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Abstract

Sensor provisioning is the problem of determining the number of sensors required to accomplish a complicated
system level task, e.g. tracking or discriminating between N targets. It is a central problem in missile defense
radar systems where the number of targets can easily exceed the number of radars. Here we present a method
for conservative sensor provisioning that guarantees a prescribed level of system performance, e.g., multiple target
detection and position uncertainty levels, regardless of the scenario.

1 Introduction

This report describes a general approach to sensor provisioning for multiple sensor systems that uses the guaranteed
uncertainty management (GUM) philosophy. By sensor provisioning we mean using radar models for target detection,
estimation and classification to specify fundamental limits on performance (system stability, track entropy, discrimi-
nation error probability, radar occupancy rates) for a given provisioning of the radar system (number of sensors, pulse
repetitions, revisit rates) as a function of signal processing parameters (target SNR, state error covariance, desired Pf

and Pd or classification error Pe).

While these methods apply to more general multiple radar multiple target detection, tracking, and discrimination
problems, our motivation was sensor management for engagement planning in missile defense. The guaranteed un-
certainty management approach is more conservative than standard stochastic scheduling approaches to radar system
provisioning. We feel it is better suited to the missile defense application since it carries strict and absolute guar-
antees on the probability of loss of track of the system. This is as contrasted to average performance guarantees or
approximations that have been adopted in previous approaches to sensor management [4] for similar applications. By
adopting this strict performance assurance approach the sensor management problem becomes non-stochastic and we
can obtain strong results that could not be easily obtained in the less stringent stochastic scheduling context.

The report is organized as follows. In Sec. 2 we summarize the selection of radar parameters. In Sec 3 the main
statistical models for radar tracking and discrimination are reviewed and a compact asymptotic approximation to the
classification error probability is given for Swerling targets using Chernoff and union bounds. In Sec 4 we develop the
theory for guaranteed uncertainty management for tracking radar including stability conditions and radar provisioning
for multiple targets. In Sec. 5 this theory is extended to multi-purpose radar that engages in tracking and other activities
such as discrimination and search. A step-by-step illustration of how to apply these results is given in this section.
Finally in Sec. 6 a numerical example is shown.
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In general we denote time parameters by τ and t, probabilities by P , positive integers by upper and lower case
i, j, k, l, m, n, p and sets by caligraphic capital letters C.

2 Radar and target parameters

The radar scan parameters in the missile defense application are:

• Pulse repetition interval τPRI . Determined by the maximum range rmax acquired by the radar. A rule of thumb
is to set τPRI = 2rmax/c, where c is speed of light, but if there are multipath radar returns the factor of 2 may
not be sufficiently large.

• The number Np of radar pulses used to probe a particular cell. More pulses translate into better detection and
discrimination performance by reduction of statistical sampling error variance.

• Gain G. This is not important unless we wish to account for smart targets that deploy countermeasures upon
detection of sufficient amounts of incident radar illumination energy.

• Mode M of radar. In FTI mode the RCS is different from that of MTI mode. MTI mode contains information
about target position, velocity and RCS, while FTI only carries information about position and RCS. This
information can be quantified by the inverse Fisher information on these parameters, see e.g., the FASM book
[4] chapter 10.

• The field of view (FOV) of each radar and, in particular, the overlap and coverage diversity. The FOV is
important in all phases of radar operation. It determines the subset of radars that are capable of tracking a
target as it crosses from the FOV of one radar into another’s FOV and thus determines the handoff protocol.
Cooperative tracking and identification by multiple (usually 2) radars can greatly improve performance for
targets lying in overlapping regions once detected.

• Radar service time required for revisiting a target and performing a particular task, which is also called the radar
service load. This ”busy time” will depend on target type, radar mode, and desired performance level (operating
point) in detection, tracking, or classification.

• The occupancy of a radar is the percent of the time that it is busy servicing targets. For maximal utilization
efficiency and minimal idle time, the sensor manager should strive to maintain a few sensors at 100% occupancy
rather than many sensors at less than 100% occupancy.

The target parameters are

1. Number N of targets in the FOVs of the R radars.

2. Target radar cross section(RCS) denoted by σs.

3. Noise power σo.

4. Confuser type. This is determined by the presence or absence of chaff or other countermeasures.

5. Target class S. This is determined by the condition of the target, e.g. boost phase, ballistic phase, transition
phase, etc.
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3 Statistical models for radar return signal

3.1 Target return models

Different target classes induce different joint distributions f(Y |α, β) of the pulse-averaged radar return Y =
∑Np

i=1 Yi

resulting from a scan of a given cell. Swerling’s models are common used to model the distribution of the magnitude
of the radar returns and determine the detection and classification performance [11]. These models are special cases
of the (scaled) Chi-square distribution

X (Y ; ν, σs) = Γ(Y ; ν/2, 2σs), (1)

where Γ is the (2 parameter) Gamma distribution

Γ(Y ; α, β) =
1

βαΓ(α)
Y α−1e−Y/β , Y > 0 (2)

where α > 0, β > 0 Γ(α) and is the complete Gamma function [5]. In particular, for α = 1 the Gamma distribution
is the exponential distribution

Γ(Y ; 1, β) =
1
β

e−Y/β , Y > 0.

Consider a multipulse radar probing a target cell with Np pulses detector. Assume that the radar receiver performs
phase incoherent envelope detection for each detected pulse and outputs a voltage Y equal to the sum of these pulse
returns. Then, if the radar receiver noise is dominated by the target return signal we have the following density models
for Y :

1. Cell with single slowly fluctuating target (Swerling I): the density f(Y |σs, Np) is Gamma with parameters
α = 1, β = 2Npσs.

2. Cell with single rapidly fluctuating target (Swerling II): the density f(Y |σs, Np) is Gamma with parameters
α = Np, β = 2σs.

3. Cell with slowly fluctuating target and clutter (Swerling III): the density f(Y |σs, Np) is Gamma with para-
meters α = 2, β = 2Npσs.

4. Cell with rapidly fluctuating target and clutter (Swerling IV): the density f(Y |σs, Np) is Gamma with
parameters α = 2Np, β = 2σs.

Other models have been proposed for complex targets, e.g., the Rician, Weibul, and log-normal densities [11, Ch.
5],[Ch. 2][13]. These models can also be handled but, unlike the Swerling models, there is no closed form for the
Kullack-Liebler divergence (4) between them.

3.2 Detection, tracking, and classification performance

Assume that the radar probes a particular range/cross-range cell centered at location z for presence of target, estimation
of target trajectory, or target classification.

The parameters of importance are

• Desired detection operating point Pf , Pd on ROC curve. This determines the number of radar pulses required
to probe each cell for a particular radar sensitivity and RCS of target.
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• If there is a target present, the standard errors σz , σφ, σv in the estimates of target position z, direction of
motion φ, and speed of motion v of the target within the cell. The inverse Fisher information, the Kalman
error covariance estimate, or other signal processing provides these parameters, e.g., see [4] chapter 10. These
standard errors can be specified as desired operating points for the radar.

• Desired operating point for the confusion matrix of probabilities p(i|j) of deciding target condition i when j is
true:

Pe = ((P (i|j)))i,j=1,...,C

where C is the number of target conditions of interest, e.g., lethality of live target, disintegration of intercepted
target, target deployment of chaff or other countermeasures. This desired operating point will determine radar
requirements.

The tasks (modes) that we consider are detection, tracking, and classification. In each of these cases the required
radar scan time to detect, estimate, or classify within a given cell can be expressed as

T = NpτPRI .

The parameter Np is the number of pulses required to achieve a specific per-cell performance level. The computation
of Np is summarized in the following:

• Detection of a target in a radar cell. Here Np = Np(S, σ,M, PF , PD) is determined from the equation

Np = min{n : β(Pf ; n) ≥ Pd}

and β(α, n), α ∈ [0, 1], is the ROC curve associated with the number of pulses, the mode M of the radar, the
class of target return, and the RCS σ of the target.

• Estimation of target position, direction, and velocity in a cell. Here Np = Np(S, σ,M, ε) is now defined relative
to a desired level ε of worst case standard error on these three parameters.

Np = min{n : max(σz, σφ, σv} ≤ ε}.

• Classification of target type within a cell. Here Np = Np(M, δ) can be specified to attain a desired level
of misclassification error probability. In keeping with the need to maintain the most stringent performance
guarantees, we propose to select Np in order to ensure the worst case misclassification probability

Np = min{n : max
j

(Pe(n|i)} ≤ δ},

where Pe(n|i) is the probability of misclassification of target type i when n radar pulses are used to scan the
cell. This error probability will depend on the decision rule used for classification, the radar mode used, the
target RCS, and on the distribution of the radar returns under the different classes of target.

3.2.1 Classification performance prediction via Chernoff bound

Unless there are only two target classes, the misclassification probability is a complicated function of the density
functions P (Y |i), i = 1, . . . , M . We propose to use a upper bound on this probability that applied to the optimal max-
imum likelihood (ML) classifier. In keeping with our conservative approach an upper bound will enable us to specify
absolute classification performance guarantees as contrasted with average performance guarantees or approximations.
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The misclassification error probability can be upper bounded using a combination of the union bound and the
Chernoff bound (see for example [2] or [3, Sec. 5.6]). This results in

Pe(n|i) = P (∪j 6=i {f(Y |j) > f(Y |i)} |i) ≤
∑

j 6=i

P (f(Y |j) > f(Y |i)|i) ≤
∑

j 6=i

exp(−nKL(i‖j)), (3)

where

KL(i‖j) =
∫

Y

f(Y |i) ln
f(Y |i)
f(Y |j)dY (4)

is the Kullback-Liebler divergence between the densities f(Y |i) and f(Y |j) of the radar return signal due to a single
pulse when the target class is i and j, respectively.

To apply this to target classification between different possible Swerling models, in (3) we can use the expressions
for the KL divergence between two Gamma distributions f(Y |i) = Γ(Y ;αi, βi) and f(Y |j) = Γ(Y ; αj , βj) [12, 9]

KL(i‖j) = (αi − 1)Ψ(αi)− log(βi)− αi − log (Γ(αi)/Γ(αj))

+αj log βj − (αj − 1) (Ψ(αi) + log βi) +
αiβi

βj
(5)

where Ψ(z) = d
dz ln Γ(z) is the ”psi function” (also called the digamma function and available as Matlab function

psi(0,z)).

4 Stable information-driven sensor management strategies

The sensor management problem is to utilize the available R radars in an optimal fashion to detect, classify and track
targets most accurately.

4.1 Information-optimal sensor management

The information criterion is often used to manage the sensors by selecting the sensor or sensor action that maximizes
the drop in entropy of the posterior distribution of the target detections, positions, and/or class. This problem has been
studied extensively in our previous work, see e.g., [7],[6],[8].

Assume that when a radar works on a task that it finishes it, in the sense that it works long enough on the task
to reduce the entropy to a specified (small) value. Assume also that the entropy H(n) associated with each task is
known and increases at a rate that is independent of the task. Under these assumptions, a standard exchange argument
establishes that the optimal allocation of R radars to N different tasks is as follows. First rank order the tasks in terms
of decreasing entropy of the posteriors associated with each task. Initially assign the R radars to the R tasks on the top
of the list. As radars finish their initial tasks they are assigned to the most highly ranked task that have not yet been
started. This results in the fastest overall decrease in the average entropy, 1

N

∑N
n=1 H(n).

4.2 Stable sensor management under resource constraints

Since the radars cannot revisit and update target tracks instantaneously and the uncertainty (entropy) grows over time
it is obvious that too few radars will quickly be overwhelmed as the number of targets increases. The stability question
is: what is the minimum number of radars required to maintain bounded uncertainty on the positions of all targets?
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Entropy minimization does not account for resource constraints such as service load, slew rate, handoff, or others.
Such resource constraints must be combined with information-driven sensor management to ensure stable and efficient
system operation. To ensure stable information-drive sensor management we find conditions that must be satisfied for
the steady state radar load to be bounded.

To do this we give tight bounds on the service load (in seconds) on a radar to revisit a target track and reduce the
target positional uncertainty to the volume of a single range/cross-range cell. These bounds are then used to determined
the total number of radars required to maintain a given number of tracks, the associated steady state revisit rates and
track entropies. We use these results to establish stability regions for the multiple track maintenance problem.

4.3 Guaranteed uncertainty management: single target

Assume that at time 0 a target is detected in a cubical radar cell

C0 = {z = (z1, z2, z3) : −σz ≤ z1 − z1 ≤ σz, −σz ≤ z2 − z2 ≤ σz, −σz ≤ z3 − z3 ≤ σz}

where z = [z1, z2, z3, ] is the center position of the cell. From the integrated radar returns from this cell, the radar
signal processing algorithms extract an estimate (ẑ, φ̂, θ̂, v̂) of target position, direction angles, and speed along with a
set of standard errors σz, σφ, σθ, σv . This could be the output of a Kalman filter, sigma tracker, particle filter or other
common tracking algorithm.

From these estimates and standard errors a confidence region for z, φ, θ, v having coverage probability of at least
1− εT can be specified. In particular, assume that

[ẑ − σz, ẑ + σz]× [φ̂− σφ, φ̂ + σφ]× [θ̂ − σθ, θ̂ + σθ]× [v̂ − σv, v̂ + σv]

is such a confidence region.

Assume for simplicity that σφ = σθ. Then with probability no less than 1− εT , after an elapsed time of τ seconds
from the last revisit of the target, the above 1− εT confidence region will map to the union of an uncountable number
of conical segments, each with conical apex at some point within the radar cell C0. This union is a complicated set and
we approximate it with with the circumscribing conical segment

Cτ = {z = (r, φ, θ) : −σz−τσv ≤ r+∆−τ v̂ ≤ σz +τσv, −σφ−σz/(τ v̂) ≤ φ−φ̂ ≤ σφ+σz/(τ v̂), θ ∈ [−π, π]},

where

∆ =
σz/

√
2

tan(σφ)

is the distance between the apex of the cone and the center of the cell C0. See Figure 1 and 2 for illustration. The
volume of this cork-shaped region is

|Cτ | = 2π

3
[
(τ(v̂ + σv) + ∆ + σz)3 − (τ(v̂ − σv) + ∆)3

]
(1− cos(σφ + σz/(τ v̂)). (6)

Consider a radar or sensor with scan cell size |C0| that revisits this target after an elapsed time of τ seconds from
the previous revisit. This radar will be occupied scanning subcells in Cτ in order to reduce uncertainty on the target
parameters (position/speed/direction) back down to a 1 − εT confidence region of size |C0| = σ3

z . The load on this
radar would be the time to scan the region Cτ which is equal to:

q(τ) = γ(τ)NpτPRI , (7)
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Figure 1: The small radar cell at right contains a target with high certainty immediately after revisit. If the target speed
is v with confidence ±σv and the target direction is ~v with confidence σφ then we can be confident that a target at the
center of the radar cell will lie in a cork shaped region after an elapsed time of τ secs. When the the target can lie
anywhere in the radar cell then we can only be confident that the target will lie in the union of all induced cork-shaped
regions by cones with vertices somewhere in the radar cell.

Figure 2: The confidence region after an elapsed time of τ seconds can be bounded by a larger cork shaped region
induced by the cone that inscribes the radar cell.
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where
γ(τ) = |Cτ |/|C0| − 1

is the growth of the confidence region and Np is the number of radar pulses per cell required to achieve the Pf , Pd and
prescribed 1− εT standard error on target parameters.

For R radars and N targets let qr,n(τ) denote the load (in seconds) on the r-th radar to revisit and update the n-th
target after an elapsed time of τ .

qr,n(τ) = γr,n(τ)Np(r, n)τPRI , (8)

where γr,n and Np(r, n) are analogously defined as possibly radar and target dependent quantities that ensure that the
confidence region Cτ = Cτ (r, n) for the n-th target has confidence 1−εT and that the number of pulses Np = Np(r, n)
is sufficient to guarantee the Pf , Pd criteria.

4.4 Guaranteed uncertainty management: multiple targets

The problem of scheduling of multiple radars to maintain multiple target tracks is a resource allocation problem
analogous to the problem of optimal processor allocation to different types of jobs in a parallel processing system.
The problem falls in the framework of dynamic scheduling of multiple heterogeneous servers (radars) to multiple
heterogeneous queues (targets) [1, 14].

4.4.1 The PLQ sensor manager for tracking

The sensor manager must assign radar servers to queues of target-revisit jobs in queues that grow as time elapses. The
target revisit jobs mat have different service requirements. In its full generality, solving for the optimal allocation of
servers to queues is a difficult, if not intractable, problem. However, several sub-optimal strategies have been proposed.
A suboptimal ”prioritized longest queue” (PLQ) strategy is to assign free servers to the longest queues, where each
queue is processed by the server that is best matched to the queues’ service requirements, e.g., an EO sensor can
best service the tracks of hot targets. The following implementation of this strategy is the ”largest weighted queue
length” policy proposed in Wasserman etal [14] for heterogeneous multiqueueing systems. Let N ⊂ {1, . . . , N} be
the number of target tracks not in the process of being revisited.

Prioritized longest queue (PLQ) sensor scheduling policy

When a radar sensor r is unoccupied and available for assignment to updating a target
track then either

1. idle the sensor if all target tracks are in process of being revisited (N is
empty).

2. deploy the radar sensor on the target tracks n ∈ N that maximizes the weighted
service time maxn∈N qrn(τn) where τn is the elapsed time since the last revisit
of target n.

Note that PLQ policy can be related to a penalized entropy minimization sensor manager since:

ln(qr,n(τ) + NpτPRI) = ∆Hτ (r, n) + cr,n

where ∆Hτ (r, n) = ln |Cτ (r, n)|− ln |C0(r, n)| is the decrease in the track entropy attained by updating the n-th target
with the r-th radar and cn is a penalty that is independent of growth in the uncertainty of target location.
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In the context of queuing systems, Wasserman etal [14] give conditions on the number of servers (R), the number
of queues (N ), the rates of service (γ(r, n)) and arrival rates (dCτ/dτ ) that guarantee that the mean queue size (E[Cτ ])
is bounded, i.e. the scheduling policy does not lose track. These results are applicable to the missile defense scenario
but would only provide guarantees on mean tracking performance, which is too weak for our purposes. In the following
we give more useful conditions that guarantee that with probability 1− εT the policy does not lose track.

The results are simpler to develop for a single radar tracking N targets so we treat this case first.

4.4.2 Balance equations guaranteeing system stability: single radar

Balance equations for stable operation of the radar are equations that guarantee that at the time of revisit of a target its
service load has not grown larger than it was at the previous revisit. As there is only one radar we drop the index r
from qr,n(τ). We also assume that these functions have been indexed such that q1(τ) ≥ q2(τ) ≥ . . . ≥ qN (τ), i.e. the
targets have been ranked in decreasing order of service load, and that the radar revisits the targets in this order. This is
the PLQ policy and it will give the best and least stringent stability conditions.

Define the functions q(i) as follows

q(1)(τ) = q1(τ)
q(2)(τ) = q2(q(1)(τ) + τ)

...
...

...
q(N)(τ) = qN (q(N−1)(τ) + τ). (9)

The function q(i)(τ) is the service load (in seconds) of the i-th target at the time of revisit. Next define the radar system
loading function

Q(N)(τ) =
N∑

i=2

q(i)(τ). (10)

When Q(N)(τ) < τ the service loads will remain bounded and the radar system is stable. When Q(N)(τ) > τ the
system is unstable and when Q(N)(τ) = τ is critically stable. If a solution exists, let τ = τ∗ be the solution to the
following balance equation

Q(N)(τ) = τ . (11)

We can state the following result

Proposition 1 For a single radar tracking N targets the PLQ policy (service targets in decreasing order of load) is
stable, in the sense that the system maintains bounded tracking errors, if the following conditions hold:

1. a solution to (11) exists;

2. the revisit rate is at least 1/τ∗;

3. The maximum target speed v is such that τ∗(v + σ) ¿ σz

√
3.

The value τ∗ can be interpreted as the steady state total time required for the radar to cycle through a complete
sequence of target revisits. q(k)(τ∗) is the time required to service the target k, k = 1, . . . , N . The stability result of
Proposition 1 is tight in the sense that the radar system becomes unstable if Conditions 1 and 2 are not satisfied.

When stability of the PLQ policy is guaranteed, we have a tight bound on the associated tracking error
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elapsed time(s) job job duration(s) T1 load T2 load
τ initialize τ q1(τ) q2(τ)

q1(τ) + τ T1-update q1(τ) 0 q2(q1(τ) + τ)
q2(q1(τ) + τ) + q1(τ) + τ T2 update q2(q1(τ) + τ) q1(q2(q1(τ) + τ)) 0

q2(q1(τ) + τ) + q1(τ) + τ + . . . T1-update q1(q2(q1(τ) + τ)) 0 q2(q1(q2(q1(τ) + τ)))

.

.

.

.

.

.

.

.

.

Table 1: Table for a single radar tasked to track N = 2 targets. For stable system we require that the load per
update of any given target satisfy a stable growth condition, i.e., T1 load in 3-th row be equal to T1-load in 1st row:
q1(q2(q1(τ) + τ)) = q1(τ). Since q1 is monotonic increasing function this is equivalent to q2(q1(τ) + τ) = τ .

Corollary 1 If the radar system is stable in the sense of Proposition 1 then the entropy of the tracking error of the
k-th target will never exceed H∗(k) = ln Cτ∗(k).

The proof of the above proposition is straightforward but we do not provide details here. Table 1 provides an
illustration of the stability condition for N = 2. The full proof relies on the fact that qk(τ) is monotonic increasing in
τ . We then use mathematical induction to obtain equations (9) as the time required to service the targets, and apply
standard load balancing condition of optimal scheduling theory to obtain (11).

4.4.3 A simple slope criterion for stability

The system load function Q(N)(τ) defined in (10) is zero at τ = 0 and is smooth, differentiable, and monotonic
increasing. Thus a necessary condition for the balance equation (11) to have a solution is that its derivative be less
than or equal to one at the point τ = 0. By induction the derivative [Q(N)]

′
(0) = dQ(N)(τ)/dt|τ=0 can be shown to

be of the form:

[Q(N)]
′
(0) =

N∑

j=2

j∑

k=2

k∏

i=1

q
′
i(0) ≤

N∑

j=2

j∑

k=2

[q
′
(0)]k, (12)

where we have defined q
′
(0) = maxi q

′
i(0).

If mini q
′
i(0) > 1 then necessarily [Q(N)]

′
> 1 so that Q(N)(τ) > τ and the system is unstable. If maxi q

′
i(0) < 1

then the system may be stable.

To obtain closed form results we will derive sufficient conditions on N that guarantee stability by using the upper
bound on the right of (12) instead of the exact expression in the middle of (12). This upper bound is attained when
all service load functions are identical qi(0) = qj(0) in which the conditions derived below will also be necessary.
Therefore, the conditions will be tight for a worst case scenario but will be more stringent than might be required for
a typical scenario.

As q
′
(0) ≥ 0, the geometric series summation formula applied to the right hand side of (12) gives the simple

formula :

[Q(N)]
′
(0) =

q
′
(0)

1− q′(0)

(
N − q

′
(0)

1− q′(0)
(1− [q

′
(0)]N )

)
− q

′
(0). (13)

Furthermore after differentiating (6) and plugging into (7)

q
′
(0) = 2π(1− cosσφ))

(
∆ + σz)2(v + σv)−∆2(v − σv)

)
NpτPRI . (14)
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Proposition 2 A solution τ∗ to the balance equations (11) exists if and only if,

[Q(N)]
′
(0) =

q
′
(0)

1− [q′(0)]2

(
N − q

′
(0)

1− q′(0)
(1− [q

′
(0)]N )

)
< 1.

Define Nmax as the maximum value of N such the inequality in Proposition 2 is satisfied. When the radar is tasked
to track Nmax targets then the system will be stable (however, we must still verify that the associated τ∗ is such that
condition 3 of Proposition 1 is satisfied). In the case N = Nmax the radar is fully utilized and operating at maximum
efficiency. When q

′
(0) is small Nmax can be found approximately as

Nmax =
q
′
(0)

1− [q′(0)]2
+

1− q
′
(0)

q′(0)
. (15)

Furthermore since 0 ≤ 1− [q
′
(0)]N ≤ 1 we can assert that if the number of targets N exceeds Nmax in (15) then no

solution to the balance equations exists and the radar tracker system diverges.

4.4.4 Balance equations guaranteeing system stability: multiple radars

When there are R > 1 radars to manage we can obtain stability conditions in a similar manner to the previous
section. Define the ratio of targets per radar b = ceil(N/R) as the smallest integer greater than N/R. Define
q(τ) = maxn,r qr,n(τ) and defined the functions q(i) as

q(1)(τ) = q(τ)
q(2)(τ) = q(q(1)(τ) + τ)

...
...

...
q(b)(τ) = q(q(b−1)(τ) + τ) (16)

In analogy to the previous section, define the radar system loading function Q(b)((τ) =
∑b

i=1 q(i)(τ). Again, when
Q(b)((τ) < τ the system is stable. The multiple radar balance equation is

Q(b)(τ) =
b∑

i=1

q(i)(τ) = τ . (17)

Proposition 3 A system of R tracking radars is stable under the PLQ policy if the following conditions hold:

1. a solution to (17) exists;

2. the revisit rate is at least 1/τ∗;

3. The maximum target speed v is such that τ∗(v + σ) ¿ σz

√
3.

The stability result of Proposition 3 is tight in the sense that the radar system becomes unstable if Conditions 1 and
2 are not satisfied for at least one scenario. This scenario is when all targets have the same revisit service requirements,
i.e., qn,r(τ) is independent of n, r.

Again, when stability of the PLQ policy is guaranteed, we have a tight bound on the associated tracking error

11



Corollary 2 If the R radar tracking system is stable in the sense of Proposition 3 then the entropy of the tracking
error of any of the N targets is upper bounded by H∗ = ln Cτ∗ . This bound is achieved when all targets have the same
revisit service requirements.

The proof of the above proposition is similar to that of Proposition 1 except that we group the targets into b groups
of at most R targets that can be revisited at any point in time and proceed as previously. The details are omitted.

A similar slope condition to (18) can easily be derived for the case of multiple radars.

Proposition 4 For a system of R radars a solution τ∗ to the balance equations (17) exists if and only if,

[Q(b)]
′
(0) =

q
′
(0)

1− [q′(0)]2

(
b− q

′
(0)

1− q′(0)
(1− [q

′
(0)]b+1)

)
< 1,

where b = ceil(N/R).

4.5 Determining track-only radar occupancy

We can use the Propositions to determine the efficiency of a radar system in terms of its occupancy rates, defined as
one minus the proportion of time a radar in the system is idle. We assume that the radars are scheduled under the PLQ
policy. In steady state a stable system of R radars will be at maximum utilization when the the system is critically
stable. This occurs when there are approximately b∗ = N/R targets per radar where b∗ is the solution to the equation

q
′
(0)

1− [q′(0)]2

(
b− q

′
(0)

1− q′(0)
(1− [q

′
(0)]b+1)

)
= 1. (18)

Define Nmax = floor(b∗R). At this critically stable operating point of Nmax targets, the radars are fully occupied
performing just-in-time revisits of the targets. In this case the the maximum service load that each target places on the
system is Q(Nmax/R)(τ∗) where τ∗ is the solution of Q(Nmax/R)(τ) = τ . When the same system is assigned to track
a fewer number N < Nmax of targets there will be idle time. We define the occupancy of the track-only system as

ρ = τ∗/τe

where τe is the value of τ that satisfies

Q(N/R)(τ) = Q(Nmax/R)(τ∗). (19)

The interpretation is that τe is operating point of the radar system that results in the same loading for the underloaded
system tracking N target as the fully loaded system tracking Nmax targets. The definition of ρ is illustrated in the next
section.

5 Multi-purpose radar for tracking and other tasks

Finally we turn to scenarios when the radar may be engaged in other tasks in addition to tracking. For example, the
provisioning results of the previous section are extensible to a system that combines wide area search, discrimination
and tracking. This is handled by building in headroom into the track update stability equations.

When there is an additional load on the radar of ∆ secs after updating a target track, Table 1 needs to be modified
to Table 2. Here ∆ is the time spent after each revisit on other tasks than tracking. In general if there are N targets
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elapsed time(s) job job duration(s) T1 load T2 load
τ initialize τ q1(τ) q2(τ)

q1(τ) + τ T1-update q1(τ) 0 q2(q1(τ) + τ)
q1(τ) + τ + ∆ ∆-update ∆ q1(∆) q2(q1(τ) + τ + ∆)

q2(q1(τ) + τ + ∆) + q1(τ) + τ + ∆ T2 update q2(q1(τ) + τ + ∆) q1(q2(q1(τ) + τ + ∆) + ∆) 0
q2(q1(τ) + τ + ∆) + q1(τ) + τ + 2∆ ∆-update ∆ q1(q2(q1(τ) + τ + ∆) + 2∆) q2(∆)

q2(q1(τ) + τ + ∆) + q1(τ) + τ + 2∆ + . . . T1-update q1(q2(q1(τ) + τ + ∆) + 2∆) 0 q2(q1(q2(q1(τ) + τ + ∆) + 2∆) + ∆)

.

.

.

.

.

.

.

.

.

Table 2: Table for a single radar tasked to track N = 2 targets in addition to spend ∆ seconds after each revisit on
other tasks. For stable system we require that the load per update of any given target satisfy a stable growth condition,
i.e., T1 load in 5-th row be equal to T1-load in 1st row: q1(q2(q1(τ) + τ + ∆) + 2∆) = q1(τ). Since q1 is monotonic
increasing function this is equivalent to q2(q1(τ) + τ + ∆) + 2∆ = τ .

and R radars then each radar can be assigned to b of the N targets according to the PLQ strategy. Without loss of
generality, let there be only a single radar and N targets. For given ∆ the stability condition is that there must exist
asolution τ = τ∗ such that (refer to Table 2 for the case N = 2)

Q(N)(τ, ∆) + N∆ = τ

where

Q(N)(τ, ∆) =
N∑

i=2

q(i)(τ, ∆)

and q(i) is defined recursively as

q(1)(τ, ∆) = q1(τ)
q(2)(τ, ∆) = q2(q(1)(τ) + τ + ∆)

...
...

...
q(N)(τ, ∆) = qN (q(N−1)(τ) + τ + ∆) (20)

As the qi’s are monotonic increasing we have the bound

Q(N)(τ, ∆) ≤ Q(N)(τ + ∆)

where Q(N)(τ) is the simpler univariate function defined in (11). Therefore, for specified ∆, a sufficient condition for
stability is that there exists a τ = τ∗ such that:

Q(N)(τ + ∆) + N∆ = τ.

Rexpressing this in terms of the variable u = τ + ∆, we have the equivalent condition that there exist a solution
u = u∗ to

Q(N)(u) = u− (N + 1)∆.. (21)

5.1 Multi-purpose radar load margin, excess capacity, and occupancy

The load margin represents the maximum additional load that can be accommodated by a radar tracking system that
must perform joint operations such as tracking, detection, etc. The load margin ∆max is defined as the maximum value
∆ for which a solution u to (21) exists. As the slope of Q(N)(u) is increasing in u, the load margin ∆max is easily
determined graphically (see Fig. 8). If for given ∆ the load curve Q(N)(u), u > 0, intersects the line u− (N + 1)∆
then a solution u = u∗ exists. As one increases ∆ beyond ∆max the line moves below the curve and there is no
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intersection. Thus, if it exists, ∆max must be the y-intercept of the line of slope one that is tangent to the load curve.
The point of tangency specifies a pair (u∗, Q(N)(u∗)) and the quantity Q(N)(u∗) is the time it takes to revisit a given
target when the radar system is operating at maximum capacity (engaged in servicing N targets and doing other tasks
within the load margin ∆max).

Correspondingly, when there are N targets and the multi-purpose radar spends ∆ seconds per update performing
other tasks we define the excess capacity

cexcess(∆) = 1− ∆
∆max

. (22)

cexcess specifies the headroom available for yet other tasks. Likewise we define the multi-purpose radar occupancy as

ρ(∆) =
Q(N)(u∗)− (∆max −∆)N

Q(N)(u∗)
. (23)

Note that this differs from our definition of radar occupancy (19) for tracking-only radar.

5.2 Illustration of multi-purpose radar occupancy computation

As concrete example, consider the following radar requirements.

1. Discrimination Mode: Probability of correct classification of a target is constrained to be greater than or equal
to 0.95.

2. Search Mode: Probability of missing a new target is less than or equal to 0.05 and the amount of time that a
new target remains on the search fence is τfence.

3. Track mode: For targets already in track the desired track accuracy is σz .

The procedure to achieve these benchmarks is:

1. Fix the track dwell time: N track
p and T track

PRI are selected to achieve the detection, false alarm, and resolution
requirements of the radar within a single radar track cell.

2. Fix the search dwell time: Nsearch
p and T search

PRI are selected to achieve the detection, false alarm, and resolution
requirements of the radar within a single radar search cell.

3. Fix the discrimination dwell time: Ndisc
p and T disc

PRI are selected to achieve the classification probability of
error requirements of the radar within a single radar discrimination cell.

4. Establish track-only feasibility: For N targets compute the minimum number of radars R required to maintain
track by finding b∗ in (18). The minimum number of required radars is then R = N/floor(b∗). This only
guarantees track-only feasibility. If the radar load margin (below) is exceeded then more radars will be required
to jointly track, search and discriminate.

5. Compute load margin of tracking radar: For N targets and R radars the available load margin ∆max (secs
per target update) is computed by exploring the existence of a solution τ = τ∗ to (21). If a solution exists then
the radar system has an available load margin of ∆ for accommodating other tasks besides tracking. If a solution
does not exist then the number of radars must be increased or the tracking performance requirements must be
relaxed.
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6. Compute search load: The search load will be Nsearch
p T search

PRI per cell. The total search load will be τsearch =
NfenceN

search
p T search

PRI where Nfence is the number of cells on the search fence to be searched after each revisit
cycle. There is an additional constraint that the every radar cell on the search fence be probed at least once every
τfence seconds.

7. Compute discrimination load: The discrimination load will be Ndisc
p T disc

PRI per target. The total discrimination
load will be τdisc = NtargetsN

disc
p T disc

PRI where Ntargets is the number of targets to be classified after each
revisit cycle.

8. Compute radar occupancy and excess capacity: If the sum of search and discrimination loads τsearch/N and
τdisc/N does not exceed the load margin ∆, computed above, and if the revisit period (time for the radar to re-
visit all targets) is less than τfence then the radar can perform all joint operations without additional provisioning.
In this case, with τ∗ and ∆max given by the solution to (21), the radar occupancy is given by

ρ =
Q(N)(τ∗)−∆maxN + τsearch + τdisc

Q(N)(τ∗)

and the excess capacity of the radar is the fraction of load margin that is available for other tasks

η = 1− τsearch + τdisc

∆max
.

6 Example application

Here we illustrate the results presented in the last two sections.

6.1 Track-only Provisioning

For specified standard errors on radar tracking accuracy, e.g., available from Kalman tracking covariance estimates,
these results can be used to generate tables and curves on the required number of radar sensors, their revisit rates, and
their occupancy, for tracking N targets with prescribed track error (entropy).

The scenario we have in mind for these examples is tracking N ballistic missile trajectories with R radars that have
the following characteristics (these parameters were selected to correspond to typical C-band multipulse monostatic
surveillance radars (see [11]).

1. The radars use a pulse repetition interval τPRI = 1ms for detecting targets at a maximum range of 150 km.

2. The radar pulse duration corresponds to a radar range resolution of 150 meters.

3. The transformed cartesian coordinate cubical radar cell has volume σ3
z = (150)3.

4. The radar probes each cell with 10 pulses. This corresponds to performance Pf = 10−6, Pd > 0.999 for
detecting a Swerling II target at a SNR=10dB [10, Fig. 12.17].

5. The speed of each of the targets is estimated to be 300m/sec with standard error of 30m (10%).

6. The estimated direction of travel of each of the targets is accurate to within 18 degrees (10%).

We first illustrate the application of the balance equations to study the loading of the radar system for different
numbers of targets and radars. Then we use the slope criterion to study optimal radar allocation strategies for this
example.
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6.1.1 Loading of track-only radar system

In Figs. 3-5 we consider the case where the number R of radars and the number N of targets are such that N/R =
5, 15, 23, respectively.

Define Tcell = σz

√
3/(v+σv) as an upper bound on the time required for a target to move out of the neighborhood

of a single radar cell. Tcell defines an upper limit on the revisit service time for each target. The solid curves in these
figures give q(N/R)(τ), the time for the radar to work through a complete cycle of target updates, which we call the
radar system load curve and is plotted against the variable τ . The diagonal line, called the stability boundary, separates
two regions of operation. When the load curve is below the diagonal track is maintained on all targets (as long as the
revisit service time is less than Tcell). Above the diagonal line the system is unstable: the radars are overloaded and
cannot keep track of all targets.

When the system load curve intersects the stability boundary, as in Fig. 3, the system is stable and the radars are
fully occupied revisiting targets. In this regime the entropies of the tracking error distributions are allowed to grow to
the very edge of the stability region. Because of this the radars have no time to spare for other tasks. For the radar
parameters chosen, a maximum of 23 targets per radar can be tracked stably. The system is thus fully provisioned with
radars and is at full occupancy (ρ = 100%) for maintaining tracks with standard error of 202.8m.

When the load curve is always below the stability boundary, as in Fig. 4, the R radars easily maintain the target
tracks but are not fully utilized, i.e., they are idle some of the time. For this case there are only 5 targets so the system
is severely overprovisioned in number of radars. The sensor manager can correct this inefficiency by assigning some
of the R radars to other tasks and operating those remaining at the full utilization point intersecting the stability line.

In Fig. 5 N/R = 15 and the radars can allow the uncertainty in target tracks (σ = 290m) to grow beyond the
uncertainty guaranteed by the fully provisioned case and still maintain stability. However, the system would operate
more efficiently if the number of radars were reduced and more fully utilized at the lower standard error (σ = 202m)
of the fully provisioned case.

When the load curve is always above the stability boundary, as in Fig. 6, the R radars are overwhelmed and
the entropies of some of the tracks will grow without bound. This can only be corrected by the sensor manager by
increasing the number of radars so that the system is not underprovisioned

6.1.2 Just-in-time track-only radar provisioning

The results of Sec. 4.4.3 allow us to study the minimal stability-insuring radar provisioning requirements, i.e., number
of radars, for different numbers of targets. To illustrate, for a radar with parameters given at the beginning of this
section, the value of q

′
(0) is 0.042 and the solution b to (15) is 23.8. We know from Proposition 2 that this value of b

would result in unstable operation. The fully provisioned system would assign a radar to every 23 targets that need be
tracked.

For example for 2 radars and 46 targets the revisit rate for each target is 18.8 times per sec. and the occupancy of
the system is 100%. Furthermore, at this operating point, in steady state the entropy of the tracking errors will grow
no larger than ln |Cτ | = 15.9 which corresponds to a maximal positional uncertainty on the order of σz = |Cτ |−1/3 =
202m. This can be compared to the 150m positional resolution of the radar, the positional uncertainty attained after a
revisit. Thus, the radar system allows the positional uncertainty to grow by only 33.3% between revisits.

Figure 7 shows the provisioning matrix whose (i, j) entry is equal to 1 if i radars can track j targets stably and
equal to 0 otherwise. The matrix is represented using Matlab’s spy command and the dark region of the matrix
corresponds to stable operation.
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6.2 Multipurpose radar provisioning

Figure 8 illustrates a computation of the excess capacity, occupancy, and load margin for the same radar as in the
previous section but when it is tracking only 12 targets and can devote resources to other tasks. Unlike the case of
23 targets, for which the load curve is the upper curve that only intersects the diagonal line y(u) = u − ∆ when
∆ = 0, there is a substantial load margin for the case of 12 targets, ∆max of 0.176/N secs. At this full utilization
operating point the radar devotes approximately 0.58 of its time to tracking and the rest of its time to other tasks. The
distance between the upper and lower diagonal lines y(u) = u and y(u) = u − ∆maxN is 0.176 secs. If the actual
load for other tasks was set to only ∆ = 0.05/N secs., giving an excess capacity cexcess = 0.72 and an occupancy of
ρ(∆) = 0.70, the radar would be idle 30% of the time.

7 Conclusions

The results presented here were applied to sensor management for multiple target radar tracking subject to typical
radar resource constraints. These results were based on finding solutions to load balance equations (Propositions 1 and
4) that guarantee system stability. These solutions yield the required system provisioning of radars, along with their
associated steady state revisit rates, track entropy and occupancy, to guarantee stable tracking with prescribed level of
statistical confidence.

The provisioning results given here are conservative and specify the system requirements, steady state occupancy,
revisit times, and track entropy in terms of the PQL sensor scheduling policy. The PQL policy will always perform
at least as well as the performance predictions we provide. One can expect considerably better performance of the
system than these predictions for typical scenarios, although there exists a scenario (namely, all targets are equally
difficult to track) where the predictions are exact. Less stringent provisioning requirements might be explored using a
stochastic optimization, e.g., Wasserman’s multiqueue analysis.
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Figure 3: The system loading curve for N/R=23 for track-only radar, the maximum possible value for which the
system is stable. The system is critically provisioned at the operating point τ = τ∗. At this operating point it
maintains positional uncertainty of all targets at less than 202m at a revisit rate of 18.9 targets/s.
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Figure 4: The system loading curve for the case of N/R = 5 for track-only radar. The system is stable but severely
overprovisioned as compared to the critically stable case N/R = 23 shown in Fig. 3. Shown is the operating point τe

where the overprovisioned system has same loading (revisit rate) as the critically provisioned system in the previous
figure. The occupancy of the system is the ratio ρ = τ/τe.

20



Figure 5: The system loading curve for the case of N/R = 15 for track-only radar. The system is stable, but is
operating dangerously close to the exit time Tcell of the target in a cell. The system is overprovisioned for achieving
the standard error σ = 202m of the fully provisioned system in Fig. 3. It reaches its critical stability limit for τ = τ∗N
where target track uncertainties are allowed to grow to σ = 290m and track revisit rate is 1.3 targets/s.
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Figure 6: The system loading curve for N/R = 24 for track-only radar. The system is underprovisioned, overloaded
and unstable and the number of radars is insufficient to keep track of all the targets for any revisit rates.

Figure 7: The system provisioning matrix specifies stability region (dark) as a function of the numbers of radars and
the number targets for track-only radar.
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Figure 8: System loading curves for computing occupancy and excess capacity for the multipurpose radar tracking
example. Fully loaded track-only radar load curve at top is shown for comparison.
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