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In their original paper on the one-class support vector machine (SVM), Scholkopf
et al. (2001) establish that for separable data, the one-class SVM applied to patterns
X1, ..., Xy is equivalent to the corresponding “paired SVM”, that is, the standard (two-
class) SVM applied to the paired data (x1, 1), ..., (xp, 1), (—x1,—1),..., (=%Xp, —1).
In this context, x1, . . ., X, are said to be separable if the paired data are linearly separa-
ble. The authors also state, without proof, that the equivalence holds in the nonsepara-
ble case provided some hard-to-classify data points are removed. This note establishes
a general equivalence for nonseparable data that does not require modification of the
data.

1 The One-Class SVM

The one-class SVM, as introduced by Scholkopf et al. (2001), takes as input unlabeled

data x4, . ..,x, and a parameter 0 < v < 1, and returns parameters (w, p) solving
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The resulting classifier is given by x +— sgn{(w,x) — p}. Here (-,-) denotes the
standard dot product. For the purpose of comparison with the two-class and paired
SVMs, it is convenient to express the one-class SVM as the solution of an alternative
quadratic program, namely,
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The corresponding classifier is x — sgn{(w,x) — 1/C'}. The equivalence between
(1) and (2) is given by the following result, which was established by Lee and Scott
(2007).

Proposition 1. If (1) results in p > 0, then (2) with C' = %np leads to the same
classifier.



2 The Paired SVM

The paired SVM is a special case of the standard (two-class) SVM. The standard SVM
takes as input a parameter C' > 0 and labeled training data (x1,y1),. .., (Xn,Yn)s
where x; are feature vectors and y; = %1 are labels, and returns (w, b) solving
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These parameters define the linear classifier x — sgn{(w, x) + b}.

In the paired SVM, there are unlabeled feature vectors x1, ..., x,. These are used
to form labeled data (x1,1),...,(xpn,1),(—x1,—1),...,(—=%p, —1), which are then
given to the standard SVM as input. By substitution, the paired SVM hyperplane solves
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Because of symmetry, the above quadratic program can be simplified somewhat. There
is always a solution of (4) with b = 0.

Proposition 2. If (w,b) is a solution of (4), then so is (w,0).

Proof. Suppose (w,b,¢) is optimal and b # 0. Without loss of generality, assume
b > 0. Since b > 0, it must be true that {; < &;,, for all <. Consider the following
cases at the given optimum for each i: (I) (5) and (6) are both strict inequalities; (II)
(5) and (6) are both equalities; (III) (5) is a strict inequality and (6) is an equality; (IV)
(6) is a strict inequality and (5) is an equality.

For i satisfying (I), by the KKT conditions, &; = &;,, = 0 and therefore (w,x;) >
1+ b > 1. Hence, for all ¥’ € [0,b), (w, ', &) still satisfies the constraints for x;. The
conclusion follows by taking 4" = 0. For i satisfying (II), we have &;,, = & +2b, from
which we deduce &, > & and &, > 2b. Replacing b, &;, and &; 1, by V', & +b—V/,
and &, — b+ ¥V, for any b’ € [0,b), the constraints on x; are still satisfied, and
the corresponding term in the objective function remains unchanged. The conclusion
follows by taking b’ = 0.

For case (III), we consider two sub-cases: (Illa) &;4,, = 0, (Illb) &1, > 0. For ¢
satisfying case (Illa), (w,x;) = 1 + b > 1, and therefore (5) and (6) remain valid if
we replace b by any b’ € [0,b). The conclusion follows by taking b’ = 0. Case (IIIb)
cannot occur. To see this, suppose it does occur for some i. Assume for the moment
that (ITIb) occurs for only one i. By the KKT conditions, {; = 0. Also, subtracting (6)
from (5) we obtain &;1,, < 2b. We can obtain a feasible point with a smaller objective
function value by replacing b with any ' € (max{0,1 — (w,x;),b — &+, },b) and
Eiyn With & = & — b+ V. By the previous cases, changing b in this manner



does not affect the validity of the other constraints. If (IlIb) holds for more that one ¢,
the above argument still applies, where now the lower bound on &’ is maximized over
these indicies.

Case (IV) cannot occur. To see this, suppose it does occur. The KKT conditions
applied to (6) imply &1, = 0 and (w,x;) > 1+ b. Then (5) implies 1 + 2b <
(W, x;) +b=1-¢&; <1, contradicting b > 0.
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By this result, it suffices to consider the following quadratic program:
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This amounts to the so-called SVM without offset, applied to the paired data.

3 The Connection

The equivalence between the one-class SVM and the paired SVM is now evident.

Proposition 3. w is optimal for (2) with parameter C' if and only if w is optimal for
(7) with parameter C/2.

Proof. The proof follows easily from the observation that, at the optimum of (7), the
slack variables &; and &;,, must be equal. ]
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