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Abstract. In this report we construct two mechanisms that fully implement social welfare

maximising allocation in Nash equilibria for the case of a single infinitely divisible good subject

to multiple inequality constraints. The first mechanism achieves weak budget balance, while

the second is an extension of the first, and achieves strong budget balance. One important

application of this mechanism is unicast service on the Internet where a network operator wishes

to allocate rates among strategic users in such a way that maximise overall user satisfaction

while respecting capacity constraints on every link in the network. The emphasis of this work is

on full implementation, which means that all Nash equilibria of the induced game result in the

optimal allocations of the centralized allocation problem.

May 4, 2013

1. Centralised Problem

Consider a set N = f1; 2; : : : ; Ng, of N of Internet agents (an agent is considered a pair of

source and destination users) that communicate over pre-specified routes on the Internet. Each

agent i 2 N , communicates at an information rate xi 2 R+ (where R+ is the set of non-negative

real numbers). Agent’s valuation for an overall rate allocation x = (xi)i2N 2 RN
+ , can be written

as

~vi(x) = vi(xi) 8 i 2 N

where vi : R+ ! R, for all i 2 N , which indicates that agent i’s satisfaction only depends on its

own information rate allocation xi. Due to capacity constraints on the utilized links, allocation

to agents is constrained by a number of inequality constraints. It is assumed that although some

agents may share information content (e.g., watch the same video stream), a separate data stream

is transmitted for each agent. This transmission technique is referred to as unicast service.
1
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Each agent has a fixed pre-determined route. The route Li for agent i is the set of links that

agent i uses for his communication, and L = [i2NLi is the set of all available links. We also

define the sets of agents utilizing link l 2 L as N l = fi 2 N j l 2 Lig. Finally, for any agent i

we denote Li = jLij and for any link l we denote N l = jN lj.

The network administrator is interested in maximizing the social welfare under the link capacity

constraints. This centralized problem (CP) is formally defined below.

max
x

X
i2N

vi(xi)(CP)

s.t. xi � 0 8 i 2 N(C1)

and
X
j2N l

�l
jxj � cl 8 l 2 L(C2)

Specifically, constraints (C2) are the inequality constraints on allocation, which as mentioned

above, can be interpreted as capacity constraint for every link l 2 L, in the network. In this

interpretation �l
j would be representative of the QoS requirement of agent j combined with the

specific architecture on link l. As an example, �l
j = 1

Rj(1��
l
j
)

for all links l 2 Lj, where �lj

represents the packet error probability for link l for a packet encoded with channel coding rate

Rj.

1.1. Assumptions. Our analysis would be done under the following assumptions.

(A1) For all agents, vi(�) 2 Vi, where the sets Vi are arbitrary subsets of V0, the set of strictly

increasing, strictly concave, twice differentiable functions R+ ! R with continuous

second derivative.

(A2) v0i(0) is finite 8 i 2 N . This also implies that v0i(x) is finite and bounded 8 i and 8 x

since vi’s are concave.

(A3) There are at least two agents on each link i.e. N l � 2 8 l 2 L.

(A4) The optimal solution of (CP) has at least two non-zero components at each link i.e. if

S(x) := fi 2 N j xi > 0g and Sl(x) := S(x) \ N l then we assume jSl(x?)j � 2 8

l 2 L. (where x? is the solution of (CP))

In addition, the coefficients in (C2) are all strictly positive, i.e. �l
j > 0 8 j 2 N l, 8 l 2 L. Also,

for well-posedness of the problem we take cl > 0 8 l 2 L.

Assumption (A1) is made in order for the centralized problem to have a unique solution and

for this solution to be characterized by the KKT conditions. (A2) is a mild technical assumption

that is required in the proof of Lemma 3.7. Assumption (A3) is made in order to avoid situations

where there is a link constraint involving only one agent. Such case requires special handling

in the design of the mechanism (since in such a case there is no contention at the link), and

destructs from the basic idea that we want to communicate. Finally (A4) is related to (A3) and
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is made in order to simplify the exposition of the proposed mechanism, without having to define

corner cases that are of minor importance. We will present our proposed mechanism in a concise

way using assumption (A4) and generalisations will be discussed separately in Section 5.

1.2. Necessary and Sufficient Optimality conditions. We can write the following four

KKT conditions, which are generally necessary, but in our case (due to all constraints being affine

and strict concavity of vi) they will also be sufficient. For that we first define the Lagrangian

L(x; �; �) =
X
i2N

vi(xi)�
X
l2L

�l

0
@X
j2N l

�l
jxj � cl

1
A+

X
i2N

�ixi

We will write KKT conditions without explicitly referring to �i’s and just using the fact that

�?i � 0 and �?i x
?
i = 0 8 i 2 N . With the assumptions above, it’s easy to see that the KKT

conditions below will give rise to a unique x? as the optimiser for (CP).

KKT conditions:

a) Primal Feasibility:

x?i � 0 8 i 2 N and
X
j2N l

�l
jx

?
j � cl 8 l 2 L

b) Dual Feasibility: �?l � 0 8 l 2 L

c) Complimentary Slackness:

�?l

0
@X
j2N l

�l
jx

?
j � cl

1
A = 0 8 l 2 L

d) Stationarity:

v0i(x
?
i ) =

X
l2Li

�?l�
l
i 8 i 2 N s.t. x?i > 0

v0i(x
?
i ) �

X
l2Li

�?l�
l
i 8 i 2 N s.t. x?i = 0

2. Different Formulations of the Centralised Problem

The designer’s task is to ensure the above optimum allocation is made. This clearly requires

the knowledge of vi even when constraints (C1) and (C2) are completely known. The premise

of the problem, however, is that we are dealing with agents who are strategic and for each of

whom, their own valuation function vi(�) is their private information. One way forward for the

designer could be to simply ask each agent to report their private information and announce the

solution of (CP), with reported functions in place of vi, for allocation. Apart from the fact that

asking to report a function creates a practical communication problem, the main problem with

this is that the agents could report untruthfully and end up getting a strictly better allocation

(e.g., by reporting a vi which has higher derivative than original at every point). In mechanism
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design terminology, the allocation function arising out of (CP) isn’t even partially implementable1

Restricting ourselves to a certain class of utility functions (quasi-linear utilities), provides the

additional flexibility of penalising agents for reporting untruthfully by imposing taxes/subsidies.

In this way, another related problem is created which is implementable, and which is equivalent

to (CP) as far as allocation is concerned. This leads us to the following additional assumption

about users’ utilities

(A5) All agents have quasi-linear utilities, i.e. the overall utility functions can be expressed as

ui(x; t) = vi(xi)� ti 8 i 2 N

where in addition to allocation we have introduced taxes t = (ti)i2N 2 RN .

Note that under assumption (A5), agent i pays tax if ti > 0 and receives a subsidy if ti < 0.

Taxes affect utilities linearly and overall utility itself is valuation after adjustment for taxes (total

monetary representation of one’s state of happiness).

Because we talk about social welfare as our main objective, the centralised problem (CP) isn’t

complete until we fix who owns the good that is being allocated. Then one will have to further

check whether including their welfare in the objective function changes the optimum allocation.

As it turns out, under the assumption of quasi-linear utilities and cost of providing the good

being zero for the owner, optimum doesn’t change even if we involve the seller’s welfare. In this

regard, there are two interesting ways of reformulating (CP), as elaborated below.

2.1. First Reformulation of CP: Weak budget balance. We now introduce agent 0 as

the owner of the good (called the seller). The seller doesn’t have any costs for producing and

providing the good, i.e. his valuation is the zero function. This could be interpreted as the good

being already produced and ready to be provided, so those costs don’t come into consideration

for the seller as well as the designer. His utility is linear (since valuation is zero) and his revenue

is the total tax paid by the agents,
P

i2N ti.

We define centralised problem (CP1) as

max
x;t

X
i2N

ui(x; t) +
X
j2N

tj(CP1)

s.t. (C1) and (C2)

where now, instead of just taking agent’s valuations into account, we maximise the sum of their

overall utilities, with the addition of seller’s utility (which is only his revenue) - each agent pays

a tax ti, all of which goes to the seller, who has no valuation and therefore has utility equal to

1This can be deduced from the revelation principle. Indeed if there was a mechanism that even partially implements
the allocation function arising out of (CP), then there would exist also a truthful implementation. However, as
shown with the above example, such an implementation will always fail.
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sum of taxes. Anticipating that a rational seller will only sell if his revenue is non-negative we

can add a weak budget balance (WBB) constraint, which states

(WBB)
X
j2N

tj � 0:

2.2. Second Reformulation of CP: Strong budget balance. In this case, in contrast to

(CP1), there is no separate seller. We can alternatively say that the agents are themselves the

owners of the good and are only looking to distribute the good (which they collectively own) in

a way such that sum of utilities is maximised. Therefore strong budget balance (SBB) constraint

is needed. This means that for the system N , no money has been introduced from the outside

and the agents wish that no excess money remains undistributed after the allocation either.

The new centralised problem (CP2) resulting from the above interpretation can be stated as

max
x;t

X
i2N

ui(x; t)(CP2)

s.t. (C1) and (C2)

and
X
i2N

ti = 0:(SBB)

The two problems defined above will be shown to be equivalent to (CP) where since the

original problem (CP) did not involve taxes, we will talk of equivalence only in terms of optimum

allocation, x?. Note that due to different conditions on taxes in the two, two different mechanisms

will be needed to implement them.

It is straightforward to see that (CP2) and (CP) are completely equivalent - due to constraint

SBB, the objective for (CP2) is independent of t and is exactly the same as objective for (CP),

with same remaining constraints. Now for (CP1) and (CP2), since the constraints on x are the

same in (CP1) and (CP2) and the x�dependent part of the objective in (CP2) in independent

of t and is the same as the objective of (CP1), we can see that (CP1) and (CP2) are equivalent.

The two equivalences above automatically give the third one i.e. (CP) and (CP1).

The above equivalences mean that not only will x? be the same, but also that the necessary

and sufficient conditions describing it will be the same i.e. KKT conditions, for x? and �?, will be

exactly the same for all three problems (additionally we will show WBB and SBB constraints

to be satisfied in respective formulations). This fact will be used in Sections 3, 4 where the

KKT conditions from Section 1 will be treated as if they have been written for (CP1), (CP2),

respectively.

In Section 3, we will present a mechanism that fully implements (CP1) in Nash Equilibria

(NE), while in Section 4 we will modify our mechanism to fully implement (CP2) in NE.
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3. A Mechanism with Weak Budget Balance

In this section we refer to (CP1) as the centralised problem. So we have all the agents in N

plus the seller and social welfare is in terms of everyone’s utility (including seller’s).

We will define a mechanism, in a way that doesn’t require knowledge of vi, whose game-form

will have NE in pure strategies such that the allocation which corresponds to the equilibria of

the game-form is same across all equilibria and is equal to the unique optimiser of (CP1), x?. In

addition, the mechanism will be such that everyone involved (including the seller) will be weakly

better-off at equilibrium than not participating at all.

3.1. Information assumptions. Assume that vi(�) is a private information of agent i and

nobody else knows it2. Let Ic be the set of common information between all agents, containing the

information about full rationality of each agent. Finally, let Id be the knowledge of the designer,

containing the information about constraints (C1), (C2), the fact that Vi � V0; 8i 2 N and that

the seller has 0 valuation.

3.2. Mechanism. Formally, we have a set of environments V = �i2NVi. We have seen from

KKT, how each element of V can be mapped to an allocation x? which maximises social welfare

for that set of utilities. The allocation x? achieves the maximum of (CP1), and correspondingly

any tax t 2 RN satisfying (WBB) would do.

In our mechanism, the designer would define an action (message) space Si for each agent

i 2 N . We denote S = �i2NSi the set of action profiles for all agents. In addition the designer

defines and announces the contract h : S ! RN
+ � RN that maps every vector of messages

received from the agents into an allocation vector and a tax vector. The designer would then ask

every agent i 2 N to choose a message from the set Si based on which allocations (and taxes)

would be made. The seller is not asked to take any action, so as far as strategic decision making

is concerned, we don’t need to consider him any further. It is implicit in our mechanism in this

section that when the tax t is imposed, the seller gets revenue (or utility) of
P

i2N ti.

Specifically, the designer would ask each agent to report si = (yi; pi), pi = (pli)l2Li
. This

includes their demand for the good and the “price”, for each constraint they are involved in,

that they believe everyone should pay. This means Si = R+ � RLi
+ . For received messages

s = (s1; : : : ; sN) = (y; P ) = (y1; : : : ; yN ; p1 : : : ; pN) the contract hi(s) = (hx;i(s); ht;i(s)) will

be defined for each i 2 N as follows.

2This assumption is crucial because it raises the question of the validity of NE as a solution concept of the resulting
game, since that would require that all agents have complete information about everyone’s utilities. We believe
this ia a serious problem in this entire line of research and that a Bayesian formulation would be more appropriate.
However, in this work we accept the justification–weak in our opinion–given by Reichelstein and Reiter in [1] and
Groves and Ledyard in [2].
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If the received demand vector is y = (y1; : : : ; yN) = 0 the allocation is x = (x1; : : : ; xN) = 0.

Otherwise it is evaluated by first generating a scaling factor r through

r = min
l2L

rl;

where

rl =

8>>>><
>>>>:

clP
j2N l �

l
j
yj
; if jSl(y)j � 2

clP
j2N l �

l
j
yj
� f l(yi); if Sl(y) = fig

+1 if jSl(y)j = 0

(1)

with

f l(yi) =
cl

�l
iyi(yi + 1)

:

Using these previously defined quantities, the allocation and taxes are

hx;i(s) = xi = ryi(2)

ht;i(s) = ti =
X
l2Li

tli(3)

tli = xi�
l
i�p

l
�i + (pli � �pl�i)

2 + � �pl�i
�
pli � �pl�i

�0@cl � X
j2N l

�l
jxj

1
A ;

where � is a small enough positive constant (described in proof of Lemma 3.7) for any link l 2 Li

we define �pl�i by

�pl�i :=
1

jN lnfigj

X
j2N lnfig

plj =
1

N l � 1

X
j2N lnfig

plj:(4)

The quantity �pl�i is calculated by averaging the quoted prices for link l over all agents other than

i who use that link (note that due to assumption (A3) every link has at least 2 agents). The

interpretation of prices plj in this mechanism is closely related to agent j’s willingness to pay

for consuming resource on link l. Since we have the problem of information elicitation for each

agent’s type (vi), quoting of prices and demand is used as a way of eliciting v0i(xi) by comparing

it appropriately with prices.

The quantity hx;i(s) creates allocation by dilating/shrinking a given demand vector y on to

one of the hyperplanes defined by the constraints in (C2), specifically, that hyperplane for which

the corresponding allocation is the closest to origin (the allocation could also be at the intersection

of multiple hyperplanes). Another way to describe this is to say that hx;i dilates/shrinks y to

the boundary of the feasible region defined by (C2) constraints. Since all the �l
j’s are positive,

this means that all other constraints in (C2) are satisfied for the allocation automatically (shown

later). Additionally, the separate definition for rl when jSl(y)j � 1 is to ensure (as it will be
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shown later) that there are no equilibria with jSl(y)j � 1. This is required since we are only

dealing with achieving solutions3 to (CP) which satisfy assumption (A4).

The mechanism gives rise to a one-shot game G, played by all the agents in N , where action

sets are (Si)i2N and utilities are given by

ûi(s) = vi(xi)� ti = vi(hx;i(s))� ht;i(s) 8 i 2 N

We will say that maximising social welfare for (CP1) has been fully implemented in NE , if all

outcomes (all possible NE) of this game produce allocation x? and all agents in N plus the seller

are better-off participating in the mechanism than opting out (getting 0 allocation and taxes).

The second property is known as individual rationality .

3.3. Results.

Theorem 3.1 (Full Implementation). For game G, there is a unique allocation, x, corre-

sponding to all NE. Moreover, x = x?, the maximiser of (CP). In addition, individual rationality

is satisfied for all agents and for the seller.

The theorem will be proved by a sequence of results, in which we will characterise all candidate

NE of G by necessary conditions until we are left with only one family of NE candidates. We will

then show that G has NE in pure strategies, and that all of them result in allocation x = x?.

Finally, individual rationality will be checked.

Lemma 3.2 (Primal Feasibility). For any action profile s = (y; P ) of game G, constraints

(C1) and (C2) are satisfied at the corresponding allocation.

Proof. Constraint (C1) is clearly always satisfied. For y = 0, constraint (C2) is also clearly

satisfied. We will now show (C2) is satisfied for any y 6= 0. In that case r < +1 (since there

exists at least one link q with jSq(y)j � 1 and thus rq < +1). Now, for any link l, we have

the following two cases. If jSl(y)j = 0 then the allocation to agents on that link is clearly zero

(since xi = ryi and yi = 0), so (C2) for those links is satisfied. If jSl(y)j � 1 we have

X
j2N l

�l
jxj = r

X
j2N l

�l
jyj � rl

X
j2N l

�l
jyj �

clP
j2N l �l

jyj

X
j2N l

�l
jyj = cl

where the first inequality holds because r is the minimum of all rl’s. The second inequality will be

equality if jSl(y)j � 2 and will be strict only if jSl(y)j = 1 (see second sub-case in eq. (1)). �

Feasibility of allocation for action profiles is a direct consequence of using projections of

demand y on to the feasible region. Now we will prove that all agents using a link quote the

same price for it, this is brought about by the 2nd tax term
P

l2Li
(pli � �pl�i)

2. This is a way of

penalizing users with higher taxes just for quoting a different price than average, at each link.

3Note that for the given allocation function, jSl(y)j = 0; 1 is equivalent to jSl(x)j = 0; 1.
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Lemma 3.3. At any NE s = (y; P ) of G, price for any link, is same for all agents, i.e., pli = pl

8 i 2 N l, 8 l 2 L (where we denote the common price at any link l by pl).

Proof. Suppose there exist a link q for which prices (pqi )i2N q at equilibrium are not all equal.

Clearly then there is an agent j 2 N q for whom pqj > �pq�j (this can be seen from eq. (4)). We

will show that this agent can deviate by only reducing price for link q and be strictly better off,

thereby contradicting the equilibrium condition.

Take the deviation by agent j, where p0j
q = �pq�j < pqj and his demand remains the same. Then

the difference between utilities for agent j after and before deviation would arise only because

of change in taxes (since allocations haven’t changed for any agent) and moreover the difference

would only arise from tax terms corresponding to link q (refer to (3)). We’ll have

�ûj = �(p0j
q
� �pq�j)

2 � � �pq�j(p
0
j

q
� �pq�j)(c

q �
X
k2N q

�q
kxk)

+ � �pq�j(p
q
j � �pq�j)(c

q �
X
k2N q

�q
kxk) + (pqj � �pq�j)

2

= �0� 0 + (pqj � �pq�j)| {z }
>0

h
� �pq�j (c

q �
X
k2N q

�q
kxk)| {z }

�0 by Lemma 3:2

+(pqj � �pq�j)| {z }
>0

i
> 0

which shows that the above deviation is a profitable one.

Hence at equilibrium, for any link, the price quoted for that link by any user using that link

is the same, we denote the common price vector by p = (pl)l2L. �

Now that we established Lemma 3.3, we can talk in terms of the common price vector at

equilibrium rather than different price vectors for all agents, in fact we can identify each NE

candidate profile s = (y; P ) with s = (y; p), with p = (pl)l2L.

We will later see how p will take the place of dual variables � when we compare equilibrium

conditions with KKT conditions, hence we identify the following condition as dual feasibility.

Lemma 3.4 (Dual Feasibility). pl � 0 8 l 2 L.

Proof. This is also by design, since any agent i is asked to select a price vector in RLi
+ . �

Following is the property that solidifies the notion of prices as dual variables, since here we

claim that inactive constraints do not contribute to payment at equilibrium. This notion is very

similar to the centralised problem, where if we know certain constraints to be inactive at the

optimum then the same problem without these constraints would be equivalent to the original.

The 3rd term in the tax function facilitates this by charging extra taxes for inactive constraints

when the agent is quoting higher prices than the average of remaining ones, thereby driving prices

down.
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Lemma 3.5 (Complimentary Slackness). At any NE s = (y; p) of game G with corresponding

allocation x satisfies

pl

0
@X
k2N l

�l
kxk � cl

1
A = 0 8 l 2 L

Proof. Suppose there is a link q for which at NE
P

k2N q �
q
kxk < cq and pq > 0. Again, we

will show that deviation makes any agent j 2 N q better off. Take the deviation p0j
q = pq�� > 0

and no deviation in the demand. We can write the difference after and before deviation as

�ûj = �(p0j
q
� pq)2 � � pq(p0j

q
� pq)(cq �

X
k2N q

�q
kxk)

+ � pq(pq � pq)(cq �
X
k2N q

�q
kxk) + (pq � pq)2

) �ûj = �(��)2 � � pq(��)(cq �
X
k2N q

�q
kxk) + 0 + 0 = �

�
� �+ � pq(cq �

X
k2N q

�q
kxk)

�

So if we take � such that

min
�
� pq|{z}
>0

(cq �
X
k2N q

�q
kxk)| {z }

>0

; pq|{z}
>0

�
> � > 0

then �ûj > 0. Taking such an � is possible because LHS above is positive. �

Lemma 3.6 (Stationarity). At any NE s = (y; p) of game G, and corresponding allocation,

x, we have

v0i(xi) =
X
l2Li

pl�l
i 8 i 2 N if xi > 0

v0i(xi) �
X
l2Li

pl�l
i 8 i 2 N if xi = 0

Proof. At any NE s, agent i’s utility ûi(s
0
i; s�i) = vi(hx;i(s

0
i; s�i)) � ht;i(s

0
i; s�i) as a

function of his message s0i = (y0i; p
0
i), with s�i fixed, should have a global maximum at si =

(yi; p). This would mean that if this function was differentiable w.r.t. y0i at si, the partial

derivatives w.r.t. y0i at si should be 0. However, since our allocation dilates/shrinks demand

vector y0 on to the feasible region, it could be the case that increasing and decreasing y0i gives

allocations lying on different hyperplanes, meaning that the transformation from y0 to x0 is

different on both sides of yi and therefore ûi may not be differentiable w.r.t y0i at yi. The

important thing here however is to notice that right and left derivatives exist, it’s just that they

may not be equal. Hence we can take derivatives on both sides of yi as (noting that derivative

of the other two terms in utility will be zero due Lemma 3.3)

@ûi
@y0i

����
y0
i
#yi

=

0
@v0i(xi)� X

l2Li

pl�l
i

1
A @x0i
@y0i

����
y0
i
#yi

;
@ûi
@y0i

����
y0
i
"yi

=

0
@v0i(xi)� X

l2Li

pl�l
i

1
A @x0i
@y0i

����
y0
i
"yi

:(5)
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We will first show that @xi=@yi term above (for either equation) is always positive. If y = 0

then clearly this is true, because if agent i demands yi = � > 0 while y�i = 0 then xi > 0 (in

fact the allocation is indeed differentiable at y = 0). If y 6= 0 then from (2), we can write

� :=
@xi
@yi

=
@(ryi)

@yi
= r + yi

@r

@yi
= rq + yi

@rq

@yi

where r = rq.

From here on there are 3 cases: (A) i =2 N q; (B1) i 2 N q & jSq(y)j � 2 and (B2) i 2 N q

& jSq(y)j = 1. (Note that jSq(y)j = 0 isn’t possible if r = rq and y 6= 0)

(A) Here clearly @rq=@yi = 0, and this makes � = rq > 0.

(B1) Here we can calculate � as

� =
(rq)2

cq
X

j2N qnfig

�q
jyj

which is positive because jSl(y)j � 2, so there is at least one positive term in the summation.

(B2) In this case we could have Sq(y) = fjg 6= fig or Sq(y) = fig. In the first case,

argument is same as (A). So take Sq(y) = fig and rq = cq=(�q
iyi)� f q(yi).

� = �f q(yi)� yi
df q(yi)

dyi
= �

d (yif
q(yi))

dyi
=

cq

�q
i (yi + 1)2

So we have � > 0 in all cases.

Now there are two further cases, the first term on RHS in both equations in (5) is positive

or negative. If it’s positive, then we can see from the first equation in (5) that by increasing y0i
from yi (and therefore x0i from xi) agent i can increase his pay-off, which contradicts equilibrium.

Now similarly consider the first term in (5) to be negative, then from the second equation in (5),

agent i can reduce y0i from yi to get a better pay-off. But the downward deviation in y0i is only

possible if yi > 0 (, xi > 0). So we conclude that

v0i(xi) =
X
l2Li

pl�l
i 8 i 2 N if xi > 0

v0i(xi) �
X
l2Li

pl�l
i 8 i 2 N if xi = 0:

�

Collecting the results of the above lemmas, we see that every NE satisfies the KKT conditions

of the (CP). This means we now have necessary conditions on the NE up to the point of having

unique allocation. In the next Lemma we will verify the existence of the equilibria that we have

claimed.
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Lemma 3.7 (Existence). For the game G, there exists equilibria s = (y; P ), where price

vectors are same for each agent i.e. s = (y; p) and corresponding allocation-price pair (x; p)

satisfy KKT conditions with � = p.

Proof. The proof is completed in two parts. Firstly we will check that for every x that can

be a possible solution to (CP) (while satisfying the assumptions, specifically (A4)) there is indeed

at least one y 2 RN
+ such that the allocation corresponding to y is x. (it is straightforward that

this is true for prices and Lagrange multipliers �). Secondly we will check that for the claimed

NE s = (y; P ), there are no unilateral deviation that are profitable.

In lieu of (A4), the optimal x? is such that jSl(x?)j � 2 for all links; also it is clear that x?

is on the boundary of the feasible region defined by (C1) and (C2). For this, any vector y which

is a scalar multiple of x? (and in particular y = x?) will give allocation x?. This completes the

first part of the proof.

Now we will check for profitable deviations. For this we want to show that at any action

profile where corresponding allocation is x? and prices are equal and equal to �?, is a NE. Note

that by construction, ûi(s) is continuous w.r.t. si. Our approach would be to first characterise

all local extrema. As it turns out all local extrema can be characterised by rûi = 0 8 i (this

isn’t straightforward here since ûi is only piecewise differentiable). We then show that the set of

points of local extrema can easily be seen to be precisely the set of points that satisfy the KKT

conditions, i.e., where allocation is x? and prices are �?. At the third step we show the Hessian

for ûi(s) w.r.t. si to be negative definite at all local extrema (for any agent i). With this we

know that all extremum points for ûi w.r.t. si are local maxima, which can only happen if there

is one maximum. With the above uniqueness of maxima what we end up proving is that (x?; �?)

is global optimum for every player i if others also play the same and thus a NE.

First we will show that without the gradient being zero, there cannot be a local extremum.

Gradient of the utility function is

rûi =

0
@@ûi
@yi

;

 
@ûi
@pli

!
l2Li

1
A

Components in the gradient are

@ûi
@yi

=

0
@v0i(xi)� X

l2Li

�l
i�p

l
�i

1
A @xi

@yi

!
� �

X
l2Li

�pl�i(p
l
i � �pl�i)

0
@� X

j2N l

�l
j

@xj
@yi

1
A

@ûi
@pli

= �2(pli � �pl�i)� � �pl�i(c
l �

X
j2N l

�l
jxj) 8 l 2 Li

Since ûi is differentiable w.r.t. pli (at all points), that component of the gradient indeed has to

be 0 at a local extremum. Which implies equal prices and complimentary slackness properties
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(using arguments from respective proofs) and we can write

@ûi
@yi

=

0
@v0i(xi)� X

l2Li

�l
ip

l

1
A @xi

@yi

!

Note that in the proof of Lemma 3.6, we have shown that � := @xi
@yi

> 0 always. So at the points

of non-differentiability, � will have a jump discontinuity, however it will be positive on either side.

It is then clear that without v0i(xi) =
P

l2Li
�l
ip

l, there cannot be a local extremum.

Second order partial derivatives are

upp :=
@2ûi
@pli@p

l
i

= �2 ulk :=
@2ûi
@pli@p

k
i

= 0 upy :=
@2ûi
@pli@yi

= � �pl�i

0
@X
j2N l

�l
j

@xj
@yi

1
A

uyy :=
@2ûi
@yi@yi

=

0
@v0i(xi)� X

l2Li

�l
i�p

l
�i

1
A @2xi

@y2i

!
+ v00i (xi)

 
@xi
@yi

!2

� �
X
l2Li

�pl�i(p
l
i � �pl�i)

0
@� X

j2N l

�l
j

@2xj
@y2i

1
A :

These derivatives will give us a Hessian H of size (Li + 1) � (Li + 1), where 1st row and

column represent yi and subsequent rows and columns represent pli’s for different l’s. We want

H (evaluated at any local extremum) to be negative definite. Now, 1st and 3rd terms in uyy
are zero at local extrema (as argued above), and the 2nd term is strictly negative due to strict

concavity of vi. This along with upp = �2 tells us that all diagonal entries in H are negative.

Also notice that because of ulk = 0, all off-diagonal entries other than the ones in first row and

column are zero. Finally, note that due to assumption (A2), all prices are finite at local extremum

and so upy will be finite. We will show that roots of the characteristic polynomial of H (i.e. its

eigenvalues) all become negative if � is chosen sufficiently small. Here again, we can use (A4) to

justify working with r that has the form defined in the first sub-case of (1).

For this, we take a generic matrix A = faijg, which is similar in structure to H and has the

same dependence on jyj as H. So entries in A are

a11 = �
a

jyj2
aij = aji = 0 8 i; j > 1; i 6= j

aii = �2 a1i = ai1 = �
bi�1
jyj

8 2 � i � Li + 1

where a > 0 (and we don’t care about the sign of bi’s). The parameters a; bi may not be

completely independent of y but since the absolute value of y has been taken out of the scaling,

their values are bounded. Magnitude of bi’s are bounded from above and a is bounded away from
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zero. Now we can explicitly calculate jA� �Ij and write the characteristic equation as

Q(�) =

 
�

a

jyj2
� �

!
(�2� �)Li + �2

PLi

i=1(�1)
ib2i

jyj2
(�2� �)Li�1 = 0

So �2 is a repeated eigenvalue, Li � 1 times. The equation for the remaining two roots can be

written as  
�

a

jyj2
� �

!
(�2� �) + �2

C

jyj2
= 0

Necessary and sufficient conditions for both roots of this quadratic to be negative are 
2 +

a

jyj2

!
> 0

2a

jyj2
+ �2

C

jyj2
> 0;

first of which is always true, since a > 0. The second one can be ensured by making � small

enough, since a is bounded away from zero and magnitude of C is bounded from above.

Hence we have shown the Hessian H to be negative definite for � chosen to be small enough.

�

Several comments are in order regarding the selection of the proportional allocation mechanism

and in particular (1). If we use “pure” proportional allocation i.e. same expression for rl for

jSl(y)j � 2 and � 1, then irrespective of optimal solution of (CP), for game G the “stationarity”

property will not be satisfied for equilibria with jSl(y)j � 1. Thus the mechanism will result in

additional extraneous equilibria. For this reason we tweak the expression for rl when jSl(y)j � 1,

so that we can eliminate these extraneous equilibria - irrespective of the solution of (CP). With

this tweak in the expression for rl, all KKT conditions become necessary for all equilibria regardless

of the value of jSl(y)j. This however creates a problem in the proof of existence of equilibria.

In particular, if x? was such that it had links where jSl(x?)j = 1 then in our allocation this

would require y at NE such that jSl(y)j = 1. In this case the rl used would be lower than what

the proportional allocation requires (see second sub-case in (1)) and we actually would have the

problem of possibly not having any y that creates x? as allocation. Hence we have used (A4) to

eliminate this case.

Lemma 3.8 (Individual Rationality). At any NE s = (y; p) of G, with corresponding allocation

x, we have

ui(x; t) � ui(0; 0) 8 i 2 N(6)

and
X
i2N

ti � 0 (WBB)

Proof. Because of Lemma 3.3, the only non-zero term in ti at equilibrium is xi
P

l2Li
�l
ip

l,

which is clearly non-negative. Hence
P

i2N ti � 0 at equilibrium. This is the seller’s individual

rationality condition.
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Now if xi = 0 then we know from Lemma 3.3 and (3) that ti = 0 and so (6) is evident. Now

take xi > 0 and define the function

f(z) = vi(z)� z
X
l2Li

�l
ip

l:

Note that f(0) = ui(0; 0) and f(xi) = ui(x; t), the utility at equilibrium. Since f 0(xi) = 0

(Lemma 3.6), we see that 8 0 < y < xi, f
0(y) > 0 since f strictly concave (because of vi).

This clearly tells us f(xi) � f(0). �

Now that we have Lemmas characterising NE in the same way as KKT conditions (and

individual rationality), we can compare them to prove Theorem 3.1.

Proof of Theorem 3.1. We know that the four KKT conditions produce a unique solu-

tion x? (and corresponding �?). For the game G, from Lemmas 3.2–3.6 we can see that at any

NE, allocation x and prices p satisfy the same conditions as the four KKT conditions and hence

they give a unique x = x?, as long as (A4) is satisfied. So we have that the allocation is x?

across all NE. This combined with individual rationality Lemma 3.8, proves Theorem 3.1. �

4. A Mechanism with Strong Budget Balance

We now turn our attention to problem (CP2). So in this case we have the agents in N , who are

the owners and users that wish to allocate the good amongst themselves in a way that maximisesP
i2N ui. In this case one can now think of taxes as a way of facilitating efficient redistribution

of the already available good. Since all payments are made amongst agents in N and we have

quasi-linear utilities, this clearly tells us that
P

i2N ti must be zero. This interpretation is slightly

different from Section 3, where taxes were indeed payments made to the seller for provisioning

of the good.

All of the above is required to be done again under the assumption of strategic users, which

means the designer (who is a third party) still has the problem of information elicitation and

moreover has to make sure that the wealth has to be redistributed in a way that we still get x?

allocation at the all equilibria. Here we will say that the mechanism fully implements maximising

social welfare allocation if in addition to the previous conditions, we also have SBB.

4.1. Information assumptions. These are the same as Section 3.

For creating a mechanism in this formulation, main difference with the previous section, is

that we have to find a way of redistributing the total tax paid by all the agents. In the last section

we saw that the total payment made at the equilibrium is

B =
X
i2N

0
@xi X

l2Li

�l
ip

l

1
A = r

X
i2N

0
@yi X

l2Li

�l
ip

l

1
A
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since all other tax terms were zero at equilibrium. We will redistribute taxes by modifying tax

function for each agent in such a way that he only uses messages from other agents. This has

the advantage of keeping our equilibrium calculations in line with Section 3, since deviations by

an agent wouldn’t affect his utility through this additional term. In view of this, we can express

B as follows

(7) B = r
X
i2N

0
@X
l2Li

pl

N l � 1

X
j2N lnfig

�l
jyj

1
A ;

where each term of the outer summation depends only on demands of agents other than the ith

one. This means that each term in the parenthesis (scaled by the factor r) can now be used

as the desired additional tax for user i. Observe, however, that in our mechanism, each agent’s

demand affects the factor r as well. So, if all agents can agree on value of r then we can use

that signal to create the term that facilitates budget balance.

In lieu of this, our mechanism here works by asking for an additional signal �i from every

agent and imposing an additional tax of (�i � r)2, thereby essentially ensuring that all agents

agree on the value of r (via �i’s) at equilibrium. Finally, we use ���i (cf. (9)) as a proxy for r in

(7) - just like we did with �pl�i’s.

4.2. Mechanism. Now the actions sets Si for agents will be R+ � RLi
+ � R+ and actions

will look like si = (yi; pi; �i).

The designer announces the contract h : S ! RN
+ �RN and asks each agent to submit their

message si = (yi; pi; �i). Then he makes allocations and taxes based on the contract for each

agent i 2 N exactly as in the WBB case, with the only exception that the tax is now defined as

ht;i(s) = ti =
X
l2Li

tli + �(�i � r)2(8)

tli = xi�
l
i�p

l
�i + (pli � �pl�i)

2 + � �pl�i(p
l
i � �pl�i)(c

l �
X
j2N l

�l
jxj)�

���i�p
l
�i

N l � 1

X
j2N lnfig

�l
jyj:

where �; � are small enough positive constants. Here �pl�i is as defined in (4) and

���i :=
1

N � 1

X
j2Nnfig

�j:(9)

Here we will call the corresponding game G0, for which utilities will be

ûi(s) = vi(xi)� ti = vi(hx;i(s))� ht;i(s) 8 i 2 N

We will now move on to results section and discuss the implications of the modifications

there.

4.3. Results. With this new mechanism, we will again have full implementation (note that

for individual rationality there is no seller here). The only term in ûi that is affected by �i is
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��(�i� r)2, so all the Lemmas from Section 3 will go through with minor modifications and we

will have our main result using the same line of argument as for Theorem 3.1. Note here that,

terms in ûi affected by pli’s are the same as before but for yi there is a new term ��(�i � r)2

which is affected by it.

Theorem 4.1 (Full Implementation). For game G0, there is a unique allocation, x, corre-

sponding to all NE. Moreover, x = x?, the maximiser of (CP), where individual rationality is

satisfied for all agents in N .

In addition to all the properties from Section 3, here we will characterise �i’s at equilibrium

and then go on to show SBB at equilibrium.

Instead of proving the results from Section 3 for this new mechanism, we will outline their

proofs and only show the rigorous proofs for new properties.

� Primal Feasibility - Since allocation function is the same as before, this result holds here

as well.

� Equal Prices at equilibrium - This was proved by taking price deviations only and keeping

other parameters of the signal constant, so the same argument works here as well (noting

that no new price related terms have been added in the new mechanism).

Before moving on to other results, we will show common �i’s at equilibrium.

Lemma 4.2. At any NE s = (y; p; �) of game G0, we have �i = r 8 i 2 N .

Proof. Suppose not, i.e. assume 9 j 2 N such that �j 6= r. In this case agent j can

deviate with only changing �0j = r (which also means r is the same as before deviation, since

demand y doesn’t change). It’s easy to see that this is a profitable deviation, since change in

utility of agent j will be only through the term involving �j.

�ûj = ��(�0j � r)2 + �(�j � r)2 = �(�j � r)2 > 0

�

Note however that although �i are same for all i at any equilibrium, that common value, r,

will be different across equilibria. This is obvious since magnitude of vector y changes across

equilibria.

Now we move on with properties from Section 3.

� Dual Feasibility - This is obvious here as well.

� Complimentary Slackness - This was proved by taking only price deviations and hence

the same argument works here as well.
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� Stationarity - Now the additional term in the derivative here will be

@ûi
@y0i

����
new

=
@ûi
@y0i

����
old| {z }

T1

� 2�(�0i � r0)

 
�
@r0

@y0i

!
| {z }

T2

So we claim as before that if T1 is positive, we can increase y0i from yi to be better-off.

Here however we would have to make sure that agent i deviates with �0i simultaneously

to make it equal to r0, so that the contribution of the T2 term to the derivative is zero.

The only thing left to notice here is that the change in �0i is such that not only the term

T2 is zero but also that the contribution of term ��(�0i�r0)2 to the utility is zero before

and after deviation - so this deviation doesn’t change other partial derivatives. Similar

argument also works when T1 is negative and we get the stationarity property here as

well.

With this we will have unique allocation at every equilibria, since solution to KKT is unique (as

far as allocation is concerned). This unique allocation will be x?; also the prices will be �?, same

as before.

Now we verify the existence of equilibria. The arguments here will be similar to the ones

in the proof of Lemma 3.7. First order conditions can again be shown to be satisfied, the only

difference is that here we will also use �i = r at local extremum. The Hessian H here, for agent

i, will be of order (Li+2)� (Li+2) where 1st, 2nd row and column represent yi, �i respectively

whereas the remaining rows and columns represent pli’s. The generic matrix A = faijg for H

will then be

a11 = �
a

jyj2
� �

d

jyj4
a12 = a21 = ��

e

jyj2
aij = aji = 0 8 i; j > 1; i 6= j

a22 = �2 aii = �2 a1i = ai1 = �
bi�1
jyj

8 3 � i � Li + 2

where a; d; e > 0. Writing the characteristic equation we will again get that �2 is a repeated

eigenvalue, Li times. And the equation for remaining two roots is

�2 + �

 
2 +

a

jyj2
+ �

d

jyj4

!
+

 
2a

jyj2
+ �

2d

jyj4
� �2

e2

jyj4
+ �2

C

jyj2

!
= 0

Necessary and sufficient conditions for the roots of above quadratic to be negative are again that

coefficient of � and the constant term are both positive. Coefficient of � is clearly positive, and

the constant term can also be made positive by choosing �; � small enough, irrespective of sign

of C. Hence here also we get NE for all y (along a fixed direction) for �; � chosen to be small

enough.

� Individual Rationality - This is obvious in here because we are only redistributing money

from the previous case, so if the mechanism there was individually rational it will be here

too.
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Lemma 4.3 (Strong Budget Balance). At any NE s = (y; p; �) of game G0, with correspond-

ing taxes (ti)i2N , we have
P

i2N ti = 0.

Proof. We now know that price vectors are equal at equilibrium for all agents and so we

can write

X
i2N

ti =
X
i2N

xi

0
@X
l2Li

�l
ip

l

1
A� r

X
l2Li

pl

N l � 1

X
j2N lnfig

�l
jyj

)
X
i2N

ti =
X
i2N

X
l2Li

0
@xi�l

ip
l �

pl

N l � 1

X
j2N lnfig

�l
jxj

1
A

Consider the coefficient of xk for any agent k in the above expression

X
l2Lk

0
@�l

kp
l �

X
i2N lnfkg

pl

N l � 1
�l
k

1
A =

X
l2Lk

 
�l
kp

l �
pl�l

k

N l � 1

�
N l � 1

�!

= 0;

which proves the claim. �

Proof of Theorem 4.1. So by the preceding properties, we get allocation x?, prices �?

at all equilibria. Then SBB and individual rationality give us the desired full implementation. �

5. Discussion and Generalizations

Relevant Literature. The problem considered in [3] is essentially equivalent to ours (with

the additional property of SBB on and off equilibrium and the relaxed assumptions (A3)-(A4)).

However, as it turns out the claim of implementation made in [3] (property (P1)) is not valid. In

particular the proof of [3, Theorem 5] (specifically eq. (64)) is incorrect, since the utilities need

not have zero derivatives at equilibrium, since they are discontinuous at equilibrium and the only

allowable deviations of xi are downwards deviations. Unfortunately, this is a fundamental problem

with the proposed mechanism in [3] and not merely a fixable error in the proof. In addition, there

is no set of relaxed assumptions for which the proposed mechanism can implement the solution

of the (CP). Intuitively, that mechanism fails to achieve the claim of implementation because of

using hard constraints for ensuring feasibility of allocation: when the demanded allocation is not

feasible, a large penalty is imposed on the agents. This approach creates discontinuities of the

utility functions at the boundaries of the achievable region and thus renders invalid any attempt

to link the corresponding NE with the KKT conditions of the corresponding centralized problem.

Indeed, one of the main contributions of our work in this report is embedding the constraints

within the mechanism in an implicit way, such that the allocations are always feasible (on and

off equilibrium), and are continuous and (piecewise) differentiable with respect to the demands.

The authors of [3] have suggested an alternative approach of overcoming these difficulties in [4].
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The allocation that we use in our work can be referred to as proportional allocation, since it

gives each agent an allocation which is proportional to their demand albeit weighed down by the

total demand - in a way that respects the constraints. This idea was used in the case of 1 link

(L = 1) in [5, 6], with a different payment scheme. Both these papers achieve partial (not full)

implementation, in the sense that there exists at least one NE which gives the required allocation.

Strong Budget Balance off-equilibrium. In this work, we do not view SBB off equilibrium

as an important property of a mechanism. In fact one may suggest that if any property should

hold on and off equilibrium that would be feasibility, since otherwide the network wouldn’t be able

to operate at all if equilibrium is not reached. However, in the following we sketch a modification

of the proposed mechanism that results in arbitrarily close to SBB even off equilibrium. In Section

4, we use ���i’s simply as a way to get SBB at equilibrium. Here ���i was used as a proxy for r,

since we knew that at equilibrium we will have ���i = r. We could, in addition to this, also use ���i
as a proxy for r in the allocation i.e. xi = ���iyi. Although we won’t have feasibility of allocation

off-equilibrium, this will ensure that the first term (payment) and fifth term in tax function cancel

out when we sum over all agents - on or off-equilibrium. This will give us something close to

SBB at all points in the message space S and not just at equilibria - for this all we have to notice

is that in (8) we could introduce any positive constant in front of terms 2,3 and 4 and all the

results would still go through. So by making that constant small enough we could restrict the

contribution of those terms to
P

i2N ti, which we couldn’t do with terms 1 and 5 since term 1

compares with vi, for which we do not know the scaling and term 5 is introduced to cancel out

term 1 when we sum over all agents.
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