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Power-Driven Microarchitecture Workshop

Introduction

 

                            
In recent years, reducing power dissipation has become a critical design goal for many micropro-
cessors due to portability and reliability requirements. Most of the power reduction was achieved
through supply voltage reduction and process shrinks. However, there is a limit to how far supply
voltages may be reduced, and the power dissipated on-chip is increasing even as process technol-
ogy improves. Further advances will require not only circuit and technology improvements but
new ideas in microarchitecture. This will be true not only for the obvious situation of portable
computers but also for high-performance systems. It was the goal of the Power-Driven Microar-
chitecture Workshop to provide a forum for examining innovative architectural solutions to the
power problem for processors at all levels of performance. 

The Power-Driven Microarchitecture Workshop was held in conjunction with the ISCA98 confer-
ence. The response to the call for papers was outstanding, enabling us to assemble an strong pro-
gram of over two dozen papers. Three invited speakers, Mark Horowitz of Stanford, and Vivek
Tiwari and Doug Carmean from Intel provided a brief tutorial introduction to power issues in
VLSI design, and covered existing problems and solutions in the microprocessor market. The pur-
pose of these tutorials was to establish common ground for discussing power issues in
processor design.

It is our hope that, as a result of this workshop, the level of awareness will have been raised in the
architecture community about issues related to power dissipation and energy consumption. We
further hope that this heightened awareness will lead to exciting new research in the area.

Dirk Grunwald
Bobbie Manne
Trevor Mudge
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Abstract

The energy consumption due to I/O pins is a substantial
part of the overall chip consumption. This paper gives an
overview of the Working Zone Encoding (WZE) method for
encoding for low power the external address and data buses,
based on the conjecture that programs favor a few working
zones of their address space at each instant. In such cases,
the method identi�es these zones and sends through the ad-
dress (data) bus only the o�set of this reference (data value)
with respect to the previous reference (data value) to that
zone, along with an identi�er of the current working zone.
This is combined with a one-hot encoding for the o�set.

The paper then focuses on preliminary work on the fol-
lowing two topics:

� reduction of the e�ect of the WZE delay on the bus
access time by overlapping this delay with the virtual
to physical address translation. Although the modi-
�cation to allow this overlapping might increase the
bus energy, simulations of the SPEC benchmarks in-
dicate that for a page size of 1 KB or larger the e�ect
is negligible.

� extension of the technique for the data bus to some
multimedia applications which are characterized by
having packed bytes in a word. For two typical appli-
cations, the data-only data bus and data-only address
bus I/O activity is reduced by 74% and 51% with re-
spect to the unencoded case, and by 68% and 33% with
respect the best of the rest of the encoding techniques.

1 Introduction

The I/O energy is a substantial fraction of the total energy
consumption of a microprocessor [4], because the capaci-
tance associated with an external pin is between one hun-
dred and one thousand times larger than that corresponding
to an internal node. Consequently, the total energy con-
sumption decreases by reducing the number of transitions
on the high-capacitance, o�-chip side, although this may

�This work has been partially funded by CICYT TIC 95-0419.
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Figure 1: Bus types in a general-purpose microprocessor.

come at the expense of some additional transitions on the
low-capacitance, on-chip side.

For a microprocessor chip, the main I/O pins correspond
to the address and data buses. In this work, we consider an
encoding to reduce the activity in both of these buses. If
the value carried by n bits has to be transmitted over a
bus, a reduction in the switching activity of this bus may
be obtained at the cost of extra hardware in the form of
an encoder on the sender device, a decoder on the receiver
device, and potentially a larger number of wires m.

In [10] and [11] we have presented the Working-Zone
Encoding (WZE) method, which is based on the conjec-
ture that applications favor a few working zones of their
address space. Moreover, consecutive addresses to each of
these working zones frequently di�er by a small amount. In
such cases, an o�set with respect to the previous address for
that zone is sent, together with a zone identi�er. The o�set
is encoded so as to reduce the activity of the address bus.
This scheme is extended to the data bus [8] by noticing that
the data for successive accesses to a working zone frequently
di�er also by a small amount, so that it is e�ective also to
send the o�set.

To evaluate the e�ectiveness of the technique in general
applications, several SPEC95 streams of references to mem-
ory along with the corresponding data values were used.
Among the possible bus organizations (see Figure 1), we
have considered a multiplexed address bus (for instruction
and data addresses) and a multiplexed instruction/data bus,
with and without a uni�ed 8K-byte direct-mapped cache.
We also have compared with previously proposed encodings:
Gray, bus-invert, T0, combined T0/bus-invert, inc-xor and
dbm-vbm. Table 1 summarizes the results obtained. The
table shows the energy reduction ratios of the WZE tech-



Address Bus Ratio Ins/Data Bus Ratio Both Buses Ratio
vs. non vs. best vs. non vs. best vs. non vs. best
encoded of rest encoded of rest encoded of rest

Avg. (no cache) (0.39) 0.47 (0.54) 0.66 (0.67) 0.73 (0.77) 0.84 (0.56) 0.63 (0.69) 0.78
Avg. (with cache) (0.71) 0.87 (0.87) 1.06 (0.53) 0.63 (0.61) 0.72 (0.60) 0.72 (0.70) 0.85

Table 1: Results summary for some SPEC95 streams. Ratios are calculated as Energy WZE/Energy other, being other the
unencoded case and the best of the rest of the techniques evaluated. Energy overhead of the encoder/decoder logic is only
included for the WZE technique. In parenthesis, without overhead.

nique with respect to the unencoded case and to the best of
the rest of the techniques, for each of the buses and for both
together. We conclude that the WZE encoding signi�cantly
reduces the activity in both buses. Moreover, for the case
without cache, the technique presented here outperforms the
other previous bus encoding proposals for low power. On the
other hand, for the case with cache the best scheme for the
address bus is either the WZE presented here or bus-invert
with four groups, depending on the overhead of these two
techniques. In any case, the WZE method outperforms the
rest of the techniques when both buses are encoded, and re-
quires fewer additional wires than the bus-invert with four
groups.

In this paper we give an overview of the WZE technique
and summarize previous work on the topic; this material is
similar to that of [8] and should give the reader a reasonable
understanding of the method. For more details consult [10,
11]. We then focus on preliminary work on the following
two topics:

� Reduction of the e�ect of the WZE delay on the bus
access time by overlapping this delay with the virtual
to physical address translation.

� Use of the WZE technique in multimedia applications,
which are characterized by having packed bytes in a
word. Because of the particular features of these ap-
plications, we explore the possibility of special modi�-
cations to the encoding technique for the data bus.

1.1 Previous work

Several encoding techniques for reduced bus activity have
been reported, such as one-hot [6], Gray [7], bus-invert [13],
T0 and combined bus-invert/T0 [5], and inc-xor and dbm-
vbm [12].

One-hot encoding results in a reduced activity because
only two bits toggle when the value changes. However, it
requires a number of wires equal to the number of values
encoded, so that it is not practical for typical buses.

Gray and T0 encoding are targeted to situations in which
consecutive accesses di�er by one (or by a �xed stride). The
Gray encoding is useful because the encoding of these values
di�ers by one bit. In the T0 encoding an additional wire is
used to indicate the consecutive access mode, and no activity
is required in the bus.

The bus-invert method [13] consists on sending either the
value itself or its bit-wise complement, depending on which
would result in fewer transitions. An extra wire is used
to carry this polarity information. For uniform and inde-
pendent distributions, this encoding technique works better
when the bit-width of the value to be sent is divided into
smaller groups and each one encoded independently. The
bus-invert technique has been combined with T0 in [5], thus
obtaining more activity reduction than each of the tech-
niques by itself.
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Figure 2: Address space with three vectors.

A source-coding framework is proposed in [12] as well as
some speci�c codes. The scheme is based on obtaining a
prediction function and a prediction error. This prediction
error is XORed with the previous value sent to the bus so
that the number of transitions is reduced in the likely case
when the prediction error has a small number of ones. For
addresses, the only new code proposed is the inc-xor code, in
which the prediction is the previous address plus one (or any
�xed stride) and the prediction error is obtained by the bit-
wise XOR operation. This code is most bene�cial for instruc-
tion address buses, where sequential addressing is prevalent.
Also presented are codes which relate to the 1-hot encoding
used in this paper, such as the dbm-vbm, that are applied to
the data bus. In the dbm-vbm technique, the prediction is
the previous address and the prediction error is obtained by
a function that increases as the absolute di�erence between
the current input and the prediction increases. Afterwards,
code-words with fewer 1's are assigned to smaller error val-
ues. Finally, the result is XORed with the previous value sent
to the bus.

2 Overview of the WZE technique

In this Section an overview of the WZE technique for the
address bus is given along with the implementation deci-
sions made and the rationale behind them. Afterwards, an
extension of the WZE technique [8] is reviewed which allows
the data bus to be encoded by reusing a large portion of the
hardware already used to encode the address bus.

The basis of the WZE technique is as follows:

1. It takes into account the locality of the memory refer-
ences: applications favor a few working zones of their
address space at each instant. In such cases, a refer-
ence can be described by an identi�er of the working
zone and by an o�set. This encoding is sent through
the bus.



2. The o�set can be speci�ed with respect to the base
address of the zone or to the previous reference to that
zone. Since we want small o�sets encoded in a one-hot
code, the latter approach is the most convenient.

As a simple example consider an application that works
with three vectors (A, B and C) as shown in Fig-
ure 2. Memory references are often interleaved among
the three vectors and frequently close to the previ-
ous reference to the vector. Thus, if both the sender
and the receiver had three registers (henceforth named
Prefs) holding a pointer to each active working zone,
the sender would only need to send:

� the o�set of the current memory reference with
respect to the Pref associated to the current work-
ing zone

� an identi�er of the current Pref.

3. To reduce the number of transitions, the o�set is en-
coded in a one-hot code. Since the one-hot code pro-
duces two transitions if the previous reference was also
in the one-hot code and an average of n=2 transitions
when the previous reference is arbitrary, the number
of transitions is reduced by using a transition-signaling
code [14]. In this case, before sending the reference
through the bus an XOR operation is performed with
the previous value sent, always resulting in one tran-
sition.

4. One value can be sent using a 0-hot code, which with
transition signaling produces zero transitions. This
code should be used for the most-frequent event, which
we have determined to be a repetition of the same
o�set for the current working zone.

5. When there is a reference that does not correspond to
a working zone pointed by any Pref, it is not possible
to send an o�set; in such a case, the entire current
memory reference is sent over the bus. Moreover, it is
necessary to signal this situation.

6. In general, the total number of working zones of a pro-
gram can be larger than the number supported by the
hardware. Consequently, these have to be replaced dy-
namically. The most direct possibility is to replace an
active working zone as soon as there is a miss. How-
ever, in this case any arbitrary reference would disturb
an active working zone. To reduce this e�ect, we in-
corporate additional registers (henceforth named po-
tential working zones) that store the references that
cause a miss. Various heuristics are possible to deter-
mine when a potential working zone becomes an active
one.

2.1 Implementation decisions

In the general scheme presented above, there are many as-
pects that have to be decided to obtain a suitable implemen-
tation. These decisions a�ect both the complexity of the im-
plementation and the energy reduction achieved. Since there
are many interdependent parameters, it is not practical to
explore the whole space. Below we indicate the decisions
made and the rationale for them.

� The number of active and potential working zones af-
fects the number of registers and associated logic (and
therefore the encoder/decoder energy consumption) and

the number of values of the identi�er. In the evalua-
tion of the scheme, we have explored a range of values
and determined the one that produces the largest re-
duction. It was determined that a small number of
working zones is su�cient.

� When there is a hit to a working zone, an o�set and
an identi�er are sent. There are choices for the set
of values of the o�set and the code of the identi�er.
Since the o�set is sent in a one-hot code (with transi-
tion signaling) the set of values is directly related to
the number of bits required. We have decided to use
all bits of the original bus to send the o�set. Moreover,
we have seen that the number of hits is maximized if
positive and negative o�sets are used. Since all bits
of the original bus are used for the o�set, it is neces-
sary to have additional wires for the identi�er and, to
minimize these additional wires, we use a binary code.
We have considered using bits of the original bus for
the identi�er (thus reducing the o�set bits) and have
observed a signi�cant increase in I/O activity with re-
spect to the use of separate bits.

� When there is a miss, this situation has to be signaled
to the receiver. Since in that case, all bits of the origi-
nal bus are used to send the address, this hit/miss con-
dition has to use some additional wire. As we already
have decided to use additional wires for the identi�er,
one value on these wires might be used to signal the
miss. However, this would produce a few transitions
when changing from a hit to a miss. To assure only
one transition, we have assigned an additional bit to
signal a miss.

� The search for a hit in a working zone requires sub-
tracting the previous address with the current one and
detecting whether the o�set is in the acceptable range.
For the selection of which zones to check it is possible
to use any of the schemes used for caches. Because of
the small number of working zones, we have chosen a
fully-associative search.

� There are two replacement procedures required: for
the active working zones and for the potential working
zones. As indicated before, when there is a miss the
address is placed in a potential working zone. Since
there are few of these, we use the LRU algorithm for
this placement. Moreover, it is necessary to determine
when a new active working zone appears and, in this
case, which active working zone to replace. Among
the possible alternatives, we have chosen to initiate
a new active working zone when there is a hit in a
potential working zone. Again, here we use the LRU
replacement algorithm.

2.2 Extension to the data bus

The technique for the address bus can be extended to
include also the data bus. This extension is based on the
fact that in many instances the data values of consecutive
accesses to a working zone di�er by a small amount. If that
is the case, the data can also be sent as an o�set, coded in
the one-hot encoding. In this case, the zero-hot encoding is
used when the o�set is zero.

To implement this extension, as illustrated in Figure 2,
we include an additional register, called Pdat, per working
zone. On the other hand, if the access is not to an active
working zone or if the o�set is larger than possible for the



Value sent Transition signaling Receiver Receiver
over the bus and one-hot retrieval action action

(either address 1. XORing 2. One-hot (address bus) (data bus)
or data) retrieval

(-) 010011 - - - -
(2) 011011 001000 3 o�set 3 (Pref #2) o�set 3 (Pdat #2)
(1) 011011 000000 y same o�set (Pref #1) same data value (Pdat #1)
(1) 011001 000010 1 o�set 1 (Pref #1) o�set 1 (Pdat #1)

Table 2: Example of the decoding process. Assuming always hit; () in the �rst column indicates working zone number.

one-hot encoding, the whole value is sent through the bus.
An additional wire is required to distinguish these cases.

In addition, to further reduce the bus transitions, when
the value in the data bus is not encoded by theWZE method,
we use the bus-invert technique; for the address bus we saw
that the bene�ts of using the bus-invert in this case were
very small.

In summary, for the address bus, to send the o�set it is
necessary to compare it with the previous o�set to the same
working zone. The following two situations occur:

� the o�sets are the same: send again the previous value
sent over the bus (zero transitions)

� they are di�erent: send the one-hot encoded value of
the o�set using transition signaling (one transition).

For the data bus, to send the o�set it is necessary to com-
pare the current data value with the Pdat associated to the
current working zone, and the following situations occur:

� the values are the same: send again the previous value
sent over the bus (zero transitions)

� they are di�erent: send the one-hot encoded value of
the o�set (one transition).

The decoding of an o�set in the receiver is done also
in two steps: XORing the value that it receives with the
previous one, and retrieving the one-hot of the result. When
the XORing produces a 0 vector, the two values were the
same and this is interpreted (see Table 2):

� for the address bus, as a repetition of the previous
o�set to that same working zone,

� for the data bus, as a repetition of the previous data
value when that same working zone was last accessed

2.3 Address and data bus �elds

As shown in Table 3 (next page) the encoded address
and data bus consists of �ve �elds:

� the na wires of the original address bus (word address)

� the nd wires of the original data bus (word data)

� dlog
2
(H+M)e wires to specify one of H working zones

or M potential zones (ident)

� one wire to indicate whether there has been a hit or a
miss in any of the zones (WZ miss)

� one wire to indicate if the data bus has been able to
be encoded using the o�set (dbus WZ encoded)

� one wire to indicate, in the case of a miss in the work-
ing zones, whether the data bus is coded with the bus-
invert technique (dbus BI encoded).

Therefore, m = na + nd + dlog
2
(H + M)e + 3 wires are

required.

3 Reducing the delay

The decoder introduces some delay in the bus access. Since
this might be unacceptable, we now describe a method to
overlap this delay with the virtual to physical address trans-
lation.

When an address translation is required, the most direct
approach would be to perform the translation and then ap-
ply the encoding to the resulting physical address. However,
this would produce an increased delay for the bus access. To
reduce this delay we propose the following modi�cation of
the WZE technique:

� Use the virtual address to determine whether there is
a hit in a working zone. To do this, each Pref con-
tains the virtual address of the previous access to the
corresponding zone.

Since, as it is well known, the translation modi�es only
the most-signi�cant bits of the address (the page number)
but keeps unaltered the least-signi�cant bits (the page o�-
set), this procedure is correct as long as the o�set does not
cross page boundaries. Consequently, it is necessary to de-
tect when a change of page occurs and, in that case, the
access is not treated as an o�set.

Since the data value is not translated, this is encoded as
in the original method.

Because of this modi�cation in the WZE technique, the
reduction in energy might be a�ected. This is because now
we do not use o�sets which cross a page boundary. On the
other hand, the internal energy overhead might be reduced
because now the detection of o�set uses only the page-o�set
bits. The simulation of the SPEC benchmarks indicate that
for a page size of 1 KB or larger the e�ect is negligible. We
observe this in Table 4, where the I/O transitions per refer-
ence on the multiplexed address bus for the gcc benchmark
(with uni�ed cache) and for di�erent page sizes is shown.

I/O transitions/reference
Page size (address bus)
(no pages) 3.26
4K bytes 3.26
1K bytes 3.29
256 bytes 3.36
64 bytes 3.72
1 byte 5.32

Table 4: E�ect of the pages on the activity reduction if the
WZE delay is overlapped with the virtual to physical address
translation. For pages larger than 1K bytes the e�ect is
negligible. Some unrealistic page sizes are also shown for
comparison purposes. The data is for the gcc benchmark
with uni�ed cache.



m-wire encoded address and data bus
WZ miss ident word address dbus WZ encoded dbus BI encoded word data

(1 wire) (dlog2(H +M)e wires) (na wires) (1 wire) (1 wire) (nd wires)

WZ 0 WZ index o�set or 1 don't care o�set or
format last address value last data value

0 1 BIG=1(data value)
0 complete data

Non WZ 1 don't care complete don't care 1 BIG=1(data value)
format address 0 complete data

Table 3: Information assigned to each of the several �elds of the encoded address and data bus when there is a hit (WZ
format) and a miss (Non WZ format) in the H working zones and in the M potential working zones. The number of wires
for each �eld is also shown.

4 Use in Multimedia Applications

In this Section we modify the WZE technique for the data
bus for those multimedia applications that use data work-
loads composed of packets of data that may be brought from
memory several in the same word. Examples of these are the
image processing applications and we will evaluate the WZE
technique for two particular examples. We show the results
for the data-only data bus and the data-only address bus
(see Figure 1). The code of the applications is assumed to
be stored in an internal ROM (therefore no references to
instructions are sent through the address bus and no in-
structions are fetched through the data bus).

In multimedia applications images are composed of pix-
els. These pixels consist of one or a few components, each
with a relatively small number of values (for instance, in
the examples we illustrate each pixel consists of three colors
and each color can have 256 values). In such case, these
pixels can be stored in one word which is subdivided into
subwords for each component. In many applications, these
components are accessed and processed simultaneously. We
now describe how we modify the WZE technique for this
situation.

The address bus encoding part of the technique is not
modi�ed, since the locality of reference is even more appar-
ent in these applications with images. For the data part we
do the following:

� Instead of using an o�set for the whole word, we en-
code each of the bytes using the byte o�set. In this
way, the one-hot encoding allows eight possible o�-
sets. We have determined that this number of o�sets
(which would correspond to o�sets from -4 to +4) is
insu�cient to capture a signi�cant portion of the data.
Consequently, it is convenient to extend the encoding
to include also k-hot encodings for k > 1.

� Moreover, if we allow two possibilities for each byte,
namely that the data satis�es the o�set range (a hit)
or not (a miss), we would need individual wires per
byte to indicate this hit/miss. Since this would be
a signi�cant wire overhead, we decided to code every
data byte as an o�set, no matter how large this o�set
is. Moreover, since a k-hot encoding with transition
signaling generates k transitions in the bus, to reduce
the average number of transitions we encode the o�sets
into a k-hot code, with smaller value of k for the more
frequent o�sets (that is, the value of k increases as the
absolute value of the o�set increases).

� When there is an address miss (that is, the address
does not correspond to an active WZ), the most direct
solution is to send the unencoded data value. How-
ever, we have found that the variation in the values of

images is small enough so that it is better to send the
o�sets with respect to the last data value.

Note that in this modi�cation of the WZE technique,
the two extra wires (dbus WZ encoded and dbus BI encoded

in Table 3) are not needed, since the data bus is always
encoded and no bus-invert is done.

We have done some preliminary evaluations for two ap-
plications: image alpha blending andmotion estimation. Both
use color images where a pixel is composed of three bytes
that specify the three main colors; a pixel is read or written
per memory reference.

4.1 Image Alpha Blending

Alpha Blending [1] is used for imaging e�ects to merge
two images together, weighting one image more than the
other. Thus, alpha blending may be used for fading from
one image to another and this is the case shown here: given
two images of two di�erent human faces, six images are gen-
erated so that the �rst image is transformed into the second
one. This is done for three di�erent sets of human faces [2].

The results are reported in Table 5, where the WZE tech-
nique is compared to the unencoded case and to the best of
the rest of the techniques (bus-invert with three groups, one
per byte). The WZE technique uses four active and two
potential working zones.

4.2 Motion Estimation

The Motion-estimation algorithm [9] is used in video
transmission to lower the bandwidth of the network where
the video is being transmitted. The frame to be transmitted
is divided into blocks which are compared to several blocks
in the previous frame and the best match is selected.

The basic motion-estimation algorithm is applied to two
di�erent sets of images in motion [3, 2] (weather satellite,
human face and football images). Results are shown in Ta-
ble 6; the best of the rest of the techniques is the dbm-vbm
with three groups. The WZE technique uses three active
working zones and no potential working zones.

Data-only Data Bus
Images non

encoded WZE BIG=3
claire ! missa 10.07 3.00 8.68
claire ! susie 10.68 3.23 8.58
missa ! susie 10.43 3.83 8.97

Table 5: Data-only data bus I/O transitions per reference
for the alpha-blending application. The best of the rest of
the techniques is the bus-invert with three groups.



Data-only Data Bus Ratio Data-only Address Bus Ratio Both Buses Ratio
vs. non vs. best vs. non vs. best vs. non vs. best

Application encoded of rest encoded of rest encoded of rest
Image Blending 0.32 0.38 0.17 0.23 0.26 0.32

Motion Estimation 0.58 0.81 0.36 0.41 0.49 0.67

Table 8: Results summary for the two multimedia applications. Smaller ratio means fewer I/O transitions.

Data-only Data Bus
Image Sequences non

encoded WZE dbm-vbmG=3

weather satellite 10.05 5.93 7.58
human face 9.13 5.14 5.89
football 10.79 6.22 7.79

Table 6: Data-only data bus I/O transitions per reference
for the motion-estimation application. The best of the rest
of the techniques is the dbm-vbm with three groups.

Data-only Address Bus
Application non best of

encoded WZE rest
Image Blending 7.78 1.33 5.78

Motion Estimation 6.71 2.40 7.21

Table 7: Data-only address bus I/O transitions per reference
for the two example multimedia applications.

Table 7 shows the data-only address bus results for both
applications. For the image blending the best of the rest
of the techniques is the dbm-vbm whereas for the motion
estimation is the bus-invert. In any case, theWZE technique
clearly outperforms any previously proposed technique.

The averaged results for both applications are shown in
Table 8. We show the ratio of the I/O transitions with
respect the unencoded case and to the best of the rest of the
techniques for the data-only data bus, data-only address bus
and both buses. The I/O activity when coding both buses is
reduced by 74% and 51% with respect the unencoded case,
and by 68% and 33% with respect the best of the rest of the
encoding techniques.

5 Conclusions

This paper gives an overview the Working Zone Encoding
(WZE) method for encoding an external address and data
bus, based on the conjecture that programs favor a few work-
ing zones of their address space at each instant.

For the general-purpose microprocessor multiplexed ad-
dress bus and multiplexed instruction/data bus (with uni-
�ed cache), the WZE signi�cantly reduces the I/O activity,
around 30% with respect to the unencoded case and 15%
with respect the best of the rest of the encoding techniques.
When no caches are present, the reductions are even larger.

For two multimedia applications using images as the work-
load, the activity in the data-only data bus and the data-
only address bus is reduced by 74% and 51% with respect
the unencoded case, and by 68% and 33% with respect the
best of the rest of the encoding techniques. These results
are promising and make it worthwhile to pursue the devel-
opment of this approach.
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Abstract

Reduced switching on the address bus saves on the en-
ergy incurred in PC increment, the propagation of PC
value across the pipeline, instruction cache access, and
memory access. We estimate the savings in bit switch-
ings in PC by adopting the Gray sequence for program
sequencing. There is a 40% reduction in address bit
switchings with a Gray PC over the traditional lexico-
graphic PC over a collection of SPEC ’95 integer and FP
benchmarks. We also assess the adverse impact of Gray
PC on the other processor units, particularly I-cache lo-
cality. The cache miss rates are indistinguishable be-
tween the Gray and lexicographic sequencing. These
experiments were conducted with the SimpleScalar tool
set. We also propose a design for a Gray counter for
the PC. We have developed optimization algorithms for
the loader so that the expected address bus switching is
minimized.

1 Introduction

The need for reduced energy in processors has been em-
phasized elsewhere [Sin94]. Portable computing plat-
forms (general purpose computing engines such as lap-
tops or special purpose embedded processors) strive to
reduce the energy of computation in order to prolong the
battery life. The packaging and heat dissipation limi-
tations are another driving force behind the low energy
processor architecture and implementation trend.

In this paper, we assess the effectiveness of non-
lexicographic instruction ordering, in particular Gray or-
dering, in reducing address bus switching and system en-
ergy. There are several architecture level side-effects of
Gray address ordering that need to be evaluated. Specifi-
cally, an adverse impact on cache locality can negate any
energy gains derived from the lower address bus switch-
ing.

This change in the implementation is transparent to
the software. The only system component that needs
to be modified is the loader. A simplistic loader can
load an instruction originally at addressA at the address
gray(A). However, this poses a new optimization prob-
lem for the loader, to minimize the expected switching
over the program graph. We provide some algorithms
for this optimization problem as well, which have not
been implemented yet (Section 4).

Note that we will use termsenergyandpowerinter-
changeably since for a processor power is just the en-

�This work was supported in part by NSF grant #MIP9703702.

ergy per cycle times the clock frequency. Hence any
technique not explicitly changing clock frequency af-
fects both energy and power identically. What fraction
of processor and system energy is affected by reduced
address bus switching? Burd and Peters [BP94] and
Gonzalez and Horowitz [GH96] have profiled the energy
distribution of MIPS R3000 processor. Both the studies
are based on simulations of a VLSI design for the MIPS
R3000 architecture. Burd and Peters [BP94] compute
the switched capacitance per cycle as an estimate of en-
ergy. The switching frequency of capacitances depends
on the control signal, instruction and data correlations.
They simulate the MIPS R3000 architecture with several
real benchmark programs (from SPECint ’92 benchmark
suite) to derive a probability for switching for all the in-
ternal capacitive nodes. The total expected switched ca-
pacitance per clock cycle is 317 pF. The breakdown is
as follows: instruction cache (I-Cache) memory: 30%;
I-Cache control: 15%; Datapath: 28% with register
file accounting for 10%; and ALU & shifter for another
12%; Global buses: 3-4%; Controller: 10%; DCache:
8-9%. The program counter logic (next-PC) takes up
another� 4% energy. Note that the proposed Gray PC
(program counter counting in Gray sequence) reduces
energy for ICache address decoder and PC logic (and
some for global buses) which accounts for� 21% pro-
cessor energy.

These numbers did not include the switched capac-
itance for off-chip memory (address bus on the back-
plane). Assuming reasonable cachehit rates, and given
a 25pF external load, the external switched capacitance
per cycle is 272 pF! This is almost as high as the proces-
sor average switched capacitance of 317 pF. Hence, the
proposed Gray PC can potentially have a bigger impact
on the input/output energy than on the intra-processor
energy. We discuss in Section 5 potential impact of Gray
PC on the L1 instruction cache and L2 cache interface.

The literature on logic design for a Gray counter
and/or adder is sparse. We propose a design for a Gray
counter in Section 3. This design is being implemented
so that the counting energy of a Gray PC and a lexi-
cographic PC can be compared. Doran [Dor93] is the
most comprehensive reference on Gray adder design.
Altera corporation [Cor94] has an application brief deal-
ing with a Gray counter design. Note that in the rest
of the paper, we refer to binary reflected Gray code se-
quence by the term Gray sequence. We also discuss a
design for instruction cache decoder in order to better
exploit the low Hamming distances of Gray sequences
in Section 5. Section 2 describes the experimental setup



and results.
Su et al. [STD94] also use a Gray PC. They report

on the average address bus switching on an internal set
of programs, but do not consider other aspects of Gray
PC.

2 Experimentsand Results

Burd & Peters [BP94] note that the average switching
per program counter (PC) bit is a littl e over 7% over
a variety of SPECint ’92 benchmarks. Hence, the ex-
pected number of bit switchingsover a32 bit addressare
2.5. This is consistent with theobservation that an aver-
agebasic block’ssizeis4-5 instructions, which accounts
for about 2.3 least-significant bit switchings. The re-
maining switching comes with 20-25% frequency when
a non-sequential instruction such as a branch or proce-
dure call is encountered. Gray PC ensures that within a
basic block (and between basic blocks as well, as often
as possible), exactly one address bit switches through
the use of Gray sequencing in the PC. Assuming, we
can ensure Gray sequencing within all basic blocks, the
expected address bus switching based on back-of-the-
envelope calculations would be approximately1:2 (:2
accounts for switching due to non-sequential instruc-
tions).

The cache placement of instructions is based on the
lexicographic addresses. The locality of program exe-
cution is exploited to achieve high hit rates. The cache
blocks and sets are organized on the basis of contigu-
ous bits. For instance, the least significantk0 bits give
block-offset, thenext k1 bitsgive theset addressand the
remaining bits give the tag. This type of mapping re-
flects locality based on lexicographic ordering. It ispos-
sible that two instructions residing in conflicting blocks
in lexicographic ordering may not conflict in Gray or-
dering or vice versa. Hence we need to calibrate the hit
rates of the instruction cache under lexicographic and
Gray PCs. If the hit rate goes down significantly with a
Gray PC, the increased energy cost of memory accesses
might offset any gainsderived from reduced addressbus
switching.

To determine the number of PC bits that switch in a
Gray code PC versus a lexicographic PC and to deter-
mine any difference in cache performance between the
two encoding methods, we conducted our experimental
work with a modified version of sim-cache, one of the
simulation tools available in the SimpleScalar suite of
simulators[BAB96]. In addition to determining thetotal
number of switched bitswith each encoding method, we
also determined the number of times each of the eleven
least significant bits of the PC switch. Sim-cache uses
a 32 bit address to access 8 byte instructions. As a re-
sult, the three least significant bits are always zero. For
the remainder of this discussion we ignore bits 0-2 and
think of bits 3-10 as the eight least significant bits. To
measure differences in the cache performance, we cal-
culated miss rate for the level 1 instruction cache. For
purposes of simulation, we maintained the PC as a lex-
icographic binary number. We incremented the counter
and added offsets for jumps and branches in the usual
fashion. Beforeeach instruction memory access, includ-
ing program load and instruction fetch, weconverted the
PC value to Gray. With SPEC95 integer and FP bench-
marks, a Gray code PC produced approximately 40%
fewer instruction address bit transitions. Note that the

address bus transition frequency is similar over both the
integer and FP benchmarks. In Table 1 we present the
addressbit switching results. For both lexicographic and
Gray encoding weshow theaveragenumber of switched
bitsper instruction for theentireaddressand also for the
eight least significant bits. The final column shows the
percentage change in the total number of switched bits
when going from lexicographic encoding toGray encod-
ing.

The reduction in instruction address bit switches
confirms the observations made by Su et. al. In addi-
tion, we observe that the eight least significant bits ac-
count for 90-93% of all switched bits. This suggests the
possibility of implementing aPC that ispartially lexico-
graphic and partially Gray. The level 1 instruction cache
miss rates produced by the two encoding methods were
identical. We present these values in Table 2. We used
separate level 1 instruction and data caches. Both were
8 KB with 256, 32-byte direct mapped blocks. The 1
MB unified level 2 instruction and data cache had 4096,
4-way associative sets. We used 64 KB blocks and the
LRU replacement scheme.

3 Gray Counter Design

There are two general operations performed on the con-
tents of the PC, increment and addition of an offset for
jump or branch instruction. We begin by presenting
a Gray adder and follow with a Gray counter, which
is a specialized adder. Conceptually, addition of Gray
numbers is performed by first converting from Gray to
lexicographic, adding the numbers, and then converting
back to Gray. The disadvantage of this approach is that
the Gray to lexicographic conversion is performed be-
ginning with the MSB and working towards the LSB,
while addition is performed in the opposite direction.
The result is that two passes must be made through the
bits instead of the usual single pass. To reduce the time
necessary for the Gray to lexicographic conversion, we
limi t the Gray implementation to the eight least signifi-
cant bitsof thePC and use lexicographic for theremain-
ing high order bits. The interface between the Gray and
lexicographic sections is trivial. In addition, we include
a parity bit that indicates the parity of the Gray portion
of the PC and allows us to convert from Gray to lex-
icographic beginning with the LSB. The Gray to lexi-
cographic conversion, rather than the addition and con-
version back to Gray, is still the limiting factor of this
design. Wehave therefore divided theGray portion into
two nibbles. We convert the high order nibble to lexi-
cographic beginning with its MSB, progressing towards
theLSB. For the low order nibble, wework in theoppo-
sitedirection beginning with itsLSB. Theconversion to
lexicographic of the two nibbles is therefore performed
in parallel. Unlike Su et. al., we do not modify the off-
sets before loading the program into memory. As a re-
sult, we need to convert only the PC to lexicographic
before adding. Although this does not affect the speed
of the conversion, it does reduce the complexity of the
adder. For lexicographic addition, a full adder generates
sum and carry bits. Thesearecalculated with thefollow-
ing equations:

si = ai � bi � ci
ci+1 = aibi + ci(ai + bi)
Thesymbols areunderstood as follows:
ai andbi are the two bits being added.si is the sum



Lexicographic Gray
Benchmark Instr. count Switches Bits3-10 Switches Bits3-10 % change

per inst per inst
int:
cc1 264,897,677 2.3034 2.1832 1.4222 1.3126 -38.25
li 173,965,506 2.3358 2.1718 1.4246 1.3217 -39.01
go 132,917,038 2.2685 2.1504 1.3195 1.2338 -41.83
compress95 35,684,602 2.2812 2.1939 1.3860 1.3044 -39.24
m88ksim 494,917,870 2.3333 2.2338 1.3347 1.2681 -42.80
vortex 404,996 2.2661 2.1858 1.3242 1.2519 -41.56
FP:
swim 796,527,564 2.2343 2.1244 1.2327 1.1241 -44.83
wave5 4,515,144,715 2.1081 2.0595 1.1763 1.1538 -44.20

Table1: Average number of switched bits per instruction for lexicographic and Gray program counters

Benchmark Lexicographic Gray
int:
cc1 0.0986 0.0986
li 0.0260 0.0260
go 0.0854 0.0854
compress95 0.0005 0.0005
m88ksim 0.0867 0.0867
vortex 0.0715 0.0715
FP:
swim 0.0132 0.0132
wave5 0.0179 0.0179

Table2: Level 1 Instruction CacheMiss Rates

produced at positioni. ci andci+1 are the carry in and
carry out of positioni.

c0 = 0 for addition andc0 = 1 for subtraction.
Figure1 illustratesthedataflow within aGray adder.

In the top sequence (Figure 1 (a)) the conversion to lex-
icographic is completed before the addition can begin.
In the middle sequence (Figure 1 (b)), the conversion to
lexicographic is right to left, the addition runs in paral-
lel but slightly behind. In thebottom sequence (Figure1
(c)), the conversion to lexicographic of the two nibbles
is performed in parallel. The addition follows behind
the low order nibble conversion but still finishes ahead
because it is not delayed by the conversion of the high
order nibble.

The equations for a Gray adder are more compli-
cated. This reflects the need for code conversions be-
fore and after the addition. For the Gray adder, we are
adding a lexicographic number to a Gray number. In
the following equations we represent the bits of the lex-
icographic value with a, the Gray value with g, and the
lexicographic equivalent of the Gray value with b. We
usep to represent the parity bit. In addition to sum and
carry bits for each position, we must also determine the
new value of p. These are calculated with the following
equations:

si = ai � ai+1 � ci � ci+1 � gi
s7 = a7 � a8 � c7 � c8 � b7 � b8
ci+1 = aibi + ci(ai + bi)
pnew = a0 � c0 � pold
c0 = 0 for addition andc0 = 1 for subtraction. We

use a different equation for s7 becauseb7 is not derived
from b8.

For the low order nibble

bi = bi�1 � gi�1
b0 = p
For thehigh order nibble
bi = bi+1 � gi
b7 = g7
Note that we have assumed the bits are labelled 0-7

with0 being theLSB, sog7 istheMSB of theGray num-
ber andc8 is the carry out of the most significant posi-
tion. c8 servesasthecarry in for thelexicographic adder
used to sum the higher order bits. It is possible with a
Gray adder, as with a lexicographic adder, to implement
carry lookahead across a nibble. The only difference is
that we must convert to lexicographic before computing
thecarry generate and carry propagate signals.

With a lexicographic counter, increment isgenerally
performed by a half-adder. This is possible because, for
increment, the number being added to the PC consists
of a 1 for the LSB and 0’s for all higher bits. Because
of this, the equations for both lexicographic and Gray
adders are asimplification of those given above. For a
lexicographic counter, theequations areas follows:

si = bi � ci
ci+1 = cibi
c0 = 1
For theGray counter, they areas follows:
si = (cibi)� gi
ci+1 = cibi
c0 = 1
pnew = pold
For the low order nibble
bi = bi�1 � gi�1
b0 = p
For thehigh order nibble
bi = bi+1 � gi
b7 = g7

4 Loader

Loader’s task is to assign instructions from the binary
executable to the memory address space. Traditionally,
it is a straightforward task since the mapping from the
original program sequence to theaddress sequence isan
identity (with a linear shift). However, with Gray se-
quencing, the loader must perform extrawork.

A simple loader can takean instruction from address
i in the program (ith instruction in the static program
order) and load it at addressbase+gray(i)wherebase
is the base address of the text segment, andgray(i) is
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the binary string in the ith position in a Gray sequence.
This is what wehavecurrently implemented.

However, there is a bigger opportunity for address
bit switching reduction at the loader stage. The simplis-
tic approach outlined above results in asinglebit switch
for the program flow within a basic block. The number
of switched bits is not controlled (is comparable to the
lexicographic PC scheme) for control flow out of basic
blocks (inter basic block transitions). An example of a
program flow graph is shown in Figure 2 where nodes
represent basic blocks. Each of the edges can be as-

signed a probability based on static program profiling.
Let p(BBi; B Bj) be the probability of the transition
from the basic blockBBi to the basic blockBBj . Let
theaddress assigned to abasic blockBB be denoted by
A(BB). Let h(x;y ) be the Hamming distance of two
binary stringsx andy. Then the following optimization
problem models the loader’s task.
Input : A directed graph.
Objective: Find a memory address (for relocatability, a
relativeaddress)A(BB) for each Basic blockBB such
that
X

ov erallBB i;BBj

h(A(BBi); A(BBj)) � p(BBi; B Bj)

isminimized.
If profiling is not feasible, we can minimizeP
ov erallBB i;BBj

h(A(BBi); A(BBj)).

We have represented the Gray chain of addresses
assigned to the instruction in a basic block BB by a
single addressA(BB) in order to bring out the sim-
ilarities in this optimization problem and the low en-
ergy/power state machine synthesis. A common for-
mulation of state assignment problem for low energy
is to minimize

P
si;sj2S

h(si; sj) � p(si; sj), where

p(si; sj) is the steady state probability of the transition
between statessi andsj , h(si; sj) is the Hamming dis-
tance between the codes for the two states. We have
developed several algorithms [Tya96], [SCT97] for low
power state assignment. Our intent is to modify one of
them [Tya96] to handle theaddress assignment problem
for the loader. The main problem with this approach
is the size of the input problem. The state assignment
methods take time typically close to quadratic (or close
toN2 logN ) in number of statesN . A typical statema-
chine has about 50-100 states. These approaches can
turn out tobeimpractically expensivefor largeprograms
with hundreds of thousands of basic blocks. Hence, we



are also looking into heuristics linear in the number of
basic blocks. Dichotomy based state assignment meth-
ods such as [TPCD94] may be adaptable for an efficient
loader algorithm.

5 FutureWork and Conclusions

Thework reported is still preliminary. There areseveral
interesting threads that we plan to pursue in the future.
The reduced address bus switching derived from Gray
sequencing isdirectly visibleat the I-cache. However, it
is the L1 and L2 cache/memory interface that provides
high capacitances for theaddress bus. But theaddresses
that appear at the L1/L2 interface are already filtered
based on thecache locality characteristics. AretheGray
address sequences any better than the lexicographic ad-
dress sequences at the L1/L2 interface? Are there any
additional constraintson theloader optimization that can
reduce the Hamming distance of upper address bits for
the sets of addresses likely to collide in the cache? An
additional complexity is that at the L1/L2 interface the
instruction and data addresses are unified. This effect
wil l further increase the average Hamming distance. Is
Harvard architecture a better choice in order to separate
the instruction and data data address sequences and re-
tain their low hamming distances?

The decoder in the instruction cache accounts for a
significant fraction of energy consumed in the instruc-
tion cache [BP94]. However, a typical decoder design is
precharged. We plan to experiment with a hybrid static
and dynamic decoder design that leveragesthelow ham-
ming distance in theaddresses to reduce energy.
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5DOHLJK��1RUWK�&DUROLQD������������

^PFWREXUH��FRQWH`#HRV�QFVX�HGX

0DWW�5HLOO\

'LJLWDO�(TXLSPHQW�&RUSRUDWLRQ

6KUHZVEXU\��0DVVDFKXVHWWV

UHLOO\#URFN�HQHW�GHF�FRP

$EVWUDFW

3RZHU�GLVVLSDWLRQ�LV�UDSLGO\�EHFRPLQJ�D�PDMRU�GHVLJQ

FRQFHUQ�IRU�FRPSDQLHV�LQ�WKH�KLJK�HQG�PLFURSURFHVVRU

PDUNHW���7KH�SUREOHP�QRZ�LV�WKDW�GHVLJQHUV�DUH

UHDFKLQJ�WKH�OLPLWV�RI�FLUFXLW�DQG�PHFKDQLFDO

WHFKQLTXHV�IRU�UHGXFLQJ�SRZHU�GLVVLSDWLRQ���+HQFH�

ZH�PXVW�WXUQ�RXU�DWWHQWLRQ�WR�DUFKLWHFWXUDO�DSSURDFKHV

WR�VROYLQJ�WKLV�SUREOHP���,Q�WKLV�ZRUN�ZH�SURSRVH�D

PHWKRG�RI�LQVWUXFWLRQ�VFKHGXOLQJ�ZKLFK�OLPLWV�WKH

QXPEHU�RI�LQVWUXFWLRQV�ZKLFK�FDQ�EH�VFKHGXOHG�LQ�D

JLYHQ�F\FOH�EDVHG�RQ�VRPH�SUHGHILQHG�SHU�F\FOH

HQHUJ\�GLVVLSDWLRQ�WKUHVKROG���7KURXJK�WKH�XVH�RI�D

PDFKLQH�GHVFULSWLRQ�>�@��>�@�ZH�DUH�DEOH�WR�GHILQH�D

VSHFLILF�SURFHVVRU�DUFKLWHFWXUH�DQG�DORQJ�ZLWK�WKDW�DQ

HQHUJ\�GLVVLSDWLRQ�YDOXH�DVVRFLDWHG�ZLWK�HDFK

IXQFWLRQDO�XQLW�GHILQHG�WKHUHLQ���7KURXJK�FDUHIXO

LQVSHFWLRQ��ZH�FDQ�GHILQH�WKH�F\FOH�WKUHVKROG�VXFK

WKDW�WKH�PD[LPDO�DPRXQW�RI�HQHUJ\�GLVVLSDWLRQ�FDQ�EH

VDYHG�IRU�D�JLYHQ�SURJUDP�ZKLOH�LQFXUULQJ�OLWWOH�WR�QR

SHUIRUPDQFH�LPSDFW�

����,QWURGXFWLRQ

3RZHU�GLVVLSDWLRQ�LV�EHFRPLQJ�D�YLWDO�GHVLJQ�LVVXH�LQ

WRGD\¶V�KLJK�HQG�PLFURSURFHVVRU�LQGXVWU\���7ZR

H[DPSOHV�RI�KLJK�HQG�SURFHVVRUV�WKDW�VXIIHU�IURP�KLJK

OHYHOV�RI�SRZHU�GLVVLSDWLRQ�DUH�WKH�'(&������D�DQG

��������7KH������D�UXQV�DW�D�FORFN�VSHHG�RI����

0+]�ZKLOH�GLVVLSDWLQJ������:DWWV�RI�SRZHU���7KH

������VXIIHUV�HYHQ�ZRUVH�ZLWK�LQWHUQDO�FORFN�VSHHGV

ZKLFK�FDQ�UHDFK�����0+]�ZKLOH�GLVVLSDWLQJ���

:DWWV��7KH�SUREOHP�QRZ�LV�WKDW�DV�SRZHU�GLVVLSDWLRQ

FRQWLQXHV�WR�ULVH��ZH�DUH�UDSLGO\�DSSURDFKLQJ�D�SRLQW

ZKHUH�ZH�ZLOO�EH�IRUFHG�WR�XVH�FRROLQJ�WHFKQLTXHV

ZKLFK�DUH�QRW�VXLWDEOH�IRU�WRGD\¶V�SHUVRQDO

FRPSXWHUV��ZRUNVWDWLRQV��DQG�ORZ�HQG�WR�PLG�UDQJH

VHUYHUV�VXFK�DV�OLTXLG�LPPHUVLRQ�RU�MHW�LPSLQJHPHQW�

&LUFXLW�GHVLJQHUV�DQG�WKHUPDO�HQJLQHHUV�KDYH

SURGXFHG�VRPH�H[FHOOHQW�WHFKQLTXHV�IRU�NHHSLQJ

SRZHU�GLVVLSDWLRQ�WR�D�PLQLPXP�LQ�UHFHQW�\HDUV�

&ORFN�JDWLQJ��SRZHU�VXSSO\�UHGXFWLRQ��VPDOOHU

SURFHVV�WHFKQRORJ\��DQG�VWDWH�RI�WKH�DUW�SDFNDJLQJ�DUH

DOO�H[DPSOHV�RI�WKH�DSSURDFKHV�WKDW�KDYH�EHHQ�XVHG�WR

GDWH�WR�HOLPLQDWH�WKH�SRZHU�GLVVLSDWLRQ�SUREOHP�

+RZHYHU��WKHVH�DSSURDFKHV�DUH�UHDFKLQJ�WKHLU

OLPLWDWLRQV�DV�WKH�GHPDQG�IRU�SURFHVVRUV�ZLWK�KLJKHU

FORFN�VSHHGV�DQG�GHQVHU�WUDQVLVWRU�FRXQWV�FRQWLQXHV�WR

ULVH�

,Q�WKLV�ZRUN�ZH�SURSRVH�DQ�DUFKLWHFWXUDO�FRPSLOHU

DSSURDFK�WRZDUGV�VROYLQJ�WKLV�SUREOHP���2QH�ZD\�ZH

FDQ�UHGXFH�SHDN�SRZHU�GLVVLSDWLRQ�LV�E\�SUHYHQWLQJ

WKH�RFFXUUHQFH�RI�FXUUHQW�VSLNHV�GXULQJ�SURJUDP

H[HFXWLRQ���,I�D�UHJLRQ�RI�FRGH�KDV�D�KHDY\�SURILOH

ZHLJKW�DQG�FRQWDLQV�RQH�RU�PRUH�LQVWUXFWLRQV�ZKLFK

UHTXLUH�VLJQLILFDQWO\�PRUH�HQHUJ\�WKDQ�RWKHUV��WKHQ

WKH�H[HFXWLRQ�RI�WKLV�UHJLRQ�ZLOO�OHDG�WR�UHSHDWHG

FXUUHQW�VSLNHV�LQ�WKH�SURFHVVRU�ZKLFK�UHVXOWV�LQ

LQFUHDVHG�SRZHU�GLVVLSDWLRQ���2XU�JRDO�LV�WR�SUHYHQW

WKLV�IURP�RFFXUULQJ�E\�OLPLWLQJ�WKH�DPRXQW�RI�HQHUJ\

WKDW�FDQ�EH�GLVVLSDWHG�LQ�DQ\�JLYHQ�F\FOH���%HFDXVH�RI

VFKHGXOH�VODFN��WKLV�RIWHQ�UHVXOWV�LQ�OLWWOH�RU�QR

SHUIRUPDQFH�LPSDFW���,Q�RXU�VFKHGXOLQJ�PRGHO��ZH

VFKHGXOH�DV�PDQ\�LQVWUXFWLRQV�DV�SRVVLEOH�LQ�D�JLYHQ

F\FOH�XQWLO�WKH�F\FOH�WKUHVKROG�LV�YLRODWHG���2QFH�WKDW

SRLQW�LV�UHDFKHG��ZH�PRYH�RQ�WR�WKH�QH[W�F\FOH�DQG

UHVXPH�VFKHGXOLQJ�ZLWK�WKH�LQVWUXFWLRQ�WKDW�FDXVHG

WKH�YLRODWLRQ�LQ�WKH�SUHYLRXV�F\FOH�

������3UHYLRXV�:RUN

7KHUH�KDYH�EHHQ�SUHYLRXV�DWWHPSWV�DW�XVLQJ

VFKHGXOLQJ�WHFKQLTXHV�WR�UHGXFH�WRWDO�SRZHU

FRQVXPSWLRQ���6X��7VXL��DQG�'HVSDLQ�SURSRVHG�D

WHFKQLTXH�ZKLFK�FRPELQHG�*UD\�FRGH�DGGUHVVLQJ�DQG

D�PHWKRG�FDOOHG�FROG�VFKHGXOLQJ�WR�UHGXFH�WKH�DPRXQW

RI�VZLWFKLQJ�DFWLYLW\�LQ�WKH�FRQWURO�SDWK�RI�KLJK

SHUIRUPDQFH�SURFHVVRUV��>�@���8VHG�LQ�FRQMXQFWLRQ

ZLWK�WKH�WUDGLWLRQDO�OLVW�VFKHGXOLQJ�DOJRULWKP��FROG

VFKHGXOLQJ�VFKHGXOHV�LQVWUXFWLRQV�LQ�WKH�UHDG\�OLVW

EDVHG�RQ�KLJKHVW�SULRULW\���3ULRULW\�RI�DQ�LQVWUXFWLRQ�LV

GHWHUPLQHG�E\�WKH�SRZHU�FRVW�ZKHQ�WKH�LQVWUXFWLRQ�LQ

TXHVWLRQ�LV�VFKHGXOHG�IROORZLQJ�WKH�ODVW�LQVWUXFWLRQ�

7KH�SRZHU�FRVW�LV�WDNHQ�IURP�D�SRZHU�FRVW�WDEOH



ZKLFK�KROGV�SRZHU�HQWULHV��6�,�-���FRUUHVSRQGLQJ�WR

WKH�VZLWFKLQJ�DFWLYLW\�FDXVHG�E\�WKH�H[HFXWLRQ�RI

LQVWUXFWLRQ�,�IROORZHG�E\�LQVWUXFWLRQ�-���,QVWUXFWLRQV�LQ

WKH�UHDG\�OLVW�ZLWK�ORZHU�SRZHU�FRVWV�KDYH�KLJKHU

SULRULW\���$IWHU�HDFK�LQVWUXFWLRQ�LV�VFKHGXOHG��WKH

SRZHU�FRVW�RI�WKH�UHPDLQLQJ�LQVWUXFWLRQV�LQ�WKH�UHDG\

OLVW�KDV�WR�EH�UHFDOFXODWHG�EHIRUH�VFKHGXOLQJ�WKH�QH[W

LQVWUXFWLRQ���7KH�GUDZEDFNV�WR�WKH�FROG�VFKHGXOLQJ

DSSURDFK�DUH�REYLRXV���)LUVW��D�ODUJH�WDEOH�LV�UHTXLUHG

WR�KROG�SRZHU�FRVWV�IRU�DOO�SRVVLEOH�LQVWUXFWLRQ

FRPELQDWLRQV���)RU�D�KLJK�SHUIRUPDQFH�SURFHVVRU�ZLWK

D�FRPSOH[�LQVWUXFWLRQ�VHW��WKLV�WDEOH�FDQ�EH�H[WUHPHO\

ODUJH���6HFRQG��WKLV�WDEOH�PXVW�EH�DFFHVVHG�IRU�DOO

LQVWUXFWLRQV�LQ�WKH�UHDG\�OLVW�DIWHU�HDFK�QHZ

LQVWUXFWLRQ�LV�VFKHGXOHG���7KLV�ZLOO�PDNH�WKH

VFKHGXOLQJ�SURFHVV�LWVHOI�VORZHU���+RZHYHU��6X��7VXL�

DQG�'HVSDLQ�VKRZ�WKDW�WKH�FRPELQDWLRQ�RI�*UD\�FRGH

DGGUHVVLQJ�DQG�FROG�VFKHGXOLQJ�UHVXOWV�LQ�D�������

UHGXFWLRQ�LQ�VZLWFKLQJ�DFWLYLW\�IRU�WKH�FRQWURO�SDWK�

$QRWKHU�VFKHGXOLQJ�WHFKQLTXH�IRU�UHGXFLQJ�SRZHU

FRQVXPSWLRQ�ZDV�SUHVHQWHG�E\�7LZDUL��0DOLN��DQG

:ROIH��>�@��>�@���7KH�JRDO�LQ�WKHVH�ZRUNV�LV�WR

VFKHGXOH�FRGH�VXFK�WKDW�LQVWUXFWLRQV�DUH�PRUH

MXGLFLRXVO\�FKRVHQ�DV�RSSRVHG�WR�LQVWUXFWLRQ

UHRUGHULQJ���,Q�WKLV�DSSURDFK��DFWXDO�FXUUHQW

PHDVXUHPHQWV�ZHUH�WDNHQ�RQ�JHQHUDO�SXUSRVH

SURFHVVRUV�DQG�'63�SURFHVVRUV���&XUUHQW�ZDV

PHDVXUHG�IRU�HDFK�LQVWUXFWLRQ�DQG�D�SRZHU�WDEOH�EXLOW

IRU�VLQJOH�LQVWUXFWLRQ�YDOXHV�DV�ZHOO�DV�YDOXHV�IRU

FRPPRQ�SDLUHG�LQVWUXFWLRQV���7KHQ�EDVHG�RQ�WKHVH

PHDVXUHPHQWV��WHVW�SURJUDPV�ZHUH�UHVFKHGXOHG�WR�XVH

LQVWUXFWLRQV�ZKLFK�UHVXOW�LQ�OHVV�SRZHU�FRQVXPSWLRQ�

7KLV�VHOHFWLRQ�LV�EDVHG�RQ�D�QXPEHU�RI�LVVXHV�VXFK�DV

UHJLVWHU�DFFHVVHV�DV�RSSRVHG�WR�PHPRU\�DFFHVVHV�DQG

ORZHU�ODWHQF\�LQVWUXFWLRQV���7LZDUL��HW�DO���DOVR�WDNH

LQWR�FRQVLGHUDWLRQ�ZKDW�WKH\�WHUP�FLUFXLW�VWDWH

RYHUKHDG�ZKLFK�LV�WKH�VZLWFKLQJ�DFWLYLW\�EHWZHHQ�D

SDLU�RI�VSHFLILF�LQVWUXFWLRQV���,Q�>�@�DQG�>�@��WKH\�DUJXH

WKDW�IRU�WKH�SURFHVVRUV�WHVWHG�WKDW�FLUFXLW�VWDWH

RYHUKHDG�LV�LQVLJQLILFDQW���+RZHYHU��D�GHWDLOHG

DQDO\VLV�RI�DQRWKHU�'63�SURFHVVRU�>�@��IRXQG�WKDW

FLUFXLW�VWDWH�RYHUKHDG�ZDV�PXFK�PRUH�VLJQLILFDQW�LQ

GHWHUPLQLQJ�WKH�HQHUJ\�FRQVXPSWLRQ�RI�D�SDLU�RI

LQVWUXFWLRQV���7KURXJK�WKLV�DSSURDFK�RI�SK\VLFDO

PHDVXUHPHQW�DQG�FRGH�UHVFKHGXOLQJ��HQHUJ\�VDYLQJV

XS�WR�����ZHUH�DFKLHYHG�RQ�WKH�EHQFKPDUNV�XVHG�

$JDLQ�WKH�SUREOHPV�ZLWK�WKLV�DSSURDFK�DUH�JODULQJ�

7KH�SURFHVV�RI�KDQG�PHDVXULQJ�FXUUHQW�IRU�DOO

LQVWUXFWLRQV�DQG�LQVWUXFWLRQ�SDLUV��ZKLOH�H[WUHPHO\

YDOXDEOH��LV�H[WUHPHO\�WLPH�FRQVXPLQJ�HVSHFLDOO\�LQ

OLJKW�RI�WKH�HQRUPRXV�LQVWUXFWLRQ�VHWV�XVHG�LQ�VRPH�RI

WRGD\¶V�KLJK�SHUIRUPDQFH�SURFHVVRUV���$OVR��OLNH�6X�

HW�DO���WKHUH�LV�D�ODUJH�WDEOH�QHHGHG�WR�VWRUH�DOO�SRZHU

YDOXHV���7KLV�FDQ�OHDG�WR�FRVWO\�DFFHVVHV�GXULQJ�WKH

VFKHGXOLQJ�SURFHVV�

7KH�VFKHGXOLQJ�DSSURDFK�SURSRVHG�KHUH�LV�IRFXVHG�RQ

UHGXFLQJ�SRZHU�GLVVLSDWLRQ�DV�RSSRVHG�WR�SRZHU

FRQVXPSWLRQ���2QH�DGYDQWDJH�WKDW�RXU�DSSURDFK

SURYLGHV�LV�WKDW�ZH�FDQ�H[SOLFLWO\�FRQWURO�WKH�DPRXQW

RI�SRZHU�GLVVLSDWLRQ�DOORZHG�IRU�DQ\�JLYHQ�VFKHGXOH�

7KH�WZR�SULRU�ZRUNV�VLPSO\�OLPLW�SRZHU�FRQVXPSWLRQ

DV�EHVW�WKH\�FDQ���,Q�RXU�DSSURDFK�ZH�GHWHUPLQH�KRZ

PXFK�SRZHU�LV�GLVVLSDWHG�ZKLFK�JLYHV�XV�WUHPHQGRXV

IOH[LELOLW\�LQ�WHUPV�RI�EHLQJ�DEOH�WR�FRQWURO�GLVVLSDWLRQ

IRU�GLIIHUHQW�DUFKLWHFWXUHV�

7KH�UHPDLQGHU�RI�WKLV�ZRUN�SUHVHQWV�RXU�PHWKRG�RI

ORZ�SRZHU�VFKHGXOLQJ���6HFWLRQ���SUHVHQWV�WKH

DOJRULWKP�LWVHOI�DORQJ�ZLWK�D�GLVFXVVLRQ�RI�WKH

PDFKLQH�GHVFULSWLRQ�PHFKDQLVP��6HFWLRQ���SUHVHQWV

WKH�UHVXOWV�RI�RXU�SUHOLPLQDU\�LQYHVWLJDWLRQ�LQWR�WKLV

DSSURDFK��DQG�LQ�6HFWLRQ���ZH�FRQFOXGH�WKH�SDSHU�DQG

SUHVHQW�SODQV�IRU�IXWXUH�ZRUN���$OO�VWXGLHV�SUHVHQWHG

LQ�WKLV�SDSHU�ZHUH�SHUIRUPHG�XVLQJ�WKH�H[SHULPHQWDO

/(*2�FRPSLOHU�GHVLJQHG�E\�WKH�7,1.(5�5HVHDUFK

*URXS�DW�1RUWK�&DUROLQD�6WDWH�8QLYHUVLW\� ���

����/RZ�3RZHU�6FKHGXOLQJ

7KH�JRDO�RI�WUDGLWLRQDO�VFKHGXOLQJ�DOJRULWKPV�LV�WR

LPSURYH�SHUIRUPDQFH�LQ�WHUPV�RI�H[HFXWLRQ�WLPH�

7KLV�FDQ�EH�GRQH�LQ�D�QXPEHU�RI�ZD\V���6XFK�PRGHUQ

DSSURDFKHV�DV�VXSHUEORFN�VFKHGXOLQJ�>�@��K\SHUEORFN

VFKHGXOLQJ�>�@��DQG�WUHHJLRQ�VFKHGXOLQJ�>�@�IRFXV

PDLQO\�RQ�LQFUHDVLQJ�SHUIRUPDQFH�WKURXJK�LQFUHDVLQJ

WKH�DPRXQW�RI�LQVWUXFWLRQ�OHYHO�SDUDOOHOLVP�LQ

SURJUDP�FRGH���,Q�RUGHU�WR�VFKHGXOH�IRU�UHGXFHG

SRZHU�GLVVLSDWLRQ��ZH�DUH�IRUFHG�WR�VDFULILFH�VRPH�RI

WKH�SHUIRUPDQFH�JDLQV�SURYLGHG�E\�WKHVH�VFKHGXOLQJ

DOJRULWKPV�LQ�RUGHU�WR�REWDLQ�WKH�GHVLUHG�UHGXFWLRQ�LQ

SRZHU�GLVVLSDWLRQ���+RZHYHU��WKH�VFKHGXOLQJ

DSSURDFK�SUHVHQWHG�KHUH�KDV�VKRZQ�WKDW�VLJQLILFDQW

HQHUJ\�VDYLQJV�FDQ�EH�REWDLQHG�ZLWK�PLQLPDO

UHGXFWLRQ�LQ�SURJUDP�SHUIRUPDQFH�

,Q�WKLV�VHFWLRQ�WKH�PHWKRG�EHKLQG�RXW�DSSURDFK�ZLOO

EH�SUHVHQWHG���)LUVW�ZH�ZLOO�GLVFXVV�WKH�PDFKLQH

GHVFULSWLRQ�PHFKDQLVP�DQG�KRZ�HQHUJ\�YDOXHV�DUH

GHILQHG�WKHUHLQ���)ROORZLQJ�ZLOO�EH�D�GLVFXVVLRQ�RI�WKH

VFKHGXOLQJ�DOJRULWKP�LWVHOI�

������0'(6�0DFKLQH�'HVFULSWLRQ

:H�XVH�WKH�0'(6�PDFKLQH�GHVFULSWLRQ�ODQJXDJH

GHYHORSHG�DW�WKH�8QLYHUVLW\�RI�,OOLQRLV�>�@��>�@�DV�WKH

EDVLV�IRU�GHILQLQJ�WKH�DUFKLWHFWXUH�IRU�ZKLFK�ZH�DUH

VFKHGXOLQJ���:H�KDYH�EXLOW�WKH�0'(6�HQYLURQPHQW

LQWR�WKH�/(*2�FRPSLOHU�ZKLFK�DOORZV�XV�JUHDW

IOH[LELOLW\�LQ�GHILQLQJ�QHZ��H[SHULPHQWDO

DUFKLWHFWXUHV���,Q�DGGLWLRQ�LW�SURYLGHV�D�QLFH

PHFKDQLVP�IRU�GHILQLQJ�QHZ�PDFKLQH�VSHFLILF

SDUDPHWHUV�VXFK�DV�HQHUJ\�GLVVLSDWLRQ�YDOXHV���,Q�WKH

0'(6�GHVFULSWLRQ��ZH�DUH�DEOH�WR�GHILQH�KDUGZDUH

UHVRXUFHV�VXFK�DV�UHJLVWHUV��UHJLVWHU�ILOHV��GLIIHUHQW

W\SHV�RI�IXQFWLRQDO�XQLWV��HWF���,Q�DGGLWLRQ�ZH�FDQ

GHILQH�HDFK�RSHUDWLRQ�DQG�WKH�IXQFWLRQDO�XQLWV�WKDW�LW



FDQ�EH�H[HFXWHG�RQ���,W�LV�LQ�WKLV�GHVFULSWLRQ�WKDW�ZH

GHILQH�WKH�HQHUJ\�GLVVLSDWLRQ�YDOXHV�DVVRFLDWHG�ZLWK

HDFK�RI�WKH�PDFKLQH¶V�IXQFWLRQDO�XQLWV���2QFH�WKHVH

QXPEHUV�DUH�GHILQHG��WKH�0'(6�HQYLURQPHQW�EXLOGV

D�GDWD�VWUXFWXUH�WKDW�FRQWDLQV�WKH�HQHUJ\�LQIRUPDWLRQ�

7KHQ��IRU�HDFK�LQVWUXFWLRQ��WKH�VFKHGXOHU�TXHULHV�WKH

0'(6�WR�GHWHUPLQH�ZKLFK�)8�WKH�LQVWUXFWLRQ�LV�WR�EH

VFKHGXOHG�RQ���2QFH�WKH�VFKHGXOHU�NQRZV�ZKLFK�)8

WR�VFKHGXOHU�RQ��LW�TXHULHV�WKH�0'(6�DJDLQ�WR�JHW�WKH

HQHUJ\�GLVVLSDWLRQ�YDOXH�DVVRFLDWHG�ZLWK�WKH�VSHFLILHG

)8�

)RU�WKLV�SDUWLFXODU�VWXG\�WKH�HQHUJ\�YDOXHV�XVHG�LQ�WKH

0'(6�GHVFULSWLRQV�ZHUH�REWDLQHG�IURP�DFWXDO�SRZHU

VLPXODWLRQV�UXQ�RQ�GLIIHUHQW�IXQFWLRQ�XQLW�W\SHV

GHVLJQHG�DW�'LJLWDO�(TXLSPHQW�&RUSRUDWLRQ���7KH

QXPEHUV�SURYLGHG�ZHUH�DEVWUDFWHG�D�ELW�LQ�RUGHU�QRW

WR�UHYHDO�SURSULHWDU\�LQIRUPDWLRQ��EXW�DUH�DFFXUDWH

HQRXJK�WR�SURYLGH�UHOLDEOH�UHVXOWV�

������6FKHGXOLQJ�$OJRULWKP

7KH�VFKHGXOLQJ�DOJRULWKP�SUHVHQWHG�KHUH�LV�EDVHG�RQ

WKH�WUDGLWLRQDO�OLVW�VFKHGXOLQJ�DOJRULWKP���2QFH�WKH

'$*�KDV�EHHQ�EXLOW�IRU�D�VSHFLILF�UHJLRQ��WKH�OLVW

VFKHGXOHU�EXLOGV�WKH�UHDG\�OLVW�DQG�EHJLQV�VFKHGXOLQJ

LQVWUXFWLRQV�EDVHG�RQ�GHSHQGHQFH�KHLJKW���&XUUHQWO\

ZH�DUH�RQO\�VFKHGXOLQJ�LQVWUXFWLRQV�DW�WKH�EDVLF�EORFN

OHYHO���2QFH�DQ�LQVWUXFWLRQ�KDV�EHHQ�FOHDUHG�WR�EH

VFKHGXOHG�DQG�DVVLJQHG�WR�WKH�SURSHU�)8��WKH�)8¶V

HQHUJ\�GLVVLSDWLRQ�YDOXH�LV�TXHULHG�E\�WKH�OLVW

VFKHGXOHU�IURP�WKH�0'(6���7KH�OLVW�VFKHGXOHU�WKHQ

DGGV�WKH�YDOXH�SURYLGHG�WR�WKH�HQHUJ\�WRWDO�IRU�WKH

FXUUHQW�F\FOH���,I�WKH�WRWDO�H[FHHGV�WKH�WKUHVKROG

GHILQHG��WKHQ�WKH�VFKHGXOHU�TXLWV�VFKHGXOLQJ�IRU�WKH

FXUUHQW�F\FOH�DQG�EHJLQV�VFKHGXOLQJ�IRU�WKH�QH[W�F\FOH

ZLWK�WKH�LQVWUXFWLRQ�WKDW�FDXVHG�WKH�YLRODWLRQ�LQ�WKH

SUHYLRXV�RQH���,I�WKH�OLVW�VFKHGXOHU�GRHV�QRW�GHWHFW�D

YLRODWLRQ��LW�SURFHHGV�QRUPDOO\�

7KH�UHVXOWV�SUHVHQWHG�LQ�WKH�IROORZLQJ�VHFWLRQ�VKRZ

WKDW�WKLV�LV�D�SRZHUIXO�WHFKQLTXH�IRU�UHGXFLQJ�SRZHU

GLVVLSDWLRQ���:H�DUH�FXUUHQWO\�LQ�WKH�SURFHVV�RI

LQYHVWLJDWLQJ�IXUWKHU�HQKDQFHPHQWV�WR�WKH�FXUUHQW

LPSOHPHQWDWLRQ�

����([SHULPHQWDO�5HVXOWV

7KH�VWXGLHV�SHUIRUPHG�VR�IDU�ZLWK�RXU�VFKHGXOHU�KDYH

EHHQ�UXQ�HQWLUHO\�RQ�EDVLF�EORFN�FRGH�RQ�DQ���LVVXH

9/,:�DUFKLWHFWXUH�GHILQHG�DV�7LQNHU���ZKLFK

FRQWDLQV�WKUHH�LQWHJHU�$/8�XQLWV����JHQHUDO�SXUSRVH

IORDWLQJ�SRLQW�XQLWV��WZR�ORDG�VWRUH�XQLWV��DQG�RQH

EUDQFK�XQLW���$OO�UHVXOWV�JLYHQ�LQ�WKLV�VHFWLRQ�DUH�IRU

WKH�63(&LQW���VXLWH�RI�EHQFKPDUNV���6R�IDU��ZH�KDYH

IRXQG�WKDW�FDUHIXO�GHWHUPLQDWLRQ�RI�WKH�SHU�F\FOH

HQHUJ\�WKUHVKROG�FDQ�UHVXOW�LQ�VLJQLILFDQW�VDYLQJV�LQ

WHUPV�RI�RYHUDOO�HQHUJ\�YLRODWLRQV�DQG�WRWDO�HQHUJ\

VDYHG�RYHU�D�JLYHQ�EHQFKPDUN���7KH�WKUHVKROG�FDQ

WDNH�RQ�DQ\�YDOXH�HTXDO�RU�JUHDWHU�WR�WKH�ODUJHVW

HQHUJ\�YDOXH�DVVRFLDWHG�ZLWK�DQ\�GHILQHG�)8���$W�WKH

ORZ�HQG�RI�WKH�WKUHVKROG�VSHFWUXP��ZH�VHH�WKH

RSWLPXP�DPRXQW�RI�HQHUJ\�VDYLQJV���+RZHYHU�

FKRRVLQJ�H[WUHPHO\�ORZ�SRZHU�WKUHVKROGV�ZLOO�UHVXOW

LQ�D�ODUJH�LPSDFW�RQ�SURJUDP�SHUIRUPDQFH�LQ�WHUPV�RI

WRWDO�F\FOH�FRXQW���,Q�FRQWUDVW��VHOHFWLQJ�H[WUHPHO\

KLJK�WKUHVKROG�YDOXHV�FDQ�UHVXOW�LQ�OLWWOH�WR�QR�HQHUJ\

VDYLQJV���7KH�LGHDO�LV�WR�ILQG�WKH�SRLQW�DW�ZKLFK

HQHUJ\�VDYLQJV�DUH�VLJQLILFDQW�ZKLOH�PDLQWDLQLQJ

SURJUDP�SHUIRUPDQFH���)LJXUHV���DQG���VKRZ�UHVXOWV

IRU�WZR�WHVW�FDVHV�LQ�ZKLFK�ZH�FKRVH�HQHUJ\

WKUHVKROGV�RI����DQG����Q-�SHU�F\FOH���)LJXUH���VKRZV

WKH�WRWDO�DPRXQW�RI�HQHUJ\�YLRODWLRQV�VDYHG�E\�XVLQJ

WKH�SURSRVHG�ORZ�SRZHU�VFKHGXOLQJ�WHFKQLTXH���,Q

JHQHUDO��DV�WKH�WKUHVKROG�GHFUHDVHV��WKH�QXPEHU�RI

WRWDO�YLRODWLRQV�VDYHG�LQFUHDVHV���+RZHYHU��WKH�FRVW�LV

LQFUHDVHG�H[HFXWLRQ�WLPH���:H�IRXQG�WKDW�E\

LQFUHDVLQJ�WKH�WKUHVKROG�IURP���Q-�WR�����WKDW�ZH

FRXOG�VLJQLILFDQWO\�UHGXFH�WKH�SHUIRUPDQFH�LPSDFW

ZKLOH�PDLQWDLQLQJ�VLJQLILFDQW�RYHUDOO�HQHUJ\�VDYLQJV�

7KH�RYHUDOO�LPSURYHPHQW�LQ�H[HFXWLRQ�WLPH�UDQJHG

IURP�������IDVWHU�IRU�����LMSHJ�WR������IDVWHU�IRU

����OL�

�7KH�UHGXFWLRQ�LQ�VDYLQJV�LQ�WRWDO�HQHUJ\�YLRODWLRQV

DQG�WRWDO�HQHUJ\�LV�LQYHUVHO\�SURSRUWLRQDO�WR�WKH

DPRXQW�RI�SHUIRUPDQFH�LPSURYHPHQW�DFKLHYHG�E\

LQFUHDVLQJ�WKH�HQHUJ\�WKUHVKROG���)LJXUHV���DQG��

FOHDUO\�GHPRQVWUDWH�WKLV�UHODWLRQVKLS���)RU�WKH���Q-

WKUHVKROG��)LJXUHV���DQG���VKRZ�WKDW�WKH�DPRXQW�RI

YLRODWLRQV�DQG�WRWDO�HQHUJ\�VDYHG�IDOOV�RII�D�ELW�IURP

WKH���Q-�WKUHVKROG���+RZHYHU��ZH�IHHO�WKDW�WKLV

UHGXFWLRQ�LV�DFFHSWDEOH�JLYHQ�WKH�SHUIRUPDQFH�JDLQ

ZH�DFKLHYH�E\�LQFUHDVLQJ�WKH�WKUHVKROG�YDOXH�

,Q�DGGLWLRQ�WR�WKH�UHVXOWV�SUHVHQWHG�DERYH�IRU�WRWDO

HQHUJ\�YLRODWLRQV�DQG�HQHUJ\�VDYLQJV��ZH�PHDVXUHG

WKH�H[WUD�HQHUJ\�FRVW�LQ�HDFK�EHQFKPDUN�SURJUDP�IRU

HYHU\�����F\FOHV�VFKHGXOHG���)RU�HYHU\�����F\FOH

VHJPHQW��ZH�FDOFXODWH�WKH�WRWDO�DPRXQW�RI�H[FHVV

SRZHU�GLVVLSDWHG���7DEOH���VKRZV�WKDW�H[FHVVLYH

SRZHU�LV�W\SLFDOO\�LQ�WKH�UDQJH�RI������WR�������Q-�IRU

HYHU\�����F\FOHV���2YHU�ODUJH�SURJUDPV��WKLV�UHVXOWV�LQ

D�ODUJH�DPRXQW�RI�H[FHVVLYH�SRZHU�GLVVLSDWLRQ�ZKLFK

FDQ�EH�VDYHG�XVLQJ�WKH�ORZ�SRZHU�VFKHGXOLQJ

WHFKQLTXH�SURSRVHG�KHUH�



)LJXUH��

,Q�7DEOH����WKH�GDWD�UHSUHVHQWV�WKH�QXPEHU�RI�WLPHV

WKDW�WKH�WRWDO�SRZHU�GLIIHUHQFH�ZDV�LQ�WKH�VSHFLILHG

UDQJH�GXULQJ�����F\FOH�VSDQV�

����&RQFOXVLRQV

,Q�WKLV�SDSHU��ZH�KDYH�SURSRVHG�D�QHZ�PHWKRG�IRU

VFKHGXOLQJ�LQVWUXFWLRQV�ZKLFK�KHOSV�UHGXFH�SRZHU

GLVVLSDWLRQ�LQ�KLJK�SHUIRUPDQFH�SURFHVVRUV���7KH

DSSURDFK�LV�EDVHG�RQ�D�SHU�F\FOH�HQHUJ\�WKUHVKROG

ZKLFK�PD\�QRW�EH�YLRODWHG�LQ�DQ\�JLYHQ�F\FOH�

,QVWUXFWLRQV�DUH�VFKHGXOHG�EDVHG�RQ�WKH�OLVW

VFKHGXOLQJ�DOJRULWKP�XQWLO�WKH�WKUHVKROG�IRU�WKH

FXUUHQW�F\FOH�LV�UHDFKHG���2QFH�WKH�WKUHVKROG�KDV�EHHQ

H[FHHGHG��WKH�VFKHGXOHU�EHJLQV�VFKHGXOLQJ�IRU�WKH

QH[W�F\FOH���:H�KDYH�VKRZQ�WKDW�WKLV�PHWKRG�FDQ

UHVXOW�LQ�VLJQLILFDQW�HQHUJ\�VDYLQJV�RYHU�D�JLYHQ

SURJUDP�ZLWK�OLWWOH�WR�QR�SHUIRUPDQFH�LPSDFW�

)XWXUH�SODQV�IRU�WKLV�UHVHDUFK�DUH�WR�H[WHQG�WKH�HQHUJ\

PRGHO�WR�FRQWDLQ�D�PRUH�FRQFLVH�UHSUHVHQWDWLRQ�RI�WKH

GHVLUHG�DUFKLWHFWXUH�DQG�WR�LQYHVWLJDWH�IXUWKHU

HQKDQFHPHQWV�WR�WKH�VFKHGXOLQJ�DOJRULWKP�WR�DOORZ

IXUWKHU�LQFUHDVHG�VDYLQJV�

(QHUJ\�9LRODWLRQV�6DYHG�ZLWK�/RZ�3RZHU�6FKHGXOLQJ

����(���

����(���

����(���

����(���

����(���

����(���

����(���

�

�

�

�
J

R

�

�

�

�
P

�

�

N

V

L
P

�

�

�

�
J

F

F

�

�

�

�
F

R

P

S

U
H

V

V

�

�

�

�
O
L

�

�

�

�
L
M
S

H

J

�

�

�

�
S

H

U
O

�

�

�

�
Y

R

U
W
H

[

7KUHVKROG� ���Q-

7KUHVKROG� ���Q-



)LJXUH��

7DEOH���±�([FHVVLYH�3RZHU�'LVWULEXWLRQ�SHU�����&\FOHV

����;������ ������;������� �������;�������� ��������;

����JR ���� ���� ���� �

����P��NVLP �� ��� ��� �

����JFF ���� ����� ����� ���

����FRPSUHVV �� �� �� �

����OL ��� ��� ��� �

����LMSHJ �� ��� ��� ��

����SHUO ��� ���� ��� �

����YRUWH[ ��� ���� ���� ��

����5HIHUHQFHV

>�@���6X��&�/���7VXL��&�<���DQG�'HVSDLQ��$�0���³/RZ

3RZHU�$UFKLWHFWXUH�DQG�&RPSLODWLRQ�7HFKQLTXHV�IRU

+LJK�3HUIRUPDQFH�3URFHVVRUV�´�LQ�3URF��RI�WKH�,(((

&203&21��SS���������������

>�@���7LZDUL��9���0DOLN��6���DQG�:ROIH��$��

³&RPSLODWLRQ�7HFKQLTXHV�IRU�/RZ�(QHUJ\��$Q

2YHUYLHZ�´�SUHVHQWHG�DW�WKH�������6\PSRVLXP�RQ

/RZ�3RZHU�(OHFWURQLFV�

>�@���7LZDUL��9���0DOLN��6���DQG�:ROIH��$���³3RZHU

$QDO\VLV�RI�(PEHGGHG�6RIWZDUH��$�)LUVW�6WHS

7RZDUGV�6RIWZDUH�3RZHU�0LQLPL]DWLRQ�´�LQ�,(((

7UDQV��RQ�9HU\�/DUJH�6FDOH�,QWHJUDWLRQ�6\VWHPV�

SS���������������

7RWDO�(QHUJ\�6DYLQJV�ZLWK�/RZ�3RZHU�6FKHGXOLQJ

����(���

����(���

����(���

����(���

����(���

����(���

����(���

�

�

�

�
J

R

�

�

�

�
P

�

�

N

V

L
P

�

�

�

�
J

F

F

�

�

�

�
F

R

P

S

U
H

V

V

�

�

�

�
O
L

�

�

�

�
L
M
S

H

J

�

�

�

�
S

H

U
O

�

�

�

�
Y

R

U
W
H

[

7KUHVKROG� ���Q-

7KUHVKROG� ���Q-



>�@���/HH��0�7�&���7LZDUL��9���0DOLN��6���DQG�)XMLWD�

0���³3RZHU�$QDO\VLV�DQG�/RZ�3RZHU�6FKHGXOLQJ

7HFKQLTXHV�IRU�(PEHGGHG�'63�6RIWZDUH�´�SUHVHQWHG

DW�WKH������,QW��6\PSRVLXP�RQ�6\VWHP�6\QWKHVLV�

>�@���+ZX��:�:���0DKONH��6�$���&KHQ��:�<���&KDQJ�

3�3��:DUWHU��1�-���%ULQJPDQ��5�$���2XHOHWWH��5�*��

+DQN��5�(���.L\RKDUD��7���+DDE��*�(���+ROP��-�*��

DQG�/DYHU\��'�0���³7KH�6XSHUEORFN��$Q�HIIHFWLYH

VWUXFWXUH�IRU�9/,:�DQG�VXSHUVFDODU�FRPSLODWLRQ�´�LQ

7KH�-RXUQDO�RI�6XSHUFRPSXWLQJ��YRO�����SS���������

-DQ�������

>�@���0DKONH��6�$���/LQ��'�&����&KHQ��:�<���+DQN�

5�(���DQG�%ULQJPDQ��5�$���³(IIHFWLYH�FRPSLOHU

VXSSRUW�IRU�SUHGLFDWHG�H[HFXWLRQ�XVLQJ�+\SHUEORFN�´

LQ�3URF��RI�WKH���WK�$QQ��,QW¶O��6\PSRVLXP�RQ

0LFURDUFKLWHFWXUH��SS������������

>�@���+DYDQNL��:�$���7UHHJLRQ�VFKHGXOLQJ�IRU�9/,:

SURFHVVRUV��06�7KHVLV��'HSDUWPHQW�RI�(OHFWULFDO�DQG

&RPSXWHU�(QJLQHHULQJ��1RUWK�&DUROLQD�6WDWH

8QLYHUVLW\��5DOHLJK��1&�������

>�@���*\OOHQKDDO��-�&���$�PDFKLQH�GHVFULSWLRQ

ODQJXDJH�IRU�FRPSLODWLRQ��06�7KHVLV��'HSDUWPHQW�RI

(OHFWULFDO�DQG�&RPSXWHU�(QJLQHHULQJ��8QLYHUVLW\�RI

,OOLQRLV�DW�8UEDQD�&KDPSDLJQ��8UEDQD��,/�������

>�@���*\OOHQKDDO��-�&���+ZX��:�:���DQG�5DX��%�5��

³+0'(6�9HUVLRQ�����6SHFLILFDWLRQ�´�7HFKQLFDO

5HSRUW�,03$&7�������8QLYHUVLW\�RI�,OOLQRLV�DW

8UEDQD�&KDPSDLJQ��8UEDQD��,/�������



Code Transformations for Embedded Multimedia
Applications: Impact on Power and Performance

Nikos D. Zervas
University of Patras

Dep. of Electrical & Computer
Engineering, Rio 26500, Greece

Tel.: (+) 30 61 997324
E-mail:zervas@ee.upatras.gr

Kostas Masselos
University of Patras

Dep. of Electrical & Computer
Engineering, Rio 26500, Greece

Tel.: (+) 30 61 997324
E-mail:zervas@ee.upatras.gr

C. E. Goutis
University of Patras

Dep. of Electrical & Computer
Engineering, Rio 26500, Greece

Tel.: (+) 30 61 997324
E-mail:goutis@ee.upatras.gr

ABSTRACT
A number of code transformations for embedded multimedia
applications is presented in this paper and their impact on both
system power and performance is evaluated. In terms of
power the transformations move the accesses from the large
background memories to small buffers that can be kept
foreground. This leads to reduction of the memory related
power consumption that forms the dominant part of the total
power budget of such systems. The transformations also affect
the code size and the system’s performance which is usually
the overriding issue in embedded systems. The impact of the
transformations to the performance is analyzed in detail. The
code parameters related to the performance of the system and
the way they are affected by the transformations are identified.
This allows for the development of a systematic methodology
for the application of code transformations that achieve an
optimal balance between power and performance.

Keywords
Embedded, Multimedia, Code Transformations, Power,
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1. Introduction
Image and video coding rapidly became an integral part of
information exchange. The number of computer systems
incorporating multimedia capabilities for displaying and
manipulating image and video data is continuously increased.
The rapid advances in multi-media and wireless technologies
made possible the realization of sophisticated portable multi-
media applications such as portable video phones, portable
multimedia terminals and portable video cameras. Real time
image and video processing are required in such applications.
Low power consumption is of great importance in such
systems to allow for extended battery life. Low power
portable multimedia systems are described in [1-2]. Portability
is by no means the only reason for low power consumption
[3]. Low power consumption is of utmost importance in non-
portable applications as well. For this reason there is great
need for power optimization strategies especially in the high
levels where the most significant savings can be achieved [3].
Power exploration and optimization strategies for image and

video processing applications are described in [4-10].

There are two general approaches for the implementation of
multimedia systems. The first is to use custom hardware
dedicated processors. This solution leads to smaller area and
power consumption however it lacks flexibility since only a
specific algorithm can be executed by the system. The second
solution is to use a number of instruction set processors. This
solution requires increased area and power in comparison to
the first solution however it offers increased flexibility and
allows implementation of multiple algorithms by the same
hardware. Mixed hardware/software architectures can also be
used.

In multimedia applications, memory related power
consumption forms the major part of the total power budget of
a system [7-8]. A systematic methodology for the reduction of
memory power consumption has been proposed in [7-8]. This
methodology includes the application of loop and data flow
transformations. However it mainly targets custom hardware
architectures and the impact of the transformations on the
performance of an implementation based on instruction set
processors is not addressed.

In this paper a number of code transformations is presented.
The effect of the transformations on three basic parameters of
embedded multimedia systems namely power, performance
and code size is illustrated. The way in which these
transformations affect power and performance is analyzed. As
test vehicles four well-known motion estimation algorithms
are used. The aim of the research under consideration is to
develop a methodology for the effective application of code
transformations in order to achieve the optimal balance
between power consumption and performance.

The rest of the paper is organized as follows: In section 2 a
brief description of the motion estimation algorithms is given.
In section 3 the applied transformations are described in
detail. In section 4 the way in which the transformations affect
the power consumption and the performance is described.
Finally in section 5 some conclusions are offered.

2. Motion estimation algorithms
Four typical [11] motion estimation algorithms were used as
test vehicles, namely full search, three level hierarchical
search (hierarchical), parallel hierarchical one dimensional
search (phods) and two dimensional three step logarithmic
search (log). Simulations using the luminance component of
QCIF frames were carried out. The dimension of the
luminance component of a QCIF frame is 144x176 (N×M).
The reference window was selected to include 15×15
((2p+1)×(2p+1) and p=7) candidate matching blocks. Blocks
of 16x16 (B×B) pixels were considered. The general structure
of the above algorithms is described in figure 1.



Figure 1: General structure of motion estimation
algorithms.

The algorithms consist from 3 double nested loops. Each
block of the current frame (outer loop) is compared to a
number of candidate blocks included in the reference window
(middle loop). Computing a distortion criterion (inner loop)
using all the pixels of both the current and the candidate
blocks performs the comparison. A conditional statement
inside the nested loops checks whether the pixels of the
candidate blocks are inside the previous frame or not.

3. Description of the applied
transformations

a) Transformation 1

The first transformation applied was a loop interchange [12]
between the loop related to the candidate blocks and the loop
related to the pixels of each block. In this way each pixel of
the current block was accessed only once (instead of
(2p+1)x(2p+1) times in the original description) and its
contribution to the distortions of the candidate blocks was
computed. An array signal of size (2p+1)x(2p+1) was
introduced to store the intermediate values of the candidate
block distortions.

a) Transformation 2

The second transformation introduced a new array signal for
the storage of the current block. This array signal was
initialized from the current frame array signal before the loop
related to the candidate blocks. This transformation is a loop
distribution of the middle loop i.e. an insertion of an extra
loop with the same limits and step, combined with a node
splitting of the outer loop. As a consequence the inner loop
accessed the current block array signal, instead of the current
frame array signal, for the distortion computation.

b) Transformation 3

The third transformation introduced an array signal for the
reference window. This array signal was initialized from the
previous frame array signal before the loop related to the
candidate blocks. This transformation is similar to
transformation 2. The only difference was that the introduced
array signal contained the reference window instead of the
current block. So the inner loop accessed the reference
window array signal, instead of the previous frame array
signal, for the distortion computation.

d) Transformation 4

The fourth transformation was based in the same idea as the
previous transformation but it also exploited data reuse [13].
Data reuse was feasible because of the overlapping reference
windows of neighboring blocks (Figure 2). Specifically an
overlapping of 2px(2p+B) pixels exists for the reference
windows of two neighboring blocks. For every current block
shifting its last 2p columns to the left and transferring the new

non-overlapping B columns from the previous frame array
signal initialized the reference window array signal.

Figure 2: Overlapping of reference windows of
neighboring blocks.

e) Transformation 5

The fifth transformation introduced two new array signals,
one for the reference window, and one for the candidate block.
The first array signal storing the reference window was
initialized from the previous frame array signal before the
loop related to the candidate blocks without exploiting the
data reuse as in transformation 4.

Figure 3: Overlapping of neighboring candidate blocks.

The second array signal storing the candidate block was
initialized from itself for the overlapping part ((B-1)xB pixels)
and from the reference window array signal for the non-
overlapping part (Bx1 pixels), before the inner loop. In this
way the data reuse for the previous block array signal was
optimally exploited (Figures 3, 4).

Figure 4: Optimal data reuse for the candidate blocks in a
reference window.

This transformation is a node splitting of the outer loop and a
loop distribution of the loop related to the candidate blocks.

f) Transformation 6

This is a data flow transformation and was applied only to the
hierarchical motion estimation algorithm. The transformation
produces the sub-sampled by four versions of both current and
previous frames from the sub-sampled by two version of each
frame, instead of producing them from the original frames as
defined by the initial algorithm.

4. Effect of transformations on power and
performance

As already stated memory related power consumption forms
the major part of the total power budget of an image or video

for(x=0;x<N/B;x++)  /*for all blocks in the */
for(y=0;y<M/B;y++) /*current frame */
{
  for(i=-p;i<p+1;i++ ) /*for all candidate blocks */
   for(j=-p;j<p+1;j++) /*in the reference window*/
  {
   for(k=0;k<B;k++ )  /*for all pixels in the block */
    for(l=0;l<B;l++)
   {
     if ((B*x+i+k)<0 ||  (B*x+i+k)>N-1 || (B*y+j+l)<0 || (B*y+j+l)>M-1)
     /* Conditional statement for the pixels of the candidate blocks */

Block i+1
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Block i

B

B
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2p
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Current
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processing system. Thus for the evaluation of the
transformations’ effect on the power consumption only the
memory power consumption was considered. The
transformations described in the previous section reduce the
number of accesses to the large background memories storing
the current and the previous frame which are the most power
costly and introduce accesses to small arrays (also introduced
by the transformations) that can be stored foreground
requiring smaller power per access. In this way the power
consumption is heavily reduced. To better illustrate the effect
of the transformations on memory accesses and on power
consumption let assume that the accesses required by an
algorithm in its original are given by the following equation.

Small buffers, caches, register files and registers are
considered as foreground memories. Large buffers are
considered as background memories. The application of the
transformations results in an algorithm description with
number of memory accesses given by the following equation.

Obviously the real effect of the transformations is the transfer
of the larger part of the background memory accesses to
foreground memories. The total number of accesses to
memory elements is increased after the application of the
transformations since extra accesses are required for
transferring the data from the background memories to
foreground memories. A first order metric of the
transformation effectiveness (in terms of power consumption
reduction) can be the relative decrease of the background
memory accesses i.e. the ratio (A-C)/A. This first order metric
of the power consumption reduction for the different
transformations is presented in figure 5. In figure 6 the real
power savings achieved by the application of the
transformations are illustrated.

Figure 5: First order metric of power consumption
reduction.

The power savings introduced by the application of the
transformations described in the previous section ranged from
30% to 50% for transformations 1-5 while transformation 6
succeeded almost 8% power reduction but it affected only a
small part of the complete motion estimation algorithm. For
the evaluation of the power consumption of the data memory
the model of Landman [14] was used. For the estimation it
was assumed that the current and previous frames are stored in
two separate background on-chip buffers while all the small
arrays introduced by the transformations were assumed to be

stored in an intermediate small buffer (data cache). All buffers
were assumed to be single port read/write and 8 bits wide.

Figure 6: Power savings after the application of code
transformations.

The code transformations described in the previous section
affect also the system performance i.e. the number of cycles
required for the execution of the code. In an abstract level,
performance can be considered as a function of four code
parameters namely number of memory accesses, number of
computing operations, number of control operations and
number of address operations as described by the following
equation.

Where a, b, c, d are parameters determined by the instruction
set processor on which the code is executed and reflect the
number of cycles required for each one of these operations. A
more refined model should distinguish the accesses with
respect to the memory to which they are performed and the
different computing operations with respect to their
complexity. In general evaluation of the above factors before
and after the application of code transformations may give an
estimate of the transformation effect on performance. The
effect of the transformations on the performance-number of
cycles is illustrated in figure 7.

To estimate the transformation effect on performance the
motion estimation codes were simulated on ARM 7 processor
that was used as an embedded core. ARM is considered as the
state-of-the-art core for embedded telecommunication
applications. However it is still a general-purpose processor
and thus it is not the most suitable for multimedia applications
like motion estimation. Since only the relative effect of
transformations on performance (in number of cycles) is of
interest the use of ARM suffices. The effect of code
transformations on the number of cycles required for program
execution is not the same in all cases. This is the number of
cycles either increases or decreases depending on the effect of
transformations on the parameters of the model described in
equation 3.

Transformation 1 increased the number of cycles for all
motion estimation algorithms.  The increase ranged from 1,6%
(full search-simplest structure) to 60% (parallel one-
dimensional hierarchical). This is due to the increase of total
number of memory accesses. The number of computing and
control operations remained stable and the addressing
operations were reduced.

Transformation 2 decreased the accesses to background
previous buffer, which has more complex address equations,
while increased the number of accesses to the foreground
candidate block buffer, which has simple address equations.
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That way the reduction of address operations led to decrease
of the number of cycles for all motion estimation algorithms
of 0,2% (phods)-10%(full search) although the total number
of memory accesses increased and the computing and control
operations remained stable.

In the same way transformation 3 reduced the address
operations. Performing check for each reference window,
instead of each candidate block, lead to an 81%-98%
reduction of control operations. So although the total number
of memory accesses was increased, the number of cycles was
reduced from 27% (full search) to 37% (log).

For transformations 4 and 5 multiple control actions for the
same pixel were eliminated because of the data reuse resulting
in a reduction of the number of control operations from 85%
up to 99%. Transformation 4 also reduced the address
operations for the same reasons as transformations 2 and 3. So
although the total number of memory accesses increased, the
number of cycles reduced from 27% (full search) up to 37%
(log). Transformation 5 achieves optimal data reuse at the
expense of complex addressing. This fact caused an 8%-63%
increase of the address operations and combined with the
increase of total memory accesses lead to an increase of cycles
from 30% (hierarchical)-101% (full search).

It must be noted that no data caching was taken into account
during simulation. This means that the performance of the
codes (in number of cycles) is better than described above
especially for the cases where many accesses to the faster data
cache occurred. Another system parameter affected by the
code transformations is the code size. Transformations usually
make the code more complex and thus increase the code size.
This implies an indirect effect on the system’s power
consumption since increase of the code size leads to an
increase of the program memory. Increased size of the
program memory leads to increased effective capacitance per
accesses i.e. capacitance per instruction fetching. Since the
motion estimation codes were mapped on ARM that is a
general-purpose processor, the final code size and the number
of instructions required for the program execution (effectively
the number of times the program memory is accessed) are not
very realistic. For this reason the power related to program
memory was not evaluated. Furthermore no instruction
caching was taken into account. The presence of an instruction
cache reduces significantly the program memory related
power consumption especially in data dominated applications
where cache misses do not occur frequently. The effect of the
transformations on the code size is illustrated in figure 8.
Code size was increased for all the transformations and for all
algorithms from 7% up to 141%, due to the extra array signals
and the complexity introduced by all the transformations.

5. Conclusions
In this paper code transformations for power consumption
reduction of embedded multimedia applications were
presented. The transformations achieve power consumption
reduction by moving the main part of the background memory
accesses to small foreground memories. The code
transformations affect also the system’s performance. The
effect of transformations on the performance is described
analytically. Abstract models based on high-level code
parameters for both power and performance were also
described. These models can be used to evaluate the power
and performance effects independently of the instruction set
processor on which the code will be executed. Another system
parameter affected by the code transformations is the code
size. It was demonstrated that the code size increases after the
application of code transformations affecting the size of the

code memory and indirectly the system’s power consumption.
This is because increase of the size of the program memory
corresponds to increase of the effective capacitance per
instruction set. A model for evaluating the power consumption
of the program memory was also included.

The research described in this paper is part of on-going
research. The aim of our research is the derivation of models
for fast and accurate evaluation of the effect of code
transformations on power and performance and the
development of a methodology for efficient application of
transformations in order to achieve the optimal power
performance balance.

Figure 7: Transformation effect on performance (# cycles).

Figure 8: Effect of transformations on code size.
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Abstract

 

This paper explores techniques for creating accurate
instruction-level energy models for digital signal processors
(DSP). Our initial results confirm previous work showing that
inter-instruction effects can become a significant component of
power consumption for many programs. To overcome limita-
tions of previous models, we develop a straightfoward method
(the NOP model) that models transitions between any two
instructions. Measurements show that our method accurately
models inter-instruction effects without a quadratic increase in
the size of energy tables. Complex instructions are handled by
treating functional units within the processor separately.

 

1 Introduction

 

Instruction-level energy models can be an effective tool for
high-level software-based optimizations [LEE97][TIWA94].
The basic technique constructs a table that records each instruc-
tion’s average energy. High-level power estimators use this
table to quickly determine each software instruction’s energy
consumption, avoiding costly circuit-level simulation (e.g.,
Spice). Because instructions are the atomic units used by code
generators, instruction-level energy models can be integrated
with power-optimizing compilers more easily than simulation-
based estimators. Further, instruction-level energy models allow
chip manufacturers to provide fine-grained power information
without having to disclose confidential design layout and imple-
mentation details—allowing software designers to quickly and
accurately estimate a program’s power consumption without
understanding the underlying implementation details. 

Unfortunately, accurate instruction-level energy models
require more than simple per-instruction power estimates. Inter-
instruction effects can significantly alter the power consumed
by a given instruction, making it difficult to derive a single
power number for each architectural instruction [LEE97].
Power tables could be expanded to include every pair of instruc-
tions. Unfortunately, building such tables can be very time con-
suming and requires O(N

 

2

 

) space (where N is at least the size of
the instruction set). Grouping instructions into common classes
[Lee97] can reduce the table size, but does not scale well for

DSP-type architectures with their rich addressing modes and
parallel instruction issue capabilities. 

To overcome the problems of classification, we have devel-
oped a straightfoward method that requires only O(N) space
while accurately estimating program energy. Our results, simu-
lated with an implementation of a subset of the Motorola
DSP56000 (56K), produce instruction-level power tables that
predict program power within 8% percent of simulation-based
estimates. Further, by attributing each instruction’s power con-
sumption to the various functional units, we preserve accuracy
while overcoming the difficulty associated with modeling the
56K’s rich addressing modes and parallel functions. 

Section 2 describes our subset of the 56K DSP and our
design methodology. Section 3 presents our approach to gener-
ating instruction-level power tables and compares our results
with previous techniques. Section 4 further evaluates these
models and describes potential limitations. Finally, in Section 5
we present our conclusions and outline future work. 

 

2 Tools and Methodology

 

2.1 CMU 56000 DSP

 

To build accurate models and to compare our results with a
real design, we designed and implemented a standard-cell based
subset of the Motorola DSP56000 instruction set [MOTO90].
Synopsys and Cascade’s Epoch synthesized our 56K Verilog
model into a standard-cell layout (see Figure 1). 

We choose the 56K because instruction-level power analysis
is more complex than simple RISC cores and because the 56K’s
functionality is representative of many power-conscious archi-
tectures. The 56K is a 24-bit, fixed-point DSP that can encode
and issue one arithmetic operation and up to two “parallel” data
moves in one 

 

packed

 

 instruction. Our 56K core implements
most of the arithmetic and basic data movement instructions
and accounts for most of the logic that effects power consump-
tion. 

 

2.2 Mynoch Power Estimator

 

A variety of approaches have been used to characterize the
power consumption of digital systems. For physical devices,
direct-measurement of current gives the most accurate measure-
ments [TIWA94]. However, the granularity of results is limited
to device-level, multi-clock cycle measurements. Accurate,
fine-grained results can be obtained with Spice-based simula-
tors, such as Star-Sim [KRIS97], but long run-times severely
limit the number of cycles/events that can be simulated. Gate-
level power estimators improve simulation speed
[KOJI95][PURS95][XANT97], by sacrificing accuracy to
achieve faster run-times.

The initial analysis of our 56K’s power consumption was
done using CMU’s gate level analysis tool, Mynoch [PURS95].
Mynoch estimates power by counting transitions from a Verilog

This work was supported by the Defense Advanced Research Projects
Agency under Order No. A564 and the National Science Foundation
under Grant No. MIP90408457.

Modeling Inter-Instruction Energy Effects 

in a Digital Signal Processor

Ben Klass, Donald E. Thomas, Herman Schmit, David F. Nagle
Department of ECE, Carnegie Mellon University

Pittsburgh, PA 15213
benk@ece.cmu.edu, thomas@ece.cmu.edu



 

simulation and calculating the dynamic energy consumed for
each transition using:

Mynoch runs 450 times faster than Spice simulation, allowing
us to simulate thousands of cycles for each test program. Mem-
ory is not modeled with Mynoch since Epoch uses behavioral
models for memory. Spice based simulations have shown mem-
ory to be approximately 20% of the total energy.

We verified the accuracy of Mynoch by comparing
Mynoch’s power estimates against Avanti’s Star-Sim, which
uses a modified Spice engine. Eighteen iterations of a 4-tap FIR
filter were simulated with both Mynoch and Star-Sim. Initially,
Mynoch’s power estimates showed significant error in contrast
to Star-Sim. To locate the source of Mynoch’s error, we com-
pared Star-Sim’s per module power estimates with Mynoch’s
estimates. The analysis showed that Mynoch’s inability to
account for intra-gate capacitance within registers (i.e., D-flip
flops) was the primary source of error. To correct for this error,
we used Star-Sim’s power estimates to build a simple linear-
regression model that included the number of registers. The
resulting model had a very high degree of accuracy (r

 

2

 

 factor of
0.98). This model was further verified by comparing results of
Mynoch augmented by the regression model vs. Star-Sim for
120 cycles of an FFT program. The error between the two meth-
ods was less than 1% for the processor, although error on func-
tional units was higher. All of the Mynoch results reported in
this study are augmented by the regression model. 

 

2.3 Test Programs and Reference Energy

 

In contrast to general processors, a DSP is frequently used to
compute fairly simple, data intensive programs. For the work-
loads of our power analysis we chose five program kernels that
represent those found in typical signal processing applications
(see Table 1). Three of the kernels are finite-impulse response
(FIR) filters, one is a Fast Fourier Transform (FFT), and one is
an adaptive filter (LMS). Gaussian white noise was used as
input data.

Power consumption for the benchmark programs was mea-
sured using Mynoch (see Figure 2). Average energy consumed
per cycle, given in nanoJoules, provides the basic unit of mea-
sure which will be used throughout the paper. This is obtained
by dividing the total energy over the program execution by the
number of cycles. Power consumed by the pads and memory is
not included.

 

3 Instruction-level Models

 

Although circuit-level simulations provide insight into
power consumption for a given program, an instruction-level
model is more appropriate for code generators. Instruction-level
models typically use an 

 

energy table

 

 that describes the energy
cost for each instruction in an instruction-set architecture (ISA).
The challenge in building such a model is balancing accuracy
and energy table size. This section presents four models with
different accuracy and table size trade-offs. The first model,

 

base model

 

, produces the smallest table size, but yields poor
energy-prediction accuracy across a program run. The second
model, 

 

pair model

 

, has greater accuracy, but at the cost of much
larger tables. The third model, 

 

NOP model

 

, provides nearly the
accuracy of the pair model with much smaller tables. The fourth
model, 

 

general model

 

, is similar to the NOP model but the
energy table generated is independent of the program being
evaluated. The general model provides reasonable accuracy and
is appropriate for use with code generators.

 

3.1 Base Model and Estimation

 

Building the Base Model’s Energy Table

 

Creating a complete and accurate energy table for the 56K
DSP requires one to account for each instruction in the ISA,
each instruction’s different register and immediate values, and
every possible packed instruction.

 

1

 

 This can require a signifi-
cant amount of time and space. To make the base model more

Figure 1: DSP56000 architecture and layout
Major components: 1) 3 KB of SRAM; 2) data ALU, which con-
tains a 24x24-bit multiplier and 56-bit accumulator; 3) address
generation unit (AGU), which contains three sets of eight 16-
bit registers and two ALUs capable of arbitrary modulo and bit
reversed arithmetic; and 4) program control unit (PCU).
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fir4 4-tap FIR filter (direct form) 5 57% 1760

fir64 64-tap FIR filter (direct form) 5 96% 5,000

fir4u 4 tap FIR filter, unrolled once 12 66% 1,500

FFT 256 point FFT 24 79% 8,062

LMS 64-tap least mean squares 
adaptive filter

13 63% 30,000

Table 1:  Description of workloads
The Instr  column lists the number of unique instructions exe-
cuted in each workload’s main program loop. %Instr arith
lists the percentage of instructions executed that are arith-
metic instructions. Sim  cycles  lists the number of cycles sim-
ulated for power analysis.
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Figure 2: Energy consumption for workloads
This figure shows power consumption for the workloads. The
AGU and ALU are the two largest consumers of power and
almost all of the variation between programs is caused by
variation in the multiplier and AGU power. The multiplier uses
guard latches on the input and consumes less power with
programs that have proportionally fewer multiply operations.
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tractable, we only computed the energy cost for every unique
instruction

 

2

 

 found in our five workloads—not for every possible
tuple of {

 

instruction, reg/immed, instr pair}

 

.

Each instruction’s energy was estimated by constructing a
tight-loop test program that included the target instruction and a
zero-overhead branch instruction so that only the target instruc-
tion was executed in the core of the loop. Figure 3 shows the
tight-loop test program used to characterize the 

 

MAC

 

 instruction.
Each tight-loop test program was run through Mynoch to gener-
ate the base energy cost, B

 

inst

 

. For measuring the 

 

REP

 

 instruc-
tion, we were forced to use a 

 

NOP

 

 inside of the loop because a
loop of 

 

REP

 

 instructions is illegal.

Whenever possible, loops were made with the actual instruc-
tions used in the programs.

 

 

 

Some instructions were modified
slightly to ensure that different operands were used on each
cycle. Data from the workload being characterized was used.
Because the test programs are based on the actual instructions
and data from our five workloads (Table 1), the results of this
approach are optimistic in their accuracy. When generalizing
this approach, parameters such as the destinations of parallel
moves would be abstracted to reduce energy table’s size.

 

Base Model Energy Estimates

 

The instruction measurements described above were used to
construct a base model energy table that was then used to esti-
mate the average energy per cycle for each of our workload pro-
grams. For example, the energy per cycle for the 

 

fir4

 

 program
was calculated by:

 

E

 

fir4

 

 = (B

 

CLR

 

 + B

 

REP

 

 + 3 B

 

MAC

 

 + B

 

MACR

 

 + B

 

MOVE

 

) / 7

 

Figure 5 shows the power estimates gained from the instruction
energy table. The results show a very accurate power estimate
for the 

 

fir64

 

. However, the estimated energy for other pro-
grams is underestimated by 17% to 25%. This error is 50%
higher than the error reported in [LEE97]. 

This error can be understood by considering the 

 

fir64

 

 and

 

fir4

 

 programs (see Figure 4). The accuracy in the 

 

fir64

 

workload is due to 

 

fir64

 

’s limited number of inter-instruction
effects. The 

 

fir64

 

 repeats the 

 

MAC

 

 instruction 63 times, with
no intervening instructions, in a loop of 67 instructions. This
behavior is very similar to the tight-loop test programs used to
derive the instruction energy table. In the 

 

fir4

 

, however,
energy is underestimated by 25% because inter-instruction
effects are significant. The 

 

fir4

 

 repeats the 

 

MAC

 

 instruction 3
times in a loop of 7 instructions, while the remaining 4 instruc-
tions are all different. Inter-instruction effects in the remaining
instructions are not represented by the base model, leading to
the observed error.

For each of the workloads, most of the inaccuracy for the
base model occurs in the DSP’s AGU (address-generation unit)
and PCU (program-control unit) functional units. For the fir4,
the energy for the AGU and PCU are underestimated by more
than 30%. The error in these units can be understood by consid-
ering the microarchitecture (Figure 1). The AGU must generate
an address by the end of pipeline stage 2, so no registers exist
between the control logic and the data path (our implementation
does this to increase performance). The PCU does not latch its
control points for similar reasons. The lack of registers allows
glitches in the control logic to propagate into the data path,
causing many false transitions as an instruction word changes.
In contrast, the ALU (data ALU functional unit) latches all of its
control points, so glitches are confined to the control logic,
making the base model more accurate.

 

1. Like many DSPs, the 56K allows for packed instructions, where an
arithmetic instruction and a data-movement instruction are grouped
together in one instruction. 

2. Instructions are considered different if there is any difference in their
opcode, immediate values, registers, or pairings. For example, two
versions of a MAC instruction, (

 

MAC x0,y0,a 

 

vs.

 

 MAC
x1,y0,b

 

), are considered different and will have different entries
in the base model’s energy table. 

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

Figure 3: Loop used to characterize MAC from 
FIR filters

This loop was used to calculate the base energy cost of the
target instruction, in this case the MAC instruction as it
occurs in the FIR filters. Two data values are read in from
memory each cycle, so both multiplier inputs change. Two
instances of the target instruction are needed to match the
semantics of the DO instruction.

CLR A X0,X:(r0)+ Y:(r4)+,Y0 ; A = 0;
; X0 <- X(n-1); Y0 <- B(0)

REP #<3 ; for j = 0 to 2

MAC Y0,X0,A X:(r0)+,X0 Y:(r4)+,Y2 ; A+= X(n-j)*B(j);
 X0 <- X(n-j-1); Y0<- B(j+1)

MACR Y0,X0,A (r0)- ; A += X(n-3)*B(3);
 update pointer

MOVE X:(r1)+,X0 A,Y:(r5)+ ; X0 <- X(n+1); Y:(out) <- A

Figure 4: Main loop of fir4

This figure shows the code used in the fir4 main loop. The
fir64  is the same, except that the MAC operation is
repeated 63 times by changing the repeat instruction to “rep
#<63 .” The CLR, MAC, MACR, and MOVE instructions
employ parallel moves to move data into registers immedi-
ately before the data is needed.
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Figure 5: Mynoch vs. Base Model
Simulated energy from Mynoch and estimated energy using
the base model (base ) are given for major units. Both clock
and bus power are contained in “Other.” (Due to length and
complexity, LMS has not been done.)
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3.2 The Pair Model

 

The impact of inter-instruction effects on power estimation
has been noted before and can be compensated for by assigning
a per-instruction overhead that accounts for inter-instruction
effects [LEE97]. This overhead, O

 

instr

 

, is added to the base
energy cost if an instruction is not the same as the previous
instruction. For example, the energy model for the code
sequence:

would only use B

 

MAC

 

 for the second MAC operation, while the
energy model for the code sequence:

would use B

 

MAC

 

 + O

 

MOVE,MAC

 

 because the 

 

MAC

 

 instruction is
preceded by a different instruction, 

 

MOVE

 

. 
Similar to the base model, we measured O

 

instr

 

, using tight-
loop test programs. Each loop consisted of the target instruction
and the instruction that preceded it in the execution trace, giving
average energy per cycle for the loop E

 

loop

 

(see Figure 6). Over-
head was calculated by:

 

O

 

previous,target

 

 = E

 

loop

 

 – (B

 

previous

 

 + B

 

target

 

)/2

 

Using 

 

B

 

instr

 

 and 

 

O

 

instr

 

 where appropriate, the pair model
estimated the energy for each of the workloads (Figure 7). The
results, labeled as 

 

pair , are much more accurate than the base
model, with error between 1% and 10% for all programs. How-
ever, generalizing this technique would require characterizing
every possible pair of instructions, requiring a table of size
O(N2), where N is the number of instructions and addressing
modes. For the 49 different instructions and addressing modes
implemented in our 56K chip, a complete instruction energy
table would contain 1176 entries. To reduce the table size,
[LEE97] grouped instructions into classes and derived overhead
costs between classes. This technique works well for simple
machines, but is much more difficult to apply when dealing
with the many complex addressing modes and instruction types
found in a DSP such as the 56K.

3.3 The NOP Model

To avoid the difficulties of instruction grouping, we have
developed a new approach that requires only one overhead cost
for each instruction. This model is based on the assumption that
the overhead cost for an instruction is not strongly dependent on
the neighboring instruction, but does depend on whether the
neighboring instructions are the same or different. This observa-
tion leads to the NOP model, which allows us to account for
instruction changes without enumerating each pair of instruc-
tions. 

Like the pair model, the NOP model calculates the energy
for a particular operation with either Binstr or Binstr + Oinstr,
depending on the previous instruction. The NOP model differs
in that we calculated one overhead cost for each instruction,
Oinstr, using loops which alternate the target instruction with
NOP instructions (Figure 8). This techniques allowed us to cap-
ture the energy effects of changing instructions while keeping
the size of the table to O(N). Power estimates using the NOP
model are shown in Figure 7, labeled as NOP. The results show

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; target instruction

MOVE X:(r1)+,X0 Y:(r4)+,Y0

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; target instruction

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

MACR Y1,X1,a (r0)- ;target instruction

Figure 6: Loop used to find overhead: pair model
This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MACR instruction as it occurs
in the FIR filters, under the pair model. The pair of instruc-
tions that appear in the workload programs was used and
the overhead for this pair was assigned to the trailing instruc-
tion. Different source registers were used for the MAC and
MACR instructions to ensure that both multiplier operands
change, as in the FIR programs.
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Figure 7: Different approaches to estimating inter-instruction overhead
This figure compares energy from Mynoch simulation with estimates from the base model (base ), pair model (pair ) and NOP model
(NOP). The pair model measures overhead for each pair of instructions that appear in the program trace. The NOP model measures
overhead for each instruction using NOP instructions
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DO #<50

NOP

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ;target instruction

Figure 8: Loop used to find overhead: NOP model
This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MAC instruction as it occurs
in the FIR filters, under the NOP model. A target instruction
is paired with an NOP to calculate its overhead cost.



error between 1% and 8% on programs that previously had
much larger errors with the base model. Considering that group-
ing instructions also decreases accuracy, this should compare
favorably with any model based on instruction classes.

3.4 General Instruction Model
Having established the effectiveness of the NOP model, we

generalized this approach to build tables that could be used for
any program—a general instruction model. Unlike our previous
models, where the instruction energy tables were built to match
instructions as found in the workloads as closely as possible,
the general instruction model creates a single instruction energy
table that can be used across all programs. Such a table could be
created by processor manufacturers and then used by a code
generator to optimize power. 

The general instruction model is similar to the NOP model,
but extends the power analysis by accounting for packed
instructions. Packed instructions present a problem when build-
ing general tables because any combination of arithmetic and
parallel move is allowed. Our previous models used the actual
packed instructions from each workload. When generalizing,
the 23 arithmetic instructions and 24 types of parallel moves
lead to 552 possible combinations, making a complete table
fairly large. Fortunately, the two parts of a packed instruction
are largely executed by different units within the 56K. Using
this architectural knowledge, we separated the two parts of a
packed instruction, building tables for the energy consumed by
each of the functional units rather than the entire DSP.

The general instruction model consists of four tables, corre-
sponding to the four significant functional units: ALU, AGU,
PCU, and “Other.” The first three units have been described
above. “Other” refers to all remaining parts of the chip, prima-
rily the clock and bus power. The ALU and PCU were charac-
terized by the arithmetic portion of packed instructions only,
ignoring the parallel move unless no arithmetic instruction was

present. The AGU and “Other” were characterized by the paral-
lel move portion, ignoring arithmetic instructions. Data was
coarsely modeled in ways that would be visible to a code gener-
ator. Table entries for arithmetic operations were separated
based on which operands changed value; move operations con-
tained separate entries for the number of moves and type of
update performed on address registers.

Energy costs were generated with loops similar to those
described above (Figure 9). From each loop, the relevant energy
costs were calculated for each unit. Uniform random data was
used as input to the arithmetic unit. Under the general instruc-
tion model, the base energy cost of the instruction:

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0

was calculated by:

BALU,MACxy + B AGU,MOVEx+y+ + B PCU,MACxy + B Other,MOVEx+y+

Overhead energy costs, and whether an instruction has changed,
was calculated for each unit in the same way.

Estimates based on these general instruction tables are
shown in Figure 10. By making estimation automatic, we were
able provide estimates for lms  as well. Considering that pro-
gram dependent information from Figure 7 has been removed,
results are remarkably similar. Accuracy on all programs is
within 10%.

4 Applications and Limitations
Section 3 developed an general instruction model that pro-

vides reasonable accuracy while limiting the table size. In this
section we analyze this model from two perspectives. The first
examines a possible use of such an energy model—evaluating
the energy of code transformations within a code generator. The
second looks into the importance of program data, which is not
considered by the instruction-level model.

4.1 Code Transformations to Save Power
Comparing different implementations of a 4-tap FIR filter

allows us to see if the energy models can recognize power sav-
ings due to code transformations (see Figure 11). While
[TIWA94] looked at instruction reordering, more aggressive
code transformations are used here. We implemented four ver-
sions of a 4-tap FIR filter which used the same coefficients and

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; MACxy

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,Y0 ; MACxy

DO #<50

MOVE X:(r0)+,X0 Y:(r4)+,Y0 ; MOVEx+y+

MOVE X:(r0)+,X0 Y:(r4)+,Y0 ; MOVEx+y+

Figure 9: Loops used for general model
These loops were used to calculate the base cost of the
MACxy and MOVEx+y+ instructions under the general
model. The MACxy refers to a MAC instruction where both
multiplier inputs change while MOVEx+y+ refers to two par-
allel moves with increment.
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Figure 10: General Instruction Model
This figure compares Mynoch simulation energy (Mynoch)
and the general instruction-level model (gen ). Each compo-
nent: AGU, ALU, PCU, and Other was estimated using sep-
arate tables.
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Figure 11: Implementations of a 4-tap FIR filter
This figure compares the energy to produce one datum of
output for four different software implementations of the
same 4-tap FIR filter. The fir4  and fir4u  implementa-
tions are described in Table 1. The no-rep  implementation
does not use the repeat instruction or store past inputs. The
no-par  implementation only uses one parallel move and
does not use packed instructions. The number of cycles per
datum for the fir4 , fir4u , no-rep , and no-par  pro-
grams are 7, 6, 6, and 15, respectively.
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input data. Energy per datum processed is used as the metric to
compare these programs to account for the different number of
cycles required by different programs. Energy per datum is
given by per-cycle energy multiplied by the number of cycles
per datum.

Figure 11 shows that Mynoch power estimation predicts that
loop unrolling, fir4u , consumes 20% less energy per datum
than fir4  while the version without packed instructions, no-
par , consumes 75% more energy per datum. The difference in
energy is due to both the energy per cycle and the number of
cycles required to process one datum. The general model is able
to recognize the difference in power, but does not show as dra-
matic an improvement for fir4u  and no-rep . The lost accu-
racy comes from the general model underestimating the AGU’s
per-cycle energy for fir4  while overestimating the AGU’s per-
cycle energy for fir4u  and no-rep . While improved accuracy
in AGU power estimation is needed, results show that a code
generator using this model would choose the implementation
using the least power under the general model we developed.

4.2 Data Dependent Variation
None of the models presented consider energy effects of pro-

gram data. However, the power consumption of many units,
such as the multiplier, can be highly data-dependent. Other
research on DSP power consumption has noted the data depen-
dent variation and analyzed the energy of individual functional
units, such as the multiplier [KOJI95][LEE97]. Code transfor-
mations that keep one operand constant or reduce the number of
“1” bits in a Booth-Encoded multiplier are ways that the com-
piler can change the data to reduce the multiplier’s energy.

To gauge the importance of data, we used cycle accurate
simulation to measure the power in the ALU when each MAC
operation was active for the workloads. The average power con-
sumed by each instruction, with standard deviation error bars, is
shown in Figure 12 along with the energy costs for these
instructions from the general model. Most instructions deviate
between 8% and 12% from the mean, while two instructions
deviate by 16% and 28%. The costs from the base model are
generally within the one standard deviation of the workloads. 

The fft  has the largest standard deviation and has the least
accurate ALU estimates under all models (c.f. Figure 7). The
fft  showed a bimodal distribution of energy in one of its MAC
instructions, probably due to a large number of multiplications
by zero. Improving accuracy for this problem would require
moving to a model based on execution traces with sample pro-
gram data. Increased accuracy of such a model would come at a
cost of significantly longer simulation time, although tech-

niques such as those proposed in [MARC96] could be used to
reduce the trace length.

5 Conclusion and Future Work
We have presented several approaches for dealing with inter-

instruction effects when building instruction-level energy mod-
els for a specific DSP design. The results show that using NOP
instructions to model transitions between any two instructions
give accuracy within 8% while reducing table size from almost
1200 to less than 100, and eliminates possible human error from
other simplification methods. Using separate models on major
units within the DSP avoided multiple table entries for different
combinations of arithmetic and parallel move instructions and
allowed us to build a general model. Such a model could allow
code generators to recognize code transformations that reduce
the energy consumed by programs.

Future work attempt to recognize when data dependent vari-
ation is likely to be important and include such variation within
the model. Building models for other, non-DSP architectures
would further validate the applicability of the ideas presented
here.
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Figure 12: Energy per instruction of data ALU
The average energy for each instruction, based on Mynoch
simulation of the programs, is given with standard deviation
error bars to the left. The three instructions with the highest
standard deviation showed a bimodal distribution. Base
energy cost (B) and base plus overhead (B+O) from the gen-
eral model are given to the right.
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V. Zyuban and P. Kogge

Computer Science & Eng. Department, University of Notre Dame, IN 46556, USA

Abstract

Register files represent a substantial portion of the energy bud-
get in modern processors, and are growing rapidly with the trend
towards wider instruction issue. The actual access energy costs
depend greatly on the register file circuitry and technology used.
However, according to a recent study, it appears that neither
technology scaling nor circuitry techniques will prevent central-
ized register files from becoming the dominant power compo-
nent of next-generation superscalar processors. This paper stud-
ies alternative methods for inter-instruction communication as
to their energy efficiency and begins to lay out approaches at
the architectural level that would allow inherently more energy-
efficient computations.

1 Introduction

Current microprocessor design has a tendency towards wider in-
struction issue and increasingly complex out-of-order execution.
This leads to the growth of the on-chip hardware, and dissipated
power. Energy-delay product, delay

operation
�

energy

operation
, or its in-

verse SPEC2

W
, seem to be a reasonable metric for power effi-

ciency of a design [8]. Smaller energy-delay values imply a
lower energy solution at the same level of performance – a more
energy-efficient design.

Reference [10] described and analyzed those portions of a
microarchitecture where complexity, and consequently power
grow with increasing instruction issue width. Among them are:
register rename logic, wakeup and selection logic, data bypass
logic, register files, caches and instruction fetch logic. The
power growth of each of these structures can be described as
Power � (IPC)
 , whereIPC is the average number of in-
structions completed per cycle, and
 is some constant. Every
one of the above structures has its own power growth constant
.
By substituting the assumed expression for power dependence
uponIPC to the energy-delay formula we see that those struc-
tures that have
 > 2 may begin to swamp the power budget
as the processor issue width andIPC grow, and eventually lead
to a deterioration of the energy-delay metric and thus the energy
efficiency of a microprocessor.

In this paper, which is a part of a bigger project, we concen-
trate on one of the structures whose
 is greater than2, namely
the centralized multiported Register File (RF), and consider al-
ternative methods for inter-instruction communication that are
more energy efficient. Our goal is to find one that has
 � 2.

�This work was supported in part by the National Science Foundation under
Grant No.MIP–95–03682.

2 Power Complexity of Centralized Register File

Register files in modern superscalar CPUs are usually centered
on multiported memory macros whose storage size and the num-
ber of ports grow with increasing issue width. The silicon area
of a multiported memory, built using conventional approaches,
grows quadratically in the number of ports [13]. Therefore, tak-
ing into account growth both in storage needs and the number
of ports, we should expect that the power portion of such multi-
ported on-chip memories will grow rapidly in the future.

In our recent work [17] we studied the dependence of the ac-
cess energy to a multiported register file upon the number of read
and write ports, and the number of registers in the register file.
We did a study for various circuit organizations of the RF, and
tried to find the lower bound on the access energy. The study
showed that even when the Port Priority Selection (PPS) tech-
nique [11] is applied, combined with double-ended reads and
low-swing writes (which was found to be the most energy effi-
cient), still the access energy grows significantly as the number
of ports and the number of registers increases, Fig. 1. Here we
assumed 0.95 RF read accesses and 0.6 RF write accesses per
instruction (measured for the SPARC-V8), and for the number
of portsNread = 2Nwrite.
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Figure 1: Average access energy per instruction of a RF using
the PPS technique combined with double-ended reads and low-
swing writes (1st bar) and a conventional RF architecture (2nd
bar), 0.5um technology,Vdd = 3:3V

To express the RF access energy and dissipation power in
terms of the issue width (IW) of a processor, we assumed for
the number of read and write ports:Nread = 2IW , and
Nwrite = IW . To estimate the number of registers we used
the results in [4], where it was found that for a four-issue and
eight-issue machines the performance saturates around80 and
128 registers, respectively. Based on this data, and assuming that
40 registers is sufficient for a single issue machine, we extrapo-
late the dependence linearly to two-issue and 16-issue machines.

The average RF access energy per instructionEaverage ver-
sus the microprocessor issue width is plotted in Fig. 2, both for
the conventional RF and the RF using the most energy efficient
PPS technique. The equations listed for each case are approxi-



matecurve fits for the regionIW = 4 to IW = 1 6.
We see that there is a significant energy penalty per in-

struction in supporting large instruction level parallelism with
a centralized register file. In order to compute the overall RF
power wemultiply theaverageenergy dissipation per instruction
Eaverage by thenumber of instructions issued per cycle (IPC ),
and by the clocking ratef : Po w e r= f � IPC � Eaverage .
According to Fig. 2, Eaverage � IW �, where � is between
0:96 and 1:8. Assuming that IPC = IW� (or inversely,
IW = IPC 1=�), thisyieldsPo w e r� f�IPC �IPC �=� =

f � IPC 1+�=�, or 
 = 1 +�=�.
If theIPC grew linearly with the issue width (� = 1) then

the use of the PPS register file architecture would result in the
power dependence parameter
 close to a value of 2, while the
use of the conventional register file architecture would result in

 = 2:8. However, since in real machinesIPC increases less
than linearly with the increase in the issue width (� < 1), then
even theuseof themost energy-efficient register filearchitecture
doesnot solvetheproblem, and leavesthepower dependencepa-
rameter
 well above2. For an Amdahl’s law-like� of 0:5 [14]
the
 is between3 and4:6!
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Figure 2: Average access energy per instruction for a PPS (1st
bar) and a conventional RF architecture (2nd bar) versus issue
width, 0:5� featuresize,Vdd = 3:3V .

It must also bestressed that all the results for theregister file
power described aboveassumed very aggressiveenergy manage-
ment techniques, including pulse word lineactivation technique
for reducing the bit line swing to the minimum, pulse activa-
tion of the sensing circuitry, fully cutting off precharge during
reading and writing, taking advantageof thestatisticsof thedata
stored in RF memory cells, minimum transistor sizing wherever
possible, useof equalizing transistorsto savebit lineenergy dur-
ing precharge. In real world CPUsthedesire for speed wil l often
not permit some of these techniques, meaning that real register
file powers are even higher. The conclusion is that none of the
known circuit techniques solves the problem of rapid RF power
growth for machines with increasing ILP. This leads to the in-
escapable conclusion that theuse of acentralized register fileas
an inter-instruction communication mechanism is going to be-
come prohibitively expensive. Alternative techniques involving
more than just circuit tricks are going to be necessary, and are a
target of thiswork.

3 Register File Partitionin g – theBasic Idea

In this section we analyze potential energy savings of replacing
a centralized RF with acollection of decentralized register files.

The primary advantage of accessing a collection of local regis-
ter files rather than a single centralized register file is that local
register files do not need to have many ports and, the number of
entries in each register file is much smaller, which makes them
very simple, fast and low power.

Suppose we have a superscalar processor capable of issu-
ing IW instruction in parallel. Using the above assumptions, a
conventional centralized register filewould haveNread;centr =
2IW , read ports and Nwrite;centr = IW write ports, and
Nreg;centr � N0 + 1 2� IW physical registers [4]. Ideally,
we would like to partition the centralized register file into m
local register files (m< IW ) in such a way that every lo-
cal register file hasNports;local = 1

m
Nports;centr ports, and

Nreg;local =
1

m
Nreg;centr entries.

Under such ideal partitioning of the register file we would
expect the access energy to every local register file to be
Elocal = 1

m1:8Ecentr, based on the results for the conven-
tional register filearchitecture, presented in theprevioussection.
Such a partitioning would result in the total register file power
of Po w e r= f � IPC � Elocal = f � IPC �

1

m1:8Ecentr.
Choosing thedegree of RF partitioning to beproportional to the
processor issuewidth,m � IW , weget for thetotal register file
power Po w e r� f � IPC , with the power growth parameter

 = 1. This result is achieved withoutusing complicated circuit
techniques for the register file.

However, there are certain hurdles that make the described
ideal partitioning impossible. First, additional paths need to be
provided to passdatabetween local register files, resulting in ex-
tra ports to local register files. Second, the ideal 1

m
partitioning

of registersamong local register filesisnot possible, rather, local
register files wil l need more registers than

Nread;centr

m
. These

effects potentially reduce theenergy savings.

4 Existing Approaches to Register File Decen-
tralization

The problem of the growth of centralized register files and the
associated increase in access time has been considered by some
researchers, and a few architectureswith adecentralized register
filehavebeenproposed. However, thusfar researchershavebeen
primarily concerned with access times, not energy costs.

4.1 Limite d Connectivity VLIWs

The ideal VLI W architecture would be a machine with many
functional units connected to a single central register file [3].
This organization would enable any operation to be carried out
on any available function unit, simplifying code generation. To
avoid the degradation in performance caused by multi-porting
a single register file researchers have suggested partitioning the
register file into banks, so that each functional unit is connected
to a specific bank [3, 15]. Some kind of crossover provides a
limited accessto theregisters from other banks. Every operation
specifies itsdestination bank at compile time.

This arrangement alleviates the problem with the number of
ports, but brings about the problem of inter-bank data traffic.
If value stored in one bank is required for an operation sched-
uled to a functional unit connected to another bank, this value
must becopied between the register filebanks. To minimize the
additional workload on the compiler and minimize data traffic
between the different register files banks, the partitioning of the
register filemust be done in avery careful way.

Since the assignment of an operation to a functional unit is
done at compile time, VLI W compiler must carefully choose



a cluster for every operation and a register file bank where the
result wil l bewritten.

4.2 Multiscalar Architecture

The Multiscalar architecture [1, 6, 7] executes code segments
identified at compile time in parallel on multipleprocessing ele-
ments organized as a circular chain. A decentralized realization
of a single register file called a Multi-Version Register File is
proposed to provide a high bandwidth inter-instruction commu-
nication mechanism needed for simultaneously active multiple
execution units. Each execution unit isprovided with adifferent
version of the architectural register file, called a local register
file. Al l register reads and writesoccurring in aunit aredirected
only to theunit’s local register file. Communication between the
multiple register files is done through unidirectional serial links
by forwarding the last possible register instances in a task to the
subsequent tasks as soon as the instances are determined to be
the last possibleones. The identification of the last possible reg-
ister instance is done using acompiler support.

Finding appropriate static program chunks and load balanc-
ing across the processing elements, as well as identification of
the last possible register instances, are some of the issues that
arise in this approach.

4.3 TraceWindow Architecture

Thepartitioning of thephysical register filein theTraceWin-
dow architecture [16] is based on the fact that not all physical
registers are livebeyond the trace line that produces them. Typ-
ically, around half the registers written by a small trace line (16
or 24 instructions) are not live beyond the trace line. The pro-
portion of such local registers increases for larger trace lines [5].

In the Trace Window architecture, locally live destination
registers are renamed to a physical register file local to the
trace line; live-on-exit destination registers are renamed to a
global register file. To identify live-on-exit registers, output-
dependence checking among instructions in one trace line is
done in parallel with the true-dependence checking. The local
RF isflushed when thecorresponding traceline isremoved from
thewindow.

Onedisadvantage of this approach is that in order to rename
registers into local and global register files, all chunks of a trace
line need to be buffered at the rename stage’s output until the
last chunk is renamed. As a result, register renaming of a trace
line restricts dispatch bandwidth, and identification of live-on-
exit registers makes instruction dispatch bursty. A mechanism
for alleviating this problem is proposed which avoids full re-
naming on trace reuse by capturing in the trace cache renamed
tracelines, obtained from theoutput of theregister renamestage,
rather than raw instructions.

5 Split Register FileArchitecture

Thefirst of theabovetechniquesmakestheregister filepartition-
ing visible to the programmer and requires that all assignments
of operands to register file banks be done explicitly at compile
time. This approach potentially has binary compatibility prob-
lems. The two other techniques are based on the time localities
of inter-instruction communication. Each bank of the register
file stores those register instances that are produced and con-
sumed by instruction that are executed close to each other in
time in thedynamic instruction sequence.

In our work we study an approach to the register file decen-
tralization based on another kind of inter-instruction communi-
cation locality. Thisapproach isbased on ahypothesis that there

exist certain groupsof instructionsin thedynamic instruction se-
quencesuch that the inter-instruction communication is likely to
be mostly local within each group. These groups do not neces-
sarily consist of consecutive instructions in thedynamic instruc-
tion sequence.

If this is the case, then we can implement our CPU as a col-
lection of processing unit clusters and provide each cluster with
a local physical register file. At run-time, instruction despatch
logic triesto steer every instructionsto thecluster where instruc-
tions producing its register source operands wereexecuted. The
desired result of such partitioning would be that instructions ac-
cess local register files most of the time. Additional paths are
provided for inter-cluster traffic.

There are additional energy benefits we expect to get from
the described organization. First, the energy efficiency of the
bypass logic can be improved if we implement full bypassing
within each cluster only. Second, we expect that the proposed
idea should allow us to more fully take advantage of correla-
tion between operand values of instructions in the same group.
The average energy dissipation of most processing units like
ALU, shifter, etc. is known to be statistically proportional to
the number of data bit transitions at the inputs in a clock cycle,
Eaverage = Econst + Nchange � Echange , whereEconst is a
constant energy independent of the data activity at the inputs,
Nchange is theaverage number of bit transitions at the inputs in
one clock cycle, andEchange is a coefficient specific for every
processing unit [9, 12]. By steering instructions that access the
same registers to the same processing unit cluster we increase
theprobability that operand values of these instructions are cor-
related, and thereby reduce theaveragenumber of bit transitions
at the inputs of functional units.

The suggested split register filearchitecture is similar to the
dependence-based architecture that wasproposed in [10] to sim-
plify wakeup and select logic (which was found to be the most
critical in terms of the delay complexity), and thus allow faster
clocking. In the dependence-based architecture the instruction
issue window is replaced with a number of FIFO buffers, each
queue holding a chain of dependent instructions. Instructions
from multiple queues are issue in parallel. The key difference
between our approach and the dependence-based architecture
is that the register file in the dependence-based architecture is
not partitioned into register files local to clusters. Also, the
dependence-based architecture has not been studied for energy
efficiency in [10].

Before going any further the efficiency of the idea must be
evaluated. The primary questions that determine the efficiency
of splitting theregister fileare: (i) how oftenweneed topassdata
between different clusters (which is equivalent to how often ac-
cessesto remoteregister fileswil l occur, or how many additional
write ports might be needed for inter-register file communica-
tion), (ii ) how many registers in local register files are needed,
and (iii ) what effect such partitioning hason correlation between
operand valuesof instructions issued to thesamefunctional unit.

6 Early Experiments

In this section we check the hypothesis that “there exist certain
groups of instructions in the dynamic instruction sequence such
that the inter-instruction communication is mostly local within
each group.” For thisweneed to find thebest possiblepartition-
ing of instructions in the dynamic code sequence into groups
such that inter-instruction communication across group bound-
ariesisminimized. Thiswould giveusatheoretical lower bound
on the inter-register file traffic when instructions from different
groups are scheduled to access different register files. We are
going to use these data to evaluate the efficiency of various reg-



ister file decentralization techniques that we are going to study
later.

Our approach to identifying the best possible partitioning of
instructions is as follows. First, we construct a graph for a dy-
namic instruction sequence. In this graph nodes represent in-
structions in the dynamic sequence, and edges represent inter-
instruction dependencies. We take into account dependencies
trough registers, through memory locations, through thethecon-
dition code andY registers. To take into account control depen-
dencies, wemakeinstructions in thegraph depend on all mispre-
dicted branches executed earlier in the dynamic code sequence.
Correctly predicted branches do not introduce any control de-
pendencies. Special care is taken to account for delayed instruc-
tions.

To find the best possible partitioning of instructions into
groups such that inter-instruction communication across group
boundaries is minimized, we need to solve the problem of opti-
mal partitioning of the program graph into subgraphs in such a
way that the total number of crossed edges representing depen-
dencies through registers is minimized. Unfortunately we can-
not solve this problem for the whole graph because it is known
to be NP complete. We overcome this difficulty by dividing the
problem intosubproblemsof fixedsize, finding theoptimal solu-
tionsfor thesesubproblems, and thusconstructing asub-optimal
solution for the whole problem. To argue that our suboptimal
solution is close to the optimal one we observe the dependence
of the result upon thesizeof subproblems.

The subproblems of optimal graph partitioning are posed as
follows: AssumewehaveM execution unitsandN instructions
in the analysis window (subproblem size). We need to sched-
ule theseN instructions to theM execution units in such a way
that the total number of crossed edges representing dependen-
cies through registers in the whole graph from the beginning
of a program to the last instruction in this analysis window is
minimized. This optimization target is referred to as traffic cost
minimization.

However, the traffic cost minimization contradicts the con-
dition of exploiting maximal amount of instruction level paral-
lelism, because the desire to minimize the number of crossed
edges would result in the tendency to schedule most of the in-
structions to the same execution unit, leaving the rest of the
hardware idle. The optimum would be achieved by scheduling
all instructions to the same unit, thereby crossing no edges at
all. Therefore, we need to take into account the performance
requirement, namely that the total execution time from the be-
ginning of program to the last instruction in thewindow must be
minimized. Because of this requirement, independent instruc-
tions wil l tend to be scheduled to different execution units. The
performance optimization target is further referred to as delay
cost minimization.

There is one more requirement that we need to take into
account when searching for the optimal partitioning of instruc-
tions. Namely, thenumber of physical registers in every register
file needed for execution should be minimized. This require-
ment is equivalent to reducing the number of live registers in
every group of instruction, and it somewhat conflicts with the
performance requirement by reducing thedegreeof out-of order
issue. Also it results in more even partitioning of instructions
among execution units. The target of minimizing thenumber of
physical registers is further referred to as storage sizecost mini-
mization.

To take into account all these requirements we take the fol-
lowing approach. First we fil l the analysis window with incom-
ing instructions. Then, we consider all possible assignments of
the instructions in the analysis window to execution units, and
calculatethreecosts for every assignment i.e. thetraffic cost, de-
lay cost, and storage size cost. Then we calculate the total cost

of every assignment as some function of the three costs above,
choose the assignment with the minimum total cost, and fil l the
analysis window with new instructions. We can place emphasis
on any of the above requirements (either communication local-
ity, or performance, or storage size), by constructing appropri-
ate cost functions. The easiest way is to sum the three costs
above with appropriate weights. At this point we assume that
all execution units are equivalent, and every instruction can be
scheduled to any of the execution units. Within every execution
unit instructionsare issued in-order, thus thereareMN possible
combinations.

Results of applying the described optimization algorithm to
afew short integer programsarepresented inFigures3, and 4 for
processors with four and eight execution units, respectively. In
thisand other experiments in thissection weused thebasic two-
bit branch predictor which has about10% misprediction rateon
the integer benchmarks. The branch misprediction penalty was
assumed to be 5 cycles, and the instruction and data cache hit
rateswereassumed to be100%.
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Figure 3: Inter-register file traffic on a per-instruction basis ver-
sus CPI, for different optimization targets and different sizes of
theanalysis window. Thenumber of execution units is four.

Resultsarepresented by dots, whereeach dot corresponds to
a certain optimization target, and analysis window size. TheX
axisshows CPI, and theY axisshows theaveragenumber of re-
moteregister fileaccesses per instruction. Thus, points closer to
the origin of the coordinates represent better scheduling. Points
corresponding to the same optimization target are connected
with dotted lines. We see that bigger analysis windows result
in a better scheduling policy. Unfortunately we could not run
thesimulation for larger analysis windows because of execution
timeconstraints.

Wedid not observe significant saturation of improvement in
scheduling with the increase in the analysis window size within
therange that wecould simulate, although wecan seethat bene-
fit of increasing thesizeof theanalysis window diminishes with
the growth of the analysis window. We expect to see a more
significant saturation of scheduling improvement for the anal-
ysis window sizes around 32 instructions, because most of the
register instances areconsumed within 32 instructions [5].

The results show that different optimization target result in
quite different traffic-delay tradeoffs. By increasing the weight
of thetrafficcost weplacemoreemphasisonminimizationof the
traffic cost, however, this also results in performance decrease
(higher CPI). The corresponding points tend to concentrate in
the lower right corners of the figures. On the other hand, by in-



creasing the weight of the delay cost we place more emphasis
on performanceoptimization, but at theexpenseof higher traffic
cost. The corresponding points tend to concentrate in upper-
left corners of the charts. The vertical dotted lines on the charts
correspond to the maximum performance scheduling, when the
traffic cost is ignored. We also observed a significant space for
the traffic-delay tradeoffs for configurations with 2 and16 func-
tional units.
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 Inter register file traffic on the per instruction basis versus CPI. Number of functional units is 8.
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Figure 4: Inter-register file traffic on a per-instruction basis ver-
sus CPI, for different optimization targets and different sizes of
theanalysis window. Thenumber of execution units is eight.

As a result of running these experiments we see that even
with theexistingcompiler which performsoptimizationsfor per-
formance only, it is possible to partition instruction into groups
such that inter-instruction communication tends to bemostly lo-
cal within each group. By scheduling instructions in different
groups to different execution units it ispossible to keep theinter-
unit communication low, while exploiting almost all the ILP
available in thecode.

We also checked the hypothesis that “steering instructions
that access thesameregisters to thesameprocessing unit cluster
increases the probability that operand values of these instruc-
tions are correlated”. Indeed, we observed a 9% to 10% reduc-
tion in thedataswitching activity at theinputsof functional units
for the suboptimal scheduling algorithm described above. The
corresponding reduction in thedataswitching activity at theout-
puts of the functional unit was from 12% to 14%. Runs with
higher weight of the traffic cost resulted in more significant re-
ductions in data switching activity. The observed reduction in
the switching activity could result in up to 10% reduction in the
dissipated power of the corresponding functional units [9, 12].
The reduction in the switching activities at the inputs and out-
puts of local register fileswas even moresignificant, up to 17%.
This could be used to further reduce the access energy to local
register files [17].

In the experiments described above we analyzed properties
of code, avoiding implementation details as much as possible.
As a next step we plan to come up with certain implementation
that would allow us to take advantage of the discovered proper-
ties. Wearegoing to analyze the inter-instruction traffic in more
detail and study how the inter-group traffic could be handled.
Wewil l study theuseof aglobal register file for storing register
instances that are alive for long periods of time and extensively
accessed by many instructions.

7 Opcode-Based Steering

In practice various heuristics can be used for steering instruc-
tions to clusters, and the simplest of them is the opcode-based
steering, when the cluster for every instruction is chosen based
on the instruction opcode. To evaluate the efficiency of the
opcode-based steering we set up an experiment, based on the
SPARC instruction set simulator Shade [2]. The methodology
of the experiment was as follows: Each entry in the simulated
physical register array has a tag that shows in which register file
the data is being stored. Al l read accesses to register files are
recorded in a matrix. Whenever unit i reads data from register
file j, the entry M [i][j] in the matrix is incremented. The val-
ues in the matrix are divided by the total number of instructions
executed, so that diagonal and non-diagonal elements in thema-
trix represent local register file hit and miss rates, respectively,
on aper-instruction basis. Thesum of all elements in thematrix
is the average number of non-g0 register file accesses by one
instruction. Accesses to thezero registerg0 are ignored.

In our first experiment we divided all instructions of the
Sparc architecture into four groups: load/store instructions,
branches, ALU instructions, and processor control instructions,
including call, jmpl and return. We assumed that there is a sep-
aratecluster for every group, with a local register file. Note that
early CDC and Cray machinesoften had multiplearchitecturally
dedicated register filessimilar to thispartitioning.

In this experiment we assumed that if a unit needs to ac-
cess data from a remote RF, the data is moved from that re-
mote register file to the RF of the unit requesting the data
(move-on-miss policy). Therefore, non-diagonal entries in the
matrix show how often such inter-register file transfers are
needed (in terms of accesses per instruction). For example,
M[L OAD/STORE][ALU] shows how often data needed to be
transferred from theALU register fileto theLOAD/STOREreg-
ister file, on aper-instruction basis.

The first approach that we simulated is a ”lazy” placement
policy. Every unit writes data to its local register file. If an-
other unit needs this data, the data is moved to the correspond-
ing register file. The results of using thispolicy is that too many
inter-register file data transfers are needed: we observed local
register filemisses in up to 30% of instructions executed. Thus,
this placement policy is not suitable for the split register file ar-
chitecture.

The second approach we simulated is a ”greedy” placement
policy, when data is always written to the register file local to
that unit whichwil l need thedatafirst (in thedynamic instruction
sequence). If another unit needs thisdata later, thedata ismoved
to the register file local to that unit. The results for the greedy
placement policy averaged over a set of integer bench program
aregiven in theTable1.

Instruction
Number of accessesto the local register files (per instruction)

Groups LOAD/STORE BRANCH PROC. CONTR. ALU

LD/ST 0.223 0.000 0.000 0.027

BRANCH 0.000 0.000 0.000 0.000

CONTR. 0.000 0.000 0.025 0.000

ALU 0.046 0.000 0.002 0.535

Table1: Inter-register filetraffic matrix for thegreedy placement
policy.

The third approach we simulated is an ”optimal” placement
policy, when data is always written to the register file local to
the unit that wil l access this data for the most number of times.
Unlikethetwopreviousplacement policies, if another unit needs



to access this data, the data is not moved from the register file.
The results for the optimal placement policy averaged over the
same set of integer bench program aregiven in theTable2.

Instruction
Number of accessesto the local register files (per instruction)

Groups LOAD/STORE BRANCH PROC. CONTR. ALU

LD/ST 0.213 0.000 0.000 0.037

BRANCH 0.000 0.000 0.000 0.000

CONTR. 0.000 0.000 0.023 0.002

ALU 0.026 0.000 0.000 0.557

Table 2: Inter-register file traffic matrix for the optimal place-
ment policy.

Of course, it is not always possible for either hardware or
compiler to predict exactly what unit wil l need the data first or
which unit wil l access the data the most extensively, however
these results show us the lower bound on the register file miss
rates for the opcode-based steering scheme. The main result of
this experiment is that most of the register file accesses hit lo-
cal register files. The total register file miss rate is around 7.5
percent on aper-instruction basis, which means that about7:5%
of all instructions miss their local register files. An interesting
observation isthat thegreedy and optimal placement policiesre-
sult in approximately the same total miss rate. Note that this
result was obtained for a code compiled with a regular optimiz-
ing compiler. If we use a compiler with proper optimizations,
then the results wil l be better.

Most inter-register-file traffic occurs between ALU and
Load/Store units. These register file misses are responsible for
about90% of the total missrate. Thepercentageof thesemisses
is higher for an optimized code than for a non-optimized code.
This happens because an optimized code uses registers moreef-
ficiently for inter-instruction communication. A trivial way to
eliminate this kind of misses would be to broadcast results of
the instructions in these groups to both register files, however,
this might not beenergy efficient. In futureexperiments wewill
study theenergy efficiency of such abroadcasting.

8 Conclusionsand FutureWork

Future growth in performance for modern CPUs is predicated
on higher and higher levels of instruction issue. However, even
with the best of circuit techniques known the centralized regis-
ter files needed to support such machines wil l rapidly become
a bottleneck in the power equation. This paper has suggested
one path towards reducing this factor by architecturally parti-
tioning the register file into logically and physically separate
units. Early simulation results has indicated that the amount of
inter-unit traffic that needs to behandled to allow such partition-
ing may be quite manageable - validating that the basic concept
may hold substantial promise, and opening up an opportunity to
trade performance for power by sharing write ports instead of
adding ports dedicated to inter-register file traffic.

Near term work wil l involve in firming up thesimulation re-
sultswith moreextensivebenchmarksand moredetailed simula-
tions, along with more complete power models that incorporate
more of the CPU. Longer term work wil l focus on alternative
register partitioning schemes, moregeneral that those suggested
in the multi-scalar and trace window work, but again with an
emphasis on inherently lower power organizations. In addition
second order effectswhich may besignificant, such as increased
correlation between bits processed by function units, are also
part of thesimulation plans and wil l be investigated extensively.

The long term goal for this work is thus determination of
architectural techniques, perhaps all the way at the instruction
set level, that permit inherently low energy organizations which
in turn arenot significantly performance constrained.
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Abstract

Organizational techniques for reducing energy dissipation in
on–chip processor caches as well as off–chip caches have been
observed to provide substantial energy savings in a technology
independent manner.  We propose and evaluate the use of block
buffering using multiple block buffers,  subbanking and bit line
isolation to reduce the power dissipation within on–chip caches
for superscalar CPUs.  We use a detailed register–level
superscalar simulator to glean transition counts that occur within
various cache components during the execution of SPEC 95
benchmarks.  These transition counts are fed into an energy
dissipation model for a 0.8 micron cache to allow power
dissipation within various cache components to be estimated
accurately.  We show that the use of 4 block buffers, with
subbanking and bit line isolation can reduce the energy
dissipation of conventional caches very significantly, often by as
much as 60–70%.

1. Introduction

Most high–performance microprocessors have one or two levels
of on chip caches to accommodate the large memory bandwidth
requirements of the superscalar pipeline.  A significant amount of
power is dissipated by these on–chip caches, as exemplified in the
following:

(a) The on–chip L1 and L2 caches in the DEC 21164
microprocessor dissipate about 25% of the total power dissipated
by the entire chip [ERB+ 95].

(b) In the bipolar, multi–chip implementation of a 300–MHz.
CPU reported in [JBD+ 93], 50% of the total dissipated power is
due to the primary caches.

(c) A recently announced low–power microprocessor targeted for
the low power, the DEC SA–110, medium performance market
(that also leads all microprocessors available  today in terms of
SPECmarks/watt) dissipates 27% and 16% of the total power,
respectively, in the on–chip I–cache and D–cache respectively
[Mon 96].

As yet another example, the HP PA 8500 is significantly
cache–rich compared to other similar high–end microprocessors
and reportedly more than 70% of its die area is occupied by the
on–chip L1 caches, which are likely to be a major source of power
dissipation.  Several factors result in significant power
dissipations in on–chip caches.  First, their tag and data arrays are
implemented as SRAMs, to allow the cache access rate match the
pipeline clock rate.  Second, the cache area is more densely
packed than other areas on the die, so that the number of
transistors devoted to the cache are quite a significant percentage
of the total number of transistors on the die.  The above examples
suggest that it is imperative to seek techniques that reduce the
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power dissipated in on–chip caches without compromising the
performance of the caches.

The bulk of the energy dissipation in CMOS circuits comes from
transitions in the logic levels at gate outputs.  The power
dissipated by a CMOS gate due to output transitions is given by P
= 0.5 ⋅ CL ⋅ V2 ⋅ f, where CL is the capacitative load driven by the
gate, V is the voltage swing per transition and f is the transition
frequency.  In addition to these capacitative dissipation, circuits in
real caches (such as the sense amps) also have non–capacitative
dissipations, that also depend on the number of transitions.
Several techniques have been proposed (and actually used in
some cases) for reducing the power dissipated by caches in
general.   These techniques can be divided into the following
categories:

1) Techniques that use alternative cache organizations for
reducing cache power dissipation.  These include the use of
subbanked caches [SuDe 95, KaGh 97a], block buffers [SuDe 95,
KaGh 97a], their combination and multimodular external caches
[KBN 95]. Many techniques for organizing SRAMs for lower
power dissipation, as presented in [ Itoh 96] and [EvFr 95] can also
be used to reduce dissipation in the tag and data arrays within a
cache.

2) Circuit design techniques that focus on reducing the power
dissipation within the static RAM bit cells, particularly
dissipations due to bit line transitions.  These include bit line
isolation techniques that isolate the sense amp from the bit lines
once the sense amp has started making a transition, as used in the
Hitachi SH–3 embedded microprocessor [HKY+ 95], clamped bit
lines that limit bit line swings and other similar techniques.

3) Instruction scheduling techniques that schedules instructions in
a manner that reduces power dissipation in instruction caches
[SuDe 95].

Note that techniques in these three categories are generally
independent from each other and can thus be used in conjunction.
The focus of this paper is on techniques that fall into the first
category.

In this paper we propose and evaluate the use of multiple block
buffers,  subbanking and bit line isolation to reduce the power
dissipation within on–chip caches for superscalar CPUs.  We
show that a suitable combination of these techniques can be
extremely effective in reducing the energy dissipation in all
caches across the memory hierarchy, both on–chip and off–chip.
(Power savings for off–chip caches and other techniques for
reducing off–chip cache power are discussed in a separate paper.)
Our approach is to use a detailed register–level simulator for a
superscalar processor and cache hierarchy to glean transition
counts within key cache components as the simulator executes
SPEC 95 benchmarks.  These transition counts are then fed into an
energy dissipation model for the major cache components [KaGh
97b, KaGh98], with capacitative coefficients obtained from
[WiJo 94] for a real cache implementation, to determine the
energy dissipations are realistically as possible.

The rest of this paper is organized as follows.  In Section 2, we
describe the energy efficient architectural techniques such as
block buffering, subbanking, multiple block buffers and bit–line
isolation.  These are elaborated in earlier papers [KaGh 97a,



KaGh97b, GhKa 98].  In Section 3, we elaborate on the
experimental setup used for our measurements. The energy
dissipations for the proposed cache configurations, as obtained
from the simulated execution of SPEC 95 benchmarks are
discussed in Section 4.  The main conclusions are given in Section
5.  The Appendix summarizes the energy dissipation model of the
set associative caches.

2. Organizing Caches for Energy Efficiency

The most common cache organization employed in modern
microprocessors today is the set–associative cache [Smith 82]; the
direct–mapped cache and fully associative cache organizations
are two extremes of the set–associative organization.  In a normal
m–way set associative cache, there are m tag and data array pairs,
each consisting of S rows, where S = 2s.  Each data array location
is known as a cache line, which is a group of W consecutive words,
W being a power of 2 (W = 2w).  A cache line is thus capable of
holding the contents of what is called a memory block,  consisting
of W consecutive memory words. Tag and data array locations at
the same offset within the tag and data arrays make up what is
called a set.  The placement rules for such a cache dictates that a
word at an address A in the memory (RAM), if present in the
cache, can be found in any cache line within the set at offset (A div
W) mod S.  To uniquely identify the memory block that resides
within a cache line, the tag part of the address (obtained by
stripping the lower order (s+w) bits of A) are kept in the associated
tag array location.  The access steps for the m–way set–associative
cache are thus as follows:

Step 1:  Use the middle order s bits in the address of the word to be
accessed to read out the set that potentially contains these words
into output latches of the tag and data arrays.  These latches
together make up what is called a block buffer (aka line buffer).

Step 2: Compare the tag part of the address being accessed in
parallel with the m outputs from the tag arrays (using m
independent comparators).  A match with the the output of the tag
array indicates that the required data is within the output latch of
the corresponding data array.  If this is the case, a situation called a
cache hit, the lower order w bits of the address are used to
multiplex out the desired word from the data array output latch.  If
no match occurs, we have a cache miss, implying that the desired
data is not within the cache.

In most modern caches, the two steps outlined above are
implemented in 2 (or more) clock cycles.  In the pipelined caches
that we have designed in our simulator, the two steps mentioned
above are naturally divided into 2 stages, thereby providing a
theoretical throughput of one request per cache cycle (per port).
The  tag and data arrays need to be updated when a missing line is
fetched or when a STORE request updates the contents of an
existing line. This update of the arrays is performed by a third
stage of the cache pipeline.  On a cache miss, some replacement
algorithm – implemented in hardware – is used to select a victim
line from the set read out in step 1 and appropriate steps are
followed to install the memory block into the victim’s line frame.

For a superscalar CPU, to maximize the number of instructions to
be examined for dispatch in each cycle, a facility is needed to
transparently step across the line boundary to the physically next
line (if that line is cached).  One way of doing this is to use a deck
buffer mechanism (as used in the MIPS 10K) or to use odd and
even cache banks (with an automatic line address incrementation
facility, as originally used in the IBM Risc/6000).  Modern
superscalar CPUs also tend to support multiple pipelined
load/store units that can request access to the D–cache
simultaneously.  This requirement is met by using a multiported
cache or a interleaved cache.  In the power studies reported here,
we assume that the L1 I–cache uses odd–even cache banks, while
the L1–D cache is multiported.

2.1 Set–associative cache with a single block buffer

Figure 1 depicts a two–way set–associative cache augmented with
a single block buffer (i.e., one set of tag and data latches for the
various cache ways) that does not prolong the cache cycle time.
The components added to the two–way set associative cache to
incorporate block buffering are shown highlighted in a grey
background. The cache shown in Figure 1 is accessed with a
2–cycle latency but at the rate of one access per cycle, exactly like
a conventional set–associative  cache.  These block buffer
augmented caches exploit the spatial locality of reference
exhibited by all programs in general.  If the current data being
accessed is within the last cache line that was accessed, there is no
need to fetch that line again from the data array of the cache.  This
not only saves accesses of the data arrays but, at the same time,
also saves the access necessary to the tag arrays, since both the tag
and data arrays have to be read to determine if the line containing
the required data is within the cache.

The steps for accessing the set–associative cache with a single
block buffer, using a 2–phase clock (phases φ1, φ2) are:

Cycle 1:

φ1: – Precharge the tag and data arrays for a read access
– Start decoding of the set address applied to the arrays

(This is exactly identical to what happens in normal
 set–associative cache.)

– Simultaneously, compare fields in the address being
 accessed with the set number of the previous access (to
determine if the current access is to the same set as the
previous one).

φ2: – If the comparison succeeds (called a “block buffer hit”),
abort the readout of the tag and data arrays.  Otherwise,
latch in the selected set into the array output latches.

– Move the set number for the current access into the latch
that holds the set number for the last access made.

Cycle 2:  

φ1: – Perform the normal tag comparison, as in a normal
set–associative cache.

φ2: – Perform the word multiplexing on a cache hit, as in a
normal set–associative cache.

Note also that the cache cycle time with block buffering does not
go up from that of a normal set–associative cache; all performance
characteristics (access rate, pipelining, number of pipeline stages)
are maintained.

Block buffered caches were introduced by Su and Despain in a
slightly different form in [SuDe 94].  In their design, the block
address of the current access is first compared against the block
address of the set that is currently resident in the block buffer.  The
normal access of the cache – including bit line precharging and
row address decoding – is started only when a mismatch occurs.
Consequently, this arrangement prolongs the cache access
latency, a solution unattractive in practice.  Second, if the cache
access is pipelined in two stages, a completely new set of tag
comparators are needed (along with a comparator for the set
number) to allow a block buffer hit to be determined in parallel
with the tag comparison step of a normal cache access for the
previous access.  Both of these problems are not present in our
block buffering scheme.

2.2 Set–associative cache with multiple block buffers

The benefit of a block buffer can be further extended by using
multiple block buffers, in effect using the block buffers as a
miniature level 0 cache.  Figure 2 depicts a set–associative cache
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with multiple block buffers, in this case 4.  Here, some additional
considerations are needed due to the use of multiple block buffers.
First, we need four latches to hold the number of the four most
recently accessed sets.  Second, four more comparators are
needed to compare the set number field of the current access
against the numbers of the sets sitting in the four block buffers.
Third, if no block buffer hits occur, the data from the set selected
by the current address applied to the cache must be retrieved into
one of the four block buffers.  Consequently, on a block buffer
miss, a victim must be selected from one of the four block buffers.
The need to write back an updated block buffer’s content into the
tag and data arrays, when the block buffer gets selected as a
victim, is avoided by writing through updates to the block buffer
into the corresponding data array on write accesses that result in a
block buffer hit.  Along with these, a multiplexing facility is
needed to direct the outputs of the tag and data arrays into the
victim block buffer.   In this case, the four block buffers effectively
make up a 4–entry fully–associative write–through cache, which
is accessed in parallel with the normal cache without any
prolongation in the cycle time or without any impact on the
normal cache access pipeline.

The access steps for a cache with multiple block buffers are as
follows:

Cycle 1:

φ1: – Precharge the tag and data arrays for a read access
– Start the decoding of the set address applied to the arrays

(This is exactly identical to what happens in normal
set–associative cache).

– Simultaneously, compare the set selector field in the
address being accessed with the set numbers four the four
sets stored in the four block buffers.

– Concurrently, identify a victim block buffer in advance to
handle misses on the block buffers and start the setup of the
multiplexor at the output of the tag and data arrays.

φ2: – If the set number of the current access matches the set
number associated with any of the block buffers (as found
in the set number latches), abort the readout of the tag and
data arrays and steer the tag and data values from the
matching buffer into the tag comparators and the word
multiplexer, respectively.

Otherwise,  if a hit did not occur on the block buffers, latch
in the contents of the selected set from the arrays into the
block buffer chosen as a victim in the previous clock phase,
and move the set selector bits in the currently accessed

address to the set number latch associated with this block
buffer.

Cycle 2:

φ1: – Perform the normal tag comparison, as in a normal
set–associative cache.

φ2: – Perform the word multiplexing on a cache hit, as in a
 normal set–associative cache.

The energy savings resulting in a set–associative cache with a
multiple block buffers is due to reasons similar to that for a
set–associative cache with a single block buffer.  Multiple line
buffers simply increase the probability of aborting the tag and data
array accesses, so that bit line dissipations during the array
readout are avoided.

In [KGM 97], Kin et al describe the use of a small “filter cache”
that sits in front of a conventional L1 cache for reducing the power
dissipation of the cache memory system.  If a hit occurs in the
smaller filter cache, data is accessed from the filter cache.  The
normal L1 cache access is started only after a miss has been
detected in this filter cache.  Consequently, the cache access
latency is increased – this can have adverse impact on
performance.  Notice that although the multiple block buffers in
our proposal behave as a fully associative cache and serves the
same purpose as a filter cache, it does not impact the cache latency
at all.  This is because we probe the block buffers in parallel with
the normal cache access.  Also, unlike a fully associative cache,
we need only one set of tag comparators and four set number
comparators to detect a block buffer hit. (In a four entry fully
associative cache four tag comparators would be needed)
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2.3 Bit–line isolation and subbanking

One of the major source of power dissipation in a cache has been
shown to due to transitions in the bit lines of the data and tag
arrays.  Bit line dissipations occur when the bit lines are
precharged or discharged.  Bit line isolation represents one way of
reducing the energy dissipations due to bit line transitions.  Here,
the sense amps sensing the bit lines are disconnected from the bit
lines as soon as they start the transition on sensing.  Consequently,
when the sense amps recover the cleaner logic levels, these logic
levels are not driven on the bit lines.  With this arrangement, a
small differential voltage on the bit lines is sufficient to trigger the
full transition on the sense amp outputs, but because the sense amp
output remains disconnected from the bit lines, the bit lines



themselves do not experience the full transition made by the sense
amp.  Considerable energy savings thus results.  Bit line isolation
has been used to reduce the power dissipation in the cache
memory of the Hitachi SH–3 embedded microprocessor [HKY+
95].

To achieve further savings on the bit line energy, the data arrays
can be subdivided into subbanks, so that only those subbanks that
contain the desired data can be readout [SuDe 95, KaGh 97a].   A
subbank consists of a number of consecutive bit columns of the
data array.  A data line is thus spread across a number of subbanks.
The size of a subbank refers to the physical word width of each
subbank.  Each subbank within a data array can be activated
independently.  By using an array of bit flags to indicate the
presence/absence of subbanks in the block buffer, the array access
stage can determine if a subbank needs to be read out for the
current request.  This again does not affect the cycle time nor the
pipeline of the cache, while at the same time preventing readout of
those subbanks from the data array which might never be needed.

3.  Experimental Setup

We now describe the experimental setup used in our study of the
energy efficiency achieved through the use of set associative
caches with multiple block buffers, subbanking and bit line
isolation as described in Section 2.  We use a detailed
register–level simulator, SCAPE, which accurately simulates at
the cycle level a superscalar pipelined processor, based on the
MIPS instruction set.  SCAPE can be configured (using a
configuration file) at run time to simulate a variety of cache
hierarchies such as 2 or 3 levels of caches, split or unified caches
etc.  The primary cache organizational features such as size,
associativity, block size and cache operating frequency can be
configured individually for each cache used in the system.  Apart
from these, a variety of other cache organizational features that
are important in the context of a superscalar processor can be
individually tuned for each cache, such as the number of ports,
multiple outstanding requests, writeback policy and
sub–blocking. For the results presented here, we used a 3 level
cache hierarchy, with split L1 caches, unified L2 cache and an
unified L3 cache.  The L1 and L2 caches were assumed to be
on–chip and the L3 cache was assumed to be off–chip.  Since
superscalar CPUs need to fetch multiple instructions at a time to
feed the instruction dispatch unit, the L1 I–cache was designed to
supply multiple instructions per Ifetch request.  To improve the
I–cache bandwidth, the I–cache was designed to have even–odd
directories (and banks) so that requests that spanned consecutive
rows could still be completed in the same cycle.  The presence of
multiple LOAD/STORE functional units in the superscalar
pipeline demanded the use of multiple ports for the L1 D–cache.
All caches consisted of a 3–stage pipelined design where stage 1
performed that bit–line precharging and array access activities,
stage 2 performed the tag compare, steer and miss handling
activities and stage 3 performed the write activity into the array.
We assume the layout and technology parameters for the 0.8µ
cache described in detail in [WiJo 94].

The superscalar pipeline implements the MIPS 3000 ISA. The
out–of–order execution engine uses a register update unit (RUU)
which maintains the program order of the instructions to retire
completed instructions.  Data forwarding from completed but not
retired instructions in the RUU as well as from functional units is
employed to maximize instruction throughput.  Multiple
functional units are also used achieve dispatch of multiple
instructions in the same cycle.  Many parameters of the
superscalar pipeline itself can be configured at run time, such as
size of the RUU, number of functional units, degree of superscalar
issue and number of physical registers used to  implement register
renaming).  For our studies we used a 64–entry RUU and 4
instruction fetch and issue.  We assumed that the following

function units are present:  2 LOAD units, 1 STORE unit, 6 integer
units, 2 Integer multiply/divide (pipelined)units and 2 Floating
point (pipelined) units.  SCAPE accepts any statically compiled
executable runnable on a MIPS R3000 processor.  We simulated
the execution of the SPECInt95 and few SPECFp95 (su2cor,
mgrid, applu) benchmarks to get a good mix of CPU–intensive
and memory–intensive loads.

For our base case, we assume a 32 Kbyte, direct–mapped L1
I–cache and a 32 Kbyte, 4–way set–associative L1 D–cache.  The
line sizes for both of these caches are set to 32 bytes, a typical
number, with 16 byte subblock size.  The  L2–cache is assumed to
be a 128 Kbyte, 4–way set–associative unified (i.e., shared by
instructions and data) on–chip  cache with a line size of 64 bytes
and 32 byte subblock size.  The 64 byte line size was chosen, since
L2 caches must have a line size longer than that of the L1 caches to
be effective.  The off–chip L3–cache is assumed to be a 1Mbyte,
8–way set–associative unified off–chip cache with a line size of
128 bytes. The interconnection bus width was 32 bytes between
L2 and L3, and 16 bytes between L1 and L2 and 64 bytes between
L3 and the main memory.  All the caches had write–back policy
except L3 which was write–through with a 16 deep write back
buffers.  A buddy replacement algorithm, approximating LRU,
was used for all the set–associative caches, as well as for choosing
the victim block buffer on a block buffer miss.

We  studied a  variety of cache configurations,  keeping the
individual capacities of L1 I, L1 D, L2 and L3 caches constant, to
study the effects of multiple block buffers and other energy
efficient enhancements.  These configurations are as follows (see
Table I):

• L1 I–caches with associativities of 1 and 4.  For each of these
configurations we compared the energy saving through the
use of simultaneously using 4–block buffers, subbanking and
bit–line isolation against a conventional cache. For these
configurations of L1 I–cache,  the parameters of the L1
D–cache and L2–cache were  kept the same as in the base
case.  The L3 cache is always maintained as a conventional
cache with base case configuration.

• L1 D–caches with associativities of  2 and 4.  For each of these
configurations we compared the energy saving through the
use of simultaneously using 4–block buffers, subbanking and
bit–line isolation against a conventional cache. For these
configurations of L1 D–cache,  the parameters of the L1
I–cache and L2–cache were  kept the same as in the base case.
The L3 cache is always maintained as a conventional cache
with base case configuration.

For the purpose of this paper, we used the capacitances for the 0.8
micron CMOS cache described in [WiJo 94].  A supply voltage of
Vdd = 5 Volts was assumed.  The voltage swing on the bit lines was
limited to 500mV on each side of Vprecharge which was assumed to
be Vdd/2. For the bit line isolation design however, the voltage
swing was assumed to be 200mV on each side of Vprecharge.  The
CPU pipeline (and the caches) was (were) assumed to be clocked
at 120 MHz.  The 0.8µ pipelined cache used for the case study can
sustain this clock rate for a wide range of cache sizes based on the
timings reported in [WiJo 94] where the cache was not pipelined.
The L2 cache is operated at half this frequency.

4.  Results and Discussions

Figures 3 and 4 depict how the power dissipation varies across the
SPEC 95 benchmarks for a conventionally organized L1 I–cache
and a conventionally organized L1 D–cache.  Figure 5 shows how
the power dissipation in the conventional, unified L2 cache varies
over the same benchmarks.
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Figure 6 shows how the average power dissipation for the L1
I–cache (over the SPEC 95 benchmarks studied) decreases as we
move from a conventional organization (labelled a) to an
organization with 4 block buffers and subbanking (labelled b) and
an organization with 4 block buffers and subbanking that
additionally uses bit line isolation (labelled c).  The power
reductions that result are in excess of 66%.  Figure 7 shows that
better power improvements also occur for the L1 D–cache when
identical enhancements are made – in this case the power savings
approach 70%.

In Figures 8 and 9, we depict the power dissipations across the
benchmarks for the two most power–efficient organizations for
the L1 I–cache and the L1 D–cache respectively.  A comparison of
Figures 3 and 8 shows that the power savings for the L1 I–cache
are quite consistent across the benchmarks when 4 block buffers,
subbanking and bit line isolation are used.  Similar conclusions
are to be drawn for the L1 D–cache when Figures 4 and 9 are
compared.

Figure 10 depicts the extent of overall power savings when
organizational enhancements are made to all of the on–chip
caches.  Since the L1 I–cache has a relatively higher dissipation,
the specific organization chosen for the L1 I–cache was the one
that had the least power dissipation.  The L1–Dcache and the L2
cache configurations were then chosen to minimize the overall
power dissipation in all of the on–chip caches.

Figures 11 and 12 are useful in understanding where the power
savings come from.  For the conventional organizations, the
energy spent in precharging and discharging the bit lines
dominate.  With the use of block buffers, the number of accesses to
the actual cache arrays are reduced, reducing in turn the bit line
dissipation component.  When subbanking is additionally
deployed, the number of bit lines that have to be driven,
precharged or sensed in the data array gets further reduced.
Additional savings come when the capacitative loading of the bit
lines, as seen by the sense amp,  is reduced through bit line
isolation.

5.  Conclusions

On–chip caches are a major source of power dissipation in
contemporary superscalar microprocessors.  The bulk of the
energy dissipated in conventionally organized caches is in
precharging, sensing and discharging the bit lines of the tag and
data arrays.  We proposed the use of alternative organizations,
such as multiple block buffering, subbanking and bit line isolation
to reduce the power dissipation in on–chip caches without
compromising the cache cycle time (and other aspects of
performance, such as the cache hit ratio and cache access rate).
The power saving achieved ranged from 60% to 70%.

We are currently investigating other organizational and circuit
enhancements to caches and on–chip memory systems for
reducing power without sacrificing performance.
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Abstract
In this paper, we will propose several different data
and instruction cache configurations and analyze their
power as well as performance implications on the pro-
cessor. Unlike most existing work in low power micro-
processor design, we explore a high performance pro-
cessor with the latest innovations for performance. Us-
ing a detailed, architectural-level simulator, we eval-
uate full system performance using several different
power/performance sensitive cache configurations. We
then use the information obtained from the simulator to
calculate the energy consumption of the memory hierar-
chy of the system. Based on the results obtained from
these simulations, we will determine the general char-
acteristics of each cache configuration. We will also
make recommendations on how best to balance power
and performance tradeoffs in memory hierarchy design.

1 Introduction
In this paper we will concentrate on reducing the energy
demands of an ultra high-performance processor, such
as the Pentium Pro or the Alpha 21264, which uses su-
perscalar, speculative, out-of-order execution. In partic-
ular, we will investigate architectural-level solutions that
achieve a power reduction in the memory subsystem of
the processorwithoutcompromising performance.

Prior research has been aimed at measuring and rec-
ommending optimal cache configuration for power. For
instance, in [10], the authors determined that high per-
formance caches were also the lowest power consum-
ing caches since they reduce the traffic to the lower
level of the memory system. The work by Kin [7] pro-
posed accessing a smallfilter cachebefore accessing the
first level cache to reduce the accesses (and energy con-
sumption) from DL1. The idea lead to a large reduc-
tion in memory hierarchy energy consumption, but also
resulted in a substantial reduction in processor perfor-
mance. While this reduction in performance may be tol-
erable for some applications, the high-end market will
not make such a sacrifice. This paper will propose mem-
ory hierarchy configurations that reduce power while re-
taining performance.

Reducing cache misses due to line conflicts has been
shown to be effective in improving overall system per-
formance in high-performance processors. Techniques
to reduce conflicts include increasing cache associativ-
ity, use of victim caches [5], or cache bypassing with
and without the aid of a buffer [4, 9, 11]. Figure 1 shows

the design of the memory hierarchy when using buffers
alongside the first level caches.

Unified
L2 cache

L1
Data
Cache

dL1 buffer

iL1 buffer

data access

instruction
access

from
Processor

L1
Inst
Cache

Figure 1: Memory hierarchy design using buffers
alongside the L1caches. These buffers may be
used as victim caches,non-temporal buffers, or
speculative buffers.

The buffer is a small cache, between 8–16 entries,
located between the first level and second level caches.
The buffer may be used to hold specific data (e.g. non-
temporal or speculative data), or may be used for general
data (e.g. “victim” data). In this paper we will analyze
various uses of this buffer in terms of both power and
performance. In addition, we will compare the power
and performance impact of using this buffer to more tra-
ditional techniques for reducing cache conflicts such as
increasing cache size and/or associativity.

2 Experimental setup
This section presents our experimental environment.
First, the CPU simulator will be briefly introduced and
then we will describe how we obtained data about the en-
ergy consumption of the caches. Finally we will describe
each architectural design we considered in our analysis.

2.1 Full model simulator
We use an extension of theSimpleScalar[2] tool suite.
SimpleScalar is an execution-driven simulator that uses
binaries compiled to a MIPS-like target. SimpleScalar
can accurately model a high-performance, dynamically-
scheduled, multi-issue processor. We use an extended
version of the simulator that more accurately models



all the memory hierarchy, implementing non-blocking
caches and complete bus bandwidth and contention
modeling [3]. Other modifications were added to han-
dle precise modeling of cache fills.

Tables 1, 2, and 3 show the configuration of the pro-
cessor modeled. Note that first level caches are on-chip,
while the unified second level cache is off-chip. In addi-
tion we have a 16-entry buffer associated with each first
level cache; this buffer was implemented either as a fully
associative cache with LRU replacement, or as a direct
mapped cache. Note that we chose a 8K first level cache
configuration in order to obtain a reasonable hit/miss rate
from our benchmarks [13]. In Tables 2 and 3 note that
some types of resource units (e.g., the FP Mult/Div/Sqrt
unit) may have different latency and occupancy values
depending on the type of operation being performed by
the unit.

Table 1: Machine configuration parameters.

Parameter Configuration
L1 Icache 8KB direct; 32B line; 1 cycle lat.
L1 Dcache 8KB direct; 32B line; 1 cycle lat.
L2 Unified Cache 256KB 4-way; 64B line; 12 cycles
Memory 64 bit-wide; 20 cycles on page hit,

40 cycles on page miss
Branch Pred. 2k gshare + 2k bimodal + 2k meta
BTB 1024 entry 4-way set assoc.
Return Addr. Stack 32 entry queue
ITLB 32 entry fully assoc.
DTLB 64 entry fully assoc.

Table 2: Processor resources.

Parameter Units
Fetch/Issue/Commit Width 4
Integer ALU 3
Integer Mult/Div 1
FP ALU 2
FP Mult/Div/Sqrt 1
DL1 Read Ports 2
DL1 Write Ports 1
Instruction Window Entries 64
Load/Store Queue Entries 16
Fetch Queue 16
Minimum Misprediction Latency 6

Table 3: Latency and occupancy of each resource.

Resource Latency Occupancy
Integer ALU 1 1
Integer Mult 3 1
Integer Div 20 19
FP ALU 2 1
FP Mult 4 1
FP Div 12 12
FP Sqrt 24 24
Memory Ports 1 1

Our simulations are executed on SPECint95 bench-
marks; they were compiled using a re-targeted version
of the GNUgcccompiler, with full optimization. This
compiler generates 64 bit-wide instructions, but only 32
bits are used, leaving the others for future implemen-
tations; in order to model a typical actual machine, we
convert these instructions to 32 bits before executing the

code. Since one of our architectures was intended by the
authors for floating point applications [9], we also ran a
subset of SPECfp95 in this case. Since we are executing
a full model on a a very detailed simulator, the bench-
marks take several hours to complete; due to time con-
straints we feed the simulator with a small set of inputs.
However we execute all programs entirely (from 80M
instructions incompressto 550M instructions ingo).

2.2 Power model

Energy dissipation in CMOS technology circuits is
mainly due to charging and discharging gate capaci-
tances; on every transition we dissipateEt =

1

2
�

Ceq � V 2

dd Watts. To obtain the values for the equiva-
lent capacitances,Ceq, for the components in the mem-
ory subsystem, we follow the model given by Wilton and
Jouppi [12]. Their model assumes a 0.8�m process; if a
different process is used, only the transistor capacitances
need to be recomputed. To obtain the number of transi-
tions that occur on each transistor, we refer to Kamble
and Ghose [6], adapting their work to our overall archi-
tecture.

An m-way set associative cache consists of three
main parts: a data array, a tag array and the necessary
control logic. The data array consists ofS rows contain-
ing m lines. Each line containsL bytes of data and a
tagT which is used to uniquely identify the data. Upon
receiving a data request, the address is divided into three
parts. The first part indexes one row in the cache, the
second selects the bytes or words desired, and the last
is compared to the entry in the tag to detect a hit or a
miss. On a hit, the processor accesses the data from the
first level cache. On a miss, we use a write-back, write-
allocate policy. The latency of the access is directly pro-
portional to the capacitance driven and to the length of
bit and word-lines. In order to maximize speed we kept
the arrays as square as possible by splitting the data and
tag array vertically and/or horizontally. Sub-arrays can
also be folded. We used the toolCACTI [12] to compute
sub-arraying parameters for all our caches.

According to [6] we consider the main sources
of power to be the following three components:Ebit,
Eword ,Eoutput . We are not considering the energy dissi-
pated in the address decoders, since we found this value
to be negligible compared to the other components. Sim-
ilar to Kin [7], we found that the energy consumption of
the decoders is about three orders of magnitude smaller
than that of the other components. The energy consump-
tion is computed as:

Ecache = Ebit + Eword + Eoutput (1)

A brief description of each of these components follows.
Further details can be found in [1].

Energy dissipated in bit-lines

Ebit is the energy consumption in the bit-lines; it is
due to precharging lines (including driving the precharge
logic) and reading or writing data. Since we assume a
sub-arrayed cache, we need to precharge and discharge
only the portion directly related with the address we need
to read/write.



Table 4:Baseline results:Number of cycles, accesses and energy consumption in the base case. Energy is
given in Joules
.

DL1 Cache IL1 Cache UL2 Cache
Test Cycles Accesses Eng. (Joules) Accesses Eng. (Joules) Accesses Eng. (Joules)

compress 70 538 278 27 736 186 0.092 66 095 704 0.207 3 134 116 0.402
go 826 111 517 169 860 620 0.612 430 587 086 1.499 60 055 380 6.819
vortex 250 942 324 93 470 624 0.284 108 663 648 0.375 15 336 216 1.796
gcc 392 296 667 103 457 950 0.317 176 609 209 0.618 22 959 880 2.652
li 134 701 535 74 445 274 0.232 140 347 169 0.446 5 856 655 0.652
ijpeg 139 376 153 73 358 576 0.214 135 804 661 0.437 3 906 431 0.451
m88ksim 659 451 084 130 319 219 0.369 241 836 872 0.882 34 953 990 3.980
perl 372 034 266 90 388 059 0.293 148 817 944 0.531 24 532 245 2.794

Table 5: Instruction cache sizes:Percent improvement in performance and power compared to the base
case. Latency = 1 cycle.

Test 8K-2way 16K-direct 16K-2way
%Cyc %IL1 Eng. %Tot. Eng. %Cyc %IL1 Eng. %Tot. Eng. %Cyc %IL1 Eng. %Tot. Eng.

compress 0.24 -18.39 -5.26 0.34 -20.31 -5.67 0.32 -58.63 -17.05
go 13.15 -20.59 8.98 21.17 -22.61 15.90 26.51 -62.84 14.04
vortex 8.30 -22.12 6.14 21.14 -23.22 18.07 27.61 -66.16 18.61
gcc 5.08 -18.95 2.08 19.29 -20.04 15.44 25.02 -58.33 14.60
li 7.20 -18.78 1.58 2.47 -20.11 -5.06 8.69 -59.13 -11.40
ijpeg 4.76 -18.02 -2.28 4.410 -19.88 -3.29 5.43 -57.51 -18.60
m88ksim 16.10 -17.24 12.89 27.33 -15.53 24.73 50.50 -55.10 42.75
perl 11.13 -18.83 7.85 19.10 -20.27 14.98 24.71 -59.82 15.13

Note that in order to minimize the power overhead
introduced by buffers, in the fully associative config-
uration, we perform first a tag look-up and access the
data array only on a hit. If timing constraints make this
approach not feasible, direct mapped buffers should be
considered.

Energy dissipated in word-lines

Eword is the energy consumption due to assertion of
word-lines; once the bit-lines are all precharged we se-
lect one row, performing the read/write to the desired
data.

Energy dissipated driving external buses

Eoutput is the energy used to drive external buses; this
component includes both the data sent/returned and the
address sent to the lower level memory on a miss request.

3 Experimental results

3.1 Base case

In this section we will describe the base case we used;
all other experiments will compare to this one.

As stated before, our base case uses 8K direct mapped
on-chip first level caches (i.e. DL1 for data and IL1 for
instruction), with a unified 256K 4-way off-chip sec-
ond level cache (UL2). Table 4 shows the execution
time measured in cycles and, for each cache, the num-
ber of accesses and the energy consumption (measured

in Joules). The next sections' results will show percent-
age decreases over the base case; thus positive numbers
will mean an improvement in power or performances
and negative number will mean a worsening.

First level caches are on-chip, so their energy con-
sumption refers to the CPU level, while the off-chip sec-
ond level cache energy refers to the board level. In the
following sections we show what happens to the energy
in the overall cache architecture (L1 plus L2), and also
clarify whether variations in power belong to the CPU or
to the board. As shown in Table 4 the dominant portion
of energy consumption is due to the UL2, because of its
bigger size and high capacitance board buses. Further-
more we see that the instruction cache demands more
power than the data cache, due to a higher number of
accesses.

3.2 Traditional techniques

Traditional approaches for reducing cache misses utilize
bigger cache sizes and/or increased associativity. These
techniques may offer good performances but present
several drawbacks; first an area increase is required and
second it is more likely that a larger latency will result
whenever bigger caches and/or higher associativity are
used.

Table 5 presents results obtained changing instruction
cache size and/or associativity. Specifically, we present
8K 2-way, 16K direct mapped and 16K 2-way configura-
tions, all of them maintaining a 1 cycle latency. Reduc-
tion in cycles, energy in IL1 and total energy are shown.
The overall energy consumption (i.e.Total Energy) is
generally reduced, due to a reduced activity in the sec-



Table 6:Victim cache fully associative:Percent improvement in performance and power compared to the
base case.

Swapping Non Swapping
Test Data Only Inst. Only Data & Inst. Data Only Inst. Only Data & Inst.

%Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng.

compress 2.30 6.79 -0.44 -1.51 2.83 5.97 2.91 6.98 -0.44 -1.50 2.77 5.65
go 3.33 10.98 4.40 3.48 7.84 14.49 4.22 12.89 6.50 4.60 10.92 18.00
vortex 3.04 12.01 5.20 4.80 7.43 12.99 3.43 12.34 5.63 4.86 9.75 17.74
gcc 1.72 6.98 3.01 2.54 4.61 8.96 2.11 7.41 4.30 3.37 6.69 11.27
li 2.88 6.62 3.06 2.04 6.26 9.11 3.82 8.96 6.11 4.90 10.69 15.00
ijpeg 4.41 11.04 1.61 -0.72 5.92 11.44 4.86 10.58 2.66 -0.24 7.54 12.16
m88ksim 0.36 3.06 9.80 9.39 10.22 12.51 0.61 4.41 21.07 18.14 21.85 23.12
perl 0.90 4.49 5.60 5.06 6.75 9.78 1.69 5.42 7.58 5.64 8.50 11.36

ond level cache (since we decrease the IL1 miss rate).
However we can also see cases in which we have an in-
crease in power, since benchmarks likecompress, li and
ijpegalready present a high hit rate in the base case.

Even if the total energy improves, we show that the
on-chip power increases significantly (up to 66%) as the
cache becomes bigger. As will be shown in the coming
section, we observed that using buffers associated with
first level caches permit us to obtain an overall energy re-
duction with an on-chip increase byat most3%. We also
observed that if the increase in size/associativity requires
having a 2 cycle latency, performance improvements are
no longer so dramatic and in some cases we also saw a
decrease (e.g. especially for the instruction cache).

In the following sections we will presents various ar-
chitectures we have analyzed. We will start with some
literature examples such as thevictim cache[5] and
non-temporal buffer[9] and then we will present new
schemes based on the use of buffers and how to combine
them.

3.3 Victim cache

We consider the idea of avictim cacheoriginally pre-
sented by Jouppi in [5], with small changes. The au-
thor presented the following algorithm. On a main cache
miss, the victim cache is accessed; if the address hits the
victim cache, the data is returned to the CPU and at the
same time it is promoted to the main cache; the replaced
line in the main cache is moved to the victim cache,
therefore performing a “swap”. If the victim cache also
misses, an L2 access is performed; the incoming data
will fill the main cache, and the replaced line will be
moved to the victim cache. The replaced entry in the
victim cache is discarded and, if dirty, written back to
the second level cache.

We first made a change in the algorithm, perform-
ing a parallel look-up in the main and victim cache, as
we saw that this helps performance without significant
drawbacks on power. We refer to this algorithm asvic-
tim cache swapping, since swapping is performed on a
victim cache hit.

We found that the time required by the processor to
perform the swapping, due to a victim hit, was detri-
mental to performance, so we also tried a variation on
the algorithm that doesn' t require swapping (i.e. on a
victim cache hit, the line is not promoted to the main

cache). We refer to it asvictim cache non-swapping.
Table 6 shows effects using a fully associativevictim

cache. They refer to theswappingandnon swapping
mechanisms. We present cycles and overall energy re-
duction for three different schemes; they use a buffer
associated with theData cache, theInstructioncache,
or both of them. We observed that the combined use
of buffers for both caches offers a roughly additive im-
provement over the single cache case. This result gen-
erally applies to all uses of buffers we tried. As stated
before, we show that thenon swappingmechanism gen-
erally outperforms the original algorithm presented by
the author. In [5], the data cache of a single issue proces-
sor was considered, where a memory access occurs ap-
proximately one out of four cycles; thus the victim cache
had ample time to perform the necessary swapping. The
same cannot be said of a 4-way issue processor that has,
on average, one data memory access per cycle. In this
case the advantages obtained by swapping are often out-
weighed by the extra latency introduced.

It is interesting to note that increased performance
and energy reduction usually go hand-in-hand, since a
reduced L2 activity helps both of them.

3.4 Non-temporal buffer

This idea has been formulated by Rivers and Davidson
in [9] and refers to data buffer only. They observed that
in numerical applications data accesses may be divided
in two categories:scalaraccesses that presenttemporal
behavior, i.e. are accessed more than once during their
lifetime in the cache, andvectoraccesses that present
non-temporalbehavior, i.e. once accessed are no longer
referenced. This is true, since vectors are generally ac-
cessed sequentially and often their working-set is big-
ger than the cache itself, so that when they need to be
referenced again, they no longer reside in the cache.
The idea is to use a special buffer to contain the non-
temporal data and reduce conflicts in the main cache.
They presented a history based algorithm that tags each
line with a temporal/non-temporal bit; this information
is also saved in the second level cache, requiring addi-
tionally writebacks for replaced clean blocks.

Since this algorithm was intended for numerical ap-
plications we added a subset of SPECfp95 to this set of
runs. Experimental results show this technique not to be
effective for integer programs; performance generally is



Table 7:Speculative buffer: Percent improvement in performance and power compared to the base case.

Fully Associative Direct Mapped
Test Data Only Inst. Only Data & Inst. Data Only Inst. Only Data & Inst.

%Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng. %Cyc. %Eng.

compress 1.90 5.37 -0.20 -1.27 2.40 4.79 0.88 1.79 -0.12 -1.83 0.65 -0.010
go 3.41 10.76 6.28 4.49 9.84 15.41 2.20 8.07 5.44 3.27 7.68 11.09
vortex 2.39 7.75 5.78 5.09 8.00 12.84 1.76 6.00 5.55 4.30 7.66 10.47
gcc 1.51 5.27 4.52 3.59 6.15 9.13 1.07 4.12 4.40 2.94 5.46 7.14
li 2.44 4.99 5.94 5.66 8.75 10.84 1.88 3.48 6.32 5.46 8.28 8.94
ijpeg 3.33 8.01 1.40 -0.72 4.58 7.38 2.61 5.50 1.75 -0.71 4.26 5.12
m88ksim 0.29 2.20 22.88 21.65 23.13 24.47 0.25 1.99 22.05 20.45 22.49 22.96
perl 0.66 3.25 6.60 5.65 7.38 9.15 0.79 2.99 6.26 4.79 7.10 7.98

worse by 3% to 20%, while power increases by 7% to
58%. We also observed that only specific numeric ap-
plications benefit from this algorithm; for exampleswim
improves 6.8% in performance and 46% in overall en-
ergy consumption, but others likeapsiorhidro2dworsen
up to 7% in power and 1% in performance.

The main reason of these negative results is due
to an increased writeback activity to the second level
cache required by the algorithm that saves in the L2 the
temporal/non-temporal information. Given a shorter la-
tency L2 cache (e.g. on-chip L2 design), this algorithm
might present better overall results.

3.5 Speculative buffer

The idea of a speculative buffer is based on previous
work by the authors [1] and based on use of confidence
predictors presented in Manneet al. [8]. In this case
we mark every cache access with a confidence level ob-
tained by examining the processor speculation state and
the current branch prediction estimate. We use the main
cache to accommodate misses that are most likely on the
correct path (high confidence) and thespeculative buffer
for misses that have a high probability to be from a mis-
speculated path (low confidence). This idea originates
from a study in which the authors found that line fills
coming from mis-speculated path misses have a lower
probability of being furtheraccessed. Putting them in the
buffer reduces the contention misses in the main cache
by reducing cache pollution.

Table 7 presents results using either a fully associative
or direct mappedspeculative buffer. Although thevictim
cachescheme with swapping gives better results when
used with the data cache only, overall the results show
that thespeculative bufferscheme is better at reducing
energy consumption and improving performances.

Using these buffers not only reduces energy consump-
tion in the overall cache memory system, but it does
so without significantly increasing on-chip energy con-
sumption. For the results listed in Table 7 we found that
the on-chip energy consumption in the data portion in-
creases on average only by 0.7%, and in the instruction
portion by 2.8% (these number are not shown in the ta-
ble). Even more, for some programs likego we reduce
the on-chip data cache portion up to 8%. This is in con-
trast to results shown in Table 5 where on-chip power
increased by as much as 66%.

We also tried a variation on this algorithm deciding

randomly whether to put an incoming fill, either in the
main cache or in the buffer. We tried, among other
cases, to put randomly 10% or 20% of the fills in the
buffer. It is interesting to note that therandomcase
presents, on average, good results. This demonstrates
that simply adding “associativity” to the main cache, suf-
fices to eliminate most of the contention misses (and also
may indicate our benchmarks are not ideal candidates for
speculativesorting).

3.6 Penalty buffer

This model is applied to the instruction cache buffer
only. We observed that, as opposed to data cache behav-
ior, there is not a fixed correlation between variations in
instruction cache miss-rate and performance gain. This
is due to the fact that some misses are more critical
than others; fetch latency often may be hidden by the
Fetch/Dispatch queue as well as the Instruction Window
(Resources Reservation Unit - RUU in SimpleScalar ter-
minology) making some instruction misses non-critical.
However, since misses sometime present a burst behav-
ior, these hardware structures can remain empty and all
latency is detrimental for performance.

Our idea is to divide misses on a penalty basis; we
monitor the state (number of valid entries) of the Dis-
patch Queue and RUU upon a cache miss and we mark
them ascritical (Dispatch Queue or RUU with few valid
entries) ornon-critical (Dispatch Queue or RUU with
many valid entries). We placenon-critical misses in the
penalty bufferandcritical ones in the main cache. In this
way we preserve the instructions contained in the main
cache that are presumed to be more critical.

We tried two different schemes in deciding when to
bypass the main cache and place fills instead in the
penalty buffer. In the first scheme we compared the num-
ber of Dispatch Queue or RUU valid entries to a fixed
threshold. In the second scheme, we used a history-
based method that saves in the main cache the state of the
hardware resources at the moment of the fill (e.g. how
many valid instructions we have in the RUU). This num-
ber will be compared to the current one at the moment of
a future replacement. If the actual miss is more critical
than the past one, it will fill the main cache, otherwise it
will fill the penaltybuffer.

Table 8 presents results using either a fully associa-
tive or direct mappedpenalty buffer. We observed some
good results, but when we tried different threshold val-



Table 8:Penalty buffer: Percent improvement in performance and power compared to the base case.

Fully Associative Direct Mapped
Test Dispatch RUU Dispatch RUU

%Cycles %Energy %Cycles %Energy %Cycles %Energy %Cycles %Energy

compress 0.02 -1.04 0.08 -1.22 0.10 -1.49 0.10 -1.65
go 6.02 4.26 6.37 4.60 4.35 2.65 5.27 3.28
vortex 6.52 5.40 6.29 4.28 6.25 4.22 4.91 2.78
gcc 4.76 3.94 4.69 3.88 4.11 3.10 4.30 3.15
li 6.25 5.70 6.35 5.88 6.11 5.04 6.12 5.17
ijpeg 2.95 1.07 2.21 -0.94 2.51 -0.48 2.62 -0.91
m88ksim 18.40 17.17 24.55 23.14 20.62 18.97 23.83 22.07
perl 7.05 5.95 6.56 5.29 6.32 4.83 5.69 4.00

ues or history schemes, we found great variability in
the behavior. This variability is due to the fact that in
some cases looking separately at the Dispatch Queue
or the RUU doesn' t give a precise model of the state
of the pipeline, thus creating interference in thepenalty
buffer mechanism. Nevertheless, this scheme produces
better results than thespeculative bufferscheme. We
are currently investigating a combined use of these two
schemes that may prove even better.

3.7 Combining use of buffers

So far we presented two main categories of buffer im-
plementations; the first one is based on thevictim cache
that is used to offer a “second chance” to data that, oth-
erwise, should be moved out from L1. In the second
category (all other cases), the algorithm decides what to
put in the buffer, before data has the opportunity to be
written to the L1cache. These are not mutually exclu-
sive, so we tried to combine them, i.e. the buffer is at
the same time used to store specific kinds of data and
to accommodate L1 cache victims. Due to space limita-
tions, we will not show the results, but it is important to
point out that this mechanism is generally beneficial and
gives improvements over the non-combined case. How-
ever most of the gain is still due to the original algorithm
and not to the victim scheme.

4 Conclusions and future work

In this paper we presented tradeoffs between power and
performance in cache architectures, using conventional
as well as innovative techniques; we showed that adding
small buffers can offer an overall energy reduction with-
out decreasing the performance, and in most cases im-
proving it. These small buffers suffice in reducing the
overall cache energy consumption, without a notable
increase in on-chip power that traditional techniques
present. Furthermore use of a buffer is not mutually
exclusive to increasing the cache size/associativity, of-
fering the possibility of a combined effect. We are cur-
rently investigating further improvements in combined
techniques as well as replacement policies. In the re-
sults we showed LRU policy was adopted; we are now
studying policies that favor replacement of clean blocks,
thereby reducing writeback activity.
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Abstract

Prompted by demands in portability and low cost

packaging, the microprocessor industry has started

viewing power, along with area and performance,

as a decisive design factor in today's microproces-

sors. To that e�ect, a number of research e�orts

have been devoted to architectural modi�cations

that target power or energy minimization. Most

of these e�orts, however, involve a degradation in

processor performance, and are, thus, deemed ap-

plicable only for the embedded, low-end market.

In this paper, we propose the addition of an ex-

tra, small cache between the I-Cache and the CPU,

that serves to reduce the e�ective energy dissi-

pated per memory access. In our scheme, the com-

piler generates code that exploits the new memory

hierarchy and reduces the likelihood of a miss in

the extra cache. We show that this is an attrac-

tive solution for the high-end processor market,

since the performance degradation is minimal. We

describe the hardware and compiler modi�cations

needed to e�ciently implement the new memory

hierarchy, and we give the performance and en-

ergy results for most of the SPEC95 benchmarks.

The extra cache, dubbed L-Cache from now on,

is placed between the CPU and the I-Cache. The

D-Cache subsystem remains as is.

1 Introduction

In the latest generations of microprocessors, an in-

creasing number of architecture features have been

exposed to the compiler to enhance performance.

The advantage of this cooperation is that the com-

piler can generate code that exploits the character-

�This work was supported by Intel Corp., Santa Clara,
CA

istics of the machine and avoids expensive stalls.

We believe that such schemes can also be applied

for power/energy optimization by exposing the mem-

ory hierarchy features in the compiler.

The �lter cache [1] tackles the problem of large

energy consumption of the L1 caches by adding a

small, and, thus, more energy e�cient cache be-

tween the CPU and the L1 caches. Provided that

the working set of the program is relatively small,

and the data reuse large, this \mini" cache can pro-

vide the data or instructions of the program and

e�ectively shut down the L1 caches for long periods

during program execution. The penalty to be paid

is the increased miss rates, and, hence, longer aver-

age memory access time. Although this might be

acceptable for embedded systems for multimedia

or mobile applications, it is out of the question for

high performance processors. The �lter cache de-

livers an impressive energy reduction of 58% for a

256-byte, direct mapped �lter cache, while reduc-

ing performance by 21% for a set of multimedia

benchmarks. Our approach has a very small per-

formance degradation with respect to the original

scheme without the �lter cache, and smaller, but

still very large, energy gains.

We can alleviate the performance degradation

by having the compiler selecting statically, i.e. dur-

ing compile time, the parts of the code that are to

be placed in the extra cache (the L-Cache), and

restructuring the code so that it fully exploits the

new hierarchy. The CPU will then access the L-

Cache only when instructions from the selected

part of the program are to be fetched, and it will

bypass it otherwise. Naturally, we want the most

frequently executed code to be selected by the com-

piler for placement in the L-Cache, since this is

where most of the energy gains will come from.

The approach advocated in our scheme relies

on the use of pro�le data from previous runs to

select the best instructions to be cached. The unit

of allocation is the basic block, i.e. an instruc-

tion is placed in the L-Cache only if it belongs to

a selected basic block. After selection, the com-

piler lays out the target program so that the se-



lected blocks are placed contiguously before the

non-placed ones. The main e�ort of the compiler

focuses on placing the selected basic blocks in po-

sitions so that two blocks that need to be in the

L-Cache at the same time, do not map in the same

L-Cache location.

The organization of the paper is as follows: Sec-

tion 2 brie
y describes how the compiler selects in-

structions to be placed in the extra cache and what

code modi�cations are necessary for this scheme to

be carried out e�ectively. Section 3 refers to the

hardware implementation details, and the energy

estimation phase. Section 4 presents and discusses

experimental results on SPEC95 benchmarks, and

the paper is concluded with Section 5.

2 Compiler Enhancements

In this work we describe a possible static imple-

mentation, which relies on the capability of the

compiler to detect \good" candidate basic blocks

for caching, i.e. blocks whose instructions can be

stored in the L-Cache. The main stage in our com-

piler enhancement is block placement in which the

compiler selects, and then places the selected ba-

sic blocks so that the number of blocks that are

placed at the same time in the extra cache is max-

imized. To that e�ect, it avoids placing two blocks

that have been selected to reside at the same time

in the L-Cache in the same L-Cache location.

2.1 Block Placement for Maximum L-Cache Uti-

lization

The main step of our algorithm is to position the

code in such a way as to maximize the number of

basic blocks that are cached in the extra cache. In

order to do that, we need to place these blocks con-

tiguously in memory so that they do not overlap.

Consider the following code:

do 100 i=1, n

B1; # basic block

if (error) then

error handling;

B2; # basic block

100 continue

When the code is compiled and mapped in the

address space, the basic blocks B1 and B2 will be

separated by the code for the if-statement in the

�nal layout. If the L-Cache size is smaller than the

sum of the sizes of B1, B2 and the if-statement, but

larger than the sum of the sizes of B1 and B2, the

blocks B1 and B2 will overlap when stored in the

L-Cache. Therefore, we need to place B1 and B2

one after the other and leave the if-statement at

the end.

This is usually the case in loops. Blocks that

are executed for every iteration are intermingled

B1

B2

B7

B4

B6

L1
L2

L5
L6

L3

L4

L7

B5

L8

B8

B3

Figure 1: Nesting example

with blocks that are seldom executed. We iden-

tify such cases and move the infrequently executed

code away so that the normal 
ow of control is in a

straight-line sequence. This entails the insertion of

extra branch and jump instructions to retain the

original semantics of the code.

We will delineate our approach in the following

paragraphs without giving many details, because

of lack of space. Our compiler modi�cation takes

as input the generated object code and the pro�le

data of the program, and outputs a new, equivalent

object code with a di�erent address mapping for

some of the basic blocks.

Our strategy uses the Control Flow Graph (CFG)

for each function of the program and then com-

putes the nesting of each basic block [2]. For ex-

ample, in Fig. 1, the nesting of basic block B3 are

the loops L1; L2.

The basic ideas behind the compiler modi�ca-

tion are the following: First, the most frequently

executed basic blocks of a function/procedure should

be placed in the global memory space the one after

the other so that their locality is enhanced. These

blocks are detected during pro�ling. Second, the

structure of the CFG is also important in minimiz-

ing the miss rate of the L-Cache. For example, B3

should not overlap with B1 and B2 in the L-Cache.

If that was the case, B3 would miss in every iter-

ation of the loop L2 and the possible gains of its

placement in the L-Cache would be nulli�ed. The

same goes for B6 with respect to B4 and B5. On

the other hand, B1 and B2 can overlap since B2

is only executed when B1 �nishes. Our algorithm

uses the CFG and the execution pro�le of each ba-

sic block in the program to create the new object

code.

There are six reasons that hinder a basic block

from being selected for placement in the L-Cache:

� It belongs to a library and not to a user func-

tion. We follow the convention that only user

functions are candidates for placement, since

they have the tightest loops.



� The algorithm �nds that the basic block was

too large to �t in the L-Cache. This can be

either because the size of the block is larger

than the L-Cache size, or because it cannot

�t at the same time with other, more impor-

tant, basic blocks.

� Its execution frequency is smaller than a thresh-

old, and is thus deemed unimportant.

� It is not nested in a loop. There is no point

in placing such a basic block in the L-Cache

since it will be executed only once for each

invocation of its function.

� Even if its execution is large, its execution

densitymight be small. For example, a basic

block that is located in a function which is in-

voked a lot of times might have a large execu-

tion frequency, but it might only be executed

few times for every function invocation. We

de�ne the execution density of a basic block

as the ratio of the number of times it is exe-

cuted to the number of times that the func-

tion in which it belongs, is invoked.

� Finally, a very small basic block is not placed

in the L-Cache even if it satis�es all the above

requirements. The extra branch instructions

that might be needed to link it to its succes-

sor basic blocks will be an important over-

head in this case.

The basic blocks are laid out in the memory ad-

dress space so that all the selected basic blocks are

placed contiguously before the non-selected ones.

This arrangement greatly simpli�es the hardware

of the L-Cache as we will see in the next section.

Branches are placed at the end of the blocks, if

needed, to sustain the functionality of the code.

The user can trade o� energy savings with de-

lay increase by adjusting the thresholds as these

were discussed in this section. For example, a

smaller size threshold will probably lead to larger

energy savings, and larger delay as well. As an

extreme, the user can also completely disable the

L-Cache, by forcing the compiler (through the user

given thresholds) to generate the original code, or,

on the other extreme, can emulate a �lter cache

scheme by selecting every basic block for place-

ment in the L-Cache. The quality of the generated

code can be determined by the user during com-

pile time. Therefore, individual applications can

choose from a range of caching policies.

3 Hardware modi�cations and Power Estimation

In addition to the compiler enhancement, our scheme

needs extra hardware for the implementation of

the L-Cache scheme. The extra hardware is shown

in Fig. 2.
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Figure 2: LCache organization

The organization of the L-Cache itself is de-

picted in Fig. 2. It needs the data and the tag part,

an extra comparator for the tag comparison, and a

32-bit multiplexer which drives the data from the

L-Cache or the I-Cache to the data path pipeline.

The functionality of the L-Cache is as follows:

The PC is presented to the L-Cache tag at the

beginning of the clock cycle. The L-Cache will

only get activated if the \blocked part" signal is

on. This signal is generated by the IF unit, and its

meaning is explained in the following paragraphs.

In that case, the comparator checks for a match,

and if it �nds one, it instructs the multiplexer to

drive the contents of the L-Cache in the data path.

The I-Cache is disabled for this clock cycle since

the signal \blocked part" is on.

In case of a L-Cache miss (\LCache Hit" is o�),

the I-Cache is activated in the next clock cycle and

provides the data. The I-Cache is accessed if the

L-Cache misses, whereas the L-Cache is accessed

only when \blocked part" = on. If \blocked part"

= o�, the I-Cache controller activates the I-Cache

without waiting for the \LCache Hit" signal. The

two caches are always accessed sequentially and

not in parallel.

We extend the ISA, and we add an instruction

called \alloc" which has a J-type MIPS format. It

is inserted by our tool and contains the address of

the �rst non-placed block of the function. There

is one such instruction for every function of the

program and the address of \alloc" is stored when

a function is entered. During the execution of the

code in the function, if the PC has a value less

than that address, the \blocked part" signal is set,

else this signal will be set to o�. This way, the

machine can �gure out which portion of the code

executes with only an extra comparison.

We have developed our cache energy models

based on [3]. This is a transistor level model which

uses the run-time characteristics of the cache to

estimate the energy dissipation of its main com-

ponents [4]. A 0.8um technology with 3.3 Volts

power supply is assumed. The cache energy is a



Experiments Frequency Thres. Size Thres. Exec. Density Thres.
FP INT FP INT FP INT

Aggressive (a) 0.01% 0.01% 5 5 5 5
Less Aggressive (b) 0.5% 0.5% 10 5 10 5
Moderate (c) 1% 1% 20 5 20 5

Table 1: User given thresholds in the L-Cache experiments

function of the cache complexity (cache size, block

size, and associativity), its internal organization

(banking), and the run time statistics (mumber of

accesses, hits, misses, average number of bits read,

input switching probabilities). The model is used

for both the I-Cache and the L-Cache/�lter cache.

4 Experimental Evaluation

We evaluated the e�ectiveness of our software and

hardware enhancements by examining the energy

savings on a set of SPEC95 benchmarks. The base

case is a 16KB, direct-mapped I-Cache, with a

block size of 32 bytes. We compared our scheme

against the �lter cache as well as the base case. We

considered two sizes for the �lter and the L-Cache:

256 and 512 bytes. The line size was always 4 bytes

for the L-Cache and varied from 8 to 32 bytes for

the �lter cache. Both caches are direct-mapped.

The L-Cache does not need to have a larger line

size since its hit rate is almost always near 100%.

A larger line size does not alter signi�cantly the

hit rate of the L-Cache, but a�ects negatively its

energy pro�le. There is one cycle penalty in case

of a miss in the L-Cache or the �lter cache, and

a 4 cycle penalty in case of a miss in the I-Cache

since then, the data should be taken from the L2

cache. The L2 cache is o�-chip and its energy dis-

sipation is not modelled. The I-Cache is banked

to optimize its cycle time [3].

We have developed an in-house, cache simu-

lator to gather the statistics of the new memory

hierarchy. We use the SpeedShop [5] set of tools

from SGI to gather the pro�le data and generate

the dynamic instruction traces that were fed into

our simulator. The MIPS compiler is used for com-

pilation and code optimization. All the necessary

run time data were gathered for the computation

of the energy dissipation of the cache subsystem

under the di�erent scenaria.

We experimented with three di�erent scenaria

for the user-given compiler thresholds (Table 1).

The more aggressive scenario delivers larger en-

ergy gains at the expense of larger performance

overhead. A frequency threshold of 0.01%, for ex-

ample, will force the tool to mark for placement

only basic blocks that have an execution time of

at least 0.01% of the total execution time of the

program. A size threshold of 10 will force the tool

to mark only the basic blocks that have at least 10

instructions, and so on.

Tables 2 and 3, show the normalized energy

dissipation of all the simulated cache subsystems

with respect to the original I-Cache scheme. For

the SPECfp95 benchmarks, the 512 byte L-Cache

is almost as succesful as the �lter cache in pro-

viding instructions to the data path and, thus, in

saving energy by disabling the larger I-Cache. The

most energy-e�cient �lter cache is the one with 8B

or 16B line size. A �lter cache with a 32B line size

has larger hit rate, but larger energy dissipation

per access as well. An L-Cache of 256 bytes is

usually too small for any substantial energy sav-

ings.

Tables 4 and 5 show the normalized perfor-

mance overhead for the various schemes, with re-

spect to the original organization. Since we are

only interested in the impact of the new memory

organization on the performance overhead, we as-

sume that there are no other stalls in the machine

other than the ones created when an instruction is

accessed.

The most important advantage of the L-Cache

is its small performance overhead, which is vital

for high performance machines. Performance over-

head is due to the (very small) miss rate in the

L-Cache, and the extra jump and branch instruc-

tions that are inserted by the compiler to the code.

The performance of 512-byte L-Cache (under an

aggressive scenario) is comparable to the perfor-

mance of a 512-byte �lter cache with a block size

of 32 bytes. Such a �lter cache, however, has worse

energy gains than the L-Cache, and, in addition,

entails a large 32-bytes wide bus to connect it to

the I-Cache.

Most integer benchmarks do not have a large

number of basic blocks that can be cached in the L-

Cache. They are also insensitive to the cache size

variation, which is to be expected since the ba-

sic blocks of integer programs are generally small.

Most of the basic blocks of the SPECint95 bench-

marks are not nested, or, they have a small exe-

cution density. Hence, they cannot be included in

the L-Cache. From a performance point of view,

however, a �lter cache in a processor that runs an

integer code, scores poorly. An L-Cache is prefer-

able here if performance degradations cannot be

tolerated.



5 Conclusions

We believe that, since performance is the most im-

portant objective of today's high-end microproces-

sors, no energy reduction technique will be accept-

able, unless it only marginally a�ects the execution

time, or its overhead can be hidden by other com-

piler/architectural techniques. If this is the case,

even a moderate energy reduction will be welcome.

This paper presents a new, modi�ed version of

the �lter cache in which the compiler and the extra

hardware cooperate to decrease energy consump-

tion. The compiler can select only the most im-

portant parts of the code to be placed in the extra

cache, and can direct the hardware to probe the

extra cache only when this code is to be fetched

to the data path. The method is adaptive, since

the user can aggressively pursue energy reductions

to the expense of performance, or vice versa, by

providing di�erent compilation options.
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256 bytes extra cache
Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B 32B

tomcatv 0.686 0.705 0.739 0.551 0.497 0.610
swim 0.242 0.244 0.262 0.243 0.329 0.516
su2cor 0.701 0.734 0.827 0.537 0.485 0.610
hydro2d 0.418 0.438 0.493 0.397 0.413 0.566
mgrid 0.943 0.980 0.986 0.600 0.530 0.638
applu 0.736 0.755 0.840 0.541 0.490 0.610
turb3d 0.618 0.622 0.839 0.426 0.430 0.578
apsi 0.758 0.867 0.957 0.554 0.498 0.613
wave5 0.768 0.822 0.822 0.576 0.517 0.557

FP aver. 0.652 0.685 0.752 0.492 0.465 0.589

go 0.948 0.955 0.955 0.612 0.545 0.660
m88ksim 0.818 0.822 0.856 0.617 0.566 0.663
compress95 0.890 0.897 0.897 0.569 0.523 0.630
li 0.975 0.978 0.976 0.651 0.586 0.708

INT aver. 0.908 0.913 0.921 0.612 0.555 0.665

Table 2: Normalized energy relative to the base
machine for 256-byte

512 bytes extra cache
Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B 32B

tomcatv 0.692 0.692 0.745 0.306 0.369 0.539
swim 0.259 0.261 0.279 0.236 0.325 0.518
su2cor 0.295 0.308 0.367 0.272 0.343 0.527
hydro2d 0.263 0.259 0.299 0.241 0.326 0.517
mgrid 0.225 0.245 0.279 0.249 0.330 0.519
applu 0.666 0.689 0.787 0.333 0.446 0.585
turb3d 0.431 0.432 0.696 0.350 0.387 0.554
apsi 0.594 0.716 0.856 0.442 0.436 0.579
wave5 0.669 0.723 0.725 0.448 0.447 0.493

FP aver. 0.455 0.481 0.559 0.320 0.379 0.537

go 0.945 0.955 0.955 0.562 0.511 0.632
m88ksim 0.816 0.822 0.856 0.595 0.547 0.658
compress95 0.893 0.900 0.900 0.400 0.425 0.583
li 0.975 0.978 0.976 0.510 0.491 0.642

INT aver. 0.907 0.914 0.922 0.517 0.494 0.629

Table 3: Normalized energy relative to the base
machine for 512-byte extra cache

256 bytes extra cache
Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B 32B

tomcatv 1.002 1.001 1.000 1.322 1.168 1.087
swim 1.000 1.000 1.000 1.027 1.016 1.010
su2cor 1.001 1.001 1.000 1.308 1.157 1.087
hydro2d 1.038 1.032 1.023 1.174 1.091 1.051
mgrid 1.009 1.004 1.003 1.367 1.198 1.110
applu 1.080 1.052 1.032 1.314 1.165 1.089
turb3d 1.014 1.014 1.003 1.203 1.108 1.062
apsi 1.022 0.998 0.993 1.318 1.168 1.091
wave5 1.040 1.038 1.038 1.346 1.187 1.205

FP aver. 1.023 1.016 1.010 1.264 1.140 1.088

go 1.016 1.011 1.011 1.349 1.199 1.128
m88ksim 1.023 1.024 1.023 1.375 1.227 1.131
compress95 1.023 1.021 1.021 1.340 1.193 1.105
li 0.997 0.998 0.998 1.407 1.244 1.167

INT aver. 1.015 1.014 1.013 1.368 1.216 1.133

Table 4: Normalized delay relative to the base ma-
chine for 256-byte extra cache

512 bytes extra cache
Benchmark L-Cache Filter Cache

(a) (b) (c) 8B 16B 32B

tomcatv 1.000 1.000 1.000 1.083 1.049 1.025
swim 1.002 1.000 1.000 1.017 1.010 1.007
su2cor 1.010 1.003 1.001 1.050 1.026 1.015
hydro2d 1.052 1.030 1.026 1.021 1.011 1.007
mgrid 1.009 1.004 1.004 1.028 1.014 1.008
applu 1.240 1.137 1.100 1.236 1.122 1.064
turb3d 1.037 1.033 1.018 1.126 1.067 1.038
apsi 1.040 1.012 0.987 1.211 1.111 1.059
wave5 1.027 1.038 1.038 1.220 1.122 1.149

FP aver. 1.046 1.029 1.019 1.110 1.059 1.041

go 1.019 1.011 1.011 1.301 1.170 1.103
m88ksim 1.023 1.024 1.023 1.350 1.207 1.122
compress95 1.023 1.021 1.021 1.174 1.101 1.062
li 0.997 0.998 0.998 1.272 1.159 1.110

INT aver. 1.015 1.014 1.013 1.274 1.159 1.099

Table 5: Normalized delay relative to the base ma-
chine for 512-byte extra cache
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Abstract

Advances in DRAM technology have led many researchers to
integrate computational logic on DRAM chips to improve per-
formance and reduce power dissipated across chip boundaries.
The density, packaging, and storage characteristics of these
intelligent memory chips, however, present new challenges in
power management.

We introduce Active Pages, a promising architecture for
intelligent memory based upon pages of data and simple func-
tions associated with that data [OCS98]. We evaluate the
power consumption of three design alternatives for support-
ing Active-Page functions in DRAM: recon�gurable logic, a
simple processing element, and a hybrid combination of re-
con�gurable logic and a processing element. Additionally, we
discuss operating system techniques to manage power con-
sumption by limiting the number of Active Pages computing
simultaneously on a chip.

1 Introduction

As processor performance grows, both memory bandwidth
and power consumption become serious issues. At the same
time, commodity DRAM densities are increasing dramatically.
Many researchers have proposed integrating computation with
DRAM to increase memory bandwidth and decrease power
consumption. The operating and packaging characteristics of
DRAM chips, however, present new constraints on the power
consumption of these systems.

We introduce Active Pages, a promising architecture for
intelligent memory with substantial performance bene�ts for
data-intensive applications [OCS98]. An Active Page consists
of a page of data and a set of associated functions that operate
on that data.

To use Active Pages, computation for an application must
be divided, or partitioned, between processor and memory. For
example, we use Active-Page functions to gather operands for
a sparse-matrix multiply and pass those operands on to the
processor for multiplication. To perform such a computation,
the matrix data and gathering functions must �rst be loaded
into a memory system that supports Active Pages. The pro-
cessor then, through a series of memory-mapped writes, starts
the gather functions in the memory system. As the operands
are gathered, the processor reads them from user-de�ned out-
put areas in each page, multiplies them, and writes the results
back to the array datastructures in memory. Simulation re-
sults show up to a 1000X speedup on such applications running
on systems that use Active-Page memory over conventional
memory.

This paper focuses upon ongoing work which evaluates the
power consumption of Active-Page implementations. First, we
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describe three alternative designs based upon recon�gurable
logic, small processors, and a combination of the two. Then
we present some power models and estimates for these designs.
We also discuss software techniques for reducing power con-
sumption. Finally, we conclude with some future directions
for this work.

2 Design Alternatives

In this section we brie
y present three architectures for Ac-
tive Page memory systems. These architectures consist of
RADram, or recon�gurable logic in DRAM [OCS98], an ar-
chitecture consisting of only a small RISC or MISC [Jon98]
like processing element near each page of data, and a hybrid
architecture which provides a small processing element with
recon�gurable logic processing capability.

Currently, within all of our designs we adopt a processor-
mediated approach to inter-page communication which assumes
infrequent communication. When an Active-Page function
reaches a memory reference that can not be satis�ed by its
local page, it blocks and raises a processor interrupt. The
processor satis�es the request by reading and writing to the
appropriate pages. The processor-mediated approach reduces
power by not requiring extensive inter-page communication
networks, and global clocking.

2.1 Recon�gurable Logic

Our initial implementation of Active Pages focused upon
the integration of DRAM and recon�gurable logic. For gigabit
DRAMs, a reasonable sub-array size to minimize power and
latency is 512Kbytes [I+97]. The RADram (Recon�gurable
Architecture DRAM) system, shown in Figure 1, associates
256 LEs (Logic Elements, a standard block of logic in FPGAs
which is based upon a 4-element Look Up Table or 4-LUT)
to each of these sub-arrays. This allows e�cient support for
Active-Page sizes which are multiples of 512Kbytes.

Each LE requires approximately 1k transistors of area on
a logic chip. The Semiconductor Industry Association (SIA)
roadmap [Sem97] projects mass production of 1-gigabit DRAM



chips by the year 2001. If we devote half of the area of such
a chip to logic, we expect the DRAM process to support
approximately 32M transistors, which is enough to provide
256 LEs to each 512Kbytes sub-array of the remaining 0.5-
gigabits of memory on the chip. DeHon [DeH96] gives sev-
eral estimates of FPGA area, and existing prototype merged
DRAM/recon�gurable logic designs demonstrate this to be a
realistic design partitioning [M+97].

2.2 Processing Elements

An alternative architecture for Active Page implementations
is that of a small RISC or MISC [Jon98] type processing ele-
ment used to execute user level process functions in memory.
Several low-power processing cores currently exist and Active
Page designs can leverage the existing and future work in this
area. However, a processing engine designed for Active Pages
must satisfy two constraints: power and size. While high-
performance low-power designs exist, such as the StrongARM
[San96], their size makes them prohibitive for use in Active
Page memory. For this study we assume a slightly modi�ed
Toshiba TLCS-R3900 series [NTM+95] processor. The current
processor contains a 4k direct mapped instruction cache. Such
a cache is not needed for the limited number of instructions
an Active Page memory function contains. The calculations
in this paper assume a 1k instruction cache. The remainder
of the TLCS-R3900 processing engine is relatively standard,
with a 1k data cache, 32 bit data-path, 32 general purpose
registers and MIPS-like instruction set.

2.3 Hybrids

An alternative architecture from RADram or a small process-
ing element, is a hybrid, which mixes a RISC-like processor
with recon�gurable logic. Such an architecture is presented in
[HW97]. Here we extend this notion by simplifying the pro-
cessing element core, and shrinking the recon�gurable logic ar-
ray. The hybrid architecture would consist of a simpli�ed pro-
cessing element described above in Section 2.2 and a smaller
recon�gurable logic array than that presented for RADram
in Section 2.1. The con�gurable logic array would be on the
order of 128 LEs in size.

3 Power Consumption

In order to analyze the power consumption of the three alter-
native Active Page implementations described in Section 2, an
analysis of each was performed based on analytical models and
previously published results. In this section we present ana-
lytical models for power consumption for DRAM sub-arrays
and recon�gurable logic arrays. Furthermore, we present es-
timations for the power consumed by an Active Page mem-
ory which utilizes o�-the-shelf MIPS-like processing cores as
page based functional units. Finally we estimate the power
of a combined processor / recon�gurable logic array design.
Throughout these analyses the target has been a 1 gigabit size
DRAM array. Each design compromises a certain percentage
of DRAM storage for functional logic. Each design has its
own size and here we also estimate the relative percentage of
logic to DRAM and thus the overall size of the resulting mem-
ory chip. While these designs are based on a 1 gigabit size
DRAM, it should be kept in mind that the actual number of
pages will most likely be a power of two, and thus either an

increased or decreased chip size will ultimately be necessary
for non-power-of-two size designs.

3.1 DRAM model for Power Analysis
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Figure 2: DRAM Model used in the analysis.

In this section we present a DRAM model for power estima-
tion. Using this model we estimate the power consumption
of a sub-array size used for gigabit size DRAMs. A DRAM
block of m columns and n rows can be represented as shown
in Figure 2[I+95]. This �gure shows the current 
owing in
the DRAM block. There are two major sources of power con-
sumption in DRAMs:

1. Active current, which 
ows during the read operation.

2. Data retention current, which 
ows during re-charging
the DRAM cells.

The active current is expressed by:

Idd = (m � Cd � Vw + Cpt � Vint) � f + Idcp (1)

where Cd is the data line capacitance, Vw is the voltage swing
at a particular data line, Cpt is the total capacitance of the
CMOS logic and driving circuitry in the periphery, Vint is the
internal supply voltage, f is the operating frequency, and Idcp
is the DC static current.

The data retention current is given by:

Idd = (m � Cd � Vw + Cpt � Vint) � (n=tref ) + Idcp (2)

where tref is the refresh time of cells in retention mode.

Cd 0.2pf
Vw 0.5V
m 4096
n 1024
f 20Mhz
tref 20ms
Vdd 1.65V

Table 1: DRAM parameters for 512Kbyte block sub-arrays.

Based on Equations 1 and 2, and technological parame-
ters summarized in Table 1, it is possible to estimate power
consumption for a single 512 kilobyte page of memory. Using



this base power per-page value we will extrapolate the power
consumption of various Active Page implementations.

With mixed logic and memory designs, the e�ects of the
Cpt term are negligible compared to the power consumption
of the attached logic, and thus the term is assumed to be zero.
Furthermore, at 20Mhz operation the DC static current Idcp is
negligible. Thus, the active current required to access a word
in memory is given by:

Iactive = (4096 � 0:2pf � 0:5V ) � (20� 106) = 8:1mA (3)

The current due to data retention is given by:

Iretention = (4096 � 0:2pf � 0:5V ) � (1024=20ms) = 20uA (4)

Thus, for a 1.65V power supply, the total power dissipated by
a 512Kbyte DRAM sub-array is:

Ptotal = Pactive + Pretention (5)

Ptotal = (Iactive + Iretention) � Vdd (6)

Ptotal = (8:1mA+ 20uA) � 1:65V = 13:4mW (7)

The estimated power per 512Kbyte sub-array is slightly
below existing DRAM power consumption[Tos98]. This is due
to the reduced supply and swing voltages used in the cal-
culation, and is expected in future DRAM memory designs.
Using this calculation we can deduce that a storage-only gi-
gabit size DRAM chip will consume 13:4mW � 256 = 3:4W
of power. The 1 gigabit DRAM power consumption, while
greater than power consumed by existing DRAM designs, is
well below the maximum power ratings predicted by the SIA
Technology Roadmap [Sem97] for high-performance package
technology.

3.2 Power for Recon�gurable Logic

In order to estimate the power consumption of the RADram
architecture, we use the power estimation guide provided by
Altera [Alt96] for the FLEX architecture of devices. We model
power for all devices in an operational state. It is assumed that
appropriate software control by the Operating System can be
used to shutdown portions of the Active Page memory device
during recon�guration. The Altera power estimation guide
predicts power for operational devices as:

Power = Pint + Pio (8)

Pint = (ICCStandby + ICCActive)� Vdd (9)

ICCStandby = ICC0 (10)

ICCActive = (K � fmax �N � toggleavg)uA (11)

where Pint is the power consumed internally by the FPGA,
Pio is the power consumed driving external loads, ICCStandby
is the current drain while idle, ICCActive is the current drain
while active, K is a technology parameter which is dependent
on the FPGA design, fmax is the operating frequency in mega-
hertz, N is the number of logic elements, and toggleavg is the
average percent of cells toggling at each clock.

For estimation purposes, we assume Pio to be negligible,
and the standby current is equal to a constant ICC0 = 0:5mA.
Furthermore, current technology has K values between 32 and
95. We assume a conservative view of future technology, with
a K of 30. Using the RADram con�guration presented in

Section 2.1, we let N equal 128 and the frequency of operation
equal 100Mhz. Furthermore, we assume an average toggling
percentage of 12.5 percent. Thus the active current is given
by:

ICCActive = 30 � 100Mhz � 256LEs � 0:125 = 96mA (12)

Therefore, power consumption of the recon�gurable logic for
a single page in the RADram architecture is:

P = (:5mA+ 96mA) � 1:65V = 159mW (13)

The RADram architecture trades DRAM memory storage
for recon�gurable logic. This dedicates �fty percent of the chip
space to DRAM and �fty percent to logic. Thus, a gigabit size
DRAM actually stores only 0.5 gigabits of data (128 512 Kbyte
pages). Using the power estimation presented in Section 3.1
we can estimate the power consumed by a 0.5 gigabit RADram
memory chip to be:

Pradram = 128 � (159mW + 13:4mW ) = 17:1W (14)

3.3 Power for Processing Elements

The current TLCS-R3900 series processors operate at 74Mhz
and 3.3V and have a typical operating current of 110mA.
We project the power consumption of the modi�ed TLCS-
R3900 series processor running at 100Mhz and 1.65V. Cur-
rently, roughly 20% of the power consumption is used by the
instruction cache. By reducing the size of this cache by a factor
of four, it is expected the power and area of the processing en-
gine will be reduced. We expect the smaller instruction cache
to consume one-third the power of the existing cache. Thus,
the expected operating current will be 95mA. However, the
faster clock will increase the current used to roughly 126mA.
Finally, operating at 1.65V we expect the processor core to
consume 208mW of power.

Despite this power consumption, the TLCS-R3900 series
processing engine is quite large. Nearly 440k transistors are
required to implement the base TLCS-R3900 core. It thus
becomes impossible to continue with the 50% DRAM and 50%
logic ratio when a processing element is used. In order to
maintain the 512Kbyte sub-array size, a roughly 63% logic
/ 37% DRAM ratio is required. This means that only 92
512Kbyte pages will be available on our hypothetical Active
Page memory chip. Therefore, total power consumption will
be:

Ppe = 92 � (208mW + 13:4mW ) = 20:3W (15)

3.4 Power for Hybrid PE/LE Design

Although the true cost of power consumption by a mixed de-
sign is not available without an actual design, we can estimate
the power by mixing a TLCS-R3900 series processing element
with a limited number of recon�gurable logic LEs. Here we
have chosen a hybrid design with a limited number (128) LEs
along side a fully functional processing element. Additional
power will be required to interconnect these two processing
engines, but here we assume this interconnection power to be
negligible. Thus, each hybrid processing element consumes
roughly one-half the power of the recon�gurable logic-only
design added to the power consumed by the processing ele-
ment. Combined these consume 288mW of power at 1.65V.
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Figure 3: Experimental Results of RADram Relative Reduc-
tion in Processor / Memory Bus Tra�c

The DRAM to logic ratio of this design is roughly 70% to
30%, thus yielding an Active Page device with only 78 pages
of memory. Therefore total power consumption will be:

Phybrid = 78 � (288mW + 13:4mW ) = 23:5W (16)

3.5 Clock Distribution

In high-frequency, large-area designs the power consumed by
the clock distribution and generation network cannot be ne-
glected. The Active Page memory model permits an e�cient
solution to this problem. Active Page designs do not include
hardware support for inter-page communication do not require
a globally synchronized clock. An external clock can be used
and a large amount of skew can be tolerated. Hence, the inter-
nal clock generation network need only consist of regeneration
bu�ers, without an extensive and di�cult to design network
of clock distribution nodes.

Furthermore, recon�gurable logic designs usually are oper-
ated at the highest possible frequency permitted by the design.
This suggests that the clock of each Active Page will be dis-
tinct, or else operate at some nominal baseline. Furthermore,
software techniques discussed in Section 4.1 require variable
clock speeds for all Active Page designs. For this reason, we
propose that all clocks be generated locally for each page, us-
ing internal oscillator techniques. A global clock may be nec-
essary to provide a baseline reference with which to self-time
the locally generated clocks.

Given these design constraints, hardware inter-page com-
munication facilities can still be constructed, if desired, using
asynchronous logic techniques. Relevant techniques can be
found in asynchronous processor cores [FGT+97], caches, and
recon�gurable logic array designs [BEHB] [MA98].

3.6 Reduced Memory I/O

As is pointed out by Stan and Burleson [SB97] typically
10-15% of the power used by desktop systems, and 50% of the
power in low power systems comes directly from external I/O.
This is due largely to the fact that the busses used for o� chip
communications use higher voltages and have two to three
orders of magnitude more capacitance. Substantial amounts
of power are consumed every time the voltage on a bus line
must be changed.

The number of transitions on the bus can be reduced in
two ways: by encoding the bus to minimize the number of

transitions per transaction [SB97] [SB95] [WCF+94], or by
reducing the total number of transactions on the bus. The use
of Active Pages reduces I/O power by addressing the former.

In a traditional system, memory intensive sections of code
produce poor cache hit rates which in turn results in large
amounts of memory tra�c. However in an Active Page sys-
tem, memory intensive sections of an application are executed
inside the memory chip thereby reducing the total number of
external bus transactions.

Figure 3 shows relative reduction in bus-tra�c for several
applications executing on the RADram Active Page memory
system. Each application is described in [OCS98], but here we
note that a signi�cant reduction in the total number of mem-
ory bus accesses can be achieved by the use of Active Pages.
The actual reduction in bus tra�c varies from application to
application, however the general trend of larger problems sizes
yielding more e�cient bus use can be seen. The tailing o� of
power e�ciency for very large problem sizes is due to the fact
that at very large problem sizes the system becomes saturated,
and the processor remains active throughout the computation.

3.7 Power Summary

Our estimates show that our initial RADram design using re-
con�gurable logic has the lowest power consumption of our
three alternatives. A further advantage for RADram is in-
creased chip yield due to fault-tolerant designs. The com-
plexity and number of Active-Page functions, however, is lim-
ited by the amount of recon�gurable logic available for each
page. The processing element and hybrid designs have more
computational power. Furthermore, we expect to re�ne both
of the latter designs to use less power. Re�nements such as
clock-gating, and asynchronous processor designs [FGT+97]
will help reduce the power consumed by processor, and hybrid
processor / recon�gurable logic processor element designs.

4 Software Power Management

Active Pages presents new design challenges under low-power
constraints. One potential solution is to use software mech-
anisms which trade o� performance for decreased power con-
sumption. Most of these mechanisms can be implemented
directly in the operating system and can be made to operate
across all Active-Page applications, however, speci�c compiler
techniques can be employed which reduce overall power con-
sumption on a per-application basis. For example, Active Page
memory devices could enable an operating system to decrease
the clock frequency of inactive Active Pages with minimal ef-
fects on performance. Furthermore, for extremely low-power
environments, an operating system can schedule fewer com-
putations per clock cycle to keep under power budgets. Fi-
nally, for reduced power, application partitioning techniques
can take into account power consumption and thus balance
power consumption versus performance.

4.1 Variables Clock Frequencies

There are two situations where a slower clock frequency can be
advantageous for low-power Active Page memory designs. The
�rst is when an Active Page is allocated, but not computing.
In this case the clock frequency of the Active Page processing
unit can be decreased with minimal impact on application
performance. The second is when an Active Page is computing
but the application is limited by the processor.



Active Pages which are not computing generally remain in
an idle loop checking a synchronization variable. A decrease
in clock frequency of the Active Page functional unit can be
viewed as an increase in the startup latency. Generally, the
computation time is on the order of several thousand clock
cycles. Thus, increasing the startup latency from one clock
cycle to ten or even a hundred would not seriously a�ect per-
formance. There would be considerable power savings by such
ten or hundred fold decrease in clock frequency.

Active-Page applications often require a balance between
processor and intelligent memory. If Active Pages are pro-
ducing results too quickly for the processor to consume, then
their clock frequency may be reduced without a�ecting appli-
cation performance. Application characteristics vary widely,
however, and can make developing general operating system
policies di�cult.

4.2 Replacement and Activation Control

At a coarser grain, the operating system can further decrease
current draw by limiting the number of Active Pages com-
puting. The operating system must already manage page re-
placement and schedule Active-Page computation under the
constraints of the amount of physical memory available. If
the number of Active Pages that �t in a single chip exceeds
the power that can be dissipated, then the number that are al-
lowed to compute simultaneously must be limited. Once again,
if the application is processor-limited, than performance may
not be a�ected. Furthermore, deactivation of the associated
logic does not restrict ordinary memory I/O operations on the
memory super-page.

4.3 Compiler Techniques

Future work will address partitioning entire applications. Ex-
isting technology exists for such system level partitioning in
the form of exact solutions obtained by Integer Linear Pro-
gramming (ILP), and approximate solutions obtained by ge-
netic and simulated annealing algorithms. Such algorithms
balance communication and synchronization costs against po-
tential parallel execution in an attempt to �nd an e�cient
overall system partitioning. The same algorithms can also
be employed to consider power consumption. Power thus be-
comes another variable in the minimization goal, and can be
balanced by the programmer at compilation time against per-
formance.

5 Future Work

Our previous work [OCS98] has shown that Active Pages are
a promising architecture for intelligent memory with substan-
tial performance bene�ts. Our current work focuses upon the
power consumption of Active Page implementations. Esti-
mates show that several design alternatives exist, but Active
Page DRAMs will bene�t from advances in low-cost packag-
ing technologies. Future work will pursue both architectural
and software approaches to reducing power consumption. This
work will include detailed chip-level synthesized VHDL mod-
els. Furthermore, we will explore the software techniques dis-
cussed in this paper using cycle-by-cycle simulation of the pro-
cessor and memory subsystem.

An increasing amount of research is being done in the area
of asynchronous logic, due to the fact that clock skew and
distribution are serious issues that a logic designer must face.

Clock speed has an e�ect on both the area and power con-
sumed by a design. As the clock speed increases, more com-
plex structures are needed to distribute the clock accurately
throughout the chip. The increased clock speed has two disad-
vantages. First, the larger clock drivers consume more power.
Second, overall power dissipation increases linearly with clock
frequency.

Recent developments have made it possible to use asyn-
chronous logic in more complex logic designs. The AMULET2e
processor [FGT+97] is an asynchronous ARM[Fur96] 32-bit
processor that consumes 30% of the power and takes 54% of
the area of the ARM810[Fur96]. An asynchronous RISC core
provides a low-power means of implementing an Active Page
processing element.

Another possibility is the use of an asynchronous FPGA.
Commercial FPGAs are currently targeted to synchronous
logic and do not lend themselves to the implementation of
asynchronous logic[HBBE94][HBBE92]. Various new FPGA
designs have been developed solely for the purpose of im-
plementing self-timed logic[HBBE94][MA98]. Work done at
the University of Washington has shown that it is possible
to implement real circuits in an asynchronous FPGA[BEHB].
Asynchronous FPGAs may prove to be a viable architecture
for Active Page memory system processing elements.

6 Conclusion

This paper evaluates three di�erent Active Page processing-
element architectures, and explores the power requirements of
each. Due to the many projections required to estimate our
power consumption in future technologies, we suspect up to
a 30-50% error in our power models. However, these rough
calculations suggest that Active Pages will be in line with the
power budgets of the commodity packaging technologies of
the future [Sem97]. Furthermore, software mechanisms show
strong potential for reducing peak and overall power consump-
tion.
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G V Z I ] ^ R ? e ^ O R G h X G X X L a ? G R O Z � ? R j O G a j A O h ? X R O A J R j O A O h ? X �
R O A R G h L � R j O � A X R a L I e ] R G R ? L V R L M O O � O a ] R O Z V O O Z X R L

EC Resv. Stations

FU Array

Reorder Buffer

Access

rs1, rs2, result

result, curr. rd-tag

Replace at Completion

Access

rs1,rs2,
rd-tag

EC-rd-tagEC Resv. Stations

FU Array

Reorder Buffer

result

result, curr. rd-tag,

Replace at Resv. Stat.

â ã ä å æ ç � é � ý � ú ê � � ò ! ÷ ð þ ò ð ó � � í ! ÷ ò ó ì � î � � � � ð î ô

� � � � � ê � � ò ! ÷ ð þ ò ð ó � ò õ � ÿ ü ó ð ó ÿ � � � � ÿ
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X O O ^ G R O A R j G R A O e ^ G a O I O V R L � R j O L e O A G V Z X G R A O X O A T G R ? L V
X R G R ? L V X G a R ] G ^ ^ o j G X I ] a j ^ O X X O � O a R R j G V A O e ^ G a O I O V R G R
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Abstract

The concept of Processing-In-Memory (PIM)
achieves many bene�ts by placing memory and
processing logic on the same chip, utilizing more
of the available bandwidth and reducing both the
power and time associated with memory accesses.
Typical architectures, even current single-chip mi-
croprocessors with on-chip memory, rely on tradi-
tional cache hierarchies. This paper serves to ex-
plore the possible performance and power improve-
ment of \migrating" the cache into the memory
itself. This idea, which we call Cache-In-Memory
(CIM) utilizes the sense-ampli�ers inside the mem-
ory array to perform this function. Early results
indicate that the most trivial implementations of
this technique provide comparable power e�ciency
with reasonable performance. However, the in-
crease in resident DRAM has yet to be explored.
Ongoing work strives to further solidify the tools
needed for energy and performance simulations as
well as explore the potential capacity bene�ts as
well.

1 Introduction

As part of an attempt to explore alternative mem-
ory con�gurations that provide equal performance
while using less energy than traditional cache hier-
archies, CIM moves the \cache" into the memory
structure itself. The key to this arrangement is
the utilization of latching sense-ampli�ers in the
memory structures to act as \free" cache-lines.
With the appropriate supplementary memory ar-
rays, equivalent to the tag arrays found in typical
caches, the architecture itself can remember what
was last accessed.

Others have explored the advantages of putting
a processor core on a chip with large amounts of
DRAM [1][3][4]. That work considered the mem-
ory as a \black box," accepting current DRAM
structures without modi�cation. Newer studies
have investigated the e�ects of retaining entire
lines of DRAM within the memory array using the
sense-ampli�ers, those projects looked at perfor-
mance [7]. This study approaches the idea from a
power e�ciency standpoint.

In this paper, we discuss the ongoing simulation
of the CIM architecture and the results derived
from preliminary simulations. By closely coupling
memory energy and time simulations and micro-
processor pipeline emulators, it is possible to char-

acterize both the time and energy performance of
various con�gurations. The data presented in this
study comes from a comparison of 16KB of row
bu�er in the CIM architecture against split 8KB
data and instruction caches in the traditional cache
arrangement. The latest results in this continuing
work indicate that CIM is capable of providing
comparable memory energy consumption at rea-
sonable performance levels. Further work will help
to validate our current results as well as explore the
advantages that CIM provides in DRAM capacity
given constant die size.

2 Memory Structure

Traditional memory hierarchies employ caches to
hide the latency associated with an access to o�-
chip memory devices. These caches are stand-
alone entities, often clearly distinguishable on
photo-micrographs of processors. While caches
have been mandatory in the past, decreases in fea-
ture size and increases in die size have spawned
the capability to put conventional microprocessor
cores and large amounts of DRAM on a single
chip [8]. The �rst generation of these devices have
simply integrated the traditional hierarchy on the
single device [11][12]. Studies have shown show
how much performance and energy gain can be ob-
tained from creating systems on a single chip while
leaving the memory arrays virtually unchanged
[3][4]. And there have been some performance esti-
mates of more interesting ways to utilize the prox-
imity [7].

Memory devices are constructed of smaller ar-
rays. The reasons involve the ability to drive and
sense signal changes across limited distances due
to capacitance in the wiring, as well as providing
convenient redundancy. If the whole system is on
the single die, could there be an arrangement of
memory, processor, and cache functions which will
enable equal performance with signi�cant reduc-
tion in power compared to traditional, separate
caches?

Figure 1 shows two obvious options for systems
on single chips. The most basic approach would
be to throw away the caches: simply access the
existing memory arrays. While this would provide
the highest DRAM capacity on the chip, the enor-
mous time and energy penalties for fully decod-
ing and sensing each memory reference would be
ine�cient. The traditional memory hierarchy im-
plements uni�ed or split �rst-level SRAM caches,



Figure 1:
Single Chip Memory Options

which take up vast amounts of die area that could
be used for more DRAM. This yields good overall
performance, but at the expense of DRAM capac-
ity. Figure 1 also begins to explain how CIM di�ers
from the previous two ideas. In the CIM depiction,
we see that the traditional cache has vanished, and
the area not covered by the processor is allocated
for DRAM occupancy. However this DRAM has
some special characteristics allow it to take the role
of cache structures.

A more detailed look at the DRAM can be
found in Figure 2. The primary features of this
array are the latching sense ampli�ers distributed
throughout the array. Memory is normally broken
down into subarrays, because of capacitive e�ects,
etc. The subarray is the �rst of three primary en-
tities that are dealt with in the CIM structure.
The subarray is the block of memory where the
rows reside, as in regular memory devices. An en-
tire row is then sensed and latched into the sense
ampli�ers. After the row has been latched, it is
multiplexed down to usable words. The result of
this multiplexing, some subset of the columns that
were read into the row, is called the subrow.

Each of these subarrays has its own row of sense
ampli�ers, and its own subarray control for decode
and timing. This control interfaces with a tag-
array that keeps track of the row that was last ac-
cessed for each of the subarrays. Based on whether
the requested address matches the current subar-
ray and subrow, and whether the row is already
cached in the appropriate subarray, certain events
are required to satisfy the read or write. Di�er-
ent decoding is required based upon how much of
the address matched, and sensing directly from the
memory cells need not repeat each access. Section
3 will discuss what causes these di�erent events.

Figure 2:
CIM Memory Architecture

3 CIM Hit/Miss Taxonomy

To measure the e�ectiveness of the CIM structure,
a taxonomy was developed that describes what
occurs when an access to the memory array is
made. The taxonomy is similar to one outlined
for a typical memory hierarchy with various \hit"
and \miss" de�nitions. These de�nitions are used
to determine the performance of the CIM structure
both in terms of time and energy consumption.

In CIM, the characteristic that has the most
impact on performance and energy is whether the
requested data is available in one of the sense amp
rows. If the data is available in the sense ampli�ers
of the appropriate subarray, a hit is said to have
occurred. If it is not available, then a miss has
occurred, and another access is required to load
the sense amps with the new row of data. Since a
row is stored in the sense amps, it is not required
to re-write the data into the row of DRAM cells
after each read. Because the data stored, it can be
written back only when displaced without adverse
e�ects.

To more e�ectively measure the performance
characteristics of the memory structure, both the
hit and miss de�nitions can be further expanded.
There are two other factors that can impact mem-
ory performance: whether current subrow multi-
plexing and active subarray match that which has
been requested. Our taxonomy was expanded to
include these conditions. The three factors, each
with two options, leads to eight possible outcomes.
These factors are shown in binary tree format in
Figure 3.

Figure 3:
CIM Access Taxonomy

The names associated with each leaf-node in
the tree are largely arbitrary, but are picked to
indicate to what degree a given address matches
cached data and current active elements. The sub-
array is decoded from the most signi�cant bits of
the address. The row is then decoded from the
middle bits, followed by the subrow. The word and
byte bits are, of course, the least signi�cant bits,
but these do not matter to the memory array.

4 Description of the Model

Some initial experiments with CIM were con-
ducted using the Shade [2] tool from SunMicrosys-
tems, Inc. Shade is a library of functions that al-
lows the programmer to trace and analyze the in-
structions that are executed in most any program.



It returns the information for each instruction, and
allows the user to extract and utilize any data that
he/she sees �t.

In our models, we utilize most of the instruc-
tion information at one point or another. Ba-
sic simulations look only at the memory accesses
that were represented in the instructions. The ad-
dresses accessed were utilized as though they came
from a single-cycle architecture: no interleaving of
addresses was performed to account for pipeline
behavior. The resolved addresses are then fed into
a representation of the tag arrays required to im-
plement the CIM idea to determine hit and miss
rates, as well as estimations of power consumed
and time required for each application. These ad-
dresses can also be utilized in a similar represen-
tation of traditional cache hierarchies to compare
the two.

More advanced simulations utilize the details of
the instructions themselves. In this case, we chose
to simulate the e�ects and relationships between
the IBM PowerPC 401 microprocessor core and the
memory. The 401 core was chosen because it is the
processor that has been chosen for one or more of
the projects which sponsored this study. It is a
relatively simple, 32 bit RISC processor available
as a synthesized core. The 401 has a wide variety
of cache options, including omission of the caches.
To translate between the Sun architecture and that
of the PowerPC, the largest hurdle was converting
the branch behavior. While the Sparc v9 architec-
ture uses delayed and annulling branches, the 401
does not support these features.

Coupling the pipeline simulation with the CIM
representation discussed above, we will achieve a
complete-chip functional simulation. Again, a tra-
ditional memory hierarchy can be integrated in
place of the CIM model to compare the two ar-
chitectures. This simulator is aimed at compar-
ing the time and energy performance of traditional
structures to CIM structures. We are integrating
energy and timing numbers from separate software
to achieve a reasonable degree of realism in these
simulations [5].

5 Test Suite

A reasonable e�ort was expended in collecting typ-
ical yet diverse applications to analyze using the
Shade-based simulators. These applications are
listed and described in in Table 1. The appli-
cations include pointer-chasing applications and
tight unrolled loops, which should explore the
gamut of most cache-performance envelopes.

6 CIM Characterization

Preliminary experiments were performed to look at
hit and miss rates for various con�gurations of the
CIM system. These arrangements varied between
128 and 512 rows per subarray and 128 to 4096
columns per subarray using the simple memory ac-
cess simulator discussed in previous sections. The
number of subarrays was not �xed, enabling the
simulator to cover the entire address space. With
virtual memory, page mapping, etc. the overall
application size must be limited. The results of

Program Description

ShellSort A C++ application that imple-
ments the shell sort algorithm
implemented using the LEDA
data structure library on 10,000

oating point numbers.

cc The Sun performance 'C' lan-
guage compiler performing
source to executable compila-
tion of a simple program (�nd
the maximum of 5 numbers)

FpMatrMult Multiplies 256x512 and 512x256
element 
oating point matrices
in very tight hand optimized
loop.

JpegTran Translates a 550KB JPEG im-
age into a GIF format image

Table 1: CIM Test Suite

these simulations showed that for several diverse
programs and most con�gurations, CIM produced
instruction hit rates in excess of 90% and data hit
rates in excess of 60%. While these hit rates are
not stellar, they show promise for the performance
and energy e�ciency of CIM.

7 Energy Estimation Parameters

As mentioned before, energy values in this study
are derived from separate software which computes
SRAM size, time, and energy [5]. The basis for this
simulator was the IBM 7LD .25� DRAM and logic
process [10]. Using these parameters and request-
ing moderate energy and time constraints on the
SRAM simulator, we were able to generate the tag
and data array numbers directly. By specifying
a large SRAM array with one sense ampli�er per
bit line it is possible to get an approximation to
DRAM power �gures. However, one must modify
three things to obtain a good estimate. First, the
cell energy must be updated, followed by appropri-
ate scaling of the power used on the bit and word
lines. Finally, one must account for another set of
sense ampli�ers: the primaries lie in each subarray,
while the secondary sense ampli�ers reside at the
base of the stack of subarrays. These factors have
been included in these power values. The DRAM
numbers are approximations, but we believe them
to be adequate for these early studies.

Catagory Joules (W-sec)

Level 1 Tag Access 2.52e-9
Level 1 Data Access 2.52e-9
Main Memory Access 2.36e-8

Table 2: Traditional Energy Speci�cation

All the basic power numbers that were used in
these simulations can be found in Tables 2 and 3. If
we look at how these numbers combine to produce
per-access energy speci�cations, we can begin to
see more interesting details. Tables 4 and 5 quan-
tify the amount of energy expended per access in
each of the di�erent catagories.



Catagory Joules (W-sec)

Tag Access 7.65e-10
Subarray Decode 7.0e-9
Row Decode 4.13e-9
Wordline 2.78e-11
Bitline 7.0e-9
Mux Energy 2.29e-9
Output Driver 2.35e-9
Sense Amps 7.65e-10
2ndry Sense Amps 5.0e-11

Table 3: CIM Energy Speci�cation

Access Result Joules (W-sec)

Cache Hit 5.04e-9

Cache Miss 3.116e-8
Writeback Penalty 2.612e-8

Table 4: Traditional Energy Per Access

8 Time Estimation Parameters

Tables 6 and 7 show the time required for each of
the access results in the given architectures. These
cycle times are based on a 150MHz clock, which is
one possible clock frequency for the 401 to be used
in the projects funding this study. These time val-
ues are ambitious, but reasonable. The processor
must be able to obtain a nominal rate of two mem-
ory accesses per clock cycle: an instruction fetch
and potentially a memory operation. Because the
sense ampli�ers themselves latch data, the reads
and write to CIM should be as fast as SRAM. The
33ns access time for the cache con�guration is also
reasonable because all the memory references and
CIM misses in the simulations are assumed to be
on the chip. This means two things. First, there
are no high-capacitance busses to drive o� the chip,
which reduces the time dramatically. Secondly, the
DRAM interface to the standard cache can be full
width, eliminating the need to do multiple word
transfers to satisfy a 32 byte request.

Taking a closer look at of Tables 6 and 7 show
the number of cycles required for each access re-
sult. Although CIM enjoyed a comfortable ad-
vantage in the per access power cost for most hit
and miss instances in the energy domain, in the
time domain, it has lower performance than the
standard cache hit for two of the four CIM hit

Access Result Joules (W-sec)

Full Hit 8.15e-10
Subarray Hit 5.46e-9
Row Hit 8.69e-9
Subrow Hit 6.40e-9

Full Miss 2.22e-8
Subarray Miss 1.99e-8
Row Miss 1.67e-8
Subrow Miss 1.90e-8
Writeback Penalty 8.63e-9

Table 5: CIM Energy Per Access

Access Result # Cycles

Cache Hit .5
Cache Miss 5
Writeback Penalty 5

Table 6: Traditional Cycles Per Access

catagories. Even if CIM managed to match hit
rates, it would fall behind in raw cycle compar-
isons.

Access Result # Cycles

Full Hit .4
Subarray Hit .5
Subrow Hit 2
Row Hit 2
Full Miss 5
Subarray Miss 5
Subrow Miss 5
Row Miss 5
Writeback Penalty 5

Table 7: CIM Cycles Per Access

9 Analysis and Simulation Results

Two approaches are used to examine the behavior
of CIM against traditional cache structures. First,
we look at the power model and timing model to
�nd inherent characteristics that should lead to
recognizable trends in the numerical data. Second,
those models are used in the shade simulation to
generate data over the test suite applications.

At a very fundamental level, Equations 1 and
2 on Page 5 relate energy to the frequency and
energy associated with the hits and misses that
were presented above. These equations are sim-
ply adapted versions of standard energy calcula-
tions for any system. In this instance, however,
the adaptation of these equations, coupled with
the power and timing data outlined above reveals
several trends.

The tag array is accessed at least once on every
memory request. This frequency of 1 means that
substantial savings on tag access could prove to
be an important factor in overall energy savings.
For CIM, the tag array contains the same number
of entries as there are subarrays in the memory
device: in our initial testing, this value is 128. The
number of bits in the CIM tag array is 10, nine to
store the row that the subarray has latched in its
sense ampli�ers and a single valid bit. For the
traditional cache structure, we have separate 8KB
instruction and data caches. Each of the tag arrays
for the caches have 2048 entries, each with 24 bits
of tag and valid bits. The energy used to access
the CIM tag array should be substantially less than
what the normal cache architecture. This is indeed
the case, as seen in Tables 2 and 3, CIM tag access
consume less than one third that of the standard
caches.

If we look at the energy consumed on cache
hits, we notice that CIM is actually less e�cient



ECIM = ETagAccess +
X

(ECIM Hits � FCIM Hits) +
X

(ECIM Misses � FCIM Misses) +EWriteBack � FWriteBack(1)

ETrad = ETag Access +ECacheAccess � FCacheHit +EMemory Access � FCacheMiss +EWriteBack � FWriteBack (2)

in all but one rare case. In Table 4 and 5, one �nds
that the cache hit is slightly less than all but the
CIM full hit. While the full hit consumes half the
power of the cache hit, we expect that these are
extremely rare. A full hit indicates that the exact
same word has been requested as the last access,
meaning that no multiplexing, decoding, etc. is
required. Obviously this has little bearing on the
comparison. These numbers show that the normal
cache is more e�cient for hits. We have presented
approximate hit rates for the CIM architecture of
90% instruction and 60% data. If we look at typ-
ical hit rates for split 8KB direct mapped caches,
we �nd rates of approximately 99% instruction
and 90% data [6]. This illustrates that the nor-
mal cache architecture should be more e�cient in
terms of power.

Next we examine the energy associated with
cache misses. Again looking in Tables 4 and 5 we
�nd that CIM holds an edge in per access energy
for misses. Without considering the the frequency
weighted average of the di�erent CIM misses, the
simple average has only 63% the energy cost of the
normal cache miss. Let us also examine the dif-
ference between miss penalties: CIM write-backs
are one third the energy of their traditional cache
counterparts.

Based on these values, we believe that there is
a point where CIM becomes more power e�cient
than traditional arrangements. We can write the
mathematical equation that describes where the
cross-over occurs, however it requires simplifying
Equations 1 and 2 and setting them equal. If we
insist on keeping all four types of hits and all four
types of misses in the CIM architecture in this
equation, the problem becomes multi-dimensional.
We can, however, perform some simpli�cations,
or �x some values in order to obtain a reasonably
solvable problem. The series of equations below
shows the transformation to a simple solution.
From this point, you can simply plug in values
for the hit rate for either architecture to obtain
the hit rate that should produce equal energy in
the other. For instance, a hit rate of 85% in CIM
would be the energy equivalent of 89% in the
traditional cache model. This equation will serve
as a useful check for simulator results.
ECIM � ETrad

ECIM = 7:65 � 10�10+6:0 � 10�9 �FCIM Hit+2:05 �
10�8 � (1� FCIM Hit) + :05 � 8:63 � 10�9

ETrad = 2:52 � 10�9 +2:52 � 10�9 �FTradHit+3:12 �
10�8 � (1� FTradHit) + :05 � 2:61 � 10�8

FCIM Hit � 1:97 � FTradHit � :916

Now that we have examined how we expect
the trends to appear in the simulation results, we
can look at the end-to-end Shade simulations. Al-
though this simulator has been in development for
quite a while, recent attempts to put larger pro-
grams through it have revealed precision problems.
Using the same energy �gures as the simulator has

at its disposal, hand calculated values for the en-
ergy per access have been substituted into Table
9. The modi�ed Table entries are indicated with
an asterik. We will discuss the results with these
corrections.

Table 8 shows the hit rates that the simulator
achieved using each processor and memory combi-
nation. For the most part, the results for the tra-
ditional cache structure falls close to the expected
�gure. Except for the FpMatrMult data result,
which we expect to thrash the cache [6], all other
programs approach or exceed the 99% instruction
and 90% data rates expected. The results for the
CIM simulations also show good correlation be-
tween previous study and these simulations, meet-
ing or exceeding the 90% instruction and 60% data
hit rates.

Program SC+
Trad
Hit%

401+
Trad
Hit%

SC+
CIM
Hit%

401+
CIM
Hit%

ShellSort 1.0/.92 1.0/.92 .94/.64 .94/.69
cc .97/.95 .98/.95 .92/.61 .92/.60
FpMatrMult 1.0/.83 1.0/.83 .98/.57 .98/.57
JpegTran 1.0/.94 1.0/.94 .90/.71 .92/.72

Table 8: Instruction/Data Hit Rates

We reduced the complex and multi-dimensional
equations above to derive a equal power rule be-
tween the two memory architectures. A quick look
at Table 9 indicates that the CIM hit rate never
gets quite high enough to break past the tradi-
tional cache con�guration. A look at the detailed
simulator output shows that the highest combined
hit rate achieved by CIM is 87.5%. This is equiva-
lent to a 91% cache hit rate. Unfortunately, none
of the combined results show an overall hit rate
this low.

Program SC+
Trad
nJ/A

401+
Trad
nJ/A

SC+
CIM
nJ/A

401+
CIM
nJ/A

ShellSort 6.55 6.48 8.94 8.39
cc 6.11 5.89 7.10 6.38
FpMatrMult 7.14* 7.11* 7.83 7.77
JpegTran 5.50* 5.40* 6.46 5.67

Table 9: Energy Per Access Comparison

As expected, the CIM architecture shows lower
performance that the standard cache architecture.
The di�erence seen in Table 10 is between .75 and
2 cycles per instruction. This is a relatively large
di�erence up to 50% increase in execution time.

Note that the FpMatrMult is very 
oating
point intensive. The 401 uses 2 clock cycles to
process a 
oating point operation, while single cy-
cle simulation assumes 1 clock per operation. This



Program SC+
Trad

401+
Trad

SC+
CIM

401+
CIM

ShellSort 1.76 1.66 3.64 3.56
cc 1.35 1.32 2.35 2.25
FpMatrMult 1.93 2.21 3.24 3.21
JpegTran 1.23 1.16 2.08 2.11

Table 10: Cycles Per Instruction Comparison

is why the values for FpMatrMult using the single
cycle simulation with both memory structures in
Table 10 are close or below the value using the 401
and perfect memory.

10 Conclusion and Future Work

This paper starts with the supposition that com-
bining main memory, CPU, and cache on the same
die is a clear win from a power and performance
perspective. The objective is then to explore how
much cache is appropriate and how we might take
advantage of the structure internal to the mem-
ory to reduce it. In the process of performing
this study, we have characterized a broader range
of events between a classical hit and a classical
miss, each with a di�erent power and performance
penalty. Equations have been built that relate this
to overall energy per access, and an early simula-
tor has been constructed to explore the energy and
performance rami�cations.

For the single design point explored here, the
results are interesting, but somewhat inconclusive
in terms of power. CIM shows comparable en-
ergy e�ciency to traditional cache structures, es-
pecially for applications that make poor use of
those caches, such as matrix multiply. The time
performance is around 50% slower, however, in
looking at these results we should remember that
this was the �rst design point simulated. A range
of row and column sizes need to be explored. Look-
ing at the e�ect of increases in associativity [7] and
small L1 caches are possible next steps.

We will continue to look at how to choose bits
from the address to build each of �eld for the sub-
array and row mapping. The bits that are picked
out of the address for each �eld is largely arbi-
trary: the data does not care where it actually
resides. However, mapping these bits appropri-
ately and adapting compilers to make use of the
CIM structure, should positively a�ect hit rates
for CIM-based systems.

Further, we will continue to re�ne the DRAM
power and performance values, as well as add size
�gures. While there should not be a huge change
in the energy results obtained so far, developing a
more robust DRAM energy model is essential in
order to claim conclusive �ndings. Additionally,
we would like to generate a DRAM model that
will allow us to accurately compute area to look at
trade-o�s that may exist between more DRAM ca-
pacity �lling the size di�erence between CIM and
normal cache architecture.

We believe that the simulator used for this
study can be easily modi�ed to provide some con-
�rmation of other studies [3][7]. By simply chang-
ing parameter, and adding provision for higher as-

sociativity sense-ampli�ers, it should be possible
to con�rm or rebut �ndings that have been pub-
lished in past papers. Duplicating those results
would help to validate that our simulations are in-
deed accurate, and lend more credibility to those
previous studies that have largely stood without
con�rmation.
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Abstract

This paper describes the design of a low-power micro-
processor system that can run between 8Mhz at 1.1V
and 100MHz at 3.3V. The ramifications of Dynamic
Voltage Scaling, which allows the processor to dynami-
cally alter its operating voltage at run-time, will be pre-
sented along with a description of the system design
and an approach to benchmarking. In addition, a more
in-depth discussion of the cache memory system will be
given.

1. Introduction

Our design goal is the implementation of a low-
power microprocessor for embedded systems. It is esti-
mated that the processor will consume 1.8mW at 1.1V/
8MHz and 220mW at 3.3V/100MHz using a 0.6µm
CMOS process. This paper discusses the system design,
cache optimization, and the processor’s Dynamic Volt-
age Scaling (DVS) ability.

In CMOS design, the energy-per-operation is
given by the equation

where C is the switched capacitance and V is the operat-
ing voltage [2]. To minimize , we use aggressive
low-power design techniques to reduce C and DVS to
optimize V.

Our system design, which addresses the complete
microprocessor system and not just the processor core,
is presented in Section 2. Our benchmark suite, which is
designed for a DVS embedded system, is presented in
Section 3. Section 4 discusses the issues involved with
the implementation of DVS, while Section 5 presents an
in-depth discussion of our cache design.

The basic goal of DVS is to quickly (~10µs)
adjust the processor’s operating voltage at run-time to
the minimum level of performance required by the
application. By continually adapting to the varying per-
formance demands of the application energy efficiency
is maximized.

The main difference between our design and that
of the StrongARM is the power/performance target: our
system targets ultra-low power consumption with mod-
erate performance while the StrongARM targets moder-
ate power consumption with high performance. Our
processor core is based on the ARM8 architecture [1],

which is virtually identical to that of the StrongARM.
The similarities and differences between the two designs
are highlighted throughout this paper.

2. System Overview

To effectively optimize system energy, it is neces-
sary to consider all of the critical components: there is
little benefit in optimizing the microprocessor core if
other required elements dominate the energy consump-
tion. For this reason, we have included the microproces-
sor core, data cache, processor bus, and external SRAM
in our design, as seen in Figure 1. The energy consumed
by the I/O system (not shown) is completely application
and device dependent and is therefore beyond the scope
of our work. The expected power distribution of our sys-
tem is given in Figure 2.

To reduce the energy consumption of the memory
system, we use a highly optimized SRAM design [3]
which is 32 data-bits wide, requiring only one device be

Eop CV2∝

Eop

Figure 1: System Block Diagram
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activated for each access. Schemes that use multiple
narrow-width SRAMs require multiple devices to be
activated for each access, resulting in a significant
increases in the energy consumption. To alleviate the
high pin count problem of 32-bit memory devices, we
multiplex the data address onto the same bit-lines as the
data words.

We use a custom designed high-efficiency non-
linear switching voltage regulator [14] to generate
dynamic supply voltages between 1.1V and 3.3V. An
efficient regulator is crucial to an efficient system
because all energy consumed is channeled through the
regulator. When switching from 3.3V to 1.1V, a linear
regulator would only realize a 3x energy savings,
instead of the 12x reduction afforded by our design.

The threshold voltage (Vt) significantly effects
the energy and performance of a CMOS circuit. Our
design uses aVt of 0.8V to achieve a balance between
performance and energy consumption. The StrongARM
[13], for comparison, uses aVt of 0.35V, which
increases performance at the expense of increased static
power consumption. When idle, the StrongARM is
reported to consume 20mW, which is the predicted
power consumption of our processorwhen running at
20MHz. When idle, we estimate our processor will con-
sume 200µw, an order of magnitude improvement.

3. Benchmarks

Our benchmark suite targets PDAs and embedded
applications. Benchmark suites such as SPEC95 are not
appropriate for our uses because they are batch-oriented
and target high-performance workstations. DVS evalua-
tion requires the benchmarking of workload idle charac-
teristics, which is not possible with batch-oriented
benchmarks. Additionally, our target device has on the
order of 1MB of memory and lacks much of the system
support required by heavy-weight benchmarks; running
SPEC95 on our target device would simply be impracti-
cal.

We feel the following six benchmarks are needed
to adequately represent the range of workloads found in
embedded systems:

• AUDIO Decryption
• MPEG Decoding
• User Interfaces
• Java Interpreter
• Web Browser
• Graphics Primitive Rendering

As of this writing, we have implemented the first
three of these and their characteristics are summarized
in Table 3. “Idle Time” represents the portion of system
idle time, used by DVS algorithms. The “Bus Activity”
column reports the fraction of active cycles on the exter-
nal processor bus, an important metric when optimizing
the cache system. The cache architecture used to gener-
ate Table 3 is discussed in Section 5.

As an example, Figure 4 shows anevent impulse

graph [13], which is used to help characterize programs
for DVS analysis. Each impulse represents one MPEG
frame and indicates the amount of work necessary to
process that frame. For this example, there is a fixed
frame-rate which can be used to calculate the optimal
processor speed for each frame, assuming only one out-
standing frame at any given time.

4. Dynamic Voltage Scaling

Our processor has the ability, termed Dynamic
Voltage Scaling (DVS), to alter it’s execution voltage
while in operation. This ability allows the processor to
operate at the optimal energy/efficiency point and real-
ize significant energy savings, which can be as much as
80% for some applications [13]. This section discusses
DVS design considerations and explains how it affects
architectural performance evaluations.

DVS combines two equations of sub-micron
CMOS design [2]:

 and

where is the energy-per-operation, is the
maximum clock frequency, and is the operating volt-
age. To minimize the energy consumed by a given task,
we can reduce , affecting a reduction in . A
reduction in , as shown in the second equation, results
in a corresponding decrease in . A simple example
of these effects is given below.

Reducing , the actual processor clock used,
without reducing does not reduce the energy con-
sumed by a processor for a given task. The

Benchmark
Miss
Rate

Idle
Time

Bus
Activity

AUDIO 0.23% 67% 0.35%

MPEG 1.7% 22% 14%

UI 0.62% 95% 0.52%

Table 3: Benchmark Characterization
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StrongARM 1100, for example, allows to be
dynamically altered during operation [16], affecting a
linear reduction in the power consumed. However, the
change in also causes a linear increase in task run-
time, causing the energy-per-task to remain constant.
Our system always runs with , which min-
imizes the energy consumed by a task.

From a software perspective, we have abstracted
away the voltage parameter and specify the operating
point in terms of . The actual voltage used is deter-
mined by a feedback loop driven by a simple ring oscil-
lator. The primary reason for this design was ease of the
hardware implementation; fortunately, it also presents
the most useful software interface.

Our system applies one dynamic voltage to the
entire system to realize savings from all components. It
would be possible, however, to use multiple independent
supply voltages to independently meet subsystem per-
formance requirements. This was not attempted in our
design. To interface with DVS-incompatible external
components we use custom designed level-converting
circuits.

The implementation of DVS requires the applica-
tion of voltage schedulingalgorithms. These algorithms,
discussed in Section 4.2, monitor the current and
expected state of the system to determine the optimal
operating voltage (frequency).

4.1 Energy/Performance Evaluation Under DVS

DVS can affect the way we analyze architectural
trade-offs. As an example, we explore the interaction
between DVS and the ARM Thumb [4] instruction set.
We apply Thumb to the MPEG benchmark from
Section 3 and analyze the energy consumed. This exam-
ple assumes a 32-bit memory system, which is a valid
assumption for high-performance systems but not nec-
essarily for all embedded designs.

The MPEG benchmark is 22% idle when running
at 100 MHz using the 32-bit ARM instruction set. DVS
allows us to minimize the operating voltage to fill
unnecessary idle-time. Using a first-order approxima-
tion, this would reduce the energy consumed by 40%
and slow down the processor clock to the point at which
idle time is zero. From this starting point, we consider
the application of the Thumb instruction set to this
benchmark.

For typical programs, the 16-bit Thumb instruc-
tion-set is 30% more dense than it’s 32-bit counterpart,
reducing the energy consumed in the cache and memory
hierarchy. However, due to reduced functionality, the
number of instructions executed increases by roughly
18%, increasing the energy dissipated in the processor
core as well as the task execution time.

This example will teach two important lessons.
First, an increase in task delay directly relates to an
increase in energy: DVS exposes the trade-off between
energy and performance. Second, an increase in delay

affects theentire system (core and cache), not just one
fragment: it is vital that the associated increase in the
energy-per-operation is applied to the entire system.

Figure 5 presents six metrics crossed with three
configurations running the MPEG benchmark. The three
configurations are:

• Base:78 MHz using 32-bit instructions.
• Thumb: 78 MHz using Thumb instructions.
• Adjusted: 92 MHz using Thumb instructions.

The ‘Base’ configuration represents the MPEG
benchmark running as 32-bit code, as discussed above.
‘Thumb’ illustrates the intermediate effects of the 16-bit
Thumb architecture without increasing the clock speed.
The energy consumed in the cache (see Figure 5)
decreases due to the decreased memory bandwidth
caused by the smaller code size. The energy of the core,
however, rises slightly due to the increased number of
instructions processed. Overall, the energy decreases by
approximately 10%.

The delay increase caused by the expanded
instruction stream pushes the processor utilization over
100%. Because of this, the MPEG application will not
be able to process its video frames fast enough. The
‘Adjusted’ configuration represents the increase in pro-
cessor speed required to maintain performance. This
change in clock frequency necessitates an increase in
voltage which raises the energy-per-operation of the
entire system. As can be seen from the ‘Total Energy’
columns, the energy savings are no longer realized: the
16-bit architecture increases overall energy consump-
tion.

Although not energy-efficient in all situations, the
Thumb instruction set may be efficient for some tasks
due to the non-linearity of voltage-scaling. If the base
system were initially running at a very low voltage, for
example, the increase in processor speed necessary
would not dramatically increase the energy-per-opera-
tion. The savings due to the reduced code-size, there-
fore, would affect an overalldecreasein system energy.

4.2 Voltage Scheduling

To effectively control DVS, avoltage scheduleris
used to dynamically adjust the processor speed and volt-
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age at run-time. Voltage scheduling significantly com-
plicates the scheduling task since it allows optimization
of the processor clock rate. Voltage schedulers analyze
the current and past state of the system in order to pre-
dict the future workload of the processor.

Interval-based voltage schedulers are simple
techniques that periodically analyze system utilization
at a global level: no direct knowledge of individual
threads or programs is needed. If the preceding time
interval was greater than 50% active, for example, the
algorithm might increase the processors speed and volt-
age for the next time interval. [5][13][17] analyze the
effectiveness of this scheduling technique across a vari-
ety of workloads. Interval-based scheduling has the
advantage of being easy to implement, but it often has
the difficulty of incorrectly predicting future workloads.

More recently, investigation has begun into
thread-based voltage schedulers, which require knowl-
edge of individual thread deadlines and computation
required [7][12]. Given such information, thread-based
schedulers can calculate the optimal speed and voltage
setting, resulting in minimized energy consumption. A
sample deadline-basedvoltage scheduling graphis
given in Figure 6;Sx and Dx represent task start-time
and deadline, respectively, while the graph area,Cx, rep-
resents computational resources required.

4.3 Circuit Level Considerations

At the circuit level, there are two types of compo-
nents in our design adversely affected by DVS: complex
logic gates and memory sense-amps. Complex logic
gates, such as 8-input NAND gates, are implemented by
a CMOS transistor chain which will have a different rel-
ative delay if the voltage is varied. Additionally, mem-
ory sense-amps are sensitive to voltage variations
because of their analog nature, which is necessary to
detect the small voltage fluctuations of the memory
cells.

To the largest extent possible, these voltage sensi-
tive circuits are avoided; however, in some situations,
such as in the cache CAM design described below, it is
better to redesign the required components with
increased tolerance. Redesigns of these components will
often be less efficient or slower than the original version
when running at a fixed voltage. We estimate an
increase in the average energy/instruction of the micro-
processor on the order of 10%, which is justified by the

overall savings afforded by DVS.

5. Cache Design

This section describes the design of our cache
system, which is a 16kB unified 32-way set-associative
read-allocate write-back cache with a 32-byte line size.
The cache is an important component to optimize since
it consumes roughly 33% of the system power and is
central to system performance. Our primary design goal
was to optimize for low-power while maintaining per-
formance; our cache analysis is based on layout capaci-
tance estimates and aggregated benchmark statistics.

Our 16kB cache is divided into 16 individual 1kB
blocks. The 1kB block-size was chosen to achieve a bal-
ance between block access energy and global routing
energy. Increasing the block-size would decrease the
capacitance of the global routing but it would also
increase the energy-per-access of the individual blocks.

Our cache geometry is very similar to that of the
StrongARM, which has a split 16kB/16kB instruction/
data cache. Other features, namely the 32-way associa-
tive CAM array, are similar. In the StrongARM design,
the caches consume approximately 47% of the system
power [13].

5.1 Basic Cache Structure

We have discovered that a CAM based cache
design (our implementation is given in Figure 7) is more
efficient than a traditional set-associative organization
(Figure 8) in terms of both power and performance. The
fundamental drawback with the traditional design is that
the energy per access scales linearly with the associativ-
ity: multiple tags and data must be fetched simulta-
neously to maintain cycle time. A direct-mapped cache,
therefore, would be extremely energy efficient; its per-
formance, however, would be unacceptable. We esti-
mate that the energy of our 32-way set-associative
design is comparable to that of a 2-way set-associative
traditional design.

Figure 6: The Voltage Scheduling Graph
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Our design has been modified from a vanilla
CAM in two major ways:

• Narrow memory bank: The fundamental SRAM
data block for our design is organized as a 2-word x
128-row block, instead of a 8-word x 32-row block.

• Inhibited tag checks: Back-to-back accesses map-
ping to the same cache line do not trigger multiple
tag checks.

The 2-word by 128-row block organization for
our cache data was chosen primarily because a large
block width would increase the energy-per-access to the
data block. A block width of 8 words, for example,
would effectively entail fetching 8 words per access,
which is wasteful since only one or two of these words
would be used. The narrow block width unfortunately
causes an irregular physical layout, increasing total
cache area; however, we chose this design as energy was
our primary concern.

There are two natural lower-bounds on the block
width. First, the physical implementation of the SRAM
block has an inherent minimum width of 2-words [3].
Second, the ARM8 architecture has the capability for
double-bandwidth instruction fetches and data reads [1],
which lends itself to a 2-word per access implementa-
tion.

Unnecessary tag checks, which would waste
energy, are inhibited for temporally sequential accesses
that map to the same cache line. Using the sequential-
access signal provided by the processor core and a small
number of access bits, this condition can be detected
without a full address comparison. Our simulations indi-
cate that about 46% of the tag checks are avoided with a
8-word cache line size, aggregated across both instruc-
tion and data accesses. For the individual instruction and
data streams, 61% and 8% of tag checks are prevented,
respectively.

5.2 Cache Policies and Geometry

Cache energy has a roughly logarithmic relation-

ship with respect to its overall size, due to selective
block enabling: a 16kB cache consumes little more
energy than an 8kB cache. Our fundamental cache size
constraint was die cost, which is determined primarily
by cache area. Benchmark simulations indicate that a
16kB unified cache is sufficient; we felt the increased
cost of a 32kB cache was not justified. We chose a uni-
fied cache because it is most compatible with the ARM8
architecture.

The cache line size has a wide-ranging impact on
energy efficiency; our analysis (Figure 9) indicates that
an 8-word line size is optimal for our workload. Given
the 1kB block size, our associativity is inversely propor-
tional to the line size: an 8-word line yields 32-way
associativity (1kB / 8-words = 32-way). The energy of a
CAM tag access is roughly linear with associativity.
Also, smaller cache line sizes generate less external bus
traffic, consuming less energy. The energy of the data
memory is practically constant, although there are slight
variations caused by updates due to cache misses.

We implement a write-back cache to minimize
external bus traffic. Our simulations indicate that a
write-through cache would increase the external bus
traffic by approximately 4x, increasing the energy of the
entire system by 27%. We found no observable perfor-
mance difference between the two policies.

Our simulations find no significant evidence
either for or against read-allocate in terms of energy or
performance; we implement read-allocate to simplify
the internal implementation. Similarly, we find that
round-robin replacement performance is comparable to
that of both LRU and random replacement, due to the
large associativity.

5.3 Related Work

Most low-power cache literature [6][9][15][8]
suggests improvements to the standard set-associative
cache model of Figure 8. The architectural improve-
ments proposed center around the concepts of sub-bank-
ing and row-buffering. Sub-banking retrieves only the
required portion of a cache line, saving energy by not
extraneously fetching data. Row-buffering fetches and
saves an entire cache line to avoid future unnecessary

Figure 8: Traditional Set-Associative Cache Design

Tag
Mem

Data
Block

Tag
Mem

Data
Block

Block Select

Address

RData

0%

10%

20%

30%

40%

50%

60%

4 8 16
Line Size

P
er

ce
nt

 o
f S

ys
te

m
 E

ne
rg

y

Figure 9: Line-Size Energy Breakdown
Data Block Cam Access External Memory



tag comparisons.
Our CAM-based cache design indirectly imple-

ments the concepts of sub-banking and row-buffering.
The 2-word block size of our memory bank is similar to
2-word sub-banking. Tag checks inhibition is similar to
row-buffering: only one tag-check is required for each
cache-line access.

[8] presents a technique for reducing the energy
of CAM-based TLBs by restricting the effective asso-
ciativity of the parallel tag compare and modifying the
internal CAM block. Due to time constraints, these
modifications were not considered for our design.

6. Conclusion

This paper describes the implementation of a
low-power Dynamic Voltage Scaling (DVS) micropro-
cessor. Our analysis encompasses the entire micropro-
cessor system, including the memory hierarchy and
processor core. We use a custom benchmark suite
appropriate for our target application: a portable embed-
ded system.

Dynamic Voltage Scaling allows our processor to
operate at maximal efficiency without limiting peak per-
formance. Understanding the fluid relationship between
energy and performance is crucial when making archi-
tectural design decisions. A new class of algorithms,
termed voltage schedulers, are required to effectively
control DVS.

A description of our cache design was given
which presents the architectural and circuit trade-offs
with energy and performance for our application
domain. For minimized energy consumption, we found
that a CAM-based cache design is more energy efficient
than a traditional set-associative configuration.
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Abstract  Clock distribution is one of the major issues
in digital design.  Engineers want to distribute a square-
wave with low skew and fast transition times across very
wide chips.  And they want to do so, wasting as little
power as possible.  Common micro-processor chips, like
the Alpha, throw 40% of their power into distributing a
square-wave across a 1.5 cm die. This paper describes a
new clock distribution technique utilizing resonant
transmission lines that not only reduces clock skew and
transition times, but also reduces power consumption by
up to an order of magnitude over standard clock drivers.

1.  Motivation

Over the years a number of trends have increased the
amount of power consumption of clock drivers.  First,
the clock capacitance has steadily increased as the die size
and the gate capacitances have become larger.  Second, the
clock frequency is also increasing.  Clock drivers on
current micro-processor chips must drive a 4 nF load at
500 MHz.  This burns almost 20 W or 40% of the
overall chip power.i

Researchers have explored many ways of reducing
power consumption.  Arguably the simplest way has
involved reducing the power supply voltage.  This
provides a square reduction in power, but adversely affects
circuit speeds and increases sub-threshold leakage.  Other
methods temporarily stop driving unused sections of the
chip.  Unfortunately, this complicates system design and
increases the amount of clock skew between chip
sections.

On a different topic, a relatively new approach to
coordinate different chips at a system level involves using
a resonating cavity.  Vernon Chi at the University of
North Carolina resonates a uniform transmission line
with a single sinusoid.ii  Because the entire transmission
line crosses zero simultaneously, this structure can
synchronize individual chips throughout the system.
Unfortunately, a sinusoidal waveform cannot be used to
drive individual clock loads directly.  Its transition times
are just too long and the large clock capacitance would
interfere with transmission line operation.

This work takes the resonant approach the next step.
I will describe a resonating transmission line which can
drive the large clock capacitance directly.  This requires
resonating a square-wave instead of a single sinusoid.
Unfortunately, a uniform transmission line driving a large

capacitive load will not support the odd harmonics
required to produce a square-wave.  Instead the resonant
line must be tuned to support each of the harmonics.

There are two major benefits of using a tuned
transmission line to drive the clock load directly.  First,
the half crossing still occurs simultaneously across the
central section of the transmission line.  This translates
to virtually no skew across a single die.  Second, the
power to drive the on-chip capacitance, comes from the
transmission line instead of the power supplies.
Therefore, the power consumption falls to the amount
burnt in the parasitic resistance of the transmission line.
This results in a 10x reduction in power consumption.

The next section describes a standard clock driver used
in the micro-processor industry.  Section 3 delves into
our proposed driver technique using resonant transmission
lines.  Then, the paper reviews some experimental work
verifying this techniqueÕs viability.

2.  Standard Clock Driver

A standard clock distribution structure appears in
Figure 1.  It is relatively simple.  It includes a clock
generator, a buffer and a distribution network.  We have
drawn the clock lines as transmission lines.  Since the
series resistance dominates over the inductance, the clock
loads and lines must be modeled as distributed RC lines.

Clock
Load

Clock Driver

 Figure 1. Standard Clock System For Large Chips

Power to fill up the clock capacitance and pre-driver
capacitance comes from the power supply.  This power is
dumped into the gnd supply when discharging the
capacitances explaining why the clock uses 40% of chip
power.

3.  Transmission Line Clock Driver

Our technique shown in Figure 2, simply adds an
external transmission line.  We recover power by
charging and discharging the final clock load not through



the clock driver but with the transmission line.  This also
means that the clock buffers can be smaller resulting in
less pre-driver power.

  Flip-Chip
Connections

     Resonating
Transmission Line

CHIPClock 
Driver

Figure 2. New Transmission Line Clock Driver

Let me walk through a brief description of how the
technique works. The central driver forces a square wave
into the chip and the external transmission line.  Because
the driver is smaller, it cannot initially drive the system
to vdd.  However, a reduced height pulse flows down the
length of the transmission line.  The pulse travels to the
open termination of the transmission line and reflects
back towards the chip.  The line length is such that the
pulse in the transmission line will reach the driver exactly
when it drives again.  The result is an increase in the
pulse height.  Eventually the transmission line will be
resonating a full clock pulse at a given clock frequency.

Taps using flip-chip technology strap the internal
clock line to the external transmission line.  A pin
structure like flip-chip is useful because of its low
inductance, short pin lengths and the even distribution of
pins across the chip.

3.1 Tuning a Line Using Traps

Unfortunately, the simple structure presented in the
previous section works only with an ideal transmission
line.  When an actual square-wave travels along a lossy
transmission line, the different components of the
waveform travel at different velocities based on their
frequency.  This results from the parasitic resistance
which varies linearly with the frequency of the waveform.

So in the actual transmission line one must introduce
impedance variations along its length to reinforce the
desired waveform.  For example, one could include a
version of the traps that are used in RF design.iii

When a waveform reaches a trap, the low frequency
components pass through, while the high frequency part
reflects.  The length of the trap affects what will pass and
what wonÕt.  By changing the location of the traps our
transmission line can be tuned for each of the desired
frequencies.

Figure 3 shows a simple model of a transmission line
with a single trap.  High frequencies are trapped on the
left.  By varying LHIGH one can change the resonant
frequency of the left section.  The lower frequency
component of the signal can pass through the trap.

Therefore, the combined length of LHIGH and LLOW set the
lower resonant frequency.

TrapHigh and Low
  Frequency

     Low
Frequency

L
high

L
low

 Figure 3. Traps Used to Tune Resonant Frequencies

3.2 Clock Skew and Rise Times

One of the very exciting prospects of this design
regards clock skew.  Ideally the entire resonating
transmission line crosses through 1/2 Vdd at the same
time.  In real cases, the clock load, interconnect delay and
dispersion within the transmission line introduce a
minimal amount of skew, less than 10 ps.  This
performance figure is almost an order of magnitude better
than what is achieved in the Alpha!

Unfortunately, though the center crossing is relatively
well controlled, the differences in rise and fall times
across the chip can be serious.  Consider the situation in
the frequency domain as shown in Figure 4.  In the
frequency domain, our clock waveform decomposes into a
sum of sinusoids.  The primary components are the 1st,
3rd and 5th harmonics.  As we move farther away from
the center of the chip, the amplitudes of the third and the
fifth harmonic fall off quickly.  This degrades the rise and
fall times at the edge of the chip.

0 v

1/2 Vdd

Amplitude

Distance
Along
T-Line

Chip

-1/2 Vdd

Figure 4. Frequency Domain View of Rise Time Problem

For a 2 cm chip this technique provides reasonable
rise times up to 1 GHz.  Beyond this frequency, the
reduced amplitude of the higher harmonics does not
provide adequate rise times at the edge of the chip.  One
correction would be to shift the tap points, flip-chip
connections, towards the center of the chip.
Unfortunately, this introduces extra skew from the new
tap points to the edge of the chip.  Another correction
would be to drive each tap point with independent
transmission lines, but this would involve a more
complicated structure.



4.  Large Scale Mockup

In order to test this driver technique quickly and
cheaply, we have built a low frequency version.  This
allows standard off the shelf parts to be used while still
testing all the basic principles.

The large scale mockup has proven the viability of the
transmission line clock driver technique.  At 20 Mhz the
driver with uniform impedance reduces power
consumption by a factor of 5.7 relative to a standard clock
driver.  Using a more complex transmission line saves a
factor of 10 over the standard driver.  Further, the quality
of waveforms is significantly better for the complex
transmission line.

The next two sections describes the overall structure
of our mockup and the testing method.  Then the paper
presents the results from each test case: the standard clock
driver, the driver with a uniform transmission line and the
driver with a complex transmission line.

4.1 Structure

Figure 5 shows the basic schematic of the large scale
mockup.  It can be broken into two distinct parts: the
external transmission line and on-chip clock structure.

10 cm

C
LOAD

5 cm

Driver
On-chip
Clock
Structure

External
Transmission
Line

10 cm10 cm10 cm10 cm

Figure 5. Standard Clock Driver

All driver configurations share the on-chip clock
structure.  As shown at the bottom, it contains a driver
involving a pulse generator with variable frequency
driving a pair of inverters.  In the transmission line
drivers, the frequency is set to the resonant frequency.
For the standard driver, the impedance of each inverter is
approximately 2 Ω.  In order to test a configuration with
a different inverter width, W, series resistance is added
between the inverters and the load.  Lumped elements,
CLOAD, model the on-chip clock capacitance.  The total
load is 2.2 nF.  The small, 5 cm wires represent the on-
chip clock wires.

All configurations including the standard driver share
the central section of the external transmission
line.  There are two reasons for this.  First, the standard
driver performed better with the external transmission line
and so made a harder standard to beat.  Second, for a real
chip the clock impedance would probably be lower than
the 5 cm segments by themselves, but definitely not
lower than the impedance with the external transmission
lines.  The central section of the external transmission

line includes the five 10 cm segments that match the
length of the entire chip, 50 cm.  This length is derived
from the frequency scale up factor of 500 MHz : 20 MHz,
and the width of a standard chip, 2 cm.  The sides of the
external transmission line change extensively between
configurations.  As seen in Figure 5, the standard driver
has no sides at all.  The next configuration in Figure 7
uses a uniform transmission line that is 4.6 m long.
Figure 9 shows the case with a complex transmission
line.

4.2 Testing Method

This section lists the steps involved in testing and
evaluating each transmission line driver.  It then describes
how to normalize power relative to frequency, self-loading
power and pre-driver power.

The first three steps are performed on the standard
driver:

1) Measure the rise time, TSTD, for a given inverter
width, WSTD

2) Measure the power, PSTD, at WSTD

3) Normalize PSTD

Then the following steps are performed on each
transmission line driver:

4) Measure the rise time, T,  for a given inverter
width, W

5) Change W until T = TSTD

6) Measure the power, P, at W
7) Normalize P
8) Compare the normalized powers

The first three steps involve the standard clock driver,
and provide a base line against which to compare the
transmission line drivers.  In the final 5 steps, the driver
width acts as the independent variable.  As the width
increases the signal rise times improve, while the power
increases. Please recall that changing the width is
simulated by adding extra series resistance.  Step 5 sets
the driver width such that the transmissions line driver
provides the same quality signal, based on rise time, as
the standard driver.  At this size one can compare the
normalized powers.

Power must be normalized for three different effects.
First, in order to compare powers obtained at different
frequencies, the power is normalized relative to a
frequency of 20 MHz.  As seen in Equation 1, the three
frequency terms, (20 MHz/F), (20 MHz/FSELF) and (20
MHz/FSTD) normalize each power. F, FSELF and FSTD

represents the frequency for the current configuration, for
the self-loading test case and for the standard driver,
respectively.

Second, in order to compare configurations, one needs
to include the self-loading power.  Self-loading power is
the power required to fill the source and drain capacitance
of the driver.  Because all the tests use the same inverter
part, they all consume the same amount of self-loading



power, even in the cases with a smaller, simulated
inverter.  Therefore, one must normalize the measured
power to correct for the reduced self-loading when
simulating a smaller inverter.  This correction appears in
the second term of Equation 1.  (1-W/WSTD) represents the
ratio of the extra width to the total width.  Multiplying
this by the total self-loading, leaves that power related to
just the unused width.  This can then be subtracted from
the total power.

Finally, one needs to include pre-driver power.  Pre-
driver power represents the amount of power consumed in
driving the input to the final inverter stage.  Please note
that in all of the configurations, this power comes from
the pulse generator not the power supply.  Therefore, the
pre-driver power is estimated by dividing the measured
power in the standard case by an inverter scale up factor of
4. The third term of Equation 1provides this correction.
Again, in order to compare pre-driver powers with
different inverter widths, the pre-driver power has to be
normalized relative to the inverter width.  Therefore, we
multiply the standard pre-driver power by the by the new
width, W/WSTD.
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4.3 Standard Clock Driver

This section describes a few test cases used to
established a base line for evaluating later designs. These
measured results are substituted into Equation 1.  Table 1
shows the power consumption for a few important cases
as wells as the rise times for the edge and center of the
chip. The self-loading test simply involves disconnecting
the clock load before power is measured.

Center T Edge T P PNORM

Self @16.4 MHz 0.12 W
Std @2 MHz 15.6 ns 11.6 ns 0.19 W 2.4 W
Std @16.4 MHz 13.3 ns 10 ns 1.5 W 2.3 W
Std @14 MHz 14.7 ns 11.4 ns 1.48 W 2.6 W

Table 1.  Mock-up of Standard Clock Driver

The first test provides the self-loading power and
frequency: PSELF=0.12 W and FSELF=16.4 Mhz.  The
second test provides the pre-driver power and frequency:
PSELF=0.19 W and FSELF=2 Mhz.  Once these values are
substituted into Equation 1, things can be simplified
down to Equation 2.  As a check note that for two
different frequencies, namely the third and fourth tests
shown in Table 1, the normalized powers calculated by
Equation 2 are reasonably close.
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Figure 6 shows a plot of the last test case of the
standard driver. This was run at 14 Mhz, a period of 71.5
ns. Signal C1 corresponds to the center of the chip and
signal C2 corresponds to the edge.  Despite the seemingly
reasonable rise times shown in Table 1 and appearing on
the right of Figure 6, note the poor quality of the
waveform for this given width. The next section will
show how the transmission line drivers have cleaned up
the quality appreciably.

Figure 6. Clock Signals of the Standard Driver

4.4 Driver with Uniform Transmission Line

This section describes the transmission line clock
driver with uniform impedance.  Figure 7 shows its
associated external transmission line.  The uniform line
resonated a 14 Mhz square wave.  The impedance of the
entire transmission line was fixed at approximately 10 Ω.

10 cm 10 cm 10 cm 10 cm 10 cm4.6 m 4.6 m

External
Transmission
Line

On-chip Clock Structure

Figure 7. External Transmission Line with Uniform
Impedance

Table 2 shows the power for many different driver
widths, W. In order to calculate the normalized power,
W/WSTD and P were substituted into Equation 2.  Based
on the rise time and overall quality of the waveform, the
point where the transmission line driver matches the



standard clock driver appears when W/WSTD = 0.07.  At
this width, the transmission line clock driver consumes
0.42 W saving a factor of 5.7 over the standard clock
driver.

W/WSTD Center T Edge T P PNORM

0.04 14.1 ns 20.5 ns 0.32 W 0.33 W
0.06 14 ns 19 ns 0.35 W 0.39 W
0.07 10 ns 19 ns 0.37 W 0.42 W
0.15 6.6 ns 18.8 ns 0.38 W 0.49 W
0.33 4.6 ns 19.3 ns 0.40 W 0.62 W

Table 2.  Mock-up of a Driver with a Uniform
Transmission Line

Figure 8. Clock Signal of a Driver with a Uniform
Transmission Line

Figure 8 shows a plot of the uniform transmission
line driver at 14 Mhz, a period of 71.5 ns.  The width of
the driver, W, is 0.15 times the width of the standard
driver, WSTD.  Signal C1 corresponds to the center of the
chip and signal C2 corresponds to the edge.  The quality
of this waveform is quite superior to that found with the
standard driver, even though the driver width and power
consumed is significantly smaller.

4.5 Driver with Complex Transmission Line

This section describes the transmission line driver
with a complex impedance.  Figure 9 shows the external
transmission line.  The complex line reinforces the first
and third harmonics of a 16.4 Mhz square wave.  In order
to tune for the third harmonic, a pair of 20 cm sections
are added to the central section.  Beyond this a 40 cm trap
of higher impedance, 35 Ω, blocks the third harmonic.
The outside sections, 1.4 m, tune the first harmonic.

10 cm

External
Transmission
Line

20 cm 40 cm 1.4 m10 cm 10 cm 10 cm 10 cm20 cm40 cm1.4 m

On-chip Clock Structure

Figure 9. External Transmission Line with Complex
Impedance

Table 3 shows the power consumption and rise times
for many different driver widths.  Based on the rise time
and overall quality of the waveform, the point where the
complex transmission line driver matches the standard
clock driver appears when W/WSTD = 0.06.  At this width
the transmission line clock driver consumes 0.24 W
saving a factor of 10.0 over the standard driver.

W/WSTD Center TR Edge TR PMEAS PNORM

0.04 19.9 ns 21.0 ns 0.27 W 0.20 W
0.06 5.6 ns 14.5 ns 0.29 W 0.24 W
0.07 5.0 ns 14.2 ns 0.3 W 0.26 W
0.15 3.5 ns 12.1 ns 0.33 W 0.35 W
0.33 3.2 ns 12.1 ns 0.33 W 0.46 W

Table 3.  Mock-up of a Driver with a Complex
Transmission Line

Figure 10 shows a plot of the complex transmission
line driver at 16.4 Mhz, a period of 61.1 ns.  The width
of the driver, W, is set to 0.15 times the width of the
standard driver, WSTD.  Signal C1 corresponds to the
center of the chip and signal C2 corresponds to the edge.
The quality of this waveform is quite superior to that
found with the previous drivers, even though the driver
width and power consumed is significantly smaller.

Figure 10. Clock Signal of a Driver with a Complex
Transmission Line



5.  Conclusions

Clock distribution represents an important aspect of
digital system design.  Current techniques have stalled in
their effort to reduce clock skew, transition times and
power consumption.  A new clock distribution technique
utilizing resonant transmission lines with a complex
impedance solves this problem.  It can match the
waveform quality of a standard clock driver for a tenth of
the driver width and a tenth of the power.
                                                
i Bowhill and Gronowski.  Practical Implementation
Methods and Circuit Examples used on the ALPHA
21164.  VLSI Circuits Workshop.  Digital
Semiconductor
ii Chi, Vernon.  Salphasic Distribution of Timing
Signals for the Synchronization of Physically Separated
Entities.  US Patent #5,387,885.  University of North
Carolina. Chapel Hill, NC 1993.
iii Hall, G.L. Trap Antennas.  Technical Correspondence,
QST, Nov. 1981, pp. 49-50.
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Abstract
Architecture trade-off experiments require theavail-

ability of an accurate, efficient, high level power estima-
tion tool. We have developed such a tool that provides
cycle-by-cyclepower consumption statisticsbased on the
instruction/data flow stream. While the approach only
assumesa high level definition of thearchitecture, it does
require that the energy consumption of the functional
units has been previously characterized. The accuracy of
our estimation approach has been validated by compar-
ing the power values our tool produces against measure-
ments made by a gate level power simulator of a
commercial processor for the same benchmark set. Our
estimation approach hasbeen shown to providevery effi-
cient, accurate power analysis. Using this same power
estimation technique, several architecture level trade-off
experiments for various architectures have been per-
formed.

1.0  Introduction
Power dissipation hasbecomeacritical issue in pro-

cessor design. When designing high performance, low
power processors, designers need to experiment with
architectural level trade-offs and evaluate various power
optimization techniques. Thus, a tool for doing efficient
and accurate architectural level power estimation
becomes indispensable. Most of the research in this area
falls in the category of empirical methods which “mea-
sure” the power consumption of existing implementa-
tions and produce models based on those measurements.
This macromodeling technique can be subdivided into
three sub-categories. The first approach [1] is a fixed-
activity macromodeling strategy called the Power Factor
Approximation (PFA) method. The energy models are
parameterized in terms of complexity parameters and a
PFA proportionality constant. Thus, the intrinsic internal
activity is captured through this PFA constant. This
approach implicitly assumes that the inputs do not affect
the switching activity of the hardware block.

___________________
This work is supported in part by a grant from the

National Science Foundation (MIP-9705128) and by
Hitachi America Ltd. The authors can be contacted at
yuchen@cse.psu.edu, mji@cse.psu.edu, or rba-
jwa@hmsi.com

To remedy this weakness of the fixed-activity
approach, activity-sensitive empirical energy models
have been developed. They are based on predictable
input signal statistics, such as used in the SPA method
[2][3][4] . Although the individual models built in this
way are relatively accurate (the error rate is 10%-15%),
overall accuracy may be sacrificed for the reasons of
unavailable correct input statistics or an inability to
model the interactions correctly.

The third empirical approach, transition-sensitive
energy models, is based on input transitions rather than
input statistics. The method presented in [5] assumes an
energy model is provided for each functional unit - a
tablecontaining thepower consumed for each input tran-
sition. The authors give a scheme for collapsing closely
related input transition vectors and energy patterns into
clusters, thereby reducing thesizeof the tables. A signif-
icant reduction in the number of clusters, and also the
size of the tables and the effort necessary to generate
them, can be obtained while keeping the maximum error
within 30% and the root mean square error within 10%-
15%. After the energy models are built, it is not neces-
sary to use any knowledge of the unit’s functionality or
to have prior knowledge of any input statistics during the
analysis.

Our work follows the third approach in thedevelop-
ment of a power estimator for a commercial processor.
The estimator imitates the behavior of the processor in
each clock cycle as it executes a set of benchmark pro-
grams. It also collects power consumption data on the
functional units (ALU, MAC, etc.) exercised by the
instruction and its data. The results of our power estima-
tor are compared with the power consumption data pro-
vided by themanufacturer [6]. Thiscomparison confirms
the accuracy of our power estimation technique [7]. To
show the application of the estimator, several architec-
ture trade-off experiments have been performed.

The rest of this paper consists of four sections. Sec-
tion 2 presents the power estimation approach. Section 3
overviews the processor architecture and discusses the
validation results. Section 4 shows several architecture
trade-off experiments. Finally, Section 5 draws the con-
clusions.

2.0  Power Estimation
An overview of the power estimator is shown in

Figure 1. The inputs of the estimator are a benchmark
program and energy models for each functional unit. The
architectural simulator consists of several parts: the
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assembler, the controller, and the datapath implemented
as many functional units (the small blocks labeled as m).

The controller generates control signals for each
functional unit as required for the instructions. For exam-
ple, when a load instruction puts data from the memory
to the IDB bus, the “MEMtoIDB ” control bit wil l be set.
As the control signals are set, the appropriate functional
units are activated. For each unit, there is a function rou-
tine which gathers all event activities. Figure 2shows an
example. In this example, when a control signal is set,
the IDB bus wil l receive data from one of its sources.
This input data to the functional unit wil l be used to
determine its power consumption.

The energy consumed by each functional unit per
access can be computed as follows where Cm is the

switch capacitance per access of the functional unit and
Vdd is the supply voltage. For each active functional
unit, Cm is calculated from the energy model of the unit
based on the previous and present input vectors. The
functional units can be grouped into two classes: bit-
dependent and bit-independent functional units. Here,
the terms energy and power are used interchangeably.

In the bit-dependent functional units, the switching
of one bit affects other bit slice’ s operations. Typical bit-

dependent functional units are adders, multipliers,
decoders, multiplexers, etc. Their energy characteriza-
tion isbased on a lookup tableconsisting of a full energy
transition matrix where the row address is the previous
input vector, the column address is the present input vec-
tor, and the matrix value is the switch capacitance. All
combinations of previous and present input vectors are
contained in one table. A major problem is that the size
of this tablegrowsexponentially in thesizeof the inputs.
A clustering algorithm [11] solves this problem and the
sub-problems associated with it by compressing similar
energy patterns. Table 1 shows an example of uncom-
pressed/compressed energy table for a 2:1 multiplexer.
The capacitance data in the energy characterization table
isobtained from aswitch level/circuit level simulation of
a circuit level/layout level implementation of the func-
tional unit.

In the bit-independent functional units, the switch-
ing of one bit does not affect other bit slice’ s operations,
for example, registers, logic operations in the ALU,
memories, etc. Thetotal energy consumption of thefunc-
tional unit can be calculated by summing the energy dis-
sipation of the individual bits. To model the energy
dissipation of a bus, the load capacitance of each bit is
used asan independent bit characterization. Furthermore,
each bit is assumed to have the same load capacitance.
The product of the load capacitance and the number of
bits is the Cm in the energy equation.

Some energy models are not built from the com-
plete functional unit but from smaller subcells of these
units. For example, because a 4:1 multiplexer can be
made from three identical 2:1 multiplexers, its energy
dissipation can be calculated by using the energy model
of a 2:1 multiplexer. This reduces 26**2 = 4096 table
entries to 23**2 = 64 entries before compression. After
building the subcell energy model, energy routines will
implement thoseoperations needed to calculate the func-
tional unit power dissipation from subcells.

3.0  Validation
To validate this power estimation technique, we

have implemented it for a commercial processor which
integrates a32-bit RISC processor and a16-bit DSPon a
single chip. Figure 3shows its main block diagram. The
processor core includes the X-memory, the Y-memory,
the buses, the CPU engine and DSP engine. The CPU

Power
Estimator

m m

m m

m m

m m

Program Energy Models

Output
Consumption
Power

Assembler

Controller

FIGURE 1. Power estimator overview

FIGURE 2. Event activities in the IDB

toIDB()
{

if ctr_bit[MEMtoIDB] is set
read data from memory;
put data on IDB;

if ctr_bit[MWBtoIDB] is set
MWB buffer puts data on IDB;

if ctr_bit[BIFtoIDB] is set
BIF (Bus InterFace) puts data on IDB;

Em
1
2
---CmVdd

2
=

TABL E 1. Energy table for a 2:1 multiplexer

Uncompressed Compressed
000 000 0.00 000 0xx 0.00
000 001 0.00 000 100 0.04
000 010 0.00 000 101 0.05
000 011 0.00 000 110 0.04
000 100 0.04 000 111 0.05
000 101 0.05 . . .
000 110 0.04
000 111 0.05
000 111 0.05
001 000 0.00

. . .



engine includes the instruction fetch/decode unit, a 32-
bit ALU, a 16-bit Pointer Arithmetic Unit (PAU), a 32-
bit Addition Unit (AU) for PC increment, and 16 general
purpose 32-bit registers. As the ALU calculates the X-
memory address, the PAU can calculate the Y-memory
address. Additional registers in the CPU support hard-
ware looping and modulo addressing. The DSP engine
contains aMAC, an ALU, a shifter, and 8 registers (six
32 bits wide and two 40 bits wide).

A set of simple synthetic programs listed in Table 2
are used as the benchmarks to validate our power ana-
lyzer. These are the same benchmarks used to test the
processor in [6]. Power consumption of the instruction
loop buffer (ILB) , memories, buses, ALU, the multiplier
and other functional units are collected as the bench-
marks are run. Data values used were those which maxi-
mized the switching in the datapath. In Table 2, “padd
pmuls movx+ movy” contains four separate operations
executed simultaneously. They are an addition, a multi-
plication, two loads and two address increments. “Padd
pmuls movx movy” is the same as the previous instruc-
tion except it contains no address increments.

Figure 4 compares the results generated by our
power estimator with the data presented in [6]. The
power consumption data of each program is normalized
to that of the pow034 benchmark. As you can see, for
most of the benchmarks our simulator produces results
very close to those reported in [6]. However, in both the
caseof thepow035d benchmark and thepow035c bench-
mark, the power consumption is underestimated by our
simulator. Since we did not have access to the design of
the control unit of the processor, average data is used to
characterize its power consumption. Also, a statistical
power consumption value was used in estimating clock
power, capturing the average value of the clock drive cir-
cuitry and clock distribution tree. Power consumed by
the gated clock logic is not captured. These two bench-
marks use the least power overall, so that clock and con-
trol unit power account for a higher percentage of the
total power consumption. Overall, the average error rate
of power analysis by our simulator is 8.98%.

4.0   Architectural Level Trade-offs
Using our power estimator, we have experimented

with various architectural level trade-off. For example,
the DSP multiplication operation can consume 67.8%
power of theDSPengineand 34.4% of the total power as
shown in Figure 5for the pow035 benchmark. Thus, not
surprisingly, reducing the power consumption of the
MAC unit would lead to asignificant power reduction for
programs with a number of multiplication operations.

More architectural level experiments [9] have been
performed using a power estimator based on a 5-stage
pipelined DLX processor [10]. The power estimator

TABLE 2. The Power Benchmarks

Program Use ILB Main Loop Operation
pow032 no padd pmulsmovx+ movy+
pow033 yes padd pmulsmovx+ movy+
pow035a yes padd pmuls movx movy
pow034 no padd pmuls
pow035 yes padd pmuls
pow035b yes padd
pow035d no nop
pow035c yes nop

CPUDSP

IDB[31:0]

YDB[15:0]

XDB[15:0]

IAB[31:0]

YAB[15:1]

XAB[15:1]

X Memory
ROM 24KB
RAM   8KB RAM   8KB

ROM 24KB

Y Memory

Register File

MAC

ALU

Decode

ALU

Register File

PAU

AU

Fetch & Decode

FIGURE 3. Block diagram of the commercial
processor
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identifies the most power hungry modules: instruction
and data caches, pipeline registers and the register file.
To reduce register fileaccesses, an architectureoptimiza-
tion approach - early bypass detection - places the regis-
ter forwarding logic in the ID (Instruction Decode) stage.
As soon as an instruction is decoded, bypass detection
wil l be performed before the register access. If the
machine is going to forward a source register from a
pipeline register, then the register file access wil l not
occur eliminating unnecessary register reads. Another
modified register forwarding approach - source to source
forwarding - avoids fetching a source register if it is
“alive” in the pipeline register. However, for both
approaches, whileregister filepower is reduced, theextra
forwarding control hardware wil l consume energy. Fig-
ure 6 shows the reduction of register file accesses when
using early bypass detection, source to source forward-
ing or both. The total power consumed in register file,
pipeline latches and forwarding hardware is compared in
Figure 7.

In other architectural level experiments, we have
modified the normal load/store architecture to support
one operand from memory by adding a memory address-
ing mode for several ALU instructions. The approach
reduces not only the number of the register file accesses
but also the instruction count. As aresult, it lowers regis-
ter file switching activity and instruction fetch power.
However, the register memory addressing mode may

increase clock cycle time or the number of clocks per
instruction (CPI). This scheme also requires more com-
plex control unit which may consume more power. Two
implementation options have been considered: a 5-stage
pipeline and a 6-stage pipeline. In the 5-stage implemen-
tation the MEM stage precedes the EX stage and must
include address calculation hardware. This may
adversely affect clock cycle time. In the 6-stage imple-
mentation the MEM stage and the EX stage are again
swapped and a separate address calculation stage pre-
cedes the MEM stage. This wil l affect the CPI. The
energy saving comparison in Figure 8 shows that the 5-
stage pipeline reduces switch capacitance from 5% to
13%. But, the 6-stage pipeline consumes as much or
moreenergy than thenormal architecturedueto theaddi-
tional pipeline register.

Different from above approaches which change the
architecture, a register relabeling technique[11] modifies
only the compiler. This approach encodes the register
labels such that the switching costs of all the register
label transitions are minimized. It can reduce the energy
of the pipeline registers, register file and the instruction
bus. To decrease the energy consumption of the switch-
ing from 0 to 0 or from 1 to 1, flipflops which can guard
clock signals are used to implement registers. However,
becauseof theadditional logic, the1 to 0or 0 to 1 transi-
tions takemoreswitch capacitance than unguarded regis-
ters. Overall, Figure 9 shows that the energy reduction is
possible by using the register relabeling technique.
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5.0  Conclusions
In this paper, we described an accurate, high level

power estimation technique. Our technique needs to do
energy characterization for each functional unit (ALU,
MAC, etc.) only once. When the operations of the func-
tional units are specified by the instruction stream, the
power consumed in each functional unit is calculated
from its energy model. The simulation results for a com-
mercial processor clearly verified the correctness of our
power analysis methodology. Without loss of accuracy,
the running time of power estimation for each synthetic
benchmark program was less than 90 CPU seconds. This
time saving feature of our power estimator is beneficial
for reducing the design cycle time. The simulator is also
applicable for power optimization research at the archi-
tecture, system software, and application software levels.

Research continues on several fronts. We have
promising results to improve the estimation of control
power using a hierarchical technique [12]. Since clock
power consumption is typically the largest portion of the
total chip power, it needs to be accurately modeled. To
characterize clock power, a statistical energy model of
the ungated clock drive logic/distribution tree wil l be
combined with transition-sensitive models of different
clock gating schemes. Finding amoreaccuratehigh level
interconnect power model is also important. More com-
plex memory structures (e.g., caches) can be modeled
using methods like the one presented in [13].
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1 Abstract

The power consumption becomes one of the
important architectural and design issues besides
the primary goal of performance on high
performance microprocessors. With increasing
high clock frequency and design complexity on
high performance mobile microprocessors, the
power consumption has directly impacts on
future generation of mobile microprocessor
quality and reliability. Traditional performance
and power analysis can not provide enough
analysis and information to support decisions on
power/performance tradeoffs on architecture and
design for high performance mobile
microprocessors. The multivariate
power/performance analysis provides a
systematic method to identify and analyze the
power consumption and the corresponding
performance impact. It can be useful method to
support power/performance tradeoffs in
microprocessor architecture and design.

2 Challenge to
power/performance analysis

With dramatically increasing microprocessor
frequency, architectural and design complexity,
microprocessor power analysis and reduction
become one of the most important issues in high
performance microprocessor design [1,3,4,6,7].
The power limitation of high performance mobile
microprocessors is already critical to design. The

high power consumption of a high frequency
microprocessor not only increases the cost of
mobile computing system integration and it also
reduces the battery life time and generates
additional heat to compact mobile computing
systems. In other words, a mobile computing
system quality and reliability could be affected
by the high power manufacturing, consumption
of a high frequency microprocessor. To avoid the
microprocessor from overheating, especially on
the application programs with high power
consumption characteristics, we must explore the
new architecture and techniques, which are
beyond the traditional clock gating method to
further reduce microprocessor power
consumption. To achieve the minimal power
consumption in a high performance mobile
microprocessor, we have used multivariate
analysis between power consumption and
performance in the microprocessor architecture
and design.  In this paper, we present a method,
which employs multivariate analysis to aid the
design of microprocessor in having less power
consumption.

There are two fundamental questions in a high
performance low power microprocessor design:
(1) How do we identify targets for power
reduction within microprocessor architecture and
design. It basically asks where the power is
heavily consumed and why. It challenges the
entire microprocessor architecture and micro-
architecture from the point of view of power
consumption. (2) How do we reduce power
consumption at the identified architecture and
design points with either minimal or no
performance impact. This essentially asks for a
power/performance optimization in a complex
mobile microprocessor.  It involves determining
new tradeoffs in the design of micro-architecture
between the performance and power

This work was supported by Intel Corporation. For
information on obtaining reprints of this article and
commercially use this method please contact Tosaku
Nakanishi at tnakanis@ichips.intel.com.



consumption. The traditional microprocessor
architecture tradeoff decisions are based on
cost/performance analysis.  These decisions are
good for a microprocessor performance. They
may or may not be good for power saving. In
high performance mobile microprocessors, the
power consumption requirement is critical. The
architecture and design tradeoff criteria and
priority of the mobile microprocessors are very
different comparing to the desktop computer and
servers in this sense. The conventional
microprocessor architecture and design analysis
can not provide enough information and analysis
data to make optimal design decisions for high
performance mobile microprocessors.

3 Multivariate
power/performance analysis

Multivariate power/performance analysis is a
multivariate statistical analysis method. It is
concerned with the collection and interpretation
of simulation data from multiple variables of
microprocessor power consumption, architectural
and design simultaneously [2,8]. Multivariate
power/performance analysis helps
microprocessor architects and designers to
identify the possible power reduction targets
within complex microprocessor architecture and
micro architecture. It also provides an easy and
quick way to predict a potential power
consumption and performance impact due to the
architecture and design changes. This power
consumption and performance prediction and
estimation is used to keep track of the
architectural modifications on the correct
direction before complex detailed
microprocessor power/performance simulations
carry out.

There are 8 steps for setting up and running
multivariate power/performance analysis. They
are: create power/performance model, qualify
power/performance model, select representative
variables, select target software and workload,
collect the simulation results and build the
analysis database, identify power reduction target
and logic, modify micro-architecture, logic, and
circuit implementation, and verify power
reduction and performance impacts.

One method of multivariate power/performance
analysis is the multivariate correlation analysis.

In a traditional correlation analysis, the
correlation between two variables is studied. In a
multivariate correlation analysis, the correlations
of all pairs of variables are studied. Multivariate

Create an
architectural
simulation model
and its corresponding
power consumption
model.

Qualify the
architectural models
by architectural team
and performance
simulation

Qualify the power
consumption model
by logic design,
circuit teams and
circuit and layout
simulations

Select target
workload and
benchmarks for
power/performance
evaluation

Select representative
power consumption
and performance
variables

Use multivariate
power/performance
analysis method to
collect simulation
results and to build
the analysis database

Identify the target
logic for power
reduction and
improving
power/performance

Modify micro-
architectural or logic
design or circuit
implementation in
terms of power
consumption

Verify power
reduction and
power/performan
ce improvement.
Predict possible
trends for
power/performan
ce enhancement

Figure 1 The flow chart of
implementing multivariate
power/performance analysis for
high performance microprocessor
design



power/performance correlation analysis is a
specialization of multivariate correlation
analysis. In this specialization, the correlations
between architectural parameters, different levels
of power consumption and performance
measurements are studied.

When we measure a group of microprocessor
architectural parameters and their corresponding
power consumption, not only are we interested in
their central tendency and variation of each
individual architecture parameters, but also in an
assessment of the association among the
performance and different levels of power
consumption, such as a full chip power
consumption and a logic cluster power
consumption. Multivariate power/performance
correlation analysis focuses on the relationships
between variations of performance and power
consumption for each architectural parameter.
Mathematically, the relationships are measured
by correlation coefficients, which can have
values between –1 and 1, inclusively. A strong
relationship is indicated by a large positive or
negative correlation coefficients while a weak
relationship is indicated by a correlation
coefficient that is close to 0. The correlation
coefficient by itself cannot determine if  an
architectural parameter has a high power
consumption or performance. Instead it only
tends to indicate that an architectural parameter
is a tight grip on the power consumption or
performance. The correlation coeff icients of
those parameters are not systematically
controlled by architects or designers but by
complex factors that need not be precisely
determined. In other words, the multivariate
coefficient values represent the fact of power
consumption and performance from compounded
multiple effects on complex microprocessor
architectural and design factors. This is one of
the reasons that multivariate power/performance
analysis is different from other power and
performance analysis methods.

The multivariate power/performance analysis
does not assume that any particular architectural
parameter has a causal logic relation with power
consumption at full chip level and logic cluster
level. By observing how the architectural
parameters, power consumption, and
performance vary with each other in a set of
experiments, our analysis tend to have the effect
of summarizing complex relationships among

variables without deriving all possible complex
equations. However, it does not establish a causal
relation between an architectural parameter and
power consumption or performance.  In the
multivariate power/performance analysis, we do
not make any causal logic relation assumption
during the correlation analysis. This assumption
reflexes that the power consumption and
performance of a high performance mobile CPU
is related to many architectural and design issues.
The simple causal logic relation may not always
fit in a real microprocessor design. The
correlation studies could be the common,
inexpensive, and valuable power/performance
studies in general. It, however, will give us an
indication the effect of altering an architecture
and design on power consumption and
performance.

Table 1 summarizes the classification of
architectural parameters based on their
correlations with performance and power
consumption.

Class 1 correlation for a group of architectural
parameters means that the architectural
parameters are strongly correlated to both
performance and power consumption. If the
correlation coefficients are both positive or both
negative, reducing power consumption is likely
to reduce performance. On the other hand, if the
correlation coeff icients are of the opposite signs,
reducing power consumption and increasing

Table 1 Classification of architectural
parameters based on their correlations with
microprocessor performance and power
consumption

Classes of
architectural
parameters

Correlation
with

microprocessor
performance

Correlation
with

microprocessor
power

consumption

Class 1 Strong Strong

Class 2 Strong Weak

Class 3 Weak Strong

Class 4 Weak Weak



performance are possible. Not surprisingly, the
latter case is rare.

One example for class 1 correlation is that the
bus unit power/performance correlation
coefficients (coefficient with the full chip power
consumption and coefficient with overall
performance) may have the opposite signs. This
means that the higher power consumption on the
bus unit and the lower over all microprocessor
performance will be achieved. One of reasons
could be too many inaccurate speculative
instruction fetches and memory data accesses to
deliver correct instructions and data to internal
core for execution.  Therefore, even the bus unit
is extremely busy; the internal core is still idle.
When the incorrect speculations are reduced, the
bus unit power consumption is reduced and the
instructions and data can be delivered to the
execution units effectively.

Class 2 correlations for a group of architectural
parameters mean that the architectural
parameters are strongly correlated to
performance but weakly correlated to power
consumption. While such architectural
parameters are good candidates for performance,
they are not good candidates for power reduction
targets.

Class 3 correlations for a group of architectural
parameters mean that the architecture parameters
are strongly correlated to power consumption but
weakly correlated to performance. While such
architectural parameters may have minimal
impact on performance, they are excellent
candidates for power reduction without severe
effect on performance degradation. We may use
a new micro-architecture and circuit with
aggressive power reduction to replace the exist
micro-architecture or circuit that being
represented by these group of architectural

parameters.  The class 3 correlation provides
opportunities for architects and designers to
further reduce the power consumption on a very
complex microprocessor.  The best part of the
class 3 correlation is that it tries to isolate the
power consumption problems from complex
performance impacts.

Class 4 correlation for an architectural parameter
means that the architectural parameter is weakly
correlated to both performance and power
consumption. Obviously, such architectural
parameters should not be selected for
performance optimization or as power reduction
targets.

These four classes of power/performance
correlations represent the overall effects, such as
micro-architecture, clock gating, etc. We have to
mention that the power characteristics of selected
benchmarks and target software may affect the
correlation in some cases. Therefore, the
correlation class variations of a logic block/unit
between different benchmarks provide the
additional information of the power/performance
behaviors under different software executions.
The average power/performance correlation of a
logic block provides the power/performance
behaviors in general.

In a microprocessor design, the correlation
analysis must reach further details to achieve
additional power reduction possibilities.  For
example, we may use the following table to
oversee the correlation among all related micro
architectures of Load buff and Store buff.

LoadBufFull and StoreBufFull are two
architectural parameters that have varying
correlations with microprocessor performance
and power consumption. The resident logic
blocks and units are displayed along with their

Table 2 Two examples of architectural parameters and their
correlations with performance and power consumption

Architectural
Parameter

Resident
Logic Block

Resident
Logic Unit

Microprocessor
Performance

Block Power
Consumption

Unit Power
Consumption

Microprocessor
Power

Consumption
LoadBufFull Load buffer Load/Store ISPEC95

number
Corr.
Value

mW Corr.
Value

mW Corr.
Value

mW Corr.
Value

StoreBufFull Store buffer Load/Store ISPEC95
number

Corr.
Value

mW Corr.
Value

mW Corr.
Value

mW Corr.
Value



performance and power correlations
Microprocessor architects may use such a table
to scan for class 3 architectural parameters and
their corresponding resident logic blocks and
units for power reduction opportunities. In our
analysis, we have found that principal component
analysis [2] is a good data reduction technique
for multivariate power/performance analysis.
Principal component analysis maximizes the
variance of information in the first few major
components. By examining the principal
components, instead of all the data, architects
and designers can easily glance at the simulation
results respected with the performance and power
consumption in different depths. Principal
component analysis also enables us to build a
power/performance prediction model. This
prediction model captures the complex
correlation among multiple design variables and
power/performance within a high performance
microprocessor.  The prediction model also
provides a quick estimation of the power
consumption and performance changes due to
multiple architectural variable modifications.
This prediction model is useful when there are
micro-architecture changes experimentally. The
prediction is able to indicate if the
power/performance is on the right track while the
micro-architecture is being modified. By using
such a prediction model, we can reduce the
number of expensive and time consuming
simulations. In other words, the multivariate
power/performance prediction model is a
complementary method to the microprocessor
simulations.

The collection of qualified multivariate data is
extremely important. One of the limitations of
this analysis is that unqualified data can mislead
the multivariate power/performance analysis into
a wrong direction. Unqualified data is a complex
issue which can occur at either the original
architectural simulator, or the corresponding
power modeling, or a data collection method, or
incorrectly using the multivariate
power/performance method. This limitation leads
us to another important topic: the multivariate
power/performance analysis qualification and
verification. It is very useful to qualify the
multivariate power/performance analysis results
with corresponding architecture performance and
the circuit simulation results. Theoretically, all
the correlation in the multivariate
power/performance analysis should be preserved

in different design modeling stages, such as a
high level architecture model, RTL model, and
layout model. Because all measurements may
contain errors, this correlation and prediction
qualification and verification is a very complex
issue.

From our experience, multivariate
power/performance analysis helps us to identify
the power reduction targets in a very complex
high performance microprocessor design. For
example, when multivariate power/performance
analysis is applied to evaluate how a speculative
branch prediction impacts on microprocessor
power and performance, useful information can
be obtained to make a correct design decision.
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Abstract

The e�ects of power consumption increasingly shape proces-
sor design choices not only in battery-operated devices, but
also in high-performance processors. Unfortunately when
compared to the huge body of performance-oriented archi-
tecture research, much less research attention has been placed
either on modeling power consumption at the architectural
level, or on devising organizational mechanisms for reducing
power consumption in high-end processors.

Our work seeks to address these issues in two main ways.
First, we are developing a suite of high-level modeling tools
that allow architects to manipulate designs and compare
power tradeo�s in a manner similar to current performance-
oriented architecture studies. In this paper we discuss the
status of the work and our observations on how the needs
of power modelling a�ect the simulator speed and struc-
ture. Second, we are harnessing parts of this infrastructure
to evaluate a technique for aggressively clock-gating arith-
metic units in response to observed operand values. We �nd
that many operand values in current programs are much
smaller than the actual word width of the machines. As
a result, dynamic techniques for adjusting functional unit
width to match operand width are promising for reducing
power consumption in these units.

1 Introduction

Current-generation high-end microprocessors can consume
30 watts or more of power in normal operation. System
designs become increasingly challenging as chips and sys-
tems get smaller and power consumption increases. While
power consumption is clearly a signi�cant worry in battery-
operated portable devices, power is also a pressing concern
in desktop systems as well. Most notably, processors in the
30W power range require elaborate cooling mechanisms to
keep them from overheating. With each new generation of
chips, their implementation is increasingly shaped by at-
tempts to keep power consumption and thermal load to man-
ageable levels. High power is also a system cost issue: fancy
heat sinks can be expensive, and increased power consump-

tion also raises the costs of the power supply and capacitors
required.

For all these reasons, the power consumption of high-end
processors has been a major industry concern for several chip
generations. Initial attempts to limit power have focused
on relatively straightforward applications of voltage scaling
and clock gating. With each new generation, however, more
strenuous e�orts must be made, and these e�orts are be-
ginning to include organizational attempts to limit power
consumption. The academic architecture community, how-
ever, has been slow to respond to this situation. While the
RISC revolution spurred an increased focus on quantitative
evaluation of architectural tradeo�s, the quantities most of-
ten studied have been performance-oriented. The time has
come for academics to consider both power and performance
as important architecture metrics to be optimized together.

The work described here consists of two main thrusts.
First, we are developing architectural-level tools to model
and evaluate power consumption in high-performance pro-
cessors. We are beginning to use these tools to evaluate
power-aware organizational tradeo�s in processor design.
Second, we are also researching mechanisms for dynamic
operand analysis that allow processors to use arithmetic
functional units more e�ciently.

2 Modeling Power Tradeo�s in High-Performance Pro-
cessors

The traditional academic approach to processor organiza-
tion tradeo�s has been to consider their e�ect on perfor-
mance. In cache studies, for example, one might evaluate
a fast direct-mapped cache against a slower set-associative
cache with a higher hit ratio. The design with superior
performance would be the superior design, modulo worries
about hardware complexity and area.

Academics have rarely considered power in these analy-
ses, although they have used very informal estimates of chip
area as a proxy for power. Thus, in the cache analysis above,
caches requiring equal amounts of SRAM bits might be re-
garded as equivalent from the power standpoint. To �rst
order, such estimates are useful, but as power issues become
more important, more careful area analyses and resulting
power tradeo�s are warranted.

With this in mind, we are building modeling infrastruc-
ture that supports power analyses at the architectural level.
Using the SimpleScalar toolset as a starting point [2, 1], we
have built expanded modules that include power models and
rudimentary power accounting.



2.1 Cache Power Models

We have begun this e�ort by modifying SimpleScalar's cache
model to account for power dissipation. In particular, we
started by incorporating a cache power model �rst described
in the literature by Su and Despain [5]. This model considers
the cache in terms of three primary modules: the address
decoding path, the cell array in which the data is stored,
and the data I/O path by which data enters or leaves the
cache.

Our simulator tracks current and previous data and ad-
dress values on the lines entering and exiting each module.
Since CMOS power dissipation is related to the frequency at
which bits switch from 0 to 1 or vice versa, tracking current
and previous values allows us to track data on the frequency
of such bit changes.

While power modeling at this level is very implementation-
dependent, our primary goal in building these models is not
to provide absolute wattage estimates, but rather to pro-
vide higher-level intuition on which organizations use more
or less power. Such relative comparisons can be gotten more
easily than precise absolutes.

2.2 Implications of PowerModelling on Simulation Speed,
Structure

Adding power modeling to the simulator has signi�cant im-
plications on the speed and structure of the simulator. Track-
ing bit changes within the decoding path requires that we
store the last address referenced so we can compute bit
switches between address decoding bits based on the cur-
rent and previous cache address. More signi�cantly, track-
ing bit switches in the cell array and the I/O path requires
storing the cached data itself. SimpleScalar is usually used
in a mode in which the functionality and timing of the
cache is simulated without actually storing the data in the
cache. The memory overhead related to data storage and
bit-change calculations varies depending on the cache orga-
nizations and sizes, but can result in 25% or more increases
in SimpleScalar process size. Similarly, runtime overheads
can also be quite signi�cant. Our unoptimized prototype
version of the cache power simulator currently runs about
50% more slowly than the original sim-cache shipped with
SimpleScalar.

2.3 Summary

Our work on power modeling has focused thus far on the
caches, but we intend to broaden this modeling infrastruc-
ture considerably. As we do, we note that relative power
analysis and tradeo�s between like structures (e.g. instruc-
tion cache and data cache) is fairly straightforward, but
tradeo� analysis among di�erent structures needs more in-
formation. What is required is either an absolutely accurate
power model of each structure in the tradeo�, or a kind of
accurate \exchange rate" that correctly estimates how two
structures (or more) can be compared. For most academics,
the latter is more easily obtained. An example might be the
claim that some number of kilobytes of instruction cache
was equivalent in power to some other number of entries
in the reorder bu�er. Our goal is not simply to maximize
performance for a �xed power consumption, but also to con-
sider regions of higher or lower power e�ciency, that is, to
evaluate tradeo�s from the perspective of the energy-delay
product metric.

Another possible approach in developing architectural-
level power models is to follow Liu and Svensson [4], who

re�ned a coarse complexity-based model (power follows the
number of gate-equivalents) into a set of specialized and
more accurate models. They built special parameterized
models for logic, memory, interconnect, and clock distribu-
tion, and then validated these against published information
on the Digital Alpha 21064 and the Intel 80386. We will be
evaluating this technique within SimpleScalar in upcoming
work. Overall, our goal is focused more on incorporating
power abstractions into high-level architectural simulators,
with lesser emphasis on developing extensive new models.

3 Operand Value Analysis for Aggressive Clock Gating

In parallel with our e�orts to develop power simulation and
modelling techniques for architectural decisions, we are also
investigating particular power reduction ideas whose quan-
titative evaluation will bene�t from the modeling infrastruc-
ture we are developing. In particular, this section focuses
on dynamic techniques that work to save power by recog-
nizing and exploiting particular attributes when present in
operand values.

3.1 Background

Current processors exploit a variety of clock gating tech-
niques to reduce power dissipation in CMOS circuits. That
is, information learned about the instructions during the de-
code phase is used to determine which CPU units will not
be needed for this instruction. Such information enables or
disables the clock signal at particular chip modules. By dis-
abling the clock, one prevents power dissipation at unused
units.

Clock gating has traditionally been based on static in-
struction attributes embodied in the opcode. Our approach
extends on this to exploit dynamic properties of the operands
as they appear at runtime. Our work begins from the obser-
vation that in many codes, the dynamic values stored and
manipulated in registers are often much smaller than the full
word width provided by the machine.

3.2 Our Approach

In order to exploit the di�erence between average operand
value width and machine word width, we are exploring the
potential of gating o� the top end of functional units to save
power in instances when small operands are being manipu-
lated. Figure 1 illustrates the basic structure we propose.

In our approach, the last step of any arithmetic com-
putation is for the functional unit to perform a zero-detect
on the high-order 48 bits of the result. (In some CPUs,
some sort of zero-detect might be performed at this stage
anyway, in order to update condition codes.) If the result
of the zero detect is that none of the high-order bits were
on, then the result is said to be a low-bit value. If any of
the high-order 48 bits are on, then the result is a high-bit
value. This "high-bit" 
ag value (0 or 1) is associated with
values as they travel back to the register �le, to reservation
stations, and to the bypassing paths.

When operands arrive at an arithmetic functional unit,
their 
ag value is used to gate the clock that controls the
input latch. In all cases, the low-order 16 bits are clock into
the latch. In small-operand cases, the latch for the high-
order bits is never clocked. This prevents bit changes from
occurring inside the functional unit, thus diminishing the
power requirements.
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Figure 1: Block diagram of value-based clock gating at ALU input.

3.3 Experimental Results

Whether or not this approach is bene�cial depends on: (1)
the frequency of small operands in the code, (2) the power
dissipation saved by gating o� most of the arithmetic unit,
and (3) the power dissipation increased by computing and
maintaining the high-bit indicator 
ags. Our initial results
focus on the �rst of these three factors. We are working
now to generate arithmetic unit power models that help us
quantify the tradeo�s between the second and third of the
factors listed.

The potential of this approach is illustrated in Figure 2.
In this graph, the total height of each bar corresponds to the
observed frequency small-operand operations performed in
eight of the SPECint95 benchmarks, as a fraction of the total
operations that were eligible for consideration. The opera-
tions eligible for this optimization include arithmetic, logi-
cal, and some shift operations. In addition, there is a fourth
category that includes other miscellaneous operations, such
as some comparison instructions.

Overall, the results show that a large number of SPECint95
instructions operate on small operands and are therefore el-
igible for the optimization. Fractions range from 56% for
go, up to over 70% for m88ksim and compress. We note,
however, that in many cases, the small operands are for
logic instructions. The bene�ts of clock gating for logic
instructions are implementation dependent. If the imple-
mentation would be performing a zero-detect anyway, for
condition codes, then power savings may result from storing
this result. On the other hand, if the zero-detect and clock

gating logic is all new, then the power savings resulting from
saving part of the logic operation (much simpler than an add
or multiply) is less clear.

Although we present results here only for integer codes,
we are currently exploring mechanisms for applying similar
techniques on 
oating point operands as well. For 
oating-
point operands, the approaches used will depend on the type
of operation being performed. For example, in a 
oating-
point addition, determining which bits are needed and rele-
vant cannot be performed until the two operands have been
normalized (i.e., their exponents adjusted). In contrast,

oating-point multiplications can have mantissa checks that
are more similar to their integer counterparts. Finally, we
are also exploring options for using compile-time analysis
and pro�ling to determine narrow bit-width operations with-
out the overhead of dynamic on-line checks. We are also
considering approaches for speculatively assuming narrow
bit widths in some operations, and then cleaning up compu-
tation via over
ow detection in cases when the full bit-width
indeed should have been used.

4 Conclusions

Overall, the philosophy embodied by this work is that ap-
propriate monitoring infrastructure is imperative to gain-
ing insights on power tradeo�s at design time. In addition,
detailed operand analysis techniques, applied at compile-
time or run-time, are a promising method for using operand
values to drive clock gating techniques, and o�er sizable
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Figure 2: Operand width distribution in the SPECint benchmarks.

improvements over purely opcode-based clock gating tech-
niques.
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Abstract
A study of several RISC, DSP and embedded processors was
conducted. It has been shown that the transistor utilization
drops substantially as the complexity of the architecture
increases. Simple architecture that are enabling full
utilization of technology are favorable as far as energy
efficient design styles are concerned. The results favor
simple architectures that leverage performance
improvements through technology improvements.

1. Introduction

Demand for reducing power in digital systems has not
limited to systems which are required to operate under
conditions where battery life is an issue. The growth of
high-performance microprocessors has also been
constrained by the power-dissipation capabilities of the
package using inexpensive air-cooling techniques. That
limit is currently in the neighborhood of fifty watts.
However, the increasing demand for performance
(which has been roughly doubling every two years) is
leaving an imbalance in the power dissipation increase,
which is growing approximately at 10 Watts per year.

This growth is threatening to slow the performance
growth of future microprocessors. The “CMOS ULSIs
are facing a power dissipation crisis”  in the words of
Kuroda and Sakurai [1]. The increase in power
consumption for three generations of Digital
Equipment Corporation, “Alpha” architecture high-
performance processors is given in Fig. 1.

2. Comparative Analysis

Most of the improvement on power savings is gained
by technology. Scaling of the device and process
features, lowering of the threshold and supply voltage
result in an order of magnitude savings in power.
Indeed, this resulting power reduction has been a
salient achievement during the entire course of
processor and digital systems development. Had this
not been the case then the increase in power from one
generation to another would have been much larger
limiting the performance growth of microprocessors
much earlier.

The technology amounts for approximately 30%
improvement in gate delay per generation. The
resulting switching energy CV2  has been improving at
the rate of 0.5 times per generation. Given that the
frequency of operation has been doubling for each
new generation the power factor P = CV2f remained
constant ( 0.5 X 2 = 1.0). It is the increase in
complexity of the VLSI circuits that goes largely
uncompensated as far as power is concerned.
However, it is estimated that the number of transistor
has been tripling for every generation. Therefore, the
expected processor performance increase is 6 times
per generation (two times due to the doubling of
processor frequency multiplied by the three times
increase in the number of transistors).

The fact that the performance has been increasing four
times per generation instead of six is a strong
indication that the transistors are not efficiently used.
What that means is that the added architectural
features are at the point of diminishing returns.

This diminishing trend is illustrated in Table 1 which
compares a transition from a dual-issue machine to a
4-way-super-scalar for the IBM PowerPC
architecture.

All three implementations of the PowerPC
architecture are compared at the same frequency of
100MHz. The performance of PowerPC 620, as well
as power consumption has been normalized to what it
would have been at 100MHz. We can observe that the
power has more than doubled and quadrupled
respectively in transition from a relatively simple
implementation (601+) into a true super-scalar 620.
The respective performance has also improved by 50
to 60% (integer) and 30 to 80% (floating-point).
However, the number of Specs/Watt has gone down
dramatically-- one and two times as compared to
601+. Given that all the data for all the three
implementation has been compared at 100MHz, we

Fig. 1. Power increase for three generations of DEC
“Alpha” processor

0

10

20

30

40

50

60

70

80

1992 1996 1998

DEC21064
30W @ 200MHz

DEC21164
50W @ 300MHz

DEC21264
72W @ 600MHz

Year of Introduction

P
ow

er
 [W

at
ts

]



Table 1. Comparison of PowerPC performance / power
transition[8,9]

Feature 601+ 604 620 Diff.

Frequency

MHz

100 100 133
(100) same

CMOS Process .5u 5-
metal

.5u 4-metal .5u 4-
metal

~same

Cache Total 32KB
Cache

16K+16K
Cache

64K ~same

Load/Store Unit No Yes Yes

Dual Integer Unit No Yes Yes

Register Renaming No Yes Yes

Peak Issue 2 + Br 4 Insts 4 Insts ~double

Transistors 2.8
Million

3.6 Million 6.9
Million

+30%
/+146%

SPECint92 105 160 225

(169)

+50%
/+61%

SPECfp02 125 165 300

(225)

+30%
/+80%

Power 4W 13W 30W

(22.5W)

+225%/+4
63%

Spec/Watt 26.5/31.2 12.3/12.7 7.5/10 -115%/
-252%

are indeed comparing the inverse of Energy-Delay
product which is a true measure for power efficiency
of an implementation as shown in [7].

The comparable inefficiency in power-performance
factor in transition from singe-issue to a super-scalar
for MIPS processor architecture is shown in Table 2.
The comparison shows a 31% decrease in power
efficiency for the integer code but a 23%
improvement for the floating-point.

Table 3 shows that the best trade-off between
performance and power has been achieved in DEC
Alpha 21164 implementation of their “Alpha”
architecture. The table shows comparable efficiency
for MIPS, PowerPC and HP processor
implementations, slightly better for Sun UltraSPARC
and substantially better power efficiency for Digital
21164.

The power efficiency of DEC 21216 was achieved
through very careful circuit design, thus eliminating
much of  the inefficiency at the logic level. This was
necessary in order to be able to operate at the
frequency that is twice as high compared to other
RISC implementations. However, no architectural
features, other than their very careful implementations
are contributors to the power efficiency of DEC
21164.

It is interesting to compare what a particular
improvement means in terms of power. In Table 4 we
are comparing the effect of increasing the cache size
for IBM 401 and 403 processors. The measurement is
normalized to 50MHz. The power-efficiency has
dropped by a factor of close to two, resulting from
increasing the caches. Similar findings are confirmed
in the case of PowerPC architecture where the
decrease in power efficiency is 60% as shown in
Table 5.

Table 2. Transistion from single issue MIPS R5000 to MIPS
R10000 implementation of MIPS architecture[8,9]

Feature MIPS
R10000

MIPS
R5000

Diff.

Frequency 200MHz 180MHz ~same

CMOS Process 0.35 /4M 0.35 /3M

Cache Total 32K/32KB
Cache

32K/32K
Cache

~same

Load/Store Unit Yes No

Register
Renaming

Yes

Peak Issue 4 Issue 1+FP

Transistors 5.9 Million 3.6 Million +64%

SPECint95 10.7 4.7 +128%

SPECfp95 17.4 4.7 +270%

Power 30W 10W 200%

SPEC/Watt 0.36/0.58 0.47/0.47 -31%/

23%

Metrics:
Horowitz et al.[7] introduces Energy-Delay product as
a metric for evaluating power efficiency of a design.

An appropriate scaling of the supply voltage results in
a lower power, however, at the expense of the speed
of the circuit. The energy-delay curve shows an
optimal operation point in terms of energy efficiency
of a design. This point is reached by various
techniques, which are all being discussed in this
paper.

The fabrication technology seems more important for
the energy-delay that the architectural features of the
machine. This finding is consistent with the fact that
the processors’ performance has been increasing four-
fold per generation. Though we would expect a six-
fold increase in performance: the frequency has been
doubling per generation and the number of transistor
tripling. This shows that the transistors have not been
used efficiently and that the architectural features that
are consuming this transistor increase have not been
bringing a desired effect in terms of the energy-
efficiency of the processors.

Power Tradeoffs in DSP and Embedded Systems:

A detailed power analysis of a programmable DSP
processor and an integrated RISC and DSP processor
was described in the papers by Bajwa and Kojima et
al [2,3]. The authors have shown a module-wise
breakdown of power used in the different blocks.
Contrary to many opinions it was found that the bus
power is significantly smaller compared to the data
path. It was also shown in this paper how a simple
switch of the multiplier inputs (applicable to Booth
encoded multipliers only)  can reduce multiplier
power by 4-8 times.  Instruction fetch  and decode
contribute a significant portion of the power in these
designs and since signal processing applications tend
to spend a very large portion of their dynamic
execution time executing loops, simple buffering
schemes (buffers/caches) help reduce power by up to
25% [10].



In Fig. 2, the power breakdown is shown for the
integrated RISC+DSP processor. For the benchmarks
considered, which are kernels for typical DSP
applications, the CPU functions as an instruction
fetch, instruction decode and address generation unit
for the DSP. Hence the variability in its power is less.

Similarly, the power consumed in the memories is
quite high (in spite of their being low power,
segmented bit-line memories)  and shows little
variation. In the case of the DSP the power variation
is more and is data dependent. The interconnect
power (INTR) represents the top level interconnect
power which includes the main busses (three data and
three address) and the clock distribution network at
the top level.  Clock power alone contributes between
30 and 50% of the total power consumption
depending on system load.

Table 4. A difference in power-performance factor resulting
from increasing the size of  cache[8,9]

Feature 401 403 Difference

Frequency 50MHz 66MHz
(50MHz)

close

CMOS Process 0.5u 3-metal 0.5u 3-metal same

Cache Total 2K-I / 1K-D 16K-I / 8K D 8x

FPU No No same

MMU No Yes

Bus Width 32 32 same

Transistors 0.3 Million 1.82 Million 600%

MIPS 52 81
(61)

+56%
(+17%)

Power 140mW 400mW
(303mW)

+186%
(+116%)

MIPS/Watt 371 194 -91%

Table 5. The effect of increasing the cache size of PowerPC
architecture[8,9]

Feature 604 620 Difference

Frequency 100MHz 133MHz
(100MHz)

same

CMOS Process 0.5u 4-metal 0.5u 4-metal same

Cache Total 16K+16K
Cache

64K ~double

Load/Store Unit Yes Yes same

Dual Intgr Unit Yes Yes same

Reg- Renaming Yes Yes same

Peak Issue 4 Instructions 4 Instructions same

Transistors 3.6 Million 6.9 Million +92%

SPECint92 160 225 (169) +6%

SPECfp02 165 300 (225) +36%

Power 13W 30W (22.5W) +73%

Spec/Watt 12.3 / 12.7 7.5 / 10 -64%

The characteristics of embedded systems are quite
different from those of desktop systems. For one, cost
is a much more  acute issue. Secondly, the
computational load is a smaller well-defined set of
tasks. For real-time signal processing applications,
throughput behavior is typically more critical than
minimum response time. These constraints dominate
the design decisions. In many instances the cost of
packaging is comparable to the cost of the die and
using a more expensive package albeit with better
heat dissipation capabilities is not an option. In the
mobile arena, battery life and heat dissipation in
compact designs (constricted space reduces airflow
and hence the capacity to disperse heat) put
downward  pressure on power consumption of these
processors. Depending on the application domain
there are two broad approaches.

Table 3. Comparison of Performance/Power and 1/Energy*Delay for representative RISC microporcessors[8,9]

Feature Digital
21164

MIPS
10000

PwrPC
 620

HP 8000 Sun
Ultra-Sparc

Freq 500 MHz 200 MHz 200 MHz 180 MHz 250 MHz
Pipeline Stages 7 5-7 5 7-9 6-9
Issue Rate 4 4 4 4 4
Out-of-Order Exec. 6 lds 32 16 56 none
Register Renam.
(int/FP)

none/8 32/32 8/8 56 none

Transistors/
Logic transistors

9.3M/
1.8M

5.9M/
2.3M

6.9M/
2.2M

3.9M*/
3.9M

3.8M/
2.0M

SPEC95
(Intg/FlPt)

12.6/18.3 8.9/17.2 9/9 10.8/18.3 8.5/15

Power 25W 30W 30W 40W 20W
SpecInt/
Watt

0.5 0.3 0.3 0.27 0.43

1/Energy*Delay 6.4 2.6 2.7 2.9 3.6



(a)

(b)

Fig. 2 Module-wise breakdown of the chip power
consumption for the kernel benchmarks for
the integrated RISC+DSP processor, (a) as a
percentage of the total  (b) normalized

Throughput and real-time constraints typically lead to
more balanced systems, as in the case of DSPs
(Harvard architecture, processor speed equal to bus
speed). Balance here is a reference to a balance
between Throughput and real-time constraints
typically lead to more balanced systems, as in the case
of DSPs (Harvard architecture, processor speed equal
to bus speed). Balance here is a reference to a balance
between processing speed, bandwidth and memory.
Portable computing devices such as PDAs and
handheld PCs form the other application domain, one
in which the processors see a load similar to that of
desktop systems in many respects. The StrongARM
drops the processor core's clock frequency to be equal
to that of it's bus’ clock frequency when it makes
accesses off-chip thereby curtailing it's power
allowing its MIPS/Watt rating to scale.

Benchmarks are fraught with controversy and in the
case of embedded systems where MIPS numbers are

based on Dhrystones, it is especially meaningless. The
Dhrystone suite can fit in roughly 4KB of memory.
This makes the disparity or lack thereof between
processor speeds and bus speeds noteworthy.

The biggest impact on performance/power is process
technology. The StrongARM,  which is at the high
end of embedded and low power processors, benefits
from  DEC's process technology (same as the one
used for the Alpha chips) and a full custom design.
This is atypical of embedded processor design. As
recently as 1.5 years ago,  the SA-110 was available
in 0.35 micron technology and 2/3.3V (core/IO). All
of its competitors were available in technologies
ranging from 0.5 to 1 micron and voltages between
3.3V and 5V.  This is changing but the SA-110 and
the SA-1100 have been able to maintain their leading
position as low power processors by aggressively
reducing the core's voltage (1.35V for the SA-1100),
circuit techniques and edge triggered flip-flops. A
threshold voltage of 0.35 has allowed a much lower
operating voltage. Most other embedded processors
have had higher threshold voltages and hence,
correspondingly higher operating voltages. Over the
next year or two embedded processors with lower
threshold voltages and dual threshold designs will
become more standard.

The ARM9TDMI which has adopted a SA-110-
like, five-stage pipeline, as opposed to ARM’s
traditional three-stage design, and  a Harvard
architecture illustrates the advantages of a more
balanced design and can now be clocked at 150 MHz
at sub-watt power levels. Better task partitioning is
possible in embedded systems, due to the applications
requiring a small set of predictable tasks to be
performed, allowing unused hardware  to be
shutdown. In DSPs, control overheads are minimized
and the data-path  power and activity dominates. In
desktop processors by contrast  the control power
almost drowns out the variations in  the data-path
power [4]. Power analysis of DSPs and simple RISC
processors show two main sources of power the data-
path units (multiply-accumulate units) and memory or
cache (Fig.2.).  

Conclusion

The conclusion from the studies presented is that the
best power-performance is obtained if the architecture
is kept simple thus allowing improvements to be
achieved by technology. In the other words, the
architecture should not stay in the way of technology
and whenever this is not the case we will experience a
decrease in power efficiency.

The second finding that goes contrary to the common
knowledge is that we should seek improvements via
simple design but increasing the clock frequency
rather than keeping the frequency of operation low
and increasing the complexity of the design.

The current processors today have reached their limit
in terms of power. Digital 21264 is an example of a
processor which had a potential of higher operating
frequency but had to lower it (to 600MHz) in order to
keep the power contained. This situation was first
reached by Digital “Alpha” processor but it is soon to
be reached by all of the others.
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More specialized systems, used in signal processing
applications can benefit from re-configurable data-
path designs. The main advantage is to reduce the
 clock and control overhead by mapping loops
directly onto the re-configurable data-path.

 Applications in signal processing  where stream data-
or block data-processing dominates it makes sense to
configure the data-path to compute algorithm specific
operations. The cost of configuration can be
amortized over the data block or stream. Aggressive
use of chaining (as in vector processing) can be used
to reduce memory accesses resulting in designs that
may be called re-configurable vector pipelines.
Embedded architectures can, in the future, be
expected to employ all or some of these techniques
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Abstract

Conventional microprocessor designs that statically set
the functionality of the chip at design time may waste
considerable energy when running applications whose
requirements are poorly matched to the particular hard-
ware organization chosen. This paper describes how
Complexity-Adaptive Processors, which employ dy-
namic structures whose functionality can be modified at
runtime, expend less energy as a byproduct of the way
in which they optimize performance. Because CAPs at-
tempt to efficiently utilize hardware resources to max-
imize performance, this improved resource usage re-
sults in energy efficiency as well. CAPs exploit repeater
methodologies used increasingly in deep submicron de-
signs to achieve these benefits with little or no speed
degradation relative to a conventional static design. By
tracking hardware activity via performance simulation,
we demonstrate that CAPs reduce total expended energy
by 23% and 50% for cache hierarchies and instruction
queues, respectively, while outperforming conventional
designs. The additive effect observed for several appli-
cations indicates that a much greater impact can be re-
alized by applying the CAPs approach in concert to a
number of hardware structures.

1 Introduction

As power dissipation continues to grow in importance,
the hardware resources of high performance micropro-
cessors must be judiciously deployed so as not to need-
lessly waste energy for little or no performance gain.
The major hardware structures of conventional designs,
which are fixed at design time, may be inefficiently
used at runtime by applications whose requirements are
not well-matched to the hardware implementation. For
example, an application whose working set is much
smaller than the L1 Dcache may waste considerable en-
ergy precharging and driving highly capacitive word-
lines and bitlines. Similarly, an application whose work-
ing set far exceeds the L1 Dcache size may waste energy
performing look-ups and fills at multiple levels due to
high L1 Dcache miss rates. The most energy-efficient
(but not necessarily the best performing) cache orga-

This research is supported in part by NSF CAREER Award
MIP-9701915.

nization is that which is well-matched to the applica-
tion’s working set size and access patterns. However,
because of the disparity in the cache requirements of
various applications, conventional caches often expend
much more energy than required for the performance ob-
tained. Other major hardware structures, such as instruc-
tion issue queues, similarly waste energy while operat-
ing on a diverse workload.

Complexity-Adaptive Processors (CAPs) make
more efficient use of chip resources than conventional
approaches by tailoring the complexity and clock speed
of the chip to the requirements of each individual
application. In [1], we show how CAPs can achieve this
flexibility without clock speed degradation compared
to a conventional approach, and thus achieve signifi-
cantly greater performance. In this paper, we describe
how CAPs can achieve this performance gain while
expending considerably less energy than a conventional
microprocessor.

The rest of this paper is organized as follows. In the
next section, we discuss how the increasing use of re-
peaters in long interconnects creates the opportunity for
new flexible hardware structures. Complexity-Adaptive
Processors and then described in Section 3, followed by
a discussion in Section 4 of their inherent energy ef-
ficiency. In Section 5, our experimental methodology
is described. Energy efficiency results are discussed in
Section 6, and finally we conclude and discuss future
work in Section 7.

2 Dynamic Hardware Structures

As semiconductor feature sizes continue to decrease, to
a first order, transistor delays scale linearly with fea-
ture size while wire delays remain constant. Thus, wire
delays are increasingly dominating overall delay paths.
For this reason, repeater methodologies, in which buffers
are placed at regular intervals within a long wire to re-
duce propagation delay, are becoming more common-
place in deep submicron designs. For example, the Sun
UltraSPARC-IIi microprocessor, implemented in a 0.25
micron CMOS process, contains over 1,200 buffers to
improve wire delay [5]. Note that wire buffers are used
not only in busses between major functional blocks, but
within self-contained hardware structures as well. The
forthcoming HP PA-8500 microprocessor, which is also
implemented in 0.25 micron CMOS, uses wire buffers
for the global address and data busses of its on-chip
caches [3]. As feature sizes decrease to 0.18 micron and
below, other smaller structures will require the use of
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Figure 1: A dynamic hardware structure which can be
configured with four to eight elements.

wirebuffers in order to meet timing requirements [4].
For these reasons, we expect that many of the ma-

jor hardware structures of future high performance mi-
croprocessors, such as caches, TLBs, branch predic-
tor tables, and instruction queues, wil l be of the form
shown in Figure1. Thehardware structure in this figure
consists of replicated elements interconnected by global
address/control and data busses driven using repeaters
placed at regular intervals to reduce propagation delay.
The isolation of individual element capacitances pro-
vided by the repeaters creates a distinct hierarchy of el-
ement delays, unlike unbuffered structures in which the
entire wire capacitance is seen by every element on the
bus. By employing address decoder disabling control
signalsas shown in Figure1, wecan make thisstructure
dynamic in the sense that the complexity and delay of
the structure can be varied as required by the applica-
tion. For example, this structure can be configured with
between four and eight elements, with the overall delay
increasing as a function of the number of elements. As-
suming this structure is on the critical timing path with
four or moreelements, if theclock frequency of thechip
is varied according to the number of enabled elements1,
then the IPC/clock rate tradeoff of this structure can be
varied at runtime to meet the dynamic requirements of
the application. Due to their exploitation of repeater us-
age, such dynamic hardware structures can be designed
with littl eor no delay penalty relativetoafixedstructure.

An alternative to disabling elements is to use them
as slower “backups” to the faster “primary” elements
as is shown in Figure 2. Here, the difference between
theprimary and backup elements is theaccess latency in
clock cycles. For example, the four primary elements in
Figure 2 may be accessed in fewer cycles than the four
backup elements, due to the latter’s longer address and
data bus delays. Such an approach may be appropriate,
for example, for an on-chip Dcache hierarchy, in which
theprimary and backup elements correlate to L1 and L2

1An alternative is to vary the latency in clock cyclesof thestructure.
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current

Figure 2: A dynamic hardware structure with config-
urable “primary” and “backup” sets of elements.

caches, and the division between them is determined as
a function of the current working set size and the cycle
timeand backup element latency of each configuration.

3 Complexity-AdaptiveProcessors

Having discussed how repeater methodologies wil l lead
naturally to thedevelopment of dynamic hardwarestruc-
tures, we now describe the overall organization of a
Complexity-Adaptive Processor.

The overall elements of a CAP hardware/software
system, shown in Figure3, areas follows:

� Dynamic hardware structures as just described
which can vary in complexity and timing (latency
and/or cycle time);

� Conventional static hardware structures, used
when implementing adaptivity is unwieldly, will
strongly impact cycle time, or is ineffective due
to a lack of diversity in target application require-
ments for theparticular structure;

� Performancecounterswhich track theperformance
of each dynamic structure and which are readable
via special instructions and accessible to the con-
trol hardware;

� Configuration Registers (CRs), loadable by the
hardwareand by special instructions, which set the
configuration of each dynamic structure as well as
the clock speed of the chip; different CR values
represents different complexity-adaptive configu-
rations, not all of which may bepractical;

� A dynamic clocking system whose frequency is
controlled viaparticular CR bits; achange in these
bits causes a sequence in which the current clock
is disabled and the new one started after an appro-
priatesettling period;



structures
static hardware

..

.

application

instruction set
architecture

CAP
compiler

reconfiguration 

CAP hardware implementation

dynamic
reconfiguration
control logic

registers

structures

counters
performance

clocking system

dynamic hardware

runtime systemCAP config
executable with

instructions

CAP

oscillators
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� Theinstruction set architecture(ISA) consisting of
conventional instructions augmented with special
instructions for loading CRs and reading the per-
formance counters;

� Configuration control, implemented in the com-
piler, hardware (dynamic reconfiguration control
logic), and runtime system, that acquires infor-
mation about the application and uses predeter-
mined knowledge about each configuration’s IPC
and clock speed characteristics to create a config-
uration schedule that matches thehardware imple-
mentation to theapplication dynamically during its
execution.

Theprocessof compiling and running an application
on aCAPmachineisasfollows. TheCAPcompiler ana-
lyzes theapplication’s hardwarerequirements for differ-
ent phases of itsexecution. For example, it may analyze
data cache requirements based on working set analysis,
or determine the ILP based on the control flow graph.
With this information, and knowledge about the hard-
ware’savailableconfigurations, thecompiler determines
whether it can with good confidence create an effective
configuration schedule, specifying at what points within
theapplication thehardwareshould bereconfigured, and
to which organizations. The schedule is created by in-
serting special instructionsat particular pointswithin the
application that load the CRs with the desired config-
uration. In cases where dynamic runtime information
is necessary to determine the schedule, this task is per-
formed by the runtime system or the dynamic reconfig-
uration control logic. For example, TLB configuration

scheduling may be best handled in conjunction with the
TLB miss handler, based on runtime TLB performance
monitoring, while theoptimal branch predictor sizemay
in some cases be best determined by runtime hardware.
A major CAP design challenge is determining the op-
timal configuration schedule for several dynamic struc-
tures that interact with each other as well as with static
structures, and which may be controlled by up to three
different sources (compiler, runtime, and hardware).

Through these various mechanisms, the CRs are
loaded at various points in an application’s execution,
resulting in reconfiguration of dynamic structures and
changes in clock frequency. For runtime control, the
performance counters are queried at regular intervals of
operation, and using history information about past de-
cisions, aprediction ismadeabout theconfiguration that
wil l perform best over the next interval. Assuming tens
of cyclesare required for each reconfiguration operation
(based on the timeto reliably switch clock frequencies),
then an interval on theorder of thousands of instructions
isnecessary to maintain a reasonable level of reconfigu-
ration overhead.

4 Improving Energy Efficiency Via CAPs

There are two main aspects of CAPs that allow for re-
duced power consumption: theability to disableor opti-
mally allocate (between primary and backup sections)
hardware elements, and the ability to control the fre-
quency of the clock. One option is to explicitly man-
agethesefeaturesinorder to reducepower consumption.



For example, in a portable environment, when battery
lif e falls below a certain threshold, a low power mode
in which theprocessor isstill fully functional can been-
abled by setting all dynamic hardwarestructures to their
minimum size, and selecting theslowest clock.

In addition, CAPdesignshavean inherent energy ef-
ficiency that isabyproduct of theway in which they op-
timizeperformance. Because the CAP hardware is con-
figured to match the characteristics of each application,
hardware structures are generally used more efficiently,
and thusexpend lessenergy, for agiven task. It isthisin-
herent energy efficiency of CAPs that follows naturally
from optimizing performance that weexplore in the rest
of thispaper.

5 Experimental Methodology

Weexamined theresultsof our preliminary performance
analysis [1] of two-level on-chip Dcachehierarchiesand
instruction issue queues to estimate the relative energy
expended by CAPand conventional approachesfor these
structures. For the Dcache hierarchy, we assumed a to-
tal of 128KB of cache, and for theCAP design, allowed
the division between the L1 and L2 caches to be varied
in steps of 8KB up to a total L1 Dcache size of 64KB
on an application-by-application basis. We compared
this approach with the best overall-performing conven-
tional design: one with a 16KB 4-way set-associative
L1 Dcache with the rest of the 128KB allocated to the
L2 cache. We ran each benchmark on our cache sim-
ulator for 100 million memory references. The CAP
instruction queue varied in size from 16 to 128 entries
in steps of 16 entries. Unused entries were disabled.
The best-performing conventional design contained 64
entries. We used the SimpleScalar simulator [2] and
ran each benchmark for 100 million instructions. More
details on the evaluation methodology and benchmarks
used can be found in [1].

To estimate relative expended energy, we calculate
theactivity ratio for each approach by tracking thenum-
ber and types of operations, and estimating the activity
generated by each. For the two-level cache design, we
track the number of L1 and L2 operations, and calcu-
late the total number of cache banks activated consid-
ering the number activated for each operation and the
L1/L2 configuration. We then take the ratio of the total
activity for the CAP approach and for the conventional
design. Because we use an exclusive caching policy,
misses in theL1 Dcacheto avalid location that hit in the
L2 Dcache result in a swap between the two caches. In
addition, the global miss ratio of the hierarchy remains
constant due to the use of a random replacement policy.
Thus, aCAPdesign that isoptimized for performance in
general also promotes energy efficiency by optimizing
the amount of L1 Dcache allocated for a given applica-
tion, and reducing L2 Dcacheactivity.

For the instruction queue, we did not have the abil-
ity to track the number of instruction queue accesses.
However, because the rest of the design was almost
ideal (large caches and queues, perfect branch predic-
tion, plentiful functional units), weused thetotal number
of cyclesexecuted to approximatetherelativenumber of
instruction queueaccesses for each benchmark and each
approach (CAP and conventional). We then multiplied
this number by the number of queue entries to get the
total activity factor.

Although this approach is not exact, we believe that
by tracking activity in this manner that we obtain a rea-
sonable first-order approximation of relative expended
energy.

6 Results

Table1 showsevent and activity countsaswell astheac-
tivity ratio (CAP/conventional) for the ten benchmarks
in which the CAPs configuration differs from the best
conventional approach. The eleven benchmarks which
use identical CAPs and conventional configurations are
not shown as the expended energy is the same. The
“L 1 size (CAPs)” column denotes the CAPs configura-
tion which performed best for each benchmark. The last
column indicates the ratio of CAPstotal activity to con-
ventional total activity.

For five of the benchmarks, a CAPs configuration
with an 8KB L1 Dcache outperforms the conventional
approach using a 16KB L1 Dcache due to the former’s
faster cycle time, despite the increase in L1 misses and
L1-L2 swaps incurred, as indicated in Table 1. Interest-
ingly, the total activity count for theCAPsconfiguration
is lower than theconventional approach. This isbecause
for theconventional approach, twiceasmuch L1Dcache
must be precharged and probed for each load operation
(we make the simplifying assumption that only the se-
lected way is activated on a store). This offsets the ad-
ditional L2 probeand L1-L2 swap activity incurred with
theCAPsconfiguration, and the fact that moreL2 cache
must be probed in the CAPs case on an L1 miss. This
moreefficient cacheallocation reducesexpended energy
by 33% in thecaseof mgrid.

The tradeoff is different for the five remaining
benchmarks where the CAPs L1 Dcache is larger than
the conventional 16KB cache. Here, the reduction in
L1 miss and L1-L2 swap activities must offset the addi-
tional L1 Dcache load activity for the CAPs configura-
tion to expend less energy. This is true in all cases ex-
cept for wave5, whose conventional cache experiences
fewer total L1 misses than the other four benchmarks in
this category. For benchmarks such as stereo and appcg
whoserequirementsarenot well-matched to theconven-
tional organization, theenergy savingswith theCAPap-
proach are significant: 44% for stereo and 62% for ap-
pcg. Because these benchmarks run significantly faster
on the CAPs configuration as well [1], the reduction in
the energy-delay product, an indicator of the efficiency
with which aparticular performance level isobtained, is
even more striking: 70% for both benchmarks. Overall,
23% less energy isexpended by theCAPsconfiguration
for thesebenchmarks asabyproduct of performanceop-
timization.

Table 2 shows the relevant data for the best-
performing CAPs and conventional instruction queues
for those benchmarks in which the CAPs and conven-
tional configurationsdiffer. Here, unused entriesaredis-
abled for the CAPs approach. In the cases in which
the CAPs configuration performs best with fewer en-
triesthan the64-entry conventional approach (due to the
fact that the cycle time improvement overrides the IPC
penalty incurred), thismeans that fewer elementsareac-
tivated on each instruction queueaccess. However, more
issue operations are required as the smaller window re-
sults in fewer instructions issued on average per issue
operation. In all cases, the energy savings from acti-



benchmark L1 size (CAP) loads stores L1 misses L2 misses L1-L2 swaps total activity activity ratio
conv CAP conv CAP conv CAP (CAP/conv)

m88ksim 8KB 64.6 35.4 2.48 2.97 2.41 2.43 2.48 370.5 261.6 0.71
compress 24KB 80.0 20.0 12.3 6.32 0.23 0.22 0.22 697.2 671.1 0.96
airshed 8KB 81.2 18.8 32.0 32.5 0.03 3.24 3.73 1275.0 1193.6 0.94
stereo 48KB 74.1 25.9 54.1 7.39 6.06 11.6 1.91 1910.2 1078.0 0.56
radar 8KB 61.2 38.8 1.51 4.20 0.50 0.87 3.54 328.8 295.5 0.90
appcg 64KB 4.84 95.2 12.0 0.49 0.47 11.9 0.49 474.6 181.9 0.38
swim 24KB 75.9 24.1 13.8 5.27 5.27 3.25 2.66 737.1 629.9 0.85
mgrid 8KB 95.4 4.60 4.55 4.64 4.12 1.45 1.45 511.7 344.9 0.67
applu 8KB 72.2 27.8 8.53 9.20 8.22 5.03 5.29 577.2 470.9 0.82
wave5 24KB 72.9 27.1 7.05 3.83 0.64 5.17 2.27 529.1 571.0 1.08
total 7411.3 5698.4 0.77

Table 1: Cache hierarchy event counts, total activity counts, and CAP/conventional activity ratio for each benchmark.
Al l counts are in millions.

benchmark IQ entries (CAP) executed cycles total activity activity ratio
conv CAP conv CAP (CAP/conv)

m88ksim 16 29.1 40.6 1862.6 649.1 0.35
compress 128 32.6 22.2 2088.9 2847.2 1.36

ijpeg 32 22.8 23.1 1461.9 738.0 0.50
airshed 32 23.7 25.0 1517.2 799.8 0.53
radar 16 110.1 141.8 7046.1 2268.9 0.32
appcg 16 48.4 49.8 3099.7 796.9 0.26
applu 128 27.6 19.8 1765.7 2535.0 1.44
fpppp 16 90.1 101.5 5766.3 1624.4 0.28
total 24608.5 12259.1 0.50

Table 2: Instruction queue executed cycles, total activity counts, and CAP/conventional activity ratio for each bench-
mark. Al l counts are in millions.

vating fewer elements overrides theenergy cost of more
queue accesses. This translates into as much as a 74%
reduction in queueactivity (in thecaseof appcg). Again,
this benefit is achieved not through explicit power man-
agement, but simply as a byproduct of optimizing per-
formance.

Theoppositeeffect isobserved for compressand ap-
plu which perform best with a larger 128-entry queue.
The result is a significant increase in expended en-
ergy with the CAPs approach, despite the reduction in
queue accesses. However, as these are the only two
benchmarksusing moreentriesthan theconventional ap-
proach, theoverall result isa50% reduction in expended
energy with theCAPsapproach. Clearly, if morebench-
marks performed best with more entries than the best
average-performing configuration, then the energy sav-
ingswould be less, perhaps significantly so. In addition,
if configurations with more than 128 entries were avail-
able and some applications performed best with these
configurations, then even agreater increase in expended
energy would be incurred for theseapplications with the
CAPs approach. However, it is likely that the inclusion
of these applications into the benchmark suite would
change the best-performing conventional approach to
one with more entries. Thus, we expect that even with
a wide range of benchmark behavior, that the CAPs ap-
proach wil l expend less energy overall due to its better
use of hardware resources. However, the benefit is less
clear with a structure in which elements are disabled
than one in which the resources are allocated between
primary and backup elements.

Examining Tables 1 and 2, we see that some appli-
cations, such as m88ksim, experience significant reduc-
tions in expended energy for both theCAPcachehierar-
chy and instruction queue. Thus, by applying the CAPs

approach to other structures such as TLBs and branch
predictors, we expect that a one to two order of mag-
nitude reduction in expended energy is possible for ap-
plicationswhosehardware requirements areparticularly
poorly-matched to those in a conventional microproces-
sor design. A key point isthat CAPscan achievethis im-
provement without adversely impacting theperformance
or expended energy of well-matched applications.

7 Conclusionsand FutureWork

The energy efficiency of a microprocessor is highly de-
pendent on how well the hardware design matches the
requirements of a particular application. In this paper,
we have described how Complexity-Adaptive Proces-
sors inherently achieve energy efficiency as abyproduct
of performance optimization by dynamically configur-
ing their hardware organization to the problem at hand.
By exploiting repeater methodologies used increasingly
in deep submicron designs, CAPs achieve this benefit
with littl e or no cycle time degradation over a conven-
tional approach. By examining our performance results
for anumber of benchmarks, wefound that theCAPsde-
sign reduced overall expended energy by 23% for cache
hierarchies and 50% for instruction queues. We also
discovered an additive effect for some benchmarks in-
dicating that a much greater impact can be realized by
applying the CAPs approach in concert to a number of
hardware structures. In the future, we plan on obtaining
results using more precise energy models for these and
other hardware structures.
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Function Unit Power Reduction



Abstract

For many low-power systems, the power cost of floating-
point hardware has been prohibitively expensive. This paper
explores ways of reducing floating-point power consumption by
minimizing the bit-width representation of floating-point data.
Analysis of several floating point programs that utilize low-res-
olution sensory data shows that the programs suffer almost no
loss of accuracy even with a significant reduction in bit-width.
This floating point bit-width reduction can deliver a significant
power saving through the use of a variable bit-width floating
point unit.

1 Introduction

Floating point numbers provide a wide, dynamic range of
representable real numbers, freeing programmers from the man-
ual scaling code necessary to support fixed-point operations.
Floating-point (FP) hardware is also very power hungry. For
example, FP multipliers are some of the most expensive compo-
nents in a processor’s power budget. This has limited the use of
FP in embedded systems, with many low-power processors not
including any floating point hardware.

For an increasing number of embedded applications such as
voice recognition, vision/image processing, and other signal-
processing applications, FP’s simplified programming model
(vs. fixed-point systems) and large dynamic range makes FP
hardware a useful feature for many types of embedded systems.
Further, many applications achieve a high-degree of accuracy
with fairly low-resolution sensory data. Leveraging these char-
acteristics by allowing software to use the minimal number of
mantissa and exponent bits, standard floating-point hardware
can be modified to significantly reduce its power consumption
while maintaining a program’s overall accuracy. 

For example, Figure 1 graphs the accuracy of CMU’s Sphinx
Speech Recognition System [Sphinx98] vs. the number of man-
tissa bits used in floating point computation. The left most
point, 23 bits of mantissa, is the standard for a 32-bit IEEE FP
unit. With 23 bits, the recognition accuracy is over 90%; but
even with just 5 mantissa bits (labeled A), Sphinx still main-
tains over 90% word recognition accuracy. For Sphinx, there is
almost no difference between a 23-bit mantissa and a 5-bit man-
tissa. In terms of power, however, a FP multiplier that uses only
5 mantissa bits consumes significantly less power than a 23-bit

mantissa FP multiplier. This property, that programs can main-
tain accuracy while utilizing only a few bits for FP number rep-
resentation, creates a significant opportunity for enabling low-
power FP units. 

The goal of this work is to understand the floating-point bit-
width requirements of several common floating-point applica-
tions and quantify the amount of power saved by using variable
bit-width floating-point units. Section 2 begins our discussion
by examining different aspects of the IEEE floating point stan-
dard that could lead to additional power savings. Section 3 pre-
sents the analysis of several floating point programs that require
less bits than specified in the IEEE standard. In section 4, we
describe the use of a digit-serial multiplier to design variable
bit-width hardware and discuss the possible power savings.
Finally, Section 6 outlines our conclusions and future work. 

2 Background

2.1 IEEE 754 Floating Point Standard

One of the main concerns of the IEEE 754 Floating Point
Standard is the accuracy of arithmetic operations. IEEE-754
specifies that any single precision floating point number be rep-
resented using 1 sign bit, 8 bits of exponents and 23 bits of man-
tissa. With double precision, the bit-width requirements of
exponents and mantissa go up to 11 bits and 53 bits respec-
tively. 

In addition to specifying the bit-width requirement for float-
ing point numbers, IEEE-754 incorporates several additional
features, including delicate rounding modes and support for
gradual underflow to preserve the maximal accuracy of pro-

This work was supported by the Defense Advanced Research Projects
Agency under Order No. A564 and the National Science Foundation
under Grant No. MIP90408457.
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Figure 1 : Accuracy of Sphinx Speech Recognition vs. 
Mantissa Bit-width
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grams. Nevertheless, the implementation of an IEEE compliant
floating point unit is not always easy. In addition to the design
complexity and the large area it occupies, a floating point unit is
also a major consumer of power in microprocessors. Many
embedded microprocessors such as the StrongARM
[Dobberpuhl96] and MCore [MPR97] do not include a floating
point unit due to its heavy implementation cost.

2.2 Accuracy Requirements and Workloads

For floating point applications that rely on sensory inputs,
power savings can be obtained by modifying the floating point
hardware’s mantissa and exponent widths while maintaining
sufficient accuracy for overall program execution. There are
four conceivable dimensions that we can explore (see Table 1).
Each of these dimensions allow us to make trade-off between
program accuracy and the power consumption of the floating-
point unit.

3 Experiments and Results

3.1 Methodology

To validate the usefulness and accuracy of reducing FP bit-
widths, we analyzed four single-precision floating point pro-
grams (see Table 2). To determine the impact of different man-
tissa and exponent bit-widths, we emulated different bit-width
FP units in software by replacing each floating-point operation
with a corresponding function call to our floating-point soft-
ware emulation package that initially implements the IEEE-754
standard. Careful modifications to the floating-point emulation
package allowed us to simulate different mantissa and exponent
bit-widths. For each bit-width, the emulation package was mod-
ified to use a smaller number of bits. Then, each program was
run using the modified floating-point package and the results
are compared to determine application accuracy. 

3.2 Results

Figure 2 graphs the accuracy for each of the four programs
across a range of mantissa bit-widths. None of the workloads
displays a noticeable degradation in accuracy when the man-
tissa bit-width is reduced from 23 bits to 11 bits. For ALVINN
and Sphinx III the results are even more promising; the accu-
racy does not change significantly with mantissa bit-width of 5
or more bits. 

Table 1 : Design Dimensions for Floating Point Repre-
sentation

Dimension Description

Reduction in 
mantissa bit-
width 

Reduce the number of mantissa bits at 
the expense of precision.

Reduction in 
exponent bit-
width

Reduce the number of exponent bits at 
the expense of a smaller dynamic range.

Change of the 
implied radix

Increase the implied radix from 2 to 4 (or 
16). This provides greater dynamic range 
but lower density of floating point num-
bers, potentially leading to power savings 
since fewer normalizing shifts are neces-
sary.

Simplification of 
rounding modes

Full support of all the rounding modes is 
very expensive in terms of power. Some 
programs may achieve an acceptable 
accuracy with a modified low power 
rounding algorithm.

Workload Description Accuracy Measurement

Sphinx III CMU’s speech recognition program based on 
fully continuous hidden Markov models. The input 
set is taken from the DARPA evaluation test set 
which consists of spoken sentences from the 
Wall Street Journal. [Hwang94]

Accuracy is estimated by dividing the number of words 
recognized correctly over the total number of words in 
the input set.

ALVINN Taken from SPECfp92. A neural network trainer 
using backpropagation. Designed to take as input 
sensory data from a video camera and a laser 
range finder and guide a vehicle on the road.

The input set consists of 50 road scenes and the accu-
racy is measured as the number of correct travel direc-
tion made by the network.

PCASYS A pattern-level finger print classification program 
developed at NIST. The program classifies 
images of fingerprints into six pattern-level 
classes using a probabilistic neural network. 

The input set consists of 50 different finger print 
images and the classification result is measured as 
percentage error in putting the image in the wrong 
class. The accuracy of the recognition is simply (1 - 
percentage error).

Bench22 An image processing benchmark which warps a 
random image, and then compares the warped 
image with the original one.

Percentage deviation from the original outputs are 
used as a measure of accuracy.

Table 2 : Description of Workloads
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Figure 2 : Program Accuracy across Various Mantissa Bit-
widths



Figure 3 shows that each program’s accuracy has a similar
trend when the exponent bit-width is varied. With 7 or more
exponent bits, the error rates remain quite stable. Once the
exponent bit-width drops below 6, the error rates increase dra-
matically and in some cases the programs could not finish prop-
erly. 

Many programs dealing with human interfaces process sen-
sory data with intrinsically low resolutions. The arithmetic
operations on these data may generate intermediate results that
require more dynamic range, but not vastly more precision. This
is different from many scientific programs such as wind tunnel
simulation or weather prediction, which not only require a huge
amount of precision and dynamic range but also delicate round-
ing modes to preserve the accuracy of the results.

For programs that do not need the dynamic range nor the
precision of floating point arithmetic, the use of fixed-point
arithmetic might well be a better choice in terms of chip space,
operation latency, and power consumption. But for the pro-
grams we have analyzed, three of them require 6 bits or more of
the exponents to preserve a reasonable degree of accuracy,
which means they need more than the 32 bits of precision that
fixed point arithmetic can offer. Simply using fixed point repre-
sentation without additional scaling will not resolve the prob-
lem.

It should be noted that these complex applications were
aggressively tuned by various software designers to achieve
good performance using full IEEE representation. However,
Figure 2 and Figure 3 suggest that significantly smaller bit-
width FP units could be used by these applications without
compromising the necessary accuracy. For instance, certain
floating point constants in the Sphinx III code require more than
10 bits of mantissa to represent, but we modified those numbers
so they can be represented using fewer bits during our experi-
ment and yet this have little impact on the overall recognition
accuracy. We believe that if the numerical behavior of these
applications are adjusted to a smaller bit-width unit, we could
get even better performance.

4 Power Savings by Exploiting Variable 
Bit-width Requirement

4.1 Multiplication with a Digit-Serial Multiplier

Since different floating point programs have different
requirements on both the mantissa and exponent bit-width, we
propose the use of a variable bit-width floating point unit1 to
reduce power consumption. To create hardware capable of vari-
able bit-width multiplications (up to 24x24 bit), we used a 24x8
bit digit-serial architecture similar to the one described in Hart-
ley and Parhi [Hartley95]. The 24x8 bit architecture allows us to
perform 8, 16, and 24-bit multiplication by passing the data
once, twice, or three times though the serial multiplier. A finite
state machine is used to control the number of iterations
through the CSA array. 

To perform accurate power and timing measurements, the
multiplier was described in Verilog and then taken to layout
using our ASIC design flow (for a standard 0.5u process). Syn-
opsys’ Design Compiler was used to synthesize the multiplier’s
control logic. Next, the entire structural model was fed into Cas-
cade Design Automation’s physical design tool Epoch. A
description of digit-serial arithmetic and the block diagram of
the digit-serial multiplier can be found in the appendix.

We compare our variable bit-width multiplier with a baseline
fixed-width 24x24 bit Wallace Tree multiplier. The layout of
this Wallace Tree multiplier was generated by Epoch’s cell gen-
erator in the same 0.5u process as used in the design of the
digit-serial multiplier. The two multipliers are described in
Table 3. Cycle time is estimated using Epoch’s static timing
analysis tool, Tactic, and is rounded to the nearest 5ns interval
for the convenience of power simulation. 

4.2 Power Analysis

For each design, a SPICE netlist was generated from layout
and used to estimate power consumption with Avanti’s Star-
Sim. Determining the complete power dissipated in a multiplier
requires the sensitization of all possible combinations of inputs,
which means we need to have 22N input combinations where N
is the number of inputs. Fortunately, it is possible to obtain a
mean estimation of the power consumption using statistical
techniques [Burch92]. In our approach, we ran 50 batches of
vectors with each batch containing 30 vectors to insure a 95%
confidence intervals. The energy dissipation is computed using
the cycle time in Table 3. The test vectors are taken from some
of the actual multiplication operands in Sphinx III. 

Figure 4 graphs the energy/operation and latency/operation
for the digit-serial multiplier. Both the energy/operation and
latency/operation decrease linearly with the operand bit-width.
This is different from [Callaway97], where a multiplier’s power

1. Our current research focuses particularly on the floating point multi-
plier, since multipliers are usually the major consumer of power
[Tiwari94].

Figure 3 : Program Accuracy across Various Exponent 
Bit-widths

Figure 2 and Figure 3 show that we can reduce both the mantissa and 
exponent bit-width without affecting the accuracy of the programs. This 
effect is especially prominent in the mantissa. This reduction of bit-
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0.00%

10.00%
20.00%

30.00%
40.00%

50.00%

60.00%
70.00%

80.00%
90.00%

100.00%

8 7 6 5 4 3

Exponent Bit-width

A
cc

ur
ac

y

Sphinx
ALVINN
PCASYS
Bench22

Multiplier Area Cycle Time Latency/op

Wallace (24x24) .777square mm 40ns 40ns

Digit-Serial (24x8) .804 square mm 15ns 15ns

Table 3 : Timing and Area of the Two Multipliers 

To perform 16 bits multiplication using the digit-serial multiplier, 2 
cycles are needed which increases the total delay/op to 30ns. Simi-
larly, 24 bits multiplication takes 3 cycles(45ns).

 



consumption decreases exponentially with the operand bit-
width. The difference between the two results is due to the fixed
structure (the 24x8 bit CSA array) of the digit-serial multiplier
and the control circuitry needed to do iterative carry and sum
reduction. This additional power dissipation is the penalty we
pay for the flexibility of doing variable bit-width multiplication.

Figure 5 shows the potential power reduction for our three
programs if we use the digit-serial multiplier as the mantissa
multiplier. For 8-bit multiplication, the digit-serial multiplier
consumes less than 1/3 of the power than the Wallace Tree mul-
tiplier (in the case of Sphinx and ALVINN). When 9 to 16 bits
of the mantissa are required (in the case of PCASYS and
Bench22), the digit-serial multiplier still consumes 20% less
power than the Wallace Tree multiplier. The digit-serial multi-
plier does consume 40% more power when performing 24-bit
multiplication due to the power consumption of the overhead
circuitry. 

Table 3 shows another benefit which is improved speed.
When performing 8-bit or 16-bit multiplications, the operation’s
delay can be greatly reduced if the critical path of the circuit lies
in the multiplier. This increases the throughput in addition to the
energy saving.

4.3 Summary of Results

These power comparison results show the potential power
savings achievable by using variable bit-width arithmetic units.
It should be noted that the digit-serial multiplier is designed
using an ASIC approach and is not as heavily optimized physi-
cally; the Wallace Tree multiplier was optimized for the pro-
cess. This explains why the 24x8 bit digit-serial multiplier is
actually slightly larger than the Wallace Tree multiplier. We
believe that with a more careful implementation, both the power
and area of the digit-serial multiplier can be reduced. In addi-
tion, [Chang97] presents several low power digit-serial archi-
tecture that can further reduce the power consumption of the
digit-serial multiplier.

For software designers who know a program’s precision
requirements, code annotation could be used to allow the under-
lying arithmetic circuits re-configure themselves for variable
bit-width operations. As Figure 4 and Figure 5 show, as long as
the bit-width requirement is less than 16 bits, the 24x8 bit digit-

serial multiplier consumes less energy than the Wallace Tree
multiplier. Even for programs which require a large bit-width to
maintain precision, there may be sections within the program
that require a smaller bit-width requirement and thus can benefit
from a variable bit-width unit.

5 Previous Work

The idea of reducing bit-width to save power has been
employed in other areas of low power research. In [He97], it is
shown that an average of more than 4 bits of pixel resolution
can be dropped during motion estimation to obtain a power
reduction of 70%. To reduce energy consumption of the I/O
pins, [Musoll97] proposes sending only those address bits that
have changed. For integer applications that do not need 32 bits
of precision, the Intel MMX instructions allow arithmetic oper-
ations on multiple data simultaneously. Overall, the basic idea
of bit-width reduction is to avoid waste.

6 Conclusions and Future Work

 It is clear that floating point programs that use human sen-
sory inputs may not need the entire 23 bits of mantissa and 8
bits of exponents as specified in the IEEE standard. Our soft-
ware analysis shows no loss of accuracy across each of our pro-
grams when the mantissa bit-width is reduced to less than 50%
of the original value. This large reduction in mantissa bit-width
enables significant power reduction without sacrificing program
accuracy. Further, the digit-serial multiplier results show that it
is possible to obtain a substantial power saving by using a vari-
able bit-width arithmetic unit. 

Currently, we are looking at various digit-serial architectures
and other means of exploiting the variable bit-width require-
ments of programs. Our future work will be directed towards
investigating other characteristics of floating point programs
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Both energy/op and latency/op of the digit-serial multiplier increase 
linearly with the operand bit-width. Digit-serial architecture allows us 
to perform variable bit-width arithmetic and save power when the bit-
width requirement is less than that specified in the IEEE standard.

Figure 5 : Power Reduction using Digit-Serial Multiplier
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that may provide additional power savings. This includes using
a simplified rounding algorithm and changing the implied radix.

7 Appendix
Arithmetic operations can be performed in different styles

such as bit-serial, bit-parallel, and digit-serial. Bit-serial archi-
tecture processes data one bit at a time, saving hardware at the
expense of processing speed. Bit-parallel circuits process all
bits of the data operands at the same time with more hardware.
Digit-serial arithmetic falls in between these two extremes by
processing a fixed number of bits at one time. Figure 6 shows
the block diagram of the digit-serial multiplier used in our
experiment. For applications that require a moderate amount of
throughput while having serious constraints on design space,
digit-serial systems have become a viable alternative for many
designers. Most of the digit-serial systems are used because of
space limitation. Even though there is research on low-power
digit-serial multipliers [Chang97], it has focused on comparing
power consumption among different digit-serial architecture.
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A Power Management for Self-Timed CMOS Circuits (FLAGMAN)
and Investigations on the Impact of Technology Scaling

Thomas Schumann, Ulrich Jagdhold and Heinrich Klar

Abstract

One advantage of self-timed circuits is the fact that the
performance of the chip depends on actual circuit delays,
rather than on worst-case delays. This allows to exploit
variations in operating temperature by reducing the power
supply voltage to achieve an average throughput with a
minimum of power consumption. Usually this average
throughput is given by the clock frequency of the syn-
chronous environment and a FIFO is used as a buffer
interfacing the self-timed circuit to the synchronous envi-
ronment.

Rather than adaptively adjusting the power supply
voltage to the smallest possible value by using a state
detecting circuit and a dc/dc converter additional to the
FIFO [1], we propose to switch the supply voltage
between two levels by using the Half-Full flag of the FIFO
(FLAGMAN) [7]. Because two power supply voltages are
already required on modern circuit boards for standard
low-power ICs, e.g. µPs [2] and DSPs [3] for mobile
systems, taking advantage of 2 supply voltages means
zero-overhead for the board design.

By investigating real-life data of portable systems, as
far as temperature variation is concerned, we give an
analysis of power savings achieved by this technique. As a
practical example we use a self-timed IC which already
has been designed and fabricated: A 4bit carry-save
multiplier [4]. It turns out that applying the proposed
power management results in potential power savings of
up to 40 % for that IC, depending on the corresponding
operating temperature and the choice of the supply voltage
levels.

1 Introduction

A self-timed circuit is defined as one where the transfer of
data is not performed in synchrony with a global clock
signal, but rather at times determined by the latencies of
the pipeline stages themselves. Therefore communication
signals (Request, Acknowledge) between the pipeline
stages are necessary. A handshake circuit is responsible
for enforcing a protocol on these communication signals
and the protocol ensures that the transfer of data only
occur at current times. Fig. 1 shows the principle of a
pipelined self-timed circuit, each stage consisting of com-
binatorial logic in combination with storage elements and
the handshake circuit.
Because the transfer of data is performed at times deter-
mined by the latencies of the pipeline stages, the through-
put rate of the pipelined circuit depends on actual gate

delays. This means that the throughput rate of an existing
self-timed circuit depends on both, the supply voltage and
the actual operating temperature (case temperature) of the

IC. This fact can be used to manage the power consump-
tion in a very positive way: Assuming, the demanding
average throughput rate is given by the clock frequency of
the synchronous environment, variations in the operating
temperature can be exploited by reducing the supply volt-
age rather then having longer idle times of the gates.
Investigating the formula for the dynamic power con-
sumption of one pipeline stage in a CMOS process:

2
DDLastage VCfP ⋅⋅= (1)

where Pstage is the power consumption of one pipeline
stage, fa is the average operating frequency of the gates, CL

is the total switching capacitance of the stage, and VDD is
the supply voltage, it turns out that the supply voltage is
the only parameter for optimization, assuming an existing
circuit and a demand on the average operating frequency.

The proposed power management takes advantage of
two supply voltages which are already required on modern
circuit boards for portable systems. E.g. synchronous
clocked, low-power µPs [2] are running on two supply
voltages. The processor core operates at a reduced voltage
internally while the I/O interface operates at the standard
voltage 3.3 volts, which allows the processor to
communicate with existing 3.3 volt components in the
system. This trend is not only for µPs, but also for high-
performance DSPs [3], developed for multi-function
applications, e.g. wireless PDAs.

Section 2 illustrates the principle of the power
management and gives a formula of the power reduction
factor achievable using this technique. Section 3 focuses
on an existing self-timed circuit, a 4bit array multiplier
[4], and presents the power savings which can be obtained
applying the power management. Measured data are
compared to data calculated using the formula of the
power reduction factor. Section 4 shows how technology
scaling affects the achievable power savings.

2 Power Management

2.1 Principle
The proposed power management for self-timed circuits is
shown in Fig. 2. The circuit is operating in a synchronous
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environment: The data stream input and output is con-
trolled by the clock frequency fsyn.

Fig. 2 shows the output FIFO, working as a buffer
interfacing the self-timed circuit to the synchronous
environment.

The basic idea of the power management is to use the
Half-Full flag of that FIFO as a signal which monitors the
speed of the self-timed circuit: If the flag is set, the FIFO
is running full and the supply voltage can be reduced. The
output of the MUX changes to the reduced supply voltage.

If, although the reduced supply voltage is applied, the
buffer runs full, the full-flag (FF) of the FIFO remains the
acknowledge signal on the same logical state. This results
in an idle time for the self-timed circuit. Even under worst
case operating conditions the buffer must not become
empty. This must be guaranteed when choosing the
asynchronous circuit.
2.2 Power Reduction Factor
The basic idea, to slow down the operating frequency by
switching to a second, reduced supply voltage which
already exists on modern circuit boards, effects the power
consumption in a very positive way. That is, interpreting
(1), because the most important parameter controlling the
power consumption in CMOS is the supply voltage. The
power reduction factor R can be described by:

voltagefixed

voltagestwo

P
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TR
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)( = (2)

where T is the case temperature of the IC.
In the following we are referring to the case

temperature T  as the operating temperature. The
corresponding ambient and junction temperature can be
calculated if the thermal resistances are known.
Using the basic equation (1) it follows:
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where b·VDD is the reduced supply voltage, fvdd(T) is the
throughput rate applying the reduced supply voltage under
the actual operating temperature T, fVDD(T) is the through-

put rate applying the standard supply voltage VDD under
the actual case temperature T, fsyn is the clock frequency of
the synchronous environment and x(T) the portion of the
operating time during which the reduced supply voltage is
applied.

To meet the requirement of the synchronous
environment it must hold:

))(1()()()( TxTfTxTff VDDvddsyn −⋅+⋅= (4)

The power management is based on the fact that the
gate delay in CMOS depends on both, supply voltage and
operating temperature. The gate delay can be estimated [5]
as
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ZKHUH� �7��LV�WKH�026�WUDQVLVWRU�JDLQ�IDFWRU�DQG�Vt(T) is
the threshold voltage of the device.
Operating temperature influence circuit delays as follows:

5,1

0
0 )()( −⋅=

T

T
T ββ (6),

TCmVVTV tt ⋅°−= )/4()( 0 (7)

where the exponent –1,5 and the factor 4 mV/°C are em-
pirical values, reported in [6]. T0 is the temperature at
ZKLFK�WKH�026�GHYLFH�SDUDPHWHUV� 0 and Vt0 are defined.

For a given case temperature of the IC the power
reduction factor depends on the chosen level of the
second, reduced supply voltage. Fig. 3 presents calculated
data for a case temperature of 100 °C, assuming a self-
timed circuit with a throughput rate 5 % higher than the
clock frequency of the synchronous environment at
120 °C worst case temperature, operating at the standard
3.3 volts in a  typical CMOS process with Vt0 = 820 mV at
25 °C.

3 Application Chip

For applying the power management we use a self-timed
IC which already has been designed and fabricated: a
pipelined 4bit multiplier, using a modified micropipeline
design style [4]. The asynchronous circuit has been im-
plemented in a 1.2 µm CMOS process.
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Fig. 6. Power savings dependence on the probability
for running the IC at temperature T

Fig. 4 shows data of the throughput rate for that specific
design, over a wide range of temperature variations. The
measurement was done by attaching a thermocouple bead
to the center of the package top surface using highly ther-
mally conductive cements.

Assuming a demand of 50 MHz on the average
throughput, given by the clock frequency of the
synchronous environment, Fig. 5 presents the power
savings achievable for that self-timed circuit by applying
the proposed power management. It turns out that
applying a very low second supply voltage is not the
optimum power saving solution. This is because the
operating time during which the reduced supply voltage is
applied is smaller than the operating time for higher levels
of the second supply.

For example, applying 1.8 V results in a power saving
of 20 %, whereas applying 2.5 V results in 40 % power
savings over a wide temperature range.

By applying the power management in a portable
system which runs at different temperatures during the
life-time of it battery we investigated potential power
savings. In the following we are dealing with the impact of
real-life data on the power reduction factor of the
proposed power management. That a mobile system is
running at different temperatures over the life-time of its
battery is a well known fact. We found that the probability
of running the system at temperature T can be described,
to give a first order approximation for calculating a
practical value for the expected power savings, by a
Gaussian normal distribution:
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The average temperature µ  is set to 35 °C, which means

for our IC an ambient temperature of about 25 °C, assum-
ing no airflow. The empirical variance σ  is set to 15 °C,
which means a wide range of operating temperature.

Fig. 6 shows both, the probability density distribution
of running the IC at case temperature T, and the power
reduction factor achievable by applying the power
management on a circuit board with two supply voltages,
2.5 V and 3.3 V.
The expected total power savings for that IC, over a life-
time of its battery, is about 36 %.
Tests of the circuit board confirm, that the Half-Full flag
of a commercially available asynchronous FIFO monitors
the speed of the selftimed multiplier.

Fig. 7 shows, that the supply voltage switches
between two levels, as a result of the switching Half-Full
flag. This is true if the on/off-delay of the MUX is less
than 5.1 µs, assuming a 512 words FIFO and a 50 MHz
clock frequency of the synchronous environment.
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Fig. 7. Oszilloscope snap shot of Half-Full flag and
supply voltage

Fig. 8. Inverter delay versus junction temperature simu-
lated in a 0.25µm CMOS process

Fig. 9. Inverter delay versus junction temperature simu-
lated in a 1.2µm CMOS process

Fig. 10. Expected throughput rate of the self-timed multi-
plier implemented in a 0.25µm process

Fig. 11. Impact of technology scaling on the achievable
power savings for the self-timed multiplier

4 Impact of Technology Scaling on Power Savings

The impact of technology scaling on the possible power
savings is investigated by SPICE simulations. A standard
0.25 µm CMOS process, n-well, 5.5 nm gate oxide thick-
ness, 0.5 V threshold voltage of the NMOS and -0.26 V
threshold voltage of the PMOS device, is considered. The
technology is optimized for a supply voltage of 2.5 V.

Fig. 8 shows data from SPICE simulations: The
inverter delay (fanout = 2) for this 0.25 µm process is
plotted versus the junction temperature of the device. For
comparison Fig. 9 shows simulation results for the 1.2 µm
CMOS process, which has been used for the
implementation of the self-timed multiplier. It turns out,
that the variation of the gate delay between normal case
(28 °C) and worst case (120 °C) temperature is for the
0.25 µm process 51 % less than for the 1.2 µm process.

So the question arises how much this affects the
power savings applying the proposed power management.
Considering the simulated inverter delays we calculated
the throughput rate, the self-timed multiplier would
perform, if it would be implemented in the high
performance 0.25 µm process. Fig. 10 shows data of the
throughput rate applying 2.5 V and 1.8 V, respectively. It
turns out that even under worst case condition a clock
frequency of 200 MHz for the synchronous environment
could be obtained by applying the standard 2.5 V supply
to the self-timed IC. Under normal operating conditions
the power management is responsible for switching the
supply voltage to 1.8 V for a time interval, to achieve
200 MHz on average. This means 35 % power savings for
a case temperature of 28 °C. Fig. 11 shows data of the
calculated power savings applying the proposed power
management to the self-timed multiplier, implemented in
the quarter micron CMOS process. An equal probability
density distribution of running the IC at case temperature
T as for the 1.2µm process is assumed.

Implementing the multiplier in a 0.25 µm CMOS
process and applying the proposed power management
results in expected power savings of about 28 %.

5 Conclusion

A power management for self-timed CMOS circuits is
proposed, which takes advantage of the existence to two
supply voltages on modern circuit boards.



The effectiveness of the power management is investigated
by applying the technique to a self-timed multiplier IC,
implemented in a 1.2 µm CMOS technology.
It also turns out that the power management results in
significant power savings of up to 40 % by making use of
the fact that the performance of a self-timed circuit de-
pends on actual gate delay, rather than on worst case
delay. Investigations also show, that the power savings for
a deep sub-micron technology is reduced in comparison to
a 1.2 µm technology, caused by the reduced influence of
the junction temperature on the gate delay.
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Abstract

The Hybrid Signed Digit (HSD) representation intro-
duced in [9] employs both signed and unsigned digits
and renders the maximum length of carry propagation
equal to the maximum distance between two consecu-
tive signed digits. This representation offers a contin-
uum of choices from two’s complement representation
on one extreme (where there are no signed digits) all the
way to the conventional fully signed digit (SD) repre-
sentation on the other extreme, wherein every digit is
signed. The area-delay tradeoffs associated with each of
the HSD formats have been analyzed in [9]. Possibil-
ity of reducing power consumption by utilizing the HSD
representation was also mentioned therein.

This paper investigates the impact of the HSD repre-
sentation on power consumption. Adder based on a well
known fully SD implementation [2] (which is adopted in
a microprocessor [4]) is compared with the adder based
on HSD representation. Layouts of basic adder cells
based on SD and HSD representations areexhaustively
simulated to obtain the average number of transitions
and power dissipation per addition. The results are then
used to estimate power dissipation in adders of various
word lengths and indicate that adopting HSD represen-
tation can lead to a reduction in power consumption over
a fully SD representation.

The power (and area) reduction is achieved as a re-
sult of algorithm level change. This leaves room for ad-
ditional power reduction by employing standard tech-
niques at lower levels of the design process (such as
circuit level, layout level etc). Furthermore, The HSD
representation offers a continuum of choices to the de-
signer. By increasing the distance between the signed
digits, lower power dissipation can be achieved at the
expense of slower speed. Thus, if the worst case delay
is predetermined, the designer can select a hybrid rep-
resentation that minimizes power dissipation under the
delay constraint.

1 Introduction

The well known signed–digit (SD) number representa-
tion [1, 9, 10] makes it possible to perform addition with
carry propagation chains that are limited to a single digit
position, and has been used to speed up arithmetic op-
erations. The advantages of SD representation can be
described by drawing an analogy with the transforms
(Fourier or Laplace transforms, for instance): certain
problems of sufficient complexity make it worthwhile to

pay the overhead of forward and reverse transforms be-
cause the advantages/gain in the transform domain more
than offset the overhead. SD representation is analogous
to a transformed domain wherein the addition is carry
free. Moreover, the forward transform, (i.e., converting
normal numbers into signed digits) is trivial. Only the
reverse transform requires a delay equivalent to a full ad-
dition (which depends on the word length). If multiple
operands are to be added, then going to an intermedi-
ate signed digit representation is advantageous because
the additions are carry free. There is only one full carry
propagation operation required to convert the final sum
back to two’s complement format. SD representation has
been exploited to speed up most types of arithmetic cir-
cuits (multipliers, dividers, CORDIC processors, etc).

A carry save adder tree based on (3,2) counters
achieves a reduction from 3 to 2 operands at each
level. Hence the number of levels required for adding

n operands isdlog 3

2

n
2
e = d

log n� log 2

log 3=2
e wheredxe

denotes the ceiling ofx, i.e., smallest integer greater
than or equal tox and log z without any base indicates
log to base 10. A signed digit tree, on the other hand
needsdlog

2
ne levels. If the delay associated with a

carry-save stage is�FA and that associated with a SD
stage is�SD, then the SD tree is (asymptotically) faster

if �SD

�FA
�

log 2

log(3=2)
� 1:71. Signed–digit adder trees

are easier to lay out and route than Wallace trees [2]. In
[2] a64�64 bit multiplier based on a redundant signed–
digit binary adder tree was shown to yield a smaller crit-
ical path delay than the corresponding Wallace tree mul-
tiplier with booth recoding. A similar design for a fast
54� 54 bit multiplier was published in [3]. The cost for
the speedup is higher area, since every (binary) signed
digit needs two bits for encoding.

The advent of mobile computing favors circuits
with low power dissipation. Hence, combined analy-
sis of speed and power tradeoffs is attracting increasing
amounts of research efforts [5, 6]. All the number repre-
sentations considered in [5, 6] were special cases of the
GSD representation [8].

In [9] a Hybrid Signed Digit (HSD) representation
was introduced. It employs both signed and unsigned
digits and reveals a continuum of choices of number rep-
resentations between the extremes of fully SD on one
hand to two’s complement on the other. It is outside the
GSD framework (but overlaps it) as shown in Figure 1.
The area-delay tradeoffs associated with each represen-
tation were analyzed in [9] and show that a multiplier



based on HSD-1 representation (i.e., alternate digit po-
sitions are signed) has lowerAT product than multipli-
ers that employ fully SD trees. Possibility of reducing
power consumption by utilizing theHSD representation
was mentioned in [9].

Thispaper investigatesthe impact of theHSD repre-
sentation on power consumption. Adder based on awell
known fully SD implementation [2] (which is adopted
in a microprocessor [4]) is compared with the adder
based on HSD representation. Layouts of basic adder
cells based on SD and HSD representations are exhaus-
tively simulated to obtain the average number of transi-
tionsand power dissipation per addition. The resultsare
then used to estimatepower dissipation in addersof var-
ious word lengths and indicate that adopting HSD rep-
resentation can lead to a reduction in power consump-
tion (� 11% or moredepending on thedistancebetween
thesigned digits) over a fully SD representation.

The power (and area) reduction is achieved as a re-
sult of algorithm level change. This leaves room for ad-
ditional power reduction by employing standard tech-
niques at lower levels of the design process (such as
circuit level, layout level etc). Furthermore, The HSD
representation offers a continuum of choices to the de-
signer. By increasing the distance between the signed
digits, lower power dissipation can be achieved at the
expense of slower speed. Thus, if the worst case delay
is predetermined, the designer can select a hybrid rep-
resentation that minimizes power dissipation under the
delay constraint.

Next section summarizes the preliminaries, describ-
ing the HSD representation. Section II I derives the av-
erage number of transitions and power dissipation per
addition in the basic adder cells based on SD and HSD
representations. These averages are determined via ex-
haustive simulations of all possible cases and are used
to estimate the power dissipation in adders of differ-
ent lengths, and utilizing different HSD formats. Last
section discusses the implications and presents conclu-
sions.

2 Preliminaries: TheHSD representation

Without lossof generality, weconsider radix-2HSD rep-
resentation for the sake of illustration. HSD formats are
illustrated in Figure1. For radix r = 2 the signed dig-
its can take any value in the setf�1, 0, +1g. The un-
signed digits are like normal bits and can assume any
of the two valuesf0,1g. The addition procedure pre-
sented in [9] enables a signed digit to stop an incoming
carry from propagating further. Consequently, the car-
ries propagate between the signed digits and the maxi-
mum length of carry propagation equals thedistancebe-
tween the signed digits. It can be verified that addition
in such arepresentation requires thecarry in between all
digit positions (signed or unsigned) to assumeany value
in thesetf�1; 0; 1g asin theSD system. Theoperations
in a signed–digit position are exactly the same as those
in the SD case. For instance, let xi and yi be radix–
2 signed digits to be added at the ith digit position, and
ci�1 bethecarry into theithdigit position. Eachof these
variables can assumeany of the threevaluesf�1; 0; 1g.
Hence�3 � xi + yi + ci�1 � +3. This sum can be
represented in terms of a signed outputzi and a signed
carryci as follows:

xi + yi + ci�1 = 2ci + zi (1)

whereci; zi 2 f �1; 0; 1g. In practice, the signed–digit
outputzi is not produced directly. Instead, the carry ci
and an intermediatesumsi areproduced in thefirst step,
and the summationzi = si + ci�1 is carried out in the
second. Following the procedure in [9] guarantees that
thesecond step generates no carry.

The operations in an unsigned digit position are as
follows. Let ai�1 andbi�1 be thebits to beadded at the
(i� 1)th digit position;ai�1; bi�1 2 f0; 1g. The carry
into the (i � 1)th position is signed and can be�1; 0

or 1. The output digit ei�1 is restricted to be unsigned,
i.e.,ei�1 2 f0; 1g. Hence the carry out of the(i� 1)th
positionmust beallowed toassumethevalue�1 aswell.
In particular

if (ai�1 = bi�1 = 0 & ci�2 = �1) then
ci�1 = �1 and ei�1 = 1

else
ai�1 + bi�1 + ci�2 = 2ci�1 + ei�1

where ci�1; ei�1 � 0

endif

(2)

The signed–digit positions generate a carry–out and
an intermediate sum based only on the two input signed
digits and the two bits at the neighboring lower order
unsigned digit position. In the second step, the carries
generated out of thesigned digit positionsripplethrough
the unsigned digits all the way up to the next higher or-
der signed digit position, where the propagation stops.
Al l the (limited) carry propagation chains between the
signed digit positions areexecuted simultaneously.

Themost significant digit in any HSD representation
must be a signed digit in order to incorporate enough
negative numbers. Al l the other digits can be unsigned.
For example, if the word length is 32 digits, then, the
32nd (i.e., the most significant) digit is a signed digit.
The remaining digits are at the designer’s disposal. If
regularity is not necessary, one can make the 1st, 2nd,
4th, 8th and 16th (and 32nd) digits signed and let all
the remaining digits be unsigned digits (bits). The addi-
tion time for such a representation is determined by the
longest possible carry–propagation chain between con-
secutive signed digit positions (16 digit positions; from
the16th to the32nd digit in thisexample).

The HSD representation has another interesting
property: there is no need to be restricted to a partic-
ular HSD format (with a certain value of d). The rep-
resentation can be modified (i.e., the value of d can be
changed) while performing addition (and consequently,
other arithmetic operations) and this can be done in cer-
tain cases without any additional time delay. For in-
stance, let x andy be two HSD operands, with uniform
distancesdx anddy, respectively, between their signed
digits. Also assume that(dy + 1 )is an integral multiple
of (dx + 1 )so that the signed digit positions of y are
aligned with the signed digit positions of x (note thatx
has more signed digits thany under the stated assump-
tion). Let z = x + y be their sum, having a uniform
distancedz between its signed digits. The possible val-
ues of dz which are interesting from a practical point of
view are0; dx anddy. If we set dz = dy then theabove
addition wil l takeexactly thesametimeasan addition of
two HSD operands with uniform distancedy producing
an HSD result with distancedy. Settingdz = dx (and
clearly, dz = 0) wil l reduce the addition time even fur-
ther, since the introduction of extra signed digits results
in shorter carry propagation chains. For example, sup-



pose thatdx = 0 (all digits are signed) anddy = 1 (al-
ternate digits are signed). If dz equals 1, then the delay
required to perform the addition is the same as that re-
quired to add two HSD numbers with the same distance
d = 1 to generate an output with dz = 1. This format
conversion flexibilit y (without any additional timedelay
penalty) can be useful, as illustrated by the multiplier
design in [9].

3 Power consumption of basic adder cells

The adders considered are static CMOS circuits since
these typically consume lower power than dynamic
CMOS designs. The basic building block for the signed
digit adders in [2, 4] is the efficient signed digit adder
cell illustrated in [2]. The cell takes 2 signed digit
operands and a signed carry as inputs and generates a
signed digit sum a signed carry output. Since each vari-
able takes two bits to encode, thecell has 6 inputs and 4
outputs and requires 42 transistors.

Building blocks of the HSD adder are the cells in
signed and unsigned digit positionspresented in [9]. The
signed cell takes 2 signed digits and one signed carry
and generates a signed digit output and carry, and has
6 inputs and 4 outputs and also requires 42 transistors.
Cell in theunsigned digit position takes 2 unsigned dig-
its (bits) and a signed carry as inputs and generates a
signed carry and unsigned sum bit as the outputs. It has
4 inputs and 3 outputs and requires 34 transistors.

Al l cells were layed out using the MAGIC editor
with the default scalable CMOS technology files. The
average number of transitions as well as the average
power consumption (per addition) of thesecellswasesti-
mated both analytically aswell as through an exhaustive
simulation with IRSIM as described next.
Transition count via exhaustive testing of combina-
tional circuits

Assume the circuit hasn inputs. Then there are2n

possible input patterns labeledP0 throughPN where
N = 2

n � 1.
For exhaustivetesting: set thecurrent input toP0 and

set next input to each of P1; P2; : : : ; PN and count tran-
sitions for each case. Do this for eachPi; i = 0; : : : ; N ,
accumulating transitions and power dissipation for each
iteration. Dividing theaccumulated sums byN(N � 1)

(which is the total number of iterations) yields the (ex-
haustive) averagenumber of transitionsper input pattern
applied to thecircuit.

To theoretically estimatethenumber of transitionsin
the circuit, one needs the total number of transitions at
the inputs. This number is determined as follows. Let
the current input be Pi. We exhaust all possible next
inputsPj ; j 6= i and repeat thisprocess for all possiblei
values. It turns out that the number of transitions on the
inputs during exhaustive testing of Pi are the same for
all i.

Let Pi =( x1 : : : xn). The number of patternsPj
that differ from Pi in exactly one position is

n
C1 =

n(n� 1)
1 � 2 and each of these contributes 1 transition.

Similarly the number of patterns differing from Pi in

exactlyk positions is
n
Ck =

n(n� 1) � � � (n� k + 1 )

1 � 2 � � � k
and each contributesk transitions. Hence the total num-
ber of transitions (on all inputs) in exhaustive testing of

Pi is
nX

k=1

k �
n
Ck = n � 2n�1 (3)

The last equality can be derived by differentiating the
expression for (1+ x)

n and settingx = 1 on both sides
of the resulting identity.

Given0 � i < 2
n, the total number of transitions is

2
n � (n � 2n�1) = n � 22n�1 (4)

or thenumber of transitionsfor any singleinput is 22n�1

sinceall inputs aresymmetric.
Using thezero delay model in [7], theexpected num-

ber of transitionsE[ny(T )] at the output y of a logic
module in time interval T is

E[ny(T )]=

nX

i=1

P (
@y

@xi
) � E[nxi(T )] (5)

wherexi ;i = 1 � � �n are the inputs to the module and

P (
@y

@xi
) is the probability that the Boolean difference

@y

@xi
= (yjxi=1)� (yjxi=0) is 1.

Using thetotal number of input transitionsinexhaus-
tive testing from equation (4) in the above equation and
assuming that the primary inputs of the cells are inde-
pendent leads to the the analytical estimates of the av-
erage number of transitions per addition for each of the
cells that areshown in Table1.

Theoretical Simulation
estimate outputs
Average Average Average

Transitions Transitions Power
Dissipation

(�10�5 Watts)

Signed digits
adder cell 7.94 11 8.171
based on

SD rep. [2]

Signed digits
adder cell 7.94 12 8.291
based on

HSD rep. [9]
Unsigned digits

adder cell 7.46 9 5.126
based on

HSD rep. [9]

Table 1: Comparison of average number of transitions
and power dissipation in the basic cells. The simula-
tion average was determined by exhaustively testing all
possibleinput cases, excluding thedon’t careinput com-
binations.

Thesimulator used was IRSIM 9.3. It counts transi-
tions at ALL internal nodes and takes into account any
glitches and/or extraneous transitions. Hence the num-
ber of transitions counted by the simulator are higher
than the analytical estimates. The signed digit cells are
designed assuming that 0 is encoded as “00”, 1 as “01”
and a�1 as “11”. Hence, it was assumed that the input
combination “10” would never occur as a signed digit



and was exploited as a “don’t care” to simplify the logi-
cal expressions and arrive at the final cell design. These
input combinations arethereforeexcluded from thesim-
ulations.

4 Power dissipation of SD and HSD adders

Exhaustive determination of average number of transi-
tions and power dissipation per addition is impossible
for adders of practical word lengths (32, 53 or 64). In
fact, even a 3 digit SD adder has 14 inputs (3 � 2 = 6
signed digits requiring 12 bits plus the two bits repre-
senting the carry-in into the least significant position).
The number of cases to be considered (for exhaustive

determination of averages) is � 2
142

=2
28 which is

prohibitively large(even if don’t carecasesareexcluded
theexact count is (36�4)(3

6�4�1)=8500140 or over
8.5 million). For 2 digit adders, however, the number of
cases (excluding the “don’t care” input combinations) is
104,653 which ismanageable.

In the HSD-1 format, alternatedigits aresigned (the
rest are unsigned). Hence the total power consumed by
thecascade of oneunsigned and onesigned cellsshould
be compared with the total power consumed by the cas-
cade of two SD cells (each of these cover 2 digit posi-
tions in their respective representations). Thus, differ-
encebetween HSD-1 and SD formatscan beunderstood
by considering two digit positions of each, which is an-
other reason behind exhaustively simulating adders of
word length 2. The results areshown in Table2.

number Average Average
of Transitions Power

cases Dissipation
(�10�5 Watts)

Cascade of two
SD cells [2] 104653 23 (22) 14.36 (16.34)

Cascade of
Signed
(higher 20591 21 (21) 12.81 (13.42)

significant)
and

Unsigned
HSD cells [9]

Table 2: Comparison of average number of transitions
and power dissipation in two-digit adders (word length
of twodigits). Thenumber of casesexcludesthepatterns
in which any of the signed digits gets the impossible in-
put combination “10”. Thevalues in parenthesis areob-
tained by adding thecorresponding values for individual
cells from Table1.

Comparison of Table 1 and Table 2 allows a testing
of the “independence hypothesis”. Thecarry signals be-
tween the adjacent cells are not independent and hence
theaveragepower dissipated by agroup of cellsmay not
beestimated simply asasum of theaveragepowers dis-
sipated by the individual cells. This is seen in Table 2,
where the values in parenthesis (which are the sums of
average transitions and power dissipated by individual

cells) differ from the values generated by actual simula-
tion. The difference, however, is moderate (about 4.5%
in the number transitions and 13% in the power dissipa-
tion values).

For word lengthsbeyond 2 digits, thepower dissipa-
tion estimates must is obtained by extrapolating the re-
sults for two digit cascades. This is more accurate than
extrapolating the results from individual cells. The es-
timates for word lengths of 24, 32, 53 (the number of
digits in double precision floating point representation
prescribed in IEEE 754 standard for floating point im-
plementations) and 64 bits are summarized in Table 3.

Estimate of Estimate of
Word Average Average

Length Transitions Power
per addition Dissipation

per addition
(�10�5 Watts)

SD HSD–1 SD HSD–1

24 276 252 172.3 153.72
32 368 336 229.8 204.96
53 609.5 556.5 380.5 339.465
64 736 672 459.5 409.92

Table 3: Comparison of average number of transitions
and power dissipation in SD and HSD adders. The esti-
mates are obtained by extrapolating the values in Table
2.

It is seen that the power dissipated by the HSD-1
adder is about 12% less that the SD counterpart. The
critical path delay for SD adder is equivalent to about 5
gates (two input NAND/NOR gates) whereas the delay
of the HSD–1 adder is about 6 gates [9], irrespective of
theword length.

Note that HSD-1 is just one of the several feasible
formats within the HSD representation. Distance be-
tween signed digits can be increased to obtain further
power reduction at the expense of speed. This is illus-
trated by the plots in Figure 2, for a word length of 24.
The number 24 was chosen merely for the sake of illus-
tration because it is divisible by several integers, yield-
ing lot of possible HSD formats with uniform distance
between the signed digits and also happens to be the
number of significand bits in the IEEE standard for sin-
gle precision floating–point numbers. In these figures,
the measures of interest (transitions, power dissipation,
delay, power � delay) are plotted as a function of d,
the distance between adjacent signed digits. The point
d = 0 corresponds to the SD representation, where ev-
ery digit issigned.

In Figure2, note that at every point betweend = 1 2

and d = 23 (which corresponds to all digits except
most significant digit unsigned), the number of signed
digits is 2, since the most significant or 24th digit is
signed and there is one additional signed digit in the
word. Asd isincreased from 12 to22, theposition of the
signed digit shifts from the 13th to the23rd place. Thus
thedistancebetween signed digits isnon–uniform when
12 <d � 22. However, the total number of signed



digits and hence the total number of unsigned digits, re-
main 2 and 22, respectively, for d in this range. Hence,
the power dissipation is nearly constant for all d val-
ues in the range from 13 to 22. The critical path, on
the other hand, increases linearly with the longest dis-
tance between signed digits as illustrated in Figure 3–c.
Also, beyond d> 20, the carry chain between signed
digits is long enough to render the total delay (i.e., the
propagation delay through the chain plus the complex
gates at the ends) of the HSD adder higher than that of
the ordinary ripple–carry adder. Finally from Figure 2-
d, it is seen that the HSD–1 adder has almost the same
power� delay product as the fully SD adder.

5 Conclusion

TheHybrid Signed Digit (HSD) representation isshown
to lead to smaller power dissipation as compared with
the fully Signed Digit representation. The power re-
duction is about 12% (or higher depending on the dis-
tancebetween thesigned digits). Number of transitions,
power dissipated, delay and the power � delay prod-
uct wereevaluated as function of thedistanced between
signed digits. The plots indicate that the HSD–1 adder
has almost the same power � delay product than the
fully SD adder.

The power (and area) reduction is achieved as a re-
sult of algorithm level change. This leaves room for ad-
ditional power reduction by employing standard tech-
niques at lower levels of the design process (such as
circuit level, layout level etc). Possible future work in-
cludesinvestigation of optimal encodings for signed dig-
its to reduce power dissipation.
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Abstract

AMULET2e is a self-timed embedded system control-
ler which is software compatible with the ARM6 micro-
processor. Its design incorporates a number of power-
saving features which can be disabled under software
control, thereby allowing direct measurement of their
efficacy. In this paper we review three of these features:
two exploit the high frequency of sequential memory
accesses to bypass unnecessary circuit functions in the
main cache and the branch target cache; the third
exploits the ability of clockless circuits to become com-
pletely inert when idle. These features are described and
measurements on their effectiveness are presented.

1   Introduction

Designing for power-efficiency at the architectural level
is a matter of minimising unnecessary circuit activity.
Self-timed design, with its inherent data-driven charac-
teristic, would appear to have an intrinsic advantage in
this respect. However, when a processor is running
under maximum load there is little redundant activity
which can be avoided in order to reduce dissipation,
whether the control is clocked or self-timed; but when
the load is reduced or varies a self-timed design can
adapt automatically, whereas a clocked design must
employ explicit power management techniques which
themselves cost power.

The AMULET microprocessors, developed at the
University of Manchester, are self-timed implementa-
tions of the ARM architecture [1]. They were designed
to demonstrate the feasibility and desirability of self-
timed design. The advantages of self-timed design are
not restricted to power-efficiency - they extend to elec-
tromagnetic compatibility, modularity, and an argument
can be made on performance grounds - but in this paper
we focus on the power-efficiency benefits as manifested
in AMULET2e.

2   AMULET2e overview

AMULET2e is a self-timed controller designed for
power-sensitive embedded applications. Throughout the
design reasonable care was taken to minimise power
wastage, and many techniques which are used on

clocked ARM designs were re-employed in the self-
timed context.

The key features of AMULET2e are a self-timed
ARM-compatible microprocessor core (AMULET2), a
4 Kbyte on-chip memory, a flexible memory interface
and a number of control functions. Its organisation is
illustrated in figure 1. Off-chip accesses use a reference
delay to ensure that timing requirements are met, with
different memory regions being configurable to differ-
ent bus widths and access timings (all expressed in
terms of the reference delay). 

3   Memory subsystem

The memory system comprises 4 Kbytes of RAM
which can be memory mapped or used as a cache [2]. It
is a composition of four identical 1Kbyte blocks, each
having an associated 64-entry tag CAM. The CAM and
RAM stages are pipelined so that up to two memory
accesses may be in progress in the cache at any one
time.

The cache is 64-way associative with four 32-bit
words per line. It is write-through (for simplicity) and
does not allocate on a write miss. Line fetch is per-
formed with the addressed-word first and is non-block-
ing, allowing hit-under-miss, the line fetch being a
separate, asynchronous task [3]. 

3.1  Cache power-efficiency
The organisation of the cache, based upon a highly asso-
ciative cache with a segmented CAM tag store, follows
the practice of many of the clocked ARM CPUs and is
justified from a power-efficiency perspective as follows:
• the high associativity minimises misses, thereby

minimising the high energy cost of off-chip access-
es;

• the CAM tag store avoids the high power cost of the
large number of active sense amplifiers in a set-asso-
ciative cache;

• segmenting the CAM avoids the high energy cost of
activating a single monolithic CAM; 

• self-timing is used to delay activation of the data
RAM sense amplifiers and to turn them off as soon
as the data has been sensed.

As a final power-saving feature, the cache can be con-
figured to cause the CAM lookup to be bypassed for
sequential accesses to the same cache line. As, typically,



control
registers

tag

address
decode

line fill

fu
nn

el
 a

nd
 m

em
or

y 
co

nt
ro

l

chip

DRAM

Address

Data

data in

data out

address

area enables pipeline
latches

delay

AMULET2
core

control

selects

data
RAM

CAM

Figure 1: AMULET2e internal organization

75% of all ARM memory accesses are sequential to the
preceding access, this saves a significant proportion of
all CAM lookups.

Bypassing the CAM effectively removes a pipeline
stage from the cache access, so it not only saves power
but also results in a slightly faster cache access time and
therefore increased performance. It is a simple matter to
disable this optimization by presenting all addresses to
the cache as if they are non-sequential, so the power and
performance benefits of the CAM bypass mechanism
can readily be measured. 

4   Branch prediction

Branch prediction is used in the AMULET2 core to
reduce the number of unwanted instructions prefetched,
thereby increasing performance and reducing power
consumption. The approach is based upon a branch tar-
get cache (BTC, see figure 2) which associates a partic-
ular instruction address (that of a previously discovered
branch) with a target address. Subsequent references to
this instruction then cause an automatic flow change.

The BTC needs no reference to the instruction
itself and so is totally contained within the address inter-
face. It acts in parallel with the PC incrementer (the nor-
mal next address ‘predictor’), subverting the flow when
it recognises an address. For simplicity, in AMULET2

the BTC always predicts a known branch as taken;
despite this it more than halves the number of errone-
ously prefetched instructions in typical code

Interestingly, this unit is similar to the ‘jump trace
buffer’ used on the MU5 mainframe computer [4] devel-
oped at the University of Manchester between 1969 and
1974; this too was an asynchronous machine.

4.1  BTC power-efficiency
In many embedded controller applications the process-
ing power needs only to be ‘adequate’, whereas the elec-
trical power consumption must be minimal. Whilst
predicting branches saves power by reducing the
number of unnecessary memory cycles, the branch pre-
diction unit itself must dissipate power. An important
consideration in designing the BTC for AMULET2 was
that its own consumption should be low. Its simple
architecture contributes to this, but the detailed design
has also exploited features of the local environment for
power saving.

The BTC caches the addresses of branches. The
working set of branches is relatively small and sparse,
thus a small, fully associative cache is appropriate, with
one tag per branch. In AMULET2 a twenty entry CAM/
RAM structure is employed, with the ‘RAM’ (which is
rarely invoked) implemented as registers for speed.
Addresses circulating in the address interface are com-
pared with the CAM values to see if a branch is to be
predicted. In contrast to an instruction cache, where hits
are far more common than misses, most instructions are
not branches so the expected result in the BTC is a cache
miss.

If an address is sequential to the previous one it is
unusual for its high order bits to change. Thus if, for
example, the four least significant bits are ignored, the
tag comparison changes only once in every sixteen
addresses. AMULET2 exploits this by splitting the
CAM into two (see figure 3), so that the more significant
bits are compared only when such a change occurs, and
most comparisons are reduced to a few bits. The full
precharge/discharge cycle is only necessary in three
cases:
• when a sequential cycle affects the more significant

bits;
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from execution pipeline
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to memory
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Figure 2: Branch target cache organisation



• when a branch is predicted and the next cycle is non-
sequential;

• when an unpredicted branch arrives.
The first two cases are always known about in the pre-
ceding cycle, whilst the last causes a BTC write opera-
tion which does not require a preceding precharge, so in
none of these cases is performance impacted. In fact the
low-order lookup is somewhat faster than a full CAM
access, so there is also a small performance benefit from
this power-saving feature.

The BTC can be completely disabled and its per-
formance and power contributions thereby measured.
When the BTC is enabled the split-CAM power-saving
feature can be enabled or disabled, so its contribution
can also be measured. 

5   ‘Halt’

An interesting property of a self-timed system is that it
processes either at full speed or it halts, and it makes an
instant transition between these two states. In its halted
state the device effectively uses no power because the
power consumption of digital CMOS circuits is usually
negligible when they are not switching.

This has been exploited in AMULET2 by retrofit-
ting a halt function to the existing instruction set. Most
ARM programs enter an idle loop where an instruction
continuously loops back to itself until an interrupt
occurs. AMULET2 detects this instruction and a mecha-
nism stalls a control loop in the execution pipeline. The
stall propagates throughout the system, halting all activ-
ity. An interrupt causes immediate, full speed resump-
tion. This feature is completely code-compatible with
existing software.

The halt mechanism can be disabled and its effec-
tiveness measured. It is different in nature to the previ-
ously mentioned optimizations as it only has an effect
when the processor is idle, so it has no effect on bench-
mark programs that operate at peak throughput.

6   AMULET2e test results

AMULET2e has been fabricated (see figure 4) and suc-
cessfully runs standard ARM code. It was fabricated on
a 0.5µm, 3-layer metal process. It uses 454,000 transis-
tors (93,000 of which are in the processor core) on a die
which is 6.4 mm square. The device in the fastest avail-
able configuration delivers 42 Dhrystone 2.1 MIPS with
a power consumption of about 150 mW in the core logic
(which includes the processor core and cache memory,
but excludes the I/O pads) running at 3.3 V. This is faster
than the older ARM710 but slower than the ARM810
which was fabricated at about the same time. It repre-
sents a power-efficiency of 280 MIPS/W, which is as
good as either of the clocked CPUs. 

6.1  BTC and cache power-save measurements
Two benchmark programs were used to measure the per-
formance and power-efficiency benefits of the previ-
ously-mentioned architectural features:
• Dhrystone 2.1 is widely used to evaluate embedded

cores, but we found that it has very unusual branch-
ing characteristics compared with any ‘real’ pro-
grams we used to during the architectural evaluation
of the BTC (and we resisted the temptation to opti-
mise the BTC for Dhrystone!);

• a set of sorting routines, combining insertion sort,
shell sort and quick sort algorithms, running on a ran-
domised data set, was used to generate alternative re-
sults. This program has very tight looping behaviour.

The results of these tests are summarised in Table 1. The
base case is the processor running from cache with the
BTC (and its power-saving feature) and the CAM bypass
all disabled. Table 1 shows the improvement in perform-
ance (MIPS) and power-efficiency (MIPS/W) delivered
by enabling each feature in turn (noting that the BTC
power-save feature requires the BTC to be enabled), and
their total effect when they are all enabled. 

The cache CAM bypass mechanism delivers an
improvement of around 5% in performance and 15% in
power-efficiency on both benchmark programs. This is a
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useful contribution from a simple circuit addition.
The BTC gives a modest 5% performance improve-

ment on Dhrystone and a dramatic 22% on the ‘Sorts’
benchmark. ‘Real’ programs are expected to fall some-
where between these two. At the lower end it has little
effect on power-efficiency (indeed, in some configura-
tions we have observed it reduce power-efficiency). At
the higher end it aids power-efficiency, but less than it
enhances performance. The BTC power-save feature
makes little difference to the Dhrystone performance but
improves its power-efficiency by 3%. It improves the
‘Sorts’ performance by a further 3% and its power-effi-
ciency by 7%. In all cases where we have observed the
BTC have a negative impact on power-efficiency the
BTC power-save feature has cancelled the loss and con-
verted it into a power-efficiency gain.

6.2  ‘Halt’ measurements
The operation of the ‘Halt’ feature is different in princi-
ple from the cache CAM bypass and the BTC power-
save as it has no impact on power consumption when the
processor is running flat-out, as it is when it is executing
a benchmark program. It only comes into play when the
processor is idle.

To judge its effectiveness we can observe the cur-
rent consumed by the processor core logic when idling
with ‘Halt’ disabled, which is around 50 mA if the idle
loop is in the cache. With ‘Halt’ enabled this reduces to
around 1 mA on the test card when centisecond timer
interrupts are being handled, and to around 1µA (leak-
age current) when interrupts are disabled. These results
are summarized in Table 2.

7   Conclusions

AMULET2e is a self-timed embedded controller
designed for power-sensitive applications. It incorpo-
rates a number of features which have been added to
improve its power-efficiency, and which can be enabled
and disabled under software control so that their contri-
bution can be assessed.

We have described specific power-saving features
in the branch prediction mechanism and cache which
together reduce the core power consumption by around
20%, and also increase performance by around 10%. The
branch prediction mechanism itself improves perform-
ance by between 5% and 25% and power-efficiency by
between 0% and 22%, depending on the application.

We have also described the AMULET2e ‘Halt’

mechanism which exploits the self-timed control of the
processor to reduce idle power to leakage current only,
which is a factor 50,000 times lower than the idle state
with ‘Halt’ disabled. The power consumption of the
halted processor core is therefore a miserly 3µW. As
many embedded controllers spend a lot of their time
halted waiting for input, interspersed with bursts of
intense activity, it can be observed that an asynchronous
implementation of a low power architecture can yield
significantly lowered average power consumption,
resulting in (for example) increased battery life in porta-
ble equipment.

Whilst a clocked chip can make up some of this
ground by using power management techniques to
reduce its clock frequency, this requires software control
and that software itself consumes power. On
AMULET2e this minimal idle power comes easily and
automatically, and can be exploited in the shortest of idle
periods between bursts of activity.
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Feature
Dhrystone 2.1 Sort

MIPS MIPS/W MIPS MIPS/W

BTC on +5% +0% +22% +15%

BTC power-save +5% +3% +25% +22%

CAM bypass +6% +15% +5% +14%

All on +11% +18% +32% +35%

Table 1: Experimental results

Idle condition Idd (mA)

‘Halt’ disabled 50

‘Halt’ enabled; centisecond timer interrupts 1

‘Halt’ enabled; interrupts disabled 0.001

Table 2: AMULET2e core idle currents
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Abstract

The only way to compute with asymptotically zero
power is reversibly. Recent implementations of re-
versible and adiabatic [17, 8] logic in standardCMOS
silicon processes have motivated further research into re-
versible computing. The application of reversible com-
puting techniques to reduce energy dissipation of cur-
rent generationCMOS circuits has so far been found to
be limited, but the techniques used to design reversible
computers are interesting in and of themselves, and other
technologies, such as Josephson Junctions and quantum
computers, as well as futureCMOS technologies, may
require fully reversible logic. This paper discusses the
design of a fully reversible microprocessor architecture.

Computing with reversible logic is the only way to
avoid dissipating the energy associated with bit erasure
since no bits are erased in a reversible computation. Low
energy techniques such as voltage scaling lower the cost
of erasing information. Techniques such as clock gating
effectively reduce the number of bits erased. Reversible
techniques have already been used to lower the cost of
bit erasure for nodes that have a high cost of erasure,
but the present work is directed at saving every bit, com-
puting fully reversibly. The goal is to convert a conven-
tionalRISCprocessor to completely reversible operation.
This investigation indicates where bit erasure happens in
a conventional machine and the varying difficulty across
datapath modules of computing without erasing bits.

The initial motivation for reversible computing re-
search came from an investigation of fundamental lim-
its of energy dissipation during computation [9]. The
link between entropy in the information science sense
and entropy in the thermodynamics sense, exhibited by
Maxwell’s demon [10], requires a minimum energy dis-
sipation ofkBT ln 2, wherekB is Boltzmann’s constant,
when a bit is erased. Erasing a bit is a logically irre-
versible operation with a physically irreversible effect.
A reversible computer avoids bit erasure.

Judicious application of reversibility in adiabatic cir-
cuits has already proven its usefulness in reducing en-
ergy dissipation [2]. This paper examines the complex-
ity and difficulty in avoiding bit erasure entirely and dis-
cusses a set of techniques for designing reversible sys-
tems.

�This work is supported by DARPA contract DABT63-95-C-0130

1 Introduction

Power and energy dissipation in modern microproces-
sors is obviously a concern in a great number of ap-
plications. Riding the technology curve to deep sub-
micron devices, multi-gigahertz operating frequencies,
and low supply voltages provides high performance and
some reduction in dissipation if appropriate design styles
are used, but for applications with a more strict dissi-
pation budget or technology constraints, more unusual
techniques may be necessary in the future.

Adiabatic or energy recovery circuit styles have be-
gun to show promise in this regard. Motivated by the
result from thermodynamics that bit erasure is the only
computing operation that necessarily requires energy
dissipation, various techniques that either try to avoid
bit erasure or try to bring the cost of bit erasure closer
to the theoretical minimum have been implemented. To
truly avoid bit erasure, and therefore perform compu-
tation that has no theoretical minimum dissipation, the
computing engine must be reversible. Losses not asso-
ciated with bit erasure are essentially frictional, such as
the non-zero resistance of “on” transistors, and may be
reduced through circuit design techniques such as op-
timally sized transistors, silicon processing techniques
such as silicided conductors, and by moving charge
through the circuit quasistatically such as constant cur-
rent ramps in adiabatic circuits.

This paper discusses the engineering requirements of
building a fully reversible processor. Fully reversible
means that both the instruction set and the underlying
circuit implementation will be reversible. Such a pro-
cessor theoretically requires asymptotically zero dissipa-
tion, with dissipation per operation falling to zero as the
clock period is increased to infinity. This assumes that
an appropriate energy-recycling, constant-current power
supply could be developed. The ISI “blip circuit” [1],
stepwise capacitor charging [12], and MIT’s transmis-
sion line clock drivers [3], are steps toward this end.
This paper assumes that the clock drivers exist and the
datapath currently being constructed uses Younis and
Knight’s [16] three-phaseSCRL logic family in all cir-
cuits. Any complete analysis of power dissipation in
an adiabatic circuit must include the dissipation in the
power supply and control logic. This paper focuses on
the architectural and circuit level engineering of a re-
versible system rather than the actual dissipation of such
a system.

Following a more detailed discussion of the moti-
vation behind this work and a few words about the ter-
minology of the field, Section 4 covers instruction set



design, since the ISA and assembly language code must
alsomaintain reversibility, Section5 concernsthedetails
of instruction fetch and decode, and Section 6 touches
on some related work in the field and offers conclusions
about reversible computing.

2 Why BuildaReversibleProcessor

A fully reversibleprocessor must implement areversible
instruction set in a reversible circuit implementation. A
reversible instruction set is one in which both the previ-
ous and next instructions areknown for each instruction
in a correctly written assembly language program. The
dynamic instruction stream may be executed both for-
wardsand backwards. Theinstruction set described here
is a modification of the one designed in Vieri’s master’s
thesis [15].

A reversible circuit implementation is one in which,
in the asymptotic limit , charge flows through the cir-
cuit in a thermodynamically reversible way at all times.
This is only possible if the circuit is performing a log-
ically reversible operation in which no information is
lost. A logically reversible operation is one in which
valuesproduced asoutput uniquely determine the inputs
used togeneratethat output. Performingexclusively log-
ically reversibleoperationsisanecessary but insufficient
condition for thermodynamically reversible operation.
When performed using an adiabatic circuit topology, the
operation is thermodynamically reversible.

Performing circuit-level operations in a thermody-
namically reversible way allows the energy dissipation
per operation to fall asymptotically to zero in the limit
of infinitely slow operation. Conventional CMOScircuits
have aminimum energy dissipation associated with each
compute operation that changes the state of the output
node, regardless of operation frequency. So-called “adi-
abatic” techniques, in which the dissipation per com-
puteoperation isproportional to theoperation frequency,
haveshown themselves to beuseful in practical applica-
tions [13, 2].

As mentioned above, adiabatic operation requires
that the circuits perform logically reversible operations.
If one attempts to implement a conventional instruction
set in a reversible logic family, reversibility wil l be bro-
ken at the circuit level when the instruction set speci-
fies an irreversible operation. This break in reversibility
translates to a required energy dissipation.

3 A Few Words About Words

Much of the discussion about reversible computing is
hampered by imprecision and confusion about terminol-
ogy. In the context of this paper, terms wil l hopefully
be used consistently according to the definitions in this
section.

The overall field of reversible computing encom-
passes anything that performs some operation on some
number of inputs, producing some outputs that are
uniquely determined by and uniquely determine the in-
puts. While this could include analog computation, this
paper is only concerned with digital computation. Re-
versiblecomputation only implies that theprocess isde-
terministic, that the inputs determine the outputs, and
that thoseoutputs aresufficient to determine the inputs.

A particular design may be reversibleat oneor more
levels and irreversible at other levels. For example, an

instruction set may bereversibleand yet beimplemented
in an irreversible technology. The test chip “Tick” [4]
was an eight-bit implementation of an early version of
thereversiblePendulum instruction set in an irreversible
standard CMOS technology.

Thespecific implementation of a reversiblecomput-
ing system may vary greatly. Numerous mechanical
structureshavebeen proposed, including Drexler’s“Rod
Logic” and Merkle’s clockwork schemes [11]. Younis
and Knight’s SCRL isareversibleelectronic circuit style
suitable for use in the implementation of a reversible
computer.

Many papers refer to “dissipationless” computing.
This is a misnomer and generally may be interpreted as
shorthand for “asymptotically dissipationless” comput-
ing. This means that if the system could be run arbitrar-
il y slowly, and if some unaccounted-forN th order ef-
fect of the particular implementation does not interfere,
in the limi t of infinite time the dissipation per compu-
tation asymptotically approaches zero. Only reversible
computations may beperformed asymptotically dissipa-
tionlessly because bit erasure requires a dissipation of
kBT ln2 regardless of operation speed. Any N th or-
der effectsthat prevent areversiblesystem from dissipat-
ing zero energy areessentially frictional in nature, rather
than fixed, fundamental barriers.

4 ThePendulum Instructio n Set

The particular implementation discussed here is known
as the Pendulum processor. The Pendulum proces-
sor was originally based on the elegantly simple MIPS
RISC architecture [7]. The register-to-register opera-
tions, fixed instruction length, and simple memory ac-
cess instructions make it a good starting point for a
radically different approach to instruction set design.
For ease of implementation, and of course to maintain
reversibility, the instruction set has been substantially
modified. It retains the general purpose register struc-
tureand fixed length instructions, however.

ThePendulum processor supportsanumber of tradi-
tional instructions with additional restrictions to ensure
reversibility. The instruction set includes conventional
register to register operations such as add and logical
AND, shift and rotate operations, operations on imme-
diate values such as add immediate and OR immediate,
conditional branchessuch asbranch on equal tozero and
branch on less than zero, and a single memory access
operation, exchange. The direction of the processor is
changed using conditional branch-and-change-direction
instructions.

4.1 Register to Register Operations

Conventional general purpose register processors read
two operands, stored in two possibly different registers,
and perform someoperation to produce a result. There-
sult may be stored either in the location of one of the
operands, overwriting that operand, or some other loca-
tion, overwriting whatever value was previously stored
there. Thisproduces two difficultiesfor areversiblepro-
cessor. First, writing a result over a previously stored
value is irreversible since the information stored there
is lost. Second, mapping from the information space of
two operands to the space of two operands and a result
wil l quickly fil l the available memory. However, if the



result is stored in the location originally used for one of
theoperands, thecomputation takes two operands as in-
put and outputs one operand and a result. This space
optimization is not required for reversibility if the pro-
cessor can always store the result without overwriting
some other value, but it is a useful convention for man-
aging resources.

An astutely designed instruction set wil l inherently
avoid producing garbage information while retaining
flexibilit y and power for the programmer. This leads
to thedistinction between expanding and non-expanding
operations. Both types of instruction are reversible; the
distinction is made only in how much memory these in-
structions consume when executed.

Al l non-expanding two operand instructions in the
Pendulum instruction set take the form:

Rsd  F(Rsd; Rs) (1)

whereRsd is the source of one operand and the desti-
nation for the result, andRs is the source of the second
operand.

By contrast, logical AND isnot reversible if only the
result and one operand are retained. Except for the spe-
cial case of the saved operand having every bit position
set to one, the second operand can not be recovered ac-
curately and must bestored separately. Sinceoperations
like AND, including logical OR and shift operations, re-
quire additional memory space after execution, they are
termed expanding operations. The problem then arises
of how store that extra information. If the two operands
continue to be stored in their original location, the re-
sult must be stored in a new location. It is still not per-
missible for the result to overwrite a previously stored
value, so the result may either be stored in a location
that is known to be clear or combined with the previ-
ously stored value in a reversible way. The logical XOR
operation isreversible, so thePendulum processor stores
theresult by combining it inalogical XOR with thevalue
stored in the destination register, forming ANDX, ORX
and so on. Logical ANDX and all other expanding two
operand instructions take the form:

Rd  F(Rs; Rt)� P (2)

whereRs andRt are the two operand source registers,
Rd is the destination register, andP is the value origi-
nally stored in Rd.

Constructing a datapath capable of executing an in-
struction stream forwards and backwards is simplified if
instructions perform the same operation in both direc-
tions. Addition, which appears simple, is complicated
by the fact that the ALU performs addition when exe-
cuting in one direction and subtraction when reversing.
Theexpanding operations are their own inverses, since

P = F(Rs; Rt)�Rd (3)

Non-expanding operations could take the same form as
the expanding operations, performing addx and so on,
simplifying the ALU, but programming then becomes
fairly difficult. Only expanding operations, which re-
quire additional storage space, are implemented to con-
sume that space.

Converting a conventional register to register in-
struction execution schemeto reversibleoperation isrel-
atively simple. The restriction on which registers can
be operands is minor, and implementation of an SCRL

ALU is not particularly difficult. While aconventional
processor erasesasignificant number of bits in theseop-
erations, preserving them isnot difficult.

4.2 Memory Access

A reversible memory system, named XRAM, has been
fabricated ina0.5�m CMOSsiliconprocess. Thesystem
was intended to be aprototype of the Pendulum register
file. Reversible memory system design is discussed in
moredepth elsewhere [14], and this section draws heav-
ily on previous work by theauthors.

From a system point of view, the only additional re-
quirement of a reversible memory, beyond a traditional
memory system’s function, is that it not erase bits when
it is read from and written to. The memory must of
course perform as a random access memory, allowing
bits to bestored and retrieved. Bit erasurecan happen as
a fundamental side effect of the operation of the mem-
ory or asafunction of theparticular implementation. For
example, onecan imagine amemory in which theexter-
nally visible values being stored and retrieved are never
lost but the implementation of the memory is such that
intermediatebits areerased internally.

A traditional SRAM architecture is based on
read/write operations. An address is presented to the
memory and, based on a read/write and possibly an en-
able signal, a word of data is read from or written to the
memory array. Data may be read from any location an
arbitrary number of times, and datawritten to a location
overwrites that location’s previously stored data.

Reading a value does not at first seem to be an ir-
reversible operation. Reading from a standard memory
creates a copy of the stored value and sends it to an-
other part of the computing system. An arbitrary num-
ber of copies may be created this way. If , in a reversible
system, the overall system can properly manage these
copies, the memory need not be concerned with them.
The larger system will , however, probably exhaust its
ability to store or recover the bits generated by the pro-
duction of an arbitrary number of copies. So it is a de-
sirable feature of a reversible memory not to be alimit-
less source of bits when used in a larger system. It must
be emphasized, however, that copy itself is not an irre-
versibleoperation.

A conventional memory performs explicit bit era-
sure during writes because the previously stored value
is overwritten and lost. A reversible memory must save
those bits somehow. The specific mechanism for this
may vary. For example, reads may be performed de-
structively, as in a DRAM, to avoid producing copies of
the data. The information is moved out of the memory
rather than being copied from it.

During writes, thevaluewhich would beoverwritten
could be pushed off to a separate location, either auto-
matically or explicitly under programmer control. This
only postpones the problem until later since any finite
capacity storage wil l befilled eventually.

If the separate location is accessible to theprogram-
mer, however, that data may either be useful or it may
be possible to recover the space by undoing earlier op-
erations. So if a write is preceded by a destructive read,
theold information ismoved out of thememory and into
the rest of the system, and the new information replaces
it in the memory. The old value has been exchanged
for the new value. This type of eXchange memory ar-
chitecture, or XRAM, is the memory access technique



used in the Pendulum register file and for data and in-
struction memory access. The instruction set supports a
single exchang e instruction which specifies a register
containing the memory address to be exchanged and a
register containing thevalue to bestored to memory and
in which thememory valuewil l beplaced.

Theessential insight of the XRAM is that performing
aread and thenawriteto thesamememory locationdoes
not loseany information. Onedataword ismoved out of
thememory, leaving an empty slot for anew value to be
moved in. In general, moving data rather than copying
isavalid technique in reversiblecomputing for avoiding
bit erasureon theonehand and avoiding producing large
amounts of garbage information on theother.

4.3 Control Flow Operations

If programs consisted solely of register to register and
memory access operations, programming and imple-
mentation would be relatively simple. Unfortunately,
conditional branches are crucial to creating useful pro-
grams. The processor must be able to follow arbitrary
loops, subroutine calls, and recursion during forward
and reverseoperation. A great deal of information is lost
in conventional processors during branches, and adding
structures to retain this information isvery difficult.

Any instruction in a conventional machine implic-
itl y or explicitly designates the next instruction in the
program. Branch instructions specify if a branch is to
be taken, and if so, what the target is. Non-branch in-
structions implicitly specify the instruction at the next
instruction memory address location. To follow a series
of sequential instructions backwards is trivial; merely
decrement theprogram counter rather than incrementing
it. Following a series of arbitrary jumps and branches
backwards in a traditional processor is impossible: the
information necessary to follow a jump or branch back-
wardsislost when thebranch istaken. A reversiblecom-
puter must store enough information, either explicity in
the instruction stream or elsewhere, to retrace program
execution backwards.

To reverse an instruction stream, some information
must beavailableat the target location of abranch spec-
ifying how to undo the branch. During reverse opera-
tion, a target instruction must somehow be identifiable
and the processor must be able to determine the “return
address” of the branch. A challenge exists as to how
to ensure reversibility even if the code is written incor-
rectly. A simple “ill egal instruction” check to determine
if the targeted instruction is not a proper target type is a
legitimatetechnique, but data-dependent checksaregen-
erally not possible.

Requiring branches to target particular types of in-
structions to ensure branch reversibility, however, is a
convenient technique for reversible processor design.
Early designs proposed explicit “come-from” instruc-
tions [15] or a branch register and branch bit [5]. Space
does not permit a complete discussion of possible tech-
niques for performing jumps and branches reversibly,
but theliteraturecontainsanumber of examplesthat dif-
fer from the scheme presented here [6]. The discussion
below refers only to the particular scheme used in the
current version of thePendulum processor.

Pendulum branch instructions specify the condition
to beevaluated, either equal to zero or lessthan zero, the
register containing the value to be evaluated, and a reg-
ister containing the target address. The instruction at the

target address must be able to point back to the branch
addressand know if thebranch was taken or if the target
location was reached through sequential operation. For
proper operation, each branch instruction must target an
identical copy of itself.

When a branch condition is true, an internal branch
bit is toggled. If the branch bit is false and the branch
condition istrue, theprogram counter update(PCU) unit
exchanges the value of the program counter and the tar-
get address. The target address must hold an identi-
cal branch instruction which toggles the branch bit and
sequential operation resumes. The address of the first
branch instruction isstored in theregister fileso that dur-
ing reverse operation the branch can be executed prop-
erly.

5 Instructio n Fetch and Decode

Reading from the instruction memory suffers from the
same difficulty as reading from the data memory. Each
copy created when an instruction is read must be “un-
copied.” If instruction fetch operations are performed
by moving instructions rather than copying them, the in-
structionsmust bereturned to memory when theinstruc-
tion has finished executing.

After the instruction is read (or moved) from the in-
struction memory, the opcode is decoded, and a number
of datapath control signals are generated. Just before
the instruction ismoved back to the instruction memory,
thesecontrol signalsmust be“ungenerated” by encoding
the instruction.

A certain symmetry is therefore enforced with re-
spect to instruction fetch and decode. An instruction is
moved from the instruction memory to the instruction
decodeunit. Theresultingdatapathcontrol signalsdirect
operation of theexecution and memory accessunits. Af-
ter execution, the control signals are used to restore the
original instruction encoding, and the instruction may
then be returned to the instruction memory.

The processor must be able to return the instruction
to its original location, so its address must be passed
through the datapath and made available at the end of
instruction execution. Since the address of the next in-
struction must also be available at the end of instruction
execution, the Pendulum processor has two instruction
address paths. One path contains the address of the in-
struction being executed, and the program counter up-
date unit uses it to compute the address of the next in-
struction. The second path contains the address of the
previous instruction and the PCU uses it to compute the
addressof thecurrent instruction. Theoutput of thePCU
is then the next instruction address and the current in-
struction address, which are the values required to re-
turn the current instruction to the instruction memory
and read out thenext instruction.

Performing thesecomputations during branching in-
structions is very complex, especially when the proces-
sor is changing direction. Traditional processors throw
away every instruction executed, and ensuring that the
instructions are returned to the instruction memory is
challenging.

6 Conclusions

This extreme approach to low power computing is
clearly impractical in the near-term. Al l the primary



blocks of a traditional RISC processor erase bits, and re-
taining those bits presents varying levels of difficulty to
the designer. These challenges present the opportunity
to reexamine conventional RISC architecture in terms of
bit erasure during operation. Register to register opera-
tionsand memory accessarerelatively easy to convert to
reversibility, but control flow and, surprisingly, instruc-
tion fetch and decode, are decidedly non-trivial. This
knowledge may be used in traditional processor design
to target datapath blocks for energy dissipation reduc-
tion.
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Abstract

Processors having both low-power consumption and
high-performance are more and more required in the
portable systems market. Although it is easy to find
processors with one of these characteristics, it is harder
to find a processor having both of them at the same
time. In this paper, we evaluate the possibility of de-
signing a high-performance, low-consumption processor
and investigate whether instruction-level parallelism ar-
chitectures can be adapted to low-power processors. We
find that an adaptation of high-performance architecture,
such as the VLIW architecture, to low-power 8b or 16b
microprocessors yields a significant improvement in the
processor’s performance while keeping the same energy
consumption.

1 Introduction

In recent years, the need for ultra low-power embedded
microcontrollers has been steadily increasing. This can
be explained by the high demand for portable applica-
tions. Currently, a wide range of products, such as em-
bedded microprocessors from 8b to 32b and DSP, can
be found on the market and are well adapted to a wide
range of applications. Eight-bit embedded microcon-
trollers can be found in the form of low-complexity cir-
cuits that have generally no pipeline, no cache memo-
ries, and a reduced level of performance. The Motorola
68HC11, Intel 80C51, and PIC 16Cxx are examples of
such products. They consume between 5 and 50 mili-
watts at 3 volts, have slow clock frequency (usually no
more than 20 MHz), and take several clock cycles to
execute an instruction [12]. On the other hand, high-
end, low-power processors can be found in the form of
pipelined 32b processors with small cache memories and
a high level of performance. The DEC StrongArm 110,
Motorola MPC821, and IBM PowerPC 401 are examples
of these products. They consume between 100 and 1000
milliwatts at 3 volts and have a high clock frequency (be-
tween 25 and 200 MHz) [12][14]. Between these two
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categories there is a gap. Indeed, in spite of the need
for low-power processors adapted to 8b and 16b appli-
cations, there are no 8b or 16b processors that reach a
level of performance comparable to the 32b low-power
processors.

In this paper, we evaluate the possibility of design-
ing a high-performance, low-consumption 8b or 16b mi-
crocontroller. More precisely, we investigate whether
the instruction-level parallelism (ILP) architectures (e.g.,
superscalar or VLIW) used in high-performance, high-
consumption processors can be adapted to low-power,
high-performance 8b or 16b microcontrollers. In order
to quantify the potential improvements that can be ob-
tained by these kinds of parallel architectures, we make
a comparison between low-power scalar processors and
low-power ILP processors in terms of both performance
and energy efficiency. The metric used in our compari-
son is the Energy Delay Product [5], EDP , defined as
the product between the total energy, ET , needed to ex-
ecute a task and the time, Texec, needed to execute this
task: EDP = ET � Texec.

Ricardo Gonzalez and al. [5] showed that superscalar
architectures with a compile-time scheduler do not im-
prove the energy-efficiency level. Thomas D. Burd [3]
argued that instruction-level parallelism (ILP) architec-
tures do not improve the energy efficiency due to the con-
trol overhead and the unissued instructions (speculation).
However, we believe that VLIW architectures adapted
for low-power can help us obtain a better consumption-
performance trade-off. These beliefs are motivated by
new developments in the VLIW field, such as the new
architectural solution HP/Intel IA-64 [6] and TI ’C6201
processors [15].

The remainder of this paper is organized as follows.
Section 2 describes the characteristics of the CoolRISC
816, which is the processor of reference of our experi-
ment. Section 3 presents the ILP architecture used in our
experiment to increase the performance of the low-power
processor of reference. Section 4 describes our experi-
ment and shows the results. Finally, Section 5 concludes.

2 CoolRISC 816: A low-power 8b processor

The CoolRISC 816 [13] is an ultra low-power embed-
ded 8b microcontroller developed by the Centre Suisse
d’Electronique et de Microtechnique (CSEM). It has the
following characteristics (core only): a harvard architec-
ture (separate code and data memory), sixteen 8-bit reg-
isters, 22-b wide instructions, a clock frequency of up
to 18 MHz, a typical consumption of 105 �W/MHz at 3



volts with a 0.5�m three metal layers CMOS technology.
The CoolRISC 816 has a non blocking pipeline

which allows it to execute an instruction every cycle
without adding extra delay due to pipeline stalls. The
main limitation from a performance point of view is the
working frequency: the maximum clock frequency of the
CoolRISC 816 core is 18 MHz, but generally the maxi-
mum working frequency is limited by the access time of
the code memory. The code memory used in CoolRISC
is ultra-low power at the cost of a slow access time.

The energy consumption of the CoolRISC 816 is dis-
tributed in three different parts: the core, the data mem-
ory and the code memory. Figure 1 shows the typical dis-
tribution of the energy consumption when CoolRISC is
executing a program. This data was obtained by execut-
ing a set of programs and extracting the relative utiliza-
tion of the core, data memory, and code memory. The set
of programs used consisted of: a quicksort, a stringsort, a
FFT, and a sine/cosine computation. The extracted aver-
age resource utilization is: 100% for the processor core,
100% for the code memory, and 40% for the data mem-
ory.
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Figure 1: Energy consumption distribution in the Cool-
RISC 816.

Figure 1 shows that the energy consumed by the pro-
cessor core corresponds to less than 50% of the total en-
ergy consumption and that the major sources of energy
consumption are the memories.

3 Increasing Performance

Currently, high-performance processors use instruction-
level parallelism (ILP) to increase their performance.
Indeed, a scalar processor such as CoolRISC 816 exe-
cutes sequentially a single flow of instructions. How-
ever, not all the executed instructions are interdependent
and therefore several of these instructions can be exe-
cuted in parallel.

Superscalar and VLIW [7] architectures are the two
main types of architectures that exploit instruction-level
parallelism to achieve a higher level of performance. Su-
perscalar processors fetch several instructions in the code
memory, analyze the dependencies between all of them,
and, according to the resource availability and the in-
struction dependencies, schedule the instructions in the
various units. Therefore, there is a considerable increase
in the circuit complexity due to the instruction dispatch
unit. VLIW architectures eliminate this increase in hard-
ware complexity using a compile-time instruction sched-

uler. This means that the control of the instruction de-
pendencies is made by the compiler. The VLIW com-
piler analyzes the code and, according to the proces-
sor’s resources and the dependencies between instruc-
tions, generates very large instructions that contain sev-
eral independent meta-instructions which will be exe-
cuted in parallel. The processor has only to fetch and ex-
ecute these very large instructions without checking the
meta-instruction dependencies.

VLIW architectures have a major drawback, the code
density of a VLIW processor depends on the available
instruction parallelism. If there is no sufficient instruc-
tion parallelism to generate a VLIW instruction that uses
all units, the non-used units will execute a NOP meta-
instruction, which results in a considerable increase in
code size, and therefore, in energy consumption. To
solve the problem of the NOP insertion, the new gener-
ation of VLIW processors, such as the HP/Intel Merced
[6], contains a special encoding technique which elim-
inates the extra-NOP insertion. Figure 2 illustrates this
kind of technique. Each VLIW instruction contains sev-
eral meta-instructions (four in our example) which could
be dependent or independent instructions. An additional
field is added to specify the group of meta-instructions
that will be executed in parallel. The unit number field
specifies which unit must execute the meta-instruction,
and the separator bit between two meta-instructions
within a meta-instructions is set to ’0’ if the two can be
executed in parallel, to ’1’ if they must be executed se-
quentially. The hardware costs of the NOP elimination
are the extra bits added to the code memory (3 bits per
meta-instruction in our example) and the crossbar needed
to send the meta-instruction to their corresponding unit.
However, this technique prevents the increase in code
size (and therefore of consumption) due to the extra NOP
insertion.
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Figure 2: VLIW architecture: NOP elimination.

VLIW architectures can be divided in two main
groups: (1) The heterogeneous VLIW architectures
which are the most common among existing VLIW ar-
chitectures. The term heterogeneous indicates that the
units are different, which in turn means that a meta-
instruction must be dispatched to a unit capable of ex-
ecuting it; (2) The homogeneous VLIW architectures
which are VLIW architectures composed of several units
which are able to execute any kind of meta-instruction.
As the units are homogeneous there is no need for a
crossbar to dispatch the meta-instructions to their corre-
sponding units, and therefore there is no need for a unit
number field.



4 Experimental part

This experiment aims at comparing 8-bit or 16-bit pro-
cessors, such as scalar and VLIW architectures, and
quantifying their differences in terms of both perfor-
mance and energy consumption. Performance and en-
ergy consumption are computed for the execution of a
benchmark suite composed of inner loops of several pro-
grams. Most of the execution time of a program is spent
in inner loops: for example, on a HP-PA 7100 proces-
sor, 78% [8] of the execution time of the Perfect Club
Benchmark Suite [2] is spent in inner loops. Therefore,
the performance achieved and the energy consumed in
inner loops are representative of the execution of the en-
tire program.

The next subsections address the following issues:
the compilation techniques used to obtain the executable
code of inner loops; the benchmark used for our eval-
uation; the architectures compared in our experiment;
the consumption model used to estimate the energy con-
sumption; and finally the results of our experiment.

4.1 Compilation techniques

The executable code for the different architectures is ob-
tained as follows: first, the dependencies graph of the in-
structions of the loop is generated; then, the instructions
are scheduled depending on the constraints imposed by
the data dependencies and by the architecture of the pro-
cessor.

To generate the graphs of dependencies, we used
principally the ICTINEO tool [1], which extracts the in-
ner loops of a FORTRAN program and provides an opti-
mized graph of dependencies for each inner loop.

Software pipelining has been used to schedule opera-
tions because it is the most effective compiling technique
for loop parallelization. The software pipeline technique
used is Swing Modulo Scheduling (SMS) [9]. SMS tries
to produce the maximum performance and, in addition,
includes heuristics to decrease the high register require-
ments of software pipelined loops [10]. When the num-
ber of registers required is higher than the available num-
ber, spill code [4] (i.e, instructions which temporarily
save the contents of some registers into the data mem-
ory) has to be introduced, increasing energy consump-
tion. When required, spill code was added in software
pipelined loops using the heuristics described in [11].

Figure 3 shows the principle of software pipelin-
ing. In the sequential execution of a loop each iteration
and each instruction are executed sequentially. Software
pipelining rearranges the instructions, according to the
dependencies and architectural constraints, in order to
obtain a loop divided in SC stages (three in our example,
from S0 to S2) which can be executed in parallel. Every
stage is divided in II (Initiation Interval) cycles in which
it is possible to execute one or more instructions.

4.2 Benchmark

As a benchmark, we used a set of 25 integer loops. These
loops are divided into three groups. The first includes
five integer loops which operate on 8-bit data: FIR fil-
ter, vector-matrix multiplication, vector-vector multipli-
cation (dot), vector-vector addition, and function inte-
gration. The second consists of the same five integer
loops operating on 16-bit data. Finally, the third group is
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Figure 3: Parallel execution of a loop using software
pipelining.

composed of 15 16-bit integer loops of the Perfect Club
Benchmark Suite [2].

4.3 Compared architectures

The evaluated architectures are based on the CoolRISC
architecture and use the same low-power memories that
have been used with CoolRISC 816. These memories
have the property of having no sense amplifiers, which
eliminates static energy consumption. Therefore, there
is no additional penalty due to the width of the instruc-
tion words.

C8 CoolRISC 816, processor of reference
C16 16-b version of the C8
V8E1 VLIW heterogeneous, 8-b, 1 Load/Store, 2

ALUs, 1 Branch Unit
V8E2 VLIW heterogeneous, 8-b, 2 Load/Store, 2

ALUs, 1 Branch Unit
V8H1 VLIW homogeneous, 4 units, 1 acces to the

data memory at the same time
V8H2 VLIW homogeneous, 4 units, 2 acces to the

data memory at the same time
V16E1 16-b version of the V8E1
V16E2 16-b version of the V8E2
V16H1 16-b version of the V8H1
V16H2 16-b version of the V8H2

4.4 Consumption model

The consumption model is based on the utilization of re-
sources. The energy needed to execute a task is com-
puted by summing the energy consumed by the different
resources. As CoolRISC 816 is our processor of refer-
ence, we base the energy consumption estimates on our
in-depth knowledge of the energy consumption charac-
teristics of the C8 processor, which are extracted from
the real implementation of the processor. Because the
compared VLIW architectures use the NOP elimination
technique, their instructions contain predecoded bits that
indicate which units must work. Therefore, it is possi-
ble to halt the signals activity of all unused units. As
a consequence, the units which do not execute a meta-
instruction do not consume any energy. For the hetero-
geneous VLIW architectures the energy needed to exe-
cute a meta-instruction is estimated as the energy con-
sumption of the operational part of the C8 or C16 pro-
cessor (pipeline, decoder, register file accesses, ALU op-
eration). For the homogeneous VLIW architectures the
energy needed to execute a meta-instruction is estimated
as the same energy needed to execute a scalar instruction
in the C8 or C16. This high-level modeling of the energy
consumed during the execution of an instruction implies
a certain loss of precision. However, one factor limits the
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impact of estimate error: as described in Section 2, the
energy consumed in the processor core represents only a
small part (about 30%) of the total energy consumption.

The energy needed to perform a memory (code or
data) access is estimated through a statistical energy con-
sumption model of the memory architecture. This model
takes into account the type of memory (RAM or ROM),
its size (in words), its geometry (number of rows and
columns), the width of the word, and the power sup-
ply voltage. The technological parameters are extracted
from a 0.5 � CMOS process. In our experiment we use
the typical value of the energy consumption per memory
access.

The extra consumption energy due to the intercon-
nection is estimated using a statistical model of the en-
ergy consumption of the crossbar and of the circuit over-
head due to the additional access ports of the register file.

4.5 Results

In this subsection we compare the performance and en-
ergy consumption of the architectures described in Sub-
section 4.3. All use the same power supply voltage
(Vdd=3V) and clock frequency (imposed by the access
time of the code memory). The experiment is repeated
for several memory configurations.

Figure 4 compares the performance, in terms of
speed-up, of the different processors with respect to the
C8 processor. Figure 5 shows the ratio between the en-
ergy consumption of the different processors and the C8,
while processor executing our benchmark. It illustrates
the energy consumption distribution. Figure 6 shows the
ratio between the energy-delay product achieved by the
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different processors and by the C8 processor, while exe-
cuting our benchmark.

From these three figures we can observe the advan-
tage of the transition: (1) from a 8-bit to a 16-bit archi-
tecture, and (2) from a scalar to a VLIW architecture.

The transition from a 8-bit to a 16-bit architecture
yields a major improvement in the energy-delay prod-
uct (approximately a factor of four). This is a conse-
quence of the smaller number of instructions required
to execute the benchmark, which contains a majority of
16b data. Performance increases by a factor of about 2.4
while energy consumption decreases by a factor of about
1.7. This result shows the importance of having an archi-
tecture able to process efficiently the data of the applica-
tion.

The transition from scalar to a VLIW architecture im-
proves significantly the energy-delay product (by a factor
varying between 2.0 and 2.8). Indeed, VLIW architec-
tures achieve better performance while consuming more
or less the same energy as scalar architectures. This ob-
servation is explained by a redistribution of the energy
consumption: the increase in energy consumption of the
VLIW core is compensated for by a decrease in the en-
ergy consumption of the code memory. The increase is
due to the circuit overhead introduced by the intercon-
nections (crossbar and register file). On the other hand,
the decreased consumption of the code memory can be
explained as follows: first, the employed memories do
not have sense amplifiers, and therefore do not consume
static energy (i.e., there is no penalty for the larger in-
struction words); second, a VLIW processor requires less
energy to fetch a meta-instruction than a scalar architec-
ture. In fact, as the energy consumed by the line de-
coder is independent of the width of the word, the energy
needed to fetch four instructions simultaneously is less
than four times the energy consumption needed to fetch
one instruction.

The main difference between homogeneous and het-
erogeneous VLIW architectures is in terms of perfor-
mance. The former reach a higher level of performance
due to their higher machine parallelism; however, the
downside is the higher core complexity, which entails a
higher energy consumption. Therefore, if the ILP is in-
sufficient, the homogeneous and heterogeneous VLIW
architectures have a similar energy-delay product since
there is no significant difference in terms of speed-up.
On the other hand, if sufficient ILP can be extracted then
the homogeneous architecture attains a higher level of
performance (as is the case for our 8-bit processors), ul-



timately superseding the heterogeneous one with respect
to the energy-delay product.

5 Conclusion

In this paper we have shown that an adaptation of high-
performance architectures, such as the VLIW architec-
ture, to low-power embedded 8b or 16b microcontrollers
using low-power memories yields a significant improve-
ment of the energy-delay product compared to a scalar
processor. This improvement, by a factor varying be-
tween 2 and 3, is obtained through a redistribution of
the energy consumption, which allows to obtain a higher
level of performance while keeping the energy consump-
tion at the same level. We have also shown the impor-
tance of using a processor adapted to the size of the data
in order to minimize the number of instructions executed,
which leads to a decrease in the energy consumption and
in the time of execution.

Our results are based on loop parallelization and on
a high-level energy consumption model, which allow
us to validate the use of VLIW architectures for high-
performance low-power processors and to identify which
VLIW architecture provides the best results. The next
step will be to develop a complete VLIW compiler and
a prototype of such a low-power VLIW processor in or-
der to compute the energy consumption more precisely.
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Abstract
The M•CORE microRISC architecture has been developed to

address the growing need for long battery life among today’s por-
table applications.  In this paper, we will present the low-power
design techniques and architectural trade-offs made during the
development of this processor. Specifically, we will discuss the
initial benchmarking, the development of the Instruction Set
Architecture (ISA), the custom datapath design, and the clocking
methodology . Finally, we will discuss two system solutions utiliz-
ing the M•CORE processor, presenting power, area, and perfor-
mance metrics.

1 Introduction

There is significant effort directed toward minimizing the
power consumption of digital systems. Minimization techniques
have been applied to various levels of abstraction from the circuit
to the system level. The industry, coupled with contributions from
the research community, has developed new architectures and
microarchitectures [22,23], derivatives of existing architectures
[1,15], compiler and compression optimizations [16,17],
enhanced process technology [10], and new tools [11] and design
techniques [5,7,14] to enhance overall system performance,
which in this context translates to a decrease in milliwatts per
MHz.

Existing architectures are not suitable for low-power applica-
tions due to their inefficiency in code density, memory bandwidth
requirements, and architectural and implementation complexity.
This drove the development of the new general purpose
microRISC M•CORE architecture [18,21], which was designed
from the ground up to achieve the lowest milliwatts per MHz.
The M•CORE instruction set was optimized using benchmarks
common to embedded applications coupled with benchmarks tar-
geted specifically for portable applications. Compilers were
developed in conjunction with the instruction set to maximize
code density.

The benchmarks used to drive the development of the
M•CORE architecture, as well as for making design trade-offs,
are presented in Section 2. In Section 3, an overview of the
instruction set is presented. Section 4 presents implementation
details and various design methodologies. Section 5 presents
power consumption statistics. Two system solutions based on the
M•CORE microprocessor are presented in Section 6. Section 7
summarizes the paper.

2 Benchmarks

Embedded and portable benchmarks were used to make
design trade-offs in the architecture and the compiler. The Pow-
erstone benchmarks, which include paging, automobile control,
signal processing, imaging, and fax applications, are detailed in
Table 1.

3 Instruction Set Architecture

3.1 Overview

The M•CORE instruction set is designed to be an efficient
target for high-level language compilers in terms of code density
as well as execution cycle count. Integer data types of 8, 16 and
32-bits are supported to ease application migration from existing
8 and 16 bit microcontrollers. A standard set of arithmetic and
logical instructions are provided, as well as instruction support
for bit operations, byte extraction, data movement, and control

Table 1: Powerstone benchmark suite

Benchmark Instr. Count Description

auto 17374 Automobile control applications

bilv 21363 Shift, and, or operations

blit 72416 Graphics application

compress 322101 A Unix utility

crc 22805 Cyclic redundancy check

des 510814 Data Encryption Standard

dhry 612713 Dhrystone

engine 986326 Engine control application

fir_int 629166 Integer FIR filter

g3fax 2918109 Group three fax decode (single
level image decompression)

g721 231706 Adaptive differential PCM for
voice compression

jpeg 9973639 JPEG 24-bit image decompres-
sion standard

pocsag 131159 POCSAG communication pro-
tocol for paging application

servo 41132 Hard disc drive servo control

summin 3463087 Handwriting recognition

ucbqsort 674165 U.C.B. Quick Sort

v42bis 8155159 Modem encoding/decoding

whet 3028736 Whetstone



flow modification.
A small set of conditionally executed instructions are avail-

able, which can be useful in eliminating short conditional
branches. These instructions utilize the current setting of the pro-
cessor’s condition bit to determine whether they are executed.
Conditional move, increment, decrement, and clear operations
supplement the traditional conditional branch capabilities.

The M•CORE processor provides hardware support for cer-
tain operations which are not commonly available in low-cost
microcontrollers. These include single-cycle logical shift (LSL,
LSR), arithmetic shift (ASR), and rotate operations (ROTL), a
single cycle find-first-one instruction (FF1), a hardware loop
instruction (LOOPT), and instructions to speed up memory copy
and initialization operations (LDQ,STQ). Also provided are
instructions which generate an arbitrary power of 2 constant
(BGENI, BGENR), as well as bit mask generation (BMASKI)
for generating a bit string of ‘1’s ranging from 1 to 32 bits in
length. Absolute value (ABS) is available for assisting in magni-
tude comparisons.

Because of the importance of maximizing real-time control
loop performance, hardware support for multiply and divide is
also provided (MULT, DIVS, DIVU). These instructions provide
an early-out execution model so that results are delivered in the
minimum time possible. Certain algorithms also take advantage
of the bit reverse instruction (BREV), which is efficiently imple-
mented in the barrel shifter logic [3].

3.2 16-Bit vs. 32-Bit

System cost and power consumption are strongly affected by
the memory requirements of the application set. To address this,
the M•CORE architecture adopts a compact 16-bit fixed length
instruction format, and a 32-bit Load/Store RISC architecture.
The result is high code density which reduces the total memory
footprint, as well as minimizing the instruction fetch traffic.

Benchmark results on a variety of application tasks indicate
that the code density of the M•CORE microRISC engine is
higher than many CISC (complex instruction set computer)
designs, in spite of the fixed length nature of the encodings.
Fixed-length instructions also serve to reduce the CPU’s control
unit complexity, since instructions have a small number of well
structured formats, thus simplifying the decoding process.

3.3 Low-Power Instructions

The M•CORE processor minimizes power dissipation by uti-
lizing dynamic power management. DOZE, WAIT, and STOP
power conservation modes provide for comprehensive system
power management. These modes are invoked via issuing the
appropriate M•CORE instruction. System level design dictates
the operation of various components in each of the low power
modes, allowing a flexible set of operating conditions which can
be tailored to the needs of a particular application. For example, a
system may disable all unnecessary peripherals in DOZE mode,
while in STOP mode, all activity may be disabled. For short term
idle conditions, the WAIT mode may disable only the CPU, leav-
ing peripheral functions actively operating [18].

3.4 Instruction Usage

The M•CORE ISA was profiled by running the Powerstone
benchmark suite on a cycle accurate C++ simulator. Table 2
shows the percentage of dynamic instructions utilizing the adder
and barrel shifter, as well as the percentage of change of flow and
load/store instructions.

4 Processor Implementation

The initial implementation of the M•CORE architecture was
targeted at sub-2.0 volt operation from 0-40 MHz and achieves
both low-power consumption and high-performance in a 0.36-
micron low-leakage static CMOS process. In addition, a die size

of just over 2 mm2 was achieved by utilizing a synthesizable con-
trol section and full-custom datapath. The first implementation is
also being produced in a 0.31-micron process for a cellular appli-
cation and has been targeted for production in a 0.25-micron pro-
cess for other embedded applications. Other low-power process
technologies are being investigated including a Silicon On Insu-
lator (SOI) process [2].

Power consumption was minimized in the first implementa-
tion of the M•CORE architecture by: (i) gating clocks; (ii) utiliz-
ing delayed clocks to minimize glitching; and (iii) optimizing the
clock tree. Powermill [12], Spice, and Focus [8], a transistor siz-
ing power optimization tool, were used to optimize the circuits.

Figure 1: M •CORE datapath

a. 83.5% of change of flow instructions are taken.

Table 2: Dynamic instruction percentages

Type Dyn. Inst.
Percentage

Adder usage 50.23%

Barrel shifter usage 9.68%

Change of flow instructionsa 17.04%
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4.1 Datapath Design

The M•CORE datapath consists of a register file, an instruc-
tion register, an adder, a logical unit, a program counter, a branch
adder, and a barrel shifter. A block diagram of the datapath is
shown in Figure 1.

4.1.1 Synthesizable vs. Custom
Synthesis methodologies have the advantage of decreased

time to market, fewer resource requirements, and the ability to
quickly migrate to different technologies. Custom designs lack
those benefits, but can achieve faster performance, consume less
power, and occupy less area.

Research was conducted to determine whether to pursue a
synthesizable or custom datapath design. An energy-delay metric
[13] was used to develop a custom 32-bit adder. Our studies
showed that in going from a custom to a synthesized adder, tran-
sistor count increased by 60%, area increased by 175%, and
power consumption increased by 40%. This research coupled
with similar block-level comparisons led to the development of a
full-custom datapath.

4.1.2 Speed, Area and Power Trade-off
Focus [8] was used to optimize speed, area and power in the

custom datapath. Focus takes a user-specified circuit and timing
constraints and generates a family of solutions which form a per-
formance/area trade-off curve. Given a set of input vectors,
Focus allows the user to invoke Powermill interactively to mea-
sure power at any given solution. The user is then allowed to
select the solution with the desired performance, area, and power
characteristics.

Focus uses a dc-connected component-based static timing
analysis technique to propagate the arrival times in a forward
pass through the circuit, and the required times in a backward
pass. At each node, a slack is generated as the difference between
the required and the arrival times (negative slack denotes a viola-
tion of a constraint).

Focus performs a hill climbing search starting from a mini-
mum sized circuit (or a given initial circuit). In each step, Focus
picks a set of candidate transistors to size based on their sensitiv-
ity to the overall path delay, and iteratively and gradually
approaches a solution that will meet the timing constraints[8].

Figure 2: Speed and area trade-off

Figure 2 shows an example of how Focus was used to design
the logical bit in the ALU. The vertical axis is expressed in some
normalized area cost, while the horizontal axis represents the
slack in nanoseconds.

The figure shows that Focus gives a family of solutions. It
also shows that faster timing can be achieved at the expense of
higher area cost. Utilizing this family of solutions, a solution was
selected to meet the timing constraints with optimal area and
power savings.

4.1.3 Floorplanning
Floorplanning of the datapath blocks was based on bus

switching activity, timing, and block usage percentages derived
from the Powerstone benchmarks. Blocks having output busses
with high switching activity, tight timing requirements, and high
usage were placed close together to minimize the routing capaci-
tance. When searching through the solution space of block place-
ment, timing constraints were used as hard constraints, while
switching activities, weighted by their appropriate routing dis-
tances and block usage, were used as a cost function in the itera-
tive search process.

In the final floorplan, shown in Figure 3, each horizontal line
represents a multiple bit (up to 32 bits) data bus route. The datap-
ath could be roughly partitioned into two halves, separated by the
register file: the left half includes the address and data interface,
the instruction register, the branch adder, and the address genera-
tion unit; the right half includes the execution units.

Figure 3: Datapath floorplan

4.1.4 Register File Design
An architectural decision was made to have sixteen general

purpose registers based on the limited opcode space. An alternate
set of sixteen 32-bit registers is provided as well, to reduce the
overhead associated with context switching and saving/restoring
for time-critical tasks. This alternate register file can be selected
via a bit (AF) in the processor status register (PSR). Upon detect-
ing an exception, the hardware places bit 0 of the exception vec-
tor table entry into the AF bit in the PSR. This allows the
exception handler to select either register file for exception pro-
cessing with no cycle penalty [20]. Hardware does not preclude
access to the alternate register file in user mode, resulting in a
larger working set of registers. This can result in a reduced num-
ber of memory fetches, thereby saving power.

In supervisor mode, an additional 5 supervisor scratch regis-
ters can be accessed by means of the move-to-control-register
(MTCR) and move-from-control-register (MFCR) instructions.
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The register file also includes: (i) feed forwarding logic; (ii)
immediate muxes to produce various constants; and (iii) scale
logic for computing load/store addresses.

4.1.5 Barrel Shifter Design
As noted earlier, approximately 10% of the instructions exe-

cuted in the Powerstone benchmarks utilize the barrel shifter. In
addition, barrel shifters are typically one of the highest power
consuming modules in datapath designs. A comparison was
made between two competing barrel shifters to determine which
one offered the least current drain within a given performance
requirement.

“Snaked Data” Barrel Shifter
“Snaked data” barrel shifters contain a 32x32 array of transis-

tors. For precharged shifter outputs, the array uses nmos transis-
tors. The term “snaked data” comes from the fact that input data
(IL[2:0],IR[3:0]) is driven diagonally across the array, as shown
in Figure 4. Control signals (S[3-0]) to select the amount of the
shift are driven vertically and outputs (O[3:0]) are driven hori-
zontally. Data enters the shifter through multiplexers with selec-
tion based on the type of shift operation, either rotates, logicals,
or arithmetics. The control signals are generated from a 5-32
decoder for 32-bit shifters, where 5 bits represent the amount to
shift and can be inverted to select shifts in the opposite direction.

Figure 4: 4-bit “snaked data” barrel shifter

“Snaked Control” Barrel Shifter
“Snaked control” barrel shifters contain a 32x32 array of tran-

sistors. For precharged shifter outputs, the array uses nmos tran-
sistors. The term “snaked control” comes from the fact that
control signals (SL[3:1],SR[3:0]) are driven diagonally across
the array as shown in Figure 5. Shifter outputs (O[3:0]) are
driven vertically and inputs (I[3:0]) are driven horizontally. Con-
trol signal assertion is based on the type of shift operation, either
rotates, logicals, or arithmetics and the amount of the shift. The
control signals require a 5-32 decoder, where 5 bits represent the
amount of shift, as well as a greater-than decoder for arithmetic
operations.

Figure 5: 4-bit “snaked control” barrel shifter

Barrel Shifter Selection
There are three components of routing in either shifter design.

Table 3 shows the routing breakdown for the two 32-bit shifters.

Control signal power consumption is negligible in both cases,
since the selections are one-hot. Even though the total length of
power consuming data routing for the two designs is nearly the
same, the “snaked control” barrel shifter actually has signifi-
cantly less routing capacitance, 5.9 pF vs. 7.4 pF, because of
metal layer usage.

It would appear that the “snaked control” would be the ideal
choice for a power conscious design. However, further analysis
of the Powerstone benchmarks was required. Many benchmarks
perform similar types of shifts in succession. In fact, 64% of the
shifts are either logical shift left to logical shift left, or logical
shift right to logical shift right. Under these conditions, the
“snaked data” shifter maintains constant data input into half of
the array throughout the entire algorithm. In these circumstances,
the “snaked data” shifter toggles over 30% less capacitance then
the “snaked control” barrel shifter.

4.2 Clocking System Design

Clock gating saves significant power by eliminating unneces-
sary transitions of the latching clocks. Furthermore, it also elimi-
nates unnecessary transitioning of downstream logic connected
to the output of the latches. In the datapath, delayed clocks are
generated for late arriving latch input data in order to further
minimize downstream glitching.

Power due to clocking can vary anywhere from 30% to 50%
in a power-optimized design [4]. As more and more datapath
power optimizations were added to the design, the percentage of
power due to clocking increased. Therefore, it was crucial to
aggressively attack clock power consumption.

The M•CORE processor uses a single global clock with local
generation of dual phase non-overlapping clocks. The global
clock proceeds through two levels of buffering/gating; a clock
aligner and regenerator, as shown in Figure 6 and Figure 7
respectively. The aligner generates the dual phase clocks, while
the regenerator provides local buffering.

Figure 6: Clock aligner
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Table 3: Snaked control vs. snaked data routing

Shifter Type
Input Data

Routing
Output Data

Routing
Control
Routing

Snaked control 12,896 173,056 171,962

Snaked data 171,962 24,576 173,056
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Figure 7: Clock regenerator
Clock gating can be performed at the aligners and/or the

regenerators. This allows for complete or partial clock tree dis-
abling. Besides shutting down the system clock input completely,
gating at the aligners allows for maximum power savings by
shutting down a collection of regenerators. In the instruction
decoder, for example, the clocking for over 60 latches and flip-
flops is disabled during pipeline stalls.

5 Power Measurement

Powermill and Pathmill were used to perform the following
tasks: (i) measuring power usage of each block to detect any
design anomalies; (ii) detecting nodes with excessive DC leakage
current; (iii) locating hot spots in the design; and (iv) identifying
nodes with excessive rise and fall times. Various design changes
were made based on these findings.

5.1 Processor Power Distribution

M•CORE processor power was measured using Powermill on
a back-annotated taped out implementation of the architecture.
Clock power is 36% of the total processor power consumption,
as shown in Figure 8. It is important to note that due to measure-
ment constraints, the datapath regenerator clocking power is
included in the datapath percentage, not the clocking power per-
centage. This clocking power would push the clock power per-
centage even higher. This is a good indication that the datapath
and control sections are well optimized for power. It is also
important to note that through utilization of the low-power mode
instructions, the system clock can be completely shut down.

Figure 8: Processor total power distribution

5.2 Datapath Power Consumption

Figure 9 shows the breakdown of the datapath power con-
sumption. The register file consumes 16% of total processor

power consumption and 42% of the datapath power consump-
tion. It is the largest consumer of datapath power and occupies
46% of the datapath area as well. The barrel shifter consumes
less than 4% of the total processor power consumption and 8% of
the datapath power consumption.

The address/data interface contains the local bus drivers. The
instruction register drives the instruction decoder in the control
section. The operand muxes drive the ALU, priority encoder, and
condition detect logic. The address generation unit contains the
program counter and dedicated branch adder circuitry (see Fig-
ure 1).

Figure 9: Datapath power consumption

6 System Solutions

6.1 MMC2001

The MMC2001 low power platform incorporates an
M•CORE integer processor, an on-chip memory system, a

OnCETM debug module, an external interface module, and
peripheral devices [19]. It includes a section of 20K gates that are
customizable. The MMC2001’s production version is imple-
mented in a 0.36 micron, triple-layer metal low-leakage static
CMOS process. The on-chip memory system consists of 256
KBytes of ROM and 32 KBytes of SRAM. The device measures
7.23 mm on a side or 52 sq. mm. The part is packaged in a 144
pin Thin Quad Flat Package (TQFP) and achieves 34 MHz per-
formance at 1.8 V.

The MMC2001, when running out of internal SRAM, con-
sumes on average less than 30 mA at 2.0 V, which translates into
less than 60 mW at 34 MHz for the complete system. On aver-
age, this implementation of the M•CORE processor consumes 7
mA, which translates to a 0.40 mW/MHz rating. When the part is
put into STOP mode, the part consumes less than 50 microamps
with the clock input shut down. When the part goes into a low
voltage detect condition with just the oscillator, SRAM backup
and time-of-day timer running, the part consumes less than 5
microamps.

6.2 MMC56652

The MMC56652 Dual-Core Baseband Processor incorporates
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an M•CORE integer processor, an on-chip memory system, a

OnCETM debug module, an external interface module, and
peripheral devices [9]. It includes a 56600 Onyx Ultra-Lite 16-bit
digital signal processor, program and data memory, and periph-
eral devices. The MMC56652’s production version is imple-
mented in a 0.31 micron, triple-layer metal static CMOS process.
This device consists of 8 KBytes of ROM and 2 KBytes of
SRAM to support the M•CORE processor. The chip measures
7.4 mm on a side or 55 sq. mm. The part is packaged in a 196
plastic ball grid array (PBGA) and was designed for 16.8 MHz
performance at 1.8 V.

The MMC56652 when running out of internal SRAM con-
sumes on average less than 9 mA at 1.8 V, which translates into
less than 16.2 mW at 16.8 MHz for the complete system. On
average, this implementation of the M•CORE processor con-
sumes 2.8 mA, which translates to a 0.30 mW/MHz rating. The
part consumes less than 60 microamps in STOP mode.

7 Conclusion

The M•CORE architecture development represents four years
of research in the area of low-power embedded microprocessor
and system design. This research encompassed all levels of
abstraction from application software, system solutions, com-
piler technologies, architecture, circuits, and process optimiza-
tions.

The instruction set architecture was developed in conjunction
with benchmark analysis and compiler optimization. A full-cus-
tom datapath design with clock gating was utilized to minimize
the power consumption. Two system solutions integrating the
M•CORE microprocessor were presented along with power,
area, and performance metrics.

Further research will involve allocating unutilized opcode
space, along with additional compiler enhancements. Bench-
marks will continue to be added to the Powerstone suite reflect-
ing future portable low-power applications. Efforts will be made
to drive novel design techniques and process technologies into a
production environment in order to achieve higher levels of
power reduction and performance.
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