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Abstract—We consider the problem of communication over
a multiple access channel (MAC) with noiseless feedback. A
single-letter characterization of the capacity of this channel is
not currently known in general. We formulate the MAC with
feedback capacity problem as a stochastic control problem for a
special class of channels for which the capacity is known to be the
single-letter expression given by Cover and Leung. This approach
has been recently successful in finding channel capacity for point-
to-point channels with noiseless feedback but has not yet been
fruitful in the study of multi-user communication systems. Our
interpretation provides an understanding of the role of auxiliary
random variables and can also hint at on-line capacity-achieving
transmission schemes.

I. INTRODUCTION

Shannon showed in his early work [1] that the capacity
of single-user discrete memoryless channel (DMC) does not
increase with output feedback. Feedback, however, was shown
to be useful in the sense of improving the error performance or
simplifying the transmission scheme. In the case of multiple-
access channels (MACs), the improvement due to feedback is
more dramatic since the the capacity region can be expanded
with feedback as Gaarder and Wolf [2] showed. Subsequently,
Cover and Leung [3] proposed a block Markov superposition
coding scheme for the discrete memoryless MAC (DM-MAC)
with feedback and it was shown to be tight for a class of
channels [4], while it was shown to be strictly smaller than
the capacity region for other channels [5]. The work in [6]
on the MAC with cribbing encoders is also relevant in this
context. Along this line of research, Bross and Lapidoth [7]
and Venkataramanan and Pradhan [8] independently improved
the Cover and Leung achievable region. In a different line of
research, the capacity region was determined by Kramer [9]
in terms of directed information. Permuter et al [10] also
investigated the capacity of the MAC with memory and
feedback. However, these expressions are in an incomputable
multi-letter form, and thus, a single-letter characterization of
the capacity region for the DM-MAC with feedback is still an
open problem.

Recently, there has been a significant progress in simplifying
multi-letter capacity expressions utilizing a stochastic control
framework [11]–[15]. In particular, for finite-state channels
(FSCs) with feedback The authors in [12], [15] provided a gen-
eral stochastic control framework for evaluating the capacity of
the FSC with feedback starting from the capacity expressions

using directed information. In a relating line of work, the
authors of [16], [17] derived a single-letter expression for the
class of unifilar channels and used dynamic programming to
evaluate analytically the channel capacity for the trapdoor and
the Ising channels with feedback. Some multi-user channels
have also been studied in a similar way; DM-MAC with feed-
back was considered in [18]; physically degraded broadcast
channel with nested feedback was considered in [19]. These
works however, concentrated on finding structural results that
simplify the construction of the encoder and decoder, and they
didn’t address directly the simplification of capacity regions.

In this paper, we attempt an interpretation of the single-
letter capacity region for the class of DM-MAC with feedback
whose feedback capacity region is known [4]. Towards this
goal, we develop a stochastic control framework starting from
the feedback capacity region characterization of Kramer [9],
and proceed through a two-step simplification process. This
process allows us to interpret the role of the auxiliary variable
in the capacity expression as some “quantized” state of a
dynamical system that is partially controlled by the choice of
input distributions and provides a potential methodology for
deriving single-letter expressions for other single- or multi-
user capacity results.

The rest of the paper is organized as follows. In Section II,
the channel model and several known facts are introduced.
We formulate, simplify and discuss the stochastic control
problem in Section III. Most of the proofs are relegated to
the appendices.

In the following, we denote random variables with cap-
ital letters (X,Y, Z, ...), their realizations with small let-
ters (x, y, z, ...), and alphabets with calligraphic letters
(X ,Y,Z, ...). A sequence of random variables is denoted with
Xt = (X1, ..., Xt). The space of probability distributions (or
equivalently probability mass functions) on the finite alphabet
X is denoted by P(X ).

II. CHANNEL AND SYSTEM MODEL

We consider a two-user DM-MAC. The input symbols X,Y
and the output symbol Z take values in the finite alphabets
X ,Y and Z , respectively. The channel is memoryless in the
sense that the current channel output is independent of all the
past channel inputs and the channel outputs, i.e.,

P (Zt|Xt, Y t, Zt−1) = W (Zt|Xt, Yt) (1)



Our model considers feedback, that is the transmission of
the channel output from the decoder to both encoders with
unit delay. We further assume that the feedback channel is
noiseless.

Encoders generate their channel inputs based on their private
messages and past outputs. Thus

Xt = f1
t (W1, Z

t−1) (2a)

Yt = f2
t (W2, Z

t−1) (2b)

The decoder estimates the messages W1 and W2 based on T
channel outputs. Hence,

(Ŵ1, Ŵ2) = g(ZT ). (3)

Unfortunately, a single-letter capacity expression is not
known for this channel. A multi-letter capacity expression for
DM-MAC with feedback has been established in [9] and can
be stated as follows.

Fact 1 (Theorem 5.1 in [9], [20]). The capacity region of the
DM-MAC with feedback is

CFB =

∞⋃
T=1

CT (4)

where CT , the directed information T th inner bound region
(or T th inner bound region), is defined as CT = co (RT ),
where co(A) denotes the convex hull of a set A, and

RT =
⋃
PT

{(R1, R2) :0 ≤ R1 ≤ IT (X → Z||Y ),

0 ≤ R2 ≤ IT (Y → Z||X),

0 ≤ R1 +R2 ≤ IT (X,Y → Z)}, (5)

where IT (A→ B||C) = 1
T

∑T
t=1 I(At;Bt|Ct, Bt−1). All in-

formation quantities are evaluated using the joint distribution

P (xT , yT , zT ) =
T∏
t=1

W (zt|xt, yt)q1(xt|xt−1, zt−1)q2(yt|yt−1, zt−1), (6)

and the union is over all input joint distributions on xt, yt that
are conditionally factorizable as

P (xt, yt|xt−1, yt−1, zt−1) =

q1(xt|xt−1, zt−1) · q2(yt|yt−1, zt−1) ∈ PT (7)

for t = 1, 2, ..., T .
Furthermore, the regions CT can be expressed in the form

CT =
{

(R1, R2) ≥ 0 : ∀ λ = (λ1, λ2, λ3) ∈ R3
+,

λ1R1 + λ2R2 + λ3(R1 +R2) ≤ CλT
}
, (8)

where

C
λ
T , sup

PT

{λ1IT (X → Z||Y ) + λ2IT (Y → Z||X)+

λ3IT (X,Y → Z)} . (9)

Observe that the problem of evaluating capacity is essen-
tially (at least) as hard as the problem of evaluating the
quantity C

λ
T for a given λ. Also note that the optimization

problem involved in evaluating C
λ
T can be thought of as a

decentralized optimization problem involving two agents: the
first is choosing the distribution q1 on xt after observing
the common information zt−1 and his private information
xt−1, while the second is choosing the distribution q2 on yt
after observing the common information zt−1 and his private
information yt−1. This decentralized nature contributes to the
difficulty of this optimization problem. However, as we plan
to show, even in the special case when the problem can be
transformed to a centralized one, there are difficulties of other
nature that need to be overcome before arriving to a single-
letter expression from a control-theoretic viewpoint.

We say that the channel is in the family CY→X when the
second user can perfectly determine the first user’s channel
inputs based on its own inputs and the channel outputs. In
other words,

CY→X , {W : H(X|Y,Z) = 0} . (10)

For the class CY→X , the capacity region is known to be given
by the Cover and Leung region [3], [4], which is in single-
letter form.

Fact 2 ( [3], [4], [20]). The capacity of DM-MAC in the class
CY→X is the set CCL = co(RCL), where

RCL =
⋃
P
{(R1, R2) :0 ≤ R1 ≤ I(X;Z|Y, V )

0 ≤ R2 ≤ I(Y ;Z|X,V )

0 ≤ R1 +R2 ≤ I(X,Y ;Z)}. (11)

All information quantities are evaluated using the joint distri-
bution

PV XY Z(v, x, y, z) = PV (v)PX|V (x|v)PY |V (y|v)W (z|x, y),
(12)

where |V| ≤ min{|X ||Y|, |Z|}, and the union is over all input
joint distributions on x, y that are conditionally factorizable
as

PXY |V (x, y|v) = PX|V (x|v)PY |V (y|v) ∈ P. (13)

Furthermore, the capacity region CCL can be expressed in
the form

CCL =
{

(R1, R2) ≥ 0 : ∀(λ1, λ2, λ3) ∈ R3
+,

λ1R1 + λ2R2 + λ3(R1 +R2) ≤ CλCL
}
, (14)

where

C
λ
CL , sup

P
{λ1I(X;Z|Y, V ) + λ2I(Y ;Z|X,V )+

λ3I(X,Y ;Z)} . (15)



III. STOCHASTIC CONTROL PROBLEM FORMULATION

Recently, there have been several results in the literature
involving computing the capacity of certain communication
channels by formulating the information theory problems into
a stochastic control framework [12], [15]. The basic procedure
to find a single-letter capacity expression is the following:
we start with a multi-letter capacity expression in the form
of directed information for the channel of interest. We then
formulate a stochastic control problem by introducing an
appropriate information state. The optimal solution to this
problem (whenever it can be found) implies a single-letter
expression for the capacity. This is exactly the methodology
we are planning to use in this work.

We first note that for the class CY→X , encoder 2 can
perfectly figure out the past input history of user 1 since
knowledge of Y t−1 and Zt−1 gives Xt−1. This observation
leads to the following simplification of the general capacity
expression presented in Fact 1.

Lemma 1. For the class CY→X , the directed information T th
inner bound region is CT = co(R′T ), where

R′T =
⋃
P′T

{(R1, R2) :

0 ≤ R1 ≤
1

T

T∑
t=1

I(Xt;Zt|Yt, Xt−1, Zt−1)

0 ≤ R2 ≤
1

T

T∑
t=1

I(Yt;Zt|Xt, X
t−1, Zt−1)

0 ≤ R1 +R2 ≤
1

T

T∑
t=1

I(Xt, Yt;Zt|Zt−1) } .

(16)

All information quantities are evaluated using the joint distri-
bution

P (xT , yT , zT ) =
T∏
t=1

W (zt|xt, yt)q1(xt|xt−1, zt−1)q2(yt|xt−1, zt−1), (17)

and the union is over all input distributions on xt, yt that are
conditionally factorizable as

P (xt, yt|xt−1, yt−1, zt−1) =

q1(xt|xt−1, zt−1) · q2(yt|xt−1, zt−1) ∈ P ′T (18)

for t = 1, 2, ..., T , Furthermore, the function C
λ
T in (9) can

be simplified as

C
λ
T = sup

P′T

{
1

T

T∑
t=1

λ1I(Xt;Zt|Yt, Xt−1, Zt−1)+

λ2I(Yt;Zt|Xt, X
t−1, Zt−1) + λ3I(Xt, Yt;Zt|Zt−1)

}
.

(19)

Proof: See appendix.
The only difference between the above lemma and Fact 1

is that the conditional probability of yt now depends on

xt−1 instead of yt−1. The above lemma implies that we can
restrict attention to channel input distributions of the form
(18) without losing optimality. This in turn means that we can
think of this problem as an optimization problem involving a
single agent, i.e., a centralized problem: in this setup a single
agent chooses both distributions q1 on xt and q2 on yt after
observing the information xt−1 and zt−1. We now proceed to
formulate an equivalent centralized stochastic control problem
in order to further simplify the capacity region expression.
Towards this end we introduce the following dynamic system.
• state at time t: (Xt−1, Zt−1) ∈ X t−1 ×Zt−1

• observation at time t: Zt−1 ∈ Z
• action at time t: Ut = (U1

t , U
2
t ) : X t−1 → P(X )×P(Y).

Actions at time t can depend on the observations up to
time t and the interpretation is

u1
t [z

t−1](xt|xt−1) = q1(xt|xt−1, zt−1),

u2
t [z

t−1](yt|xt−1) = q2(yt|xt−1, zt−1) (20)

• instantaneous reward at time t (given λ = (λ1, λ2, λ3)):

R
λ
t = λ1 log

W (Zt|Xt, Yt)

P (Zt|Yt, Xt−1, Zt−1)
+

λ2 log
W (Zt|Xt, Yt)

P (Zt|Xt, Xt−1, Zt−1)
+ λ3 log

W (Zt|Xt, Yt)

P (Zt|Zt−1)
(21)

The control problem is to determine the optimal policy g =
{gt}Tt=1 (such that ut = gt[z

t−1]) that maximizes the average
expected reward 1

T

∑T
t=1E

g{Rt}.
Several observations are in order. First, the action U1

t

(and similarly U2
t ) is actually a function; one such action

is determined by a probability distribution on xt for every
possible realization of xt−1. This implies that the action space
is time varying. Further, the policy gt defines one such function
for every possible realization of zt−1. Second, one might
ask why we have not defined the observation at time t as
the pair (Xt−1, Zt−1), and subsequently the action Ut as the
distributions Ut = (U1

t , U
2
t ) ∈ P(X )× P(Y). Although such

definitions would definitely be desirable (since they would
lead to time invariant action space) they are inappropriate
for this problem because they do not result in expressing the
instantaneous reward Rλt as a function of the current state and
current action. This point is crucial throughout this work and
will be made clearer in subsequent proofs.

The introduction of the above dynamical system allows us
to view the optimization problem in (19) as an equivalent
partially observed Markov decision process (POMDP) and
thus provide a characterization/simplification of the solution.
Towards this end let us define a random variable Θt ∈ P(X t)
to be a probability distribution on xt conditioned on Zt, U t,
i.e., Θt(x

t) , P (xt|Zt, U t),∀xt ∈ X t. The following lemma
establishes important properties of the random quantity Θt and
its evolution.

Lemma 2. There exists a mapping Ψ such that θt can
be recursively generated as θt = Ψ(θt−1, u

1
t , u

2
t , zt). Fur-

thermore, (Θt)t is a controlled Markov chain with control



ut = (u1
t , u

2
t ), and instantaneous reward Ξλ(θt−1, ut) i.e.,

P (θt|θt−1, ut) = PΨ(θt|θt−1, ut), and E{Rλt |θt−1, ut} =

E{Rλt |θt−1, ut} = Ξλ(θt−1, ut).

Proof: See appendix.
Based on the above lemma we are now ready to state the

first main result of this work.

Proposition 1. The T th inner bound region for the DM-MAC
in the class CY→X is given by (8) with the quantity C

λ
T

evaluated as

C
λ
T = sup

P̄

{
1

T

T∑
t=1

λ1I(Xt;Zt|Yt, Xt−1,Θt−1)+

λ2I(Yt;Zt|Xt, X
t−1,Θt−1) + λ3I(Xt, Yt;Zt|Θt−1)

}
.
(22)

All mutual information quantities are evaluated using the joint
distribution

P (xT , yT , zT , θT ) =

T∏
t=1

W (zt|xt, yt)q1(xt|xt−1, θt−1)

q2(yt|xt−1, θt−1)θt−1(xt−1)δΨ(θt−2,q1,q2,zt−1)(θt−1), (23)

and the supremum is over all input distributions of the form

P (xt, yt|xt−1, yt−1, zt−1) =

q1(xt|xt−1, θt−1)q2(yt|xt−1, θt−1) ∈ P̄. (24)

Proof: Due to Lemma 2 and using standard POMDP
results, the optimal strategy gt is a Markov policy (i.e.,
it is only a function of the state θt−1). This implies
that the optimizing distributions can be of the form
q1(xt|xt−1, θt−1)q2(yt|yt−1, θt−1). Furthermore, using an in-
ductive argument similar to the one used in the proof of
Lemma 1 we can show the equivalence between the stochastic
control problem and the optimization problem in (19), which
concludes the proof.

Comparing (19) and (22) one can observe that although
the dependence on the previous observations Zt has been
summarized in the “state” Θt, this does not result in a single-
letter form for the quantity CλT . Furthermore, replacing Zt with
Θt can hardly be considered a simplification since the former
belongs to the expanding alphabet Zt while the latter belongs
to an even larger expanding alphabet P(X t). The dependence
of the new variables in this dynamical system is shown in
Fig 1.

Since the capacity expression for this class of channels is
known to be in a single-letter form [4], a reasonable question
to ask is how this expression comes about in the stochastic
control framework developed thus far. In the following we
show that there is additional structure in the problem that
allows us further simplification.

Lemma 3. For every action ut : X t−1 → P(X )×P(Y) and
every distribution θt−1 ∈ P(X t−1), there exist a distribution
φt−1 ∈ P(V), and an action ût : V → P(X ) × P(Y), such

E{Rt|ϴt-1,Ut}

ϴt-1

Ut

ϴt

Ut+1

ϴt+1

gt

Ξ

PΨ

Ξ

gt+1

E{Rt+1|ϴt,Ut+1}

PΨ

Fig. 1. Markov decision process evolution

that the instantaneous reward Ξλ(θt−1, ut) can be written as

Ξλ(θt−1, ut) =∑
xt,yt,zt

W (zt|xt, yt)∑
vt−1∈V

û1
t (xt|vt−1)û2

t (yt|vt−1)φt−1(vt−1)

×

[
λ1 log

W (zt|xt, yt)∑
x̃t
W (zt|x̃t, yt)û1

t (x̃t|vt−1)
+

λ2 log
W (zt|xt, yt)∑

ỹt
W (zt|xt, ỹt)û2

t (ỹt|vt−1)
+

λ3 log

W (zt|xt, yt)/[
∑
x̃t,ỹt

W (zt|x̃t, ỹt)

∑
ṽt−1

û1
t (x̃t|ṽt−1)û2

t (ỹt|ṽt−1)φt−1(ṽt−1)]

 (25a)

= λ1I(Xt;Zt|Yt, Vt−1) + λ2I(Yt;Zt|Xt, Vt−1)+

λ3I(Xt, Yt;Zt) (25b)

= Ξ̂λ(φt−1, ût), (25c)

where the mutual information quantities are evaluated using
the distribution

P (xt, yt, zt, vt−1) =

W (zt|xt, yt)û1
t (xt|vt−1)û2

t (yt|vt−1)φt−1(vt−1). (26)

Furthermore, the cardinality of V can be bounded by |V| ≤
|X ||Y|.

Proof: This is a consequence of Caratheodory’s theorem
(and its application by Ahlswede and Körner), as described
in [20].

Observe that the reward function in (25b) is exactly the
reward relevant to the Cover and Leung region as shown
in (15) in Fact 2. Thus, the significance of this result is that
it establishes the connection between the stochastic control
framework and the auxiliary random variable found in the
single-letter expression from the information theoretic view-
point. An important caveat of the above result is that it is an
existence result, i.e., it does not construct the distribution φ but
only guarantees its existence. The new quantities φt−1 and ût



are interconnected with the remaining dynamical system as
shown in Fig. 2.

ϴt-1

Ut

Φt-1, Ût

ϴt

Ut+1

Φt, Ût+1

ϴt+1

? ?

E{Rt|ϴt-1,Ut} E{Rt+1|ϴt,Ut+1}

gt gt+1

PΨ PΨ

Ξ
^

Ξ
^

Fig. 2. Markov decision process evolution with reduced states and actions.

One can think of the trajectory of this dynamical system
as follows: given the optimal choice of the strategy g, for
every realization of the state Θt−1 an optimal action Ut =
gt[Θt−1] is generated (Markov policy). This action, together
with the state Θt−1 and the “system disturbance” will lead
to a new state Θt and will also generate an optimal reward
Ξλ(Θt−1, Ut). The last result implies that there exists a – yet
to be found – “quantization” of the alphabet X t−1 into a time-
invariant alphabet V such that an equivalent action Ût need
only be defined in this smaller space V → P(X )×P(Y) that
results in the same exact reward.

Since we know that in the long run the expected reward per
unit time has to be equal to C

λ
CL in (15) and since (due to

the last lemma) the reward expressions in (25b) and (15) are
identical, one should expect that the optimal choice of actions
will lead in the long run to states Θt−1 which, when quantized,
will result in “reduced” states Φt−1 and actions Ût that
are approaching asymptotically, the optimizing distributions
P ∗V and P ∗X|V , P

∗
Y |V of (15), respectively. In other words,

limt→∞Φt = P ∗V and limt→∞ Ût = (P ∗X|V , P
∗
Y |V ) (where

the starred quantities are the supremizing distributions in (15)
and the limits are understood in some appropriate sense).

At this point it not clear how such a conclusion can be
derived directly through the control theoretic framework with-
out resorting to the known single-letter information theoretic
result. The resolution of this question hinges on finding a
“quantization” of the space X t−1 that together with Θt−1

induces the distribution Φt−1 and showing that with the right
choice of “reduced” actions Ût this “quantized” distribution
converges to P ∗V . This is a research direction we are currently
pursuing.

Another research direction of interest is the extension of our
methodology to the general DM-MAC with feedback to find
single-letter expression of capacity region. The main difference
between the general case and the case we discussed in the
paper is that the general case results in a decentralized control
problem.

Finally, a third interesting research direction is to investigate
a simple sequential transmission scheme using the idea of the

posterior matching scheme [21] that achieves any rate pair on
the capacity region of the DM-MAC with feedback.

APPENDIX

A. Proof of Lemma 1

Note that the encoder 2 has a perfect knowledge of the en-
coder 1’s past input history through the feedback information
and its own history of input. Thus, the input distributions of
interest are of form

P (xt, yt|xt−1, yt−1, zt−1) =

q1(xt|xt−1, zt−1) · q2(yt|xt−1, yt−1, zt−1). (27)

We can similarly get

I(Xt;Zt|Yt, Y t−1, Zt−1)

= I(Xt;Zt|Yt, Xt−1, Y t−1, Zt−1) (28a)

= E

[
log

W (Zt|Xt, Yt)∑
xt
W (Zt|xt, Yt)P (xt|Xt−1, Y t−1, Yt, Zt−1)

]
(28b)

= E

[
log

W (Zt|Xt, Yt)∑
xt
W (Zt|xt, Yt)q1(xt|Xt−1, Zt−1)

]
(28c)

= I(Xt;Zt|Yt, Xt−1, Zt−1) (28d)

where (28c) is due to the conditional independence of Xt and
Y t given (Xt−1, Zt−1). Note that the information theoretic
quantities that appear in the bounds of (16) for each time t
are evaluated based on the joint distribution P (xt, yt, z

t). We
now proceed by induction to show that for every sequence of
input distributions

{
q1(xt|xt−1, zt−1), q2(yt|yt−1, zt−1)

}T
t=1

inducing the sequence of measures {Pq(xt, yt, zt)}Tt=1,
there exists a sequence of input distribution{
q1(xt|xt−1, zt−1), q̂2(yt|xt−1, zt−1)

}
which induces

the same sequence of measures {P̂ (xt, yt, z
t)}Tt=1.

For t = 1 we set q̂2(y1) = q2(y1) and have

P̂ (x1, y1, z
1) = W (z1|x1, y1)q1(x1)q̂2(y1) (29a)

= W (z1|x1, y1)q1(x1)q2(y1) (29b)

= P (x1, y1, z
1). (29c)

Now for t + 1 we set q̂2(yt+1|xt, zt) = Pq(yt+1|xt, zt) =∑
yt q2(yt+1|yt,zt)Pq(xt,yt,zt)∑

yt Pq(xt,yt,zt) and have

P̂ (xt+1, yt+1, z
t+1)

= W (zt+1|xt+1, yt+1)q1(xt+1|xt, zt)q̂2(yt+1|xt, zt)∑
yt

P̂ (xt, yt, z
t) (30a)

= W (zt+1|xt+1, yt+1)q1(xt+1|xt, zt)Pq(yt+1|xt, zt)∑
yt

Pq(x
t, yt, z

t) (30b)

= Pq(x
t+1, yt+1, z

t+1) (30c)

where (30b) is due to the induction hypothesis and the
construction of q̂2(yt+1|xt, zt).



The remaining part of the proof employs a result in [20]
which utilized the convexity property of the capacity region
of DM-MAC with feedback.

B. Proof of Lemma 2

For every xt ∈ X t, we have

θt(x
t)

= P (xt|zt, ut) (31a)

=
P (zt, x

t|zt−1, ut)

P (zt|zt−1, ut)
(31b)

=
P (zt, xt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)

P (zt|zt−1, ut)
(31c)

=

∑
yt
P (zt, xt, yt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)

P (zt|zt−1, ut)
(31d)

= [
∑
yt

W (zt|xt, yt)P (xt|xt−1, zt−1, ut)

P (yt|xt−1, zt−1, ut)P (xt−1|zt−1, ut)]/P (zt|zt−1, ut)
(31e)

= [
∑
yt

W (zt|xt, yt)u1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(xt−1)]/

[
∑

x̃t,ỹt,x̃t−1

W (zt|x̃t, ỹt)u1
t (x̃t|x̃t−1)u2

t (ỹt|x̃t−1)θt−1(x̃t−1)]

(31f)

which establishes θt = Ψ(θt−1, u
1
t , u

2
t , zt). Furthermore,

P (θt|θt−1, ut) (32a)

=
∑

xt,yt,zt

P (θt|θt−1, ut, zt, xt, yt)P (zt|θt−1, ut, zt−1, xt, yt)

P (xt, yt|θt−1, ut, zt−1, xt−1)P (xt−1, zt−1|θt−1, ut)
(32b)

=
∑
zt

δΨ(θt−1,u1
t ,u

2
t ,zt)

(θt)
∑
xt,yt

W (zt|xt, yt)∑
xt−1

u1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(xt−1) (32c)

= PΨ(θt|θt−1, ut). (32d)

Finally, the expected reward at time t conditioned on the
information states θt−1 and the control actions ut is

E
{
R
λ
t |θt−1, ut

}
=

∑
xt,yt,zt

W (zt|xt, yt)∑
xt−1

u1
t (xt|xt−1)u2

t (yt|xt−1)θt−1(xt−1)

×

[
λ1 log

W (zt|xt, yt)∑
x̃t
W (zt|x̃t, yt)u1

t (x̃t|xt−1)
+

λ2 log
W (zt|xt, yt)∑

ỹt
W (zt|xt, ỹt)u2

t (ỹt|xt−1)
+

λ3 log

W (zt|xt, yt)/[
∑
x̃t,ỹt

W (zt|x̃t, ỹt)

∑
x̃t−1

u1
t (x̃t|x̃t−1)u2

t (ỹt|x̃t−1)θt−1(x̃t−1)]

)]
(33a)

, Ξλ(θt−1, ut), (33b)

which is only a function of the information state θt−1 and the
action ut = (u1

t , u
2
t ).
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