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Abstract—This paper studies the problem of distributed com-
putation over a wireless network of resource constrained sensor
nodes. In particular, we focus our attention on sensor networks
used for structural health monitoring. Within this context, the
heaviest computation is to determine the singular value decompo-
sition (SVD) to extract mode shapes (eigenvectors) of a struateL
Compared to collecting raw vibration data and performing SVD
at a central location, computing SVD within the network can
result in a significantly smaller energy consumption and delay.

Recent results have proposed methods to decompose SVD, whic

is a well-defined centralized operation, into components that
can be carried out in a distributed way. What is missing,
and is the focus of this paper, is how to determine a near-
optimal communication structure that enables the distribution
of this computation and the reassembly of the final results, with
the objective of minimizing energy consumption subject to a
computational delay constraint. We show that this reduces to a
generalized clustering problem; a cluster forms a unit on which a
component of the overall computation is performed. We establish
that this problem is NP-hard. By relaxing the delay constraint,
we derive a lower bound to this problem. We also show that
the optimal solution to the unconstrained problem has a simple
structure that reveals insights into the solution of the original
constrained problem. We then propose an integer linear program
(ILP) to solve the constrained problem exactly as well as an
approximate algorithm with a proven approximation ratio. We
also present a distributed version of the approximate algorithm.
Numerical results are presented to demonstrate the effectiveess
of the approximate and distributed algorithms.

Index Terms—Networked Computing, Wireless Sensor Net-
works, Degree-Constrained Data Collection Tree, Singular Value
Decomposition.

I. INTRODUCTION

h

from this network of sensors, while each sensor individu-
ally has limited resources both in energy and in processing
capability? The ultimate goal ifully-automated in-network
computing a natural progression from the networked sensing
paradigm. This question poses the following two challenges
The first is the decomposition of complex computational s$ask
into smaller operations, each with its own input and outmat a
collectively related through a certain data-flow or depewge
graph. The second challenge is to distribute or place these
operations among individual sensor nodes so as to incur
minimal energy consumption and delay.

In this paper we will focus on the latter challenge within the
context of using WSNs for structure health monitoring (SHM).
This is an area of growing interest due to the growing need
to provide low-cost and more timely monitoring and inspec-
tion of deteriorating infrastructure, but also as an appgal
application of wireless sensor technologies.

The most common approach in SHM to detect damage is
to collect vibration data using a set of wireless sensors in
response to white/free input to the structure, and thenhese t
singular value decomposition (SVD) to determine the set of
modes [1]-[3]. Amodeis a combination of a frequency and
a shape, which is the expected curvature (or displacemént) o
a surface vibrating at a mode frequency.

In this study, we will use SVD as a primary example
to illustrate an approach to determine how to perform such
a complex computational task over a network of resource-
constrained sensors. Compared to collecting raw vibration
data (or the FFT of raw data) and performing the SVD
computation at a central location, directly computing SVD

. di . K . i genvectors, is much smaller in size than its input, FFTs
are extensive studies on in-network processing, e.g.,Mndigon, jngividual sensor data streams, and evaluating maltip

eff|(_:|ent rouyng strategies when data compression ar_‘dea,‘ggémaller SVDs in parallel is much faster than evaluating the
gation are involved. However, many emerging applicationg,,y on, the input from all sensors.

e.g., body sensor networks, structural r_lealth monitorérg;qr How to decompose the SVD computation, which a well-
network, ar_ld_vanous other cyber—_physmal systems, redair defined classical centralized operation, into compondmds t
more soph|§t|cat.ed data processing beyof‘d dat.a COMMMESHN pe carried out in a distributed way was studied by Zimmer-
and collection, in order to enable real-time diagnosis and.«t al. [4]. In this paper, we focus on the next step which
contrpl. ) ) . is to determine a near-optimal communication structuré tha

This motivates the following question: how do we perform, o es the distribution of this computation and the reabse

arbitrary (and likely complex) computational tasks using g he final results. We define an optimization framework that
distributed network of wireless sensors, whose iNputSItaig  geeks the best computation and communication structure wit
the objective being to minimize energy consumption subject
to a computational delay constraint. We show that this resluc
to a generalized clustering problem; a cluster forms a umit o

A. Jindal and M. Liu are with the Department of Electrical Eregring
and Computer Science at University of Michigan, Ann ArbomB&H: apoor-
vaj@umich.edu,mingyan@eecs.umich.edu.



which a component of the overall computation is performed.
Previous results on establishing the communication stract
for in-network computation either consider only very simpl
functions like max/min/average/median [5]-[8] that do not
fully represent the complex computational requirements de
manded by practical engineering applications like SVD com-
putation, or study scaling laws which do not yield algorithm
to determine the optimal communication structure [9]. Fyna
note that SVD computation is an essential ingredient in adbro o)
class of signal processing applications, including cfasgion, Fig. 1. In-network computation and compressed sensing cam dalifferent
identification and detection [4], [10]-[14]. optimal communication structure. (a) and (b) represent the passible
We first formally define the above problem and establigfgmmunication structures for a simple 4-node topology.
that it is N_P-hard_m Section II-_E. By relaxing the dela_Vand formally introduce the problem.
constraint, in Section Ill we derive a lower bound to this
problem, and show that the optimal solution to the uncons Background on Structural Health Monitoring
strained problem has a simple structure that reveals itssigh
into the original problem. We then bropose an Integer Ime%%come increasingly focussed on the use of the structural
program (ILP) to solve the constrained problem exactly A rati X g ; o
. . . .~ 2 . Vibration data for identifying degradation or damage withi
well as an approximate algorithm with a proven approxinratio ; - o .
o . o . structural systems. The first step in determining if the atilon
ratio in Section IV. We also present a distributed version Q
the approximate algorithm. Numerical results are preskinte ata collected by a set of sensors represents a healthy or an
X unhealthy structure is to decompose the spectral densityxma

Section V to demonstrate the effectiveness of the apprdeima ; :
into a set of single degree of freedom systems. Assuming a

?Q%g'ig;bfﬁgdmﬂgf ”g;{niss' ]lc\(l)(():tuestsr;a;t svzgiftizgﬁggr?lgvm:?eoroadband white input to the system, this can be accomplishe
' part, P y ' Igby first obtaining an estimate of the output power spectral

methodology itself is generic. In Section VI, we discuss leow . . . .
similar approach can be used for other computational tasksd|en3|ty (PSD) matrix for each discrete frequency by creatin

SHM like distributed optimization using simulated annegli an array of freque_ncy response functions using the Fasteﬁfou_r
. . . Transform (FFT) information from each degree of freedom in
Finally, we conclude in Section VII.

Before we end this introduction, we present a simple ol system. Early studies in this field focussed on identifying

ample to illustrate that the optimal communication streetu changes in modal frequencies or the eigenvalues of the PSD

can differ depending on the computational objective annaatrix using the peak picking method [16] to detect damage

. - . In large structural systems [17]. More recent studies have
hence, prior work on deriving the routing structure for dat S . o )

: . . served that viewing changes in modal frequencies in combi
aggregation cannot be applied here. We will compare t

netion with changes in mode shape information (eigenvextor
optimal routing structure for data compression and that f 9 P g
computing the SVD. Assume that data compression converts

5 PSD matrix) makes it increasingly possible to both detec
input streams of siz& bits each to an output stream Rf+r ?ngrla?t(i:srgi ?f]riw[aag]:)e (;VILI:Igfaterﬁgs?fv\?itél;ftugilegpﬁztﬁgg (f:gr
wherer < R [15]. The SVD operator, as discussed in detalld ) y

in Section IV, convertk input streams of siz® bits each, to mode shape estimation is the frequency domain decompusitio

k eigenvectors of size bits each withr < R. Now consider (FDD) method which was proposed by Brinclet al. [18].

the simple 4-node topology of Figure 1 and the two possib, Shlesx?aect:??:elne\?oglr?\?e(c:?(;]grgg]c?eﬂ;iastf the PSD matrix
communication structures, with node 0 being the base statio 9 . 1aPes.
The most common implementation of the FDD method

(or data collector/processor) and assuming all links are o

f . X
. ) . L over a wireless sensor network is to have each sensor send
unit length/cost. As derived in [15], data compression nexgu . L .
) . * jts vibration data to a central sensor node which computes
an exchange (or incurs a cost) oR3 3r (using successive

encoding) and B+ r bits respectively for the communicationthe SVD of the PSD matrix and then distributes the mode

structures (a) and (b). Hence, K> 2r, the one on the left shapes back to each sensor. This method requires significant

is better. On the other hand, in the case of SVD if we d%omputatlonal_ power and memory at the_ ce_ntral sensor node
. . . as well as a significant energy consumption in the network to
not perform in-network computation, then sending all raw

data to node O results in a cost oR@nd R over the two communicate all this data to the sensor node. For example, if

structures, respectively. If we perform in-network conian, there are 100 sensor nodes in the network, this implementati

then as detailed in Section 1V, the resulting costs dRe-8r requires the central sensor node to compute the SVD of a

and R+ 3 for the two structures, respectively. Hence, th%OOx 100 PSD matrix as well as having each of the 100 sensor

L ; vrBdes send all their vibration data to one central node.
second communication structure is always better for the S " . . )
computation Within a wireless sensing network, where processing power,

energy and memory at each node is limited, Zimmerratin
Il. PROBLEM FORMULATION al. [4] proposed an alternative implementation by decompos-
(i)ng the computation of SVD using in-network computation

During the past two decades, the SHM community has

In this section, we first introduce the relevant backgroumd
structural health monitoring, then present the network ehod !Please see Appendix A for a detailed description of the S\Vilmdation.



(graphically represented in Figure 2). Each sensor nodeaisensor and a relay. If two nodes can successfully exchange
assumed to be aware of the eigenvalues of the PSD matriessages with each other, there exists an edge between
(which have already been determined using the peak-pickitiiem. Let there be a weight, > 0 associated with each edge
method) and the FFT of its own sensed data stream. Nowhich denotes the energy expended in sending a packet across
if a sensor has the FFT & C V,|N| > 1 sensors and all the this edge and depends on the number of transmissions rdquire
eigenvalues, then it can compute the SVD of the PSD mattix send a packet across that edge. Without loss of generality
using |N| sets of FFT results and determifié¢| eigenvectors. we assume node 0O to be the central sensor node or the base
Let another sensor node be in possession of the FFT sthtion. We also assume that all sensors (including the base
N’ C V,|N’| > 1 sensors. It can do a similar computation tgtation) are identical in their processor and radio (andcéen
determine|N’| eigenvectors. To be able to combine resultsomputational time and energy consumption per bit). This is
from these two computations to construct theUN’| eigen- done to keep the presentation simple and can be easily celaxe
vectors, one needs to be able to determine the appropriat&ach node has a local input vibration stream. The objective
scaling factors. We call two computatiomembinableif one of the network is to evaluate the SVD of the PSD matrix
can determine the appropriate scaling factors to combe@th formed by the input vibration streams of all the sensors. A
A computation onN nodes and another computation b  sensing cycle is defined to be the time duration in which
nodes is combinable if and only if eith&rNN’ = ¢ (that is, each sensor performs the sensing task to generate a vibratio
there is at least one common sensoNinand N’), or there stream, the SVD is computed and the mode shapes are made
exists another computation df’ nodes which is combinable known at the base station. The sensing rate depends inyersel

with both N and N'. on the duration of one sensing cycle. Our objective, as will
be more precisely discussed in Section IV, is to determine
the optimal communication structure to minimize the energy
FFT FFT FFT FFT FFT FFT FFT  consumption in a sensing cycle under a constraint on the
| Foliw) | [ FuGw)| | Faliw) | | Flw) | [ Faliw) | [ Feliw) | | Feliw) | mMaximum duration of a sensing cycle.
C. Metrics of Interest
SVD ) SVD SVD
Energy Consumption: this is defined to be the total commu-
{0 /b1, ®ak( | {1.0,,05) {ds /s, el nication energy consumed in the network in one sensing cycle
Let Erx and Egrx denote the energy consumption to transmit
' and receive a bit of data. Then we assume that the energy
consumed in transmitting a packet Bfbits over an edge is
Scale and Combine WeB(ETx + ERX>3-
{y 0, B, , D5, D, b5 D) Computational Delay: this is defined to the maximum com-

putational delay at a sensor node. As observed in [4], [21],
the computational time is the chief contributor to delay as
packet sizes in sensor systems tend to be very small. Thais, th

. . . . duration of a sensing cycle depends chiefly on the maximum
Each independent in-network computation requires messac%e gcy b y

: . . mputational delay amongst all sensor nodes. In otherayord
exchange with other in-network computations to make the, P y 9 W

combinable. Also, ifR denotes the size in bits required totrrrl1e computational delay constraint imposes a constrairen

.. “maximum duration of a sensing cycle.
represent the FFT of a sensor stream a@notes the size in gcy
bits to represent a eigenvector, each in-network comuurtati o
which combines the FFT ok sensor streams reduces th®. Formal Definition

number of bits in the network frorkR to kr. Note that the We now forma”y introduce the pr0b|em_ Determining the
size of the output stream does not dependon optimal communication structure implies finding the Setf

Though Zimmermaret al. [4] proposed a new data-flow sensor nodes on which the SVD computation will take place,
graph for SVD, they assumed a fixed routing structure and dilq for eachs € S, finding the corresponding set of sensors
not consider optimizing the communication structure, \hhich whose EET will be made available st Recall thatR and

Fig. 2. Decomposing the computation of SVD using in-netwonkipatation.

will be the focus of this paper. r denote the number of bits required to represent the FFT
from a single sensor and a single eigenvector respectively.
B. Network Model The computational delay constraint imposes a constraint on

A network of sensor nodes is represented with an undhe maximum number of FFT's which can be combined at
rected, unweighted grapB(V, E). Each node itV acts as both a sensor node. LeE(|Ns|) be the time it takes to compute

2Finding the optimal communication structure to implement peakipg 30ur algorithms and the corresponding approximation factass ndt
in a distributed manner is the same as determining the optimal comation depend on the exact model used for energy consumption protheéeenergy
structure for networked sensing with data compression [IB)], [20]. consumed remains a function of the number of bits transmittedaometwork.
And the algorithms developed in these papers can be direpijieal to Thus, nothing changes if a more complex model for energy consompt
peak-picking. Hence, to keep the exposition interesting, d@ not study which incorporates energy consumed in overhearing is useddig¢uss this
implementing peak-picking distributively here. in more detail in Section IV-C



the SVD of the FFT from|Ns| sensorsC(|Ns|) <C,Vse€ S as well as on nodes, andsz are combinable. To understand

This constraint is equivalent tiNs| < d, Vse S whered := how many extra messages are needed to satisfy this comstrain

max {|Ns| | C(|Ns|) < C}. Also, recall that another constraintconsider the following grap&S(S,ES). If for nodessy, s, € S,

is that the computation on each paits, € Sis combinable. Ns, N'Ns, # ¢, we introduce an edge betwesn and s, in
Definition 1: P1. Find the setS and their corresponding ES. Each edge in this new graph implies at least one extra

Ns,Vs€ S and the routing structure to minimize the total enmessage exchange of sién addition to thgV|—|S message

ergy consumed such this| < d, Vse Sand the computations exchanges of sizR. Two nodes irs;, s, € Sare combinable if

on all pairss;, s, € S are combinable. and only if there exists a path betwegnands, in GS(S ES).
Note that it is easy to modify our algorithms to minimizeFor a path to exist between every pair of nod&s(S ES)

the maximum computational delay with a constraint on thghould have at leag§ — 1 edges. This implies that at least

energy consumption. Indeed, the dual of the linear progran®— 1 extra message exchanges of dzare required for all

we propose will optimally solve this alternative formutati pairsi, j € Sto be combinable.

However, due to space limitations, we do not explore thid dua Thus, at leastV| —1 message exchanges of siRewill

formulation in this paper. occur. Also, the computed eigenvectors will go throuttiv)
hops for all nodesv € S. Thus, messages of size will
E. NP-completeness go through at leasty,.sdr(v). Thus, the optimal energy

nsumption is> ((\V\ — DR+ Syenis(dr(V) —1)r+ Yyes
) (Erx+Ery) = (V[ = 1) R+ Jyey (dr(v) —1)r)
(ETX-l- ERX). ™

A decision version of P1 can be shown to be NP-ha 6?
through a reduction from set cover.
Theorem 1:There is no polynomial time algorithm that
solves P1, unlesB = NP.
Proof: See Appendix B. ]

I11. AL owERBOUND

We first derive a lower bound on the optimal value. Thi
lower bound is obtained by studying P1 without the compt
tational delay constraint. This study also provides vdkiab
intuition into the development of an approximation aldamit
for P1.

To simplify the presentation, in this section, we assume th
the Welght Of a" edges iS equal' Note that th|S not a Stringe (a) Number of non-leaf nodes = 4 (b) Number of non-leaf nodes = 3
assumption as all the bounds derived in this section can ..
easily modified to incorporate different weights for eacgeed Fig. 3.  Two data collection trees for the same network. Thédsates
With this assumption, the energy consumed to send data fredpresent the edges of the trd is the tree in (b).
nodei to nodej will merely depend on the number of hops
on the shortest path between these two nodes. We now construct the optimal solution to P1 without the

Definition 2: [Data Collection Tree] A data collection tree computational delay constraint under the assumptionRhat
for G(V,E) is the spanning tree such that the path from ea@n. (Note that the condition th&® > 2r is satisfied by the SVD
nodev €V to the base station has the minimum weight.  computation for structural health monitoring.) Considetata

Note that since all edges have the same weight, a pathcoflection tree with the following property. All the chilein of
minimum weight is equivalent to the path with the minimuna non-leaf nodes € V in the tree cannot be moved to other
hop count. LefT denote the data collection tree f@&(V,E), nodes of height< dy(v). Thus, this tree has the minimum

and letdy (v) denote the hop count of nodez V in T. number of non-leaf nodes. Label this trgg. (Figure 3 gives
The following lemma derives a lower bound on the optiman example to clarify the difference betwe®p and another
energy consumption. data collection tree.)
Lemma 1: (([V| = 1) R+ Syev (dr (V) = 1)r) (Erx+Ery) is Theorem 2:The following solution to P1 is optimal without
a lower bound on the optimal energy consumption. the computational delay constrair8.consists of all non-leaf

Proof: For all the nodess € V\S a message exchangenodes in the data collection trdg, Ns,s € S consists of all
of size R from v to one of the nodes i will occur. This the immediate children of and the data collection treégy is
message will go over at least one hop. If the hop count tfe routing structure.
node v from the base station is equal tix(v), and if the Proof: Each sensor node sends its FFT to its parent
message of siz& goes over one hop, the message of size(which incurs an energy cost 0Etx+ Ery) R). Since, the base
will go over at leastr(v) — 1 hops. This will require at least station has no parent, this step incurs an energy cost of
V| —|S| message exchanges of sReand ¥ ey\s(dr(v) —1) (Erx+Erx) (|V|—1)R Each non-leaf node computes the SVD
message exchanges of size from the FFT of its children’s stream and its own stream, and

Now, each of theS computations should be combinablethen sends the eigenvectors to the base station. It incurs an

that is,Vs;, s, € S, eitherNs; NNs, # @ or there exists another energy cost ofy .y (dr(v)—1)r + |Sr. The extra energy
node sz € S such that the computation at nodss and s3 cost over the lower bound of Lemma 1 is equal |&r.



Thus, a largerS will only increase the energy consumptionlLP to solve P1 exactly.
We next show that a smallé&® does not decrease the energy

consumption either. We prove this by contradiction. ISt min Yiev,jev Xij (Erx+Erx) (RH-j+THj—0)  (2)
denote a set which solves P1 without the computational delay S.t.

constraint, results in a smaller energy consumption tBan Yiev.j f/i <Xi <Y jev,jiXji, Vi€V 3)
and |S| < |§. Using S instead of S reduces the energy SievXj > 1LvieV (4)
consumption by no more thafiS —|S|)r. Consider node X e

s€ Sbut not inS. By definition of Ty and sinceR > 2r, Pijk < =5+, Vi, j,keV ®)
none of its children are being evaluated at a ngdeS such Cijo < Ykev Bijk,Vi,j eV (6)
that dr () < dr(s) and at least one of its children is being Gy > S i ev @
evaluated at a nodg’ € S which is at height greater than C_k"f‘l J‘:Ck»jl 2

dr(s). Thus, the increase in energy consumption for amyS tijn < XD i j ke V,0<n< |V ®)
but not inS' is equal tor. Since there are at leat$ — |S| Cijn < Gijn-1) + Ykev tijk(n-1), Vi, ] €V,0<n< V[ (9)
such nodes, the increase in energy consumption is at least Cin=0,YieV,0<n< |V| (10)

—|S])r. Hence, the energy consumption does not reduce .
\(/\ﬁich| is|)a contradiction. ievXij < d’.vlj €V (11)
Finally, we prove that each pair of nodes,s; € S are Xij: Cijk Pijkstijkn € {0, 1}Vi, .k e V,0<n< V[ (12)
combinable. Note that removing the leaf nodes and the edggg now explain in detail how the objective is set up as well as
connecting the leaf nodes to the non-leaf nodes yields  the implication of each constraint. We first look at the otijec
GS(S E®). Since, there exists a path between each pair of nqequation (2)). If the FFT from sensor nodeis sent to
leaf nodes inly (and this path obviously does not go througlp,odej, it consumesRH .| (Erx+ Ery). Node j evaluates the
a leaf node), every pair of nodsg s; € Sare combinable®  Syp and sends the eigenvector to the base station for putting
To summarize, constructing a data collection tree withll the eigenvectors together. Since, the FFT from semsor
the minimum number of non-leaf nodes yields the optiwill generate a unique eigenvector of size an additional
mal solution for P1 without the computational delay conH; o (Erx+ Erx) amount of energy is consumed in sending
straint. Also, note that any other data collection tiigewill the eigenvector to the base station.
yield a solution which has an additive extra energy cost of The first constraint (Equation (3)) sets the valueipfo be
(NL(Tp) —NL(Tm))r whereNL(T) represents the number ofequal to 1 ifN; # ¢, else it is set to 0. (Note that X # ¢,
non-leaf nodes in the data collection tr€e 1< ¥jevj-iXji < |V[). The second constraint (Equation (4))
ensures that the FFT of every sensor node is sent to at least
one node. The third constraint (Equation (5)) ensures fiat
is equal to 1 if the FFT from nodk is sent to both nodes
and j.
_ ) The next five constraints set the value gf,. Recall that
In this section, we propose an exact ILP as well asfe purpose of introducingij, is to ensure that all pairs
O(log(|V[)) approximation algorithm for P1. i,j €S are combinable. The fourth constraint (Equation (6))
ensures that the value ofjo is 1 if there is at least one node
whose FFT is being sent to bottand j. The fifth constraint
A ILP (Equation (7)) states that if bothj € S the computations
| ati and j should be combinable. The next two constraints

In this section, we propose an ILP to solve P1. We fir§Equation (8) and (9)) populate the value @f,. Note that
define some extra variables for notational conveniexgavill lijkn iS @ temporary variable introduced to express the quadratic
be set to 1 if the FFT of sensor nodés sent to nodg (i.e. condition in Equation (1) as a Imea_r function. Equatlon_)(lo
i € N;j), otherwise it will be set to Ox; will be set to 1 only Sets the value ofi, to zero for everyi € V,0<n < |V|. This
if i €S Thus,x; is the variable which defines both the get Prohibits a corner case wheegy is set to 1 by setting; -y
as well asNs. pij is a variable which will be set to 1 if the ©© 1 without ensuring that the computation iaand j are

FFT of the sensor nodk is evaluated at both nodésand j. combinable. . _
Finally, we definegj, as, Finally, Equation (11) imposes the computational delay

constraint at each sensor node.

IV. ALGORITHMS

1 n=0and v pijk > 1, o ,
Gin=4 1 0<n<|V|and Skey Cikn_1)-Cikin_1) +Cij(n_1) = 1B. An Approximation Algorithm
0 otherwise. In this section, we propose @ (log(|V])) approximation

(1) algorithm. To simplify the presentation, we again assume
Thus, ¢ijv|-1) will be equal to 1 if paird, j € Sare combin- that the weight of all edges is equal. Note that all the
able. algorithms proposed in this section can be easily modified
Let Hi—; denote the sum of the weights of the edges lyingithout changing their approximation factors to incorfera
on the shortest path from nodeo nodej. Following is the different weights for each edge.



1) Degree-Constrained Data Collection Trebsing a data ,E‘OV:O{O}’ NE=@ h=0 assign hy=-1 WeV\{0} and

collection tree to build the solution to P1 will violate thewhile (NV!=V) do

computation delay constraint if the number of immediate h=h+1 . . .
Solve the ILP for P2 with fractional variables

children a node has is greater than 1. (Note that a node i6 and the additional constraint that xe=1veecNE
will include the FFT of its own data stream in its computafion ~ For WeNV and h,=h-1

hence, having more thah— 1 immediate children will violate I'f the value of x for nore than (d-1)

h tati | del nstraint.) A dat llecti tr incoming edges at vis greater than O

the computational delay constra ) ata collectioretre Set the largest (d—1) % val ues

with the additional constraint that no sensor node in the anongst the inconing edges at vto 1
tree has more thad — 1 immediate children will satisfy the Othg\'m,ezeare broken arbitrarily)
computational delay constraint, but may no longer be optima Set the x value of all inconing

even if it has the fewest non-leaf nodes. edges at vto 1

Add the edges for which xe was set to 1
in the previous step to NE

Definition 3: P2. Find the data collection tree f@&(V,E) For all edges adgsd tho NEdi n tfhe
H H previ ous step, a the node v from
suph that no sensor node has more tltbr 1 immediate Whi ch the edge emanates to NV and
children. assign hy=h
Fig. 4. Algorithm Al: The LP rounding approximation algorithfor P2.

P2 is also NP-hard. Its APX-hard even when weights ofblve P2 exactly.
edges satisfy the triangle inequality [22]. Results for P2

are known only for complete graphs whose weights satisfy min Jece fe (13)
the triangle inequality [22], [23], and our work is the first Yecly fe—Yeco, fe=[V[ -1 (14)
to propose approximation algorithms and analytically \ceri Seet, fe— Seco, fe= —1, W e V\{0} (15)
their approximation factors for P2 in graphs induced by a ! < B . =
communication network. fe< (V-1 (e+x) veck (16)
YecEXe=[V[—1 (17)
We will first propose an ILP to solve P2. The advantage Yeco,%e =1, W EV\{0} (18)
of this new ILP over the ILP presented in Section IV-A Yeer, Xe<d—1WeV (19)
for P1 is that it has much fewer variables and constraints, Xe € {0,1},Vec E (20)
and hence takes less time to solve. We then propose a new fec {0,1,...,|V| - 1},Vee E (21)

approximation algorithm for P2 based on relaxing the ILP

and then appropriately rounding the fractional values.sThyVe now explain in detail how the objective is set up as well as

algorithm is also an approximation algorithm for P1. We aeri the implication of each constraint. Minimizing the totalvilo

the approximation factor for this algorithm (with respeot tforces each node to send its data to the base station through

the original problem) in Theorem 3. Finally, based on thée shortest path. The first two constraints (Equations §i)

intuition derived while analyzing the approximation aligom, (15)) ensure that each node sends a unit flow towards the base

we present a simpler, distributed approximation algorithith ~ Station. The third constraint (Equation (16)) forcksto be

the same asymptotic approximation factor. 0 if Xe is 0, otherwise, it is redundant. The fourth constraint
(Equation (17)) ensures that the output is a tree with exactl
V| —1 edges. The fifth and the sixth constraint (Equations

2) The ILP: We first present an ILP to solve P2. We definél8) and (19)) ensure that there is no more than one outgoing
the following variables for notational convenience. Foinaeg €dge per vertex (other than the base station) and no more than
G(V,E), define a graphG(V, E_) with directed edges. Eachd— 1 incoming edges per vertex. This ensures that no sensor
undirected edge ifE is replaced by two directed edges, on80de has more thad— 1 immediate children.
in each direction to constru&. For each edge € E between ~ 3) Algorithm Al: The LP Rounding Approximation Al-
nodesi €V and j €V, the complementary edge SE is 9gorithm: We next present a polynomial-time approximation
defined to be the edge between nodesndi. Let Oy,v €V algorithm which relaxes the ILP presented in Section 1V-B2
denote the set of outgoing edges from neda E. Similarly, and then appropriately rounds the fractional values. THe IL

let I,,v € V denote the set of incoming edges into nadm 1S relaxed by allowingc and fe to be fractional, and adding
E. the constraints & xe < 1 andfe > 0 ,Vec E. The fractional

values obtained by solving the linear program are rounded

! . . —. through the algorithm presented in Figure 4.

Wg next defmelthe variables used in thellkgzee Eis sgt _ 4) The Approximation FactorEven though the approxi-

to 1 if the edgee is part of the data collect|on_ tree, else it Smation algorithm is general and makes no assumption on the

setto 0.f,,ec E de_notes the flow value traveling t_hrough th‘?wetwork, the derivation of the approximation factor makes

edgee. If an gdge is not a part of_the data collection tree, th[ﬂe following assumptions. (il > 3, (i) The height of the

flow through it should be constrained to be equal to 0. unconstrained data collection tree derived from the allyori

presented in Theorem 2 B(log(|V])), and (iii) We assume

The following set of equations define the ILP which wilthat nodes can transmit to each other if the distance between



them is less than the transmission range. Rgtdenote the horig.Rtx“. Using the geometric arguments similar to the ones

transmission range. used in [27], its easy to show that the maximum number of
Before presenting the analysis, we first discuss the imphodes none of which can transmit to each other is equal to

cations of these assumptions briefly. (i)= 2 implies that 2 < 2 = 2rclog(|V|) where

only one other sensor's data stream can be combined cas? 172% cost 1fm

a node. Then, building an optimal degree-constrained da{g a constari. (The final equaﬁty follows from the small angl

collection tree is eqL_uvaIent to t_he travellng s_alesmarbtmm_ approximation cas~ 1 — x722')

and the corresponding approximation algorithms [24] with a

better approximation factor can be directly applied hem. S

We are now ready to prove the lemma. By Lemma 2,
we exclude this special case from our analysis. (ii) Sind

ere are no more thanrlog(|V|) non-full heights. And
the sensor networks are assumed to be not very sparse, e "umber of full heights i©(logg_1(|V)) by definition.
assumption on the height of the data collection tree w

hence, the height of the tree constructed by algorithm Al is
be satisfied by most networks. Thus, this assumption is n%{|09(|V|))-

restrictive. (iii) For analytical tractability, this is ¢nmost  Finally, we derive the approximation factor for algorithm
common assumption made to define when two nodes cah.
transmit to each other. HOWeVer, our analysis is not heaVilyTheorem 3:The approxima‘tion factor for a|gorithm Al is
dependent on this assumption as we discuss in the footnotesifiog(|Vv|)).
the proof of Lemma 3 and the derived approximation factor
will hold for more realistic physical layer assumptionsacals
We next show that the approximation factor of the propos
algorithm with respect to P1 ®(log(|V|)). The derivation of
the approximation factor is based on the following obséowat
The approximation factor is equal to the ratio of the height
the data collection tree constructed using algorithm Altaed  5) Algorithm A2: A Distributed Approximation Algorithm:.
height of the data collection tree constructed in Theorem Phe approximation algorithm presented in the previousiect
(Note that we have assumed that the height of the dasea centralized algorithm as it requires solving a gloladir
collection tree constructed in Theorem 20glog(|V|)).) program. We now present a simpler, distributed algorithm
We first prove a lemma which will be later used in thavhich has the same asymptotic approximation factor.
derivation of the approximation factor. We define the folloyy  The proof of Theorem 3 uses the following observation.
variables for notational convenience. Let thererbenodes, At a heighth, if there exists a node with more thah— 1
amongst which the maximum number of nodes which canngéighbors which are not yet a part of the tree, the algorithm
transmit to each other he We run algorithm A1 on this set of w;|| add d — 1 children to it. Otherwise, all its neighbors not
m nodes with a randomly selected base station. Let the heiglat a part of the tree will be added as its children.
of the corresponding data collection treefize Define a non-
full node to be a node at height< hy which has less than
d—1 children. A height K h< ht is defined to be a non-full
height if there exists at least one non-full node at helght
Lemma 2: The data collection tree cannot have more th
p non-full heights.

Proof: We prove by contradiction. Let there Ipe-1 non-
full heights:hy < ... <hp,1. Lety; be a non-full node at height
hi,1<i<p+1. Thenyv,vj, 1<i < j <hpyr cannot transmit
to each other, otherwise the approximation algorithm wou
putvj as the child ofvi. Thus none of the nodes,...,vp;1 - N _ _
can transmit to each other. However, by assumption we canno¥Ve compare the modified Dijkstra’s algorithm with the
have more tharp nodes which cannot transmit to each othekP rounding approximation algorithm through simulations i
Hence, a contradiction. m Section V and find that the modified Dijkstra’s algorithm

We next derive the height of the tree constructed algorithiways outperforms LP rounding and is always within 3% of
Al. We define the following variables for convenience. Let ththe optimal.
height of the data collection tree constructed using the-alg
rithm of Theorem 2 béig (= O(log(|V|)) by assumption).

Lemma 3:The height of the tree constructed by algorithm “Note that due to fading effects, the transmission range maybeoa
Al is G)(Iog(\V\)). constant; it may be even time-varying. However, there will ajss exist
. A . distancesRy and R; such that if two nodes are within a distanRg of each
Proof: We will first show that the maximum numberother, they can transmit to each other with negligible loseg] & they are
of nodes none of which can transmit to each other is n®a distance more thaRy, they cannot exchange packets with each other at
more than 2rc|0g(|V|) wherec is a constant. Recall that the@!l [25], [26]. Ry andR; may be much smaller and larger respectively than the

i . f d is d t Th actual transmission range, but they will still be a given tans Replacing
ransmission range of sensor nodes is denote®pyThen, g’ by these constants appropriately allows the argument to aigh for a

the maximum distance of a node from the base station ni®re general physical layer model.

Proof: The height of the data collection tree constructed
u&ing the algorithm of Theorem 2 ©(log(|V|)); thus its
%eight can be a constant. However, the height of the tree
constructed by algorithm Al i®(log(|V|)). Hence, the ap-
groximation factor is equal t® (log(|V])). [ |

Using this intuition, we propose a modified version of
Dijkstra’s shortest path algorithm in Figure 5. This algjom
satisfies the observation made in the previous paragraph, an
hence has the same approximation factoreqfog(|V])) as
e algorithm proposed in Figure 4. This algorithm can be
easily distributed in a manner similar to any shortest path
routing algorithm [28]. The tree is build top down from the
root with each node choosing its— 1 children arbitrarily.
Hence, like any shortest path algorithm, it can be built by
message exchanges only between neighboring nodes.
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Fig. 6. Simulation Results. (dY| = 4 (24576). (b)|V| =6 (40960). (c)|V| = 10 (163840). (d}V| = 30 (573440). (e)V| = 100 (1359872). (f}V| = 200
(2342912). The number in brackets denotes the number of bggasntitted in the network without in-network computationm8iation Results with an
accuracy constraint. (dy| =5,d =5. (h) V| =30. (i) [V| = 200.

NV ={0}, hy=o, WeV\{0}, hg=0, C,=0, WeV.

(C, denotes the number of children of node v.) to noise across all the eigenvectors, whereas the dedeettal

while (NVI=V) do implementation allows this noise error to accumulate tghou
For each edge ecE such that e connects each combination of locally computed eigenvectors.
nodes veNV and V eV\NV and C,<d-1 . .
R, =i n(h,h,+1) Now, more the number of FFT's being combined at each
Xrgiazar g{ﬂ' nN{Cv\WEv\NV} sensor node (that is bigger the value |bE|,s € S), smaller
Vmin 1O . . . . .
Let the parent of Vmn be Vowens Update W!|| pe this error. Henqe, a constra|.nt_ on the desired aa:l;ur:?l
Cuparent = Cuparen + 1 will impose a constraint on the minimum number of FFT’s
hy =0, YveV\NV being combined at each sensor node, that is, a constraint on

Fig. 5. Algorithm A2: Modified Dijkstra’s approximation algthm for P2.  the minimum value ofNs|,Vs € S. We refer to this constraint
as the accuracy constraint.

Incorporating this constraint in our algorithms is straigh
forward. Let the minimum value ofNs|,Vs € S imposed by
Accuracy Constraint: Global eigenvectors are determined byhe accuracy constraint be equal ¢g. (The value ofd,
linearly combining the eigenvectors computed locally iedi  depends on the noise floor in the sensors as well as the
ent sensor nodes (9. Now, if there is no noise in the system,accuracy desired by the application.) In the ILP presented
then the global eigenvectors computed using this decompdsi Section IV-A for P1, the following additional constraint
tion will exactly match the actual eigenvectors. Howevke t is introduced:y oy Xij > daXjj,Vj € V. Similarly, in the ILP
presence of noise in the sensed values can lead to errorpriesented in Section IV-B2 for P2, the following constrast
the computation [29]. And these errors will accumulate aridtroduced to incorporate the accuracy constrajifs, Xe >
propagate if the decentralized (or decomposed) methoceis usd, — 1)ly, Vv € V, wherel, € {0,1} is an integer variable
to compute the SVD. This is due to the fact that in a centrdlizevhich is set to 1 ifv is a non-leaf node. The following
implementation, a least-squares effect minimizes the elwe additional constraint ensures thHatis set 1 only ifv is non-

C. Discussion: Additional Constraints / Alternative Foriau
tions



leaf node:y i, Xe/[V| < Iv < Fecr, Xe, VYV E V. Finally, the two of RAM. Hence, for larger values oi/|, we only compare
approximation algorithms proposed can be easily modified tioe three approximation algorithms against the lower bound
maintain the number of children of each node in the daia Figures 6(c) and 6(d). We make the following two obser-
collection to be greater thath, — 1. This extra constraint hasvations, (i) all approximation algorithms are within 3% bkt
no impact on the approximation factor of these algorithms agtimal, and (ii) the algorithm A2 outperforms the algomith
the fundamental intuition summarized in Section IV-B5 doeAl. This simulation also demonstrates the advantage ofyusin
not change. the ILP for P2 over the ILP for P1. Since the former has fewer
Storage Constraint; As the number of FFT’s being computedvariables and constraints, it runs much faster, and on tme sa
at a sensor node increases, not only the computational defagchine, converges within an hour §\f| < 40.
but also the storage required at that sensor increases [29For even larger values ¢¥|, we compare the performance
Since, the available memory on each sensor is also limiégl, tof the algorithm A2 (as it consistently outperforms aldamit
storage constraint also bounds the maximum number of FFR4) against the lower bound in Figures 6(e) and 6(f). And
which can be combined at a sensor, that is, the maximume observe that it is always within 3% of the optimal. These
value of [Ng|,Vs € S is bounded by the storage constraintesults also demonstrate the advantage of in-network coempu
Since, the computational delay constraint also results intation as the number of bytes transmitted over the network
similar constraint, the storage constraint can be incafeor are reduced by more than half. Finally, note that Figure} 6(e
in a manner similar to the computational delay constraiet. Land 6(f) demonstrate the trade-off between communication
ds be the maximum value dNs| being imposed by the storageenergy and computation delay. The more the computation
constraint. Now, the value af (defined before Definition 1) is delay allowed per node (larger the value d)f the smaller
defined to bed := min {ds,max {|Ns| | C(|Ns|) <C}}. With the energy consumed in the network.
this new definition ford, no other change is required in In figures 6(g)-6(i), we compare the performance of the dif-
the proposed ILP's as well as the proposed approximatiferent approximation schemes after incorporating an acyur
algorithms to incorporate the storage constraint. constraint in the formulation for different values pf|,d and
Alternative Energy Models: The model presented in Sec-d,. In this scenario, we observe that the ILP for P2 yields
tion 1I-C to compute the total communication energy doe®sults within 5% of the optimal while algorithm A2 yields
not incorporate phenomenon like the energy expended vialues within 40% of the optimal. And the advantage of using
overhearing packets destined to other nodes etc. Howewmetter centralized algorithm becomes more pronounced as
as long as the energy model is a linear function of thée value ofd, increases.
number of packet transmissions / bit transmissions oauyirri
per node (which yields an accurate representation for most VI
energy consumption models), the proposed algorithms can
be directly applied without any change in their optimality / In & structural health monitoring system, a common tech-
approximation factors. nigue to translate raw sensor data into an estimate of damage
involves comparing system properties in an unknown state
of health to those in a known, undamaged state [31], [32].
This technique is referred to as model updating and involves
In this section, we evaluate the performance of the pradjusting the system parameters iteratively in an analytic
posed approximation algorithms using simulations, and-commodel such that the analytical system produces response
pare them to the performance of the optimal communicatiatata that matches results obtained experimentally. Ugirgg t
structure. We use CPLEX [30] to solve the ILPs. All oumethod, damage can be detected in a system by periodically
simulations are done on topologies generated by randonsiyarching for changes in model parameters that can be linked
distributing nodes in an area of 5060n? and assuming the directly to suboptimal system performance.
transmission range to be B0 A wide variety of model updating techniques have been
We will compare the energy consumed by the commurdleveloped over the years [33]. One common approach is to
cation structures derived using the algorithms proposed define an objective functiort:, which relates the difference
Section |V for different values ad. For the SVD computation, between analytical and experimental data. This functiom ca
R = 8192 bytes and = 32 bytes [4]. Figures 6(a) and 6(b)be repeatedly evaluated with varying values of the analytic
compare the lower bound on the number of bytes transmitteshdel parameters until the difference between the analytic
on the network (Lemma 1) to the number of bytes transmitteshd experimental response is minimized.
in the optimal communication structure derived by solvingt ~ Simulated annealing (SA) is one of the most common
ILP for P1 (Section IV-A), and the number of bytes transndittealgorithms for stochastically searching for the global imimm
in the communication structure derived using the ILP for P& such an objective function. This method has been used
(Section 1V-B2), algorithm Al (Figure 4) and algorithm A2frequently in model-based damage detection techniquds [34
(Figure 5) for different values ofl, with V| =4 and|V| =6 Metropolis et al. [35] developed this algorithm to determine
respectively. We observe that the approximation algorithnthe global minimum energy state amidst a nearly infinite
perform very close to the optimal. number of possible configurations. The Metropolis criterio
It takes more than one hour of computation to solve thexpresses the probability of a new system state being atept
ILP for P1 for V| > 6 on a 2.99 GHz machine with 4 GBat a given system temperature, and can be stated as: aceept th

. PARALLEL SIMULATED ANNEALING

V. SIMULATIONS
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new state if and only iEnew< Egig — TIn(U), whereE is the munication structure involves dividing thé nodes intoM
value of the objective function for a given energy stateis a clusters each of siz&j,1 < j <M and choosing a cluster-
uniformly distributed random variable between 0 and 1, @nd head for each cluster. Let the cluster of nodes correspgndin
is the temperature of the system. The addition of The(U) to temperatureT; be denoted byK;. (Note that|K;| =k;.)
term allows the system to accept an invalid state in the hopaally, letb; € K; denote the cluster-head for the clusigt
of avoiding premature convergence to a local minima. Any computation which results in a hew minimum energy
A standard SA algorithm begins the optimization process Isyate at a temperatuiig requires exchanging this information
assigning an initial temperatuig, and letting the Metropolis between all nodes belonging to the cluskg;, between the
algorithm run for Ny iterations. During each iteration, cer-cluster-headsb; and by,I > j, and all nodes belonging to
tain analytical model parameters are reassigned in a pseudastersK,| > j. Thus, the total number of transmissions for
random fashion, and the objective difference between tkach new minimum energy state found at temperaijres
experimental and analytical output is determined. Thislpewequal to 3 ey, Hp;—v + Z{VI=1+1 Hp;—p + ZrinZveK, Hp, —v»
created state is either accepted or rejected based on where recall thatHi_j,i,j € V denotes the average number
Metropolis criterion. AftemN; iterations, the temperature of theof transmissions required to exchange information between
system is reduced t& and the process runs fbl iterations. nodesi and j along the shortest path between the two nodes.
This process continues till the temperature drops to ayreall We first describe an ILP to determine the optimal com-
low temperatureTy, where very few new states are acceptednunication structure for parallel simulated annealingt Le
and the system has, in essence, frozen. To summarize, e € V,1 < j <M be an indicator variable which is set to
process runs foM temperature steps, and folj,1 < j<M 1 only if nodei € K;j. Let y;j,i € V,1 < j <M be another
iterations for each temperature stgp indicator variable which is set to 1 only if nodie= b,
Over the years, many parallel SA techniques have betat is,i is the cluster-head foK;. Note that here we have
developed and successfully implemented [36]. Zimmereiana separate variable to denote the cluster-head whereas for
al. [37] proposed a new parallel SA technique more suited the SVD computation, we merely sef to 1 if node i
be implemented over a wireless sensing system for strictunas a cluster-head. The extra variable is needed for phralle
health monitoring as it reduces the communication requiratmulated annealing to convert the quadratic objective mt
between processing nodes. This technique breaks up linear equation. Letyj,i.k€V,1< j <M denote an indicator
traditionally serial SA tree (which is continuous acrosk alariable which is set to 1 only if nodeis the cluster-head for
temperature steps) into a set of smaller search trees, dactemperaturel; and nodek € K; (that isty; = yij;) and let
which corresponds to a given temperature step and begihs wify;,i,k € V,1 < j <M —1 denote an indicator variable which
the global minimum values for the preceding temperatune. stés set to 1 only if nodd is the cluster-head at temperature
Each of these smaller trees can be assigned to a clusteTpfand nodek is the cluster-head at temperatufg.; (that
available nodes in the network, and thus can run concuyrents pij = yijYk(j+1)). Finally, let aj,1 < j <M denote the
As the parallelized search progresses, updated global statobability of generating a new minimum energy state per
information has to be disseminated downwards (to the nodammputation at temperatur. Then, forN; computations at
doing the computations at lower temperatures) through ttieat temperature, the number of new minimum energy states
network. Specifically, when a node detects a new globgénerated areyN;. Note that generating a new minimum
minimum energy state at a given temperature, it commurgcatnergy state triggers new transmissions.
this information to the cluster-head of its cluster, whiblert Following is the ILP to determine the optimal communica-
propagates this information to all nodes doing the computiéen structure for parallel simulated annealing.
tion at lower temperatures. These nodes (computing at lower
temperatures) will re-start their search based on this neWZ'jw=1aij (Ziev Ykev Himk (tikj+2|M:j+1 pikI+Z|M:j+1tikl>()22)
state. This may seem wasteful at high temperatures, however SievXj =kj,1<j<M (23)

as the search algorithm converges on a solution, it becomes Yij % -1 .

decreasingly likely that a new global minimum will be found tikj Z z o hKEVI<j<M (24)
at a given temperature step which reduces the total number of Pikj > WLZJ“HJ, keV,1<j<M-1 (25)
transmissions. %ij, Yij - tikj, Pikj € {0,1},i,keV,1<j <M. (26)

[37] explores the advantages of this approach in a wireless
sensing system. However, it does not explore how to cortstrdde first constraint (Equation (23)) ensures that the cdluste
the communication structure so as to minimize the energgrforming computations at temperatiehask; nodes while
consumption which will be the focus of this section. the next two constraints populate the valueg@t= yijxc; and

We now precisely state the problem. The designer withkj = YijYi(j+1)-
set the values ofN; and kj,1 < j <M, which denote the We finally describe a greedy approximation algorithm to
number of computations to be performed at temperalyre determine the communication structure for parallel sirada
and the number of sensor nodes performing the computatammealing. Recall that we need to determine the set of nodes
at T; respectively. (Note tha{'}":lkj < |V|.) The values of which form a cluster as well the corresponding cluster-head
N; andk; will be determined based on the accuracy and ther each temperaturd;,1 < j < M. Figure 7 describes the
computational constraint per node. greedy algorithm. We first start from the smallest tempeeatu

Given the values ofN; and kj, determining the com- Ty because finding a new energy state at any temperature
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K=V, j=M

while (j>0) do V consists of the orthonormalized eigenvectorsAdf\. The
MIinE = o diagonal elements & are the non-negative square roots of the
(a’,,k¢) = findMn (K j) eigenvalues oA A. We shall assume that; __02 > ... > 0On.
Ut (MinE > o SVD comprises of two steps [38]. The first step converts
(, >J.a“) J. the matrixA into a bi-diagonal form, and then the second step
- 71M"}‘<E::}?’\k_ Kj =k bj=v uses a variant of th@R algorithm to iteratively diagonalize
' : this bi-diagonal matrix.
findMn (K,b,j)
T=9¢
YweS . .
dy = Hy_p A. Reduction to the bi-diagonal form
Sort the nodes in K in ascending order of d,/s
Add the first kJ —1 nodes fromthis sorted list Th|S Step decompos% asA — PJ(O)QT Wherep and Q
to T )

E = Syer Hvob+ j<mHb 4 are unitary matrices an#l® is anmx n bi-diagonal matrix of
- 1

(ljem is an indi cator variable which is equal to the form

1if j<M, else it is equal to 0.)

return (E,T) = E

ag B]_ 0 Lo . 0
. . . . . L 0 ar [32 0
Fig. 7. A greedy approximation algorithm to determine the comipation
structure for parallel simulated annealing. J(O) : : : :
will trigger a transmission between the cluster-hdgd and o . .. 0 an1 Bra
the nodes belonging to the clustéy. Amongst all the nodes o . . . 0 0 Qn |

v €V, determine the cluster-head to be the node which has

the smallest sum of the average number of transmissiong ot o — A and etA®32 A@ . AM AMH1/2) pe defined
required to get tdqy nodes. This yields bothy andKy,. From ’ oo
amongst the remaining nodes, in a similar manner, greed
selectby 1 andKy—1 and continue. Assuming the maximum Al+1/2) _ plk) pk
height of the unconstrained data collection tree (defined in ;
Definition 2) isO(log(|V])), using arguments similar to ones
made in Section IV-B4, the approximation factor of the gseed

a}s follows:
1y

k=1212...,n,
AL — Akt k=12 .. . . n—1.

approximation algorithm is als@ (log(|V|)). PX andQ® are hermitian, unitary matrices of the form
VII. CONCLUSIONS PR = | — x0T x(KTx(k) — 7,
K _ K)\ (K KT (k)
This paper presents centralized, optimal ILPs and poly- QW =1 —2yWylT, xTx0 =1,

nomial, distributed approximation algorithms to derivee th

communication structure with networked computing for anyhe unitary transformationP®) is determined so that
given computation. The approximation factor for each a (k+1/2) _ 0,i=k+1,....m andQ® is determined so that
proximation ' algorithm we propose is derjved analytically, (i+1) —0,i=k+2,....n. Solving these set of linear equations
and simulations are used to evaluate their performance fdr . . )

real engineering applications. For functions with onlygén sequentially yield$ J™ and Q.

stream input operators, the proposed approximation dkgori

is always within 35% of the optimal while for functions with

a multiple stream input operator, the proposed approxenatiy  gv/p of the bi-diagonal matrix

algorithms are always within 3% of the optimal. Our results

also demonstrate the advantage of in-network computason aThe matrix J© is iteratively diagonalized so thaX® —

it can reduce the number of bytes transmitted over the n&twgrty) —, . . 5 where J(+1 = SOTJOTO  and SV, TO

by more than half. are orthogonal. The matriceB() are chosen such that the
sequenc() = JOTJ0) converges to a diagonal matrix while
APPENDIXA the matricesS") are chosen such that all’) are of the bi-
A BRIEF OVERVIEW OF SINGULAR VALUE diagonal form.
DECOMPOSITION We now describe how to derivgS"} and {T"}. For no-

Let A be a reaim x n matrix with m > n. Then, the singular tational convenience, we drop the suffix and useTthe notation
value decomposition (SVD) factoss as follows:A=UzvT J=J03=301s=a0 T=TO M=JTJM=7'7J.
whereUTU =VTV =VVT = |, andX = diag(ay, 02, . .., On). The transition) — J is achieved by the application of Givens
The matrixU consists ofn orthonormalized eigenvectors as+otations toJ alternately from the right and the left. Thus,
sociated with then largest eigenvalues &AT, and the matrix J=S S ;...SJITT5... Ty, whereS' = ;...S}, T =
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To,T3...Th, Vo, a layer corresponding to the subs€se C, and a layer
10 0] corresponding to the elemen{g;} € P. For each element
0 . Ck € C, we build a structure formed byCy| + 3 nodes as in
Figure 8(b) (each subs€f has its own such graph, and nodes,
but we drop the subscrifitto simplify presentation). The node

o X3 is connected to the base stativ, nodesx; and x; are

cosf —sinb . : .
sinG, o connected tog and the weight of the corresponding edges is

S= 1 o |» 1and l<a<d respectively. The rest of thi| nodes are

connected to botl; andxp, and the weight of each of these
edges isd > 0. Finally, x; andx, are connected with an edge
of weightd also.
0 ’ 1 0 Furthermore, we connect each structGge= C (namely the
0 1 nodex; from that structure) to only those nodes in féayer
- - that correspond to elements containedCin(example: in the

the (k—1) x (k—1)", (k—1) x K", kx (k—1)" andk x K" instance in Figure 8(a), subsét = {p1, p2, ps} etc). All the
elements of5, arecosy, —sinb, sinf, andcosh, respectively, edges connecting tHe layer to theC layer also have a weight
and Ty is defined analogously t8 with ( instead of6. equal tod. Finally, all nodesxz are inter-connected with an

Let the first angley, be chosen arbitrarily while all the edge of weight 0 as well as connected to the base st&jon
other angles are chosen so thlhas the same form a& with an edge of weight 0. Nodes which do not have an edge

Thus, between them are not connected. Finally, recall tRatndr
T, annihilates nothing, generates as er{idy o1, deqote the number of b|.ts reqqlred to represent the FFT from
ST annihilates{J},1, generates as entryd} 1, a single sensor and a single elgenvector respectlvgly.
T, annihilates{J}13, generates as entrd} sy, Next, we define the computational delay constraint on each

node. No more thatCy|+1 FFT’s can be combined on nodes
X1 and xp for a givenCy. At nodesxz of all C's, no more
. than 4 FFT's can be combined. There is no computational
S annihilates{J}nn_1, generates nothing. tdhelalgl Iconstraint on the base station as well as on the nodes in
L ) . er layer.

What now remains is to define how to choose the first angleThe goal is to build a communication structure for which
p. It is chosen such that the transitid — M is @a QR the energy cost is at modWl while respecting the com-
transformation with a given shifs. The usualQR algorithm  , tational delay constraints at each node and the combin-
with shifts [39] is described asd —sl =TsRs, RsTs+-sI =Ms.  apjlity constraint for each computation. We will next show
This shift parametes is determined by an eigenvalue of thgn 4t if M — dR(|P|+ Sk |C) + RIC| +aRC| +ar (|P| +K) +
lower 2?< 2 minor of M, and T is chosep suph that its f'rStrzk(|Ck| + 1), for the positive integeK < |C|, then solving the
column is proportional to that &l —sl which yields the value poplem P1 is equivalent to findingSet Coverof cardinality

of (. K or less for the se®. Notice that the construction of our graph
instance from the set cover can be performed in polynomial
APPENDIXB time.
PROOF OFTHEOREM 1 For d > (RIC|+aR(C|+ar(|P|+K)+r ¥, (IC+1)) /R,

First, the decision version of our problem is in NP. Givethe communication structure for the problem P1 will have
a communication structure, computing the energy consumiansmissions on exact|?| edges between the laydPsandC,
at each node and checking if the constraints specified and on exactlyCy| edges in the structure shown in Figure 8(b)
Equations (3)-(11) are satisfied can be done in polynomialr every C, € C. That means no other node thapx, and
time. Hence, testing feasibility as well as testing if théato x3 will be used as a relay. That is, onkj,x, and x3 can
cost is less than a given valtékis accomplished in polynomial belong toS. If some other node belongs ® then the cost
time. of the communication structure would contdbits passing
Next, to prove NP-hardness, we perform a reduction frothrough more thafP|+ 3 (|Cy|) edges which would result in
the set cover problem [40], whose decision version is definadcost larger tham. This also implies thak; andxs for all
as follows. Ci € C belong toS. The only degree of freedom is whether
Definition 4 (Set Cover)Given a collectionC of subsets lies in Sor not. (Recall thak, € Sonly if a SVD computation
of a finite setP and an integer & K < |C|, with |C| the takes place omx; also.)
cardinality ofC, doesC contain a subset @&’  C with |C'| < The key idea of our proof is that for & a < d, finding a
K, such that every element &f belongs to at least one of thecommunication structure with cost at mddtmeans connect-
subsets irC’ (this is called a set cover from)? ing the nodes in layel to at mostK nodes of layec€. If the
For any instance of the set cover problem, we build aitructure needs to connect the layeto more thanK nodes
instance of the decision version of the problem P1. Figute 8in C, the cost of the communication structure will necessarily
lustrates the construction of the graph instance of thelpnob be higher tharM. The intuition is that node; € Sif and only
The resulting graph is formed of three layers: the baseostatif the correspondingy is connected to th® layer. Then, if
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|C.| nodes
A

(a) A graph instance. (b) Inner structure of each
subset C..

Fig. 8. Instance of the problem P1 for any given instance efd#t cover problem.

the number ofx, nodes inS is more thank, the cost of the the set cover such that all nodes in Bere connected yields

communication structure will be more thah. an energy cost of no more thavi. The computational delay
We first show that if a correspondir@ is not connected constraint is also obviously satisfied at all nodes. We merel

to the P layer, then its corresponding will not belong to need to ensure that all computations are combinable. Since

S. In such a scenario, the optimal communication structuesich nodez belonging to the structure @y send its FFT to

is to have all the othe|Cy| nodes (other tham;,x; andx3) the nodexs belonging to the structure of no@kﬂ)modcp

send their data t&y (sincea > 1, transmitting everything t&y  all computations are combinable.

instead ofx, will consume less energy) who will then compute Thus our decision problem is NP-complete and our opti-

the SVD and send the corresponding eigenvectors as wellnaigation problem is NP-hard.

its own FFT toxs. x3 will receive the FFT fromx;,x, and

the x3 node ofCk,1)modc) (the final communication ensures

combinability and has an energy cost of 0). It will forwardl al
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