
be implemented over a wireless sensing system for structural
health monitoring as it reduces the communication required
between processing nodes. This technique breaks up the
traditionally serial SA tree (which is continuous across all
temperature steps) into a set of smaller search trees, each of
which corresponds to a given temperature step and begins with
the global minimum values for the preceding temperature step.
Each of these smaller trees can be assigned to a cluster of
available nodes in the network, and thus can run concurrently.

As the parallelized search progresses, updated global state
information has to be disseminated downwards (to the nodes
doing the computations at lower temperatures) through the
network. Specifically, when a node detects a new global
minimum energy state at a given temperature, it communicates
this information to the cluster-head of its cluster, which then
propagates this information to all nodes doing the computa-
tion at lower temperatures. These nodes (computing at lower
temperatures) will re-start their search based on this new
state. This may seem wasteful at high temperatures, however,
as the search algorithm converges on a solution, it becomes
decreasingly likely that a new global minimum will be found
at a given temperature step which reduces the total number of
transmissions.

[37] explores the advantages of this approach in a wireless
sensing system. However, it does not explore how to construct
the communication structure so as to minimize the energy
consumption which will be the focus of this section.

We now precisely state the problem. The designer will
set the values ofNj and k j ,1 ≤ j ≤ M, which denote the
number of computations to be performed at temperatureTj

and the number of sensor nodes performing the computation
at Tj respectively. (Note that∑M

j=1k j ≤ |V|.) The values of
Nj and k j will be determined based on the accuracy and the
computational constraint per node.

Given the values ofNj and k j , determining the com-

munication structure involves dividing theV nodes intoM
clusters each of sizek j ,1 ≤ j ≤ M and choosing a cluster-
head for each cluster. Let the cluster of nodes corresponding
to temperatureTj be denoted byK j . (Note that |K j | = k j .)
Finally, let b j ∈ K j denote the cluster-head for the clusterK j .
Any computation which results in a new minimum energy
state at a temperatureTj requires exchanging this information
between all nodes belonging to the clusterK j , between the
cluster-headsb j and bl , l > j, and all nodes belonging to
clustersKl , l > j. Thus, the total number of transmissions for
each new minimum energy state found at temperatureTj is
equal to ∑v∈K j

Hb j→v + ∑M
l= j+1Hb j→bl + ∑M

l= j+1 ∑v∈Kl
Hbl→v,

where recall thatHi→ j , i, j ∈ V denotes the average number
of transmissions required to exchange information between
nodesi and j along the shortest path between the two nodes.

We first describe an ILP to determine the optimal com-
munication structure for parallel simulated annealing. Let
xi j , i ∈ V,1 ≤ j ≤ M be an indicator variable which is set to
1 only if node i ∈ K j . Let yi j , i ∈ V,1 ≤ j ≤ M be another
indicator variable which is set to 1 only if nodei = b j ,
that is, i is the cluster-head forK j . Note that here we have
a separate variable to denote the cluster-head whereas for
the SVD computation, we merely setxii to 1 if node i
was a cluster-head. The extra variable is needed for parallel
simulated annealing to convert the quadratic objective into a
linear equation. Lettik j , i,k∈V,1≤ j ≤ M denote an indicator
variable which is set to 1 only if nodei is the cluster-head for
temperatureTj and nodek ∈ K j (that is tik j = yi j xk j) and let
pik j , i,k∈V,1≤ j ≤ M−1 denote an indicator variable which
is set to 1 only if nodei is the cluster-head at temperature
Tj and nodek is the cluster-head at temperatureTj+1 (that
is pik j = yi j yk( j+1)). Finally, let a j ,1 ≤ j ≤ M denote the
probability of generating a new minimum energy state per
computation at temperatureTj . Then, forNj computations at
that temperature, the number of new minimum energy states
generated area jNj . Note that generating a new minimum
energy state triggers new transmissions.

Following is the ILP to determine the optimal communica-
tion structure for parallel simulated annealing.

∑M
j=1a jNj

(

∑i∈V ∑k∈V Hi→k

(

tik j +∑M
l= j+1 pikl +∑M

l= j+1 tikl

))

(22)

∑i∈V xi j = k j ,1≤ j ≤ M (23)

tik j ≥
yi j +xk j−1

2 , i,k∈V,1≤ j ≤ M (24)

pik j ≥
yi j +yk( j+1)−1

2 , i,k∈V,1≤ j ≤ M−1 (25)

xi j ,yi j , tik j , pik j ∈ {0,1}, i,k∈V,1≤ j ≤ M. (26)

The first constraint (Equation (23)) ensures that the cluster
performing computations at temperatureTj hask j nodes while
the next two constraints populate the values oftik j = yi j xk j and
pik j = yi j yk( j+1).

We finally describe a greedy approximation algorithm to
determine the communication structure for parallel simulated
annealing. Recall that we need to determine the set of nodes
which form a cluster as well the corresponding cluster-head
for each temperatureTj ,1 ≤ j ≤ M. Figure 7 describes the
greedy algorithm. We first start from the smallest temperature
TM because finding a new energy state at any temperature
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K = V, j = M
while ( j > 0) do

minE= ∞
∀v∈ K

(

ej
v,k

j
v

)

= findMin (K,v, j)

If
(

MinE > ej
v

)

MinE = ej
v, K j = k j

v, b j = v
j = j −1, K = K\K j

findMin (K,b, j)
T = φ
∀v∈ S

dv = Hv→b
Sort the nodes in K in ascending order of dv’s
Add the first k j −1 nodes from this sorted list
to T
E = ∑v∈T Hv→b + I j<MHb j+1→b
(I j<M is an indicator variable which is equal to
1 if j < M, else it is equal to 0.)
return (E,T)

Fig. 7. A greedy approximation algorithm to determine the communication
structure for parallel simulated annealing.

will trigger a transmission between the cluster-headbM and
the nodes belonging to the clusterKM. Amongst all the nodes
v ∈ V, determine the cluster-head to be the node which has
the smallest sum of the average number of transmissions
required to get tokM nodes. This yields bothbM andKM. From
amongst the remaining nodes, in a similar manner, greedily
selectbM−1 andKM−1 and continue. Assuming the maximum
height of the unconstrained data collection tree (defined in
Definition 2) isO(log(|V|)), using arguments similar to ones
made in Section IV-B4, the approximation factor of the greedy
approximation algorithm is alsoO(log(|V|)).

VII. C ONCLUSIONS

This paper presents centralized, optimal ILPs and poly-
nomial, distributed approximation algorithms to derive the
communication structure with networked computing for any
given computation. The approximation factor for each ap-
proximation algorithm we propose is derived analytically,
and simulations are used to evaluate their performance for
real engineering applications. For functions with only single
stream input operators, the proposed approximation algorithm
is always within 35% of the optimal while for functions with
a multiple stream input operator, the proposed approximation
algorithms are always within 3% of the optimal. Our results
also demonstrate the advantage of in-network computation as
it can reduce the number of bytes transmitted over the network
by more than half.

APPENDIX A
A BRIEF OVERVIEW OF SINGULAR VALUE

DECOMPOSITION

Let A be a realm×n matrix with m≥ n. Then, the singular
value decomposition (SVD) factorsA as follows:A = UΣVT

whereUTU = VTV = VVT = In andΣ = diag(σ1,σ2, . . . ,σn).
The matrixU consists ofn orthonormalized eigenvectors as-
sociated with then largest eigenvalues ofAAT , and the matrix

V consists of the orthonormalized eigenvectors ofATA. The
diagonal elements ofΣ are the non-negative square roots of the
eigenvalues ofATA. We shall assume thatσ1 ≥ σ2 ≥ . . .≥ σn.

SVD comprises of two steps [38]. The first step converts
the matrixA into a bi-diagonal form, and then the second step
uses a variant of theQR algorithm to iteratively diagonalize
this bi-diagonal matrix.

A. Reduction to the bi-diagonal form

This step decomposesA as A = PJ(0)QT , whereP and Q
are unitary matrices andJ(0) is anm×n bi-diagonal matrix of
the form

J(0) =





















α1 β1 0 . . . 0
0 α2 β2 0 . . .
. . . . . . .
. . . . . . .
. . . . . . .
0 . . . 0 αn−1 βn−1

0 . . . 0 0 αn





















.

Let A= A(1), and letA(3/2),A(2), . . . ,A(n),A(n+1/2) be defined
as follows:

A(k+1/2) = P(k)Ak, k = 1,2, . . . ,n,

Ak+1 = A(k+1/2)Q(k), k = 1,2, . . . ,n−1.

P(k) andQ(k) are hermitian, unitary matrices of the form

P(k) = I −2x(k)x(k)T , x(k)Tx(k) = 1,

Q(k) = I −2y(k)y(k)T , x(k)Tx(k) = 1,

The unitary transformationP(k) is determined so that
a(k+1/2)

i,k = 0, i = k+ 1, . . . ,m, and Q(k) is determined so that

a(k+1)
k, j = 0, i = k+2, . . . ,n. Solving these set of linear equations

sequentially yieldsP,J(0) andQ.

B. SVD of the bi-diagonal matrix

The matrix J(0) is iteratively diagonalized so thatJ(0) →
J(1) → . . . → Σ, where J(i+1) = S(i)TJ(i)T(i), and S(i),T(i)

are orthogonal. The matricesT(i) are chosen such that the
sequenceM(i) = J(i)TJ(i) converges to a diagonal matrix while
the matricesS(i) are chosen such that allJ(i) are of the bi-
diagonal form.

We now describe how to derive{S(i)} and{T(i)}. For no-
tational convenience, we drop the suffix and use the notation:
J ≡ J(i),J ≡ J(i+1),S≡ S(i),T ≡ T(i),M ≡ JTJ,M ≡ J

T
J.

The transitionJ→ J is achieved by the application of Givens
rotations toJ alternately from the right and the left. Thus,
J = ST

n ST
n−1 . . .ST

2 JT2T3 . . .Tn, whereST = ST
n ST

n−1 . . .ST
2 , T =
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T2T3 . . .Tn,

Sk =









































1 0 0
0 .

.
.

cosθk −sinθk

sinθk cosθk

1 0
.

.
.

0 1 0
0 1









































,

the (k−1)× (k−1)th, (k−1)× kth, k× (k−1)th and k× kth

elements ofSk arecosθk, −sinθk, sinθk andcosθk respectively,
andTk is defined analogously toSk with ψk instead ofθk.

Let the first angleψ2 be chosen arbitrarily while all the
other angles are chosen so thatJ has the same form asJ.
Thus,

T2 annihilates nothing, generates as entry{J}21,
ST

2 annihilates{J}21, generates as entry{J}13,
T3 annihilates{J}13, generates as entry{J}32,

.

.

.
ST

n annihilates{J}n,n−1, generates nothing.

What now remains is to define how to choose the first angle
ψ2. It is chosen such that the transitionM → M is a QR
transformation with a given shifts. The usualQR algorithm
with shifts [39] is described as:M−sI = TsRs, RsTs+sI = Ms.
This shift parameters is determined by an eigenvalue of the
lower 2×2 minor of M, and T2 is chosen such that its first
column is proportional to that ofM−sI which yields the value
of ψ2.

APPENDIX B
PROOF OFTHEOREM 1

First, the decision version of our problem is in NP. Given
a communication structure, computing the energy consumed
at each node and checking if the constraints specified in
Equations (3)-(11) are satisfied can be done in polynomial
time. Hence, testing feasibility as well as testing if the total
cost is less than a given valueM is accomplished in polynomial
time.

Next, to prove NP-hardness, we perform a reduction from
the set cover problem [40], whose decision version is defined
as follows.

Definition 4 (Set Cover):Given a collectionC of subsets
of a finite setP and an integer 0< K ≤ |C|, with |C| the
cardinality ofC, doesC contain a subset ofC′ ⊂C with |C′| ≤
K, such that every element ofP belongs to at least one of the
subsets inC′ (this is called a set cover fromP)?

For any instance of the set cover problem, we build an
instance of the decision version of the problem P1. Figure 8 il-
lustrates the construction of the graph instance of the problem.
The resulting graph is formed of three layers: the base station

V0, a layer corresponding to the subsetsCk ∈ C, and a layer
corresponding to the elements{p j} ∈ P. For each element
Ck ∈ C, we build a structure formed by|Ck|+ 3 nodes as in
Figure 8(b) (each subsetCk has its own such graph, and nodes,
but we drop the subscriptk to simplify presentation). The node
x3 is connected to the base stationV0, nodesx1 and x2 are
connected tox3 and the weight of the corresponding edges is
1 and 1< a < d respectively. The rest of the|Ck| nodes are
connected to bothx1 andx2, and the weight of each of these
edges isd > 0. Finally, x1 andx2 are connected with an edge
of weight d also.

Furthermore, we connect each structureCk ∈C (namely the
nodex1 from that structure) to only those nodes in theP layer
that correspond to elements contained inCi (example: in the
instance in Figure 8(a), subsetC1 = {p1, p2, p3} etc). All the
edges connecting theP layer to theC layer also have a weight
equal tod. Finally, all nodesx3 are inter-connected with an
edge of weight 0 as well as connected to the base stationV0

with an edge of weight 0. Nodes which do not have an edge
between them are not connected. Finally, recall thatR and r
denote the number of bits required to represent the FFT from
a single sensor and a single eigenvector respectively.

Next, we define the computational delay constraint on each
node. No more than|Ck|+1 FFT’s can be combined on nodes
x1 and x2 for a givenCk. At nodesx3 of all Ck’s, no more
than 4 FFT’s can be combined. There is no computational
delay constraint on the base station as well as on the nodes in
the P layer.

The goal is to build a communication structure for which
the energy cost is at mostM while respecting the com-
putational delay constraints at each node and the combin-
ability constraint for each computation. We will next show
that if M = dR(|P|+∑k |Ck|)+ R|C|+ aR|C|+ ar (|P|+K)+
r ∑k (|Ck|+1), for the positive integerK ≤ |C|, then solving the
problem P1 is equivalent to finding aSet Coverof cardinality
K or less for the setP. Notice that the construction of our graph
instance from the set cover can be performed in polynomial
time.

For d > (R|C|+aR|C|+ar (|P|+K)+ r ∑k (|Ck|+1))/R,
the communication structure for the problem P1 will have
transmissions on exactly|P| edges between the layersP andC,
and on exactly|Ck| edges in the structure shown in Figure 8(b)
for every Ck ∈ C. That means no other node thanx1,x2 and
x3 will be used as a relay. That is, onlyx1,x2 and x3 can
belong toS. If some other node belongs toS, then the cost
of the communication structure would containR bits passing
through more than|P|+∑k (|Ck|) edges which would result in
a cost larger thanM. This also implies thatx1 and x3 for all
Ck ∈C belong toS. The only degree of freedom is whetherx2

lies in Sor not. (Recall thatx2 ∈ Sonly if a SVD computation
takes place onx2 also.)

The key idea of our proof is that for 1< a < d, finding a
communication structure with cost at mostM means connect-
ing the nodes in layerP to at mostK nodes of layerC. If the
structure needs to connect the layerP to more thanK nodes
in C, the cost of the communication structure will necessarily
be higher thanM. The intuition is that nodex2 ∈ S if and only
if the correspondingCk is connected to theP layer. Then, if
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Fig. 8. Instance of the problem P1 for any given instance of the set cover problem.

the number ofx2 nodes inS is more thanK, the cost of the
communication structure will be more thanM.

We first show that if a correspondingCk is not connected
to the P layer, then its correspondingx2 will not belong to
S. In such a scenario, the optimal communication structure
is to have all the other|Ck| nodes (other thanx1,x2 and x3)
send their data tox1 (sincea> 1, transmitting everything tox1

instead ofx2 will consume less energy) who will then compute
the SVD and send the corresponding eigenvectors as well as
its own FFT tox3. x3 will receive the FFT fromx1,x2 and
the x3 node ofC(k+1)mod|C| (the final communication ensures
combinability and has an energy cost of 0). It will forward all
the computed eigenvectors to the base station. The total energy
consumed in this operation isd|Ck|R+aR+R+ r (|Ck|+1).

We next show that if a correspondingCk is connected to
the P layer, then its correspondingx2 will always belong to
S. Since no more than|Ck|+ 1 FFT’s can be combined on
x1, if tk of the p j nodes in theP layer send their FFT to
x1, then x1 can combine FFT’s from no more than|Ck| − tk
nodes belonging to the structure ofCk. The remainingtk nodes
will have to send their FFT tox2 as it has the next smallest
distance (afterx1) to these nodes. Thus,x2 will combine data
from tk + 1 nodes. The energy consumed in this scenario is
d|Ck|R+ dtkR+ R+ aR+ ar(tk + 1) + r (|Ck|+1). (Note that
∑Ck

tk = P.)
Thus, if the number of structures in theP layer connected

to theC layer is equal toK′, then the total energy consumed
is equal todR(|P|+∑k |Ck|)+ R|C|+ aR|C|+ ar (|P|+K′)+
r ∑k (|Ck|+1) which will be larger thanM if K′ > K. This
means that finding a communication structure with a cost at
mostM implies finding a set ofK elements or less from theC
layer to which all the nodes in setP connect. In other words,
a communication structure with a cost of at mostM yields a
set cover of size at mostK.

Now, we need to ensure that the set cover of size at most
K also yields a communication structure of cost at mostM.
From the previous discussion, it is obvious that by connecting
the nodes inP to those nodes in theC layer which belong to

the set cover such that all nodes in setP are connected yields
an energy cost of no more thanM. The computational delay
constraint is also obviously satisfied at all nodes. We merely
need to ensure that all computations are combinable. Since
each nodex3 belonging to the structure ofCk send its FFT to
the nodex3 belonging to the structure of nodeC(k+1)mod|C|,
all computations are combinable.

Thus our decision problem is NP-complete and our opti-
mization problem is NP-hard.
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