
Surrogate losses for cost-sensitive classification with

example-dependent costs

Clayton Scott
Department of Electrical Engineering and Computer Science

Department of Statistics
University of Michigan, Ann Arbor

January 29, 2011

Abstract

We study surrogate losses in the context of cost-sensitive classifica-
tion with example-dependent costs, a problem also known as regression
level set estimation. We give sufficient conditions on the surrogate loss
for the existence of a surrogate regret bound. Such bounds imply
that as the surrogate risk tends to its optimal value, so too does the
expected misclassification cost. These kinds of bounds are not only
intuitively natural requirements of the surrogate loss, but have also
emerged in recent years as critical tools when proving consistency of
algorithms based on surrogate losses. Our sufficient conditions encom-
pass example-dependent versions of the hinge, exponential, and other
common losses. These results provide theoretical justification for some
previously proposed surrogate-based algorithms, and suggests others
that have not yet been developed.

1 Introduction

In traditional binary classification, there is a jointly distributed pair (X,Y ) ∈
X×{−1, 1}, whereX is a pattern and Y the corresponding class label. Train-
ing data (xi, yi)n

i=1 are given, and the problem is to design a classifier x 7→
sign(f(x)), where f : X → R is called a decision function. In cost-insensitive
(CI) classification, the goal is to find f such that EX,Y [1{sign(f(X)) 6=Y }] is
minimized.

We study a generalization of the above called cost-sensitive (CS) clas-
sification with example-dependent (ED) costs (Zadrozny and Elkan, 2001;
Zadrozny et al., 2003). There is now a random pair (X,Z) ∈ X × R, and a
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threshold γ ∈ R. Training data (xi, zi)n
i=1 are given, and the problem is to

correctly predict the sign of Z − γ from X, with errors incurring a cost of
|Z − γ| . The performance of the decision function f : X → R is assessed
by the risk Rγ(f) := EX,Z [|Z − γ|1{sign(f(X))6=sign(Z−γ)}]. This formulation
of CS classification with ED costs is equivalent to, or specializes to, other
formulations that have appeared in the literature. These connections are
discussed in the next section.

As an exemplary application, consider the problem posed for the 1998
KDD Cup. The dataset is a collection of (xi, zi) where i indexes people who
may have donated to a particular charity, xi is a feature vector associated
to that person, and zi is the amount donated by that person (possibly zero).
The cost of mailing a donation request is γ = $0.32, and the goal is to
predict who should receive a mailing, so that overall costs are minimized.
(The related problem of maximizing profit is discussed below.)

Since the loss (z, f(x)) 7→ |z − γ|1{sign(f(x)) 6=sign(z−γ)} is neither convex
nor differentiable in its second argument, it is natural to explore the use of
surrogate losses. For example the support vector machine (SVM), extended
to ED costs, has been considered by Zadrozny et al. (2003); Brefeld et al.
(2003). In the linear case where f(x) = wTx, this SVM minimizes

λ

2
‖w‖2 +

1
n

n∑

i=1

Lγ(zi, wTxi)

with respect to w, where Lγ(z, t) = |z − γ|max(0, 1 − sign(z − γ)t) is a
generalization of the hinge loss, and λ > 0 is a regularization parameter.

Our contribution is to establish surrogate regret bounds for a class of sur-
rogate losses that include the generalized hinge loss just described, as well
as analogous generalizations of the exponential, logistic, and other com-
mon losses. Given a surrogate loss Lγ : R × R 7→ [0,∞), define RLγ (f) =
EX,Z [Lγ(Z, f(X))]. Define R∗γ and R∗Lγ

to be the infima of Rγ(f) and
RLγ (f) over all decision functions f . A surrogate regret bound is a function
θ with θ(0) = 0 that is strictly increasing, continuous, and satisfies

Rγ(f)−R∗γ ≤ θ(RLγ (f)−R∗Lγ
)

for all f and all distributions of (X,Z). Such bounds imply that consistency
of an algorithm with respect to the surrogate risk implies consistency with
respect to the target risk. These kinds of bounds are not only natural
requirements of the surrogate loss, but have also emerged in recent years
as critical tools when proving consistency of algorithms based on surrogate
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losses (Mannor et al., 2003; Blanchard et al., 2003; Zhang, 2004; Lugosi and
Vayatis, 2004; Steinwart, 2005).

Surrogate regret bounds were established for CI classification by Zhang
(2004) and Bartlett et al. (2006), and for other learning problems by Stein-
wart (2007). Our work builds on ideas from these three papers. The pri-
mary technical contributions are Theorems 2 and 3. The other results are
also new, and their proofs mostly generalize previous arguments from the
literature on CI classification.

The next section relates our problem to some other supervised learning
problems. Main results, concluding remarks, and proofs, are presented in
Sections 3, 4, and 5, respectively.

2 Related Problems

Regression level set estimation. We show in Lemma 1 that for any f ,

Rγ(f)−R∗γ = EX [1{sign(f(X))6=sign(h(X)−γ)}|h(X)− γ|]
where h(x) := E[Z |X = x] is the regression of Z on X. From this it is
obvious that f(x) = h(x) − γ is an optimal decision function. Therefore
the optimal classifier predicts 1 on the level set {x : h(x) > γ}. For this
reason, the problem has been referred to as regression level set estimation
(Cavalier, 1997; Polonik and Wang, 2005; Willett and Nowak, 2007; Scott
and Davenport, 2007).

Alternate representation. A common way to represent CS classifica-
tion with ED costs is in terms of a random triple (X,Y,C) ∈ X ×{−1, 1}×
[0,∞). This is equivalent to the (X,Z) representation. Given Z and γ, we
may take Y = sign(Z − γ) and C = |Z − γ|. Conversely, given Y and C, let
γ ∈ R be arbitrary, and set

Z =
{
γ + C, if Y = 1
γ − C, if Y = −1.

We have found the (X,Z) representation to be more conducive to analysis
because of clearer parallels with CI classification.

Deterministic and label-dependent costs. Our framework is quite
general in the sense that givenX and Y = sign(Z−γ), the cost C = |Z−γ| is
potentially random. The special case of deterministic costs has also received
attention. As yet a further specialization of the case of deterministic costs, a
large body of literature has addressed the case where cost is a deterministic
function of the label only (Elkan, 2001). In our notation, a typical setup has
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Z ∈ {0, 1} and γ ∈ (0, 1). Then false positives cost 1− γ and false negatives
cost γ. An optimal decision function is h(x) − γ = P (Z = 1 |X = x) − γ.
Taking γ = 1

2 recovers the CI classification problem.
Costs and rewards. Another framework is to not only penalize incor-

rect decisions, but also reward correct ones. The risk here is

R̃γ(f) = EX,Z [|Z − γ|1{sign(f(X)) 6=sign(Z−γ)}
−|Z − γ|1{sign(f(X))=sign(Z−γ)}].

Using R̃γ(f) = Rγ(f) − Rγ(−f), it can easily be shown that R̃γ(f) =
2Rγ(f) − EX,Z [|Z − γ|], and hence R̃γ(f) − R̃γ

∗
= 2(Rγ(f) − R∗γ). There-

fore, the inclusion of rewards presents no additional difficulties from the
perspective of risk analysis.

3 Surrogate Regret Bounds

Before introducing our bounds, we first need some notation. Let X be a
measurable space. A decision function is any measurable f : X → R. We
adopt the convention sign(0) = −1, although this choice is not important.

A measurable function L : {−1, 1} × R → [0,∞) will be referred to as
a label-dependent (LD) loss. Such losses are employed in CI classification
and in CS classification with LD costs. Given a random pair (X,Y ) ∈
X × {−1, 1}, define the risk RL(f) = EX,Y [L(Y, f(X))], and let R∗L be the
infimum of RL(f) over all decision functions f .

Any LD loss can be written

L(y, t) = 1{y=1}L1(t) + 1{y=−1}L−1(t),

and L1 and L−1 are referred to as the partial losses of L. For η ∈ [0, 1] and
t ∈ R, the conditional risk is defined to be

CL(η, t) := ηL1(t) + (1− η)L−1(t),

and for η ∈ [0, 1], the optimal conditional risk is

C∗L(η) := inf
t∈R

CL(η, t).

If η(x) := P (Y = 1|X = x), and f is a decision function, then RL(f) =
EX [CL(η(X), f(X))] and R∗L = EX [C∗L(η(X))].

Now define HL(η) = C−L (η)− C∗L(η), for η ∈ [0, 1], where

C−L (η) := inf
t∈R:t(2η−1)≤0

CL(η, t).

4



Notice that by definition, HL(η) ≥ 0 for all η, with equality when η = 1
2 .

Bartlett et al. showed that surrogate regret bounds exist for CI classification,
in the case of margin losses where L(y, t) = φ(yt), iff HL(η) > 0 ∀η 6= 1

2 .
We require extensions of the above definitions to the case of ED costs.

Given any LD loss L and γ ∈ R, let Lγ : R× R→ [0,∞) be the loss

Lγ(z, t) := (z − γ)1{z>γ}L1(t) + (γ − z)1{z≤γ}L−1(t).

If (X,Z) ∈ X × R are jointly distributed and f is a decision function, the
Lγ-risk of f is RLγ (f) := EX,Z [Lγ(Z, f(X))], and the optimal Lγ-risk is
R∗Lγ

= inff RLγ (f).
In analogy to the label-dependent case, for x ∈ X and t ∈ R, define

CL,γ(x, t) := h1,γ(x)L1(t) + h−1,γ(x)L−1(t),

where
h1,γ(x) := EZ|X=x[(Z − γ)1{Z>γ}]

and
h−1,γ(x) := EZ|X=x[(γ − Z)1{Z≤γ}].

In addition, define
C∗L,γ(x) = inf

t∈R
CL,γ(x, t).

With these definitions, it follows that RLγ (f) = EX [CL,γ(X, f(X))] and
R∗Lγ

= EX [C∗L,γ(X)]. Finally, for x ∈ X , set

HL,γ(x) := C−L,γ(x)− C∗L,γ(x)

where
C−L,γ(x) := inf

t∈R:t(h(x)−γ)≤0
CL,γ(x, t).

A connection between HL,γ and HL is given in Lemma 3.
Note that if L(y, t) = 1{y 6=sign(t)} is the 0/1 loss, then Lγ(z, t) = |z −

γ|1{sign(t)6=sign(z−γ)}. In this case, as indicated in the introduction, we write
Rγ(f) and R∗γ instead of RLγ (f) and R∗Lγ

. We also write Cγ(x, t) and C∗γ(x)
instead of CL,γ(x, t) and C∗L,γ(x). Basic properties of these quantities are
given in Lemma 1.

We are now ready to define the surrogate regret bound. Let Bγ :=
supx∈X |h(x) − γ|, where recall that h(x) = EZ|X=x[Z]. Bγ need not be
finite. For ε ∈ [0, Bγ), define

µL,γ(ε) =
{

infx∈X :|h(x)−γ|≥εHL,γ(x), if 0 < ε < Bγ ,

0, if ε = 0.
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Note that {x : |h(x) − γ| ≥ ε} is nonempty because ε < Bγ . Now set
ψL,γ(ε) = µ∗∗L,γ(ε) for ε ∈ [0, Bγ), where g∗∗ denotes the Fenchel-Legendre
biconjugate of g. The biconjugate of g is the largest lower semi-continuous
function that is ≤ g, and is defined by

epi g∗∗ = co epi g,

where epi g = {(r, s) : g(r) ≤ s} is the epigraph of g, co denotes the convex
hull, and the bar indicates set closure.

Theorem 1. Let L be a label-dependent loss and γ ∈ R. For any decision
function f and any distribution of (X,Z),

ψL,γ(Rγ(f)−R∗γ) ≤ RLγ (f)−R∗Lγ
.

Two proofs of this results are given in Sections 5.1 and 5.2. The former
generalizes the argument of Bartlett et al. (2006), while the latter applies
ideas from Steinwart (2007).

We show in Lemma 2 that ψL,γ(0) = 0 and that ψL,γ is nondecreasing
and continuous. For the above bound to be a valid surrogate regret bound,
we need for ψL,γ to be strictly increasing. Therefore, we need to find condi-
tions on L and possibly on the distribution of (X,Z) that are sufficient for
ψL,γ to be strictly increasing. We adopt the following assumption on L:

(A) There exist c > 0, s ≥ 1 such that

∀η ∈ [0, 1],
∣∣∣∣η −

1
2

∣∣∣∣
s

≤ csHL(η).

This condition was employed by Zhang (2004) in the context of cost-
insensitive classification. He showed that it is satisfied for several common
margin losses, i.e., losses having the form L(y, t) = φ(yt) for some φ, includ-
ing the hinge (s = 1), exponential, least squares, truncated least squares,
and logistic (s = 2) losses. The condition was also employed by Blanchard
et al. (2003); Mannor et al. (2003); Lugosi and Vayatis (2004) to analyze
certain boosting and greedy algorithms.

We first treat the case s = 1.

Theorem 2. Let L be a label-dependent loss and γ ∈ R. Assume (A) holds
with s = 1 and c > 0. Then ψL,γ(ε) ≥ 1

2cε. Furthermore, if L(y, t) =
max(0, 1− yt) is the hinge loss, then ψL,γ(ε) = ε.
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By this result and the following corollary, the modified SVM discussed
in the introduction is now justified from the perspective of the surrogate
regret.

Corollary 1. If L is a LD loss, γ ∈ R, and (A) holds with s = 1 and c > 0,
then

Rγ(f)−R∗γ ≤ 2c(RLγ (f)−R∗Lγ
)

for all measurable f : X → R. If L is the hinge loss, then

Rγ(f)−R∗γ ≤ RLγ (f)−R∗Lγ

for all measurable f : X → R.

When s > 1, we require an additional assumption on the distribution of
(X,Z) to obtain an invertible ψL,γ . We present two such conditions:

(B) ∃C > 0, β ≥ 1 such that ∀x ∈ X ,

PZ|X=x(|Z − h(x)| ≥ t) ≤ Ct−β, ∀t > 0.

(C) ∃C,C ′ > 0 such that ∀x ∈ X ,

PZ|X=x(|Z − h(x)| ≥ t) ≤ Ce−C′t2 , ∀t > 0.

By Chebyshev’s inequality, condition (B) holds provided Z|X = x has
uniformly bounded variance. In particular, if Var(Z|X = x) ≤ σ2 ∀x, then
(B) holds with β = 2 and C = σ2.

Condition (C) holds when Z|X = x is subGaussian with bounded vari-
ance. For example, (C) holds if Z|X = x ∼ N (h(x), σ2

x) with σ2
x bounded.

Alternatively, (C) holds if Z|X = x has bounded support ⊆ [a, b], where a
and b do not depend on x.

Theorem 3. Let L be a label-dependent loss and γ ∈ R. Assume (A) holds
with exponent s ≥ 1. If (B) holds with exponent β > 1, then there exist
c1, c2, ε0 > 0 such that for all ε ∈ [0, Bγ),

ψL,γ(ε) ≥
{
c1ε

s+(β−1)(s−1), ε ≤ ε0
c2(ε− ε0), ε > ε0.

If (C) holds, then there exist c1, c2, ε0 > 0 such that for all ε ∈ [0, Bγ)

ψL,γ(ε) ≥
{
c1ε

s, ε ≤ ε0
c2(ε− ε0), ε > ε0.

In both cases, the lower bounds are convex on [0, Bγ).
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To reiterate the significance of these results: Since ψL,γ(0) = 0 and
ψL,γ is nondecreasing, continuous, and convex, Theorems 2 and 3 imply
that ψL,γ is invertible, leading to the surrogate regret bound Rγ(f)−R∗γ ≤
ψ−1

L,γ(RLγ (f)−R∗Lγ
).

Corollary 2. Let L be a LD loss and γ ∈ R. Assume (A) holds with
exponent s ≥ 1. If (B) holds with exponent β > 1, then there exist K1,K2 >
0 such that

Rγ(f)−R∗γ ≤ K1(RLγ (f)−R∗Lγ
)1/(s+(β−1)(s−1))

for all measurable f with RLγ (f)−R∗Lγ
≤ K2. If (C) holds, then there exist

K1,K2 > 0 such that

Rγ(f)−R∗γ ≤ K1(RLγ (f)−R∗Lγ
)1/s

for all measurable f with RLγ (f)−R∗Lγ
≤ K2.

It is possible to improve the rate when s > 1 provided the following
distributional assumption is valid.

(D) There exists α ∈ (0, 1] and c > 0 such that for all measurable f : X →
R,

P (sign(f(X)) 6= sign(h(X)− γ)) ≤ c(Rγ(f)−R∗γ)α.

We refer to α as the noise exponent. This condition generalizes a condi-
tion for CI classification introduced by Tsybakov (2004) and subsequently
adopted by several authors. Some insight into the condition is offered by
the following result.

Proposition 1. (D) is satisfied with α ∈ (0, 1) if there exists B > 0 such
that for all t ≥ 0,

P (|h(X)− γ| ≤ t) ≤ Bt
α

1−α .

(D) is satisfied with α = 1 if there exists t0 > 0 such that

P (|h(X)− γ| ≥ t0) = 1.

The proof of this fact extends an argument for CI classification that is
described by Bousquet et al. (2004). Similar conditions have been adopted
in previous work on CI classification (Mammen and Tsybakov, 1999) and
level set estimation (Polonik, 1995). From the proposition we see that for
larger α, there is less noise in the sense of less uncertainty near the optimal
decision boundary.
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Theorem 4. Let L be a LD loss and γ ∈ R. Assume (A) holds with s > 1,
and (D) holds with noise exponent α ∈ (0, 1]. If (B) holds with exponent
β > 1, then there exist K1,K2 > 0 such that

Rγ(f)−R∗γ ≤ K1(RLγ (f)−R∗Lγ
)1/(s+(β−1)(s−1)−αβ(s−1))

for all measurable f : X → R with RLγ (f) − R∗Lγ
≤ K2. If (C) holds, then

there exist K1,K2 > 0 such that

Rγ(f)−R∗γ ≤ K1(RLγ (f)−R∗Lγ
)1/(s−α(s−1))

for all measurable f : X → R with RLγ (f)−R∗Lγ
≤ K2.

The proof of this result combines Theorem 3 with an argument presented
in Bartlett et al. (2006).

4 Conclusions

This work gives theoretical justification to the cost-sensitive SVM with
example-dependent costs, described in the introduction. It also sug-
gests principled design criteria for new algorithms based on other spe-
cific losses. For example, consider the surrogate loss Lγ(z, t) based on
the label-dependent loss L(y, t) = e−yt. To minimize the empirical risk
1
n

∑n
i=1 Lγ(zi, f(xi)) over a class of linear combinations of some base class,

a functional gradient descent approach may be employed, giving rise to a
natural kind of boosting algorithm in this setting. Since the loss here differs
from the loss in cost-insensitive boosting by scalar factors only, similar com-
putational procedures are feasible. Obviously, similar statements apply to
other losses, such as the logistic loss and logistic regression type algorithms.

Another natural next step is to prove consistency for specific algorithms.
Surrogate regret bounds have been used for this purpose in the context
of cost-insensitive classification by Mannor et al. (2003); Blanchard et al.
(2003); Zhang (2004); Lugosi and Vayatis (2004); Steinwart (2005). These
proofs typically require two additional ingredients in addition to surrogate
regret bounds: a class of classifiers with the universal approximation prop-
erty (to achieve universal consistency), together with a uniform bound on
the deviation of the empirical surrogate risk from its expected value. We
anticipate that such proof strategies can be extended to CS classification
with ED costs.

We have shown that condition (A), together with a mild distributional
assumption, are sufficient for ψL,γ to be invertible. It is natural to ask
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whether these conditions are also necessary. Bartlett et al. (2006) show that
in the context of CI classification, the quantity corresponding to ψL,γ is
invertible if and only if L is classification calibrated, which they define to
mean that HL(η) > 0 for all η 6= 1

2 . This might suggest the definition that
Lγ is γ-classification calibrated if and only if HL,γ(x) > 0 for all x such that
h(x) 6= γ. It can be shown without much difficulty that this condition holds
when ψL,γ is invertible. We were unable to shows the converse, however.
Given that Z is a potentially unbounded random variable, it seems necessary
to further assume a rate condition on the growth of HL like the one in (A).

Finally, we remark that our theory applies to some of the special cases
mentioned in Section 2. For example, for CS classification with LD costs,
condition (C) holds, and we get surrogate regret bounds for this cases.

5 Proofs

We begin with some lemmas. The first lemma presents some basic properties
of the target risk and conditional risk. These extend known results for CI
classification (Devroye et al., 1996).

Lemma 1. Let γ ∈ R. (1) ∀x ∈ X ,

h(x)− γ = h1,γ(x)− h−1,γ(x).

(2) ∀x ∈ X , t ∈ R,

Cγ(x, t)− C∗γ(x) = 1{sign(t) 6=sign(h(x)−γ)}|h(x)− γ|.

(3) For any measurable f : X → R,

Rγ(f)−R∗γ = EX [1{sign(f(X)) 6=sign(h(X)−γ)}|h(X)− γ|].

Proof. (1) h1,γ(x) − h−1,γ(x) = EZ|X=x[(Z − γ)1{Z>γ} − (γ − Z)1{Z≤γ}] =
EZ|X=x[Z − γ] = h(x)− γ.

(2) Since Cγ(x, t) = h1,γ(x)1{t≤0} + h−1,γ(x)1{t>0}, a value of t min-
imizing this quantity (for fixed x) must satisfy sign(t) = sign(h1,γ(x) −
h1,γ(x)) = sign(h(x) − γ). Therefore, ∀x ∈ X , t ∈ R, Cγ(x, t) − C∗γ(x) =
[h1,γ(x)1{t≤0} + h−1,γ(x)1{t>0}] − [h1,γ(x)1{h(x)≤γ} + h−1,γ(x)1{h(x)>γ}] =
1{sign(t)6=sign(h(x)−γ)}|h1,γ(x)− h−1,γ(x)| = 1{sign(t) 6=sign(h(x)−γ)}|h(x)− γ|.

(3) now follows from (2).

The next lemma records some basic properties of ψL,γ .
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Lemma 2. Let L be any LD loss and γ ∈ R. Then (1) ψL,γ(0) = 0. (2)
ψL,γ is nondecreasing. (3) ψL,γ is continuous on [0, Bγ).

Proof. From the definition of µL,γ , µL,γ(0) = 0 and µL,γ is nondecreasing.
(1) and (2) now follow. Since epiψL,γ is closed by definition, ψL,γ is lower
semi-continuous. Since ψL,γ is convex on the simplical domain [0, Bγ), it is
upper semi-continuous by Theorem 10.2 of Rockafellar (1970).

The next lemma is needed for Theorems 2 and 3. An analogous identity
was presented by Steinwart (2007) for label-dependent margin losses.

Lemma 3. For any LD loss L and γ ∈ R, and for all x ∈ X such that
h1,γ(x) + h−1,γ(x) > 0,

HL,γ(x) = (h1,γ(x) + h−1,γ(x))HL

(
h1,γ(x)

h1,γ(x) + h−1,γ(x)

)
.

Proof. Introduce wγ(x) = h1,γ(x)+h−1,γ(x) and ϑγ(x) = h1,γ(x)/(h1,γ(x)+
h−1,γ(x)). If wγ(x) > 0, then

CL,γ(x, t) = h1,γ(x)L1(t) + h−1,γ(x)L−1(t)
= wγ(x)[ϑγ(x)L1(t) + (1− ϑγ(x))L−1(t)]
= wγ(x)CL(ϑγ(x), t).

By Lemma 1, h(x)− γ = wγ(x)(2ϑγ(x)− 1). Since wγ(x) > 0, h(x)− γ and
2ϑγ(x)− 1 have the same sign. Therefore

C−L,γ(x) = inf
t:t(h(x)−γ)≤0

CL,γ(x, t)

= wγ(x) inf
t:t(h(x)−γ)≤0

CL(ϑγ(x), t)

= wγ(x) inf
t:t(2ϑγ(x)−1)≤0

CL(ϑγ(x), t)

= wγ(x)C−L (ϑγ(x)).

Similarly,

C∗L,γ(x) = wγ(x) inf
t∈R

CL(ϑγ(x), t)

= wγ(x)C∗L(ϑγ(x)).

Thus

HL,γ(x) = C−L,γ(x)− C∗L,γ(x)

= wγ(x)[C−L (ϑγ(x))− C∗L(ϑγ(x))]
= wγ(x)HL(ϑγ(x)).
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5.1 Proof of Theorem 1

By Jensen’s inequality and Lemma 1,

ψL,γ(Rγ(f)−R∗γ)
≤ EX [ψL,γ(1{sign(f(X))6=sign(h(X)−γ)}|h(X)− γ|)]
= EX [1{sign(f(X)) 6=sign(h(X)−γ)}ψL,γ(|h(X)− γ|)]
≤ EX [1{sign(f(X)) 6=sign(h(X)−γ)}µL,γ(|h(X)− γ|)]

= EX

[
1{sign(f(X))6=sign(h(X)−γ)} inf

x∈X :
|h(x)−γ|≥|h(X)−γ|

HL,γ(x)

]

≤ EX [1{sign(f(X)) 6=sign(h(X)−γ)}HL,γ(X)]

= EX

[
1{sign(f(X))6=sign(h(X)−γ)}

(
inf

t:t(h(X)−γ)≤0
CL,γ(X, t)− C∗L,γ(X)

)]

≤ EX [CL,γ(X, f(X))− C∗L,γ(X)]
= RLγ (f)−R∗Lγ

.

5.2 Alternate Proof of Theorem 1

Lemma 4. Let L be any LD loss and γ ∈ R. For all ε > 0, x ∈ X , and
t ∈ R,

CL,γ(x, t)− C∗L,γ(x) < µL,γ(ε) =⇒ Cγ(x, t)− C∗γ(x) < ε.

Proof. Let ε > 0, x ∈ X . If ε > |h(x)− γ|, the implication holds by Lemma
1. Thus, assume ε ≤ |h(x)− γ|. Then Cγ(x, t)− C∗γ(x) ≥ ε ⇐⇒ sign(t) 6=
sign(h(x)− γ). It follows that

HL,γ(x) = inf
t:t(h(x)−γ)≤0

CL,γ(x, t)− C∗L,γ(x)

≤ inf
t:sign(t) 6=sign(h(x)−γ)

CL,γ(x, t)− C∗L,γ(x)

= inf
t:Cγ(x,t)−C∗γ(x)≥ε

CL,γ(x, t)− C∗L,γ(x).

From ε ≤ |h(x) − γ| we also know µL,γ(ε) ≤ HL,γ(x). The result now
follows.

To prove the theorem, we claim that for any f and x,

µL,γ(Cγ(x, f(x))− C∗γ(x)) ≤ CL,γ(x, f(x))− C∗L,γ(x).
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This follows from Lemma 4 by taking ε = Cγ(x, f(x))−C∗γ(x). Now Jensen’s
inequality implies

ψL,γ(Rγ(f)−R∗γ) ≤ EX [ψL,γ(Cγ(X, f(X))− C∗γ(X))]
≤ EX [µL,γ(Cγ(X, f(x))− C∗γ(X))]
≤ EX [CL,γ(X, f(X))− C∗L,γ(X)]
= RLγ (f)−R∗Lγ

.

5.3 Proof of Theorem 2

Let ε > 0 and x ∈ X such that |h(x)− γ| ≥ ε. It is necessary that h1,γ(x) +
h−1,γ(x) > 0. This is because h1,γ(x)+h−1,γ(x) = EZ|X=x[|Z−γ|], and if this
is 0, then Z = γ almost surely (PZ|X=x). But then h(x) = γ, contradicting
|h(x) − γ| ≥ ε > 0. Therefore we may apply Lemma 3 and condition (A)
with s = 1 to obtain

HL,γ(x) = (h1,γ(x) + h−1,γ(x))HL

(
h1,γ(x)

h1,γ(x) + h−1,γ(x)

)

≥ (h1,γ(x) + h−1,γ(x))
1
c

∣∣∣∣
h1,γ(x)

h1,γ(x) + h−1,γ(x)
− 1

2

∣∣∣∣

= (h1,γ(x) + h−1,γ(x))
1
2c

∣∣∣∣
h1,γ(x)− h−1,γ(x)
h1,γ(x) + h−1,γ(x)

∣∣∣∣

=
1
2c
|h(x)− γ| ≥ 1

2c
ε,

where in the next to last step we applied Lemma 1. Therefore µL,γ(ε) ≥ 1
2c .

The result now follows.

5.4 Proof of Theorem 3

Assume (A) and (B) hold. If s = 1 the result follows by Theorem 2, so let’s
assume s > 1. Let ε > 0 and x ∈ X such that |h(x) − γ| ≥ ε. As in the
proof of Theorem 2, we have

HL,γ(x) = (h1,γ(x) + h−1,γ(x))HL

(
h1,γ(x)

h1,γ(x) + h−1,γ(x)

)

≥ (h1,γ(x) + h−1,γ(x))
1
cs

∣∣∣∣
h1,γ(x)

h1,γ(x) + h−1,γ(x)
− 1

2

∣∣∣∣
s

13



= (h1,γ(x) + h−1,γ(x))
1

(2c)s

∣∣∣∣
h1,γ(x)− h−1,γ(x)
h1,γ(x) + h−1,γ(x)

∣∣∣∣
s

=
1

(2c)s

|h(x)− γ|s
(h1,γ(x) + h−1,γ(x))s−1

.

The next step is to find an upper bound on wγ(x) = h1,γ(x) + h−1,γ(x) in
terms of |h(x) − γ|, which will give a lower bound on HL,γ(x) in terms of
|h(x)− γ|.

For now, assume h1,γ(x) < h−1,γ(x). Then wγ(x) = 2h1,γ(x)+ |h(x)−γ|.
Let us write h1,γ(x) = EW |X=x[W ] where W = (Z − γ)1{Z>γ} ≥ 0. Then
h1,γ(x) =

∫∞
0 PW |X=x(W ≥ w)dw. Now

PW |X=x(W ≥ w) = PZ|X=x(Z − γ ≥ w)
= PZ|X=x(Z − h(x) + h(x)− γ ≥ w)
= PZ|X=x(Z − h(x) ≥ w + |h(x)− γ|)
≤ PZ|X=x(|Z − h(x)| ≥ w + |h(x)− γ|)
≤ C(w + |h(x)− γ|)−β

by (B). Then

h1,γ(x) ≤
∫ ∞

0
C(w + |h(x)− γ|)−βdw

=
C

β − 1
|h(x)− γ|−(β−1).

Therefore
wγ(x) ≤ 2C

β − 1
|h(x)− γ|−(β−1) + |h(x)− γ|.

Setting ∆ = |h(x)− γ| and c′ = 2C/(β − 1) for brevity, we have

HL,γ(x) ≥ 1
(2c)s

∆s

(∆ + c′∆−(β−1))s−1
.

Using similar reasoning, the same lower bound can be established in the case
where h1,γ(x) > h−1,γ(x). Let us now find a simpler lower bound. Notice
that ∆ = c′∆−(β−1) when ∆ = ∆0 = (c′)1/β. When ∆ ≤ ∆0,

HL,γ(x) ≥ 1
(2c)s

∆s

(2c′∆−(β−1))s−1

= c1∆s+(β−1)(s−1)

14



where c1 = (2c)−s(2c′)−(s−1). When ∆ ≥ ∆0,

HL,γ(x) ≥ 1
(2c)s

∆s

(2∆)s−1
= c2∆

where c2 = 2−(2s−1)c−s. Putting these two cases together,

HL,γ(x) ≥ min(c1∆s+(β−1)(s−1), c1∆)

≥ min(c1εs+(β−1)(s−1), c2ε)

since ∆ = |h(x) − γ| ≥ ε. Now shift the function c2ε to the right by some
ε0 so that it is tangent to c1εs+(β−1)(s−1). The resulting piecewise function
is a closed and convex lower bound on µL,γ . Since ψL,γ is the largest such
lower bound, the proof is complete in this case.

Now suppose (A) and (C) hold. The proof is the same up to the point
where we invoke (B). At that point, we now obtain

h1,γ(x) ≤
∫ ∞

0
PZ|X=x(|Z − h(x)| ≥ w + |h(x)− γ|)dw

≤
∫ ∞

0
Ce−C′(w+|h(x)−γ|)2dw

= C
√

2πσ2

∫ ∞

0

1√
2πσ2

e−(w+|h(x)−γ|)2/2σ2
dw

[σ2 = 1/2C ′]

= C
√

2πσ2P (W ′ ≥ |h(x)− γ|)
[where W ′ ∼ N (0, σ2)]

≤ C
√

2πσ2e−|h(x)−γ|2/2σ2

= C

√
π

C ′
e−C′|h(x)−γ|2 .

The final inequality is a standard tail inequality for the Gaussian distribution
(Ross, 2002). Now

wγ(x) ≤ ∆ + C ′′e−C′∆2

where ∆ = |h(x)− γ| and C ′′ = 2C
√
π/C ′, and therefore

HL,γ(x) ≥ 1
(2c)s

∆s

(∆ + C ′′e−C′∆2)s−1
.

The remainder of the proof is now analogous to the case when (B) was
assumed to hold.
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5.5 Proof of Corollary 2

We prove the result in the case where (A) and (B) hold, the other case
being similar. By Theorem 3 and Lemma 2, ψL,γ is invertible on [0, Bγ).
In addition, ψL,γ is strictly increasing and continuous with ψ−1

L,γ(0) = 0.
Therefore there exists K2 > 0 such that δ ≤ K2 =⇒ ψ−1

L,γ(δ) ≤ ε0,
where ε0 is from Theorem 3. If RLγ (f) − R∗Lγ

≤ K2, then by Theorem
1, Rγ(f) − R∗γ ≤ ψ−1

L,γ(RLγ (f) − R∗Lγ
) ≤ ε0, and therefore RLγ (f) − R∗Lγ

≥
ψL,γ(Rγ(f)−R∗γ) ≥ c1(Rγ(f)−R∗γ)s+(β−1)(s−1). The result now follows.

5.6 Proof of Proposition 1

First consider 0 < α < 1. For brevity, denote by A the event that
sign(f(X)) 6= sign(h(X)−γ). Let C be a constant satisfying 0 < C < B−

1−α
α

and set t = CP (A)
1−α

α . Then

Rγ(f)−R∗γ = E[1{A}|h(X)− γ|]
≥ tE[1{A}1{|h(X)−γ|≥t}]
= t(P (|h(X)− γ| ≥ t)−E[1{Ac}1{|h(X)−γ|≥t}])

≥ t(1−Bt
α

1−α − E[1{Ac}])

= t(P (A)−Bt
α

1−α )

= c(1−BC−
α

1−α )P (A)
1
α .

The result now follows. If α = 1 we can repeat the above steps with t = t0
to obtain

Rγ(f)−R∗γ ≥ t0(P (|h(x)− γ| ≥ t0)−E[1{Ac}])
= t0P (A)

from which the result follows.

5.7 Proof of Theorem 4

We prove the result for the case where (A), (C), and (D) hold, the other
case being similar. Let ε0 > 0 and c1 > 0 be as in Theorem 3. Let α ∈ (0, 1]
and c > 0 be the constants in (D). Let C be any real number satisfying
0 < C < 1

c . As in the proof of Corollary 2, take K2 > 0 such that δ ≤
K2 =⇒ ψ−1

L,γ(δ) ≤ (ε0/C)
1

1−α . Let f be such that RLγ (f) − R∗Lγ
≤ K2.
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Now set ε = C(Rγ(f) − R∗γ)1−α which by Theorem 1 and the preceding
construction is ≤ ε0. Now write

Rγ(f)−R∗γ = E[1{sign(f(X)) 6=sign(h(X)−γ)}|h(X)− γ|]
= E[1{|h(X)−γ|<ε}1{sign(f(X)) 6=sign(h(X)−γ)}|h(X)− γ|]

+E[1{|h(X)−γ|≥ε}1{sign(f(X))6=sign(h(X)−γ)}|h(X)− γ|

The first term above is bounded by cε(Rγ(f) − R∗γ)α by (D). To bound
the second term, we use a lemma of Bartlett et al. (2006) that states that
if g : R → R is convex with g(0) = 0, then g(a) ≤ a

b g(b) for all b > 0,
0 ≤ a ≤ b. This can be used to establish

1{|h(x)−γ|≥ε}|h(x)− γ| ≤ ε

ψL,γ(ε)
ψL,γ(|h(x)− γ|).

When |h(x)−γ| ≥ ε, the inequality follows from the aforementioned lemma,
and otherwise it holds trivially. Then

Rγ(f)−R∗γ

≤ cε(Rγ(f)−R∗γ)α +
ε

ψL,γ(ε)
E[1{sign(f(X)) 6=sign(h(X)−γ)}ψL,γ(|h(X)− γ|)]

≤ cε(Rγ(f)−R∗γ)α +
ε

ψL,γ(ε)
(RLγ (f)−R∗Lγ

),

where the last step follows from the same argument used in the proof of
Theorem 1.

Rearranging terms, we get

RLγ (f)−R∗Lγ
≥

(
Rγ(f)−R∗γ

ε
− c(Rγ(f)−R∗γ)α

)
ψL,γ(ε)

≥ c1

(
Rγ(f)−R∗γ

ε
− c(Rγ(f)−R∗γ)α

)
εs

= c1C
s−1(1− Cc)(Rγ(f)−R∗γ)s−α(s−1).

The result now follows.
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