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ABSTRACT
In this paper we consider the public goods resource allocation prob-
lem (also known as Lindahl allocation) of determining the level of
an infinitely divisible public good with P features, that is shared
between strategic agents. We present an efficient mechanism, i.e.,
a mechanism that produces a unique Nash equilibrium (NE), with
the corresponding allocation at NE being the social welfare maxi-
mizing allocation and taxes at NE being budget-balanced. The main
contribution of this paper is that the designed mechanism has two
properties, which have not been addressed together in the literature,
and aim to make it practically implementable. First, we assume that
agents can communicate only through a given network and thus the
designed mechanism obeys the agents’ informational constraints.
This means that each agent’s outcome through the mechanism
can be determined by only the messages of his/her neighbors. Sec-
ond, it is guaranteed that agents can learn the NE induced by the
mechanism through repeated play when each agent selects a learn-
ing strategy from within the “adaptive best-response” dynamics
class. This is a class of adaptive learning strategies that includes
well-known dynamics such as Cournot best-response, k−period
best-response and fictitious play, among others. The convergence
result is a consequence of the fact that the best-response of the
induced game is a contraction mapping. Finally, we present a nu-
merical study of convergence to NE, for two different underlying
communication graphs and two different learning dynamics within
the ABR class.
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1 INTRODUCTION
The framework of Mechanism design aims to bridge the informa-
tional gap between a designer, who wishes to achieve “efficient”
allocation and agents, who are strategic and posses private infor-
mation relevant to determining the efficient allocation. The basic
premise of mechanism design has been applied to a variety of ap-
plications and as a result, recent works have focused on designing
mechanisms that are also practically implementable.

In this vein, there are two very important features of practi-
cal mechanisms that haven’t been addressed in the literature. (a)
The first is the informational constraint between agents - most
mechanisms define the contract (e.g., allocation and tax) such that
messages from all agents need to be collected centrally in order to
determine each agents’ outcome. This is akin to assuming a broad-
cast structure of communication between agents. (b) The second
is related to the fact that, when Nash equilibrium (NE) is used as
the solution concept, there is little to no guarantee that agents can
learn about each others’ private information in order to calculate
the NE. More specifically, dynamic learning guarantees on conver-
gence to NE induced by the mechanism are typically provided for
specific learning dynamics, which can vary from model to model.
Addressing the two features together can make a mechanism ready
for application to scenarios where agents are distributed - both
physically and informationally.

The motivation for feature (a), i.e., designing a distributed mech-
anism comes from the literature on “distributed optimization”, [3, 8,
17, 19], and the motivation for feature (b) comes from the literature
on “learning in games”, [9, 11, 14, 15, 22].

Regarding problem (a), the literature on distributed optimiza-
tion aims to address the informational constraints between non-
strategic agents who possess local private information relevant
to the centralized optimization. This model, in-part, is analogous
to mechanism design, where in many cases efficient allocation is
indeed described by a centralized optimization. Thus a natural ques-
tion to ask is whether efficient mechanisms can be designed such
that they obey the informational constraints of distributed agents.
The fact that mechanisms have to deal with strategic agents, means
that this is a new and non-trivial question.
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It is important to note here that the public goods centralized
problem (see (4)) itself is completely oblivious about the informa-
tional constraints that the mechanism designer faces. Resolving
problem (a) for the public goods problem is not to be confused
with the problem of provisioning local public goods [1, 21]. In
such models, each agents’ (intrinsic) utility is assumed to depend
only on his/her neighbors allocation thereby naturally aligning the
informational constraints with the utility structure. Utilities for the
public goods problem do not require any such assumption. Instead,
we require that the exchanged messages implied by the mechanism
satisfy the network communication constraints.

Regarding problem (b), learning in games is motivated by the fact
that NE is, theoretically, a complete information solution concept.
Use of NE in models that don’t necessarily assume perfect infor-
mation among agents is typically justified1 by showing that under
certain natural learning strategies, such as evolutionary dynam-
ics [2], or under specifically designed learning strategies, such as
regret-minimizing algorithms2, agents are guaranteed to learn each
others’ private information and in turn the NE. The larger the class
of learning dynamics for which convergence can be guaranteed,
the stronger the implied justification.

In this paper, our objective as the designer is to implement the
social welfare maximizing allocation for the public goods problem
(Lindahl allocation) in the presence of strategic agents. To achieve
this we design a mechanism which induces a unique and efficient
NE that incorporates both the aforementioned features. Thus, the
mechanism determines outcomes for each agent using only his/her
neighbors’ messages and doesn’t require collecting all agents’ mes-
sages centrally. Also, it is shown that for a sufficiently large class of
learning dynamics - adaptive best-response dynamics (ABR) - there
is guaranteed convergence to NE. The ABR class contains several
well-known learning dynamics such as “Cournot best-response”
and “fictitious play”, [4], among others. Furthermore, the induced
game is supermodular and hence there is guaranteed convergence
for the adaptive dynamics (AD) class, [14], of learning strategies as
well.

Related works in the literature that focus on learning in games
are as follows. In their seminal work [14], Milgrom and Roberts
show that for a supermodular game any learning dynamic within
the AD class is guaranteed to converge between the two most
extreme Nash equilibria. Chen in [6] then presents a mechanism
(without any informational constraints between agents) for the
Lindahl allocation problem such that the induced game is super-
modular and has a unique NE. Following this development, Healy
and Mathevet in [10] show that for a contractive game, all learning
dynamics within the ABR dynamics class converge to the unique
NE. These authors also present a mechanism for the Lindahl alloca-
tion problem (again without any informational constraints between
agents) such that the induced game is contractive. As contraction
is a more stringent property than supermodularity, ABR class is
broader than the AD class.

1Learning of NE can also be justified with the Evolutive interpretation of NE, [16, 18],
which implies that NE in a single-shot game can be thought of as the stationary point
of a dynamic adjustment process.
2For instance, for the case of zero-sum games, Daskalakis, Deckelbaum and Kim in [7]
propose a new learning algorithm based on regret minimization and show that it
converges at a linear rate.

In general, “adaptive” learning strategies are broadly a class of
learning strategies where, at each time, agents respond optimally
to some combination of empirical distribution arising out of the
past observed actions. For example, fictitious play is an adaptive
learning strategy. Hofbauer and Sandholm in [11] provide conver-
gence results specifically for fictitious play in the case of zero-sum
games, supermodular games and potential games. Monderer and
Shapley in [15] provide convergence results for fictitious play in
identical interests games, i.e., where best-response is equivalent to
that of a game where agents have the same utility functions.

The structure of the remainder of this paper is as follows: Sec-
tion 2 describes the public goods centralized allocation problem and
its optimality conditions. Section 3 defines some mechanism de-
sign basics and then presents the mechanism. Section 4 introduces
learning-related properties and contains the guaranteed conver-
gence result of any learning dynamic within the ABR class. Finally,
Section 4 also contains a numerical study of the convergence pattern
for two different learning dynamics and two different underlying
communication graphs.

2 THE PUBLIC GOODS PROBLEM
There are N strategic agents, denoted by the set N = {1, . . . ,N }.
A directed communication graph G = (N , E) is given, where the
vertexes correspond to the agents and an edge from vertex i to j
indicates that agent i can “listen” to agent j. It is assumed that the
given graph G is strongly connected. In this paper, we are inter-
ested in the public goods allocation problem, which in Economics
literature is also known as Lindahl allocation [12, 13].

There is a single infinitely divisible public good with P features,
with the set of features denoted by P = {1, . . . , P}. Each agent
receives a utility vi (x) based on the quantity of the public good
x =

(
xp

)
p∈P ∈ RP . Since for each agent, its utility depends on the

common allocation x , this is the public goods model. It is assumed
that vi : RP → R is a continuously double-differentiable, strictly
concave function that satisfies, ∀ p ∈ P,

−η < H−1
pp +

∑
l ∈P, l,p

���H−1
pl

��� < 0, (1a)

H−1
pp < − 1

η
, (1b)

for any given η > 1, where H−1 is the inverse of the Hessian
H =

[
(∂2vi (·))

/(∂xk ∂x l )]
k,l

. To understand the significance of
this assumption consider the case of P = 1, then this condition is
the same as3

v ′′
i (·) ∈

(
−η,− 1

η

)
. (3)

It is already assumed that vi (·) is strictly concave, the only ad-
ditional imposition made by this assumption is that the second
derivative of vi (·) is strictly bounded away from 0 and −∞.

The above mentioned properties of the utility function are as-
sumed to be common knowledge between agents and the designer.
3More generally if the utility is separable,vi (x ) =

∑
p∈P vi,p (xp ), then the condition

in (1) is the same as

v ′′
i,p (·) ∈

(
−η, − 1

η

)
, ∀ p ∈ P . (2)
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However, the utility functionvi (·) itself is known only to agent i and
is not known to other agents or the designer. The designer wishes to
allocate the public good such that the sum of utilities is maximized,
i.e., to solve the following centralized allocation problem,

x∗ = argmax
x ∈RP

∑
i ∈N

vi (x). (4)

The allocation x∗ is also called the efficient allocation and it is
assumed to be finite. It is unique due to strictly concave utilities
and thus the necessary and sufficient optimality conditions are

∂vi (x∗)
∂xp

= µ
p
i
∗
, ∀ p ∈ P, ∀ i ∈ N , (5a)∑

i ∈N
µ
p
i
∗
= 0, ∀ p ∈ P, (5b)

where
(
µ
p
i
∗)
p∈P,i ∈N are the (unique) optimal dual variables. The

dual variables arise in this unconstrained optimization problem
because of the standard technique rewriting the public goods prob-
lem (4) as a private goods problem with equality constraints,(

x∗1 ,x
∗
2 , . . . ,x

∗
N

)
= argmax

x1, ...,xN ∈RP

∑
i ∈N

vi (xi ) (6a)

s.t. x1 = x2, x2 = x3, · · · ,xN = x1. (6b)

The model above, leading up to (4), captures the possibility
that one of the agents in N is a seller and thus his/her utility
vi (x) = −ci (x) is the negative of the cost of producing quantity x
of the public good. In this case, a convex cost of production leads to
a concave utility function. In general, for the public goods problem
one can also explicitly assume a seller in the system who produces
the quantity x and for whom the cost of production is a known
(convex) function. In this case, the social welfare maximizing alloca-
tion contains the utility of the seller as well. For clarity, the seller is
not considered in this model but if needed, this can accommodated
in a straightforward manner.

3 A PUBLIC GOODS MECHANISM
A one-shot mechanism is defined by the triplet,(

M =M1 × · · · ×MN ,
(
x̂1(·), . . . , x̂N (·)), (̂t1(·), . . . , t̂N (·)) ) (7)

which consists of, for each agent i ∈ N , the message spaceMi , the
allocation function x̂i : M → RP and the tax function t̂i : M → R.
Given a mechanism, a game G is setup between the agents in N ,
with action spaceM and utilities

ui (m) = vi (x̂i (m)) − t̂i (m). (8)
The mechanism is said to fully implement the efficient allocation if

x̂1(m̃) = x̂2(m̃) = · · · = x̂N (m̃) = x∗ (9)
for all pure strategy NE m̃, where x∗ is the efficient allocation
from (4). Furthermore, the mechanism is said to be budget balanced
at NE if

∑
i ∈N t̂i (m̃) = 0 for all pure strategy NE m̃. Finally, we call

the mechanism distributed if for any agent i ∈ N , the allocation
x̂i (·) and tax t̂i (·) functions, instead of depending on the entire
message m = (mj )j ∈N , depend only on mi and

(
mj

)
j ∈N(i), i.e.,

agent i and his/her immediate neighbors. Here N(i) are all the
“out”-neighbors of i i.e., there exists an edge from i to j in graph G
iff j ∈ N(i) .

i

a

n(i, j) = a

d(i, j) = 3
b

j

pq

Figure 1: n(i, j) and d(i, j) for the strongly connected directed
graph G.

3.1 Mechanism
The presented mechanism below is for the special case of a single
feature, i.e., P = 1, as it captures the essence of design. A natural
extension to the general case is discussed at the end of this section.

Since the underlying graph G is strongly connected, for any pair
of vertexes i, j ∈ N , the following two quantities are well-defined.
d(i, j) is the length of the shortest path from i to j and n(i, j) ∈ N(i)
is the out-neighbor of i such that the shortest path from i to j
goes through the neighboring node n(i, j). The two quantities are
depicted in Fig. 1.

For any agent i ∈ N , the message space is Mi = RN+1. The
messagemi = (yi ,qi ) consists of agent i’s contribution yi ∈ R to
the common public good and a surrogate/proxyqi = (q1i , . . . ,qNi ) ∈
RN for the contributions of all the agents (including himself/herself).

The allocation function is defined as

x̂i (m) = 1
N

(
yi +

∑
r ∈N(i)

qrr
ξ
+

∑
r<N(i)
r,i

qrn(i,r )
ξd (i,r )−1

)
, ∀ i ∈ N . (10)

The tax function is

t̂i (m) = p̂i (m−i )x̂i (m) +
(
qii − ξyi

)2
+

∑
r ∈N(i)

(
qri − ξyr

)2

+
∑

r<N(i)
r,i

(
qri − ξqrn(i,r )

)2
+
δ

2

(
qin(i,i) − ξyi

)2
, (11a)

p̂i (m−i ) = δ (N − 1)
(
qin(i,i)

ξ
− 1
N − 1

( ∑
r ∈N(i)

qrr
ξ
+

∑
r<N(i)
r,i

qrn(i,r )
ξd (i,r )−1

))
,

∀ i ∈ N , (11b)
where n(i, i) ∈ N(i) is an arbitrarily chosen neighbor of i and
ξ ∈ (0, 1), δ > 0 are appropriately chosen parameters and their
selection is discussed in Section 4 on Learning Guarantees.

The quantities, n(·, ·) and d(·, ·), are based on the graph G. The
only property of relevance here is that the two are related recur-
sively i.e.,d(n(i, r ), r ) = d(i, r )−1. Thus if a designer wishes to avoid
calculating the shortest path (possibly due to the high complex-
ity) then n,d can be replaced by any valid neighbor and distance
mapping, as long as they are related recursively as above.
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3.2 Results
Fact 1 (Distributed). The mechanism defined in (10) and (11)

is distributed.

This simply follows from the definition of x̂i (·) and t̂i (·) above,
where onlymi and

(
mj

)
j ∈N(i) are used.

Generally, for a public goods problem one expects the allocation
function of the form x̂ : M → R instead of

(
x̂i : M → R

)
i ∈N

i.e, a single common allocation instead of N different allocation
functions, one for each agent. However, owing to the informational
constraints of the model, there does not exist4 a single function x̂ :
M → R such that it depends only onmi and

(
mj

)
j ∈N(i), for every

i ∈ N . Since in general there are N different neighborhoods (one
for each agent), the informational constraints necessitate the use of
N allocation functions

(
x̂i

)
i ∈N . The multiple allocation functions

are consistent with the model in (6). As each x̂i represents the level
of the same public good, at NE we must have x̂i (m̃) = x̂ j (m̃) for all
i, j ∈ N . The fact that x̂i (m) , x̂ j (m) for allm ∈ M means that the
allocation is not feasible off-equilibrium.

One interpretation for N allocation functions is as follows: at
the time of signing the mechanism contract, agents are aware of
the informational constraints that the mechanism and its implied
messaging must satisfy. Thus, each agent i can only use messages(
mj

)
j ∈N(i) to calculate their own best-response. The mechanism

designer thus designs allocation function x̂i for agent i such that
appropriate proxies5 can be used for messages

(
mj

)
j<N(i), j,i of

agents not in the neighborhood of i . Effectively thus, the mechanism
designer accounts for the informational constraints through the ap-
propriate design of proxies. A second interpretation is through the
simulated learning process of NE. In this each agent “acts virtually”
during the learning phase i.e., each agent takes only virtual actions
during the learning phase, updating his/her action from one round
to the next by observing only his/her neighbors message. Once the
stationary point of the learning process is reached (NE), the “real
action” is taken only once. The virtual interpretation is also used
in most of the distributed optimization literature [3, 8, 17, 19].

The specific design of allocation and taxes in (10) and (11) is dis-
cussed below. The optimality conditions in (5) require that agents
have global consensus on two aspects: allocation must be the same
for all and sum of prices should be equal to zero. This is not straight-
forward as the agents are restricted to communicate with only their
neighbors. Thus we introduce surrogate variablesqi = (q1i , . . . ,qNi )
which are known locally to agent i but at NE are expected to be pro-
portional to the global demand (y1, . . . ,yN ). We design the second,
third and fourth tax terms in (11a) such that agents are incentivized
to duplicate global demand y onto locally available variables qi .

To motivate the allocation function and the remaining part of the
tax function consider the case of ξ = 1 and assume that the demands
are duplicated onqr as described above, i.e.,qr = y, ∀ r ∈ N . In this
case all the factors involving ξ in (10) and (11) are 1. The allocation
function x̂i (m) depends on yi , (qr )r ∈N(i) and is designed such that
after taking into account the duplication it is proportional to

∑
j yj .

This facilitates the first consensus - all agents’ allocation must be
the same. The price p̂i (m−i ) is designed such that it depends only
4apart from the trivial constant function, which cannot give a full implementation
result.
5described in the paragraph below.

on (qr )r ∈N(i) and after taking into account the duplication it is pro-
portional to yi − 1

N−1
∑
j,i yj . This facilitates the second consensus

- sum of prices over all agents is zero. With the above design prin-
ciples, all the results of this section follow. We then introduce an
additional fifth term in the tax, (11a), just for the purpose of achiev-
ing contraction in Section 4 (see proof of Theorem 4.3). Incentives
provided by this term are in line with those already provided to the
neighboring agent n(i, i) through his/her third tax term, hence it
doesn’t interfere with the equilibrium results in this section. Finally,
we set ξ < 1 so that the game G can be contractive and adjust
everything in the allocation and tax function correspondingly.

Lemma 3.1 (Concavity). For any i ∈ N andm−i ∈ M−i , utility
ui (m) for the gameG is strictly concave inmi . Thus, the best-response
of agent i ,

βi (m−i ) =
(
ỹi (m−i ), q̃i (m−i )

)
, argmax

mi ∈Mi

ui (m), (12)

is unique (i.e., a single-valued function) and is defined by the first
order conditions.

Proof. Please see Appendix A. �

Concavity of ui (m) follows from quadratic tax function, linear
allocation function and the fact that p̂i doesn’t depend onmi . We
verify concavity by showing the Hessian of ui (m) w.r.t.mi to be
negative definite. Second tax term in (11a) is only source of cross
derivatives within components ofmi = (yi ,qi ).

Theorem 3.2 (Full Implementation and Budget Balance).
For the game G, there exists a unique Nash equilibrium, m̃ ∈ M, and
the allocation at Nash equilibrium is efficient, i.e., x̂(m̃) = x∗. Further,
the total tax paid at Nash equilibrium m̃ is zero, i.e.,

∑
i ∈N t̂i (m̃) = 0.

Proof. Please see Appendix B. �

As the optimality conditions (5) are sufficient, we show that at
any NE the allocation and price satisfy (5). Thus if pure strategy
NE exists, the corresponding allocation must be efficient. Existence
and uniqueness is then established by providing a one-to-one map
between NE and (x∗, µ∗).

3.2.1 Generalizing to multiple features (P > 1). For the general
case, extend the presented mechanism by first increasing the mes-
sage space such that for each agentmi = (mp

i )p∈P , i.e., each agent
quotes demand and proxym

p
i = (ypi ,q

p
i ) ∈ RN+1 separately for

each good p ∈ P. The allocation in this case is P−dimensional and
the expression for x̂pi (m) is the same as in the presented mechanism
with yi ,

(
qr

)
r ∈N(i) replaced by ypi ,

(
q
p
r
)
r ∈N(i). The tax function is

t̂i (m) =
∑
p∈P

t̂
p
i (m), (13)

where the expression for t̂ pi is the same as in the presented mecha-
nism, replacingm on RHS by (mp

i )i ∈N .
The proof of concavity is still completed by verifying that the

Hessian of ui (m) w.r.t.mi is negative definite. Calculations are a
little different from the proof of Lemma 3.1 as the Hessian of vi (·)
in general has non-zero off-diagonal terms which means that the
Hessian of ui w.r.t.mi has additional non-zero off-diagonal terms.
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The Full implementation and Budget Balance results follow es-
sentially from similar techniques as in the proof of Theorem 3.2.

4 DYNAMIC LEARNING GUARANTEES
This section provides the result for guaranteed convergence for a
class of learning dynamics, when the mechanism defined in Sec-
tion 3 is played repeatedly. As discussed in the Introduction, this
makes the NE more stable w.r.t. information available to agents,
and thus makes the mechanism ready for practical applications.

A learning dynamic is represented by (µn )n≥1 ⊆ ×
i ∈N

∆(Mi ),
where µn is a mixed strategy profile with product structure to be
used at time n. Denote by S(µn ) the support of the mixed strategy
profile µn and denote bymn ∈ S(µn ) the realized action. Healy and
Mathevet in [10] define the adaptive best-response (ABR) dynamics
class of learnixng dynamics by restricting the support S(µn ) in
terms of past observed actions. Define the history Hn′,n as the set
of observed actions between rounds n′ and n − 1. Define B (M ′)
as the smallest closed ball centered at NE m̃ that contains the set
M ′ (with any valid metric d on spaceM). A learning dynamic is
in the ABR class if any point in the support of the action at time n
is no further from the NE than the best-response to any action that
is no further from NE than the “worst-case” action that has been
observed in some finite past.

Definition 4.1 (Adaptive Best-Response Learning Class [10]). A
learning dynamic is an adaptive best-response dynamic if,
∀ n′, ∃ n̂ > n′, s.t. ∀ n ≥ n̂, S(µn ) ⊆ B

(
β

(
B

(
Hn′,n

) ) )
, (14)

where β : M → M is the best-response of the game.

The above is satisfied for instance if every agent puts belief
zero over actions further from NE than the ones that he/she has
observed in the past. Some well-known learning dynamics in the
ABR class are as follows. Cournot best-response is the dynamics
where at every time agents best-respond to the last round’s action.
More generally, k−period best-response is defined as the learning
dynamic where at any timen, an agent i’s strategy is a best-response
to the mixed strategy of agents j , i which are created using the
observed empirical distribution from the actions of the previous
k−rounds i.e., {mj,n−k , . . . ,mj,n−1}. In fact, the generalization of
this is also in the ABR class, where at each time n, an agent i’s
strategy is the best-response to the mixed strategy of agents j , i
that is formed by taking any convex combination of the empirical
distributions of actions observed in the previous k−rounds. Finally,
fictitious Play [5, 9], which maintains empirical distribution of all
the past actions (instead of k most recent ones) is also in ABR. The
additional requirement for this is that the utility in the game should
be strictly concave, which is true for the presented mechanisms
(Lemma 3.1).

Definition 4.2 (Contractive Mechanism). A mechanism is called
contractive if for any possible profile of utility function

(
vi (·)

)
i ∈N ,

the induced game G has a single-valued best-response function
β : M → M that is a d−contraction mapping6 (for any metric d
on space M).
6In this paper, we use the fact that h is a contraction mapping if the Jacobian has norm
less than one, i.e., ∥∇h ∥ < 1, where any matrix norm can be considered. Specifically,
we consider the row-sum norm.

For the game induced by a contractive mechanism, by definition,
there is a unique NE (due to the Banach fixed-point theorem). As
shown in the previous section, the gameG indeed has a unique NE.

Fact 2 ([10, Theorem 1]). If a game is contractive, then all ABR
dynamics converge to the unique Nash equilibrium.

It is shown below that the presented mechanism is contractive
and thus owing to the above result there is guaranteed convergence
for all learning dynamics in the ABR class. Contraction ensures
convergence for the ABR class; this result is in the same vein as
the one in the seminal work [14]. Milgrom and Roberts show that
Supermodularity ensures convergence for the Adaptive Dynamics
class of learning algorithms (also defined in [14]). Supermodularity
requires that the best-response of any agent i is non-decreasing in
the messagemj of any other agent j , i . The aim in this paper is to
get guarantees for the ABR class, however it is shown below that the
gameG is also supermodular and thus has guaranteed convergence
for the Adaptive Dynamics class as well. As contraction is a more
stringent condition than supermodularity, the ABR class is broader
than the adaptive dynamics class.

Theorem 4.3 (Contraction). The gameG defined in Section 3 is
contractive and thus, all learning dynamics within the ABR dynamics
class converge to the unique Nash equilibrium. Additionally, the game
is also supermodular.

Proof. Please see Appendix C. �

We begin by considering parameters ξ ,δ such that ξ ∈ (0, 1)
and δ > 0. In order to get contraction, a further restriction ξ ∈
(
√
(N − 1)/N , 1) is imposed. This also makes the game supermodu-

lar. Finally, in order to accommodate any value of η > 1, the final
selection of ξ requires it to be chosen very close to 1 and for δ to
be selected as a function of ξ .

The proof of above relies on bounding (appropriately) the deriv-
ative of the inverse of v ′

i (·). Generalizing to P > 1, the proof works
by inverting the gradient ∇vi and bounding its derivative (matrix).
Bounds on the Hessian, (1), are then used to bound this derivative.
From here onwards the proof steps follow analogously to the ones
from the special case of P = 1.

4.1 Numerical Analysis of convergence
For numerical analysis we consider one feature (P = 1) and N = 31,
η = 25. The agents’ utility function as quadratic7,vi (x) = θix2+σix .
We have v ′′

i = 2θi and thus the value for θi is chosen uniformly
randomly in the range (−η

2 ,− 1
2η ). As the model doesn’t impose

any restriction on the first derivative, the value for σi is chosen
uniformly randomly in the range (10, 20).

From the proof of Theorem 4.3, one can numerically calculate the
value of parameters ξ ,δ . For the particular instance of the random
θ ,σ generated to be used for the plot below, the parameter values
are: ξ = 1 − 2.515 × 10−4, δ = 0.9505 when graph G is a full binary
tree and ξ = 1 − 10−3, δ = 0.8744 when graph G is a sample of the
Erdős-Reńyi random graph with only one connected component,
where any two edges are connected with probability p = 0.3. The
7An example of quadratic utility function can be found in [20], for the model of demand
side management in smart-grids.
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Figure 2: ∥mn − m̃∥2 vs. n for the public goods mechanism.

first represents a case of small average degree whereas the second
represents the case of large average degree.

As the best-response is a contraction mapping, it is expected
that any learning strategy that best-responds to some convex com-
bination of (finite) past actions, converges at an exponential rate.
Indeed, this is exactly observed from Fig. 2, where the absolute dis-
tance to NE is plotted. We consider two different learning dynamics.
One where agents, at each time n, best-respond to an exponentially
weighed average of past actions, i.e., mn = β

(mn−1
2 +

rn−1
2

)
and

rn =
mn
2 +

rn−1
2 . The second learning dynamic is where agents

best-respond to the arithmetic mean of past 10 rounds.
It is also evident from Fig. 2 that convergence is faster for more

connected Erdős-Reńyi graph. This is expected since learning it-
erations facilitate information exchange, which is faster if there is
more connectivity between agents. In fact, for both learning dy-
namics the convergence for the Erdős-Reńyi random graph is faster
than either learning dynamic for Binary Tree. Comparing the two
learning dynamics among themselves, we observe that the more
aggressive exponential weighing leads to faster convergence com-
pared to the learning dynamic that puts equal weight on each of
the previous 10 actions. Finally, for Fig. 2, in each case the relative
distance to NE, defined as ∥mn −m̃∥2

/∥m̃∥1, is in the order of 10−8
when the absolute distance to NE is 10−5.

5 CONCLUSION
We consider the classical public goods (Lindahl) resource alloca-
tion problem for a distributed set of agents with informational
constraints. We present a distributed mechanism which respects
the informational constraints of the underlying graph. While for
models with non-strategic agents, extensive research has been done
in the field of distributed learning and optimization, this is not the
case with mechanism design where agents are fully strategic.

The defined mechanism achieves Full implementation and Bud-
get Balance i.e., for every possible profile (vi (·))i ∈N of utility func-
tions, the induced game is shown to have a unique NE where the
allocation at NE is efficient and taxes are budget balanced. Then we
establish dynamic stability of the NE w.r.t. information available
to agents by showing that the best-response of the induced game
is a contraction mapping. This gives, using a result from [10], that
every learning dynamic within the ABR dynamics class converges
to the unique and efficient NE when the game is played repeat-
edly. The ABR class contains learning dynamics such as Cournot
best-response, k−period best-response and fictitious Play.

Future Work. A scalable mechanism is desirable, where on av-
erage each agent’s message space is of dimension o(N ). However,
such an attempt might possibly require restrictions on either the un-
derlying graph G or the upper bound on η that is admissible under
the model. For the presented mechanism, the only restriction on the
graph is that it is strongly connected and there is no upper bound
on η. Another interesting direction to investigate is the possibility
of extending the ABR class by making the convergence criteria
broader. With contractive best-response, almost sure convergence
is guaranteed within ABR class, but for instance if one is interested
only in convergence in probability then a larger class of learning
dynamics can be considered.
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Appendix
A Distributed Mechanism for Public goods Allocation with Dynamic

Learning Guarantees

Abhinav Sinha and Achilleas Anastasopoulos

A PROOF OF LEMMA 3.1 (CONCAVITY)

Proof. Since the allocation and tax functions are smooth and vi(·) is continuously
double-differentiable, to establish concavity we show that the Hessian of ui(m) w.r.t.mi is
negative definite i.e., H ≺ 0. Once this is established, the optimization for best-response

βi(m−i) =
(
ỹi(m−i), q̃i(m−i)

)
, argmax

mi∈Mi

ui(m). (1)

has a strictly concave objective and an unbounded constraint set. Thus it has a unique
maximizer, defined by the first order derivative conditions.
The Hessian is of size (N + 1) × (N + 1) and we have

H11 =
∂2ui(m)
∂y2i

=
v′′
i (x̂i(m))
N 2 − (2 + δ )ξ 2, (2a)

H(j+1)1 = H1(j+1) =
∂2ui(m)
∂yi∂q

j
i

=

{
0 for j ∈ N , j , i,
2ξ for j = i,

(2b)

H(j+1)(j+1) =
∂2ui(m)
∂(qji )2

= −2, ∀ j ∈ N , (2c)

H(r+1)(j+1) =
∂2ui(m)
∂qri ∂q

j
i

= 0, ∀ j, r ∈ N , j , r . (2d)

The characteristic equation, Det (H − xI ) = 0, becomes

(x + 2)N−1
(
(x + 2)(x − H11) − 4ξ 2

)
= 0. (3)

This implies that N − 1 eigenvalues of H are −2 and the remaining two eigenvalues satisfy
x2+ (2−H11)x +2δξ 2− 2

N 2v
′′
i (x̂i(m)) = 0. SinceH is a symmetric matrix, all its eigenvalues

are real. Due to v′′
i (·) < 0, the product of roots in the above quadratic equation is positive

1
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and the sum of roots is negative. This gives that the remaining two eigenvalues of H are
also negative. �

B PROOF OF THEOREM 3.2 (FULL IMPLEMENTATION)

Proof. For the social welfare maximization problem,

x∗ = argmax
x∈R

∑
i∈N

vi(x), (4)

the optimality conditions
dvi(x∗)
dx = µ∗i , ∀ i ∈ N , (5a)∑

i∈N
µ∗i = 0, (5b)

are sufficient. Thus in order to prove that the corresponding allocation at Nash equili-
brium is efficient, we show that at any Nash equilibriumm = (y,q) ∈ M, the allocation(
x̂i(m))i∈N and prices

(
p̂i(m))i∈N satisfy the optimality conditions as x∗ and µ∗, respecti-

vely. Then using an invertibility argument we show existence and uniqueness of Nash
equilibrium.
Using Lemma 3.1, at any Nash equilibriumm we have: ∇miui(m) = 0, ∀ i ∈ N . This

gives

∂vi(x̂i(m))
∂yi

− ∂̂ti(m)
∂yi

= 0, ∀ i ∈ N , (6a)

∂vi(x̂i(m))
∂qri

− ∂̂ti(m)
∂qri

= 0, ∀ r ∈ N , i ∈ N . (6b)

Using the definition of allocation and tax function from the mechanism, this becomes,
∀ i ∈ N ,

1
N

(
v′
i (x̂i(m)) − p̂i(m−i)

)
+ 2ξ (qii − ξyi) + δξ (qin(i,i) − ξyi) = 0, (7a)

qri =



ξyi for r = i,
ξyr for r ∈ N(i),
ξqrn(i,r ) for r < N(i) and r , i,

. (7b)
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Appendix 3

For any distinct pair of vertexes i, r , denote by {i, i1, i2, . . . , id(i,r ) = r } the ordered
vertexes in the shortest path between i and r , where i1 = n(i, r ) ∈ N(i). Since the shortest
path between i and r contains the shortest path between ik and r , for any k < d(i, r ), we
have n(ik , r ) = ik+1. Using the third sub-equation in (7b) repeatedly, replacing i by ik gives,

qri = ξ qri1 = ξ 2 qri2 = · · · = ξd(i,r )−1 qrid (i,r )−1 . (8)

Nowusing the second sub-equation of (7b), replacing i by id(i,r )−1 and noting r ∈ N(id(i,r )−1),
gives qrid (i,r )−1 = ξ yr . This combined with the above equation gives that (7b) implies

qri =

{
ξyi for r = i,
ξd(i,r )yr for r , i,

∀ i ∈ N . (9)

Using the above and then combining (7a) with the definition of allocation and tax
functions gives, ∀ i ∈ N ,

v′
i (x̂i(m)) = p̂i(m−i), (10a)

x̂i(m) = 1
N

∑
j∈N

y j , (10b)

p̂i(m−i) = δ (N − 1)
(
yi −

1
N − 1

∑
j,i

y j

)
. (10c)

(10b) implies x̂i(m) = x̂r (m) for any i, r ∈ N and (10c) gives
∑

r∈N p̂i(m−i) = 0. Thus, the
allocation-price pair

©«
1
N

∑
j∈N

y j ,

(
δ (N − 1)

(
yi −

1
N − 1

∑
j,i

y j

))
i∈N

ª®¬
(11)

satisfy the optimality conditions, (5), as (x∗, µ∗). Since the optimality conditions are
sufficient, the allocation at any Nash equilibriumm is the efficient allocation x∗.

Manuscript submitted to ACM
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For existence and uniqueness, consider the following set of linear equations that must
be satisfied at any Nash equilibriumm,

x∗ =
1
N

∑
j∈N

y j , (12a)

µ∗i = δ (N − 1)
(
yi −

1
N − 1

∑
j,i

y j

)
, ∀ i ∈ N . (12b)

Here
(
y j

)
j∈N

are the variables and (x∗, µ∗) are fixed - since they are uniquely defined by
the optimization, (4). The above equations can be inverted to give the unique solution as,

yi = x∗ +
µ∗i
δN
, ∀ i ∈ N . (13)

Furthermore, using above and (9), the values for
(
qri

)
i,r∈N can also be calculated uniquely.

Since a solution form = (y,q) in terms of x∗, µ∗ exists, existence of Nash equilibrium is
guaranteed. Also, since this solution is unique, there is a unique Nash equilibrium.
For Budget Balance, we have the following. By the characterization from above we

know that at Nash Equilibrium m̃, all tax terms from the definition of t̂i(m), other than
p̂i(m̃−i)x̂i(m̃), are zero. Furthermore, the prices are equal to µ∗i and each allocation is equal
to x∗. Thus, ∑

i∈N
t̂i(m̃) =

∑
i∈N

µ∗i x
∗ = x∗

∑
i∈N

µ∗i = x∗ · 0 = 0, (14)

since the optimal dual variables
(
µ∗i

)
i∈N satisfy, (5b),

∑
i∈N µ∗i = 0. �

C PROOF OF THEOREM 4.3 (CONTRACTION)

Proof. The game is contractive if the matrix norm of the Jacobian of best-response
β =

(
βi

)
i∈N =

(
ỹi , q̃i

)
i∈N is smaller than unity, i.e., ∥∇β ∥ < 1. We use the row-sum norm

for this, and in this proof verify specifically the following set of conditions,

∑
r∈N , r,i

©«
���� ∂ỹi∂yr

���� +∑
j∈N

����� ∂ỹi∂qjr
�����ª®¬
< 1, ∀ i ∈ N , (15a)

∑
r∈N , r,i

©«
����∂q̃

w
i

∂yr

���� +∑
j∈N

�����∂q̃
w
i

∂qjr

�����ª®¬
< 1, ∀w ∈ N , ∀ i ∈ N . (15b)
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Consider any agent i ∈ N , for the best-response q̃i we have

q̃wi =




ξỹi forw = i,
ξyw forw ∈ N(i),
ξqw

n(i,w) forw < N(i) andw , i .
(16)

Thus, by choosing ξ ∈ (0, 1), all conditions within (15b) are satisfied wherew , i . Next,
we verify conditions in (15a). Once this is done, then in conjunction with ξ ∈ (0, 1), the
conditions from (15b) withw = i are also automatically verified.
For the best-response ỹi , we have the following relation

1
N

(
v′
i (x̂i(m)) − p̂i(m−i)

)
+ 2ξ (q̃ii − ξỹi) + δξ (qin(i,i) − ξỹi) = 0, (17a)

⇒ 1
N

(
v′
i (x̂i(m)) − p̂i(m−i)

)
+ δξ (qin(i,i) − ξỹi) = 0. (17b)

In the above relation, x̂i(m) is evaluated at ỹi instead of yi . Also, this relation implicitly
defines ỹi . Differentiating this equation w.r.t.

(
qr
n(i,r )

)
r∈N gives

v′′
i (x̂i(m))
N 2

∂ỹi
∂qr

n(i,i)
− δ (N − 1)

N ξ
+ δξ

(
1 − ξ

∂ỹi
∂qr

n(i,i)

)
= 0, r = i, (18a)

v′′
i (x̂i(m))
N 2

(
∂ỹi
∂qr

n(i,r )
+
1
ξ

)
+

δ

N ξ
− δξ 2

∂ỹi
∂qr

n(i,r )
= 0, ∀ r ∈ N(i), (18b)

v′′
i (x̂i(m))
N 2

(
∂ỹi
∂qr

n(i,r )
+

1
ξd(i,r )−1

)
+

δ

N ξd(i,r )−1
− δξ 2

∂ỹi
∂qr

n(i,r )
= 0, ∀ r < N(i), r , i, (18c)

which implies

∂ỹi
∂qr

n(i,r )
=

1
v′′
i (x̂i(m))
N 2 − δξ 2

×




δ (N − 1)
N ξ

− δξ for r = i,

− δ

N ξ
− v′′

i (x̂i(m))
N 2ξ

for r ∈ N(i),

− δ

N ξd(i,r )−1
− v′′

i (x̂i(m))
N 2ξd(i,r )−1

for r < N(i), r , i .

(19)
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In the notation used above, for any r ∈ N(i), n(i, r ) = r . All other partial derivative of ỹi
are zero. With all this condition in (15a) becomes,

����δ (N − 1)
N ξ

− δξ

���� +
����− δ

N
− v′′

i (x̂i(m))
N 2

���� ©«
∑

r∈N(i)

1
ξ

ª®¬
+

����− δ

N
− v′′

i (x̂i(m))
N 2

����
( ∑
r<N(i)
r,i

1
ξd(i,r )−1

)

< δξ 2 − v′′
i (x̂i(m))
N 2 . (20)

We impose the condition

ξ ∈
(√

N − 1
N
, 1

)
(21)

so that the expression inside the first absolute value term in above is negative. To simplify
the other expressions containing absolute value, we utilize the lower bound from the
assumption v′′

i (·) ∈ (−η,− 1
η ). Set

η < Nδ , (22)

so that the remaining expressions inside absolute value in (20) are guaranteed to be
negative. With this, (20) becomes

[
−v′′

i (x̂i(m))
] ©«

1 +
∑

r∈N(i)

1
ξ
+

∑
r<N(i)
r,i

1
ξd(i,r )−1

ª®®®¬
> Nδ

©«
1
ξ


∑

r<N(i)
r,i

1
ξd(i,r )−2

− (N − |N(i)| − 1)

+ N ξ (1 − ξ )

ª®®®¬
, (23)

where N − |N(i)| − 1 is the number of agents in the system except agent i and all his/her
neighbors in N(i). Clearly the LHS above is positive. For any r ∈ N(i) and r , i , we have
d(i, r ) ≥ 2. On the RHS, inside the square brackets there are exactly N − |N(i)| − 1 terms
in the summation and each term is of the form ξ−k , for some k ≥ 0. Since ξ < 1, this gives
that even the RHS is positive. Utilizing the upper bound from v′′

i (·) ∈ (−η,− 1
η ), a sufficient

condition to verify (23) is
η <

1
Nδ

Ci

Di
(24)
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Appendix 7

where Ci ,Di are the expression inside the curved bracket on the LHS and RHS of (23),
respectively. Combining this with the condition in (22), a sufficient condition for veri-
fying (15a) is

η < min
(
Nδ ,

1
Nδ

Ci

Di

)
, ∀ i ∈ N . (25)

The proof is complete as long as η satisfies above. However, in our model we would like to
accommodate any value of η > 1 and this requires selecting parameters ξ ,δ appropriately.
Set

δ =
1
N

√
min
i∈N

(
Ci

Di

)
, (26)

in above to get the sufficient condition as η2 < min
i∈N

(
Ci

Di

)
, i.e.,

η2 < min
i∈N

{ ©«
1 +

∑
r∈N(i)

1
ξ
+

∑
r<N(i)
r,i

1
ξd(i,r )−1

ª®®®¬/©«
1
ξ


∑

r<N(i)
r,i

1
ξd(i,r )−2

− (N − |N(i)| − 1)

+ N ξ (1 − ξ )

ª®®®¬

}
. (27)

We want to select ξ such that the RHS above can be made arbitrarily large, whilst sa-
tisfying (21). For this, first note that for any i ∈ N the numerator of the RHS is greater
than 1, hence it is bounded away from zero. Secondly, the denominator can be made
arbitrarily close to 0 by choosing ξ close enough to 1. This can be seen by rewriting∑

r<N(i)
r,i

1
ξd(i,r )−2

− (N − |N(i)| − 1) =
∑

r<N(i)
r,i

(
1

ξd(i,r )−2
− 1

)
=

∑
r∈N

d(i,r )≥3

(
1

ξd(i,r )−2
− 1

)
, (28a)

⇒ Di =
1
ξ

∑
r∈N

d(i,r )≥3

(
1

ξd(i,r )−2
− 1

)
+ N ξ (1 − ξ ), (28b)

where for any given k ≥ 1, ϵ > 0, choose ξ ∈
( ( 1

1+ϵ
) 1/k
, 1

)
to have

(
ξ−k − 1

)
< ϵ . Note that

this is consistent with (21). The remaining term N ξ (1 − ξ ) can also made made arbitrarily
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small by choosing ξ close enough to 1. Finally, it is clear from above that the denominator
Di can made arbitrarily small concurrently for all i ∈ N .
This completes the proof of Contraction. The fact that the game is supermodular fol-

lows from the preceding analysis, where the parameters ξ ,δ are chosen such that each
expression in (19) is positive (and similarly all partial derivatives arising out of (16) are
positive). Which implies that the best-response βi(m−i) is non-decreasing w.r.t message
mk for any other agent k , i . �
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