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Abstract

In a cooperative communication scenario, where a transmitter can transmit a packet directly to the

receiver or indirectly through a relay, there is an inherent trade-off between energy and delay. While

it may consume more energy to transmit a packet directly to the receiver than transmitting through a

relay, the transmission through relay incurs more delay.

We pose this problem as an infinite horizon stochastic control problem. There are two possible

cases: the centralized case where there exists a centralized controller which views the queue lengths of

both the nodes, and the decentralized case where the information about the queue size of a node is not

available to the other node. We find the optimum centralized control policy if the relay node does not

have its own traffic, and show that, under certain conditions, it can be implemented in a decentralized

fashion. For the decentralized case we consider traffic at both transmitter and the relay node and we

prove a structural result that the optimum policy is the solution of a dynamic programming equation

and the optimization is done over a fixed state space i.e., a state space that does not increase with time.

I. INTRODUCTION

In a wireless channel, successful communication between any two nodes is influenced by

the channel statistics, transmission energy, energy path loss and interference by other users at

the receiver, among other factors. With increasing number of wireless networking devices using

real time applications, the delay is an important parameter for QoS (quality of service) of the
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communication, whereas due to battery constraints, the transmission energy is costly.

In a wireless network, the energy required to transmit a packet successfully to a receiver could

be large due to large distance between the two nodes or bad channel gain, but presence of other

nodes in the network could provide alternate route with possibly less energy costs. But since

this requires successful transmission from the transmitter to the relay node and then from relay

node to the receiver node, clearly the delay is more. Thus there is a tradeoff between the energy

cost for successfully routing a packet and the delay cost.

In this work, we first consider a relay channel with a transmitter, relay and a receiver node

with incoming traffic at the transmitter node only. There are fixed energy costs for any successful

transmission from transmitter to relay, relay to receiver, or transmitter to the receiver, and there

is a delay cost for each packet in the queue of either transmitter or the receiver. And the

energy and delay costs are common knowledge among the nodes. There could be two possible

cases regarding the information structure of the problem, centralized and decentralized. In the

centralized case, the queue lengths of both, transmitter and relay node are common knowledge,

whereas in the decentralized case, the queue length of any node is its private knowledge. The

objective is to find the optimal strategy to be implemented by the transmitter and the relay node

in the centralized and decentralized fashion that minimizes the total cost of energy and delay.

The remainder of this work is structured as follows. In section II, we present the model .

In section III, we consider the case with traffic only at the transmitter node. We define the

centralized control problem and find the optimum strategy for the centralized case and also

show that it can be implemented in a decentralized case as well. In section IV we consider the

decentralized scenario, under the assumption that the relay is also having its own traffic. We

formulate the problem as an instance of decentralized control with delayed sharing pattern [4]

and prove structural result that the optimum policy is the solution of a dynamic programming

equation where the optimization is done over a fixed state space as opposed to an ever-increasing

state-space in general.

II. MODEL

Our model consists of a transmitter node (node 1), a relay node (node 2) and a receiver node

(node 3). The time is discretized into slots and we assume Bernoulli packet arrival processes
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Fig. 1. A simple relay channel

pt, qt at node 1 and 2 respectively and the probability of arrival of a packet in any slot is p

and q for node 1 and 2. Both node 1 and 2 have queues of infinite size. The transmitter has

to send the arrived packets to the receiver and it has a choice to either transmit directly to the

receiver or transmit it through the relay or not transmit at all. We denote by x1
t and x2t , the

number of packets at time t in the queues of node 1 and node 2, respectively. Node 1 and

node 2 take action u1t ,u
2
t , respectively, as a function of all the information gathered till time t.

The possible actions for node 1 are {E13:transmit to node 3, E12: transmit to node 2, 0: wait

(don’t transmit) } and possible actions for node 2 are {E23: transmit to node 3, 0: wait }. At

the end of time slot t, node 1 and node 2 receive a noiseless feedback wt from the receiver

stating if the slot had successful transmission from node 1 (1) or node 2 (2), was idle (0), or

had a collision (e). Thus each node at time t can determine (u1
t−1, u

2
t−1) from its transmission at

t−1 i.e. ukt−1 and the feedback wt and thus it is a delayed sharing of information with delay 1 [4].

The energy cost of transmission from node 1 to node 3 is E13, node 1 to node 2 is E12 and

that for node 2 to node 3 is E23 and simultaneous transmissions from both node 1 and node 2

lead to unsuccessful reception (collision), without any additional cost. To simplify notation, we

consider the same symbols for actions as for the corresponding energy costs and reference is

clear from context. We also assume a delay cost which is equal to the total number of packets

waiting in the queues of node 1 and 2, thus cost of one unit per epoch for each packet in either

queue. All costs are additive and costs for future slots (or epochs) are discounted by discount

factor λ, (0 < λ < 1). We describe (E13, E23, E12, λ, p, q) as the basic parameters of the system.
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A. Summary

For all k ∈ {1, 2}, t ∈ {1, 2, . . .}
1) Queue lengths

xkt : Queue length of node k at time t ; xkt ∈ {0, 1, 2, . . .}
2) Actions

ukt : Action by node k at time t ; u1
t ∈ U1 := {0, E12, E13}, u2t ∈ U2 := {0, E23}

3) Feedback

wt : Feedback at time t (0:idle, 1:successful transmission from node 1, 2:successful trans-

mission from node 2, e:collision) ; wt ∈ {0, 1, 2, e}
4) Basic Random Variables

x10, x
2
0, (pt, qt : t ∈ {1, 2 . . .}) where pt, qt are Bernoulli arrival processes at each node’s

queue with parameters p and q respectively.

5) State Evolution

x1t = pt + x1t−1 − 1{E12,E13}(u
1
t−1)1{0}(u2t−1) (1a)

x2t = qt + x2t−1 − 1{E23}(u
2
t−1)1{0}(u1t−1) + 1{E12}(u

1
t−1)1{0}(u2t−1) (1b)

6) Instantaneous Cost

ct(x
1
t , x

2
t , u

1
t , u

2
t ) = x1t + x2t + u1t + u2t (2)

7) Common Information at time t

Since u1t−1 and wt combined give u2
t−1, we have common information as

u1:21:t−1 := u11u
2
1u

1
2u

2
2 . . . u

1
t−1u

2
t−1

III. CENTRALIZED CONTROL WITH NO TRAFFIC AT RELAY

In this section, we are considering the centralized controlled system where queue length of

both the transmitter and receiver nodes are known to the controller. We will also assume that

there is no arrival process at the relay node, so q = 0. We will prove that the centralized

policy can be implemented in decentralized way if the initial state of the system is (0, 0) i.e.

(x11, x
2
1) = (0, 0).
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At time t, the common knowledge of nodes 1 and 2 (or centralized controller) is

u1:21:t−1 := u11u
2
1u

1
2u

2
2 . . . u

1
t−1u

2
t−1

x1:21:t := x11x
2
1x

1
2x

2
2 . . . x

1
tx

2
t (3)

Thus the control action at time t , ut := (u1t , u
2
t ) ∈ U1 × U2, in general, can be a function of

all the information available till that time

ut = ĝt(x
1:2
1:t , u1:t−1)

1

= gt(x
1:2
1:t ) (4)

thus any policy g = g1, g2, g3, · · · induces a cost

Jg = E{
∞∑
t=1

λt−1ct(X
1
t , X

2
t , U

1
t , U

2
t )} (5)

The objective is to minimize the total discounted cost of energy and delay incurred over infinite

time horizon. We define the problem as follows

Problem 1. Find the optimum centralized policy g∗ that achieves the optimum cost,

J∗ := min
g
Jg (6)

where Jg is as defined in (5), control actions u1:2
t as in (4).

Lemma 1. The process {X1:2
t , t = 0, 1, · · · } is a controlled Markov process with control Ut and

instantaneous cost as given in (2) i.e.

P(x1:2t+1|x1:21:t , u
1:2
1:t ) = P(x1:2t+1|x1:2t , u1:2t ) (7)

Proof: This is trivially true due to system evolution as given in (1) and the independence

of the basic random variables (X1
1 , X

2
1 , P1, P2 · · · , ).

Thus by Markov Decision Theory [1] [2], there exists a stationary Markov policy of the form

1In the text we repeatedly use functions ĝ and ĉ to emphasize its arguments and same notation should not be interpreted as
the same functional form
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ut = g(x1:2t ) that achieves optimum cost J ∗ as given in (6). Moreover this optimal cost can be

found as

J∗ = E{V (X1
1 , X

2
1 )} (8)

where the cost-to-go function V (x, y) satisfies the following dynamic programming equation (9)

and the actions u1, u2 that achieves the minima in (9) for each state x, y form stationary optimal

Markov policy.

V (x, y) = min
u1,u2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0) : x+ y + λpV (x+ 1, y) + λ(1− p)V (x, y) (x ≥ 0, y ≥ 0)

(E13, 0) : x+ y + E13 + λpV (x, y) + λ(1− p)V (x− 1, y) (x ≥ 1, y ≥ 0)

(E12, 0) : x+ y + E12 + λpV (x, y + 1) + λ(1− p)V (x− 1, y + 1) (x ≥ 1, y ≥ 0)

(0, E23) : x+ y + E23 + λpV (x+ 1, y − 1) + λ(1− p)V (x, y − 1) (x ≥ 0, y ≥ 1)

(E13, E23) : x+ y + E13 + E23 + λpV (x+ 1, y) + λ(1− p)V (x, y) (x ≥ 1, y ≥ 1)

(E12, E23) : x+ y + E12 + E23 + λpV (x+ 1, y) + λ(1− p)V (x, y) (x ≥ 1, y ≥ 1)

(9)

A. Solving the dynamic programming equation

It can be easily seen that cost for actions (E12, E23) and (E13, E23) is always greater than

that for (0, 0), thus it need not be considered in computing the minima. These actions lead to

collision and the centralized control avoid that. Thus the cost-to-go function should satisfy

V (x, y) = min
u1,u2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0, 0) : x+ y + λpV (x+ 1, y) + λ(1− p)V (x, y) (x ≥ 0, y ≥ 0)

(E13, 0) : x+ y + E13 + λpV (x, y) + λ(1− p)V (x− 1, y) (x ≥ 1, y ≥ 0)

(E12, 0) : x+ y + E12 + λpV (x, y + 1) + λ(1− p)V (x− 1, y + 1) (x ≥ 1, y ≥ 0)

(0, E23) : x+ y + E23 + λpV (x+ 1, y − 1) + λ(1− p)V (x, y − 1) (x ≥ 0, y ≥ 1)

(10)

In general its difficult to solve such recursive equation to find V (x, y). Moreover there could

exist multiple solutions. As shown in [3, sec. 6.10] and appendix B, in appropriate Banach space,

existence of a unique solution is guaranteed under certain conditions. We propose policies for

different set of values of the basic parameters and prove their optimality by proving that they

satisfy the dynamic programming equation (10). The uniqueness of the solution (in appropriate
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Banach space) guarantees that the solution of the dynamic program is equal to the optimal

solution.

1) Optimum policies under a restricted class of policies: First we restrict ourselves to the

set of policies where whenever x2t > 0 (i.e. queue of node 2 is non-empty), node 2 transmits

its packets to node 3 and during this time node 1 waits. Also we assume that system starts at

x1t = 0, x2t = 0 and as a consequence of the restriction on policies, in future x2
t ∈ {0, 1}. Thus

for these restricted set of policies, the following equations have to be satisfied

V (x, 1) = x+ 1 + E12 + λpV (x+ 1, 0) + λ(1− p)V (x, 0) (11)

V (x, 0) = minu1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) : x+ λpV (x+ 1, 0) + λ(1− p)V (x, 0)

(E13, 0) : x+ E13 + λpV (x, 0) + λ(1− p)V (x− 1, 0) (x > 0)

(E12, 0) : x+ E12 + λpV (x, 1) + λ(1− p)V (x− 1, 1) (x > 0)

(12)

Substituting (11) into (12) we can restrict the state of the system to x, the queue size of node

1, which sufficiently describes the evolution of the system under restricted set of policies and

thus the optimum cost-to-go function defined with slight abuse of notation as V (x) := V (x, 0),

should satisfy the following equation

V (0) =λpV (1) + λ(1− p)V (0)

V (x) =min
u1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0) : x+ λpV (x+ 1) + λ(1− p)V (x)

(E13) : x+ E13 + λpV (x) + λ(1− p)V (x− 1) (x > 0)

(E12) : (1 + λ) + (E12 + λE23 + λp) + λ2p2V (x+ 1)

+λ2(1− p)2V (x− 1) + 2λ2p(1− p)V (x) (x > 0)
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Table I, II, III, IV shows the optimum policies for the case of restricted policies, the cor-

responding cost to go function and the set of parameters for which it is optimal. Appendix A

contains the definitions of symbols used and Appendix C derives cost-to-go function for case I,

II, III. We omit the proof of IV.

TABLE I
WHEN ITS OPTIMUM TO WAIT.

Policy x ≥ 0 : (0, 0)

Cost to go function V (x) = λp
(1−λ)2 + sx

Conditions of optimality E13 ≥ λ
1−λ

E12 + λE23 ≥ λ2

1−λ

TABLE II
WHEN ITS OPTIMUM TO TRANSMIT DIRECTLY TO NODE 3

Policy x = 0 : (0, 0)
x > 0 : (E13, 0)

Cost to go function V (x) = c+ sx+ dρx

Conditions of optimality E13 ≤ λ
1−λ

E13 ≤ (1−λp)
(1−λ2p)(E12 + λE23) +

λ
(1−λ2p)

TABLE III
WHEN ITS OPTIMUM TO TRANSMIT THROUGH RELAY NODE 2

Policy x = 0 : (0, 0)
x > 0 : (E12, 0)

Cost to go function V (x) = u+ sx+ rξx

Conditions of optimality E12 + λE23 ≤ λ2

1−λ
E12+λE23

1+λ
+ λ

1−λ2 ≤ E13

TABLE IV
TRANSMIT THROUGH NODE 2 IF x (QUEUE SIZE OF NODE 1) IS STRICTLY LESS THAN xth AND WE TRANSMIT DIRECTLY, IF

x IS GREATER THAN EQUAL TO xth

Policy x = 0 : (0, 0)
0 < x < xth : (E12, 0)
xth ≤ x : (E13, 0)

Cost to go function ∀x ≤ xth − 1 : V (x) = rξx + sx+ u− l(aα)xth−xw1(x)

x = xth − 1 : V (xth − 1) = s(xth − 1) + u+ rξxth−1−(u−c)(1−ρ)w1(xth−1)(aα)
1−(ρ−aβ)w1(xth−1)aα

∀x ≥ xth : V (x) = sx+ c+ ρx−xth+1[V (xth − 1)− s(xth − 1)− c]

Conditions of optimality (E13 − λ
1−λ) <

bxth+1

axth+1
(E12 + λE23 − λ2

1−λ)

(E13 − λ
1−λ) ≥

bxth
axth

(E12 + λE23 − λ2

1−λ)
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Fig. 2. Decision Regions in the space of basic parameters E13, E12 + λE23, λ, p for restricted set of policies. The triangular
region represents policy described in Table IV with different xth

Figure 2 shows the optimum policy for different decision regions in the space of basic

parameters E12, E23, E13, λ, p. These regions are also verified by the numerical analysis using

the method of value iteration [3].

Figure 3 shows the decision regions in the limiting case as the discount factor λ→ 1.

2) Centralized policy for the general case: In the previous section we considered the restricted

set of policies for which node 2 transmitted whenever it had a packet and thus x2
t ∈ {0, 1}. In

this section, the policies for the general setting are proposed. The state of the system is (x,y)

where ‘x’ and ‘y’ are the queue lengths of node 1 and node 2. The optimum policy has to satisfy

equation (10). For the general case when there is no traffic at relay, Table V, VI, VII, VIII, IX,

X show the optimum policies , the corresponding cost to go function and the set of parameters

for which it is optimal.
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Fig. 3. Decision Regions in the space of basic parameters E13, E12 + λE23, λ, p for restricted set of policies as λ → 1 .

TABLE V
BOTH NODE 1 AND 2 WAIT

Policy x ≥ 0, y ≥ 0 : (0, 0)

Cost to go function V (x, y) = s(x+ y) + λp
(1−λ)2

Conditions of optimality E13 ≥ λ
1−λ

E23 ≥ λ
1−λ

TABLE VI
NODE 1 HAS PRIORITY: FIRST NODE 1 TRANSMITS DIRECTLY TO 3 AND THEN NODE 2 TRANSMITS ITS PACKET TO 3

Policy x = 0, y = 0 : (0, 0)
x = 0, y ≥ 1 : (0, E23)
x ≥ 1, y ≥ 0 : (E13, 0)

Cost to go function V (x, y) = s(x + y + E13) − λ(1−p)
(1−λ)2 + ρx

[
(1−λp)(E23−E13)

1−λ +

ρy
[
(1−λp)(λ−E23(1−λ))

(1−λ)2

]]

Conditions of optimality E13 ≤ E23 ≤ λ
1−λ
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TABLE VII
NODE 1 HAS PRIORITY: NODE 1 TRANSMITS ALL ITS PACKETS DIRECTLY TO 3 AND NODE 2 WAITS

Policy x = 0, y ≥ 0 : (0, 0)
x ≥ 1, y ≥ 0 : (E13, 0)

Cost to go function V (x, y) = s(x+ y) + c+ dρx

Conditions of optimality E13 ≤ λ
1−λ ≤ E23

TABLE VIII
NODE 2 HAS PRIORITY: NODE 1 WAITS WHILE NODE 2 TRANSMITS

Policy x ≥ 0, y = 0 : (0, 0)
x ≥ 0, y ≥ 1 : (0, E23)

Cost to go function V (x, y) = s(x+ y + E23)− λ(1−p)
(1−λ)2 + λy

[
λ

(1−λ)2 − sE23

]

Conditions of optimality E13 ≥ λ
1−λ(

λ
1−λ − E12

λ

)+

≤ E23 ≤ λ
1−λ

TABLE IX
NODE 2 HAS PRIORITY: FIRST NODE 2 TRANSMITS ALL ITS PACKETS TO NODE 3, THEN NODE 1 TRANSMITS TO 3

Policy x = 0, y = 0 : (0, 0)
x ≥ 0, y = 0 : (E13, 0)
x ≥ 0, y ≥ 1 : (0, E23)

Cost to go function V (x, y) = s(x+ y + E23)− λ(1−p)
(1−λ)2 + λy

[
E13−E23

1−λ + dρx(pρ+ 1− p)y
]

Conditions of optimality E13 ≤ (1−λp)(E12+λE23)
1−λ2p + λ

1−λ2p

TABLE X
NODE 2 HAS PRIORITY: NODE 2 TRANSMITS TO NODE 3 WHENEVER ITS QUEUE IS NONEMPTY AND NODE 1 TRANSMITS ITS

PACKETS TO 2 IF NODE 2’S QUEUE IS EMPTY

Policy x = 0, y = 0 : (0, 0)
x ≥ 1, y = 0 : (E12, 0)
x ≥ 0, y ≥ 1 : (0, E23)

Cost to go function V (x, y) = s(x+y+E23)− λ(1−p)
(1−λ)2 +λ

y

[
(E12−E23)(1−λ)+λ

(1−λ)2(1+λ) +rξx(pξ+1−p)y
]

Conditions of optimality E13 ≥ E12+λE23

1+λ
+ λ

1−λ2
λ2

1−λ ≥ E12 + λE23
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If the system starts from (x11, x
2
1) = (0, 0), then the general policy reduces to the restricted

policies considered before and since packet arrival at node 2 is only through node 1, thus node

1 can keep a track of the queue size of node 2 and the optimum policy can be decentralized.

IV. DECENTRALIZED CONTROL WITH INCOMING TRAFFIC AT RELAY

In this section, we assume that the relay also has incoming traffic modelled as a Bernoulli

arrival process with arrival probability, q ∈ [0, 1]. We consider the decentralized case where

node 1 cannot observe the queue length of node 2 and vice versa. In this case either of the

nodes cannot track the queue size of the other node and the problem becomes considerably

more complex.

At time t, information available with node k is (xk1:t, u
k
1:t−1, w1:t−1) which is equivalent to

(xk1:t, u
1:2
1:t−1) and thus control actions can be defined as follows

u1t = ĝ1t (x
1
1:t, u

1
1:t−1, w1:t−1) = g1t (x

1
1:t, u

1:2
1:t−1)

u2t = ĝ2t (x
2
1:t, u

2
1:t−1, w1:t−1) = g2t (x

2
1:t, u

1:2
1:t−1) (13)

If gk is any strategy of node k i.e. gk = gk1 , g
k
2 , · · · where k ∈ {1, 2} then g = (g1, g2) is the

combined strategy of both the nodes and the corresponding cost is given by J g

Jg = E{
∞∑
i=1

λt−1ct(X
1
t , X

2
t , U

1
t , U

2
t )} (14)

Problem 2. Find the optimum decentralized policy g∗ that achieves the optimum cost,

J∗ := min
g
Jg (15)

where Jg is as defined in (14), control actions u1:2
t as in (13).

Here we prove a structural result for the optimum decentralized policy and show that it can be

found as a solution of a dynamic programming equation. First we prove that there exist optimum

control actions that depend only on current state and entire control history i.e. (xkt , u
1:2
1:t−1) and

further it depends only on the current state xkt and the posterior on x1:2t conditioned on the

control history u1:2
1:t−1.

Lemma 2. For any fixed strategy g, random variablesX 1
1:t and X2

1:t are conditionally independent
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given the control history till time t, U 1:2
1:t−1 i.e.

P
g(x1:21:t |u1:21:t−1) = P

g1(x11:t|u1:21:t−1)P
g2(x21:t|u1:21:t−1) (16)

Proof:

The causal decomposition of Pg(x1:21:t , u
1:2
1:t−1) gives,

P
g(x1:21:t , u

1:2
1:t−1) =P(x11)

t−1∏
i=1

(
P(x1i+1|x1i , u1:2i )Pg1(u1i |x11:i, u1:21:i−1)

)

P(x21)

t−1∏
j=1

(
P(x2j+1|x2j , u1:2j )Pg2(u2j |x21:j, u1:21:j−1)

)
(17)

P
g(x1:21:t |u1:21:t−1) =

P(x11)
∏t−1

i=1

(
P(x1i+1|x1i , u1:2i )Pg1(u1i |x11:i, u1:21:i−1)

)

∑
x11:t

P(x11)
∏t−1

i=1

(
P(x1i+1|x1i , u1:2i )Pg1(u1i |x11:i, u1:21:i−1)

)

P(x21)
∏t−1

j=1

(
P(x2j+1|x2j , u1:2j )Pg2(u2j |x21:j, u1:21:j−1)

)

∑
x21:t

P(x21)
∏t−1

j=1

(
P(x2j+1|x2j , u1:2j )Pg2(u2j |x21:j , u1:21:j−1)

) (18)

=P
g1(x11:t|u1:21:t−1)P

g2(x21:t|u1:21:t−1) (19)

Lemma 3. For given any fixed strategy of the node 2 i.e. g2, {(X1
t , U

1:2
1:t−1); t = 1, 2, · · · } is a

controlled Markov process with state (X 1
t , U

1:2
1:t−1) and control input U 1

t i.e.

P
g2(x1t+1, u

1:2
1:t |x11:t, u1:21:t−1, u

1
1:t) = P

g2(x1t+1, u
1:2
1:t |x1t , u1:21:t−1, u

1
t ) (20)

E
g2{ct(x1t , x2t , u1t , u2t )|x11:t, u1:21:t−1, u

1
1:t} = E

g2{ct(x1t , x2t , u1t , u2t )|x1t , u1:21:t−1, u
1
t} (21)

= ĉ(x1t , u
1:2
1:t−1, u

1
t )

Proof:

P
g2(x1t+1, u

1:2
1:t |x11:t, u1:21:t−1, u

1
1:t) = P

g2(x1t+1|x11:t, u1:21:t ).P
g2(u1:21:t |x11:t, u1:21:t−1, u

1
t )

= P
g2(x1t+1|x11:t, u1:21:t ).P

g2(u2t |x11:t, u1:21:t−1, u
1
t ) (22)
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Since x1t+1 = ft(x
1
t , pt+1, u

1:2
t ) where ft is as defined in (1)

P
g2(x1t+1|x11:t, u1:21:t ) =

∑
pt+1

P
g2(x1t+1, pt+1|x11:t, u1:21:t )

=
∑
pt+1

P(pt+1)1ft(x1t ,pt+1,u1:2t ){x1t+1}

= P(x1t+1|x1t , u1:2t ) (23)

also since U2
t is a function of X2

1:t, U
1
t is a function of X1

1:t and X1
1:t, X

2
1:t are conditionally

independent given U 1:2
1:t−1 (Lemma 2), thus

P
g2(u2t |x11:t, u1:21:t−1, u

1
t ) = P

g2(u2t |u1:21:t−1) (24)

Thus from (22),(23) and (24),

P
g2(x1t+1, u

1:2
1:t |x11:t, u1:21:t−1, u

1
1:t) = P

g2(x1t+1, u
1:2
1:t |x1t , u1:21:t−1, u

1
t ) (25)

For the second part,

E
g2{ct(x1t , x2t , u1t , u2t )|x11:t, u1:21:t−1, u

1
1:t} =

∑
x1t ,x

2
t ,u

1
t ,u

2
t

ct(x
1
t , x

2
t , u

1
t , u

2
t )P

g2(x1t , x
2
t , u

1
t , u

2
t |x11:t, u1:21:t−1, u

1
1:t)

(26a)

=
∑
x2t ,u

2
t

ct(x
1
t , x

2
t , u

1
t , u

2
t )P

g2(x2t , u
2
t |x11:t, u1:21:t−1, u

1
1:t) (26b)

=
∑
x2t ,u

2
t

ct(x
1
t , x

2
t , u

1
t , u

2
t )P

g2(x2t , u
2
t |u1:21:t−1) (26c)

= E
g2{ct(x1t , x2t , u1t , u2t )|x1t , u1:21:t−1, u

1
t} (26d)

= ĉ(x1t , u
1:2
1:t−1, u

1
t ) (26e)

where (26c) is true since X2
t , U

2
t are conditionally independent of X 1

1:t, U
1
1:t given U1:2

1:t−1 (Lemma

2).

As a consequence of the MDP structure of the problem, given a fixed strategy g2 of the node

2, the optimum control action by node 1 can be given as (for k = 1)

ukt = gkt (x
k
t , u

1:2
1:t−1) (27)
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Since this is true for any fixed strategy of node 2, it is also true for the optimal strategy of

the node 2. A similar result for node 2 is true, thus the above equation is valid for k ∈ {1, 2} .

A. POMDP from the perspective of coordinator

In the decentralized case, each node can act as a controller and thus we have two linked

stochastic control problems. We can view this problem from the perspective of a fictitious

coordinator [4] who observes, at time t, the feedback wt or equivalently u1:2
t−1 but does not

observe xkt , k ∈ {1, 2}. Thus at time t, it has access to the information u1:2
1:t−1 (due to perfect

recall) and based upon this information, it generates partial functions γ 1:2
t as its control output,

where γkt : N → Uk, k ∈ {1, 2}. And based upon these control outputs of the coordinator, node

k, k ∈ {1, 2} compute its action by operating these partial functions on its private information

i.e. xkt . If strategy of the coordinator is Ψ, then

(γ1t , γ
2
t ) = Ψt(u

1:2
1:t−1) (28)

ukt = γkt (x
1
t ) = Ψk

t (u
1:2
1:t−1)(x

k
t ) = gkt (u

1:2
1:t−1, x

k
t ) (29)

Now we show that belief on x1:2t given the observation and control history till time t which

is u1:21:t−1, γ
1:2
1:t−1, forms a sufficient state for the coordinator’s problem. We define the random

variable Πt ∈ P(N2) as the posterior pmf of X1:2
t conditioned on U 1:2

1:t ,Γ
1:2
1:t−1 i.e.

Πt(x
1:2
t ) = P(X1:2

t = x1:2t |U1:2
1:t−1,Γ

1:2
1:t−1) (30)

Lemma 4.

πt+1 = F (πt, γ
1:2
t , u1:2t ) (31)

where F is a deterministic update function that does not depend upon the policy g

Proof: See Appendix D

Proposition 1. The process {Πt, t = 1, 2, ...T} is a controlled Markov Process with control γ1:2
t .
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i.e.

P(πt+1|π1:t, γ1:21:t ) = P(πt+1|πt, γ1:2t ) (32)

E(c(x1:2t , u1:2t )|π1:t, γ1:21:t ) = E(c(x1:2t , u1:2t )|πt, γ1:2t ) (33)

= ĉ(πt, γ
1:2
t )

Proof: See Appendix D

Since {Πt, t = 1, 2, ...T} is a controlled Markov Process the optimum output functions can

be given by (γ1t , γ
2
t ) = ψt(πt). And thus optimum action by node k can be written as

ukt = gkt (x
k
t , πt) (34)

The dynamic program for the coordinator is

V (π) = inf
γ1:2

[ĉ(π, γ1:2) + E{λV (π′)|π, γ1:2}] (35)

where the expectation is with respect to the conditional probability induced by the update function

F and u1:2t as random variable (noise). This result is in accordance with [4].

Furthermore, due to the specific nature of our problem, we show that instead of joint probability

on the queue length of two nodes, individual marginals form a sufficient state. To that effect, we

define random variable Ξkt ∈ P(N) as the posterior pmf of Xk
t conditioned on U 1:2

1:t−1,Γ
1:2
1:t−1 i.e.

Ξkt (x
k
t ) = P(Xk

t = xkt |U1:2
1:t−1,Γ

1:2
1:t−1) and show that (ξ1t , ξ

2
t ) is controlled markov process. This

gives a significant reduction in size of state over which optimum policies have to searched as π

is defined over a space of P(N2) while (ξ1, ξ2) is defined over P(N)×P(N).

Lemma 5.

ξkt+1 = Gk(ξkt , γ
k
t , u

1:2
t ) k ∈ {1, 2} (36)

where Gk is a deterministic update function that does not depend upon the policy g
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Proof: For any fixed coordinator strategy ψ,

ξ1t+1(x
1
t+1) = P

ψ(x1t+1|u1:21:t , γ
1:2
1:t ) (37a)

=
∑
x1:2t

P
ψ(x1t+1, x

1:2
t |u1:21:t , γ

1:2
1:t ) (37b)

=
∑
x1:2t

P
ψ(x1:2t |u1:21:t , γ

1:2
1:t ).P(x

1
t+1|x1t , u1:2t )} (37c)

Now,

P
ψ(x1:2t |u1:21:t , γ

1:2
1:t ) =

P
ψ(x1:2t , u1:2t |u1:21:t−1, γ

1:2
1:t )∑

x1:2t
Pψ(x1:2t , u1:2t |u1:21:t−1, γ

1:2
1:t )

(37d)

=
P
ψ(x1:2t |u1:21:t−1, γ

1:2
1:t )P

ψ(u1:2t |u1:21:t−1, γ
1:2
1:t , x

1:2
t )∑

x1:2t
Pψ(x1:2t , u1:2t |u1:21:t−1, γ

1:2
1:t )

(37e)

=
P
ψ(x1:2t |u1:21:t−1, γ

1:2
1:t−1)1u1:2t

{γ1:2t (x1:2t )}∑
x1:2t

Pψ(x1:2t |u1:21:t−1, γ
1:2
1:t−1)1u1:2t

{γ1:2t (x1:2t )} (37f)

P
ψ(x1:2t |u1:21:t , γ

1:2
1:t ) =

ξ1t (x
1
t )ξ

2
t (x

2
t )1u1:2t

{γ1:2t (x1:2t )}∑
x1:2t

ξ1t (x
1
t )ξ

2
t (x

2
t )1u1:2t

{γ1:2t (x1:2t )} (37g)

Thus,

ξ1t+1(x
1
t+1) =

∑
x1:2t

ξ1t (x
1
t )ξ

2
t (x

2
t )1u1:2t

{γ1:2t (x1:2t )}∑
x1:2t

ξ1t (x
1
t )ξ

2
t (x

2
t )1u1:2t

{γ1:2t (x1:2t )}P(x
1
t+1|x1t , u1:2t )} (37h)

=
∑
x1t

P(x1t+1|x1t , u1:2t )
ξ1t (x

1
t )1u1t{γ1t (x1t )}

∑
x2t
1u2t {γ2t (x2t )}ξ2t (x2t )∑

x1t
ξ1t (x

1
t )1u1t{γ1t (x1t )}

∑
x2t
1u2t {γ2t (x2t )}ξ2t (x2t )

(37i)

=
∑
x1t

P(x1t+1|x1t , u1:2t )
ξ1t (x

1
t )1u1t{γ1t (x1t )}∑

x1t
ξ1t (x

1
t )1u1t{γ1t (x1t )}

(37j)

= G1(ξ1t , γ
1
t , u

1:2
t )(x1t+1) (37k)

where (37g) is true since x1t and x2t are conditionally independent given u1:2
t−1 (Lemma 2).

Similarly ξ2t+1 = G2(ξ2t , γ
2
t , u

1:2
t ) where G1 and G2 are deterministic functions.

Lemma 6. The process {(Ξ1
t ,Ξ

2
t ); t = 1, 2, ...} is a controlled Markov Process with controls
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Γ1:2
t . i.e.

P(ξ1t+1, ξ
2
t+1|ξ11:t, ξ21:t, γ1:21:t ) = P(ξ1t+1, ξ

2
t+1|ξ1t , ξ2t , γ1:2t ) (38)

E(c(x1:2t , u1:2t )|ξ11:t, γ1:21:t ) = ĉ(ξ1t , γ
1
t ) + ĉ(ξ2t , γ

2
t ) (39)

Proof: In the following we use the notation G := (G1, G2)

P(ξ1t+1, ξ
2
t+1|ξ11:t, ξ21:t, γ1:21:t ) =

∑
u1:2t

P(ξ1t+1, ξ
2
t+1, u

1:2
t |ξ11:t, ξ21:t, γ1:21:t ) (40a)

=
∑
u1:2t

1ξ1t+1,ξ
2
t+1

{G(ξ1t , ξ2t , γ1:2t , u1:2t )}P(u1:2t |ξ11:t, ξ21:t, γ1:21:t ) (40b)

=
∑

u1:2t ,x1:2t

1ξ1t+1,ξ
2
t+1

{G(ξt, ξ2t , γ1:2t , u1:2t )}1u1:2t
{γ1:2t (x1:2t )}P(x1:2t |ξ11:t, ξ21:t, γ1:21:t )

(40c)

=
∑

u1:2t ,x1:2t

ξ1t (x
1
t )ξ

2
t (x

2
t )1ξ1t+1,ξ

2
t+1

{G(ξ1t , ξ2t , γ1:2t , u1:2t )}1u1:2t
{γ1:2t (x1:2t )} (40d)

=
∑
x1:2t

ξ1t (x
1
t )ξ

2
t (x

2
t )1ξ1t+1,ξ

2
t+1

{G(ξ1t , ξ2t , γ1:2t , γ1:2t (x1:2t ))} (40e)

= P(ξ1t+1, ξ
2
t+1|ξ1t , ξ2t , γ1:2t ) (40f)

E(c(x1:2t , u1:2t )|ξ1:21:t , γ
1:2
1:t ) =

∑
x1:2t ,u1:2t

(x1t + x2t + u1t + u2t )P(x
1:2
t , u1:2t |ξ1:21:t , γ

1:2
1:t ) (40g)

=
∑

x1:2t ,u1:2t

(x1t + x2t + u1t + u2t )P(x
1:2
t |ξ1:21:t , γ

1:2
1:t )1u1:2t

{γ1:2t (x1:2t )} (40h)

=
∑

x1:2t ,u1:2t

(x1t + x2t + u1t + u2t )ξ
1
t (x

1
t )ξ

2
t (x

2
t )1u1:2t

{γ1:2t (x1:2t )} (40i)

=
∑
x1t

(x1t + γ1t (x
1
t ))ξ

1
t (x

1
t ) +

∑
x2t

(x2t + γ2t (x
2
t ))ξ

2
t (x

2
t ) (40j)

= ĉ(ξ1:2t , γ1:2t ) (40k)

where (40d) and (40i) are true because X1
t , X

2
t are conditionally independent given Γ1:2

1:t ,Ξ
1:2
1:t

which are functions of U 1:2
1:t−1 (Lemma 2). Since {(ξ1t , ξ2t ); t = 1, 2, ...} is a controlled Markov

Process, the optimum output functions can be given by (γ 1
t , γ

2
t ) = ψt(ξ

1
t , ξ

2
t ). The dynamic

programming equation can be given as
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V (ξ1, ξ2) = min
γ1,γ2

[ĉ1(ξ1, γ1) + ĉ2(ξ2, γ2) + λE{V (ξ1, ξ2)|ξ1:2, γ1:2}] (41)

where the expectation is with respect to the conditional probability induced by the update

functions (G1, G2) and u1:2t as random variable (noise).

Thus finally, the optimum control actions are

ukt = gkt (x
k
t , ξ

1
t , ξ

2
t ) (42)

and action of node 1 is a function of its current queue length, its estimate of node 2’s queue

length (ξ2t ) and also node 2’s estimate of node 1’s queue length (ξ1t ).

This model cannot be extended to the case where there are more than two transmitter nodes

(where the relay node in our model is also considered a transmitter node). This is because when

there are only two transmitter nodes, in case of a collision, each node can determine that collision

occurred due to simultaneous transmission of the other node. But if there are 3 or more nodes, in

case of collision, a node cannot determine which other node(s) transmitted simultaneously. More

precisely, in former case, feedback wt combined with ukt gives transmission profile of each user

i.e. (u1t , u
2
t ) whereas in latter case, it is no longer true. Thus our model needs to be enriched so

that each collision also contains the information regarding which nodes transmitted. This could

be achieved if each node transmits a ‘signature’ waveform along with the data waveform such

that signature waveform of all users are mutually orthogonal and orthogonal to data (for e.g. in

frequency).

V. CONCLUSION AND FUTURE WORK

We analyzed energy delay tradeoff in a simple relay channel. In section III we found the

optimum centralized if relay does not have any traffic and showed that it can be implemented in

a decentralized way also. In section IV we proved the structural result that the optimum policy

can be found using solving a dynamic programming equation. The domain of optimization is

space of probability mass functions on state space P(N)×P(N) and is still intractable. Future

work can analyze more structural properties of the optimum strategy to design optimum or

suboptimum strategies and analyze its performance.
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APPENDIX

A. List of symbols

K =
λp

1− λ+ λp

c =
E13(1− λ)− λ(1− p)

(1− λ)2

s =
1

1− λ

d =
λ(1− λp)− E13(1− λ)(1− λp)

(1− λ)2

ρ =
λ− λp

1− λp

α =
(λp)2

1− 2λ2p(1− p)

β =
(λ(1− p))2

1− 2λ2p(1− p)

θ =
1 + λ

1− 2λ2p(1− p)

γ =
E12 + λE23 + λp

1− 2λ2p(1− p)

ξ = aβ

η =
aγ

(1− aα)
+

a2αθ

(1− aα)2

ω =
aθ

(1− aα)

u =
η + ω

1 − ξ
− ω

(1− ξ)2

=
−λ2(1 + E23− p) + λ(E23 + p− E12) + E12

(1− λ)2(1 + λ)

r = V (0)− u =
Ks +Ku− u

1−Kξ

l =
[
(u− c)(1− ρ) + (ρ− aβ)(u+ s(xth − 1)− V (xth − 1))

]

w1(x) =

[
(a− 1)x−1

( 1

(1−Kξ)
− 1

2− a

)
+

1

2− a

]

axth = aα(aα− a+ 1)(
1

1−Kaβ
− 1

2− a
)(a− 1)xth−2 +

(1− aαρ)(1− aα)

(2− a)(ρ− ξ)

bxth =
(1− λp)(aβ)xth−1(1−K)(1− aαρ)

(1− λ2)(1−Kaβ)
+

axth
1 + λ
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B. Conditions sufficient for uniqueness of the optimum solution

Let S = {0, 1, 2, · · · } and w : S → R be a real valued function such that infs∈S w(s) > 0 and

induce weighted supremum norm for real valued functions v on S as ‖v‖w = sups∈S w(s)
−1|v(s)|.

Let Vw be the space of real valued functions v on S satisfying ‖v‖w <∞ . Then Vw is a Banach

space (complete normed linear space) and convergence in Vw with respect to weighted sup norm

implies point wise convergence, since ‖vn − v‖w < ε implies |vn(s)− v(s)| < εw(s)

Let c(x, a) be the instantaneous cost where x is the state and a is the action , a ∈ Ax, Ax

is the set os possible actions with state x, P (j|x, a) be the transition probability from state x

to state j under action a and P J
π (j|x) be probability of reaching state j from state x in J steps

with policy π = (g1, · · · gJ). [3, sec. 6.10] shows that if following conditions are satisfied, then

the optimal dynamic programming equation has a unique solution in Vw which is equal to the

optimal cost.

1) There exists a constant μ <∞ such that

sup
a∈Ax

|r(x, a)| ≤ μw(x)

2) (a) There exists constant k, 0 ≤ k <∞ such that for all a ∈ Ax, x ∈ S

∑
j∈S

P (j|x, a)w(j) ≤ kw(x)

(b) For each λ, 0 ≤ λ < 1, there exists α , 0 ≤ α < 1 and an integer J such that for

Markov policies π = (g1, · · · gJ)

λJ
∑
j∈S

P J
π (j|x)w(j) ≤ αw(x)
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C. Finding Cost-to-go function

In general, V(x) of the form V (x+ 1) = AV (x) +Bx+ C can be solved as follows

V (x+ 1) = AV (x) +Bx+ C

V (x+ 1) = A(AV (x− 1) +B(x− 1) + C) +Bx+ C

= A2V (x− 1) + AB(x− 1) + AC +Bx+ C

= A2V (x− 1) +B(x+ A(x− 1)) + C(1 + A)

= Ax+1V (0) +B(x+ A(x− 1) + ... + Ax−1) + C(1 + A+ ... + Ax)

= Ax+1V (0) +B

(
x

1− A
− A(1− Ax)

(1− A)2

)
+ C

(1− Ax+1)

(1− A)

V (x+ 1) = (x+ 1)
B

1− A
+

(
C

1− A
− B

(1−A)2

)
+ Ax+1

(
V (0) +

B

(1− A)2
− C

(1−A)

)

1) Cost-to-go function for waiting: We find the cost-to-go function when the policy is to

wait for all x.

V (x) = x+ λpV (x+ 1) + λ(1− p)V (x)

V (x+ 1) =
1− λ(1− p)

λp
V (x)− 1

λp
x

Here A = 1−λ(1−p)
λp

, B = − 1
λp
, C = 0 which gives,

V (x) =

(
V (0)− λp

(1− λ)2

)[
1− λ(1− p)

λp

]x
+

λp

(1− λ)2
+

1

1− λ
x (43)

The above V (x) satisfies the recursive equation for all V (0).

For uniqueness (appendix B), let w(x) = x+ 1 + E12 + E13 + E23. Then w(x) ≥ 1 and

1)

sup
a∈Ax

|c(x, a)| ≤ w(x)

2) for all a ∈ Ax, x ∈ S

∑
j∈S

P (j|x, a)w(j) ≤ w(x+ 1) ≤ 2w(x)
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3) Since in each state, there are only at most one step transitions possible, thus

∑
j∈S

P J
π (j|x)w(j) ≤ w(J + x)

and for λ ∈ [0, 1), since w(x) is linear (affine) in x, there exists a J integer and there exists

α , 0 ≤ α < 1 such that

λJ
∑
j∈S

P J
π (j|x)w(j) ≤ λJw(J + x) ≤ αw(x)

Thus there exists a unique V ∈ Vw such that V is the unique solution of the dynamic

programming equation and is equal to the optimum cost.

For V ∈ Vw, supx |V (x)w−1(x)| <∞, which implies V (0) = λp
(1−λ)2 since 1−λ(1−p)

λp
> 1

Thus

V (x) =
λp

(1− λ)2
+

1

1− λ
x (44)

2) Cost-to-go when transmitting directly : The cost-to-go function in the recursive form is

given as

V (0) = λpV (1) + λ(1− p)V (0)

V (x) = x+ E13 + λpV (x) + λ(1− p)V (x− 1) (x > 0)

Here A = λ(1−p)
1−λp , B = 1

1−λp , C = E13

1−λp which gives

V (x+ 1) =
(x+ 1)

1− λ
+
E13(1− λ)− λ(1− p)

(1− λ)2
+
[λ(1− p)

1− λp

]x+1
(
V (0)− E13(1− λ)− λ(1− p)

(1− λ)2

)

Calculating expression for V(1) from this,

V (1) =
1

1− λ
+
E13(1− λ)− λ(1− p)

(1− λ)2
+
[λ(1− p)

1− λp

]1(
V (0)− E13(1− λ)− λ(1− p)

(1− λ)2

)

V (0) = λpV (1) + λ(1− p)V (0)



24

This gives

V (x) = c+ sx+ dρx (45)

where

c = E13(1−λ)−λ(1−p)
(1−λ)2 s =

1

1− λ

d = λ(1−λp)−E13(1−λ)(1−λp)
(1−λ)2 ρ =

λ− λp

1− λp

3) Cost-to-go Function when transmitting through relay : We find the cost-to-go function of

the policy where successful transmission of a packet from node 1 to node 3 is achieved through

node 2. If there is a packet waiting in the queue of node 1 and there is no packet in the queue

of node 2, then node 1 transmits the packet to node 2 in next slot and then the node 2 transmits

the packet to node 3 in the subsequent slot while node 1 waits in this slot.

V (0) = λpV (1) + λ(1− p)V (0)

V (0) =
λp

1− λ+ λp
V (1)

Let K =
λp

1− λ+ λp

V (0) = KV (1)

∀x ≥ 1, the general equation is given by

V (x) = x(1 + λ) + (E12 + λE23 + λp) + λ2p2V (x+ 1) + λ2(1− p)2V (x− 1) + 2λ2p(1− p)V (x)

V (x) = γ + θx+ αV (x+ 1) + βV (x− 1)

where,

α = (λp)2

1−2λ2p(1−p) β =
(λ(1− p))2

1− 2λ2p(1− p)

θ = 1+λ
1−2λ2p(1−p) γ =

E12 + λE23 + λp

1− 2λ2p(1− p)
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V (x) = γ + θx+ αV (x+ 1) + βV (x− 1)⎡
⎣ V (x)

V (x− 1)

⎤
⎦ =

⎡
⎣ 0 1

−α
β

1
β

⎤
⎦
⎡
⎣V (x+ 1)

V (x)

⎤
⎦+

⎡
⎣ 0

− θ
β

⎤
⎦ x+ γ

⎡
⎣ 0

− 1
β

⎤
⎦

W(x) =

⎡
⎣ V (x)

V (x− 1)

⎤
⎦ A =

⎡
⎣ 0 1

−α
β

1
β

⎤
⎦ B =

⎡
⎣ 0

− θ
β

⎤
⎦ C =

⎡
⎣ 0

− 1
β

⎤
⎦

W(x) = AW(x+ 1) + γC + Bx

= AnW(x+ n) + γ(1 + A + ... + An−1)C + (x+ A(x+ 1) + ...+ An−1(x+ n− 1))B

Eigenvalue decomposition of A gives,

A = UΛU−1 where U =

⎡
⎣ 1
ν1

1
ν2

1 1

⎤
⎦

ν1 =
1−√

1−4αβ
2β

(ν1 < 1) ν2 =
1+

√
1−4αβ
2β

(ν2 > 1)

An = UΛnU−1

This gives,

ν1ν2
ν2 − ν1

⎡
⎣ V (x)− V (x−1)

ν2

−V (x) + V (x−1)
ν1

⎤
⎦ =

⎡
⎣νn1 0

0 νn2

⎤
⎦U−1W(x+ n) + γ

⎡
⎣1−νn1

1−ν1 0

0
1−νn2
1−ν2

⎤
⎦U−1C +

⎡
⎣ x

1−ν1 +
ν1

(1−ν1)2 − νn1 (
(x+n−1)
1−ν1 + 1

(1−ν1)2 ) 0

0 x
1−ν2 +

ν2
(1−ν2)2 − νn2 (

(x+n−1)
1−ν2 + 1

(1−ν2)2 )

⎤
⎦U−1B

Now we are interested in ν1 < 1, since that results in V ∈ Vw

ν1ν2
ν2 − ν1

[
V (x)− V (x−1)

ν2

]
=

[
νn1 0

]
U−1W(x+ n) + γ

[
1−νn1
1−ν1 0

]
U−1C

+
[

x
1−ν1 +

ν1
(1−ν1)2 − νn1 (

(x+n−1)
1−ν1 + 1

(1−ν1)2 ) 0
]

U−1B
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Taking limit n to ∞ given that ν1 < 1

V (x) =
1

ν2
V (x− 1) + x

θ

(1− ν1)βν2
+

1

βν2(1− ν1)
(γ +

ν1θ

(1− ν1)
)

Let ν1 = aα, ν2 =
1
aβ

so that a = 1−√
1−4αβ
2αβ

and a satisfies the equation (αβ)a2 − a+ 1 = 0

V (x) = ξV (x− 1) + ωx+ η

where

ξ = aβ η = aγ
(1−aα) +

a2αθ
(1−aα)2 ω = aθ

(1−aα)

V (1) = ξV (0) + ω + η

V (0) = KV (1)

V (0) =
K(η + ω)

1−Kξ

Let

u = η+ω
1−ξ − ω

(1−ξ)2 = −λ2(1+E23−p)+λ(E23+p−E12)+E12

(1−λ)2(1+λ) r = V (0)− u = Ks+Ku−u
1−Kξ s = ω

1−ξ =
1

1−λ

Thus

V (x) = rξx + sx+ u (46)

D. Decentralized control

Proposition 2.

πt+1 = F (πt, γ
1:2
t , u1:2t )

where F is the update function that does not depend upon the policy g



27

Proof: Fix ψ

πt+1(x
1:2
t+1) = P(Xt+1 = x1:2t+1|u1:21:t , γ

1:2
1:t )

=
∑
x1:2t

P(x1:2t+1, x
1:2
t |u1:21:t , γ

1:2
1:t )

=
∑
x1:2t

P(x1:2t |u1:21:t , γ
1:2
1:t ).P(x

1:2
t+1|x1:2t , u1:2t )

Now,

P(x1:2t |u1:21:t , γ
1:2
1:t ) =

P(x1:2t , u1:2t |u1:21:t−1, γ
1:2
1:t )∑

x1:2t
P(x1:2t , u1:2t |u1:21:t−1, γ

1:2
1:t )

=
P(x1:2t |u1:21:t−1, γ

1:2
1:t )P(u

1:2
t |u1:21:t−1, γ

1:2
1:t , x

1:2
t )∑

x1:2t
P(x1:2t , u1:2t |u1:21:t−1, γ

1:2
1:t )

=
P(x1:2t |u1:21:t−1, γ

1:2
1:t−1)1u1:2t

{γ1:2t (x1:2t )}∑
x1:2t

P(x1:2t |u1:21:t−1, γ
1:2
1:t−1)1u1:2t

{γ1:2t (x1:2t )}

Since γ1:2t = ψ(u1:21:t−1)

P(x1:2t |u1:21:t , γ
1:2
1:t ) =

π1:2
t (x1:2t )1u1:2t

{γ1:2t (x1:2t )}∑
x1:2t

π1:2
t (x1:2t )1u1:2t

{γ1:2t (x1:2t )}

Thus,

πt+1 = F (πt, γ
1:2
t , u1:2t )

Lemma 7. The process {Πt, t = 1, 2, ...T} is a controlled Markov Process with control γ1:2
t . i.e.

P(πt+1|π1:t, γ1:21:t ) = P(πt+1|πt, γ1:2t )

E(c(x1:2t , u1:2t )|π1:t, γ1:21:t ) = ĉ(πt, γ
1:2
t )
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Proof:

P(πt+1|π1:t, γ1:21:t ) =
∑
u1:2t

P(πt+1, u
1:2
t |π1:t, γ1:21:t )

=
∑
u1:2t

1πt+1{F (πt, γ1:2t , u1:2t )}P(u1:2t |π1:t, γ1:21:t )

=
∑

u1:2t ,x1:2t

1πt+1{F (πt, γ1:2t , u1:2t )}1u1:2t
{γ1:2t (x1:2t )}P(x1:2t |π1:t, γ1:21:t )

=
∑

u1:2t ,x1:2t

πt(x
1:2
t )1πt+1{F (πt, γ1:2t , u1:2t )}1u1:2t

{γ1:2t (x1:2t )}

= P(πt+1|πt, γ1:2t )

E(c(x1:2t , u1:2t )|π1:t, γ1:21:t ) =
∑

x1:2t ,u1:2t

c(x1:2t , u1:2t )P(x1:2t , u1:2t |π1:t, γ1:21:t )

=
∑

x1:2t ,u1:2t

c(x1:2t , u1:2t )P(x1:2t |π1:t, γ1:21:t )1u1:2t
{γ1:2t (x1:2t )}

=
∑

x1:2t ,u1:2t

c(x1:2t , u1:2t )πt(x
1:2
t )1u1:2t

{γ1:2t (x1:2t )}

= ĉ(πt, γ
1:2
t )
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