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ABSTRACT of information-level fusion include registration, diméms

Advances in technology have resulted in acquisition and sutnalysis and multi-modal anomaly detection.
sequent fusion of data from multiple sensors of possibly dif
ferent modalities. Fusing data acquired from differensses

occurs near the front end of sensing systems and therefore One of the crucial components of information-level fu-
can become a critical bottleneck. It is therefore crucial toi0n is the choice of objective function. Because the data is

sion involves estimating and optimizing an information- cri Objective function is information divergence. Informatidi-
terion over a transformation that maps data from from on&€rgence is the distance between probability distribstion
sensor data to another. It is crucial to the task of fusiorsto e differentrandom variables. Information divergence cambe
timate divergence to a high degree of accuracy and to qyantif€rPreted as the relative entropy of one distribution wthe
error in the estimate. To this end, we propose a class of p|uézther distribution. An .|r_1her.ent_pro_blem is that we do notédav
in estimators based drnearest neighbok¢NN) graphs for ~aCCess to tr_le probabmty d|str|_but_|on§, but ra_ther, haceas
estimating divergence. For this class of estimators, wiveler Only to realizations from the distributions. It is therefamu-

a large sample theory for the bias and variance and develd@! 1o the task of fusion to estimate divergence to a high de-
a joint central limit theorem for the distribution of theiest ~ 9ree of accuracy and to quantify estimation error. The quan-
ators over the domain of the transformation space. In thi§fication and prediction of estimator error is arguably afie
paper, we apply our theory to two applications: (i) detectio the most critical pa_lrts of a successful fusion algonthmth'_rs

of anomalies in wireless sensor networks and (ii) fusion ond, we have derived a large sample theory for the bias and

mension. class of estimators. This large sample theory has led to the

development of performance-driven algorithms for detarmi
ing the true intrinsic dimension of data, detecting anoesali
in a given sample, selecting weights feiNN graphs to ac-
curately estimate entropy and perform classification irhig
dimensional data and in finding structure in data.

Index Terms— Information fusion, dimension estima-
tion, entropy estimationk-NN density estimation, plug-in
estimation, central limit theorem, confidence intervals

1. INTRODUCTION

Advances in technology have promoted acquisition and sub-  For concreteness, we will focus on two applications of in-
sequent fusion of data from multiple sensors of possiblyformation fusion in this paper: (i) fusing wireless senset-n
different modalities. Fusing data acquired from differentygrk data: and (ii) fusing AVIRIS hyperspectral image data.
sensors occurs near the front end and therefore can becomge fusion applications are described briefly in Sectiom2. |
a critical bottleneck. In this paper, we are specifically-con section 3, we present our large sample theory for Shannon en-
cerned about information-level fusion - i.e., we seek to €0Mtropy fusion criteria. We apply our theory to the problem of
bine the most informative features of the sensor data. Dugnomaly detection in wireless sensor networks using eietrop
to inherent uncertainty in information-level fusion prebis,  fysjon. In Section 4, we extend our theory on entropy estima-
data from sensors are modeled as random variables (probasn to the problem of intrinsic dimension estimation in g
ility based models). Information fusion involves estimati  gimensjonal data. We use our theory to propose a weighted
and optimizing an information criterion over a transforiat NN graph estimator of dimension which has a parametric rate
from one sensor data to another. Some important applicationy convergence. We apply our weighteeNN dimension es-

* Acknowledgement This work is partially funded by the Air Force Of- timatpr to f_use hyperspectral images_ of algiven QEOQraphica
fice of Scientific Research, grant number FA9550-09-1-0471. location. Finally, we give our conclusions in Section 5.




2. FUSION TASKS

We fuse two different types of data in this paper. We briefly
describe this data and the corresponding fusion tasks below

2.1. Fusion of wireless sensor network data across space
and time

The experiment was set up on a Mica2 platform, which con-
sists of 14 sensor nodes randomly deployed inside and out-
side a lab room. Wireless sensors communicate with each
other by broadcasting and the received signal strengthRSS
defined as the voltage measured by a receiver’s received sig-
nal strength indicator circuit (RSSI), was recorded forheac
pair of transmitting and receiving nodes. There werex143

= 182 pairs of RSSI measurements over a 30 minute period,
and each sample was acquired every 0.5 sec. During the
measuring period, students walked into and out of lab at ran-
dom times, which caused anomaly patterns in the RSSI meas
urements. Finally, a web camera was employed to record
activity for ground truth. In Section 3, we will apply our the
ory on entropy estimation to detect these anomalies.

2.2. Fusion of AVIRIS hyperspectral image data across
space and wavelength

AVIRIS is a proven instrument used for Earth Remote Sens-

ing. It is a unique optical sensor that delivers calibrated-ig. 2. Hyperspectral images at wavelengths 10, 50, 100, 160
images of the upwelling spectral radiance in 224 contigueof Mofett field.

ous spectral channels (bands) with wavelengths from 400

to 2500 nanometers. The AVIRIS sensor collects data that

can be used for characterlzatlon of the Earth’s surfgpe and 3. ENTROPY ESTIMATION

atmosphere from geometrically coherent spectroradiaeetr

measurements. With proper calibration, and correction foéhannon entropy{ [ log f(z)f(x)dz) arises in applications

) _ dPmachine learning, signal processing and statisticahest
ground reflec_tanpe data which can then be used for quantitgfe Entropy based applications for image matching, image
ive characterization of surface features. registration and texture classification are developed,i2]1

In this paper, we look at AVIRIS data of Mofett field, Entropy functional estimation is fundamental to indeperde
which is a joint civil-military airport located between nb¥  component analysis in signal processing [3]. Entropy has
ern Mountain View and northern Sunnyvale, California, USA.also been used in Internet anomaly detection [4] and data and
The scanner type is nadir-viewing, whiskbroom. Mofett fieldimage compression applications [5]. Several entropy based
is shown in the visible band in 1. In the figure, the rightnonparametric statistical tests have been developed $br te
quarter of the image is comprised of urban areas and vegetgy statistical models including uniformity and normaljé}.
tion while the remaining plain looking regions are water bod parameter estimation methods based on entropy have been de-
Ies. veloped in [7].

The hyperspectral response of the location at wavelengths In these applications, the entropy must be estimated em-
10, 50, 100, 160 of Mofett field is shown in 2.2. The datapirically from sample realizations of the underlying deiesi.
matrix is therefore of dimension 128x128 (pixels) x 224 This problem has received significant attention in the math-
wavelengths. In Section 4, we estimate the local dimensioematical statistics community. Several estimators of 8ban
at each pixel location to classify different regions of Maff  entropy have been proposed for general multivariate densit
field. ies f. These include consistent estimators based on entropic



graphs [8], gap estimators [9], nearest neighbor distai€es Here, 1 denotes the Lebesgue measure &indenotes stat-
11], Edgeworth approximations [12], convex risk minimiza-istical expectation w.r.t density. We require that the dens-
tion [13] and kernel density estimates [14]. However, gaher ity f be uniformly bounded away frord and finite on the
results on rates of convergence of estimators are unalailabsupports, i.e., there exist constants, e., such that) <
Since the rate of convergence relates the number of samples < €., < oo such thatey < f(z) < ex Vx € 8. Let
to the performance of the estimator, convergence rates havé = {Xy,..., X7} be T independent and identically dis-
great practical utility. tributed sample realizations IR” distributed according to
The results stated in this section improve upon exdensityf. The random vectors i are constrained to lie on
isting results onk-NN estimators available in literature. a d-dimensional Riemannian submanifold MR (d < D).
Goria et.al. [10] shows that the estimator they propose is The plug-in estimator is constructed using a data splitting
asymptotically unbiased and consistent. Liitiainenlefld]  approach as follows. The data sample is randomly subdivided
provides rates of convergence of the bias of theddN es-  into two parts{X,..., Xy} and{Xy1,..., Xnia} Of
timators. Evans et.al. [15] establish an upper bound on th& and M/ points respectively. In the first stage, we estimate
rates of decay of the variance, while the authors of [8, 16the k-NN density estimatof at theN points{Xj,...,Xx}
provide upper bounds on tig rate of convergence. using theM realizationg Xy 1, . .., Xn4ar}- Subsequently,
Our analysis improves on this work by establishing exactve use theN samples{X;,..., Xy} to approximate the
rates of decay of the bias and varianceath-split versions of  functional H ( f) to obtain the plug-in estimator:
the estimator proposed by Goria et.al. Our analysis exqiéoit
close relation between density estimation and the georoétry . 1 & .
proximity neighborhoods in the data sample. Finally, oe th Hiun(f) = > —log(f(Xy)).
ory establishes a CLT for the proposediN estimators. We i=1

apply these results to derive confidence intervals for Shiann . .
egfrgpy . W I nterv Let d(X,Y) denote the Euclidean distance between

The reminder of the section is organized as follows. SecP0ints X and ¥ and dg?)_ denote the Euclidean distance
tion 3.1 formulates the problem and introduces the data-spiP€tween a point X and it&-th nearest neighbor amongst
plug-in estimator. The main results concerning the biasX~+1; - Xn+ar-  The k-NN region is Sk(X) = {Y :
variance and asymptotic distribution of these estimatoes a d(X,Y) < d1 and the volume of thé:-NN region is
stated in Section 3.3 and the consequences of these resuis(X) = g, y)dZ. The standard:-NN density estim-
are discussed. We validate our theory with simulations inytor [18] is defined a8(X) = M(Cf(lx)-

Section 3.4. In Section 3.5, we use our theory to detect an- *

omalies in wireless sensor networks at specified false alarm DefineHy,ar,n (f) = H’“M-r]\l(f) +[log(k —1) = W(k— .
rate. Additional details on proofs and results are giveniin o 1)- Ve note that the estimatoH corresponds to data-split
technical report [17]. versions of the Shannon entropy estimator of Goria et.@]. [1

3.1. Preliminaries 3.3. Main results and consequences

Notation We now state the main theorems corresponding to the bias,

We will use bold face type to indicate random variables an%\?ﬂance and asymptotic distribution &y u,v(f) = H.

random vectors and regular type face for constants. We d 'Zoa?%? € \t/cskaggzvr\;se l?hg;;”ttr?én:jc:rl]zflnhj\gé (I:.sliltiﬁu:us
note the expectation operator by the symBadnd the vari- & ' y

. partial derivatives of ordef.
ance operator d8[X] = E[(X —E[X])?]. We denote the bias : ~ . : S
of an estimator byg. The bias o was previously derived by Liitiainen et.al. [11].

Becausel(k — 1) — log(k — 1) — 0 ask — oo, the estim-
ator H will have identical variance up to leading termsHs
Likewise, H, when suitably normalized, will converge to the
We are interested in estimating the Shannon entdgy)  same distribution as the estimaidr
of density f, with compact suppor$ which is constrained
to lie on a smootiC man_ifold]_v[ of intrinsic dimensiond. 3.3.1. Biasand Variance
We assume that the manifold is embeddedRin, for some
d < D. We assume that the supp@rtdoes not have any Theorem 3.1. The bias of the plug-in estimator fIk_MN(f)
boundaries. is given by

The Shannon entropsi (/) has the form

B d k i/d k
H(f) = / —10g(f(x)) f (2)dp(x) = B[~ log(f ()] BHewmn(f) = 2o (M) +°(M)’

=2

3.2. Plug-in estimators



where ¢; are constants which depend on the underlying dens-
ity f.

Theorem 3.2. Thevariance of the plug-in estimator fIk,M,N(f)
isgiven by

VHrun(f) = u (%) + vg (%) +o0 (% + %) ,

wherew; = Vllog(£(Y), Y)] andvs = V]log(Y)g'(f(Y), Y)].

Quantiles of independent realizations of estimator H

Our resultis an improvement on the results of Evans et.al ] 5 : : : )
in that we are able to provide the exact leading terms for the Theoretical quanties from normal distibuion
variance.
Fig. 3. g-q comparing independent realizations of the normal-
3.3.2. Central limit theorem ized Shannon estimator (L.H.S. of Theorem 3.3) on the ver-
tical axis to a standard normal population on the horizontal

In addition to the results on bias and variance shown in thexis. The linearity of the points validates the centralfithe-
previous section, we show that our plug-in estimator, approgrem.

priately normalized, weakly converges to the normal disti
tion. We study the asymptotic behavior of the plug-in estim-

ates under the following limiting conditions: (&YM — 0, ' : -  Plug-menvopy estimte

(b) k — oo, and (C)N — oc. As shorthand, we will collect- T S eontenee ena

ively denote the above limiting assumptionsAy— 0. st ay

Theorem 3.3. The asymptotic distribution of the normalized 2 15\ """""""""""""""

plug-in estimator Hj, a7 n(f) isgiven by 2t PRI
I:I _ E I:I 2.2 I o 'n_’,

lim Pr e () [ a1 (F)] <a|=Pr(Z<a), g B

A—0 Vlog(f(Y),Y)] g
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where Z is a standard normal random variable.

Fig. 4. Predicted confidence intervals on Shannon entropy
for varying sample siz&’ using the central limit theorem 3.3.
We validate our theory using using tRedimensional mix- The confidence intervals decrease with sample size as expec-
ture densityf,,, = pfs + (1 — p)fu; f5: Beta density with  ted.

parameters a=4,b=4;,: Uniform density; Mixing ratiop =

0.8. Constants;;i = 1,2..5 are estimated using Monte-Carlo . ) )
methods [19]. We now estimate the Shannon entropy for eaclimensional,

We show the Q-Q plot of the normalized Shannon entropy 82 Sample sequencgin] using the estimatoH. We detect
estimate and the standard normal distribution in Fig. 3. Th@nemalies by thresholding the entropy estiméfe]. A time
linear Q-Q plot validates Theorem 3.3 on asymptotic normalSamPplen is regarded to be anomalous if the entropy estimate
ity of the plug-in estimator. Using the CLT, we plot th% H{[n] exceeds a specmed thres_hol@ We segk to choose the
confidence intervals for the entropy functional as a fumctio threshold appropriately for achieving a desired falsenalar

3.4. Simulations

of sample size in Fig. 4. rate. _ B _
To this end, we estimate the entropiE$n| for the time
instantsn = 1,...,50 when no anomalies were known to

3.5. Anomaly detection in networks have occurred and subsequently estimate the meaud vari-

We apply our theory to the problem of anomaly detection inances? of the entropy estimates for this nominal time interval
wireless sensor networks. The mission of this experiment is € [1,50]. Using these estimates of the mean and variance,
to use the 182 RSS sequences to detect any intruders (anowe use the central limit theorem 3.3 to set the threshofdr
alies). To remove the temperature drifts of receivers we prea given false alarm rate ast, = u + 2,20 wherez, ; is
process the data by removing their local mean values. Ldhe z-score corresponding to coverdge «. This threshold
y:[n] be the pre-processedth sample of the-th signal and t. is then used to detect anomalies at time instants 50.
denotey[n] = (y1[n],. .., y1s2[n]). The desired and corresponding observed false alarm rates



Desired and observed false alarm rates
Desired | .20 | .10 | .05 | .02 | .01 | .005
Observed| .269 | .111| .062 | .026 | .015 | .009

Detection rate

0.5f

—Optimal estimator
— Covariance estimator
— Subspace estimator

L L L L L L L L L ,
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5
False alarm rate

Fig. 6. ROC curves for entropy, covariance and subspace
-1 —Entopy estmate] | based anomaly detection. The performance of the entropy
0 500 1000 1500 2000 2500 3000 based method is the best as measured by area under the curve

Time sample/0.5sec

(0.9784 and compared to 0.9722 and 0.9645).

Fig. 5. Entropy estimatoi/ implemented as a scan statistic
over time for anomaly detection in wireless ad hoc senser nettor of intrinsic dimension is a prerequisite for setting ém-
work experiment. Ground truth indicator function (in blue) bedding dimension of DR algorithms such as principal com-
indicates when anomalous activity occurred. The entropy eponents analysis (PCA), ISOMAP, and Laplacian eigenmaps.
timator detects these anomalies whenever the entropy-estirntil recently the most common method for selecting an em-
ate crosses the level = 0.05 thresholdty o5 analytically  bedding dimension for these algorithms was to detect a knee
determined by the CLT in Theorem 3.3. in a residual error curve, e.g., scree plots of sorted e@env
ues.

In this section we introduce a new dimensionality estim-

are shown in the table aboye. The slightly higher observegtor that is based on fluctuations of the sizes of neareshneig
false alarm rates can be attributed to the temporal depe;&tder\li1

r or balls centered at a subset of the data points. In thigoesp
between the RSS sequences at successive time samples. Ti

d d Its i allv hiah . & similar to Costa’sk-nearest neighbor (kNN) graph di-
ependence results in marginally higher entropy estimattes o i estimator [21], to Farahmand’s dimension estimato

non-f_;momaloustlme .|nsta.1nts immediately preceding and SUBased on nearest neighbor distances [22] and to Bickel'st.al
geedlng anoma_lous _t|me.|ntervals as compared to entropy Cfaximum likelihood estimator [23]. The estimator can also
timates at nominal time instants farther away from anomalp . .a1ated to the Leonenko’s Rényi entropy estimator [24].

ous activity. This is corroborated by Fig. 5, which shows the, yeyer, unlike these estimators, our new dimension estim-
ground truth _and the normalized entropy est|mator_respons£or is derived directly from a mean squared error (M.S.E.)
(H[n] — t with false alarm rate: = 0.05) as a function of optimality condition for partitione@-NN estimators of mul-

time. tivariate density functionals. This guarantees that otimes

ROC curves corresponding to the entropy estimator argior has a parametric M.S.E. convergence rat@¢f,/T)

shown in Fig. 6 in addition to the ROC curves using the SUbWhereT is the number of samples.

space method of Lakhina et.al._ [4] and the covariance based The section is organized as follows. We first introduce the
estimator of_Chen et.al. [20]. It.'s clea_r that th_e detecpen o general form of the new dimension estimator. We then
formance using the entrqpy estimator is marginally belttgnt show that the estimator is related to #&IN plug-in entropy
thedsgrk?space ?nd covarlarllce l?]ased methé)ds r?f Lacl;?:lna et'@étimator defined in the previous section. We use the theory
an en et.al. respectively. The Area under the ROC curvegapished in the previous section to obtain expressions f

were found to be 0.9784, 0.9722 and 0.9645 for the entropyp e asymptotic bias and variance of the new dimension estim-
covarlance and subspace based anomaly detection metho‘ﬂgr' The analytical expressions for bias and variancevallo
respectively. us to propose a weightddNN dimension estimator which
has a faster convergence rate(¥(fl /T") as compared to the
4. DIMENSION ESTIMATION convergence rate @(1/7)"/? in the case of the dimension

o S _ o _ estimators of Costa et.al. , Farahmand et.al. and Biclal et.
Intrinsic dimensionality is an important concept in high di

mensional datasets whose principal modes of variatiomlie o
a subspace of substantially lower dimension, the intridsic

mensiord. In such cases dimensionality reduction can be acWe are interested in estimating the intrinsic dimensipn
complished without loss of information. An accurate estim-given i.i.d samplest = {X;,..., X7} in R? distributed

4.1. Problem formulation



according to density. with 7, (u) = Zle wl*/?. Using this different choice of
weights, we can immediately see that the new dimension

4.1.1. Log-length statistic estimator converges at the parametric rateOdt /7') and
) o is therefore an immediate improvement over the estimat-
Define thek-log-length statistic to be ors of Costa et.al. [21], Bickel and Levina [25] and Farah-
| X mand et.al. [22], which converge at the rate bfT")/?. The
Le(X) = N Zlog (re(X3)), central limit theorem follows as well.
=1

wherer, (X;) is thek-nearest neighbok¢NN) distance from
target sample; to theM reference sampldX 41, ..., Xnim
For the rest of this section, 1&€ = |T/2| andM =T — N.
4.1.2. Relation to Shannon entropy < e

We can write the following relation

I:Ik,M,N(f)

N
% > t(k) = log(call) — dlog(ri (X))
i=1

= w(k;— log(cqM) — dLy (X).

Assumingy, ys v (f) ~ H(f), whereH (f) is the Shan-  Fig. 7. lllustration of data in a sample belonging to a mixture

non entropy, we can estimate the dimension using the followef manifolds. The black points on the plane have intrinsic
ing simple slope based estimator: dimension2 while the red points on the circle have intrinsic

dimensionl. The blue lines depict points in the neighbor-

4.1.3. Intrinsic dimension estimate based on varying band- hood.

width &

Let k;, andk, be two different choices of bandwidth paramet-4 2 | gcal dimension estimation
ers. LetLy, (X) andLy, (Z) be the length statistics evaluated

at bandwidthg:; andk. using datdl andZ respectively. Many high-dimensional datasets of practical interestlgixhi
varying complexity in different parts of the data space.sThi
d = Ylke —1) = ¢k — 1) is the case, for example, of data bases of images containing
Ly, (X) — Ly, (X) many samples of a few textures of different complexity. Such

(1)  phenomena can be modeled by assuming that the data lies on
ollection of manifolds with different intrinsic dimewsis.
Carter et. al. [26] introduce a method to estimate the
al dimensionality associated with each point in a data-
set, without any prior information about the manifolds,ithe
quantity and their sampling distributions. Their proposed
method uses a global dimensionality estimator based tegeth

In this section, we improve on the previous slope based evith an algorithm for computing neighborhoods in the data

From our analysis in the previous section, we note that th& ¢
bias and variance of the dimension estimator are of orde]r
O(1/T)"%andO(1/T) respectively. oc

4.1.4. Weighted dimension estimator

timator by using the following weighted estimator with similar topological properties. They define the local d
. mension estimate of each point to be the intrinsic dimension
d. = > wi(l) of a small neighborhood sample centered at each point. Intu-
v L, (X) itively, their method takes advantage of the fact that tleallo
where neighborhoods of each point hug the respective manifolds to
k which the corresponding point belongs. This is illustrated
L, (X) = Z wi Ly (X), Fig. 7. The neighborhoods in the above illustration aredepi
=1 ted by the blue lines. It is clear from the illustration thia¢ t
andw;,l = 1,..., k are thek-NN weights chosen according neighborhoods 'hug’ the respective manifolds in each case.
to the non-trivial solution) _, |w;| # 0 to the optimization In their work, they use the estimator of Costa et.al. to
problem estimate the intrinsic dimension of each sample. We modify

their local dimension algorithm by replacing the intrindie
mension estimator they use with our propose weiglté&tN
subjectto 7,,(0) =0, i €0,1,...,d. graph estimator.

minimize ||w||1
w



Fig. 9. Segmented image of Moffett field.

4.3. Dimension based image fusion

successfully demarcates the water bodies from the urban and
vegetation regions.

5. CONCLUSION

We focused on a class of data-sgitNN density plug-in es-
timators for estimating Shannon entropy. We derived thg,bia
variance and mean square error of the estimator in terms of
the sample size, the dimension of the samples and the un-
derlying probability distribution. In addition, we develed

a central limit theorem for these estimators and used our the
ory to specify confidence intervals on the entropy. We used
our entropy estimator to perform anomaly detection in wire-
less sensor networks and used our asymptotic theory to set
thresholds appropriately to achieve specified false alatesr

Next, we applied our theory to the problem of dimension
estimation. Dimension estimators defined in literaturdesuf
from high bias due to curse of dimensionality. We address
this problem by proposing a weightéeNN intrinsic dimen-
sion estimator, where the optimal weights are chosen such
that the resulting estimator has parametric convergertee ra
of O(1/T). We applied our weighted-NN dimension estim-
ator to the problem of fusing hyperspectral images of Mof-
fett field, which enabled us to successfully segment regions
of Moffett field with different complexity.

Using the theory presented in the paper, one can therefore
optimize fusion algorithms and also specify the minimum ne-
cessary sample size required to obtain requisite accuracy i
fusion applications like structure discovery in graphitald-
els and dimension estimation for support sets of low initins
dimension. See [17] for more details on these applications.
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