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Abstract

We present expectation-maximization(EM) algorithms for fitting multivariate Gaussian mix-
ture models to data that is truncated, censored or truncated and censored. These two types
of incomplete measurements are naturally handled together through their relation to the mul-
tivariate truncated Gaussian distribution. We illustrate our algorithms on synthetic and flow
cytometry data.

Keywords multivariate Gaussian mixture model, EM algorithm, truncation, censoring, mul-
tivariate truncated Gaussian distribution

1 Introduction

This paper addresses the problem of fitting Gaussian mixture models on censored and truncated
multivariate data. Censoring and truncation arise in numerous applications, for reasons such as
fundamental limitations of measuring equipment, or from experimental design. Data are said to
be censored when the exact values of measurements are not reported. For example, the needle of
a scale that does not provide a reading over 200 kg will show 200 kg for all the objects that weigh
more than the limit. Data are said to be truncated when the number of measurements outside
a certain range are not reported. For example, an electronic component manufacturer can limit
the test duration to 100 hours for life time tests. A data collector might provide only the survival
times of the components that failed during the test, but not the number of components tested. In
these cases, it is often natural to seek the statistical characteristics of the original (uncensored and
untruncated) data instead of the observed (censored or truncated) data.

This work is motivated by the analysis of flow cytometry data. Flow cytometry is an essential
tool in the diagnosis of diseases such as acute leukemias, chronic lymphoproliferative disorders,
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and malignant lymphomas (Shapiro, 1994; Brown and Wittwer, 2000). A flow cytometer measures
antigen-based markers associated to cells in a cell population. The analysis of flow cytometry data
involves dividing cells into subpopulations and inspecting their characteristics. This clustering
process, called gating, is performed manually in practice. To automate gating, researchers recently
have been investigating mixture models (Boedigheimer and Ferbas, 2008; Chan et al., 2008; Lo
et al., 2008; Pyne et al., 2009; Lakoumentas et al., 2009).

However, a flow cytometer measures a limited range of signal strength and records each marker
value within a fixed range, such as between 0 and 1023. If a measurement falls outside the range,
then the value is replaced by the nearest legitimate value; that is, a value smaller than 0 is censored
to 0 and a value larger than 1023 is censored to 1023. Moreover, a large portion of cell measurements
can be truncated from recording by the judgment of an operator. Therefore, mixture model fitting
that does not account for censoring and truncation can result in biases in the parameter estimates
and poor gating results. In flow cytometry, a mixture model fitting algorithm should take censoring
and truncation into account to avoid biases. Here we present an Expectation-Maximization (EM)
algorithm to fit a multivariate mixture model while accounting for both censoring and truncation.

When censored and truncated data are from an exponential family, Dempster et al. (1977)
suggested using the EM procedure to find the maximum likelihood estimate. Atkinson (1992)
derived an EM algorithm for a finite mixture of two univariate normal distributions when data is
right-censored. Chauveau (1995) also studied a mixture model of univariate censored data, and
presented an EM algorithm and its stochastic version. McLachlan and Jones (1988) developed
an EM algorithm for univariate binned and truncated data. Cadez et al. (2002) extended the
development of McLachlan and Jones (1988) to multivariate case and applied to bivariate blood
sample measurements for diagnosis of iron deficiency anemia. To our knowledge, previous work has
not addressed censored multivariate data, or continuous (not binned) truncated multivariate data.
Furthermore, censoring and truncation have been treated separately. As we will show below, the
development of the truncated data EM algorithm and the censored data EM algorithm are closely
related to the truncated multivariate Gaussian distribution (Tallis, 1961; Manjunath and Wilhelm,
2009) and we handle these two problems together under the same framework.

Our algorithms make use of recent methods (Drezner and Wesolowsky, 1989; Genz, 2004; Genz
and Bretz, 1999, 2002) for evaluating the cumulative distribution function of a multivariate Gaus-
sian. These algorithms run slower as the dimension increases but, when combined with modern
computing resources, they can be used successfully in the kinds of lower dimensional settings
where mixture methods tend to be applied. Our Matlab implementation is available online at
http://www.eecs.umich.edu/~cscott/code/tcem.zip.

In the following, we briefly review the standard EM algorithm in Section 2. Then we consider
truncation (Section 3), censoring (Section 4) and both truncation and censoring (Section 5). We
derive EM algorithms for each case and discuss how these algorithms improve the standard EM
algorithm. Experimental results are reported in Section 6, and Section 7 concludes.

2 Standard EM Algorithm

In a mixture model, the probability density function of an observation is

f(y; Θ) =
K∑
k=1

πkfk(y; θk) (1)
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where πk are positive mixing weights summing to one, fk are component density functions param-
eterized by θk, and Θ = (π1, · · · , πK , θ1, · · · , θK) is the collection of all model parameters. Each
observation is assumed to be from one of the K components. A common choice of the component
density is a multivariate normal with mean µk and covariance Σk. Given a set of independent
observations y1:N := {y1, · · · ,yN} in Y ⊆ Rd, the objective is to fit such a model to the data.

The EM algorithm proposed by Dempster et al. (1977) is a widely-applied approach for finding
the maximum likelihood estimate of a mixture model. In the EM procedure, the unknown true
association of each observation to a component is considered missing, and the expected likelihood
of the “complete” data is maximized. Let zn ∈ {0, 1}K be the membership indicator variable such
that znk = 1 if yn is generated from fk and 0 otherwise. Then the complete log-likelihood function
becomes

L(Θ) =
∑
n

∑
k

znk [lnπk + ln fk(y
n)]

=
∑
n

∑
k

znk

[
lnπk −

1

2
ln |Σk| −

1

2
tr
(
Σ−1
k (yn − µk)(y

n − µk)
T
) ]

+ const. (2)

The EM algorithm first computes Q(Θ; Θold) = E[L(Θ)|y1:N ; Θold] (E step) and then finds a new
Θ such that Θnew = arg maxΘQ(Θ; Θold) (M step). The EM algorithm repeats the E step and M
step and updates Θ each iteration. An acclaimed property of the EM algorithm is that each round
the value of the log-likelihood monotonically increases (Hastie et al., 2001). The E step simplifies
to computing the conditional probabilities

〈znk 〉 := p(znk = 1|yn; Θold) =
πk fk(y

n)∑
l πl fl(y

n)
.

In the M step, we have an update rule in closed form:

π̂k =
1

N

∑
n

〈znk 〉, (3)

µ̂k =

∑
n〈znk 〉yn∑
n〈znk 〉

, (4)

Σ̂k =

∑
n〈znk 〉(yn − µ̂k)(y

n − µ̂k)
T∑

n〈znk 〉
. (5)

The EM algorithm alternates between the E step and the M step until convergence.
When truncation and/or censoring occur, however, the true values of yn are not always available

and the blindfold use of the standard EM algorithm can result in undesirable parameter estimates.

3 Truncated Data EM Algorithm

Truncation restricts the observation to a subset YT ⊆ Y. Thus, the data points outside YT are not
available for estimation of Θ. For example, in clinical flow cytometry, cells with low forward scatter
(FS) value are not of much pathological interest and are often dropped during data collection to
save data storage space. Hence, all the recorded forward scatter values are always greater than a
truncation level chosen by an operator.
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Here we assume that the observation window YT is a hyper-rectangle in Rd with two vertices
s = (s1, · · · , sd)T and t = (t1, · · · , td)T on the diagonal opposites such that every observed event
satisfies s ≤ yn ≤ t. These inequalities are element-wise, and si = −∞ and ti = ∞ mean no
truncation below and above, respectively, on the ith coordinate.

The probability density function after truncation is g(y) = f(y)/
∫ t
s f(y′)dy′. Then it can be

easily seen that g(y) is also a mixture

g(y) =

K∑
k=1

ηk gk(y) (6)

with mixing weighs ηk and component density functions gk:

ηk = πk

∫ t
s fk(y)dy∫ t
s f(y)dy

and gk(y) =
fk(y)∫ t

s fk(y
′)dy′

. (7)

Hence, the component density functions gk are truncated versions of the original component density
functions fk.

Proceeding similarly as in Section 2, we can express the complete data log-likelihood as

LT (Θ) =
∑
n

∑
k

znk [ln ηk + ln gk(y
n)]

=
∑
n

∑
k

znk

[
ln ηk + ln fk(y

n)− ln

∫ t

s
fk(y)dy

]
. (8)

Recall that zn are the component membership indicator variables. The E step applied to (8)
requires us to compute

QT (Θ; Θold) =E[LT (Θ)|y1:N ; Θold]

=
∑
n

∑
k

〈znk 〉
[
ln ηk + ln fk(y

n)− ln

∫ t

s
fk(y)dy

]
.

The main difference from (2) is the terms of normalizing factors, ln
∫ t
s fk(y)dy, which do not

complicate the E step of the EM algorithm, and whose calculation is discussed below. Thus, the E
step is simply computing the posterior probability that yn belongs to component k

〈znk 〉 := p(znk = 1|yn) =
ηk gk(y

n)∑
l ηl gl(y

n)
=

πk fk(y
n)∑

l πl fl(y
n)
. (9)

As the last equality indicates, this posterior remains unchanged as if yn in the truncated data is
from the entire sample space Y. Then the M step computes Θ̂ that maximizes QT (Θ; Θold), which
is found by taking the derivatives of QT (Θ; Θold) with respect to each ηk, µk and Σk, and setting to
zero. Since ηk should satisfy

∑
k ηk = 1, a Lagrange multiplier is used to find the maximizer. Using

(35) and (36) in A.2 to calculate the derivatives of the normalizing factors, we have the following
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M step equations:

η̂k =
1

N

∑
n

〈znk 〉, (10)

µ̂k =

∑
n〈znk 〉yn∑
n〈znk 〉

−mk, (11)

Σ̂k =

∑
n〈znk 〉(yn − µ̂k)(y

n − µ̂k)
T∑

n〈znk 〉
+Hk (12)

where η̂k, µ̂k and Σ̂k denote the new parameters and

mk =M1(0,Σk ; [s− µk, t− µk]), (13)

Hk =Σk −M2(0,Σk ; [s− µk, t− µk]). (14)

The notationsM1(µ,Σ ; [s′, t′]) andM2(µ,Σ ; [s′, t′]) in (13) and (14) indicate the first and second
moments of a Gaussian with mean µ and covariance Σ when it is truncated to a hyper-rectangle
with vertices s′ and t′. We discuss the computational aspects of these moments in A. Comparing
(10)-(12) with the standard EM equations (3)-(5) shows that the updates for truncated data are
similar to those for untruncated data except the correction terms mk and Hk.

The original component weight πk can be recovered from (7). The normal integrals can be
evaluated with the helps of computational tools for evaluating the multivariate normal cumulative
distribution function. Our implementation relies on mvncdf function in the Matlab 7.9.0 statistics
toolbox, which uses algorithms developed by Drezner and Wesolowsky (1989) and by Genz (2004)
for bivariate and trivariate Gaussian. The toolbox uses a quasi-Monte Carlo integration algorithm
developed by Genz and Bretz (1999, 2002) for four or more dimensional Gaussians.

4 Censored Data EM Algorithm

As discussed above, truncation excludes data points from the dataset, and the number of data
points falling outside the measuring range remains unknown. On the contrary, censoring retains
such data points while their exact locations remain unknown.

In the following, we investigate censoring on a hyper-rectangle, in which each data point yn

is censored above at b = (b1, · · · , bd)T and below at a = (a1, · · · , ad)T . 1 Let Y0,Y1, · · · ,YC be
a partition of the overall sample space Y. If yn ∈ Y0, we observe the exact values of yn. When
yn ∈ Yc, c > 0, however, censoring occurs and the true values are masked so that

xni = yni 1[ai,bi](y
n
i ) + ai1(−∞,ai)(y

n
i ) + bi1(bi,∞)(y

n
i ), ∀i,∀n

are observed, where the indicator function 1A(y) equals one if and only if y ∈ A. Therefore, instead
of y1:N , we obtain a set of observations x1:N , which satisfy ai ≤ xni ≤ bi for i = 1, · · · , d and
n = 1, · · · , N . Note that ai = −∞ means no censoring below and bi = ∞ means no censoring
above.

Chauveau (1995) also studied the analysis of censored data. The difference is that in his
setup xn = c if yn ∈ Yc, c > 0, whereas in ours some coordinates can preserve their exact

1For univariate data (d = 1), left and right censoring are the usual terms.
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values. Furthermore, while his primary concern remained on univariate data, our focus extends to
multivariate data.

As described above, unless yn ∈ Y0 =
∏d
i=1[ai, bi], one or more coordinates are censored and its

original location is lost. However, we can infer which partition yn belongs to from xn, the censored
observation of yn, by noting when xni = ai or bi. Since each data vector may have different censoring
patterns, let the censored and uncensored coordinates be indexed by mn and on, respectively, so
that yni , i ∈ mn, are censored values and yni , i ∈ on, are observed values. Then yn can be divided into

the form yn =

[
ynon
ynmn

]
where ynmn

= (yni , i ∈ mn)T and ynon = (yni , i ∈ on)T denote the censored

and uncensored components of yn. Note that this does not imply that the vector is arranged to
have this pattern and should be understood as a notational convenience. Then the likelihood of xn

is

f(xn) = f(yn) for yn ∈ Y0 (15)

f(xn) =

∫
Xcn

f(ymn ,y
n
on)dymn

= f(xnon)

∫
Xcn

f(ymn |xnon)dymn for yn ∈ Ycn , cn > 0 (16)

where the integration is only over the censored coordinates, and Xcn denote the corresponding
integration range. For example, if xn1 = a1 and xn2 = b2 while other elements are strictly between a
and b, then Ycn = (−∞, a1)× (b2,∞)×

∏d
i=3[ai, bi], Xcn = (−∞, a1)× (b2,∞) and (16) becomes

f(xn) = f(xnon)

∫ a1

−∞

∫ ∞
b2

f(y1, y2|xnon)dy2 dy1.

To invoke the EM machinery, we first compute the expected complete log-likelihood

QC(Θ; Θold) =E[L(Θ)|x1:N ; Θold]

=E

[∑
n

∑
k

znk

[
lnπk −

1

2
ln |Σk|

− 1

2
tr

(
Σ−1
k

([
ynon
ynmn

]
− µk

)([
ynon
ynmn

]
− µk

)T)]∣∣∣∣∣x1:N ; Θold

]
.

Hence, we need to find posterior probabilities, p(znk = 1|xn), and conditional expectations, E[znk y
n
mn
|xn] =

p(znk = 1|xn)E[ynmn
|xn, znk = 1] and E[znk y

n
mn

ynmn

T |xn] = p(znk = 1|xn)E[ynmn
ynmn

T |xn, znk = 1].
The posterior probability is

〈znk 〉 :=p(znk = 1|xn) =
πk fk(x

n)∑
l πl fl(x

n)
, (17)

and it can be computed by (15) or (16). When one or more coordinates are censored, fk(x
n) =

fk(y
n
on)

∫
Xcn

fk(ymn |ynon) dymn ; thus; it is a product of the probability density function and the cu-
mulative distribution function of Gaussians of lower dimensions, and can be evaluated as explained
in A.1.
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The conditional expectations are taken with respect to fk(ym|x). Because fk(ym|yo) is a normal
density function 2 and satisfies

fk(ym|x) = fk(ym|yo,y ∈ Yc) =
fk(ym|yo)∫

Xc
fk(ym|yo) dym

, (18)

the conditional density fk(ym|x) is a truncated normal density function over Xc. Then we can
calculate the following sufficient statistics of QC :

〈ynmn
|k〉 :=E[ynmn

|xn, znk = 1] = E[ynmn
|ynon ,y

n ∈ Ycn , znk = 1]

=M1(µkmn|on ,Σ
k
mn|on ; Xcn), (19)

〈ynmn
ynmn

T |k〉 :=E[ynmn
ynmn

T |xn, znk = 1] = E[ynmn
ynmn

T |ynon ,y
n ∈ Ycn , znk = 1]

=M2(µkmn|on , Σk
mn|on ; Xcn) (20)

where µkmn|on and Σk
mn|on are the mean and covariance of fk(y

n
mn
|ynon). Recall that M1 and M2

denote the first and second moments of a truncated normal distribution (see A.1).
Next, we maximize QC with respect to Θ. Again using a Lagrange multiplier, maximization

with respect to πk gives

π̂k =
1

N

∑
n

〈znk 〉. (21)

Similarly, maximization with respect to µk and Σk leads to

µ̂k =

∑
n〈znk 〉

[
ynon
〈ynmn

|k〉

]
∑

n〈znk 〉
, (22)

Σ̂k =

∑
n〈znk 〉Snk∑
n〈znk 〉

(23)

where

Snk =

([
ynon
〈ynmn

|k〉

]
− µ̂k

)([
ynon
〈ynmn

|k〉

]
− µ̂k

)T
+

[
0 0
0 Rnk

]
, (24)

Rnk =〈ynmn
ynmn

T |k〉 − 〈ynmn
|k〉〈ynmn

|k〉T . (25)

Notice that these equations (21)-(23) resemble the update equations (3)-(5) of the standard EM
algorithm. In the censored data EM algorithm, the censored elements of yn are replaced by the
conditional means 〈ynmn

|k〉 and the sample covariance correction Rnk . When none of the data points
are censored, these update equations are equivalent to the standard EM algorithm.

2If y = (yT
m,yT

o )T is normally distributed with mean µ and covariance Σ, then the conditional distribution
of its partition, ym|yo, is also normally distributed with mean µm|o = µm + Σm,oΣ−1

o,o(yo − µo) and covariance

Σm|o = Σm,m − Σm,oΣ−1
o,oΣo,m.
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5 Truncated and Censored Data EM algorithm

In this section, we consider truncation and censoring together and present an EM procedure that
encompasses the algorithms above.

Truncation reduces the sample space from Y to YT . By restricting the partition regions Yc and
the integration ranges Xc to this reduced sample space YT , we can see that the likelihood of an
observation x is g(x) = f(x)/

∫ t
s f(y) dy where the numerator f(x) is defined by (15) and (16).

Then this truncated distribution g(x) is a mixture g(x) =
∑K

k=1 ηk gk(x) with mixing weights ηk
and component density functions gk, where

ηk = πk

∫ t
s fk(y)dy∫ t
s f(y)dy

and gk(x) =
fk(x)∫ t

s fk(y)dy
. (26)

The E step of the EM algorithm begins by finding the expectation

QTC(Θ; Θold) =E[LT (Θ)|x1:N ; Θold]

=E

[∑
n

∑
k

znk

[
ln ηk + ln fk(y

n)− ln

∫ t

s
fk(y)dy

] ∣∣∣∣∣x1:N ; Θold

]
conditional on the observed data. This involves computing the posterior probabilities

〈znk 〉 :=p(znk = 1|xn) =
ηk gk(x

n)∑
l ηl gl(x

n)
=

πk fk(x
n)∑

l πl fl(x
n)

and the conditional expectations 〈ynmn
|k〉 := E[ynmn

|xn, znk = 1] and 〈ynmn
ynmn

T |k〉 := E[ynmn
ynmn

T |xn, znk =
1] with respect to gk(ym|x). Since gk(ym|x) satisfies

gk(ym|x) = gk(ym|yo,y ∈ Yc) =
gk(ym|yo)∫

Xc
gk(ym|yo) dym

=
fk(ym|yo)∫

Xc
fk(ym|yo) dym

from (26) and this equals (18), we can deduce that the sufficient statistics 〈znk 〉, 〈ynmn
|k〉 and

〈ynmn
ynmn

T |k〉 retain the same forms of (17), (19) and (20) in Section 4.

In the M step, we find the new parameters η̂k, µ̂k and Σ̂k that maximize QTC . To take account
of the constraint

∑
k ηk = 1, a Lagrange multiplier is used in the maximization with respect to ηk.

Combining with the quantities computed in the E step, we obtain the following update equations

η̂k =
1

N

∑
n

〈znk 〉, (27)

µ̂k =

∑
n〈znk 〉

[
ynon
〈ynmn

|k〉

]
∑

n〈znk 〉
−mk, (28)

Σ̂k =

∑
n〈znk 〉Snk∑
n〈znk 〉

+Hk (29)

where the correction terms mk and Hk are given in (13) and (14), and the matrix Snk is given
in (24). Recall that the original component weight πk can be obtained from ηk through (26) as
in Section 3. The remarks on mean and covariance updates in the truncated data EM algorithm
and the censored data EM algorithm naturally lead to an observation that (28) and (29) have the
combined forms of (11) and (22), and, respectively, (12) and (23).
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6 Experiments and Results

We present experimental results to demonstrate the algorithms described above. In the following,
we describe experiments on univariate and bivariate synthetic data, and on multi-dimensional flow
cytometry data.

6.1 Synthetic Data

In each experiment, we generated datasets from a known distribution and performed censoring and
truncation. On the censored and truncated data, we trained mixture models using the standard EM
algorithm and the truncated and censored version of the EM algorithm. We also ran the standard
EM algorithm on the set of data points in Y0, that is, the observations that were not censored.

We first investigated three cases of one dimensional data. In cases (a) and (b), 1000 data points
were drawn from a Gaussian (a single component mixture) with means 3 and −8, respectively, and
with the same standard deviation 20. Values smaller than 0 were discarded (truncation) and those
greater than 40 were set to 40 (censoring). Among 1000 data points, the uncensored data points
in Y0 were about 50% in case (a) and 30% in case (b).

Figure 1 (a) and (b) show the histograms of each case before and after censoring and truncation.
In the figure, the true mean and the estimates are also drawn. As can be seen, the standard EM
algorithm always tries to find mean estimates between 0 and 40. Thus, when the true mean is
outside this range, the discrepancy between the estimates and the ground-truth can be arbitrarily
large. On the other hand, the proposed algorithm finds better estimates.

This result is also validated in case (c) in which data points were drawn from a two-component
mixture model as illustrated in Figure 1 (c). One component with weight 0.6 is centered at −3 and
the other component with weight 0.4 is centered at 15 with a common variance 20. The dataset was
truncated below at 0 and censored above at 20. Most of the data points from the component on the
left were truncated, and nearly 50% of data points were uncensored in each realization. While both
algorithms accurately estimated the positive component, the deviations of mean estimates to the
true means are evident for the negative component. Although not shown, the variance estimates
of the proposed method are also much more accurate.

Next we compared the algorithms on multivariate datasets. Two experiments were designed with
three-component bivariate Gaussian mixtures. In both cases, an observation (x1, x2) was limited to
a rectangular window [0, 25]× [0, 25]. In case (a), all three component centers were located within
the window (π = (0.5, 0.2, 0.3), µ1 = (3, 3), µ2 = (13, 3), µ3 = (20, 20),Σ1 = diag(20, 5),Σ2 =
diag(5, 20),Σ3 = diag(20, 20)). On the contrary, in case (b), two centroids were located outside
the window (π = (0.5, 0.2, 0.3), µ1 = (−3, 3), µ2 = (10,−1), µ3 = (20, 20),Σ1 = diag(20, 5),Σ2 =
diag(5, 20),Σ3 = diag(20, 20)). After 1000 data points were drawn in each case, data points with
x1 < 0 were truncated, and all other values outside the observation window were censored. More
than 100 data points were truncated and about 700 data points remained uncensored in case
(a), and nearly 400 data points were truncated and about 400 data points remained uncensored
in case (b). The data points after truncation and censoring are depicted in Figure 2. In the
figure, level contours are displayed to compare the estimated distributions to the true distribution.
The differences between algorithms are most conspicuous in case (b) where the estimates from
the truncated and censored data EM algorithm significantly outperform the estimates from the
standard EM algorithm, and the standard EM algorithm applied only on the uncensored values.
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(a) A Gaussian at 3 (b) A Gaussian at −8 (c) Two Gaussians

Figure 1: Experiments on 1-dimensional synthetic data. The original data histograms (top) are
significantly different from the observed data histograms (bottom) when truncation and censoring
occur. All data are truncated at 0 and right-censored at 40 (a),(b) or 20 (c). Dotted lines indicate
the true means of each Gaussian component. Solid lines and dash-dot lines are mean estimates
from the truncated and censored data EM algorithm and the standard EM algorithm, respectively.
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(a) Three Gaussian components with centroids at (3, 3), (13, 3) and (20, 20)

(b) Three Gaussian components with centroids at (−3, 3), (10,−1) and (20, 20)

Figure 2: Experiments on 2-dimensional synthetic data. The solid ellipses and ‘o’s are level-curves
and centroids of each component estimates. The dashed ellipses and ‘+’s are for true mixture
components. Small crosses represent data points in the truncated and censored data. x2 is censored
at 0 and 25, and x1 is truncated at 0 and censored at 25.

To quantitatively evaluate model estimates, we computed Kullback-Leibler (KL) divergences

KL(p || q) = Ep [log p− log q] ≈ 1

Ne

Ne∑
n=1

[log p (xn)− log q (xn)]

between the known true distribution p and estimated distribution q, where the expectation is ap-
proximated by a sample mean over Ne data points drawn from p. The KL divergence is non-negative
and equals to zero if and only if the estimated distribution is the same as the true distribution. We
repeated experiments on the ten different samples and averaged the resulting KL divergences. The
computed KL divergences are reported in Table 1. For all the investigated datasets, the estimated
distributions from the proposed method show significantly smaller KL divergences. Therefore,
the truncated and censored data EM algorithm successfully corrects the biases that exist in the
standard EM algorithm.

6.2 Application to Flow Cytometry Data

We now discuss a real world application. As explained earlier, this work is motivated by flow
cytometry analysis. A flow cytometer measures multiple antigen-based markers associated with
cells in a cell population.

In practice, clinicians usually rely on rudimentary tools to analyze flow cytometry data. They
select a subset of one, two or three markers and diagnose by visually inspecting the one dimensional
histograms or two or three dimensional scatter plots. To facilitate the analysis, the clinicians often
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standard EM on uncensored standard EM truncated and censored EM

1-dim (a) 1.46 ± 0.03 1.15 ± 0.02 0.02 ± 0.01
1-dim (b) 3.48 ± 0.09 3.07 ± 0.09 0.07 ± 0.03
1-dim (c) 3.82 ± 0.07 3.56 ± 0.07 0.35 ± 0.17
2-dim (a) 0.47 ± 0.03 0.36 ± 0.01 0.02 ± 0.01
2-dim (b) 3.93 ± 0.41 3.61 ± 0.58 0.52 ± 0.26

Table 1: The KL divergences between the true densities and the estimated densities are computed
for each synthetic dataset. The averages and standard errors across ten samples are reported in
the table. The proposed algorithm outperforms the standard EM algorithm.

select and exclude cell subpopulations. This process is called “gating” and usually performed
manually by thresholding and drawing boundaries on the scatter plots. It is labor-intensive and
time-consuming, and limits productivity. Moreover, the results of gating vary by user experience,
and replicating the same results by others is difficult.

These difficulties have recently motivated interest in automatic and systematic gating methods.
Although standard techniques have not been established yet, mathematical modeling of cell popu-
lations with mixture models is favored by many researchers due to the possibility of direct analysis
in multi-dimensional spaces. In Boedigheimer and Ferbas (2008); Chan et al. (2008), Gaussian
mixtures are used to model cell populations. The use of a mixture of t-distributions combined with
a Box-Cox transformation is studied in Lo et al. (2008). A more recent study reported successful
applications of a mixture of skew normal distributions or skew t-distributions in Pyne et al. (2009).
The domain knowledge of field experts is sometimes incorporated in the mixture model (Lakou-
mentas et al., 2009). However, while truncation and censoring are present in flow cytometry data,
we note that these issues have not been explicitly addressed in the literature.

Here we present the analysis of two flow cytometry datasets. These datasets were provided
by the Department of Pathology at the University of Michigan. Each cell contains five marker
readings. The markers in the first dataset are FS, SS, CD3, CD8 and CD45. These are intended
for finding T-cells, a type of white blood cells, in the blood sample. The second dataset includes
FS, SS, CD20, CD5 and CD45, and these markers are for identifying B-lymphocytes. The forward
scatter (FS) threshold is set at approximately 100, and cells with low FS values are truncated from
these datasets. Each dataset also underwent censoring so that it includes no marker values out of
the range from 0 to 1023. The censoring was severe in these datasets, and only 20% and 40% of total
observed cells are uncensored as can be seen in the scatter plots in Fig. 3 and Fig. 4. Furthermore,
for each dataset, the distribution of all cells is significantly different from the distribution of the
uncensored cells. When we exclude censored cells, the cluster of CD45+ CD3− cells are lost in the
first dataset (Fig. 3 fourth column) and the cluster of CD45+ CD20+ cells are lost in the second
dataset (Fig. 4 fourth column). Thus, analysis based exclusively on the uncensored cell population
can be misleading.

We modeled the cell population with a Gaussian mixture and fitted the model to the observed
5000 cells using the standard EM algorithm and the truncated and censored version of EM al-
gorithm. We chose a six-component model (K = 6) since, from these datasets, we expect to
find several types of cells such as lymphocytes, which mostly consist of T-cells and B-cells, lym-
phoblasts, and small populations of granulocytes and monocytes. We treated each cell as a point
in 5-dimensional space. The k-means algorithm is first performed to initialize each EM algorithm.
The convergence is determined when the relative change of the log-likelihood is less than 10−10
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(a) Scatter plots of all observed cells

(b) Scatter plots of uncensored cells

Figure 3: The first flow cytometry dataset has markers FS, SS, CD3, CD8 and CD45. These
markers are chosen to investigate the T-cells in the blood sample of a patient. Only 20% of cells
are uncensored. The CD45+ CD3− subpopulation is missing in (b).

(a) Scatter plots of all observed cells

(b) Scatter plots of uncensored cells

Figure 4: The second dataset includes FS, SS, CD20, CD5 and CD45 for B-cell population. The
uncensored cells are 40% of the total observed cells. Scatter plots show that the CD45+ CD20+

cells are missing among the uncensored cells.
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or the number of iteration reaches 500. Fig. 5 shows the evolution of the log-likelihood of the
truncated and censored data EM on the flow cytometry datasets. The value increases sharply in
the first dozens of steps and then converges. The average times per iteration were 0.01 seconds
for the standard EM and 2.50 seconds for the truncated and censored data EM under Windows 7
system equipped with two Intel(R) Xeon(R) 2.27 GHz processors and RAM 12 GB. We repeated
this process with 10 different starting points based on different runs of the k-means algorithm, and
presented the results that achieved the highest log-likelihood.

Figure 5: The truncated and censored data EM algorithm terminates when the log-likelihood value
changes less than a predefined constant or the number of iteration reaches 500.

The mixture models fitted by the standard EM and the truncated and censored data EM are
shown in Fig. 6 and Fig. 7. In the first dataset, both algorithms generated similar estimates of lym-
phocyte populations (component 1, 2, and 3), which are the primary interest in the flow cytometry
data analysis. On the other hand, the results for lymphoblasts are different (component 4 in Fig.
6(a) and component 4, 5 in Fig. 6(b)). Because a large number of lymphoblasts were truncated or
censored, the component centers from the truncated and censored data EM algorithm were located
outside the observation window. In the second flow cytometry dataset, the key difference is that
the standard EM failed to find the B-lymphocytes (CD45+ CD20+) while component 3 in Fig.
7(b) clearly identified the B-cells. The truncated and censored data EM also estimated that the
centers of component 1 and 2 have negative CD20 values because a large amount of CD45+ CD20−

lymphocytes were censored.

7 Discussion

In this paper, we addressed the problem of fitting multivariate Gaussian mixture models to trun-
cated and censored data. We presented EM algorithms and showed that their computation can be
achieved using the properties of truncated multivariate normal distributions. Simulation results on
synthetic datasets showed that the proposed algorithm corrects for the biases caused by truncation
and censoring, and significantly outperforms the standard EM algorithm. We also applied the trun-
cated and censored data EM algorithm to automatic gating of flow cytometry data and compared
the gating results to the standard EM algorithm. Our results suggest that the proposed algorithm
can be effective in identifying clinically important cell populations in flow cytometry data analysis.

Although these algorithms can be readily applied to lower dimensional data, they depend on
methods for evaluating a multivariate normal cumulative distribution function, and the algorithms
can run slower as the dimension increases. However, ever-growing computing power will lower the
hindrance to using these algorithms in the future.
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(a) Standard EM algorithm

(b) Truncated and censored EM algorithm

Figure 6: For the first flow cytometry dataset, the mixture model fits using the standard EM
algorithm and the truncated and censored EM algorithm are shown. The level contour and centroid
‘o’ of each component are indicated and labeled. Lymphocyte populations (component 1, 2, and
3) were found well by both algorithms.

(a) Standard EM algorithm

(b) Truncated and censored EM algorithm

Figure 7: The results for the second flow cytometry dataset are displayed. While the standard EM
result failed to find the CD45+ CD20+ B-lymphocytes, the truncated and censored EM found this
cell population (component 3 in (b)).
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A Truncated Multivariate Normal

We consider here some key properties of truncated multivariate normal distributions used in this
paper. The first two moments are derived and the derivatives of normal integrals are related to the
moments.

A.1 First and Second Moments

Tallis (1961) derived the moment generating function of a standardized and truncated normal
distribution. Then he derived the first and the second moments from the moment generating
function. Here we extend his approach to a normal distribution with arbitrary mean and covariance
that is truncated above and below, and show that we can simplify the computation of the first two
moments. We note that a similar derivation appeared in Manjunath and Wilhelm (2009).

Let X ∈ Rd be normally distributed with a probability density function φd(x;0,Σ) where

φd(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
.

We consider the nonzero mean case later in this section. Suppose a truncation of X below at a and
above at b and denote

α = P (a ≤ X ≤ b) =

∫ b

a
φd(x;0,Σ) dx = Φd(a,b;0,Σ)

where the inequality is component-wise and Φd(a,b;0,Σ) denotes the normal integration over the
rectangle with vertices a and b. Then the moment generating function is

m(t) =
1

α

∫ b

a
exp(tTx)φd(x;0,Σ) dx =

exp(1
2t
TΣt)

α

∫ b−Σt

a−Σt
φd(x;0,Σ) dx. (30)

We can find the first moment and the second moment from (30). We first differentiate (30) with
respect to ti and evaluate at t = 0. Then

α
∂m(t)

∂ti

∣∣∣∣
t=0

= αE[Xi] =
d∑

k=1

σi,k(Fk(ak)− Fk(bk)) (31)

where σi,k = [Σ]i,k and

Fk(x) =

∫ b−k

a−k

φd(x,x−k;0,Σ) dx−k

=φ1(x; 0, σk,k)

∫ b−k

a−k

φd−1(x−k;µ−k|k(x), Σ−k|k) dx−k

=φ1(x; 0, σk,k)Φd−1(a−k,b−k;µ−k|k(x), Σ−k|k).
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Here we used −k to denote the set of elements {1, · · · , (k−1), (k+1), · · · , d} other than the kth. The
conditional mean and covariance are µ−k|k(x) = Σ−k,kΣ

−1
k,k x and Σ−k|k = Σ−k,−k−Σ−k,kΣ

−1
k,kΣk,−k.

Taking the derivatives of (30) with respect ti and tj at t = 0 gives the second moment

α
∂2m(t)

∂ti∂ti

∣∣∣∣
t=0

=αE[XiXj ]

=ασi,j +

d∑
k=1

σi,k σj,k
σk,k

(
ak Fk(ak)− bk Fk(bk)

)
+

d∑
k=1

σi,k
∑
q 6=k

(
σj,q −

σk,qσj,k
σk,k

)[
Fk,q(ak, aq) + Fk,q(bk, bq)

− Fk,q(ak, bq)− Fk,q(bk, aq)
]

(32)

where

Fk,q(xk, xq) =

∫ b−(k,q)

a−(k,q)

φd(xk, xq,x−(k,q);0,Σ) dx−(k,q)

=φ2(xk, xq, ;0,Σ(k,q),(k,q))

∫ b−(k,q)

a−(k,q)

φd−2(x−(k,q) ; µ−(k,q)|(k,q)(xk, xq), Σ−(k,q)|(k,q)) dx−(k,q)

=φ2(xk, xq, ;0,Σ(k,q),(k,q))Φd−2(a−(k,q),b−(k,q) ; µ−(k,q)|(k,q)(xk, xq), Σ−(k,q)|(k,q)).

Likewise, −(k, q) indicates the set of elements except the kth and qth elements. µ−(k,q)|(k,q)(xk, xq)
and Σ−(k,q)|(k,q) are also defined similarly.

Therefore, we can compute the first moment (31) and the second moment (32) from a den-
sity function and a normal integration, which can be evaluated from the cumulative distribution
function and are available in many statistical toolboxes (for example, Fortran, R or Matlab).
In particular, mvncdf function in Matlab 7.9.0 evaluates the multivariate cumulative probability
using the methods developed by Drezner and Wesolowsky (1989) and by Genz (2004) for bivariate
and trivariate Gaussian. For four or more dimensional Gaussians, it uses a quasi-Monte Carlo
integration algorithm developed by Genz and Bretz (1999, 2002).

Note that Fk(x)
α and

Fk,q(xk,xq)
α are univariate and bivariate marginals of Xk and (Xk, Xq).

Now consider a normal distribution φd(y;µ,Σ) truncated at a∗ and b∗. Then

M1(µ,Σ ; [a∗,b∗]) :=E[Y] (33)

=E[X] + µ,

M2(µ,Σ ; [a∗,b∗]) :=E[YYT ] (34)

=E[XXT ] + µE[X]T + E[X]µT + µµT

=E[Y]E[Y]T + E[XXT ]− E[X]E[X]T

where E[Xi] and E[XiXj ] are evaluated at a = a∗−µ and b = b∗−µ. In Section 3, we introduced
the notations M1 and M2 to denote above expectations (33) and (34).

For example, consider a univariate random variable Y distributed normally with mean µ and
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variance σ2. If it is truncated above at 0 (that is, a∗ = −∞, b∗ = 0), then

E[Y ] =µ− σ
φ1(−µ

σ ; 0, 1)

Φ1(−µ
σ ; 0, 1)

,

E[Y 2] =µ2 + σ2 − µσ
φ1(−µ

σ ; 0, 1)

Φ1(−µ
σ ; 0, 1)

where the fraction of the standard normal density function φ and the distribution function Φ is
known as the inverse Mills ratio.

A.2 Derivatives

Here we consider the derivatives of α(µ,Σ) :=
∫ b
a φd(y;µ,Σ) dy with respect to µ and Σ used in

the derivation in Section 3, and relate them with the first and the second moments. Taking the
derivative of α(µ,Σ) with respect to µ,

∂

∂µ

∫ b

a
φd(y;µ,Σ) dy =

∫ b

a
Σ−1(y − µ)φd(y;µ,Σ) dy

= Σ−1
[
αM1(µ,Σ ; [a,b])− αµ

]
=αΣ−1M1(0,Σ ; [a− µ,b− µ])

where the last equality is from (33), so we obtain

∂

∂µ
ln

∫ b

a
φd(y;µ,Σ) dy = Σ−1M1(0,Σ ; [a− µ,b− µ]). (35)

Next if we take the derivative with respect to Σ, we have

∂

∂Σ
ln

∫ b

a
φd(y;µ,Σ) dy =

1

α

∂

∂Σ

∫ b−µ

a−µ
φd(y;0,Σ) dy

=
1

α

∫ b−µ

a−µ

(
−1

2
Σ−1 +

1

2
Σ−1yyTΣ−1

)
φd(y;0,Σ) dy

=− 1

2
Σ−1 +

1

2
Σ−1M2(0,Σ ; [a− µ,b− µ]) Σ−1 (36)

where we used the following facts (Magnus and Neudecker, 1999) in the second equality:

∂

∂Σ
tr(Σ−1A) = −(Σ−1AΣ−1)T ,

∂

∂Σ
ln |Σ| = (Σ−1)T .
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