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Abstract

In a cooperative communication scenario, where a transmitter can transmit a packet directly to the
receiver or indirectly through a relay, there is an inherent trade-off between energy and delay. While
it may consume more energy to transmit a packet directly to the receiver than transmitting through a
relay, the transmission through relay incurs more delay.

We pose this problem as an infinite horizon stochastic control problem. There are two possible
cases. the centralized case where there exists a centralized controller which views the queue lengths of
both the nodes, and the decentralized case where the information about the queue size of a node is not
available to the other node. We find the optimum centralized control policy if the relay node does not
have its own traffic, and show that, under certain conditions, it can be implemented in a decentralized
fashion. For the decentralized case we consider traffic at both transmitter and the relay node and we
prove a structural result that the optimum policy is the solution of a dynamic programming equation

and the optimization is done over a fixed state space i.e., a state space that does not increase with time.

I. INTRODUCTION

In a wireless channel, successful communication between any two nodes is influenced by
the channel statistics, transmission energy, energy path loss and interference by other users at
the receiver, among other factors. With increasing number of wireless networking devices using
real time applications, the delay is an important parameter for QoS (quality of service) of the



communication, whereas due to battery constraints, the transmission energy is costly.

In awireless network, the energy required to transmit a packet successfully to areceiver could
be large due to large distance between the two nodes or bad channel gain, but presence of other
nodes in the network could provide alternate route with possibly less energy costs. But since
this requires successful transmission from the transmitter to the relay node and then from relay
node to the receiver node, clearly the delay is more. Thus there is a tradeoff between the energy
cost for successfully routing a packet and the delay cost.

In this work, we first consider a relay channel with a transmitter, relay and a receiver node
with incoming traffic at the transmitter node only. There are fixed energy costs for any successful
transmission from transmitter to relay, relay to receiver, or transmitter to the receiver, and there
is a delay cost for each packet in the queue of either transmitter or the receiver. And the
energy and delay costs are common knowledge among the nodes. There could be two possible
cases regarding the information structure of the problem, centralized and decentralized. In the
centralized case, the queue lengths of both, transmitter and relay node are common knowledge,
whereas in the decentralized case, the queue length of any node is its private knowledge. The
objective is to find the optimal strategy to be implemented by the transmitter and the relay node
in the centralized and decentralized fashion that minimizes the total cost of energy and delay.

The remainder of this work is structured as follows. In section Il, we present the model .
In section 11l, we consider the case with traffic only at the transmitter node. We define the
centralized control problem and find the optimum strategy for the centralized case and also
show that it can be implemented in a decentralized case as well. In section IV we consider the
decentralized scenario, under the assumption that the relay is also having its own traffic. We
formulate the problem as an instance of decentralized control with delayed sharing pattern [4]
and prove structural result that the optimum policy is the solution of a dynamic programming
eguation where the optimization is done over a fixed state space as opposed to an ever-increasing

state-space in general.

[I. MODEL

Our model consists of a transmitter node (node 1), a relay node (node 2) and a receiver node

(node 3). The time is discretized into slots and we assume Bernoulli packet arrival processes
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Fig. 1. A simple relay channel

pt,q; @ node 1 and 2 respectively and the probability of arrival of a packet in any dlot is p
and ¢ for node 1 and 2. Both node 1 and 2 have queues of infinite size. The transmitter has
to send the arrived packets to the receiver and it has a choice to either transmit directly to the
receiver or transmit it through the relay or not transmit at al. We denote by =} and z?, the
number of packets at time ¢ in the queues of node 1 and node 2, respectively. Node 1 and
node 2 take action u},u?, respectively, as a function of all the information gathered till time ¢.
The possible actions for node 1 are { Ey3:transmit to node 3, E5: transmit to node 2, 0: wait
(don't transmit) } and possible actions for node 2 are { E»3: transmit to node 3, 0: wait }. At
the end of time dot ¢, node 1 and node 2 receive a noiseless feedback w, from the receiver
stating if the slot had successful transmission from node 1 (1) or node 2 (2), was idle (0), or
had a collision (€). Thus each node at time ¢ can determine (u; ,,u? ;) from its transmission at
t—1i.e.uf | and the feedback w; and thusit is a delayed sharing of information with delay 1 [4].

The energy cost of transmission from node 1 to node 3 is E3, node 1 to node 2 is EF, and
that for node 2 to node 3 is E»3; and simultaneous transmissions from both node 1 and node 2
lead to unsuccessful reception (collision), without any additional cost. To simplify notation, we
consider the same symbols for actions as for the corresponding energy costs and reference is
clear from context. We also assume a delay cost which is equal to the total number of packets
waiting in the queues of node 1 and 2, thus cost of one unit per epoch for each packet in either
gueue. All costs are additive and costs for future slots (or epochs) are discounted by discount

factor A\, (0 < A < 1). We describe (E13, Eas, E12, A, p, q) as the basic parameters of the system.



A. Summary

Foral k € {1,2},t € {1,2,...}

1) Queue lengths
z¥ : Queue length of node k at time ¢ ; 2 € {0,1,2,...}

2) Actions
uf : Action by node k at timet ; u} € U := {0, E1o, F13}, u? € U? := {0, Eo3}

3) Feedback
w; . Feedback at time ¢ (O:idle, 1:successful transmission from node 1, 2:successful trans-
mission from node 2, e:collision) ; w; € {0,1,2, e}

4) Basic Random Variables
zh, 22, (pryqe o t € {1,2...}) where p,, ¢, are Bernoulli arrival processes at each node's
queue with parameters p and ¢ respectively.

5) State Evolution

x% = pt+ xifl - 1{E12,E13}(u7}71>1{0} (utzfl) (1a)

= g+ iy — Yy (U 1) L0y (wi_y) + Ly (wi_1) Loy (uiy) (1b)

6) Instantaneous Cost

g, o} uf, u)) = oy + o] 4 up + uf 2

7) Common Information at time ¢

Since u;_; and w; combined give u? ;, we have common information as

12 . 121 2 1 .2
Uppq 2= UUUQUg - - - Uy Uy

I11. CENTRALIZED CONTROL WITH NO TRAFFIC AT RELAY

In this section, we are considering the centralized controlled system where queue length of
both the transmitter and receiver nodes are known to the controller. We will also assume that
there is no arrival process at the relay node, so ¢ = 0. We will prove that the centralized
policy can be implemented in decentralized way if the initial state of the system is (0,0) i.e.
(z1, 27) = (0,0).



At time ¢, the common knowledge of nodes 1 and 2 (or centralized controller) is

1:2 1,21 2 12
Upp—q = UgUUQUy - - - Up Uy
2 . 1.2.1.2 1.2
Ty = XXX XS .. T T (3)

Thus the control action at time ¢ , u; := (u,u}) € U' x U?, in general, can be a function of
all the information available till that time

Uy = gt(l’%?a Ul:tﬂ)l

= gt(xif) (4)

thus any policy g = g1, 92, g3, - - - induces a cost
J9 = E{Z N le (XY, X2 U U Y )
t=1
The objective is to minimize the total discounted cost of energy and delay incurred over infinite

time horizon. We define the problem as follows

Problem 1. Find the optimum centralized policy g* that achieves the optimum cost,

J* := min J9 (6)
g

where J9 is as defined in (5), control actions u;2 as in (4).

Lemma 1. The process { X?,t =0, 1,---} is a controlled Markov process with control U/; and

instantaneous cost as given in (2) i.e.
Py |onif upy) = Pl |y, ™) (7

Proof. This is trivially true due to system evolution as given in (1) and the independence
of the basic random variables (X|, X2, P, Py -+ ). |
Thus by Markov Decision Theory [1] [2], there exists a stationary Markov policy of the form

1In the text we repeatedly use functions § and ¢ to emphasize its arguments and same notation should not be interpreted as
the same functional form



u; = g(z}?) that achieves optimum cost J* as given in (6). Moreover this optimal cost can be

found as
J = E{V(X],X])} (8)

where the cost-to-go function V' (z, y) satisfies the following dynamic programming equation (9)

and the actions w4, u, that achieves the minimain (9) for each state x, y form stationary optimal

Markov policy.
[ (0,0): 24y +MpV(e+1y)+ A1 —p)V(zy) (>0,y>0)
(E13,0) : 2+ y+ Ei3+ ApV(x,y) + M1 —p)V(x —1,y) (x >1,y>0)
V(e y) = min (E12,0) iz +y+ Epn+pV(z,y+ 1)+ X1-p)V(e—-1y+1) (z>1,y>0)
vz (0, Beg)tx+y+ Eyg+ApV(e+1L,y— 1)+ A1 —-p)V(z,y—1) (x>0,y>1)
(B3, E03) :x+y+ Eis+ Ess+ \pV(z+ 1,y) + X1 —p)V(z,y) (z>1,y>1)
| (Big, Egz) 2 +y+ B+ By + ApV(z + Ly) + A1 —p)V(z,y) (z>1,y>1)
(9)
A. Solving the dynamic programming equation
It can be easily seen that cost for actions (Ej2, Eo3) and (Ei3, Ess) is aways greater than
that for (0,0), thus it need not be considered in computing the minima. These actions lead to
collision and the centralized control avoid that. Thus the cost-to-go function should satisfy
[ (0,0): 2 +y+ V(@ +1Ly) + A1 = p)V(2,y) (x> 0,y >0)
Vi(e.y) = min (E13,0) iz +y+ B+ pV(z,y) + M1 —p)V(x—1,y) (x>1,y >0)
vz (B 0)tx+y+ En+ApV(z,y+ 1)+ X1 —p)V(r—1,y+1) (z>1,y>0)
[ (0,B) iz +y+ Eyn+pV(r+Ly—1)+AN1-pV(r,y—1) (z>0,y>1)
(10)

In general its difficult to solve such recursive equation to find V' (z,y). Moreover there could
exist multiple solutions. As shown in [3, sec. 6.10] and appendix B, in appropriate Banach space,
existence of a unigque solution is guaranteed under certain conditions. We propose policies for
different set of values of the basic parameters and prove their optimality by proving that they
satisfy the dynamic programming equation (10). The uniqueness of the solution (in appropriate



Banach space) guarantees that the solution of the dynamic program is equa to the optimal

solution.

1) Optimum policies under a restricted class of policies: First we restrict ourselves to the
set of policies where whenever zZ > 0 (i.e. queue of node 2 is non-empty), node 2 transmits
its packets to node 3 and during this time node 1 waits. Also we assume that system starts at
r; = 0,27 = 0 and as a consequence of the restriction on policies, in future z? € {0,1}. Thus
for these restricted set of policies, the following equations have to be satisfied

V(z, 1) = r+ 14+ Epo+ ApV(z+1,0) + A1 —p)V(z,0) (12)
(0,0) : x4+ ApV(z 4+ 1,0) + A(1 — p)V(z,0)
V(z,0) = miny,, § (E13,0): 2+ Ez+ A\pV(z,0) + A1 —p)V(x —1,0) (x> 0)
(Er2,0) iz + Erp+ MV (z, 1)+ M1 —p)V(z—1,1) (z>0)
(12)

Substituting (11) into (12) we can restrict the state of the system to x, the queue size of node
1, which sufficiently describes the evolution of the system under restricted set of policies and
thus the optimum cost-to-go function defined with slight abuse of notation as V' (z) := V(z,0),
should satisfy the following equation

V(0) =ApV (1) + A(1 = p)V(0)

[ (0): 24 ApV(z+1)+ A1 —p)V(z)

V() = min (E):x+ Eiz+M\pV(e)+ A1 —p)V(x—1) (x > 0)
| (Bi2) s (L4 A) + (BEiz + AEgs + Ap) + Ap*V(z 4+ 1)

+A2(1 = p)?V(z — 1) + 2X\%*p(1 — p)V(x) (x> 0)




Table I, 11

I1, 1V shows the optimum policies for the case of restricted policies, the cor-

responding cost to go function and the set of parameters for which it is optimal. Appendix A

contains the definitions of symbols used and Appendix C derives cost-to-go function for case I,

[1, 111. We omit the proof of IV.

TABLE |
WHEN ITS OPTIMUM TO WAIT.

Policy

z>0:(0,0)

Cost to go function

V(z) = (1:\—’/’\)2 + sw

Conditions of optimality

Bz > 1/\/\
2
Eis + AEyy > 25

TABLE Il

WHEN ITSOPTIMUM TO TRANSMIT DIRECTLY TO NODE 3

Policy

z=0:(0,0)
$>OI(E13,0)

Cost to go function

V(x )—c+sx+dpx

Conditions of optimality

1— )\

Fus <

=

TABLE I11

WHEN ITS OPTIMUM TO TRANSMIT THROUGH RELAY NODE 2

Policy

x=20:(0,0)
$>02(E12,0)

Cost to go function

V(z) =u+ sx+ré”

Conditions of optimality

Eis 4+ AEoys < )‘2

Eia+AFa3
1+ + S L

1)\2

TABLE IV

TRANSMIT THROUGH NODE 2 IF 2 (QUEUE SIZE OF NODE 1) IS STRICTLY LESS THAN z¢5, AND WE TRANSMIT DIRECTLY, IF

x 1S GREATER THAN EQUAL TO x¢p

Policy

z=0:(0,0)
O< x> <y : (Elg,O)
ry, < a0 (Ehs,0)

Cost to go function

Conditions of optimality

Ve <axy —1: V(z) =1 + st + u — l(ac)™ Fw; (x)
r=xy—1: V(rg —1)=s(zy —1)+u+ Té%711:((;::%;?;315%’;;1)(aa)
Vo > xy, V(z) =szx+c+ p”‘x*”+1[V(9ﬁth —1) = s(ay, — 1) — ¢
(B3 — /\) < blthﬂ (E12 + AEa3 — = ,\)

(Ers — L,\) bzth (E12 + AEa3 — 2,\)
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Fig. 2. Decision Regions in the space of basic parameters Ei3, E12 + AE23, A, p for restricted set of policies. The triangular
region represents policy described in Table IV with different xs,

Figure 2 shows the optimum policy for different decision regions in the space of basic
parameters Eis, Fas, i3, A, p. These regions are also verified by the numerical analysis using
the method of value iteration [3].

Figure 3 shows the decision regions in the limiting case as the discount factor A — 1.

2) Centralized policy for the general case: In the previous section we considered the restricted
set of policies for which node 2 transmitted whenever it had a packet and thus z? € {0,1}. In
this section, the policies for the general setting are proposed. The state of the system is (X,y)
where ‘x’ and 'y’ are the queue lengths of node 1 and node 2. The optimum policy has to satisfy
equation (10). For the general case when there is no traffic at relay, Table V, VI, VII, VIII, IX,
X show the optimum policies , the corresponding cost to go function and the set of parameters

for which it is optimal.
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Fig. 3. Decision Regions in the space of basic parameters Fi3, E12 + AFa3, A, p for restricted set of policiesas A — 1 .

TABLE V
BOTH NODE 1 AND 2 WAIT

Policy x>0,y >0:(0,0)
Cost to go function V(z,y) =s(zx+y)+ (ﬁ—%z
Conditions of optimality | E13 > 25
A
Eay > 25

TABLE VI

NODE 1 HAS PRIORITY: FIRST NODE 1 TRANSMITS DIRECTLY TO 3 AND THEN NODE 2 TRANSMITSITS PACKET TO 3

Policy =0,y =0:(0,0)
.T:O,y 2 1: (O,Egg)
T 2 1,y 2 0: (Elg,O)
Cost to go function Vie,y) = sz + y + FEi3) — (Af:z)og T (17/\p)§€2>\37E13)

y {u_xpm_@g(l_ﬂ w
P (1-N)2

Conditions of optimality

Ei3 < Eyy < 2

1-\
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TABLE VII

NODE 1 HAS PRIORITY: NODE 1 TRANSMITSALL ITSPACKETSDIRECTLY TO 3 AND NODE 2 WAITS

Policy =0,y >0:(0,0)
x Z 17?J Z 0: (E1370)
Cost to go function Viz,y) =s(z+y)+c+dp”
Conditions of optimality | E13 < 2 < Fog
TABLE VIII

NODE 2 HAS PRIORITY: NODE 1 WAITSWHILE NODE 2 TRANSMITS

Policy x>0,y =0:(0,0)
$>Oy>1(0 E23>
Cost to go function V(x,y) = s(x +y+ FEa) — ( (1jA)2 $Fos
Conditions of optimality | £y > 25
Jr
A FEi2 A
(ﬁ - T) < By < 175

TABLE IX

NODE 2 HAS PRIORITY: FIRST NODE 2 TRANSMITSALL ITSPACKETS TO NODE 3, THEN NODE 1 TRANSMITSTO 3

Policy

Cost to go function

Bu= 4 dp®(pp+ 1 — p)?

(a:+y+E23) (

Conditions of optimality

(I=2p)(E12+AEo3)
1-\2p

+ 1—)\21)

TABLE X

NODE 2 HAS PRIORITY: NODE 2 TRANSMITS TO NODE 3 WHENEVER ITS QUEUE ISNONEMPTY AND NODE 1 TRANSMITSITS

PACKETSTO 2 IF NODE 2’ S QUEUE IS EMPTY

Policy =0,y =0:(0,0)

r>1,y=0:(F5,0)

x>0,y >1:(0,F)
Cost to go function V(z,y) = s(x+y+ Fy3) — (Al(:’)’g) + Y (Elﬁf_%f’z)((lif)ﬂ +7§7(p§+1—p)Y
Conditions of optimality E13 > Bfiln | Ao

7 = B+ AE3
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If the system starts from (z1,2%) = (0,0), then the general policy reduces to the restricted
policies considered before and since packet arrival at node 2 is only through node 1, thus node

1 can keep a track of the queue size of node 2 and the optimum policy can be decentralized.

I\VV. DECENTRALIZED CONTROL WITH INCOMING TRAFFIC AT RELAY

In this section, we assume that the relay also has incoming traffic modelled as a Bernoulli
arrival process with arrival probability, ¢ € [0, 1]. We consider the decentralized case where
node 1 cannot observe the queue length of node 2 and vice versa. In this case either of the
nodes cannot track the queue size of the other node and the problem becomes considerably
more complex.

At time ¢, information available with node k is (z%,,u%, |, w1, 1) which is equivalent to

(., ut? |) and thus control actions can be defined as follows

utl = gtl (x%:h u%:t—lv wl:t—l) - gtl(x%:w u%?—l)

U? = th (x%:m u%:t—l? wlitfl) - gtz(x%:m u%%—l) (13)

If g* is any strategy of node k i.e. g* = gf, g5,--- where k € {1,2} then g = (@', @) is the
combined strategy of both the nodes and the corresponding cost is given by J9

JO=E{) N (X X2, UL U} (14)

i=1
Problem 2. Find the optimum decentralized policy g* that achieves the optimum cost,

J* := min J9 (15)
g

where J9 is as defined in (14), control actions u}*? as in (13).

Here we prove a structural result for the optimum decentralized policy and show that it can be
found as a solution of a dynamic programming equation. First we prove that there exist optimum
control actions that depend only on current state and entire control history i.e. (zF,u}? |) and
further it depends only on the current state =¥ and the posterior on z}*? conditioned on the

control history ui? ;.

Lemma 2. For any fixed strategy g, randomvariables X, and X3, are conditionally independent
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given the control history till time ¢, U{% | i.e.
PO(z1F uriy ) = PY (14 urs- 1)Pg (1lurs—) (16)

Proof:

The causal decomposition of P9(z1:2, ui? ;) gives,

t—1
. 1
PO(2}2, ul2 ) P(xnn(mmlwxi,u;%nw (el a2 1>)

i1

t—1
P(x%H(P( 2 12, ul) P (2], k2 o) (17)

j=1
P(e}) [T (P(ILJ:E%,U%Q)W (ul k2 n)
—1 . .
5., PO I (Plat bl )P Gl )

PO(ayi|ury ) =

P(2) [T (P( 22,2, ul) P ;wxf;j,u%zm)

9

S, P T (Pl o )P a2l ) )
=P (x1t|u1t DP9 (27 uryy) (19)
|

Lemma 3. For given any fixed strategy of the node 2 i.e. g%, {(X}!, U{?,);t =1,2,---} isa
controlled Markov process with state (X}, U2 ;) and control input U} i.e.

pe ($§+1=U1t2|$1tyuif 17“11&) pe (xt+17u1t2|xt7u%t2 1:“1) (20)
2 2
Eg {Ct(xivl‘?vui7u?)|x% t?uif 17u%:t} - Eg {Ct(xivxiu%vu?)‘xt?ult 17ut} (21)
= é(x%au%?flaub
Proof:
2 . . 2 . .
P9 (:I:%H,uif x%:t’uit{lau%:t) = P9 (xiJrl‘x%:t?ult) pe (u i?’x%:tauit{laui)

2
= P9 (xi-q-l‘x%:tvul t) pe ( ?‘l‘%t,uif 17ut1) (22)
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Since x4 = fi(x}, pi1,u;?) where f; is as defined in (1)

2 . 2 .
P9 (xiﬂ\:l:it,u%;?) = Z]P)g (xt1+1apt+1‘x%:tau%§?)

Pt+1

- Z ]P)(thrl)lft(xtl Dit1,uf?) {x;rl}
Pt+1

= P(l’Hl’xt, 12) (23)

aso since U? is a function of X?,, U} is a function of X{, and X|,, X?, are conditionally

independent given U}:2 | (Lemma 2), thus
PO (uf ot gy uy) = PO (uflui ) (24)

Thus from (22),(23) and (24),

1 2 1:2 1 1 1:2) 1 12 1
pe (xtJrlault‘ ltuult LU = P ($t+1yult Ty, Uy g, Uy) (25)
For the second part,
2 2
BY {cy(xf, 2}, uf,u) oy, wd o out,t = Y elal 2w ul)PY (o), 27 up wf oy, ull g uly)
fafugug
(26a)
2
= > alz) aful u))PY (2] uf o), uif ) (26b)
a3 uf
2
- Z Ct(xz%?x??uivuf)]})g (mtv |u1t 1) (26¢)
a3 uf
= Eg {Ct(mivvauivufﬂxtvult lvut} (26d)
= é(xiauif—lau%) (268)

where (26¢) istrue since X?, U? are conditionally independent of X7 ,, U}, given U{? ; (Lemma
2). u

As a consequence of the MDP structure of the problem, given a fixed strategy g* of the node
2, the optimum control action by node 1 can be given as (for & = 1)

up = gy (@), uif ) (27)
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Since this is true for any fixed strategy of node 2, it is also true for the optimal strategy of

the node 2. A similar result for node 2 is true, thus the above equation is valid for k£ € {1,2} .

A. POMDP from the perspective of coordinator

In the decentralized case, each node can act as a controller and thus we have two linked
stochastic control problems. We can view this problem from the perspective of a fictitious
coordinator [4] who observes, at time ¢, the feedback w; or equivalently u}'% but does not
observe zF, k € {1,2}. Thus at time ¢, it has access to the information u1:? | (due to perfect
recall) and based upon this information, it generates partial functions ~;}* as its control outpt,
where 4 : N — U* k € {1,2}. And based upon these control outputs of the coordinator, node
k, k € {1,2} compute its action by operating these partial functions on its private information

i.e. zF . If strategy of the coordinator is ¥, then

(n0) = Wl y) (28)

wi o= () = W (u ) (@) = g7 (wy, ) (29)

Now we show that belief on z}? given the observation and control history till time ¢ which
isulz | ~42 |, forms a sufficient state for the coordinator’'s problem. We define the random
variable II; € P(N?) as the posterior pmf of X/ conditioned on U:2, T} | i.e.

IMy(2y?) = P(X;™ = 2| UL, T ) (30)
Lemma 4.
T = F(m, ’tha ug:z) (31)
where F is a deterministic update function that does not depend upon the policy g

Proof: See Appendix D [ |

Proposition 1. The process {II;,¢ = 1,2, ...T} is a controlled Markov Process with control ~/2.
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P(men| e yiit) = P(melme, %) (32)
E(e(y® u )|, i) = Ele(a™, w™)m, %) (33)
= é(Wta%m)
Proof: See Appendix D [ |

Since {II;,t = 1,2,...T'} is a controlled Markov Process the optimum output functions can

be given by (v},~2) = ¢;(m;). And thus optimum action by node & can be written as

uy = gy (), m) (34)

The dynamic program for the coordinator is
V(m) = inf[e(r,7"?) + E{QAV () |7, v'%}] (35
i

where the expectation is with respect to the conditional probability induced by the update function
F and u}*? as random variable (noise). This result is in accordance with [4].

Furthermore, due to the specific nature of our problem, we show that instead of joint probability
on the queue length of two nodes, individual marginals form a sufficient state. To that effect, we
define random variable =F € P(N) as the posterior pmf of X} conditioned on U2 | T12 | i.e.
EM(ah) = P(X}F = 28| U2, TE2 ) and show that (&}, &7) is controlled markov process. This
gives a significant reduction in size of state over which optimum policies have to searched as =
is defined over a space of P(N?) while (¢!, £2) is defined over P(N) x P(N).

Lemma 5.
& = GMES A ul?) ke {1,2} (36)

where G* is a deterministic update function that does not depend upon the policy g
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Proof: For any fixed coordinator strategy ,

5::1+1(95%+1)

Now,

Hw( 2‘“1t='71t)

PY (2 |y, 717
Thus,

gtlJrl(x%Jrl)

]P)w(xt—l—l‘ul £ V1 t) (373)
D Py ugt ) (37b)
ZEW( 2’“1t7’71t)P(xt+1‘xta u )} (37¢)

Pw(xt y Uy 2‘u1t 1:711&)

Z 12]P)w($t ,th‘ult 17’71t) (37d)
]P)w( 2’u1t 1”711‘)]?7#( 2‘ult‘ 177 ,$12)
Z 12]P>w($t , Up” Q‘UH 1,711 ) (37¢)
PY (22 |ut? |, vz )1, 2{7 2(z12)}
37f
Zx%:zﬂw( 2|U1t 177” 1)1 12{7 ( 12)} (37f)
€1 e 221 o {1l )
> ()& (0F) L2 {72 (21) ) (379)
ftQ l‘?)l 12{/}/ ( 12)}
12 h
szlzft 33'% fg(l't)]_utlQ{ﬁ)/t ( %2)}]?( t+1’ ty Uy )} (37)

§ (@) L {7y (1)} 2oz Lup {07 () }EE (7))

Pz}, |z}, ul? 37i)
2 Pkl it S D ) S L RN
& (24)1, {%& (1)} -
P(xy, ,|of, up? (37)
D R ey W)
Gl (ft17 /Ytlu ui: )(xiJrl) (37k)
where (379) is true since z; and =7 are conditionally independent given ;% (Lemma 2).
Similarly &2, = G*(&2,7¢, uy?) where G* and G* are deterministic functions.
[ |

Lemma 6. The process {(=},Z?);t = 1,2,...} is a controlled Markov Process with controls
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r}2ie
]P)(gtl-i-la €t2+1 ’511:1:7 szw 711t2) = IP)(Stl—I—la €t2+1 ‘gtla 51:27 P)/tl:2> (38)
E(e(zy®, w6 ) = &) + &) (39)

Proof: In the following we use the notation G := (G, G?)

P(&L &6t Lo iE) = ZMH,QH, L2l €2 Ak

t

= Z 1a, e, {G(E, €42 ul ) P(uf?|eL,, €, 713

ug?

(40a)

(40b)

— Z §t+1 §t+1{G(§t7§t7/yt 7Ut )}1 12{7 ( )}P(l‘%2‘§11t7§ft,/711t2)

1:2 .1:2
Up 5Tt

(40c)

= Z ftl(xi)gf(l‘?)lftlﬂ,ffﬂ{G(£t17ft?%t 7ut )}112{7 ( )} (40d)

= th x})EF ft)1§t+1§t+1{ (& &2 7 (2?)}
el

E(c(z? w6 mi) = Z (2 +af +uy +u)P(x,, w2 |67, 177)
- Z:@+ﬁ+@+m)(ﬂ&wmﬂwh (%)}
= Z (2 +af +uy +u)& (2)€F () L {7 (272) }
_ Z(mt—i-vt(xt))ét (] +Z:rt+%(:rt))§t(xt)
- (;t 2 |

|

where (40d) and (40i) are true because X}, X? are conditionally independent given I'}:2, =1:2
which are functions of U{? ; (Lemma 2). Since {(¢},&?);t = 1,2,...} is a controlled Markov
Process, the optimum output functions can be given by (v/!,172) = (&}, &%), The dynamic

programming equation can be given as

(40e)

(40f)

(409)

(40h)

(401)

(40)

(40K)
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V(g €%) = minfe! (€', 7") + (€%, 7°) + AE{V (£}, )| 7 "}] (42)

Y

where the expectation is with respect to the conditional probability induced by the update
functions (G', G?) and u;* as random variable (noise).

Thus finally, the optimum control actions are
uy = g7 (a1, & &) (42)

and action of node 1 is a function of its current queue length, its estimate of node 2's queue
length (¢2) and aso node 2's estimate of node 1's queue length (£}).

This model cannot be extended to the case where there are more than two transmitter nodes
(where the relay node in our model is also considered a transmitter node). This is because when
there are only two transmitter nodes, in case of a collision, each node can determine that collision
occurred due to simultaneous transmission of the other node. But if there are 3 or more nodes, in
case of collision, a node cannot determine which other node(s) transmitted simultaneously. More
precisely, in former case, feedback w;, combined with u# gives transmission profile of each user
i.e. (u},u?) whereas in latter case, it is no longer true. Thus our model needs to be enriched so
that each collision also contains the information regarding which nodes transmitted. This could
be achieved if each node transmits a ‘signature’ waveform along with the data waveform such

that signature waveform of all users are mutually orthogonal and orthogonal to data (for e.g. in

frequency).

V. CONCLUSION AND FUTURE WORK

We analyzed energy delay tradeoff in a smple relay channel. In section 111 we found the
optimum centralized if relay does not have any traffic and showed that it can be implemented in
a decentralized way also. In section IV we proved the structural result that the optimum policy
can be found using solving a dynamic programming equation. The domain of optimization is
space of probability mass functions on state space P(N) x P(N) and is still intractable. Future
work can analyze more structural properties of the optimum strategy to design optimum or

suboptimum strategies and analyze its performance.



APPENDIX

A. List of symbols

Ap
K= —"-
1—=A+Xp

(1—A)?
1
TTIo
g ML= 2p) = Eyg(1 = A)(1 = Ap)
RSN
A=A
P= 1—Ap
o (Ap)?
1 —2A%p(1 - p)
g WA-p)”
T—2p(1 - p)
0_ 1+ A
1 —2\%p(1 —p)
o E12+)\E23+)\p
S 1=2X2p(1 - p)
§=ap
ay a’ad
= (1—@04)+(1—a&)2
~ab
©T (1 —ax)
_ntw w

TToe T a-ep

N1+ E23—p)+ M Es+p— Ein) + Enp
= TESNEESY

Ks+ Ku—u

ke

r=V(0)—u=

L= [(u=0c)(1=p)+ (p— aB)(u+s(zy — 1) = V(zm —1))]
1 11 )+ 1
(1-K¢ 2—a 2—a
1 1

wi@) = |(a-

az,, = aa(aa —a+ 1)(

1—Ka6_2—a)(a

y (L= K) (1= a0p) | a,
(1= M)(1 — Kap) 1+ A

s (1— anp)(1 — aa)
b Z—a)(p—0)

20
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B. Conditions sufficient for uniqueness of the optimum solution

Let S =1{0,1,2,---} andw : S — R beareal valued function such that inf,csw(s) > 0 and
induce weighted supremum norm for real valued functionsv on S as ||v||, = sup,cgw(s) " |v(s)].
Let V,, be the space of real valued functions v on S satisfying ||v||,, < oo . Then V,, is a Banach
space (complete normed linear space) and convergence in V,,, with respect to weighted sup nhorm
implies point wise convergence, since ||v™ — v||, < € implies [v™(s) — v(s)| < ew(s)

Let ¢(z,a) be the instantaneous cost where z is the state and « is the action , a € A,, A,
is the set os possible actions with state =, P(j|z,a) be the transition probability from state «
to state j under action a and P/(j|x) be probability of reaching state j from state = in J steps
with policy 7 = (g1, --¢gs). [3, sec. 6.10] shows that if following conditions are satisfied, then
the optimal dynamic programming equation has a unique solution in V,, which is equa to the
optimal cost.

1) There exists a constant i < oo such that
sup [r(z, a)| < pu(z)
aGAm
2) (&) There exists constant k, 0 < k < oo such that for all a € A,, x € S
> Pl ajw(j) < kw(z)
jes
(b) For each \, 0 < A\ < 1, there exists a , 0 < o < 1 and an integer .J such that for

Markov policies 7 = (g1, - - ;)

A Y Pl (le)w()) < aw(x)

jes



C. Finding Cost-to-go function

In general, V(x) of the form V(z + 1) = AV (x) + Bz + C can be solved as follows

V(iz+1) = AV(z)+ Bz +C
Vir+1) = AAV(z—-1)+Bz—-1)+C)+Bx+C
= AV(r—1)+ AB(zx — 1)+ AC + Bz + C
= AW (z—1)+ Bz + Az — 1)) + C(1 + A)
= AVO0)+Blz+Alz—1)+..+ A+ C(1+ A+ ...+ A7)

= ATV(0) + B( T Al- Ax)) oL =4

22

1-A  (1- Ay (1-A4)
B C B - B
Viz+1) = (x+1)m+(1_A—(1_A)2)+A (V(0)+(1_A)2

=)

1) Cost-to-go function for waiting: We find the cost-to-go function when the policy is to

wait for all x.

V() = z+XpV(e+1)+ A1 —-p)V(z)
Vet = L-AL=P) AA(; “Py () - )\ipx

Here A = 122U p— L ¢ = ( which gives,
P P

Vie) = (V(O) 1 ipw) [1 - AA(; _p)r e ipw e

The above V (z) satisfies the recursive equation for al V' (0).

For uniqueness (appendix B), let w(x) = x + 1 + E1o + F13 + Ea3. Then w(z) > 1 and

1)

sup |e(x, a)| < w(x)
acAy

2) fordlae A,,z €S

> P(jla,a)w(j) < w(z +1) < 2uw(x)

jes

(43)
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3) Since in each state, there are only at most one step transitions possible, thus

> Pl (lr)w(j) < w(] + x)

jes
and for A € [0, 1), since w(z) islinear (affine) in z, there exists a J integer and there exists
a, 0 < a <1 such that

M7 P (lew(5) < Mw(J + ) < aw(x)
JjES
Thus there exists a unique V' € V,, such that V' is the unique solution of the dynamic
programming equation and is equal to the optimum cost.

For V € V,,,sup, |V (z)w™(z)| < co, which implies V(0) = -2, since l—AA(jlo—p) -1

(1-X)2
Thus

Ap 1
V(x):(l_)\)2+1_)\x (44)

2) Cost-to-go when transmitting directly : The cost-to-go function in the recursive form is

given as

V(0) = V(1) + A1 ~-p)V(0)

V(z) = o+ Ei+ApV(x)+ A1 —p)V(z—1) (x >0)

Here A =202 p— _1_ = B which gives

x Eiz(1 =) = A1 - AL —p)yast i3l = A) — Al =
Vit+1) = (1ji)+ (1 (1)_A)2(1 p)+[ 1(1_A§)} + <v(o)—E a (1)_A)2(1 p)

Calculating expression for V(1) from this,

1 Eis(1=XN) =AX1-=p)  A1=pn Ei3(1=2) = A1 —p)
V(l) 1=\ (1_/\)2 [ 1—)\]?] (V(O)_ (1_)\)2 )

V(0) = ApV(1)+A(1—=p)V(0)

)
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This gives

V(z) = c+ sz +dp” (45)
where
e BEsa-noaa-p o L
(1=2)2 11—\
g M) -B0-N0-p) AT AP
= i =1y

3) Cost-to-go Function when transmitting through relay : We find the cost-to-go function of
the policy where successful transmission of a packet from node 1 to node 3 is achieved through
node 2. If there is a packet waiting in the queue of node 1 and there is no packet in the queue
of node 2, then node 1 transmits the packet to node 2 in next ot and then the node 2 transmits

the packet to node 3 in the subsequent slot while node 1 waits in this slot.

V()= V(1) +A1-p)V(0)
V(0) = 1_27’;@1/(1)
Ap
LR = Ty

V(0) = KV(1)
Vx > 1, the general equation is given by

V(z) = z(1+N)+ (B + ABxs + Ap) + X2p*V(z +1) + 221 — p)*V(z — 1) + 2X\%*p(1 — p)V(z)

V(z) = v+0zx+aV(x+1)+BV(x—1)

where,
Y R e e ) s
= 2wy AT T —p)
G o B Ei9 4+ AEs3 + Ap

22 %p(i—p) | = 1—2X2p(1 —p)
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V() = v+0x+aV(z+1)+pV(z—-1)

V(z) 0 1| [V(z+1) 0 0
= + r+
Viz—1) —2 11| V() -2 -1
v 0 1 0 0
W) = @ | Az =" c=|"
Vie—1) -5 3 5 -3

W(z) = AW(zr+1)+~C+Bx

= A"W(z +n)+71+A+ . +A"HNC+(z+A@+1)+..+A" Yz +n—1))B
Eigenvalue decomposition of A gives,
A=UAU"' whee U= |"
1

— 1=1-4ap V1_4aﬂ(l/1 < 1) Uy = I+vi—dap V216_40‘6(1/2 > 1)

vV = 28
A" = UAN"U!
This gives,
V() — Ye=b V0 )
e YOS L= M we e s [T Tures
T Vi) + % 0 vy 0 =
x v n( (z+n—1) 1
T, T (17;1)2 — v TR (1—1/1)2) 0 U-1B
T v n( (x+n—1) 1
0 1-v2 + (17132)2 B 1/2( 1—vo + (171/2)2)

Now we are interested in v, < 1, since that resultsin V' € V,,

S

Vi(z) - M] = [V{‘ 0} U'W(z +n) +7 [% 0] u-'c

Vo — 11 v2

[ g () L) o] uT'B

m 1—vq 11—
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Taking limit n to co given that v, < 1

Viz) — %V(“’“_””u_i)m+5y2(11— Vl)(w(l”_l@yl))

Let vy = ac, vy = % so that q = i=y!-408 W and a satisfies the equation (a3)a? —a+1 =0

V(z)=¢V(e—1)+wr+n

where
_ _ ay a?ab o al
f o (16 n = (1—ac) + (1—ac)? W= (1—aa)
V(1) = ¢V(0)+w+n
V() = KV(1)
K(n+w)
Vo) = ——=
(0) T K¢
Let
_ ntw w = A2(1+E23—p)+A(Ees+p—FE12)+E .  Kst+Ku—u W
u=1% e = dopaey s rEVI0) me= B s = =y
Thus
V(z)=r"+sx+u (46)

D. Decentralized control

Proposition 2.
T = F(my, %1:27 uiﬂ)

where F is the update function that does not depend upon the policy g



Proof: Fix 1

41 (513%4:?1)

Now,

]P)( ’ 1t7’711t2>

since = v(ul?.,)

]P)( 2‘u1t7’711t2) - 21277—1:(
xy t

Thus,

Lemma 7. The process {II;,t = 1,2

E(c(z? u ) e, i) =

27

P(Xi1 = x5 Jutiy, i)

Z]P) xt+17xt o lurss i)

ZP( iy i) Pla ey u?)

]P)(fl?t 7ut2’u1t 17711:)
Z 12P(xt 7ut2|u1t 177113)
P(z; 2’“11& 17”717:)]P)( 2‘“11: 1a’Y1taf’5t )
Z P(xt 7ut2‘u1t 17711&)
P( 2|U11t 17711: )1, 2{7 ( 12)}
thlﬂ P2 |uii_y, 1t 1)1u%:2{ Y ()}

2 a1 {2 (a1))

()2 {2 (22)}

Ti+1 = F(Wta% uf’ 2)

,...T'} is a controlled Markov Process with control /2. i.e.

P(Wt-H ‘lety 711?) = P(ﬂ'tﬂ |7Tt7 '71:1:2)

é(ﬂ-ta 7151:2)
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Proof:
P(me|mie, mit) = ZP(WtJrlau%:Q’Wl:taVll::tQ)
1:2
t
= > Lo AF (2w ) YP(u e, 1)
1:2

= > Lo AF(m w0 (2) Y (2 2 e, i)
u%:27$%:2

= 3 A L A (2 ) e 2 )

1:2 .1:2
ut ,iEt

= P(mya|m, %:1:2)

Ele(rl uf?)ma ) = Y eal® ul?B uf i, 1)

1:2 ,,1:2
It 7’U,t

= > el P 1D L {2 ()}

1:2 ,,1:2
It 7’U,t

= Y el ma ) Lge )

1:2 ,,1:2
It 7’U,t

= é(ﬂ-ta 7151:2)
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