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Abstract

Objective: Sepsis represents a major factor in morbidity and mortality
in postoperative patients. The systemic inflammatory response syndrome
(SIRS) criteria are binary statistics used to identify patients with sepsis,
and are based on four physiological variables: body temperature, heart rate,
breathing rate, and white blood cell count. However, the SIRS criteria have
been criticized for having reduced specificity (high false positive rate), which
diminishes their utility in clinical settings. This paper presents new features
derived from the same four variables, and a methodology for predicting sep-
sis in postoperative patients under moderate care.
Methods and material: Data for 1213 sepsis and 26 non-sepsis patients are
obtained from post-operative patients on telemetry. We propose new tem-
poral features that capture trends and variability in the SIRS variables, and
a framework for prediction based on kernel methods. Since the physiological
variables of patients in moderate care are sampled irregularly, the temporal
features often have missing values. We therefore propose modified kernels
that account for these missing values, allowing us to apply existing kernel
methods such as the two-class and one-class support vector machines.
Results: We compare the predictive power of the temporal features to those
of the SIRS criteria. Performance is evaluated not just when the patients
are discharged or sent to intensive care unit (ICU), but also some number
of hours in advance. The experimental results show that using temporal
features leads to improvements over the SIRS criteria by a statistically sig-
nificant amount. We also present 6 temporal features that appear to be
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most relevant for accurate prediction.
Conclusion: SIRS criteria are based on the extreme values of vital signs in a
recent (typically 24-hour) period. The proposed temporal features also take
into account the trends and variability of vital signs, and offer substantially
improved predictive power in postoperative patients. The implications for
clinical practice are potentially reduced time to administration of antibiotics,
vasopressors, and IV fluids to patients that may otherwise not conventionally
be thought of as suffering from sepsis.

Keywords: sepsis, irregular sampling, missing features, kernel methods

1 Introduction

Sepsis refers to a systemic response arising from infection [1]. In the United
States, 0.8 to 2 million patients become septic every year, 30% of which
are surgical patients, and hospital mortality for sepsis patients ranges from
18% to 60% [2, 3]. The number of sepsis-related deaths has tripled over the
past 20 years due to the increase in the number of sepsis cases, even though
the mortality rate has decreased [2]. Because of its high mortality, post-
operative surgical patients with possible sepsis are frequently admitted to an
intensive care unit (ICU) from moderate care/telemetry unit for monitoring
and treatment. Delay in treatment is associated with mortality. Hence,
timely prediction of sepsis is critical.

The clinical definition of sepsis is the presence of systemic inflammatory
response syndrome (SIRS), together with a known or suspected infection.
The phrase systemic inflammatory response syndrome was proposed to de-
scribe an inflammatory state affecting the whole body, independent of its
cause. SIRS is defined as the presence of two or more of the following “SIRS
criteria”:

• a body temperature greater than 38◦ C or less than 36◦ C

• a heart rate greater than 90 beats per minute

• tachypnea, manifested by a respiratory rate greater than 20 breaths
per minute, or hyperventilation, as indicated by a PaCO2 of less than
32 mm Hg

• an alteration in the white blood cell count, such as a count greater
than 12,000/cu mm, a count less than 4,000/cu mm, or the presence
of more than 10 percent immature neutrophils
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within a certain time window, e.g., during the past 24 hours [1].
SIRS criteria are widely used by physicians as a way to identify patients

with possible sepsis [4, 5]. However, it has been criticized for having reduced
specificity (high false positive rate) at acceptable sensitivities, thus limiting
its use in clinical settings [4, 5, 6]. The SIRS criteria depend on the highest
and/or lowest values of the four SIRS variables within the window. This
motivates us look at more discriminating features within the window, such
as the variance and range. We refer to such features as temporal features
because they reflect how variables change with time.

In addition to temporal features, we also develop a methodology for pre-
diction based on these features. We adopt the general framework of kernel
methods, which have proven to be successful in a number of applications
[7]. In particular, we employ particular kernel methods known as support
vector machines. Based on the maximum-margin principle, SVMs employ
kernels to generating nonlinear decision boundaries, and have empirically
been shown to generalize well even in the presence of many irrelevant fea-
tures.

One of the challenges with this approach is that measurements obtained
from patients in moderate care are sampled irregularly, meaning the time
between consecutive samples is not constant. Unlike patients in an intensive
care unit (ICU), whose vital signs are monitored constantly, patients in
moderate care are monitored based on the severity of their condition and
the availability of nursing staff. Irregular sampling leads to situations where
there are too few samples available in a given time window to compute
some of our proposed temporal features. In other words, the feature vector
associated to a patient is prone to have missing values. In our data, about
20% of temporal features are missing due to irregular sampling.

When dealing with missing data, care must be taken to ensure that the
kernel is positive semi-definite which is a technical condition that is required
for these methods to work. Previous work on kernels for missing data include
[8, 9]. In [8], a polynomial kernel for missing data is proposed. Instead, they
introduce a concept of instance margin (the margin of a hyperplane with
respect to missing data) and adopt the maximum-margin principle to the
setting. The resulting optimization problem is non-convex and solved iter-
atively. In [9], kernel values for missing data are estimated as an expected
value of the kernel conditioned on observed data. As the authors stated, the
drawback of this method is that if the dimensionality of the space is large,
high dimensional integration technique is needed, which entails high compu-
tational cost. We propose a simple but effective method for handling missing
data, which combines imputation by zero with a rescaling step inspired by

3



the notion of instance margin.
The application of machine learning methods such as logistic regres-

sion, artificial neural networks, and support vector machines to sepsis-related
problems have been explored in different patient monitoring environments
[10, 11]. The authors were interested in prediction of death [10] or severe
sepsis [11] from sepsis patients rather than predicting sepsis itself from sur-
gical patients. In their settings, since the patients were monitored in an
ICU, the patients’ vital signs were observed regularly and frequently, and
therefore more conventional methods could be applied. We note that the
general methodology developed here is applicable to the case of regularly
sampled data.

2 Problem Statement

For concreteness, we first describe our motivating application and data be-
fore presenting the general methodology.

2.1 Concrete Problem Statement

Institutional review board approved this study at The University of Michi-
gan Hospital, a large, tertiary care facility. The data used for this study are
from patients who were admitted for surgery and post-operative care be-
tween 7/1/2007 and 10/27/2008. A perioperative electronic medical record
(Centricity, General Electric Healthcare, Waukesha, WI) was used to iden-
tify patients who were subsequently admitted to a telemetry unit for post-
operative care.

Following the SIRS criteria, the variables we used were heart rate, body
temperature, respiratory rate, and white blood cell count. For convenience,
we refer to the variables as vital signs, even though white blood cell count
is technically not considered a vital sign. Hemodynamic and respiratory
data were acquired either automatically by a validated electronic interface
from the physiological monitors (General Electric Healthcare) or manually
by nursing staff. All physiologic data were acquired for each telemetry unit
following the admission order protocol and were validated by clinical nurs-
ing staff prior to the entry into the medical record. In step-down/telemetry
units, patients are monitored only when necessary. Hence, the vital signs
obtained are recorded at irregular time intervals. In addition to the four vi-
tal signs, our data included demographic information including age, height,
weight, and ASA (American Society of Anesthesiologists) classification of
each patient, which was obtained from pre-operative history and physical
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(a) non-sepsis patient

−3 −2.5 −2 −1.5 −1 −0.5 0

50

100

150

he
ar

t r
at

e
(b

ea
ts

/m
in

)

−3 −2.5 −2 −1.5 −1 −0.5 0
30

35

40

45

bo
dy

 te
m

pe
ra

tu
re

(o
 C

)

−3 −2.5 −2 −1.5 −1 −0.5 0
0

10

20

30

40

re
sp

ira
to

ry
 r

at
e

(b
re

at
h/

m
in

)

−3 −2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

W
B

C
 c

ou
nt

(1
04 ce

lls
/m

m
2 )

(b) sepsis patient

Figure 1: Examples of vital signs recorded. Horizontal lines correspond to
the thresholds defining the SIRS criteria.

examination. The vital signs were recorded up to the point where the pa-
tient was admitted to the intensive care unit (ICU) or discharged. Patients
admitted to the ICU were reviewed for suspected sepsis. There are 1239
post operative patients, 26 of which become septic. This is consistent with
the prevalence of sepsis in postoperative patients which is 1 to 16 percent
[2, 12, 13].

We preprocessed the data in order to remove any obvious errors. For
example, some body temperature readings had no indication of the tem-
perature scale. If the recorded body temperature was greater than 60, we
assumed that it was recorded in ◦ F and converted the value to ◦ C. We ex-
cluded patients whose recordings had none of above mentioned vital signs,
and any samples in the vital signs that did not make sense were dropped,
e.g., heart rate samples equal to zero.

Figure 1 shows representative examples of vital signs of patients with and
without sepsis. In this figure, each patient’s vital signs are time-shifted such
that t = 0 corresponds to the time when he or she is discharged or admitted
to the ICU. Note that the vital signs are sampled at irregular intervals and
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Table 1: Notations

# of vital signs Nd

the set of patterns X = {x : x = (d1, . . . , dNd
)}

vital signs
di ∈ R2pi , for some pi, ∀i = 1, . . . , Nd

di = (ti1, vi1, ti2, vi2, . . . , tipi , vipi)

class labels y ∈ {−1, 1}

also differ in the number of samples. Our goal is to make accurate, early
predictions of sepsis.

2.2 Abstract problem statement

We denote the vital signs of a patient in a structured form x = (d1, . . . , dNd
)

and the set of all x as X . In the cases of sepsis prediction, the number of
vital signs is Nd = 4. Each di corresponds to a vital sign of the patient and
is an irregularly sampled time-series, i.e.,

di = (ti1, vi1, ti2, vi2, . . . , tipi , vipi)

for some pi ∈ {0, 1, 2, . . . }, where tij and vij represent the time and the value
of the jth observed sample in di. Notice that within one pattern x, each di is
obtained from irregular sampling, i.e., (ti2−ti1), (ti3−ti2), . . . , (tipi−ti(pi−1))
are typically distinct, and the number of observed samples for each di are
different, i.e., p1, p2, . . . , pNd

are typically distinct. Furthermore, for any two
patterns x and x′ ∈ X , we typically have pi 6= p′i for i = 1, . . . , Nd, meaning
different variables are recorded different numbers of times. The class label
y ∈ {−1, 1} of x is −1 if the patient corresponding to x is septic and 1 oth-
erwise. The training data consists of labeled patients (x1, y1), . . . , (xn, yn),
where in our application n = 1213 + 26 = 1239.

For each training patient, t = 0 corresponds to the time when he or
she is admitted to the ICU or discharged. To assess the performance of
early diagnosis, a test patient will be diagnosed not only when he or she
is admitted to the ICU or discharged, but also some number of hours in
advance. To do this, we will truncate the vital signs of a test patient beyond
the time of prediction, and for this patient t = 0 corresponds to the time of
prediction.
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3 Proposed method

Our approach to this problem can be summarized as follows. First, we ex-
tract temporal features from vital signs. Because of irregular sampling, some
features could be missing. For example, features extracted from tempera-
ture are missing in about 3% of the patients and those from white blood
cell count are missing in about 50% of the patients. Thus, we define ap-
propriate kernels (or similarity measures) that can handle the missing data.
Once we obtain the kernel function, we are in a position where we can apply
existing kernel-based machine learning algorithms, e.g., support vector ma-
chine. Our primary methodological contributions are feature extraction in
irregularly sampled multivariate time series, and adapting kernel methods
to handle missing features.

We define our temporal features as follows. Let Φ∆ : X → Rl denote such
a feature map, which outputs a vector of length l whose elements consist
of temporal features from vital signs, based on a time window of length ∆.
The time window is defined as [−∆, 0], and Φ∆ only considers samples that
are observed within the window. Samples observed outside the window are
ignored. For each vital sign, the temporal features are composed of the mean,
standard deviation, range, maximum positive change, maximum negative
change, and slope of a line fit using least squares regression. Therefore,
l = 4 × 6 = 24. Figure 2 illustrates the procedure of temporal feature
extraction. After the extraction, we scale each feature to the range [−1, 1].

Suppose that x and x′ represent two patterns. We define a kernel func-
tion k(x, x′) by applying conventional kernels for Euclidean data to the fea-
tures Φ∆(x), Φ∆(x′). For example, for the polynomial kernel (1) or Gaussian
kernel (2), we have

k(x, x′) =
(
〈Φ∆(x),Φ∆(x′)〉+ c

)p
(1)

k(x, x′) = exp
(
−‖Φ∆(x)− Φ∆(x′)‖2/σ2

)
. (2)

However, because of irregular sampling there may be missing elements in
Φ∆(x) and/or Φ∆(x′), i.e, there may be vital signs that were never observed
during [−∆, 0] for x (and/or [−∆, 0] for x′), or have insufficient samples to
form the statistic. Therefore, we have to modify (1) or (2) to handle missing
data.

A standard approach to missing data is imputing missing features by
zero [14]. When computing an inner product, this is equivalent to ignoring
the missing features. Suppose w ∈ Rl is a vector with no missing elements.
With the zero imputation, an inner product between w and Φ∆(x) is defined
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Figure 2: The illustration of temporal feature extraction process

as
〈w,Φ∆(x)〉F =

∑
i∈Ix

wi · Φ∆(x)i

where Ix represents the indices of non-missing elements in Φ∆(x). As stated
in [8], when combined with SVMs, zero imputation underestimates the mar-
gin of a hyperplane with a normal vector w with respect to Φ∆(x) in a valid
subspace. Thus, they introduce a concept of instance margin defined as

y〈w,Φ∆(x)〉F
‖w(x)‖

(3)

where w(x) is a vector formed with {wi}i∈Ix , and adopt the maximum-
margin principle to the setting. One can consider the instance margin as a
conventional margin normalized by ‖w‖/‖w(x)‖,

y〈w,Φ∆(x)〉F
‖w(x)‖

=
y〈w,Φ∆(x)〉F

‖w‖
· ‖w‖
‖w(x)‖

.

One drawback of the method is that due to the term w(x), the resulting
optimization problem is non-convex and solved iteratively.

Here, we propose to impute the missing features by zero and rescale the
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non-missing features by l/|Ix|,

Φ′∆(x)k =

{
l/|Ix| · Φ∆(x)k if Φ∆(x)k is not missing,

0 if Φ∆(x)k is missing.

The normalization term l
|Ix| = ‖w‖0

‖w(x)‖0 can be thought as an approximation

to ‖w‖
‖w(x)‖ . Then, we can define a new inner product 〈·, ·〉N between w and

Φ∆(x) as a standard inner product between w and Φ′∆(x),

〈
w,Φ∆(x)

〉
N

= 〈w,Φ′∆(x)〉 =

l∑
i=1

wi · Φ′∆(x)i. (4)

Another rationale behind this is that (4) is equivalent to

〈
w,Φ∆(x)

〉
N

=
l

|Ix|
∑
i∈Ix

wi · Φ∆(x)i.

Therefore, this method of imputation assumes that if missing element Φ∆(x)k
was observed, wk · Φ∆(x)k would have produced a similar value to those of
non-missing elements.

The inner product between Φ∆(x) and Φ∆(x′) is then〈
Φ∆(x),Φ∆(x′)

〉
N

=
〈
Φ′∆(x),Φ′∆(x′)

〉
=

l

|Ix|
· l

|Ix′ |
∑

i∈Ix
⋂
Ix′

Φ∆(x)i · Φ∆(x′)i. (5)

For the distance between Φ∆(x) and Φ∆(x′), we have

‖Φ∆(x)− Φ∆(x′)‖2N = ‖Φ′∆(x)− Φ′∆(x′)‖2

=
〈
Φ∆(x),Φ∆(x)

〉
N
− 2
〈
Φ∆(x),Φ∆(x′)

〉
N

+
〈
Φ∆(x′),Φ∆(x′)

〉
N
. (6)

By replacing the inner product in (1) or the distance in (2) with (5) or
(6), respectively, we have well-defined kernel functions. With these kernel
functions, we can apply existing kernel-based machine learning methods. In
experiments, we applied both zero imputation method and our proposed
method with SVMs. The performance with zero imputation method was
slightly worse than the proposed method, but not by a statistically signifi-
cant amount, and the comparison results are not included.
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Table 2: Methods

method features classification algorithm

temp-SVM temporal features SVM (linear)
temp-OCSVM temporal features OC-SVM (Gaussian)

SI-SVM SIRS indicators SVM (linear)
SS SIRS indicators sum and thresholded

4 Experiments

4.1 Experimental setting

Recall that there are 1239 post operative patients, 26 of which become septic.
To show how the idea of introducing temporal feature works compared to
SIRS criteria, we compare 3 feature sets, (a) the temporal features proposed
in this paper, (b) SIRS indicators, and (c) SIRS score. By following a clinical
convention, all the features are based on vital sign observations during the
last ∆ = 24 hour window. SIRS indicators are 4 binary variables, each
of which indicates whether the corresponding condition in SIRS criteria is
met. When there is no observation for a certain vital sign, the corresponding
indicator is assumed to be 0. SIRS score is defined as the sum of the SIRS
indicators, taking values 0− 4. Note that a diagnosis of SIRS is equivalent
to SIRS score ≥ 2.

Among machine learning algorithms, we first apply the SVM with the
linear kernel (equation (1) with c = 0 and p = 1) to temporal features
and SIRS indicators. Since SIRS score is just one variable, it is directly
thresholded without any learning procedure. We also include experimental
results when the OC-SVM (one class support vector machine) with Gaussian
kernel (equation (2) with σ = 1) is applied to the temporal features. The
OC-SVM uses only the non-sepsis patients as training data, and is motivated
by our findings in 4.2 below. These 4 method are summarized in Table 2.

4.2 Exploratory results

A kernel can be considered as a measure of similarity between patterns ex-
pressed as an inner product in some feature space [7]. In this section, we plot
the histograms of kernels values between patients (with the linear kernel)
in Figure 3 to show whether the kernel (or similarity measure) we proposed
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Figure 3: Histogram of similarity k(x, x′)

previously captures the actual similarity between patients. Similarities be-
tween non-sepsis patients are distributed around 18 whereas those between
sepsis patients and non-sepsis patients are distributed around 13. One inter-
esting thing to note is the similarities between sepsis patients. We expected
that similarities between sepsis patients would have larger values, but they
don’t. This observation can be explained as healthy patients are alike but
unhealthy patients are unhealthy in their own ways. This motivated us to try
the OC-SVM, since the sepsis patients did not seem to form a homogeneous
class.

4.3 Performance comparison

We assess performance with the AUC (area under curve) of the ROC (re-
ceiver operating characteristic). We generate ROCs using different thresh-
olds for the outputs of the decision function. AUCs and their confidence in-
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tervals are estimated using 100 bootstrap samples [15]. Let D = {(xi, yi)}ni=1

denote the original sample and Bk, k = 1, . . . , 100 denote the kth bootstrap
sample of size n, which is obtained by sampling with replacement from D.
Also let AUC(Dtr, Dtest) denote AUC estimate with Dtr as training data
and Dtest as test data. Since AUC(D,D) is likely to be higher than the true
AUC, a bias reduction is required. This is done with bootstrap samples [15].
Let

AUCk = AUC(D,D)− (AUC(Bk, Bk)−AUC(Bk, D)), k = 1, . . . , 100

and let σ̂2 be the sample variance of {AUCk}100
k=1. Then, AUC and a 1− α

confidence interval are estimated as

ÂUC =
1

100

100∑
k=1

AUCk

ĈI = [ÂUC −Zα/2σ̂, ÂUC + Zα/2σ̂]

where Zα is the upper αth quantile for the standard normal distribution.
Now we present comparison results of the 4 methods. We also show the

performances of the methods for early prediction. To do this, we truncate a
certain amount of time (3, 6, and 12 hours) from vital signs of test patients.
The AUC plots are shown in Figure 4. (Parameters are set as C = 1.0 for
SVM and ν = 0.5 for OC-SVM.) We can easily see that temp-SVM is the
best, and temp-OCSVM is the second best. The performances of SI-SVM
and SS are similar and worse than the two other method by a significant
amount. This suggests that temporal features have more predictive power
than SIRS indicators or SIRS score.

More detailed results including AUC and 90% confidence interval esti-
mates along with other choices of parameters are shown in Table 3. For
the temp-SVM and temp-OCSVM, the best performance is obtained when
either C = 10.0 or ν = 0.5, but the other choices also lead to significant
improvements over SI-SVM and SS.

4.4 Feature selection

We also investigated which features are most relevant for prediction. In
this analysis, the feature set includes demographic data in addition to the
temporal features. Previously, we used ∆ = 24 hour window for all the vital
signs by following a clinical convention. In this section, however, since white
blood cell count is less frequently observed, we use two different window
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Figure 4: ROC curves of the 4 methods. Parameters are set as C = 1.0 for
SVM and ν = 0.5 for OC-SVM.

lengths: ∆1 = 24 for heart rate, respiratory rate, temperature, and ∆2 =
72 for white blood cell count . We rank the features based on mutual
information between the features and labels [16]. To compute the mutual
information, we first quantize each feature with 10 bins uniformly located
from −1 to 1. Missing features are not included in the computation. The
ranking according to mutual information is summarized in Table 4.

After feature ranking, we evaluated the performance of the best k fea-
tures, for k = 1, . . . , 28. The results are shown in Figure 5. AUC estimate
does not change much until 6 features remain. However, when one more fea-
ture is removed from this feature set, the performance drops substantially.
The 6 features are the maximum positive change of white blood cell count,
the mean/range/standard deviation/maximum positive change of respira-
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Table 3: AUC and confidence interval estimates

method parameter
hours in advance

0 3 6 12

te
m

p
-S

V
M

C = 0.1
0.94 0.88 0.86 0.84

[0.91, 0.97] [0.82, 0.93] [0.81, 0.91] [0.79, 0.89]

C = 1.0
0.95 0.91 0.89 0.88

[0.93, 0.97] [0.87, 0.95] [0.85, 0.93] [0.84, 0.92]

C = 10.0
0.95 0.92 0.90 0.90

[0.92, 0.98] [0.87, 0.96] [0.85, 0.95] [0.85, 0.95]

te
m

p
-O

C
S

V
M ν = 0.1

0.80 0.70 0.64 0.63
[0.70, 0.89] [0.60, 0.80] [0.53, 0.75] [0.51, 0.74]

ν = 0.3
0.87 0.81 0.75 0.71

[0.80, 0.94] [0.73, 0.88] [0.67, 0.84] [0.62, 0.80]

ν = 0.5
0.89 0.83 0.79 0.75

[0.83, 0.95] [0.77, 0.89] [0.73, 0.86] [0.67, 0.82]

S
I-

S
V

M

C = 0.1
0.28 0.34 0.37 0.35

[0.22, 0.33] [0.27, 0.40] [0.30, 0.44] [0.28, 0.43]

C = 1.0
0.69 0.65 0.62 0.65

[0.63, 0.74] [0.59, 0.71] [0.55, 0.69] [0.57, 0.73]

C = 10.0
0.69 0.65 0.62 0.65

[0.63, 0.74] [0.59, 0.71] [0.55, 0.69] [0.57, 0.73]

S
S N/A

0.67 0.64 0.61 0.65
[0.61, 0.73] [0.57, 0.71] [0.53, 0.68] [0.57, 0.73]

tory rate, and the mean of heart rate.

5 Conclusion and Implications

In this paper, we propose a method for predicting sepsis in postoperative
patients. Our methodology is based on the extraction of temporal features
from the same physiological variables that define SIRS. Unlike the SIRS cri-
teria, which only reflect the extreme values of vital signs in a given window,
these temporal features also capture the trends and variability of vital signs.
We also developed a framework for applying kernel methods with missing
values, which allows our methodology to be applied to patients in moderate
care, whose vital signs tend to be irregularly sampled.
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Table 4: Feature ranking according to mutual information.

Feature Ranking Feature Ranking

age 19 BMI 22
ASA 25 gender 24

h
ea

rt
ra

te

mean 6

te
m

p
er

at
u

re

mean 18
standard dev. 13 standard dev. 16

range 8 range 15
max pos. change 10 max pos. change 11
max neg. change 23 max neg. change 14

slope 27 slope 28

re
sp

ir
at

or
y

ra
te mean 1

W
B

C
co

u
n
t mean 17

standard dev. 4 standard dev. 9
range 3 range 12

max pos. change 5 max pos. change 2
max neg. change 7 max neg. change 21

slope 20 slope 26

The combination of temporal features in kernel methods leads to signif-
icant improvements in predictive power compared to the more conventional
SIRS score. We evaluated these methods based on their ability to predict
the presence of sepsis several hours in advance of when the patients were
actually transitioned to an ICU or discharged. For example, when mak-
ing predictions for six hours in advance, and assuming a specificity (false
positive rate) of 10 percent, our method achieves a true positive rate of 66
percent, while the basic SIRS criteria lead to a true positive rate of around
15 percent. We also identified six specific temporal features that appeared
to be most relevant for prediction of sepsis in postoperative patients.

The proposed temporal features were chosen a priori, and are intended to
be simple yet general. Hand tuning of these features for particular variables
may lead to further improvements.

The implications for clinical practice are potentially reduced time to
effective administration of appropriate sepsis treatment. It has been well
documented that delay in appropriate antibiotic administration in a septic
patient has a profoundly negative impact on survival [17]. Furthermore,
“goal directed” sepsis therapy is now recommended for early intervention
in septic patients. Rivers, et al showed a reduction in mortality from 46.5
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Figure 5: AUC plot as the number of features used decreases.

percent to 30.5 percent when such a protocol was implemented [18]. This
protocol has become a key component of the Surviving Sepsis Campaign
[19]. This therapy includes the administration of antibiotics, vasopressors,
and IV fluids to patients that is thought to be suffering from sepsis. How-
ever, something must trigger this response. While profoundly septic patients
are occasionally missed, it is not uncommon for a patient to begin express-
ing signs of sepsis that are not detected by clinicians, and only in retrospect
become recognized as the start of a patient’s demise. The algorithm we
describe above has the potential to enable clinicians to focus on a poten-
tial sepsis diagnosis earlier. Further prospective trials will be required to
determine if such triggered interventions reduce morbidity and mortality.
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