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ABSTRACT

Advances in technology have resulted in acquisition and sub-
sequent fusion of data from multiple sensors of possibly dif-
ferent modalities. Fusing data acquired from different sensors
occurs near the front end of sensing systems and therefore
can become a critical bottleneck. It is therefore crucial to
quantify the performance of sensor fusion. Information fu-
sion involves estimating and optimizing an information cri-
terion over a transformation that maps data from from one
sensor data to another. It is crucial to the task of fusion to es-
timate divergence to a high degree of accuracy and to quantify
error in the estimate. To this end, we propose a class of plug-
in estimators based onk-nearest neighbor (k-NN) graphs for
estimating divergence. For this class of estimators, we derive
a large sample theory for the bias and variance and develop
a joint central limit theorem for the distribution of the estim-
ators over the domain of the transformation space. In this
paper, we apply our theory to two applications: (i) detection
of anomalies in wireless sensor networks and (ii) fusion of
hyperspectral images of geographic images using intrinsicdi-
mension.

Index Terms— Information fusion, dimension estima-
tion, entropy estimation,k-NN density estimation, plug-in
estimation, central limit theorem, confidence intervals

1. INTRODUCTION

Advances in technology have promoted acquisition and sub-
sequent fusion of data from multiple sensors of possibly
different modalities. Fusing data acquired from different
sensors occurs near the front end and therefore can become
a critical bottleneck. In this paper, we are specifically con-
cerned about information-level fusion - i.e., we seek to com-
bine the most informative features of the sensor data. Due
to inherent uncertainty in information-level fusion problems,
data from sensors are modeled as random variables (probab-
ility based models). Information fusion involves estimating
and optimizing an information criterion over a transformation
from one sensor data to another. Some important applications
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of information-level fusion include registration, dimension
analysis and multi-modal anomaly detection.

One of the crucial components of information-level fu-
sion is the choice of objective function. Because the data is
modeled as a set of random variables, a natural choice for an
objective function is information divergence. Information di-
vergence is the distance between probability distributions of
different random variables. Information divergence can bein-
terpreted as the relative entropy of one distribution w.r.t. the
other distribution. An inherent problem is that we do not have
access to the probability distributions, but rather, have access
only to realizations from the distributions. It is therefore cru-
cial to the task of fusion to estimate divergence to a high de-
gree of accuracy and to quantify estimation error. The quan-
tification and prediction of estimator error is arguably oneof
the most critical parts of a successful fusion algorithm. Tothis
end, we have derived a large sample theory for the bias and
variance and developed a joint central limit theorem for this
class of estimators. This large sample theory has led to the
development of performance-driven algorithms for determin-
ing the true intrinsic dimension of data, detecting anomalies
in a given sample, selecting weights fork-NN graphs to ac-
curately estimate entropy and perform classification in high-
dimensional data and in finding structure in data.

For concreteness, we will focus on two applications of in-
formation fusion in this paper: (i) fusing wireless sensor net-
work data; and (ii) fusing AVIRIS hyperspectral image data.
The fusion applications are described briefly in Section 2. In
Section 3, we present our large sample theory for Shannon en-
tropy fusion criteria. We apply our theory to the problem of
anomaly detection in wireless sensor networks using entropic
fusion. In Section 4, we extend our theory on entropy estima-
tion to the problem of intrinsic dimension estimation in high
dimensional data. We use our theory to propose a weightedk-
NN graph estimator of dimension which has a parametric rate
of convergence. We apply our weightedk-NN dimension es-
timator to fuse hyperspectral images of a given geographical
location. Finally, we give our conclusions in Section 5.



2. FUSION TASKS

We fuse two different types of data in this paper. We briefly
describe this data and the corresponding fusion tasks below.

2.1. Fusion of wireless sensor network data across space
and time

The experiment was set up on a Mica2 platform, which con-
sists of 14 sensor nodes randomly deployed inside and out-
side a lab room. Wireless sensors communicate with each
other by broadcasting and the received signal strength (RSS),
defined as the voltage measured by a receiver’s received sig-
nal strength indicator circuit (RSSI), was recorded for each
pair of transmitting and receiving nodes. There were 14× 13
= 182 pairs of RSSI measurements over a 30 minute period,
and each sample was acquired every 0.5 sec. During the
measuring period, students walked into and out of lab at ran-
dom times, which caused anomaly patterns in the RSSI meas-
urements. Finally, a web camera was employed to record
activity for ground truth. In Section 3, we will apply our the-
ory on entropy estimation to detect these anomalies.

2.2. Fusion of AVIRIS hyperspectral image data across
space and wavelength

AVIRIS is a proven instrument used for Earth Remote Sens-
ing. It is a unique optical sensor that delivers calibrated
images of the upwelling spectral radiance in 224 contigu-
ous spectral channels (bands) with wavelengths from 400
to 2500 nanometers. The AVIRIS sensor collects data that
can be used for characterization of the Earth’s surface and
atmosphere from geometrically coherent spectroradiometric
measurements. With proper calibration, and correction for
atmospheric effects, the measurements can be converted to
ground reflectance data which can then be used for quantitat-
ive characterization of surface features.

In this paper, we look at AVIRIS data of Mofett field,
which is a joint civil-military airport located between north-
ern Mountain View and northern Sunnyvale, California, USA.
The scanner type is nadir-viewing, whiskbroom. Mofett field
is shown in the visible band in 1. In the figure, the right
quarter of the image is comprised of urban areas and vegeta-
tion while the remaining plain looking regions are water bod-
ies.

The hyperspectral response of the location at wavelengths
10, 50, 100, 160 of Mofett field is shown in 2.2. The data
matrix is therefore of dimension 128x128 (pixels) x 224
wavelengths. In Section 4, we estimate the local dimension
at each pixel location to classify different regions of Moffett
field.

Fig. 1. Moffett field (visible band).
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Fig. 2. Hyperspectral images at wavelengths 10, 50, 100, 160
of Mofett field.

3. ENTROPY ESTIMATION

Shannon entropy (−
∫

log f(x)f(x)dx) arises in applications
of machine learning, signal processing and statistical estima-
tion. Entropy based applications for image matching, image
registration and texture classification are developed in [1, 2].
Entropy functional estimation is fundamental to independent
component analysis in signal processing [3]. Entropy has
also been used in Internet anomaly detection [4] and data and
image compression applications [5]. Several entropy based
nonparametric statistical tests have been developed for test-
ing statistical models including uniformity and normality[6].
Parameter estimation methods based on entropy have been de-
veloped in [7].

In these applications, the entropy must be estimated em-
pirically from sample realizations of the underlying densities.
This problem has received significant attention in the math-
ematical statistics community. Several estimators of Shannon
entropy have been proposed for general multivariate densit-
iesf . These include consistent estimators based on entropic



graphs [8], gap estimators [9], nearest neighbor distances[10,
11], Edgeworth approximations [12], convex risk minimiza-
tion [13] and kernel density estimates [14]. However, general
results on rates of convergence of estimators are unavailable.
Since the rate of convergence relates the number of samples
to the performance of the estimator, convergence rates have
great practical utility.

The results stated in this section improve upon ex-
isting results onk-NN estimators available in literature.
Goria et.al. [10] shows that the estimator they propose is
asymptotically unbiased and consistent. Liitiäinen et.al. [11]
provides rates of convergence of the bias of thesek-NN es-
timators. Evans et.al. [15] establish an upper bound on the
rates of decay of the variance, while the authors of [8, 16]
provide upper bounds on theℓ1 rate of convergence.

Our analysis improves on this work by establishing exact
rates of decay of the bias and variance ofdata-split versions of
the estimator proposed by Goria et.al. Our analysis exploits a
close relation between density estimation and the geometryof
proximity neighborhoods in the data sample. Finally, our the-
ory establishes a CLT for the proposedk-NN estimators. We
apply these results to derive confidence intervals for Shannon
entropy.

The reminder of the section is organized as follows. Sec-
tion 3.1 formulates the problem and introduces the data-split
plug-in estimator. The main results concerning the bias,
variance and asymptotic distribution of these estimators are
stated in Section 3.3 and the consequences of these results
are discussed. We validate our theory with simulations in
Section 3.4. In Section 3.5, we use our theory to detect an-
omalies in wireless sensor networks at specified false alarm
rate. Additional details on proofs and results are given in our
technical report [17].

3.1. Preliminaries

Notation

We will use bold face type to indicate random variables and
random vectors and regular type face for constants. We de-
note the expectation operator by the symbolE and the vari-
ance operator asV[X] = E[(X−E[X])2]. We denote the bias
of an estimator byB.

3.2. Plug-in estimators

We are interested in estimating the Shannon entropyH(f)
of densityf , with compact supportS which is constrained
to lie on a smoothC∞ manifoldM of intrinsic dimensiond.
We assume that the manifold is embedded inRD, for some
d < D. We assume that the supportS does not have any
boundaries.

The Shannon entropyH(f) has the form

H(f) =

∫

− log(f(x))f(x)dµ(x) = E[− log(f(x))].

Here,µ denotes the Lebesgue measure andE denotes stat-
istical expectation w.r.t densityf . We require that the dens-
ity f be uniformly bounded away from0 and finite on the
supportS, i.e., there exist constantsǫ0, ǫ∞ such that0 <
ǫ0 < ǫ∞ < ∞ such thatǫ0 ≤ f(x) ≤ ǫ∞ ∀x ∈ S. Let
X = {X1, . . . ,XT } be T independent and identically dis-
tributed sample realizations inRD distributed according to
densityf . The random vectors inM are constrained to lie on
a d-dimensional Riemannian submanifold M ofRD (d < D).

The plug-in estimator is constructed using a data splitting
approach as follows. The data sample is randomly subdivided
into two parts{X1, . . . ,XN} and{XN+1, . . . ,XN+M} of
N andM points respectively. In the first stage, we estimate
thek-NN density estimator̂f at theN points{X1, . . . ,XN}
using theM realizations{XN+1, . . . ,XN+M}. Subsequently,
we use theN samples{X1, . . . ,XN} to approximate the
functionalH(f) to obtain the plug-in estimator:

Ĥk,M,N(f) =
1

N

N
∑

i=1

− log(f̂ (Xi)).

Let d(X,Y ) denote the Euclidean distance between

points X and Y and d
(k)
X denote the Euclidean distance

between a point X and itsk-th nearest neighbor amongst
XN+1, ..,XN+M . The k-NN region isSk(X) = {Y :

d(X,Y ) ≤ d
(k)
X } and the volume of thek-NN region is

Vk(X) =
∫

Sk(X)
dZ. The standardk-NN density estim-

ator [18] is defined aŝf(X) = k−1
MVk(X) .

DefineH̃k,M,N(f) = Ĥk,M,N (f)+ [log(k− 1)−Ψ(k−

1)]. We note that the estimators̃H corresponds to data-split
versions of the Shannon entropy estimator of Goria et.al. [10].

3.3. Main results and consequences

We now state the main theorems corresponding to the bias,
variance and asymptotic distribution of̃Hk,M,N (f) = H̃.
We assume thatk grows logarithmically inM , i.e. k =
Θ(log(M)). We assume that the densityf has continuous
partial derivatives of orderd.

The bias ofH̃was previously derived by Liitiäinen et.al. [11].
BecauseΨ(k − 1) − log(k − 1) → 0 ask → ∞, the estim-
atorH̃ will have identical variance up to leading terms asĤ.
Likewise,H̃, when suitably normalized, will converge to the
same distribution as the estimatorĤ.

3.3.1. Bias and Variance

Theorem 3.1. The bias of the plug-in estimator H̃k,M,N (f)
is given by

B(H̃k,M,N (f)) =

d
∑

i=2

ci

(

k

M

)i/d

+ o

(

k

M

)

,



where ci are constants which depend on the underlying dens-
ity f .

Theorem 3.2.The variance of the plug-in estimator H̃k,M,N(f)
is given by

V(H̃k,M,N (f)) = v1

(

1

N

)

+ v2

(

1

M

)

+ o

(

1

M
+

1

N

)

,

where v1 = V[log(f(Y),Y)] and v2 = V[log(Y)g′(f(Y),Y)].

Our result is an improvement on the results of Evans et.al.
in that we are able to provide the exact leading terms for the
variance.

3.3.2. Central limit theorem

In addition to the results on bias and variance shown in the
previous section, we show that our plug-in estimator, appro-
priately normalized, weakly converges to the normal distribu-
tion. We study the asymptotic behavior of the plug-in estim-
ates under the following limiting conditions: (a)k/M → 0,
(b) k → ∞, and (c)N → ∞. As shorthand, we will collect-
ively denote the above limiting assumptions by∆ → 0.

Theorem 3.3. The asymptotic distribution of the normalized
plug-in estimator H̃k,M,N(f) is given by

lim
∆→0

Pr

(

H̃k,M,N (f)− E[H̃k,M,N (f)]
√

V[log(f(Y),Y)]
≤ α

)

= Pr(Z ≤ α),

where Z is a standard normal random variable.

3.4. Simulations

We validate our theory using using the2 dimensional mix-
ture densityfm = pfβ + (1 − p)fu; fβ: Beta density with
parameters a=4,b=4;fu: Uniform density; Mixing ratiop =
0.8. Constantsci; i = 1, 2..5 are estimated using Monte-Carlo
methods [19].

We show the Q-Q plot of the normalized Shannon entropy
estimate and the standard normal distribution in Fig. 3. The
linear Q-Q plot validates Theorem 3.3 on asymptotic normal-
ity of the plug-in estimator. Using the CLT, we plot the95%
confidence intervals for the entropy functional as a function
of sample size in Fig. 4.

3.5. Anomaly detection in networks

We apply our theory to the problem of anomaly detection in
wireless sensor networks. The mission of this experiment is
to use the 182 RSS sequences to detect any intruders (anom-
alies). To remove the temperature drifts of receivers we pre-
process the data by removing their local mean values. Let
yi[n] be the pre-processedn-th sample of thei-th signal and
denotey[n] = (y1[n], . . . , y182[n])

′.
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Fig. 3. q-q comparing independent realizations of the normal-
ized Shannon estimator (L.H.S. of Theorem 3.3) on the ver-
tical axis to a standard normal population on the horizontal
axis. The linearity of the points validates the central limit the-
orem.
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Fig. 4. Predicted confidence intervals on Shannon entropy
for varying sample sizeT using the central limit theorem 3.3.
The confidence intervals decrease with sample size as expec-
ted.

We now estimate the Shannon entropy for each1-dimensional,
182 sample sequencey[n] using the estimator̃H. We detect
anomalies by thresholding the entropy estimateH̃[n]. A time
samplen is regarded to be anomalous if the entropy estimate
H̃ [n] exceeds a specified threshold. We seek to choose the
threshold appropriately for achieving a desired false alarm
rate.

To this end, we estimate the entropiesH̃ [n] for the time
instantsn = 1, . . . , 50 when no anomalies were known to
have occurred and subsequently estimate the meanµ and vari-
anceσ2 of the entropy estimates for this nominal time interval
n ∈ [1, 50]. Using these estimates of the mean and variance,
we use the central limit theorem 3.3 to set the thresholdtα for
a given false alarm rateα astα = µ + zα/2σ wherezα/2 is
the z-score corresponding to coverage1 − α. This threshold
tα is then used to detect anomalies at time instantsn > 50.

The desired and corresponding observed false alarm rates



Desired and observed false alarm rates
Desired .20 .10 .05 .02 .01 .005

Observed .269 .111 .062 .026 .015 .009
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Fig. 5. Entropy estimator̃H implemented as a scan statistic
over time for anomaly detection in wireless ad hoc sensor net-
work experiment. Ground truth indicator function (in blue)
indicates when anomalous activity occurred. The entropy es-
timator detects these anomalies whenever the entropy estim-
ate crosses the levelα = 0.05 thresholdt0.05 analytically
determined by the CLT in Theorem 3.3.

are shown in the table above. The slightly higher observed
false alarm rates can be attributed to the temporal dependence
between the RSS sequences at successive time samples. This
dependence results in marginally higher entropy estimatesat
non-anomalous time instants immediately preceding and suc-
ceeding anomalous time intervals as compared to entropy es-
timates at nominal time instants farther away from anomal-
ous activity. This is corroborated by Fig. 5, which shows the
ground truth and the normalized entropy estimator response
(H̃[n] − tα with false alarm rateα = 0.05) as a function of
time.

ROC curves corresponding to the entropy estimator are
shown in Fig. 6 in addition to the ROC curves using the sub-
space method of Lakhina et.al. [4] and the covariance based
estimator of Chen et.al. [20]. It is clear that the detectionper-
formance using the entropy estimator is marginally better than
the subspace and covariance based methods of Lakhina et.al.
and Chen et.al. respectively. The Area under the ROC curves
were found to be 0.9784, 0.9722 and 0.9645 for the entropy,
covariance and subspace based anomaly detection methods
respectively.

4. DIMENSION ESTIMATION

Intrinsic dimensionality is an important concept in high di-
mensional datasets whose principal modes of variation lie on
a subspace of substantially lower dimension, the intrinsicdi-
mensiond. In such cases dimensionality reduction can be ac-
complished without loss of information. An accurate estim-
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Fig. 6. ROC curves for entropy, covariance and subspace
based anomaly detection. The performance of the entropy
based method is the best as measured by area under the curve
(0.9784 and compared to 0.9722 and 0.9645).

ator of intrinsic dimension is a prerequisite for setting the em-
bedding dimension of DR algorithms such as principal com-
ponents analysis (PCA), ISOMAP, and Laplacian eigenmaps.
Until recently the most common method for selecting an em-
bedding dimension for these algorithms was to detect a knee
in a residual error curve, e.g., scree plots of sorted eigenval-
ues.

In this section we introduce a new dimensionality estim-
ator that is based on fluctuations of the sizes of nearest neigh-
bor balls centered at a subset of the data points. In this respect
it is similar to Costa’sk-nearest neighbor (kNN) graph di-
mension estimator [21], to Farahmand’s dimension estimator
based on nearest neighbor distances [22] and to Bickel et.al. ’s
maximum likelihood estimator [23]. The estimator can also
be related to the Leonenko’s Rényi entropy estimator [24].
However, unlike these estimators, our new dimension estim-
ator is derived directly from a mean squared error (M.S.E.)
optimality condition for partitionedk-NN estimators of mul-
tivariate density functionals. This guarantees that our estim-
ator has a parametric M.S.E. convergence rate ofO(1/T )
whereT is the number of samples.

The section is organized as follows. We first introduce the
the general form of the new dimension estimator. We then
show that the estimator is related to thek-NN plug-in entropy
estimator defined in the previous section. We use the theory
established in the previous section to obtain expressions for
the asymptotic bias and variance of the new dimension estim-
ator. The analytical expressions for bias and variance allow
us to propose a weightedk-NN dimension estimator which
has a faster convergence rate ofO(1/T ) as compared to the
convergence rate ofO(1/T )1/d in the case of the dimension
estimators of Costa et.al. , Farahmand et.al. and Bickel et.al.

4.1. Problem formulation

We are interested in estimating the intrinsic dimensiond,
given i.i.d samplesX = {X1, . . . ,XT } in RD distributed



according to densityf .

4.1.1. Log-length statistic

Define thek-log-length statistic to be

Lk(X) =
1

N

N
∑

i=1

log (rk(Xi)) ,

whererk(Xi) is thek-nearest neighbor (k-NN) distance from
target sampleXi to theM reference samples{XN+1, . . . ,XN+M}.
For the rest of this section, letN = ⌊T/2⌋ andM = T −N .

4.1.2. Relation to Shannon entropy

We can write the following relation

H̃k,M,N(f) =
1

N

N
∑

i=1

ψ(k)− log(cdM)− d log(rk(Xi))

= ψ(k)− log(cdM)− dLk(X).

AssumingH̃k,M,N (f) ≈ H(f), whereH(f) is the Shan-
non entropy, we can estimate the dimension using the follow-
ing simple slope based estimator:

4.1.3. Intrinsic dimension estimate based on varying band-
width k

Let k1 andk2 be two different choices of bandwidth paramet-
ers. LetLk1

(X) andLk2
(Z) be the length statistics evaluated

at bandwidthsk1 andk2 using dataX andZ respectively.

d̂ =
ψ(k2 − 1)− ψ(k1 − 1)

Lk2
(X)− Lk1

(X)

(1)

From our analysis in the previous section, we note that the
bias and variance of the dimension estimator are of order
O(1/T )1/d andO(1/T ) respectively.

4.1.4. Weighted dimension estimator

In this section, we improve on the previous slope based es-
timator by using the following weighted estimator

d̂w =

∑k
l=1 wlψ(l)

Lw(X)

where

Lw(X) =

k
∑

l=1

wlLl(X),

andwl, l = 1, . . . , k are thek-NN weights chosen according
to the non-trivial solution

∑

i |wi| 6= 0 to the optimization
problem

minimize
w

||w||1

subject to γw(0) = 0, i ∈ 0, 1, . . . , d.

with γw(u) =
∑k

l=1 wll
u/d. Using this different choice of

weights, we can immediately see that the new dimension
estimator converges at the parametric rate ofO(1/T ) and
is therefore an immediate improvement over the estimat-
ors of Costa et.al. [21], Bickel and Levina [25] and Farah-
mand et.al. [22], which converge at the rate of(1/T )1/d. The
central limit theorem follows as well.
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Fig. 7. Illustration of data in a sample belonging to a mixture
of manifolds. The black points on the plane have intrinsic
dimension2 while the red points on the circle have intrinsic
dimension1. The blue lines depict points in the neighbor-
hood.

4.2. Local dimension estimation

Many high-dimensional datasets of practical interest exhibit a
varying complexity in different parts of the data space. This
is the case, for example, of data bases of images containing
many samples of a few textures of different complexity. Such
phenomena can be modeled by assuming that the data lies on
a collection of manifolds with different intrinsic dimensions.

Carter et. al. [26] introduce a method to estimate the
local dimensionality associated with each point in a data-
set, without any prior information about the manifolds, their
quantity and their sampling distributions. Their proposed
method uses a global dimensionality estimator based together
with an algorithm for computing neighborhoods in the data
with similar topological properties. They define the local di-
mension estimate of each point to be the intrinsic dimension
of a small neighborhood sample centered at each point. Intu-
itively, their method takes advantage of the fact that the local
neighborhoods of each point hug the respective manifolds to
which the corresponding point belongs. This is illustratedin
Fig. 7. The neighborhoods in the above illustration are depic-
ted by the blue lines. It is clear from the illustration that the
neighborhoods ’hug’ the respective manifolds in each case.

In their work, they use the estimator of Costa et.al. to
estimate the intrinsic dimension of each sample. We modify
their local dimension algorithm by replacing the intrinsicdi-
mension estimator they use with our propose weightedk-NN
graph estimator.
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Fig. 8. Dimension estimate of Moffett field.
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Fig. 9. Segmented image of Moffett field.

4.3. Dimension based image fusion

We apply local dimension estimation to do dimension based
image fusion of the 224 different hyperspectral images of
Moffett field. The data matrix is of dimension 128x128
(pixels) x 224 wavelengths. The local dimension estimate at
each of the 128 x 128 pixel locations is shown in Fig. 8.

From the figure, we see that the urban and vegetation areas
to the right have much higher intrinsic dimension as compared
to the intrinsic dimension of the uniform water bodies to the
left. This is in agreement with our intuition that urban and
vegetation areas have a relatively complicated texture in com-
parison to water bodies with plain texture. The local dimen-
sion estimate can therefore successfully be used to fuse in-
formation from hyperspectral images of varying wavelengths
to reveal complexity across a geographic image.

We use this image of the dimension estimate to sub-
sequently segment the image using a simple ’canny’ edge
detector. This is shown in Fig. 9. The segmented image

successfully demarcates the water bodies from the urban and
vegetation regions.

5. CONCLUSION

We focused on a class of data-splitk-NN density plug-in es-
timators for estimating Shannon entropy. We derived the bias,
variance and mean square error of the estimator in terms of
the sample size, the dimension of the samples and the un-
derlying probability distribution. In addition, we developed
a central limit theorem for these estimators and used our the-
ory to specify confidence intervals on the entropy. We used
our entropy estimator to perform anomaly detection in wire-
less sensor networks and used our asymptotic theory to set
thresholds appropriately to achieve specified false alarm rates.

Next, we applied our theory to the problem of dimension
estimation. Dimension estimators defined in literature suffer
from high bias due to curse of dimensionality. We address
this problem by proposing a weightedk-NN intrinsic dimen-
sion estimator, where the optimal weights are chosen such
that the resulting estimator has parametric convergence rate
ofO(1/T ). We applied our weightedk-NN dimension estim-
ator to the problem of fusing hyperspectral images of Mof-
fett field, which enabled us to successfully segment regions
of Moffett field with different complexity.

Using the theory presented in the paper, one can therefore
optimize fusion algorithms and also specify the minimum ne-
cessary sample size required to obtain requisite accuracy in
fusion applications like structure discovery in graphicalmod-
els and dimension estimation for support sets of low intrinsic
dimension. See [17] for more details on these applications.
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