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Abstract

We consider the problem of communication over a multiple access channel (MAC) with noiseless feedback. A

single-letter characterization of the capacity of this channel is not currently known. Several schemes exist in the

literature that provide achievable region expressions involving a number of auxiliary variables.

A series of recent results in point-to-point communications with noiseless feedback study the information theoretic

problem of finding channel capacity in a stochastic control framework. This approach has not yet been fruitful in the

study of multi-user communication scenaria.

In this paper we formulate the MAC with feedback capacity problem as a stochastic control problem for a special

class of channels for which the capacity is known to be the Cover and Leung region. This interpretation provides an

understanding of the role of auxiliary random variables. In addition, through this interpretation a useful single-letter

outer bound is derived. For the special case studied in this paper, this outer bound is tight.

I. INTRODUCTION

Shannon showed in his early work [1] that the capacity of single-user discrete memoryless channel (DMC) does

not increase with output feedback. Feedback, however, was shown to be useful in the sense of improving the error

performance or simplifying the transmission scheme. When it comes to the multiple-access channels (MACs), the

improvement becomes more dramatic since Gaarder and Wolf [2] showed that the capacity region can be expanded

with output feedback. Subsequently, the capacity region for the MAC with feedback has been studied. Cover and

Leung [3] proposed a block Markov superposition coding scheme for the discrete memoryless MAC (DM-MAC)

with feedback and it was shown to be tight for a class of channels [4], while it was shown to be strictly smaller than

the capacity region for other channels [5]. Along this line of research, Bross and Lapidoth [6] and Venkataramanan

and Pradhan [7] independently improved the Cover and Leung achievable region. An outer bound was derived in [8],
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[9] using a dependence balance bound which was shown to be tighter than the cut-set bound. The capacity region

was determined by Kramer [10] in terms of directed information. However, this expression is in an incomputable

multi-letter form, and thus, a single-letter characterization of the capacity region for the DM-MAC with feedback

is still an open problem.

Recently, there has been a significant progress in simplifying multi-letter capacity expressions utilizing a stochastic

control framework [11], [12], [12]–[15]. In particular, for finite-state channels (FSCs) with feedback The authors

in [12], [15] provided a general stochastic control framework for evaluating the capacity of the FSC with feedback

starting from the capacity expressions using directed information. Several multi-user channels have also been studied

in a similar way; DM-MAC with feedback was considered in [16]; physically degraded broadcast channel with nested

feedback was considered in [17]. These works however, concentrated on finding structural results that simplify the

construction of the encoder and decoder, and they didn’t address directly the simplification of capacity regions.

In this paper, we provide an interpretation of the single-letter capacity region for the class of DM-MAC with

feedback whose feedback capacity region is known [4]. Towards this goal, we develop a stochastic control framework

starting from the feedback capacity region using directed information expressions, and proceed through a two-step

simplification process. This process allows us to interpret the role of the auxiliary variable in the capacity expression

and provides a methodology for deriving single-letter outer bounds.

The rest of the paper is organized as follows. In Section II, the channel model and the general form of the

capacity region are introduced. We formulate, simplify and discuss the stochastic control problem in Section III.

Most of the proofs are relegated to the appendices.

II. PRELIMINARIES

A. Channel and system model

We consider a two-user DM-MAC. The input symbols X,Y and the output symbol Z take values in the finite

alphabets X ,Y and Z , respectively. The channel is memoryless in the sense that the current channel output is

independent of all the past channel inputs and the channel outputs, i.e.,

P (Zt|Xt, Y t, Zt−1) = W (Zt|Xt, Yt) (1)

Our model considers feedback, that is the transmission of the channel output from the decoder to both encoders

with unit delay. We further assume that the feedback channel is noiseless.
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Encoders generate their channel inputs based on their private messages and past outputs. Thus

Xt = f1
t (W1, Z

t−1) (2a)

Yt = f2
t (W2, Z

t−1) (2b)

The decoder estimates the messages W1 and W2 based on T channel outputs. Hence,

(Ŵ1, Ŵ2) = g(ZT ). (3)

We say that the channel is in the family CY→X when the second user can perfectly determine the first user’s

channel inputs based on its own inputs and the channel outputs. In other words,

CY→X , {W : H(X|Y,Z) = 0} . (4)

For the class CY→X , the capacity region is known to be given by the Cover and Leung region [3], [4].

Fact 1 ( [3], [4], [18]). The capacity of DM-MAC in the class CY→X is the set CCL = co(RCL), where

RCL =
∪

PV XY

(R1, R2) :

0 ≤ R1 ≤ I(X;Z|Y, V )

0 ≤ R2 ≤ I(Y ;Z|X,V )

0 ≤ R1 +R2 ≤ I(X,Y ;Z)

 , (5)

where co(A) denotes the convex hull of a set A, and all information quantities are evaluated using the joint

distribution

PV XY Z(v, x, y, z) = PV XY (v, x, y)W (z|x, y) = PV (v)PX|V (x|v)PY |V (y|v)W (z|x, y), (6)

where |V| ≤ min{|X ||Y|, |Z|}. Furthermore, the capacity region CCL can be expressed in the form

CCL = {(R1, R2) ≥ 0 : ∀(λ1, λ2, λ3) ≥ 0, λ1R1 + λ2R2 + λ3(R1 +R2) ≤ CCL(λ)} , (7)

where

CCL(λ) , sup
PV XY

{λ1I(X;Z|Y, V ) + λ2I(Y ;Z|X,V ) + λ3I(X,Y ;Z)} . (8)

B. Directed Information

There has been a dramatic improvement in computing the capacity of several communication channels by

formulating the information theory problems into the stochastic control framework [12], [15]. The common procedure

to find a single-letter capacity expression is the following: we start with a multi-letter capacity expression in the form
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of directed information for the channel of interest. We then formulate a stochastic control problem by introducing

an appropriate information state. We follow a similar procedure in this paper. Our starting point is a multi-letter

capacity expression for DM-MAC with feedback using directed information.

Fact 2 (Theorem 5.1 in [10], [4]). The capacity region of the DM-MAC with feedback is

CFB = lim
T→∞

RT (9)

where RT , the directed information T th inner bound region (or T th inner bound region), is defined as RT =

co
(
R1

T

)
, with

R1
T =

∪
P1

T

(R1, R2) :

0 ≤ R1 ≤ IT (X → Z||Y )

0 ≤ R2 ≤ IT (Y → Z||X)

0 ≤ R1 +R2 ≤ IT (X,Y → Z)

 , (10)

where IT (A → B||C) = 1
T

∑T
t=1 I(At;Bt|Ct, Bt−1). The union is over all input distributions

P (xt, yt|xt−1, yt−1, zt−1) = q1(xt|xt−1, zt−1) · q2(yt|yt−1, zt−1) ∈ P1
T (11)

for t = 1, 2, ..., T , and all information quantities are evaluated using the corresponding joint distribution

P (xT , yT , zT ) =
T∏

t=1

W (zt|xt, yt)q1(xt|xt−1, zt−1)q2(yt|yt−1, zt−1). (12)

Furthermore, the regions RT can be expressed in the form

RT = {(R1, R2) ≥ 0 : ∀(λ1, λ2, λ3) ≥ 0, λ1R1 + λ2R2 + λ3(R1 +R2) ≤ CT (λ)} , (13)

where

CT (λ) , sup
P1

T

{λ1IT (X → Z||Y ) + λ2IT (Y → Z||X) + λ3IT (X,Y → Z)} . (14)

C. Notation

We denote random variables with capital letters (X,Y, Z, ...), their realizations with small letters (x, y, z, ...), and

alphabets with caligraphic letters (X ,Y,Z, ...). A sequence of random variables is denoted with Xt = (X1, ..., Xt).

III. STOCHASTIC CONTROL PROBLEM FORMULATION

Before going into the details, we first summarize and categorize the random variables of interest based on the

accessibility to agents. The common information for all three agents (i.e., encoder 1, 2 and decoder) is the past
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output history Zt−1. In addition to that, encoder 1 knows his private message W1 and his input history Xt−1, and

similarly for encoder 2. For the class CY→X , encoder 2 can perfectly figure out the past input history of user 1

since knowledge of Y t−1 and Zt−1 gives Xt−1. This observation leads to the following simplification.

Lemma 1. For the class CY→X , the directed information T th inner bound region is RT = co(R2
T ), where

R2
T =

∪
P2

T

(R1, R2) :

0 ≤ R1 ≤ 1
T

∑T
t=1 I(Xt;Zt|Yt, X

t−1, Zt−1)

0 ≤ R2 ≤ 1
T

∑T
t=1 I(Yt;Zt|Xt, X

t−1, Zt−1)

0 ≤ R1 +R2 ≤ 1
T

∑T
t=1 I(Xt, Yt;Zt|Zt−1)

 . (15)

The union is over all input distributions

P (xt, yt|xt−1, yt−1, zt−1) = q1(xt|xt−1, zt−1) · q2(yt|xt−1, zt−1) ∈ P2
T (16)

for t = 1, 2, ..., T , and all information quantities are evaluated using the corresponding joint distribution

P (xT , yT , zT ) =
T∏

t=1

W (zt|xt, yt)q1(xt|xt−1, zt−1)q2(yt|xt−1, zt−1). (17)

Furthermore, the function CT (λ) in (14) can be simplified as

CT (λ) = sup
P2

T

{
1

T

T∑
t=1

λ1I(Xt;Zt|Yt, X
t−1, Zt−1) + λ2I(Yt;Zt|Xt, X

t−1, Zt−1) + λ3I(Xt, Yt;Zt|Zt−1)

}
.

(18)

Proof: See appendix A.

The above lemma implies that we can restrict attention to channel input distributions of the form (16) without

losing optimality. In addition the problem of finding the capacity is reduced to the maximization of a single quantity.

We now formulate an equivalent stochastic control problem to further simplify the capacity region expression.

Towards this end we introduce the following dynamic system.

• state at time t: (Xt−1, Zt−1) ∈ X t−1 ×Zt−1

• observation at time t: Zt−1 ∈ Z

• action at time t: Ut =
(
U1
t , U

2
t

)
: X t−1 → P(X )× P(Y). Actions at time t can depend on the observations

up to time t and the interpretation is

u1
t [z

t−1](xt|xt−1) = q1(xt|xt−1, zt−1), u2
t [z

t−1](yt|xt−1) = q2(yt|xt−1, zt−1) (19)

• instantaneous reward at time t (given λ = (λ1, λ2, λ3)):

Rt(λ) = λ1 log
W (Zt|Xt, Yt)

P (Zt|Yt, Xt−1, Zt−1)
+ λ2 log

W (Zt|Xt, Yt)

P (Zt|Xt, Xt−1, Zt−1)
+ λ3 log

W (Zt|Xt, Yt)

P (Zt|Zt−1)
(20)
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The control problem is to determine the optimal policy g = {gt}Tt=1 (such that ut = gt(z
t−1)) that maximizes the

average expected reward 1
T

∑T
t=1 E

g[Rt].

As a next step of simplification, we summarize Zt−1, which is the common information available to both encoders

and decoder, using Markov decision process (MDP) theory. By Lemma 1, we don’t lose optimality in the sense

of capacity region if we ignore the past input alphabets of encoder 2 while generating the channel inputs. Let us

define a random variable Θt ∈ P(X t) as the decoder’s estimates about the channel inputs based on the information

known to decoder, i.e., Θt(x
t) , P (xt|Zt, U t), ∀xt ∈ X t.

Lemma 2. There exists a mapping Ψ such that θt can be recursively generated as θt = Ψ(θt−1, u
1
t , u

2
t , zt). Fur-

thermore, (Θt)t is a controlled Markov chain with control (u1
t , u

2
t ), i.e., P (θt|θt−1, ut,1, ut,2) = P (θt|θt−1, u

1
t , u

2
t ).

Proof: See appendix B.

The following simplification is now possible.

Proposition 1. The T th inner bound region for the DM-MAC in the class CY→X is given by (13) with the quantity

CT (λ) evaluated as

CT (λ) = sup
P̄

{
1

T

T∑
t=1

λ1I(Xt;Zt|Yt, X
t−1,Θt−1) + λ2I(Yt;Zt|Xt, X

t−1,Θt−1) + λ3I(Xt, Yt;Zt|Θt−1)

}
(21)

where the supremum is over all input distributions

P (xt, yt|xt−1, yt−1, zt−1) = q1(xt|xt−1, θt−1)q2(yt|xt−1, θt−1) (22)

and the mutual information quantities evaluated using the joint distribution

P (xT , yT , zT , θT ) =
T∏

t=1

W (zt|xt, yt)q1(xt|xt−1, θt−1)q2(yt|xt−1, θt−1)θt−1(x
t−1)δΨ(θt−2,q1,q2,zt−1)(θt−1) (23)

Proof: See appendix C.

As can be seen, the simplification above does not result in a single-letter form for the capacity region of DM-

MAC with feedback. Furthermore, the domain of information state is not time-invariant and grows exponentially

with time. Since the capacity expression for this class of channels is known to be in a single-letter form [4], a

reasonable question to ask is how this expression comes about in the stochastic control framework developed thus

far. In the following we show that there is additional structure in the problem that allows us to reduce the action

space.

Lemma 3. For every action ut : X t−1 → P(X ) × P(Y) and every distribution θt−1 ∈ P(X t−1), there exist a
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distribution ϕt−1 ∈ P(V), and an action ût : V → P(X )×P(Y), such that the instantaneous reward r̄
λ
t (θt−1, ut)

can be written as

r̄
λ
t (θt−1, ut) =

∑
xt,yt,zt

W (zt|xt, yt)
∑

vt−1∈V

û1
t (xt|vt−1)û

2
t (yt|vt−1)ϕt−1(vt−1)

×

[
λ1 log

W (zt|xt, yt)∑
x̃t

W (zt|x̃t, yt)û1
t (x̃t|vt−1)

+ λ2 log
W (zt|xt, yt)∑

ỹt
W (zt|xt, ỹt)û2

t (ỹt|vt−1)

+λ3 log
W (zt|xt, yt)∑

x̃t,ỹt
W (zt|x̃t, ỹt)

∑
ṽt−1

û1
t (x̃t|ṽt−1)û2

t (ỹt|ṽt−1)ϕt−1(ṽt−1)

]
(24)

= λ1I(Xt;Zt|Yt, Vt−1) + λ2I(Yt;Zt|Xt, Vt−1) + λ3I(Xt, Yt;Zt) (25)

, r̂λ(ϕt−1, ût), (26)

where the mutual information quantities are evaluated using the distribution

P (xt, yt, zt, vt−1) = W (zt|xt, yt)û
1
t (xt|vt−1)û

2
t (yt|vt−1)ϕt−1(vt−1). (27)

Furthermore, the cardinality of V can be bounded by |V| ≤ |X ||Y|.

Proof: This is a consequence of Caratheodory’s theorem (and its application by Ahlswede and Körner), as

described in [18].

Observe that the reward function in (25) is exactly the reward relevant to the Cover and Leung region as shown

in (8) in Fact 1. Consequently, if we maximize over both the actions ût and the state ϕt−1 we can obtain an outer

bound on the capacity region of interest. This result is summarized following proposition.

Proposition 2. The capacity region of the DM-MAC with feedback in the class CY→X is outer bounded by

CFB ⊂ {(R1, R2) ≥ 0 : ∀(λ1, λ2, λ3) ≥ 0, λ1R1 + λ2R2 + λ3(R1 +R2) ≤ C(λ)} , (28)

where C(λ) is defined in (8).

Proof: Due to Proposition 1, and Lemma 3 the T th inner bound R3
T is outer bounded by the left-hand side

of (28). Since the latter is independent of T it is also an outer bound of CFB due to Fact 2, Lemma 1, and Fact 2.

Since it is known that this outer bound is tight it is clear that the described dynamical system follows a trajectory

where limt→∞ Φt = P ∗
V and limt→∞ Ût = (P ∗

X|V , P
∗
Y |V ) (where the starred quantities are the supremizing

distributions in Proposition 2). At this point it not clear how such a conclusion can be derived directly through the

control theoretic framework without resorting to the known single-letter information theoretic result. The resolution
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of this question hinges on finding a “quantization” of the space X t−1 that together with θt−1 induces the distribution

ϕt−1 and showing that with the right choice of “reduced” actions ût this “quantized” distribution converges to P ∗
V .

Another direction is a direct extension of our methodology to the general DM-MAC with feedback to find single-

letter expression of capacity region. The main difference between the general case and the case we discussed in

the paper is the type of information pattern.

Another interesting research direction is to investigate a simple sequential transmission scheme using the idea of

the posterior matching scheme [19], [20] that achieves any rate pair on the capacity region of the DM-MAC with

feedback.

APPENDIX

A. Proof of Lemma 1

Note that the encoder 2 has a perfect knowledge of the encoder 1’s past input history through the feedback

information and its own history of input. Thus, the input distributions of interest are of form

P (xt, yt|xt−1, yt−1, zt−1) = q1(xt|xt−1, zt−1) · q2(yt|xt−1, yt−1, zt−1) (29)

If we reformulate the bound for R1 at time t in the same way, we get

I(Xt;Zt|Yt, Y
t−1, Zt−1) = I(Xt;Zt|Yt, X

t−1, Y t−1, Zt−1) (30)

= E

[
log

W (Zt|Xt, Yt)∑
xt

W (Zt|xt, Yt)P (xt|Xt−1, Y t−1, Yt, Zt−1)

]
(31)

= E

[
log

W (Zt|Xt, Yt)∑
xt

W (Zt|xt, Yt)q(xt|Xt−1, Zt−1)

]
(32)

= I(Xt;Zt|Yt, X
t−1, Zt−1) (33)

where (32) is due to the conditional independence of Xt and Y t given (Xt−1, Zt−1).

Let’s define the bounds at time t as I1,t, I2,t and I3,t,

I1,t = I(Xt;Zt|Yt, X
t−1, Zt−1) (34)

I2,t = I(Yt;Zt|Xt, X
t−1, Zt−1) (35)

I3,t = I(Xt, Yt;Zt|Zt−1). (36)

Note that (34), (35), (36) are evaluated based on the joint distribution P (xt, yt, z
t). We now proceed by induction to

show that for every sequence of input distributions
{
q1(xt|xt−1, zt−1)q2(yt|yt−1, zt−1)

}T

t=1
inducing the sequence
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of measures {Pq(x
t, yt, z

t)}Tt=1, there exists a sequence of input distribution
{
q1(xt|xt−1, zt−1)q̂2(yt|xt−1, zt−1)

}
which induces the same sequence of measures {P̂ (xt, yt, z

t)}Tt=1.

For t = 1 we set q̂2(y1) = q2(y1) and have

P̂ (x1, y1, z
1) = W (z1|x1, y1)q1(x1)q̂2(y1) = W (z1|x1, y1)q1(x1)q2(y1) = P (x1, y1, z

1) (37)

Now for t+ 1 we set q̂2(yt+1|xt, zt) = Pq(yt+1|xt, zt) =
∑

yt q2(yt+1|yt,zt)Pq(x
t,yt,zt)∑

yt Pq(xt,yt,zt) and have

P̂ (xt+1, yt+1, z
t+1) = W (zt+1|xt+1, yt+1)q1(xt+1|xt, zt)q̂2(yt+1|xt, zt)

∑
yt

P̂ (xt, yt, z
t) (38)

= W (zt+1|xt+1, yt+1)q1(xt+1|xt, zt)Pq(yt+1|xt, zt)
∑
yt

Pq(x
t, yt, z

t) (39)

= Pq(x
t+1, yt+1, z

t+1) (40)

where (39) is due to the induction hypothesis and the construction of q̂2(yt+1|xt, zt).

The remaining part of the proof employs a result of [18] which utilized the convexity property of the capacity

region of DM-MAC with feedback.

B. Proof of Lemma 2

For every xt ∈ X t, we have

θt(x
t) = P (xt|zt, ut) =

P (zt, x
t|zt−1, ut)

P (zt|zt−1, ut)
(41)

=
P (zt, xt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)

P (zt|zt−1, ut)
(42)

=

∑
yt
P (zt, xt, yt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)

P (zt|zt−1, ut)
(43)

=

∑
yt
W (zt|xt, yt)P (xt|xt−1, zt−1, ut)P (yt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)

P (zt|zt−1, ut)
(44)

=

∑
yt
W (zt|xt, yt)u

1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(x
t−1)∑

x̃t,ỹt,x̃t−1 W (zt|x̃t, ỹt)u1
t (x̃t|x̃t−1)u2

t (ỹt|x̃t−1)θt−1(x̃t−1)
(45)
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which establishes θt = Φ(θt−1, u
1
t , u

2
t , zt). Furthermore,

P (θt|θt−1,ut,1, ut,2) (46)

=
∑

xt,yt,zt

P (θt|θt−1, ut,1, ut,2, zt, xt, yt)P (zt|θt−1, ut,1, ut,2, zt−1, xt, yt) (47)

P (xt, yt|θt−1, ut,1, ut,2, zt−1, xt−1)P (xt−1, zt−1|θt−1, ut,1, ut,2)

=
∑
zt

δΦ(θt−1,u1
t ,u

2
t ,zt)

(θt)
∑
xt,yt

W (zt|xt, yt)
∑
xt−1

u1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(x
t−1) (48)

= P (θt|θt−1, u
1
t , u

2
t ) (49)

C. Proof of Proposition 1

Define Θt ∈ P(X t) as an information state. By Lemma 2, θt is recursively updated as a function of u1
t , u

2
t and

θt−1 and therefore the process (Θt)t is a controlled Markov chain with an action (u1
t , u

2
t ).

Let rt(λ) be the instantaneous reward at time t which is defined as follows:

rt(λ) = λ1 log
P (zt|xt, yt, x

t−1, zt−1)

P (zt|yt, xt−1, zt−1)
+ λ2 log

P (zt|xt, yt, x
t−1, zt−1)

P (zt|xt, xt−1, zt−1)
+ λ3 log

P (zt|xt, yt, z
t−1)

P (zt|zt−1)
(50)

= λ1 log
W (zt|xt, yt)∑

x̃t
W (zt|x̃t, yt)u1

t (x̃t|xt−1)
+ λ2 log

W (zt|xt, yt)∑
ỹt
W (zt|xt, ỹt)u2

t (ỹt|xt−1)

+ λ3 log
W (zt|xt, yt)∑

x̃t,ỹt
W (zt|x̃t, ỹt)

∑
x̃t−1 u1

t (x̃t|x̃t−1)u2
t (ỹt|x̃t−1)θt−1(x̃t−1)

(51)

The expected reward at time t conditioned on the information states θt−1 and the control actions ut is

E
[
Rt(λ)|θt−1, ut,1, ut,2

]
(52)

=
∑

xt,yt,zt

W (zt|xt, yt)
∑
xt−1

u1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(x
t−1)

×

[
λ1 log

W (zt|xt, yt)∑
x̃t

W (zt|x̃t, yt)u1
t (x̃t|xt−1)

+ λ2 log
W (zt|xt, yt)∑

ỹt
W (zt|xt, ỹt)u2

t (ỹt|xt−1)

+λ3 log
W (zt|xt, yt)∑

x̃t,ỹt
W (zt|x̃t, ỹt)

∑
x̃t−1 u1

t (x̃t|x̃t−1)u2
t (ỹt|x̃t−1)θt−1(x̃t−1)

]
(53)

, r
λ
t (θt−1, u

1
t , u

2
t ), (54)

which is a function of the information state θt−1 and the action ut = (u1
t , u

2
t ) only. By standard MDP results, the

optimal action is a Markov policy such that at time t it can be determined by looking at the information state θt−1

only, i.e., the optimizing distribution can be a form of q1(xt|xt−1, θt−1)q2(yt|yt−1, θt−1).
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