Power Driven
Microarchitecture Workshop

In Conjunction with ISCA 98
Barcelona, Spain

Sunday, June 28, 1998

Organizers:
Dirk Grunwald, University of Colorado
Srilatha (Bobbie) Manne, University of Colorado
Trevor Mudge, University of Michigan

Table of Contents

180T 11 o 1 o S PSS 1
BUSTranSItioN ACHIVITY SESSION......c.ciiiiiiiieie e see sttt sttt ee e sreeeesseesbeeneesseeee 2
Reducing the Energy of Address and Data Buses with the Working-Zone
Encoding Technique and its Effect on Multimedia Applications............cccovereeieneenennnn. 3
Enric Musoll, Tomas Lang, and Jordi Cortadella
Reduced Address Bus Switching with Gray PC...........ccocceiieieieiiee e 9

Forrest Jensen and Akhilesh Tyagi

Instruction Scheduling for Low Power Dissipation in High Performance

IV I CTOPIOCESSOIS.veeuveeueesteetesseesteetesseesteesesseesseensesseesseeneesseaseeseesseensesneeaseesesneesseensenneans 14
Mark C. Toburen, Thomas M. Conte, and Matt Reilly

Code Transformations for Embedded Multimedia Applications: Impact on

POWEr @Nd PerfOIMANCE.........eiiiieieeeiere ettt se et saesnenre s 20
N. Zervas, K. Masselos and C.E. Goutis

Modeling Inter-Instruction Energy Effectsin aDigital Signal Processor............ccccveueenie.. 25
Ben Klass, Don Thomas, Herman Schmit, and David Nagle

Power [ssuesin the Memory SUDSYSLEM ... e 31

Split Register File Architecturesfor Inherently Low Power Microprocessors................... 32
V. Zyuban and P. Kogge

Energy Efficient Cache Organizations for Superscalar ProCeSSOrs..........cccvveeevieieeseeennenn. 38
Kanad Ghose and Milind Kamble

Power and Performance Tradeoffs Using Various Cache Configurations..............ccce...... 44
Gianluca Albera and Iris Bahar

A New Scheme for I-cache Energy Reduction in High-Performance Processors.............. 50
Nikos Bellas, Ibrahim Hajj and Constantine Polychronopoul os

Low-Power Design of Page-Based Intelligent Memory...........cccooveveeeeiecceceeseccie e 55
Mark Oskin, Frederic T. Chong, Aamir Farooqui, Timothy Sherwood,
and Justin Hensley

Power Reduction by Low-Activity Data Path Design and SRAM Energy Modeéls............ 61
Mir Azam, Robert Evans, and Paul Franzon

Cache-in-Memory: A LOW POWEr AItErNaLIVE?..........ccvveereee e ee e 67
Jason Zawodny, Eric W. Johnson, Jay Brockman, and Peter Kogge

Innovative VL Sl Techniques for Power ReAUCLION..........cccveeevieeiiiiieseee e 73

Dynamic Voltage Scaling and the Design of a Low-Power Microprocessor System......... 74
Trevor Pering, Tom Burd, and Robert Broderson

Transmission Ling ClOCK DIV ...t 80
Matthew Becker and Thomas Knight, Jr.

Architectural Power Reduction and POWer ANAIYSIS.......cccoviieririnenineseeieeesee s 86

AnArchitectural Level POWEr ESHIMALO.........ccooiiiiiiereeiesie e 87
Rita Yu Chen, Mary Jane Irwin, and Raminder S Bajwa

Multivariate Power/Performance Analysis For High Performance Mobile

MICIOPIOCESSON DESIGN.....coiiiiiiitieitieie ettt b et sre e e e e e ne e b s neesre e 92
George Z.N. Cai, Kingsum Chow, Tosaku Nakanishi, Jonathan Hall
and Micah Barany

Power-Aware Architecture Studies: Ongoing Work at PrinCeton............ccccceveeeverieeneennns 98
Christina Leung, David Brooks, Margaret Martonosi, and Douglas Clark

Architectural TradeoffSTfor LOW POWEN...........ccccveiriiiini e 102
\Vojin G. Oklobdzja

The Inherent Energy Efficiency of Complexity-Adaptive Processors...........ccuvverennene 107
David Albonesi

Function Unit POWEr REAUCTION..........ccieiiiieiieie e ee e sie e e e e e s e sseense e nneenes 113
Minimizing Floating-Point Power Dissipation via Bit-Width Reduction........................ 114

Ying-Fai Tong, Rob Rutenbar, and David Nagle
A Power Management for Self-Timed CMOS Circuits (FLAGMAN) and

Investigations on the Impact of Technology SCaling..........ccoceevvreenenin e 119
Thomas Schumann , Ulrich Jagdhold, and Heinrich Klar

Hybrid Signed Digit Representation for Low Power Arithmetic Circuits........................ 124
D. Phatak, Seffen Kahle, Hansoo Kim, and Jason Lue

ARErNALIVE AT CNITECIUINES.... .ottt e e et e e s reenae et e s reenneenee e 130

Power-Saving FeatureSINAMULET2€........cccooiiiiiieeeeese s 131
SB. Furber, J.D. Garside, and S. Temple

A Fully Reversible Asymptotically Zero Energy MiCroproCeSsor...........cccveeveeviveesueeanes 135

Carlin Vieri, M. Josephine Ammer, Michael Frank,
Norman Margolus and Tom Knight

Low-Power VLIW Processors: A High-Level Evaluation.............ccocoeeeveeieeiescenienene 140
Jean-Michel Puiatti, Christian Piguet, Josep Llosa,
and Eduardo Sanchez

Designing the Low-Power M* CORE™ ArChiteCtUre...........ov.oveevereeeeeeeeeeeseeeeseeenenne 145

Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer

YN U oo G N T [RO 151

Power-Driven MicroarchitectureWor kshop

I ntroduction

In recent years, reducing power dissipation has become a critical design goal for many micropro-
cessors due to portability and reliability requirements. Most of the power reduction was achieved
through supply voltage reduction and process shrinks. However, there is alimit to how far supply
voltages may be reduced, and the power dissipated on-chip is increasing even as process technol-
ogy improves. Further advances will require not only circuit and technology improvements but
new ideas in microarchitecture. This will be true not only for the obvious situation of portable
computers but also for high-performance systems. It was the goal of the Power-Driven Microar-
chitecture Workshop to provide a forum for examining innovative architectural solutions to the
power problem for processors at all levels of performance.

The Power-Driven Microarchitecture Workshop was held in conjunction with the ISCA98 confer-
ence. The response to the call for papers was outstanding, enabling us to assemble an strong pro-
gram of over two dozen papers. Three invited speakers, Mark Horowitz of Stanford, and Vivek
Tiwari and Doug Carmean from Intel provided a brief tutorial introduction to power issues in
VLS| design, and covered existing problems and solutions in the microprocessor market. The pur-
pose of these tutorials was to establish common ground for discussing power issuesin

processor design.

It isour hope that, as aresult of this workshop, the level of awareness will have been raised in the
architecture community about issues related to power dissipation and energy consumption. We
further hope that this heightened awareness will lead to exciting new research in the area.

Dirk Grunwald
Bobbie Manne
Trevor Mudge

Bus Transition Activity

Reducing the Energy of Address and Data Buses with the
Working-Zone Encoding Technique and its Effect on Multimedia
Applications *

Enric Musoll

Cyrix Dept. of Electrical and Computer Eng.

(National Semiconductor Corp.)
Santa Clara, CA 95052

enricQcyrix.com

Abstract

The energy consumption due to I/O pins is a substantial
part of the overall chip consumption. This paper gives an
overview of the Working Zone Encoding (WZE) method for
encoding for low power the external address and data buses,
based on the conjecture that programs favor a few working
zones of their address space at each instant. In such cases,
the method identifies these zones and sends through the ad-
dress (data) bus only the offset of this reference (data value)
with respect to the previous reference (data value) to that
zone, along with an identifier of the current working zone.
This is combined with a one-hot encoding for the offset.

The paper then focuses on preliminary work on the fol-
lowing two topics:

e reduction of the effect of the WZE delay on the bus
access time by overlapping this delay with the virtual
to physical address translation. Although the modi-
fication to allow this overlapping might increase the
bus energy, simulations of the SPEC benchmarks in-
dicate that for a page size of 1 KB or larger the effect
is negligible.

e extension of the technique for the data bus to some
multimedia applications which are characterized by
having packed bytes in a word. For two typical appli-
cations, the data-only data bus and data-only address
bus I/O activity is reduced by 74% and 51% with re-
spect to the unencoded case, and by 68% and 33% with
respect the best of the rest of the encoding techniques.

1 Introduction

The I/O energy is a substantial fraction of the total energy
consumption of a microprocessor [4], because the capaci-
tance associated with an external pin is between one hun-
dred and one thousand times larger than that corresponding
to an internal node. Consequently, the total energy con-
sumption decreases by reducing the number of transitions
on the high-capacitance, off-chip side, although this may

*This work has been partially funded by CICYT TIC 95-0419.

Tomads Lang

University of California at Irvine
Irvine, CA 92697

tomas@ece.uci.edu

Jordi Cortadella
Dept. of Software
Universitat Politecnica de Catalunya
08071 Barcelona, Spain

jordic@Isi.upc.es

(or multiplexeg,\/
data bus)

| Data bus

D Data bus

Address
generator

i Memory
unit

Execution
core

o e |
multiplexed

address bus)

Figure 1: Bus types in a general-purpose microprocessor.

come at the expense of some additional transitions on the
low-capacitance, on-chip side.

For a microprocessor chip, the main I/O pins correspond
to the address and data buses. In this work, we consider an
encoding to reduce the activity in both of these buses. If
the value carried by n bits has to be transmitted over a
bus, a reduction in the switching activity of this bus may
be obtained at the cost of extra hardware in the form of
an encoder on the sender device, a decoder on the receiver
device, and potentially a larger number of wires m.

In [10] and [11] we have presented the Working-Zone
Encoding (WZE) method, which is based on the conjec-
ture that applications favor a few working zones of their
address space. Moreover, consecutive addresses to each of
these working zones frequently differ by a small amount. In
such cases, an offset with respect to the previous address for
that zone is sent, together with a zone identifier. The offset
is encoded so as to reduce the activity of the address bus.
This scheme is extended to the data bus [8] by noticing that
the data for successive accesses to a working zone frequently
differ also by a small amount, so that it is effective also to
send the offset.

To evaluate the effectiveness of the technique in general
applications, several SPEC95 streams of references to mem-
ory along with the corresponding data values were used.
Among the possible bus organizations (see Figure 1), we
have considered a multiplexed address bus (for instruction
and data addresses) and a multiplexed instruction/data bus,
with and without a unified 8K-byte direct-mapped cache.
We also have compared with previously proposed encodings:
Gray, bus-invert, T0, combined T0/bus-invert, inc-xor and
dbm-vbm. Table 1 summarizes the results obtained. The
table shows the energy reduction ratios of the WZE tech-

Address Bus Ratio Ins/Data Bus Ratio Both Buses Ratio

vs. non vs. best vs. non vs. best vs. non vs. best

encoded of rest encoded of rest encoded of rest
Avg. (no cache) (0.39) 0.47 | (0.54) 0.66 | (0.67) 0.73 | (0.77) 0.84 | (0.56) 0.63 | (0.69) 0.78
Avg. (with cache) | (0.71) 0.87 | (0.87) 1.06 | (0.53) 0.63 | (0.61) 0.72 | (0.60) 0.72 | (0.70) 0.85

Table 1: Results summary for some SPEC95 streams. Ratios are calculated as Energy WZE/Energy other, being other the
unencoded case and the best of the rest of the techniques evaluated. Energy overhead of the encoder/decoder logic is only
included for the WZE technique. In parenthesis, without overhead.

nique with respect to the unencoded case and to the best of
the rest of the techniques, for each of the buses and for both
together. We conclude that the WZE encoding significantly
reduces the activity in both buses. Moreover, for the case
without cache, the technique presented here outperforms the
other previous bus encoding proposals for low power. On the
other hand, for the case with cache the best scheme for the
address bus is either the WZE presented here or bus-invert
with four groups, depending on the overhead of these two
techniques. In any case, the WZE method outperforms the
rest of the techniques when both buses are encoded, and re-
quires fewer additional wires than the bus-invert with four
groups.

In this paper we give an overview of the WZE technique
and summarize previous work on the topic; this material is
similar to that of [8] and should give the reader a reasonable
understanding of the method. For more details consult [10,
11]. We then focus on preliminary work on the following
two topics:

e Reduction of the effect of the WZE delay on the bus
access time by overlapping this delay with the virtual
to physical address translation.

e Use of the WZE technique in multimedia applications,
which are characterized by having packed bytes in a
word. Because of the particular features of these ap-
plications, we explore the possibility of special modifi-
cations to the encoding technique for the data bus.

1.1 Previous work

Several encoding techniques for reduced bus activity have
been reported, such as one-hot [6], Gray [7], bus-invert [13],
T0 and combined bus-invert/T0 [5], and inc-xor and dbm-
vbm [12].

One-hot encoding results in a reduced activity because
only two bits toggle when the value changes. However, it
requires a number of wires equal to the number of values
encoded, so that it is not practical for typical buses.

Gray and T0 encoding are targeted to situations in which
consecutive accesses differ by one (or by a fixed stride). The
Gray encoding is useful because the encoding of these values
differs by one bit. In the TO encoding an additional wire is
used to indicate the consecutive access mode, and no activity
is required in the bus.

The bus-invert method [13] consists on sending either the
value itself or its bit-wise complement, depending on which
would result in fewer transitions. An extra wire is used
to carry this polarity information. For uniform and inde-
pendent distributions, this encoding technique works better
when the bit-width of the value to be sent is divided into
smaller groups and each one encoded independently. The
bus-invert technique has been combined with T0 in [5], thus
obtaining more activity reduction than each of the tech-
niques by itself.

vector A

PDAT 0
{PREF 0

[PREF 1

Address
space

2I’|
working zone
ﬂ\

vector B

PDAT 2
[PREF 2

vector C

W

value hold
by PDAT2

Figure 2: Address space with three vectors.

A source-coding framework is proposed in [12] as well as
some specific codes. The scheme is based on obtaining a
prediction function and a prediction error. This prediction
error is XORed with the previous value sent to the bus so
that the number of transitions is reduced in the likely case
when the prediction error has a small number of ones. For
addresses, the only new code proposed is the inc-xor code, in
which the prediction is the previous address plus one (or any
fixed stride) and the prediction error is obtained by the bit-
wise XOR operation. This code is most beneficial for instruc-
tion address buses, where sequential addressing is prevalent.
Also presented are codes which relate to the 1-hot encoding
used in this paper, such as the dbm-vbm, that are applied to
the data bus. In the dbm-vbm technique, the prediction is
the previous address and the prediction error is obtained by
a function that increases as the absolute difference between
the current input and the prediction increases. Afterwards,
code-words with fewer 1’s are assigned to smaller error val-
ues. Finally, the result is XORed with the previous value sent
to the bus.

2 Overview of the WZE technique

In this Section an overview of the WZE technique for the
address bus is given along with the implementation deci-
sions made and the rationale behind them. Afterwards, an
extension of the WZE technique [8] is reviewed which allows
the data bus to be encoded by reusing a large portion of the
hardware already used to encode the address bus.

The basis of the WZE technique is as follows:

1. It takes into account the locality of the memory refer-
ences: applications favor a few working zones of their
address space at each instant. In such cases, a refer-
ence can be described by an identifier of the working
zone and by an offset. This encoding is sent through
the bus.

2. The offset can be specified with respect to the base
address of the zone or to the previous reference to that
zone. Since we want small offsets encoded in a one-hot
code, the latter approach is the most convenient.

As a simple example consider an application that works
with three vectors (A, B and C) as shown in Fig-
ure 2. Memory references are often interleaved among
the three vectors and frequently close to the previ-
ous reference to the vector. Thus, if both the sender
and the receiver had three registers (henceforth named
Prefs) holding a pointer to each active working zone,
the sender would only need to send:

e the offset of the current memory reference with
respect to the Pref associated to the current work-
ing zone

e an identifier of the current Pref.

3. To reduce the number of transitions, the offset is en-
coded in a one-hot code. Since the one-hot code pro-
duces two transitions if the previous reference was also
in the one-hot code and an average of n/2 transitions
when the previous reference is arbitrary, the number
of transitions is reduced by using a transition-signaling
code [14]. In this case, before sending the reference
through the bus an XOR operation is performed with
the previous value sent, always resulting in one tran-
sition.

4. One value can be sent using a 0-hot code, which with
transition signaling produces zero transitions. This
code should be used for the most-frequent event, which
we have determined to be a repetition of the same
offset for the current working zone.

5. When there is a reference that does not correspond to
a working zone pointed by any Pref, it is not possible
to send an offset; in such a case, the entire current
memory reference is sent over the bus. Moreover, it is
necessary to signal this situation.

6. In general, the total number of working zones of a pro-
gram can be larger than the number supported by the
hardware. Consequently, these have to be replaced dy-
namically. The most direct possibility is to replace an
active working zone as soon as there is a miss. How-
ever, in this case any arbitrary reference would disturb
an active working zone. To reduce this effect, we in-
corporate additional registers (henceforth named po-
tential working zones) that store the references that
cause a miss. Various heuristics are possible to deter-
mine when a potential working zone becomes an active
one.

2.1 Implementation decisions

In the general scheme presented above, there are many as-
pects that have to be decided to obtain a suitable implemen-
tation. These decisions affect both the complexity of the im-
plementation and the energy reduction achieved. Since there
are many interdependent parameters, it is not practical to
explore the whole space. Below we indicate the decisions
made and the rationale for them.

e The number of active and potential working zones af-
fects the number of registers and associated logic (and
therefore the encoder/decoder energy consumption) and

the number of values of the identifier. In the evalua-
tion of the scheme, we have explored a range of values
and determined the one that produces the largest re-
duction. It was determined that a small number of
working zones is sufficient.

e When there is a hit to a working zone, an offset and
an identifier are sent. There are choices for the set
of values of the offset and the code of the identifier.
Since the offset is sent in a one-hot code (with transi-
tion signaling) the set of values is directly related to
the number of bits required. We have decided to use
all bits of the original bus to send the offset. Moreover,
we have seen that the number of hits is maximized if
positive and negative offsets are used. Since all bits
of the original bus are used for the offset, it is neces-
sary to have additional wires for the identifier and, to
minimize these additional wires, we use a binary code.
We have considered using bits of the original bus for
the identifier (thus reducing the offset bits) and have
observed a significant increase in I/O activity with re-
spect to the use of separate bits.

e When there is a miss, this situation has to be signaled
to the receiver. Since in that case, all bits of the origi-
nal bus are used to send the address, this hit/miss con-
dition has to use some additional wire. As we already
have decided to use additional wires for the identifier,
one value on these wires might be used to signal the
miss. However, this would produce a few transitions
when changing from a hit to a miss. To assure only
one transition, we have assigned an additional bit to
signal a miss.

e The search for a hit in a working zone requires sub-
tracting the previous address with the current one and
detecting whether the offset is in the acceptable range.
For the selection of which zones to check it is possible
to use any of the schemes used for caches. Because of
the small number of working zones, we have chosen a
fully-associative search.

e There are two replacement procedures required: for
the active working zones and for the potential working
zones. As indicated before, when there is a miss the
address is placed in a potential working zone. Since
there are few of these, we use the LRU algorithm for
this placement. Moreover, it is necessary to determine
when a new active working zone appears and, in this
case, which active working zone to replace. Among
the possible alternatives, we have chosen to initiate
a new active working zone when there is a hit in a
potential working zone. Again, here we use the LRU
replacement algorithm.

2.2 Extension to the data bus

The technique for the address bus can be extended to
include also the data bus. This extension is based on the
fact that in many instances the data values of consecutive
accesses to a working zone differ by a small amount. If that
is the case, the data can also be sent as an offset, coded in
the one-hot encoding. In this case, the zero-hot encoding is
used when the offset is zero.

To implement this extension, as illustrated in Figure 2,
we include an additional register, called Pdat, per working
zone. On the other hand, if the access is not to an active
working zone or if the offset is larger than possible for the

Value sent Transition signaling Receiver Receiver
over the bus and one-hot retrieval action action

(either address | 1. XORing | 2. One-hot (address bus) (data bus)
or data) retrieval
(-) 010011 - - - -
(2) 011011 001000 3 offset 3 (Pref #2) offset 3 (Pdat #2)
(1) 011011 000000 t same offset (Pref #1) | same data value (Pdat #1)
(1) 011001 000010 1 offset 1 (Pref #1) offset 1 (Pdat #1)

Table 2: Example of the decoding process. Assuming always hit; () in the first column indicates working zone number.

one-hot encoding, the whole value is sent through the bus.
An additional wire is required to distinguish these cases.

In addition, to further reduce the bus transitions, when
the value in the data bus is not encoded by the WZE method,
we use the bus-invert technique; for the address bus we saw
that the benefits of using the bus-invert in this case were
very small.

In summary, for the address bus, to send the offset it is
necessary to compare it with the previous offset to the same
working zone. The following two situations occur:

e the offsets are the same: send again the previous value
sent over the bus (zero transitions)

e they are different: send the one-hot encoded value of
the offset using transition signaling (one transition).

For the data bus, to send the offset it is necessary to com-
pare the current data value with the Pdat associated to the
current working zone, and the following situations occur:

e the values are the same: send again the previous value
sent over the bus (zero transitions)

e they are different: send the one-hot encoded value of
the offset (one transition).

The decoding of an offset in the receiver is done also
in two steps: XORing the value that it receives with the
previous one, and retrieving the one-hot of the result. When
the XORing produces a 0 vector, the two values were the
same and this is interpreted (see Table 2):

e for the address bus, as a repetition of the previous
offset to that same working zone,

e for the data bus, as a repetition of the previous data
value when that same working zone was last accessed

2.3 Address and data bus fields

As shown in Table 3 (next page) the encoded address
and data bus consists of five fields:

e the n, wires of the original address bus (word_address)
e the ng wires of the original data bus (word_data)

e [log,(H + M)] wires to specify one of H working zones
or M potential zones (ident)

e one wire to indicate whether there has been a hit or a
miss in any of the zones (WZ_miss)

e one wire to indicate if the data bus has been able to
be encoded using the offset (dbus_WZ_encoded)

e one wire to indicate, in the case of a miss in the work-
ing zones, whether the data bus is coded with the bus-
invert technique (dbus_BI_encoded).

Therefore, m = nq + nq + [log,(H + M)] + 3 wires are
required.

3 Reducing the delay

The decoder introduces some delay in the bus access. Since
this might be unacceptable, we now describe a method to
overlap this delay with the virtual to physical address trans-
lation.

When an address translation is required, the most direct
approach would be to perform the translation and then ap-
ply the encoding to the resulting physical address. However,
this would produce an increased delay for the bus access. To
reduce this delay we propose the following modification of
the WZE technique:

e Use the virtual address to determine whether there is
a hit in a working zone. To do this, each Pref con-
tains the virtual address of the previous access to the
corresponding zone.

Since, as it is well known, the translation modifies only
the most-significant bits of the address (the page number)
but keeps unaltered the least-significant bits (the page off-
set), this procedure is correct as long as the offset does not
cross page boundaries. Consequently, it is necessary to de-
tect when a change of page occurs and, in that case, the
access is not treated as an offset.

Since the data value is not translated, this is encoded as
in the original method.

Because of this modification in the WZE technique, the
reduction in energy might be affected. This is because now
we do not use offsets which cross a page boundary. On the
other hand, the internal energy overhead might be reduced
because now the detection of offset uses only the page-offset
bits. The simulation of the SPEC benchmarks indicate that
for a page size of 1 KB or larger the effect is negligible. We
observe this in Table 4, where the I/O transitions per refer-
ence on the multiplexed address bus for the gcc benchmark
(with unified cache) and for different page sizes is shown.

I/0 transitions/reference

Page size (address bus)
(no pages) 3.26

4K bytes 3.26

1K bytes 3.29
256 bytes 3.36

64 bytes 3.72

1 byte 5.32

Table 4: Effect of the pages on the activity reduction if the
WZE delay is overlapped with the virtual to physical address
translation. For pages larger than 1K bytes the effect is
negligible. Some unrealistic page sizes are also shown for
comparison purposes. The data is for the gcc benchmark
with unified cache.

m-wire encoded address and data bus
WZ_miss ident word_address dbus_WZ_encoded | dbus_BI_encoded word_data
(1 wire) | ([log2(H + M)] wires) (na wires) (1 wire) (1 wire) (ngq wires)
wZz 0 W Z index offset or 1 don’t care offset or
format last address value last data value
0 1 Blg =1 (data value)
0 complete data
Non WZ 1 don’t care complete don’t care 1 Bl;—1(data value)
format address 0 complete data

Table 3: Information assigned to each of the several fields of the encoded address and data bus when there is a hit (WZ
format) and a miss (Non WZ format) in the H working zones and in the M potential working zones. The number of wires

for each field is also shown.

4 Use in Multimedia Applications

In this Section we modify the WZE technique for the data
bus for those multimedia applications that use data work-
loads composed of packets of data that may be brought from
memory several in the same word. Examples of these are the
image processing applications and we will evaluate the WZE
technique for two particular examples. We show the results
for the data-only data bus and the data-only address bus
(see Figure 1). The code of the applications is assumed to
be stored in an internal ROM (therefore no references to
instructions are sent through the address bus and no in-
structions are fetched through the data bus).

In multimedia applications images are composed of pix-
els. These pixels consist of one or a few components, each
with a relatively small number of values (for instance, in
the examples we illustrate each pixel consists of three colors
and each color can have 256 values). In such case, these
pixels can be stored in one word which is subdivided into
subwords for each component. In many applications, these
components are accessed and processed simultaneously. We
now describe how we modify the WZE technique for this
situation.

The address bus encoding part of the technique is not
modified, since the locality of reference is even more appar-
ent in these applications with images. For the data part we
do the following:

e Instead of using an offset for the whole word, we en-
code each of the bytes using the byte offset. In this
way, the one-hot encoding allows eight possible off-
sets. We have determined that this number of offsets
(which would correspond to offsets from -4 to +4) is
insufficient to capture a significant portion of the data.
Consequently, it is convenient to extend the encoding
to include also k-hot encodings for k£ > 1.

e Moreover, if we allow two possibilities for each byte,
namely that the data satisfies the offset range (a hit)
or not (a miss), we would need individual wires per
byte to indicate this hit/miss. Since this would be
a significant wire overhead, we decided to code every
data byte as an offset, no matter how large this offset
is. Moreover, since a k-hot encoding with transition
signaling generates k transitions in the bus, to reduce
the average number of transitions we encode the offsets
into a k-hot code, with smaller value of k for the more
frequent offsets (that is, the value of k increases as the
absolute value of the offset increases).

e When there is an address miss (that is, the address
does not correspond to an active WZ), the most direct
solution is to send the unencoded data value. How-
ever, we have found that the variation in the values of

images is small enough so that it is better to send the
offsets with respect to the last data value.

Note that in this modification of the WZE technique,
the two extra wires (dbus_WZ_encoded and dbus_BI_encoded
in Table 3) are not needed, since the data bus is always
encoded and no bus-invert is done.

We have done some preliminary evaluations for two ap-
plications: image alpha blending and motion estimation. Both
use color images where a pixel is composed of three bytes
that specify the three main colors; a pixel is read or written
per memory reference.

4.1 Image Alpha Blending

Alpha Blending [1] is used for imaging effects to merge
two images together, weighting one image more than the
other. Thus, alpha blending may be used for fading from
one image to another and this is the case shown here: given
two images of two different human faces, six images are gen-
erated so that the first image is transformed into the second
one. This is done for three different sets of human faces [2].

The results are reported in Table 5, where the WZE tech-
nique is compared to the unencoded case and to the best of
the rest of the techniques (bus-invert with three groups, one
per byte). The WZE technique uses four active and two
potential working zones.

4.2 Motion Estimation

The Motion-estimation algorithm [9] is used in video
transmission to lower the bandwidth of the network where
the video is being transmitted. The frame to be transmitted
is divided into blocks which are compared to several blocks
in the previous frame and the best match is selected.

The basic motion-estimation algorithm is applied to two
different sets of images in motion [3, 2] (weather satellite,
human face and football images). Results are shown in Ta-
ble 6; the best of the rest of the techniques is the dbm-vbm
with three groups. The WZE technique uses three active
working zones and no potential working zones.

Data-only Data Bus
Images non
encoded | WZE | Blg—3
claire — missa 10.07 3.00 8.68
claire — susie 10.68 3.23 8.58
missa — susie 10.43 3.83 8.97

Table 5: Data-only data bus I/O transitions per reference
for the alpha-blending application. The best of the rest of
the techniques is the bus-invert with three groups.

Data-only Data Bus Ratio | Data-only Address Bus Ratio | Both Buses Ratio

vs. non vs. best vs. non vs. best vs. non | vs. best

Application encoded of rest encoded of rest encoded of rest
Image Blending 0.32 0.38 0.17 0.23 0.26 0.32
Motion Estimation 0.58 0.81 0.36 0.41 0.49 0.67

Table 8: Results summary for the two multimedia applications. Smaller ratio means fewer I/O transitions.

References

[1]

Data-only Data Bus
Image Sequences non
encoded | WZE | dbm-vbmg—3
weather satellite 10.05 5.93 7.58
human face 9.13 5.14 5.89
football 10.79 6.22 7.79

Table 6: Data-only data bus I/O transitions per reference
for the motion-estimation application. The best of the rest

of the techniques is the dbm-vbm with three groups.

Data-only Address Bus
Application non best of
encoded | WZE rest
Image Blending 7.78 1.33 5.78
Motion Estimation 6.71 2.40 7.21

Table 7: Data-only address bus I/O transitions per reference

for the two example multimedia applications.

Table 7 shows the data-only address bus results for both
For the image blending the best of the rest
of the techniques is the dbm-vbm whereas for the motion
estimation is the bus-invert. In any case, the WZE technique

applications.

clearly outperforms any previously proposed technique.

The averaged results for both applications are shown in
Table 8. We show the ratio of the I/O transitions with
respect the unencoded case and to the best of the rest of the
techniques for the data-only data bus, data-only address bus
and both buses. The I/O activity when coding both buses is
reduced by 74% and 51% with respect the unencoded case,
and by 68% and 33% with respect the best of the rest of the

encoding techniques.

5 Conclusions

This paper gives an overview the Working Zone Encoding
(WZE) method for encoding an external address and data
bus, based on the conjecture that programs favor a few work-

ing zones of their address space at each instant.

For the general-purpose microprocessor multiplexed ad-
dress bus and multiplexed instruction/data bus (with uni-
fied cache), the WZE significantly reduces the I/O activity,
around 30% with respect to the unencoded case and 15%
with respect the best of the rest of the encoding techniques.
When no caches are present, the reductions are even larger.

For two multimedia applications using images as the work-
load, the activity in the data-only data bus and the data-
only address bus is reduced by 74% and 51% with respect
the unencoded case, and by 68% and 33% with respect the
best of the rest of the encoding techniques. These results
are promising and make it worthwhile to pursue the devel-

opment of this approach.

[9]

[10]

http://developer.intel.com/drg/mmx/appnotes/
apb54.htm.

http://ipl.rpi.edu/sequences/sequences.html.
http://meteosat.e-technik.uni-ulm.de/meteosat.

H. Bakoglu. Circuits, Interconnections and Packaging
for VLSI. Menlo Park, CA, 1990.

L. Benini, G. De Micheli, E. Macii, D. Sciuto, and
C. Silvano. Address bus encoding techniques for
system-level power optimization. In Design, Automa-
tion and Test in Europe, pages 861-866, February 1998.

A.P. Chandrakasan and R.W. Brodersen. Low Power
Digital CMOS Design. Kluwer Academic Publishers,
1995.

R.M. Owens H. Mehta and M.J. Irwin. Some issues in
gray code addressing. In Great Lakes Symposium on
VLSI, pages 178-180, March 1996.

T. Lang, J. Cortadella, and E. Musoll. Extension of
the Working-Zone Encoding method to reduce the en-
ergy on the microprocessor data bus. Technical Report
http://www.eng.uci.edu/numlab/archive/pub/nl98b/
02.ps.Z, University of California, Irvine, May 1998. To
be published in the next Int. Conference on Computer
Design (ICCD’98).

C. Lin and S. Kwatra. An adaptive algorithm for mo-
tion compensated colour image coding. IEEE Globe-
com, 1984.

E. Musoll, T. Lang, and J. Cortadella. Exploiting the
locality of memory references to reduce the address bus
energy. In Int. Symp. on Low Power Design and Elec-
tronics, pages 202—-207, August 1997.

E. Musoll, T. Lang, and J. Cortadella.
Zone Encoding for reducing the energy in mi-
croprocessor address buses. Technical Report
http://www.eng.uci.edu/numlab/archive/pub/nl98b/
01.ps.Z, University of California, Irvine, March 1998.
To be published in the next special issue of Transac-
tions on VLSI on low-power electronics and design.

S. Ramprasad, N.R. Shanbhag, and I.N. Hajj. Coding
for low-power address and data busses: a source-coding
framework and applications. In Proc. of the Int. Conf.
on VLSI Design, pages 18-23, January 1998.

Working-

M.R. Stan and W.P. Burleson. Bus-invert coding for
low power I/O. IEEE Trans. on VLSI Syst., pages 49—
58, 1995.

M.R. Stan and W.P. Burleson. Low-power encodings for
global communications in CMOS VLSI. IEEE Trans.
on VLSI Syst., pages 444-455, 1997.

Reduced Address Bus Switching with Gray PC

FORRESTJENSEN
AKHILESH TYAGI*

lowa State University
Ames, 1A 50011

Abstract ergy per cycle times the clock frequency. Hence any
technique not explicitly changing clock frequency af-
Reduced switching on the address bus saves on the en-fects both energy and power identically. What fraction
ergy incurred in PC increment, the propagation of PC of processor and system energy is affected by reduced
value across the pipeline, instruction cache access, andaddress bus switching? Burd and Peters [BP94] and
memory access. We estimate the savings in bit switch- Gonzalez and Horowitz [GH96] have profiled the energy
ings in PC by adopting the Gray sequence for program distribution of MIPS R3000 processor. Both the studies
sequencing. There is a 40% reduction in address bit are based on simulations of a VLSI design for the MIPS
switchings with a Gray PC over the traditional lexico- R3000 architecture. Burd and Peters [BP94] compute
graphic PC over a collection of SPEC '95 integer and FP the switched capacitance per cycle as an estimate of en-
benchmarks. We also assess the adverse impact of Grayergy. The switching frequency of capacitances depends
PC on the other processor units, particularly I-cache lo- on the control signal, instruction and data correlations.
cality. The cache miss rates are indistinguishable be- They simulate the MIPS R3000 architecture with several
tween the Gray and lexicographic sequencing. These real benchmark programs (from SPECint'92 benchmark
experiments were conducted with the SimpleScalar tool suite) to derive a probability for switching for all the in-
set. We also propose a design for a Gray counter for ternal capacitive nodes. The total expected switched ca-
the PC. We have developed optimization algorithms for pacitance per clock cycle is 317 pF. The breakdown is
the loader so that the expected address bus switching is as follows: instruction cache (I-Cache) memory: 30%;

minimized. I-Cache control: 15%; Datapath: 28% with register
file accounting for 10%; and ALU & shifter for another
1 Introduction 12%; Global buses: 3-4%; Controller: 10%; DCache:

8-9%. The program counter logic (next-PC) takes up
The need for reduced energy in processors has been em-anotherx 4% energy. Note that the proposed Gray PC
phasized elsewhere [Sin94]. Portable computing plat- (Program counter counting in Gray sequence) reduces
forms (general purpose computing engines such as lap- €N€rgy for ICache addres_s decoder and PC logic (and
tops or special purpose embedded processors) strive toSOme for global buses) which accounts #or21% pro-
reduce the energy of computation in order to prolong the C€SSOr énergy.

battery life. The packaging and heat dissipation limi- _These numbers did not include the switched capac-
tations are another driving force behind the low energy itance for off-chip memory (address bus on the back-
processor architecture and implementation trend. plane). Assuming reasonable cadtierates and given

In this paper, we assess the effectiveness of non- & 25pF external load, the external switched capacitance

lexicographic instruction ordering, in particular Gray or- Per cycle is 272 pF! This is almost as high as the proces-
dering, in reducing address bus switching and system en- SO average switched capacitance of 317 pF. Hence, the
ergy. There are several architecture level side-effects of Proposed Gray PC can potentially have a bigger impact
Gray address ordering that need to be evaluated. Specifi- 0N the input/output energy than on the intra-processor
cally, an adverse impact on cache locality can negate any €nergy. We discuss in Section 5 potential impact of Gray
energy gains derived from the lower address bus switch- PCon th_e L1 instruction g:ache _and L2 cache interface.
ing. The literature on logic design for a Gray counter
This change in the implementation is transparent to @nd/or adder is sparse. We propose a design for a Gray
the software. The only system component that needs counter in Sectlor) 3. This design is being |mplemente_d
to be modified is the loader. A simplistic loader can SO that the counting energy of a Gray PC and a lexi-
load an instruction originally at addresisat the address ~ ¢ographic PC can be compared. Doran [Dor93] is the
gray(A). However, this poses a new optimization prob- most comprehgnswe reference on G.ray. addgr design.
lem for the loader, to minimize the expected switching Altera corporation [Cor94] has an application brief deal-
over the program graph. We provide some algorithms "9 with a Gray counter design. Note that in the rest

for this optimization problem as well, which have not ©f the paper, we refer to binary reflected Gray code se-
been implemented yet (Section 4). quence by the term Gray sequence. We also discuss a

Note that we will use termenergyandpowerinter- design for instruction cache decoder in order to better

changeably since for a processor power is just the en- €xploit the low Hamming distances of Gray sequences
in Section 5. Section 2 describes the experimental setup

*This work was supported in part by NSF grant #MIP9703702.

ard results.

Su et al. [STD94 also use a Gray PC. They report
on the averag addres bus switching on an internd set
of programs but do nat conside othe aspecds of Gray
PC.

2 Experimentsand Results

Burd & Petes [BP94 note tha the averag switching
pe progran counte (PC) bit is a little over 7% over
a variety of SPECin '92 benchmarks Hence the ex-
pecta numbe of bit switchings over a32 bit addres are
2.5 Thisis consistehwith the obsevation tha an aver-
age bast block ssizeis4-5 instructionswhich accounts
for abou 2.3 least-significah bit switchings The re-
maining switching comes with 20-25% frequerty when
a non-sequentiainstructian sudh as a brand or proce-
dure cal is encounteredGray PC ensurs tha within a
bast block (and betwe@ bast blocks as well, as often
as possible) exactly one addres bit switches through
the use of Gray sequencig in the PC. Assuming we
can ensue Gray sequencig within all bast blocks the
expectal addres bus switching basel on back-of-the-
envelope calculatiors would be approximately1.2 (.2
accouns for switching due to non-sequentlainstruc-
tions).

The cacle placemenof instructiors is basel on the
lexicographc addresses The locality of progran exe-
cution is exploited to achieve high hit rates The cache
blocks and ses are organizel on the bass of contigu-
ous bits. For instance the leag significantk, bits give
block-dfset, the next &, bits give the se addres ard the
remainirg bits give the tag This type of mappirg re-
flectslocality base on lexicographc ordering Itis pos-
sible tha two instructiors residirg in conflicting blocks
in lexicographt orderirg may not conflic in Gray or-
dering or vice versa Hena we neal to calibrate the hit
rates of the instructin cacke unde lexicographe and
Gray PCs If the hit rate goes down significantly with a
Gray PC, theincreasd energy cog of memoy accesses
might offset any gairs defived from reducel addres bus
switching.

To determire the numbe of PC bits tha switchin a
Gray coce PC versts a lexicographc PC ard to deter-
mine any differen@ in cacte performane betwea the
two encodirg methodswe conducte our experimental
work with a modified versian of sim-cache one of the
simulatian tools available in the SimpleScala suite of
simulatos [BAB96]. In addition to determinirg the total
numbe of switchal bits with ead encodirg method we
als determind the numbe of times ead of the eleven
leag significart bits of the PC switch Sim-cacle uses
a 32 bit addres to acces 8 byte instructions As are-
sult, the three leag significart bits are always zera For
the remainde of this discussia we ignore bits 0-2 and
think of bits 3-10 as the eight leag significart bits. To
measue differenca in the cache performancewe cal-
culated miss rate for the level 1 instruction cache For
purposs of simulation we maintainel the PC as a lex-
icographc binaly numbe. We incrementd the counter
ard addel offsets for jumps and branchs in the usual
fashion Before ead instruction memoy accessinclud-
ing program load and instructian fetch, we converted the
PC value to Gray. With SPEC% integer and FP bench-
marks a Gray codce PC producel approximatel 40%
fewer instruction addres bit transitions Note that the

addres bus transitian frequerty is similar over both the
integer ard FP benchmarks In Table 1 we presen the
addres bit switching results For both lexicographt and
Gray encodirg we show the average numbe of switched
bits per instructian for the entire addres and also for the
eight leag significart bits. The final colurm shows the
percentag chang in the totd numbe of switchel bits
when going from lexicographt encodirg to Gray encod-
ing.

The reduction in instruction addres bit switches
confirms the obsevatiors made by Su et al. In addi-
tion, we obseve tha the eight leag significart bits ac-
court for 90-93% of all switched bits. This suggest the
possibility of implementirg a PC tha is partially lexico-
grapht ard partially Gray. Thelevel 1 instruction cache
miss rates produce by the two encodig method were
identical We presemhthe valuesin Table 2. We used
separat level 1 instruction ard data caches Both were
8 KB with 256, 32-bye dired mappel blocks The 1
MB unified level 2 instruction ard data cacle had 4096,
4-way associdve sets We usal 64 KB blocks ard the
LRU replacemenscheme.

3 Gray Counter Design

There are two generhoperatios performel on the con-
tent of the PC, incrememn and addition of an offset for
jump or brand instruction We begin by presenting
a Gray adde and follow with a Gray counte, which
is a specializel adde. Conceptuall, addition of Gray
numbes is performeal by first converting from Gray to
lexicographic addirg the numbersand then converting
badk to Gray. The disadiantag of this approab is that
the Gray to lexicographc conversim is performel be-
ginning with the MSB ard working towards the LSB,
while addition is performal in the opposie direction.
The resut is tha two passe mug be mack throuch the
bits insteal of the usua single pass To redue the time
necessar for the Gray to lexicographt conversion we
limit the Gray implementatio to the eight leag signifi-
cart bits of the PC and use lexicographc for the remain-
ing high orde bits. The interface betwe the Gray and
lexicographe sectiors is trivial. In addition we include
a parity bit tha indicates the parity of the Gray portion
of the PC ard allows us to convert from Gray to lex-
icographt beginning with the LSB. The Gray to lexi-
cographt conversion rathe than the addition ard con-
versian bad to Gray, is still the limiting facta of this
design We have therefoe divided the Gray portion into
two nibbles We convert the high orde nibble to lexi-
cographe beginning with its MSB, progressig towards
the LSB. For the low orde nibble, we work in the oppo-
site direction beginning with its LSB. The conversia to
lexicographt of the two nibbles is therefoe performed
in parallel Unlike Su et al., we do not modify the off-
set before loadirg the progran into memoy. Asare-
sult, we neal to convert only the PC to lexicographic
before adding Although this does nat affect the speed
of the conversion it does redue@ the compkxity of the
adde. For lexicographt¢ addition afull adde generates
sum ard carty bits. Thes are calculatel with the foll ow-
ing equations:

si=a; Db Dc;

Ci+1 = aib; + ci(a; +b;)

The symbok are understod as foll ows:

a; andb; are the two bits being added.s; isthe sum

Lexicographic Gray
Benchmark Instr. count | Switches| Bits3-10 | Switches| Bits3-10 | % change
pe inst perinst

int:

ccl 264,897,677| 2.3034 | 2.1832 14222 | 1.3126 | -38.25
li 173,965,506(2.3358 | 2.1718 1.4246 | 1.3217 -39.01
go 132,917,038 2.2685 | 2.1504 1.3195 | 1.2338 | -41.83
compress95 35,684,602| 2.2812 2.1939 1.3860 1.3044 -39.24
m88ksim 494,917,870| 2.3333 | 2.2338 1.3347 | 1.2681 -42.80
vortex 404,996 | 2.2661 | 2.1858 1.3242 | 1.2519 -41.56
FP:

swim 796,527,564| 2.2343 | 2.1244 1.2327 | 1.1241 -44.83
wave 4,515,144,715 2.1081 | 2.0595 1.1763 | 1.1538 | -44.20

Table 1: Averag numbe of switchel bits per instructian for lexicographt ard Gray progran counters

Benchmark | Lexicographic| Gray
int:

ccl 0.0986 0.0986
li 0.0260 0.0260
go 0.0854 0.0854
compress95 0.0005 0.0005
m88ksim 0.0867 0.0867
vortex 0.0715 0.0715
FP:

swim 0.0132 0.0132
waveb 0.0179 0.0179

Table 2: Leve 1 Instructian Cacte Miss Rates

producel at positioni. ¢; andc; 41 are the carty in and
carly out of positions.

co = 0 for addition andcy = 1 for subtraction.

Figure 1 illustrates the datafbw within a Gray adde.
In the top sequene (Figure 1 (a)) the conversim to lex-
icographc is completel before the addition can begin.
In the middle sequene (Figure 1 (b)), the conversia to
lexicographe is right to left, the addition runs in paral-
lel but slightly behind In the bottam sequene (Figure 1
(c)), the conversim to lexicographc of the two nibbles
is performel in parallel The addition follows behind
the low orde nibble conversim but still finishes ahead
becaus it is nat delayel by the conversim of the high
orde nibble.

The equatios for a Gray adde are more compli-
cated This reflecs the neal for code conversiors be-
fore and after the addition For the Gray adde, we are
addirg a lexicographt numbe to a Gray numbe. In
the foll owing equatiors we representhe bits of the lex-
icographt value with a, the Gray value with g, and the
lexicographc equvalert of the Gray value with b. We
usep to representhe parity bit. In addition to sum and
carty bits for eat position we mug also determire the
new value of p. Thes are calculatel with the foll owing
equations:

Si =a; Da;+1 D DcCiv1 D gi

str=arDagDcr Pes Dby Dbs

Ci+1 = aib; + ci(a; + b;)

Pnew = a0 D Co D Pold

co = 0 for addition and ¢y = 1 for subtraction We
use adifferert equatia for s7 becausér isnat deiived
from bs.

For the low orde nibble

bi =bi—1 ® gi—1

bo =p

For the high orde nibble
bi =biy1 D g;

br =gr

Note tha we have assumd the bits are labelled 0-7
with 0 being the LSB, sogz isthe MSB of the Gray num-
ber andcs is the carly out of the mod significart posi-
tion. cs sewves asthe carty in for the lexicographt adder
usel to sum the highe orde bits. It is possibe with a
Gray adde, as with alexicographc adde, to implement
carty lookahed acros anibble The only differene is
tha we mug convert to lexicographc before computing
the carly generat and carty propagag signals.

With alexicographc counte, incremet is generally
performel by a half-adde. Thisis possibk becausgfor
increment the numbe being addel to the PC consists
of a1 for the LSB ard O's for all highe bits. Because
of this, the equatios for both lexicographc ard Gray
addes are asimplification of those given abtove. For a
lexicographe counte, the equatiors are as foll ows:

si=b;®dc

Ci+1 = cib;

Cco = 1

For the Gray counte, they are as foll ows:

si = (cibi) ® gi

ci+1 = c;b;
Cco = 1
Pnew = Pold

For the low orde nibble
bi =bi—1®gi—1

bo =p

For the high orde nibble
bi =biv1 P gi

br = g7

4 Loader

Loadets tak is to assig instructiors from the binary
executabé to the memoy addres space Traditionally,
it is a straightfoward task since the mappirg from the
origind progran sequeneto the addres sequeneisan
identity (with a linear shift). However, with Gray se-
guencing the loade mud perform extrawork.

A simple loade can take an instruction from address
¢ in the progran (ith instructian in the static program
order) ard load it at addres$ase + gray(i) wherebase
is the bae addres of the text segment and gray(i) is

Gray-to-kxicographic

Add ard convert to Gray (@)

Gray-to-kxicographic

Add ard convert to Gray

Low nibble
High nibble
Add and convert

(b)

(©)

Ti r'ne

Figure 1: Illustration of Dataflow in Gray Counter

BB1

BB2

Figure 2: Progran Flow Gragh with Bast Block Nodes

the binary string in the ith position in a Gray sequence.

Thisiswha we have currently implemented.

However, there is a bigge opportuniy for address
bit switchirg reductian at the loade stage The simplis-
tic approab outlined above resuls in a single bit switch
for the progran flow within a bast block. The number
of switchal bits is nat controlled (is comparal# to the
lexicographc PC schemg for contrd flow out of basic
blocks (inter bast block transitions) An exampk of a
program flow gragh is shown in Figure 2 where nodes
represehbasc blocks Ead of the edge can be as-

signal a probability basel on static progran profiling.
Let p(BB;, B B) be the probability of the transition
from the bast block B B; to the bast block BB;. Let
the addres assignd to abast block B B be denotel by
A(BB). Let h(zy) be the Hammirg distane of two
binaly stringsx andy. Then the following optimization
problen modek the loadets task.

Input: A directed graph.

Obijective: Find amemoy addres (for relocatabiliy, a
relaive address)A(BB) for eat Bast block BB such
that

> h(A(BB:), A(BB;)) *p(BB;i, B B)

o enlBB {,BB;

isminimized.

If profiling is nat feasible we can minimize

v enlBB ;,BB; h(A(BB;), A(BB;j)).

We have representé the Gray chain of addresses
assignd to the instructin in a bast block BB by a
single addressA(BB) in orde to bring out the sim-
ilarities in this optimization problan ard the low en-
ergy/mwer stak machire synthesis A comma for-
mulation of stak assignmenproblen for low enegy
is to minimize Zsi,sjesh(si’si) * p(si,s;j), where
p(si, sj) isthe steag stae probability of the transition
betwea statess; ands;, h(si, s;) isthe Hammirg dis-
tane betwea the codes for the two states We have
developal severd algorithnms [Tya%], [SCT97 for low
power stake assignmentOur intert is to modify one of
them [Tya%] to handk the addres assignmenproblem
for the loade. The main problem with this approach
is the size of the input problem The stae assignment
method take time typically close to quadratt (or close
to N? log N) in number of states N. A typicd staema-
chine has abou 50-1@ states Thes approache can
turn out to be impractically expensve for large programs
with hundred of thousand of bast blocks Hence we

are als looking into heuristis linear in the numbe of
bast blocks Dichotony basel stak assignmenmeth-
ods suc as[TPCD94 may be adaptal® for an efficient
loade algorithm.

5 FutureWork and Conclusions

The work reportel is still preliminay. There are several
interestiry thread tha we plan to purste in the future.
The reducel addres bus switching delived from Gray
sequencig isdirectly visible at the I-cache However, it
isthe L1 ard L2 cache/memar interface that provides
high capacitancefor the addres bus But the addresses
that appea at the L1/L2 interfae are alread filtered
basel on the cacle locality characteristicsAre the Gray
addres sequencgany bette than the lexicographt ad-
dres sequenceat the L1/L2 interfac® Are there any
additiona constraing on the loade optimizatian tha can
redue the Hammirg distane of uppe addres bits for
the set of addressglikely to collide in the cach@ An
additiond compkxity is tha at the L1/L2 interface the
instruction ard data addressg are unified This effect
will further increag the average Hammirg distance Is
Harwvard architectue a bette choice in orde to separate
the instruction and data data addres sequenceard re-
tain their low hammirg distances?

The decode in the instructian cacle accouns for a
significant fraction of enery consumd in the instruc-
tion cache [BP94]. However, atypicd decode desiq is
prechargedWe plan to experimen with a hybrid static
ard dynamt decode design that leverage the low ham-
ming distane in the addressgto redue energy.

References
[BAB96] D. Burge, T. M. Austin, and S. Bennett.
Evaluatirg Future Microprocessors: The
SimpleScala Tod Set Technich Report
CS-TR-96-1308 University of Wisconsin,
Madison 1996.

T. D. Burd and B. Peters A Power Anal-
ysis of a Microprocessor: A Stud/ of
an Implementatio of the MIPS R3000
Architecture Technicé report ERL, Uni-
versity of California Berkeley, 1994 URL:
http://infopad.EECS.Bé&eley.edu~burd/gpp/
gpp.html#publishegapers.

[BPY4]

[Cor94] Altera Corporation. Ripple-Cary Gray
Coce Countes in FLEX 8000 Devices.
Technich Repot Application Brief 135 Al-

tera Corporation May 1994.

R. W. Doran. The Gray Code. Techni-
cd report Dept of Compute Science,
University of Auckland 1993. URL:

[Dor93]

http://www.cs.aucland.ac.nztechrep/TR131.

[GH96] R. Gonzale and M. Horowitz. Energ Dis-
sipaticn in Gener& Purpog Microproces-
sors IEEE Journd of Solid Stae Circuits,

31:1277-12841996.

[SCT97] P. SurthiL.ChagandA. Tyagi. Low-Power
FSM Design using Huffman-Styke Encod-

ing. In Proc. of European Design and Test

[Sin94]

[STD94]

[TPCD94

[Tya9e6]

Confeene, |IEEE Compute Sociey Pres,
pages 521-5251997.

D. Singh. Prospect for Low-Power Mi-
croprocesso Design. talk delivered at
ACM/IEEE InternationhWorksh@ on Low
Power Design Napa Valley, CA, 1994.

Ching-Lorg Sy, Chi-Ying Tsui, ard Alvin

Despain. Low power architectura de-
sign ard compilatian techniqus for high-
performane processb In 'Proceeding of
COMPCON 94, pages 489-498 February
1994.

C.Y. Tsui, M. PedramC. Chen ard A. M.
Despain Low Power Stat Assignmen Tar-
getig Two- ard Multi-level Logic Imple-
mentations In Proc. of ICCAD, page 82—
87. ACM/IEEE, 1994.

A. Tyagi. Integratel Area-Power Opti-

md Stak Assignment. In Proceedings
of the Synthes and Systen Integration of

Mixed Technologies SASIM '96, page 24—
31 SASIMI, Seie Insatsy Osaka Japan,
Novembe 1996.

Instruction Scheduling for Low Power Dissipation in High Performance
Microprocessors

Mark C. Toburen

Thomas M. Conte

Department of Electrical and Computer Engineering
North Carolina State University
Raleigh, North Carolina 27695-7911
{mctobure, conte}(@eos.ncsu.edu

Matt Reilly
Digital Equipment Corporation
Shrewsbury, Massachusetts
reilly@rock.enet.dec.com

Abstract

Power dissipation is rapidly becoming a major design
concern for companies in the high-end microprocessor
market. The problem now is that designers are
reaching the limits of circuit and mechanical
techniques for reducing power dissipation. Hence,
we must turn our attention to architectural approaches
to solving this problem. In this work we propose a
method of instruction scheduling which limits the
number of instructions which can be scheduled in a
given cycle based on some predefined per cycle
energy dissipation threshold. Through the use of a
machine description [8], [9] we are able to define a
specific processor architecture and along with that an
energy dissipation value associated with each
functional unit defined therein. Through careful
inspection, we can define the cycle threshold such
that the maximal amount of energy dissipation can be
saved for a given program while incurring little to no
performance impact.

1 Introduction

Power dissipation is becoming a vital design issue in
today’s high-end microprocessor industry. Two
examples of high-end processors that suffer from high
levels of power dissipation are the DEC 21164a and
21264. The 21164a runs at a clock speed of 600
MHz while dissipating 45.5 Watts of power. The
21264 suffers even worse with internal clock speeds
which can reach 666 MHz while dissipating 72
Watts. The problem now is that as power dissipation
continues to rise, we are rapidly approaching a point
where we will be forced to use cooling techniques
which are not suitable for today’s personal
computers, workstations, and low-end to mid-range
servers such as liquid immersion or jet impingement.
Circuit designers and thermal engineers have
produced some excellent techniques for keeping
power dissipation to a minimum in recent years.
Clock gating, power supply reduction, smaller

process technology, and state of the art packaging are
all examples of the approaches that have been used to
date to eliminate the power dissipation problem.
However, these approaches are reaching their
limitations as the demand for processors with higher
clock speeds and denser transistor counts continues to
rise.

In this work we propose an architectural/compiler
approach towards solving this problem. One way we
can reduce peak power dissipation is by preventing
the occurrence of current spikes during program
execution. If a region of code has a heavy profile
weight and contains one or more instructions which
require significantly more energy than others, then
the execution of this region will lead to repeated
current spikes in the processor which results in
increased power dissipation. Our goal is to prevent
this from occurring by limiting the amount of energy
that can be dissipated in any given cycle. Because of
schedule slack, this often results in little or no
performance impact. In our scheduling model, we
schedule as many instructions as possible in a given
cycle until the cycle threshold is violated. Once that
point is reached, we move on to the next cycle and
resume scheduling with the instruction that caused
the violation in the previous cycle.

1.1 Previous Work

There have been previous attempts at using
scheduling techniques to reduce total power
consumption. Su, Tsui, and Despain proposed a
technique which combined Gray code addressing and
a method called cold scheduling to reduce the amount
of switching activity in the control path of high
performance processors, [1]. Used in conjunction
with the traditional list scheduling algorithm, cold
scheduling schedules instructions in the ready list
based on highest priority. Priority of an instruction is
determined by the power cost when the instruction in
question is scheduled following the last instruction.
The power cost is taken from a power cost table

which holds power entries, S(I,J), corresponding to
the switching activity caused by the execution of
instruction I followed by instruction J. Instructions in
the ready list with lower power costs have higher
priority. After each instruction is scheduled, the
power cost of the remaining instructions in the ready
list has to be recalculated before scheduling the next
instruction. The drawbacks to the cold scheduling
approach are obvious. First, a large table is required
to hold power costs for all possible instruction
combinations. For a high performance processor with
a complex instruction set, this table can be extremely
large. Second, this table must be accessed for all
instructions in the ready list after each new
instruction is scheduled. This will make the
scheduling process itself slower. However, Su, Tsui,
and Despain show that the combination of Gray code
addressing and cold scheduling results in a 20-30%
reduction in switching activity for the control path.

Another scheduling technique for reducing power
consumption was presented by Tiwari, Malik, and
Wolfe, [2], [3]. The goal in these works is to
schedule code such that instructions are more
judiciously chosen as opposed to instruction
reordering. In this approach, actual current
measurements were taken on general-purpose
processors and DSP processors. Current was
measured for each instruction and a power table built
for single instruction values as well as values for
common paired instructions. Then based on these
measurements, test programs were rescheduled to use
instructions which result in less power consumption.
This selection is based on a number of issues such as
register accesses as opposed to memory accesses and
lower latency instructions. Tiwari, et al., also take
into consideration what they term circuit-state
overhead which is the switching activity between a
pair of specific instructions. In [2] and [3], they argue
that for the processors tested that circuit-state
overhead is insignificant. However, a detailed
analysis of another DSP processor [4], found that
circuit-state overhead was much more significant in
determining the energy consumption of a pair of
instructions. Through this approach of physical
measurement and code rescheduling, energy savings
up to 40% were achieved on the benchmarks used.
Again the problems with this approach are glaring.
The process of hand measuring current for all
instructions and instruction pairs, while extremely
valuable, is extremely time consuming especially in
light of the enormous instruction sets used in some of
today’s high-performance processors. Also, like Su,
et al., there is a large table needed to store all power
values. This can lead to costly accesses during the
scheduling process.

The scheduling approach proposed here is focused on
reducing power dissipation as opposed to power

consumption. One advantage that our approach
provides is that we can explicitly control the amount
of power dissipation allowed for any given schedule.
The two prior works simply limit power consumption
as best they can. In our approach we determine how
much power is dissipated which gives us tremendous
flexibility in terms of being able to control dissipation
for different architectures.

The remainder of this work presents our method of
low-power scheduling. Section 2 presents the
algorithm itself along with a discussion of the
machine description mechanism. Section 3 presents
the results of our preliminary investigation into this
approach, and in Section 4 we conclude the paper and
present plans for future work. All studies presented
in this paper were performed using the experimental
LEGO compiler designed by the TINKER Research
Group at North Carolina State University.

2 Low-Power Scheduling

The goal of traditional scheduling algorithms is to
improve performance in terms of execution time.
This can be done in a number of ways. Such modern
approaches as superblock scheduling [5], hyperblock
scheduling [6], and treegion scheduling [7] focus
mainly on increasing performance through increasing
the amount of instruction-level parallelism in
program code. In order to schedule for reduced
power dissipation, we are forced to sacrifice some of
the performance gains provided by these scheduling
algorithms in order to obtain the desired reduction in
power dissipation. However, the scheduling
approach presented here has shown that significant
energy savings can be obtained with minimal
reduction in program performance.

In this section the method behind out approach will
be presented. First we will discuss the machine
description mechanism and how energy values are
defined therein. Following will be a discussion of the
scheduling algorithm itself.

2.1 MDES Machine Description

We use the MDES machine description language
developed at the University of Illinois [8], [9] as the
basis for defining the architecture for which we are
scheduling. We have built the MDES environment
into the LEGO compiler which allows us great
flexibility in defining new, experimental
architectures. In addition it provides a nice
mechanism for defining new machine-specific
parameters such as energy dissipation values. In the
MDES description, we are able to define hardware
resources such as registers, register files, different
types of functional units, etc. In addition we can
define each operation and the functional units that it

can be executed on. It is in this description that we
define the energy dissipation values associated with
each of the machine’s functional units. Once these
numbers are defined, the MDES environment builds
a data structure that contains the energy information.
Then, for each instruction, the scheduler queries the
MDES to determine which FU the instruction is to be
scheduled on. Once the scheduler knows which FU
to scheduler on, it queries the MDES again to get the
energy dissipation value associated with the specified
FU.

For this particular study the energy values used in the
MDES descriptions were obtained from actual power
simulations run on different function unit types
designed at Digital Equipment Corporation. The
numbers provided were abstracted a bit in order not
to reveal proprietary information, but are accurate
enough to provide reliable results.

2.2 Scheduling Algorithm

The scheduling algorithm presented here is based on
the traditional list scheduling algorithm. Once the
DAG has been built for a specific region, the list
scheduler builds the ready list and begins scheduling
instructions based on dependence height. Currently
we are only scheduling instructions at the basic-block
level. Once an instruction has been cleared to be
scheduled and assigned to the proper FU, the FU’s
energy dissipation value is queried by the list
scheduler from the MDES. The list scheduler then
adds the value provided to the energy total for the
current cycle. If the total exceeds the threshold
defined, then the scheduler quits scheduling for the
current cycle and begins scheduling for the next cycle
with the instruction that caused the violation in the
previous one. If the list scheduler does not detect a
violation, it proceeds normally.

The results presented in the following section show
that this is a powerful technique for reducing power

The reduction in savings in total energy violations
and total energy is inversely proportional to the
amount of performance improvement achieved by
increasing the energy threshold. Figures 1 and 2
clearly demonstrate this relationship. For the 12nJ
threshold, Figures 1 and 2 show that the amount of
violations and total energy saved falls off a bit from
the 10nJ threshold. However, we feel that this
reduction is acceptable given the performance gain
we achieve by increasing the threshold value.

dissipation. We are currently in the process of
investigating further enhancements to the current
implementation.

3 Experimental Results

The studies performed so far with our scheduler have
been run entirely on basic-block code on an 8-issue
VLIW architecture defined as Tinker-8 which
contains three integer ALU units, 2 general purpose
floating-point units, two load/store units, and one
branch unit. All results given in this section are for
the SPECint95 suite of benchmarks. So far, we have
found that careful determination of the per cycle
energy threshold can result in significant savings in
terms of overall energy violations and total energy
saved over a given benchmark. The threshold can
take on any value equal or greater to the largest
energy value associated with any defined FU. At the
low end of the threshold spectrum, we see the
optimum amount of energy savings. However,
choosing extremely low power thresholds will result
in a large impact on program performance in terms of
total cycle count. In contrast, selecting extremely
high threshold values can result in little to no energy
savings. The ideal is to find the point at which
energy savings are significant while maintaining
program performance. Figures 1 and 2 show results
for two test cases in which we chose energy
thresholds of 10 and 12 nJ per cycle. Figure 1 shows
the total amount of energy violations saved by using
the proposed low-power scheduling technique. In
general, as the threshold decreases, the number of
total violations saved increases. However, the cost is
increased execution time. We found that by
increasing the threshold from 10nJ to 12, that we
could significantly reduce the performance impact
while maintaining significant overall energy savings.
The overall improvement in execution time ranged
from 10.2% faster for 132.ijpeg to 1.3% faster for
130.1i.

In addition to the results presented above for total
energy violations and energy savings, we measured
the extra energy cost in each benchmark program for
every 100 cycles scheduled. For every 100 cycle
segment, we calculate the total amount of excess
power dissipated. Table 1 shows that excessive
power is typically in the range of 10.0 to 100.0 nJ for
every 100 cycles. Over large programs, this results in
a large amount of excessive power dissipation which
can be saved using the low-power scheduling
technique proposed here.

Energy Violations Saved with Low-Power Scheduling

1.00E+12

1.00E+11

1.00E+10

1.00E+09

B Threshold = 12nJ
B Threshold = 10nJ

1.00E+08 -

1.00E+Q7 -

1.00E+06 -

In Table 1, the data represents the number of times
that the total power difference was in the specified
range during 100 cycle spans.

4 Conclusions

In this paper, we have proposed a new method for
scheduling instructions which helps reduce power
dissipation in high performance processors. The
approach is based on a per cycle energy threshold
which may not be violated in any given cycle.
Instructions are scheduled based on the list
scheduling algorithm until the threshold for the

current cycle is reached. Once the threshold has been
exceeded, the scheduler begins scheduling for the
next cycle. We have shown that this method can
result in significant energy savings over a given
program with little to no performance impact.

Future plans for this research are to extend the energy
model to contain a more concise representation of the
desired architecture and to investigate further
enhancements to the scheduling algorithm to allow
further increased savings.

Total Energy Savings with Low-Power Scheduling

1.00E+12

1.00E+11

1.00E+10

1.00E+09

EThreshold = 12nJ

1.00E+08 +

B Threshold = 10nJ

1.00E+07 +

1.00E+06 +

Figure 2

Table 1 — Excessive Power Distribution per 100 Cycles

0<X<1.0 1.0 <X<10.0 10.0 <X <100.0 100.0 <X
099.go 1330 3272 2702 0
124.m88ksim 55 160 236 8
126.gcc 5752 17566 15870 255
129.compress 15 26 29 0
130.1i 214 290 191 0
132.ijpeg 78 309 461 30
134.perl 754 1516 772 4
147 vortex 116 1764 6754 63

5 References

[1] Su, C-L., Tsui, C-Y., and Despain, A.M., “Low
Power Architecture and Compilation Techniques for
High-Performance Processors,” in Proc. of the IEEE
COMPCON, pp.489-498, 1994.

[2] Tiwari, V., Malik, S., and Wolfe, A.,
“Compilation Techniques for Low Energy: An

Overview,” presented at the 1994 Symposium on
Low-Power Electronics.

[3] Tiwari, V., Malik, S., and Wolfe, A., “Power
Analysis of Embedded Software: A First Step
Towards Software Power Minimization,” in /EEE

Trans. on Very Large Scale Integration Systems,
pp.437-445, 1994.

[4] Lee, M.T-C., Tiwari, V., Malik, S., and Fujita,
M., “Power Analysis and Low-Power Scheduling
Techniques for Embedded DSP Software,” presented
at the 1995 Int. Symposium on System Synthesis.

[5] Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang,
P.P, Warter, N.J., Bringman, R.A., Ouelette, R.G.,
Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G.,
and Lavery, D.M., “The Superblock: An effective
structure for VLIW and superscalar compilation,” in
The Journal of Supercomputing, vol. 7, pp.229-248,
Jan. 1993.

[6] Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank,
R.E., and Bringman, R.A., “Effective compiler
support for predicated execution using Hyperblock,”
in Proc. of the 25th Ann. Int’l. Symposium on
Microarchitecture, pp45-54, 1992.

[7] Havanki, W.A., Treegion scheduling for VLIW
processors. MS Thesis, Department of Electrical and
Computer Engineering, North Carolina State
University, Raleigh, NC, 1997.

[8] Gyllenhaal, J.C., A machine description
language for compilation. MS Thesis, Department of
Electrical and Computer Engineering, University of
Ilinois at Urbana-Champaign, Urbana, IL, 1994.

[9] Gyllenhaal, J.C., Hwu, W.W_, and Rau, B.R.,
“HMDES Version 2.0 Specification,” Technical
Report IMPACT-96-3, University of lllinois at
Urbana-Champaign, Urbana, IL, 1996.

Code Transformations for Embedded Multimedia
Applications: Impact on Power and Performance

Nikos D. Zervas
University of Patras
Dep. of Electrical & Computer
Engineering, Rio 26500, Greece
Tel.: (+) 30 61 997324
E-mail:zervas@ee.upatras.gr

ABSTRACT

A number of code transformations for embedded multimedia
applications is presented in this paper and their impact on both
system power and performance is evaluated. In terms of
power the transformations move the accesses from the large
background memories to small buffers that can be kept
foreground. This leads to reduction of the memory related
power consumption that forms the dominant part of the total
power budget of such systems. The transformations also affect
the code size and the system’s performance which is usually
the overriding issue in embedded systems. The impact of the
transformations to the performance is analyzed in detail. The
code parameters related to the performance of the system and
the way they are affected by the transformations are identified.
This allows for the development of a systematic methodology
for the application of code transformations that achieve an
optimal balance between power and performance.

Keywords

Embedded, Multimedia, Code Transformations, Power,
Performance.

1. Introduction

Image and video coding rapidly became an integral part of
information exchange. The number of computer systems
incorporating multimedia capabilities for displaying and
manipulating image and video data is continuously increased.
The rapid advances in multi-media and wireless technologies
made possible the realization of sophisticated portable multi-
media applications such as portable video phones, portable
multimedia terminals and portable video cameras. Real time
image and video processing are required in such applications.
Low power consumption is of great importance in such
systems to allow for extended battery life. Low power
portable multimedia systems are described in [1-2]. Portability
is by no means the only reason for low power consumption
[3]. Low power consumption is of utmost importance in non-
portable applications as well. For this reason there is great
need for power optimization strategies especially in the high
levels where the most significant savings can be achieved [3].
Power exploration and optimization strategies for image and

Kostas Masselos
University of Patras
Dep. of Electrical & Computer
Engineering, Rio 26500, Greece
Tel.: (+) 30 61 997324
E-mail:zervas@ee.upatras.gr

C. E. Goutis
University of Patras
Dep. of Electrical & Computer
Engineering, Rio 26500, Greece
Tel.: (+) 30 61 997324
E-mail:goutis@ee.upatras.gr

video processing applications are described in [4-10].

There are two general approaches for the implementation of
multimedia systems. The first is to use custom hardware
dedicated processors. This solution leads to smaller area and
power consumption however it lacks flexibility since only a
specific algorithm can be executed by the system. The second
solution is to use a number of instruction set processors. This
solution requires increased area and power in comparison to
the first solution however it offers increased flexibility and
allows implementation of multiple algorithms by the same
hardware. Mixed hardware/software architectures can also be
used.

In multimedia applications, memory related power
consumption forms the major part of the total power budget of
a system [7-8]. A systematic methodology for the reduction of
memory power consumption has been proposed in [7-8]. This
methodology includes the application of loop and data flow
transformations. However it mainly targets custom hardware
architectures and the impact of the transformations on the
performance of an implementation based on instruction set
processors is not addressed.

In this paper a number of code transformations is presented.
The effect of the transformations on three basic parameters of
embedded multimedia systems namely power, performance
and code size is illustrated. The way in which these
transformations affect power and performance is analyzed. As
test vehicles four well-known motion estimation algorithms
are used. The aim of the research under consideration is to
develop a methodology for the effective application of code
transformations in order to achieve the optimal balance
between power consumption and performance.

The rest of the paper is organized as follows: In section 2 a
brief description of the motion estimation algorithms is given.
In section 3 the applied transformations are described in
detail. In section 4 the way in which the transformations affect
the power consumption and the performance is described.
Finally in section 5 some conclusions are offered.

2. Motion estimation algorithms

Four typical [11] motion estimation algorithms were used as
test vehicles, namely full search, three level hierarchical
search (hierarchical), parallel hierarchical one dimensional
search (phods) and two dimensional three step logarithmic
search (log). Simulations using the luminance component of
QCIF frames were carried out. The dimension of the
luminance component of a QCIF frame is 144xIN&M).

The reference window was selected to includex1%5
((2p+1)x(2p+1) and p=7) candidate matching blocks. Blocks
of 16x16(BxB) pixels were considered. The general structure
of the above algorithms is described in figure 1.

for(x=0;x<N/B;x++) /*for all blocks in the */
for(y=0;y<M/B;y++) [*current frame */

for(i=-p;i<p+1;i++) /*for all candidate blocks */
for(j=-p;j<p+1;j++) /*in the reference window*/

{
for(k=0;k<B;k++) /*for all pixels in the block */
for(I=0;I<B;I++)

if (B*x+i+k)<0 || (B*x+i+k)>N-1 || (B*y+j+)<0 || (B*y+j+))>M-1)
/* Conditional statement for the pixels of the candidate blocks */

Figure 1: General structure of motion estimation
algorithms.

The algorithms consist from 3 double nested loops. Each
block of the current frame (outer loop) is compared to a
number of candidate blocks included in the reference window
(middle loop). Computing a distortion criterion (inner loop)
using all the pixels of both the current and the candidate
blocks performs the comparison. A conditional statement
inside the nested loops checks whether the pixels of the
candidate blocks are inside the previous frame or not.

3. Description of the applied

transformations
a) Transformation 1

The first transformation applied was a loop interchange [12]
between the loop related to the candidate blocks and the loop
related to the pixels of each block. In this way each pixel of
the current block was accessed only once (instead of
(2p+1)x(2p+1) times in the original description) and its
contribution to the distortions of the candidate blocks was
computed. An array signal of size (2p+1)x(2p+1l) was
introduced to store the intermediate values of the candidate
block distortions.

a) Transformation 2

The second transformation introduced a new array signal for
the storage of the current block. This array signal was
initialized from the current frame array signal before the loop
related to the candidate blocks. This transformation is a loop
distribution of the middle loop i.e. an insertion of an extra
loop with the same limits and step, combined with a node
splitting of the outer loop. As a consequence the inner loop
accessed the current block array signal, instead of the current
frame array signal, for the distortion computation.

b)

The third transformation introduced an array signal for the
reference window. This array signal was initialized from the
previous frame array signal before the loop related to the
candidate blocks. This transformation is similar to
transformation 2. The only difference was that the introduced
array signal contained the reference window instead of the
current block. So the inner loop accessed the reference
window array signal, instead of the previous frame array
signal, for the distortion computation.

Transformation 3

d) Transformation 4

The fourth transformation was based in the same idea as the
previous transformation but it also exploited data reuse [13].
Data reuse was feasible because of the overlapping reference
windows of neighboring blocks (Figure 2). Specifically an
overlapping of 2px(2p+B) pixels exists for the reference
windows of two neighboring blocks. For every current block
shifting its last 2p columns to the left and transferring the new

non-overlapping B columns from the previous frame array
signal initialized the reference window array signal.

-p B-p B+p 2B+p
currentl 'L -1 current
block f.-.}.+| block
S D RN B
Ref.windowi 42—p5 Ref. window i+1

Figure 2: Overlapping of reference windows of
neighboring blocks.

e) Transformation 5

The fifth transformation introduced two new array signals,

one for the reference window, and one for the candidate block.
The first array signal storing the reference window was
initialized from the previous frame array signal before the

loop related to the candidate blocks without exploiting the

data reuse as in transformation 4.

B
I | r—----- M
| Lt
B ! oo ¥
|
|
- Previous Frame
____ Blocki
—— Block i+1

Figure 3: Overlapping of neighboring candidate blocks.

The second array signal storing the candidate block was
initialized from itself for the overlapping part ((B-1)xB pixels)
and from the reference window array signal for the non-
overlapping part (Bx1 pixels), before the inner loop. In this
way the data reuse for the previous block array signal was
optimally exploited (Figures 3, 4).

e

N

|
1
;

()\

ﬁf

1
1
1 Reference Window
1

_\
-/

_———

Figure 4: Optimal data reuse for the candidate blocks in a
reference window.

This transformation is a node splitting of the outer loop and a
loop distribution of the loop related to the candidate blocks.

f) Transformation 6

This is a data flow transformation and was applied only to the
hierarchical motion estimation algorithm. The transformation
produces the sub-sampled by four versions of both current and
previous frames from the sub-sampled by two version of each
frame, instead of producing them from the original frames as
defined by the initial algorithm.

4. Effect of transformations on power and

performance
As already stated memory related power consumption forms
the major part of the total power budget of an image or video

processing system. Thus for the evaluation of the
transformations’ effect on the power consumption only the
memory power consumption was considered. The
transformations described in the previous section reduce the
number of accesses to the large background memories storing
the current and the previous frame which are the most power
costly and introduce accesses to small arrays (also introduced
by the transformations) that can be stored foreground
requiring smaller power per access. In this way the power
consumption is heavily reduced. To better illustrate the effect
of the transformations on memory accesses and on power
consumption let assume that the accesses required by an
algorithm in its original are given by the following equation.

Total numberof accesseforg) = A(bkg) + B(fg) @)

Small buffers, caches, register files and registers are
considered as foreground memories. Large buffers are
considered as background memories. The application of the
transformations results in an algorithm description with
number of memory accesses given by the following equation.

Total numberof accesseétrnsf)= C (bkg)+ D (fg) (2)

where

Total numberof accesseé)rg)<TotaI numberof accesseérnsf)

A>>C

B<<D

Obviously the real effect of the transformations is the transfer
of the larger part of the background memory accesses to
foreground memories. The total number of accesses to
memory elements is increased after the application of the
transformations since extra accesses are required for
transferring the data from the background memories to
foreground memories. A first order metric of the
transformation effectiveness (in terms of power consumption
reduction) can be the relative decrease of the background
memory accesses i.e. the rg#eC)/A This first order metric

of the power consumption reduction for the different
transformations is presented in figure 5. In figure 6 the real
power savings achieved by the application of the
transformations are illustrated.

Change in number of accesses to
background memories

50 =
40
30 B Full Search
%) !
20 i Hlog
10 a OPhods
0 O Hierarchical

1 2 3 4 5 6

Transformation

Figure 5: First order metric of power consumption
reduction.

The power savings introduced by the application of the
transformations described in the previous section ranged from
30% to 50% for transformations 1-5 while transformation 6
succeeded almost 8% power reduction but it affected only a
small part of the complete motion estimation algorithm. For
the evaluation of the power consumption of the data memory
the model of Landman [14] was used. For the estimation it
was assumed that the current and previous frames are stored in
two separate background on-chip buffers while all the small
arrays introduced by the transformations were assumed to be

stored in an intermediate small buffer (data cache). All buffers
were assumed to be single port read/write and 8 bits wide.

Power Savings

mFull Search
mLog
O Phods

(%)

O Hierarchical

1 2 3 4 5 6

Transformation

Figure 6: Power savings after the application of code
transformations.

The code transformations described in the previous section
affect also the system performance i.e. the number of cycles
required for the execution of the code. In an abstract level,
performance can be considered as a function of four code
parameters namely number of memory accesses, number of
computing operations, number of control operations and
number of address operations as described by the following
equation.

performance = ax#memory accessest+ cx#control op/tions +

+ bx#computing op/tions + d x#addressop/tions (3)

Where a, b, c, d are parameters determined by the instruction
set processor on which the code is executed and reflect the
number of cycles required for each one of these operations. A
more refined model should distinguish the accesses with
respect to the memory to which they are performed and the
different computing operations with respect to their
complexity. In general evaluation of the above factors before
and after the application of code transformations may give an
estimate of the transformation effect on performance. The
effect of the transformations on the performance-number of
cycles is illustrated in figure 7.

To estimate the transformation effect on performance the
motion estimation codes were simulated on ARM 7 processor
that was used as an embedded core. ARM is considered as the
state-of-the-art core for embedded telecommunication
applications. However it is still a general-purpose processor
and thus it is not the most suitable for multimedia applications
like motion estimation. Since only the relative effect of
transformations on performance (in number of cycles) is of
interest the use of ARM suffices. The effect of code
transformations on the number of cycles required for program
execution is not the same in all cases. This is the number of
cycles either increases or decreases depending on the effect of
transformations on the parameters of the model described in
equation 3.

Transformation 1 increased the number of cycles for all
motion estimation algorithms. The increase ranged from 1,6%
(full search-simplest structure) to 60% (parallel one-
dimensional hierarchical). This is due to the increase of total
number of memory accesses. The number of computing and
control operations remained stable and the addressing
operations were reduced.

Transformation 2 decreased the accesses to background
previous buffer, which has more complex address equations,
while increased the number of accesses to the foreground
candidate block buffer, which has simple address equations.

That way the reduction of address operations led to decrease
of the number of cycles for all motion estimation algorithms
of 0,2% (phods)-10%(full search) although the total number
of memory accesses increased and the computing and control
operations remained stable.

In the same way transformation 3 reduced the address
operations. Performing check for each reference window,
instead of each candidate block, lead to an 81%-98%
reduction of control operations. So although the total number
of memory accesses was increased, the number of cycles was
reduced from 27% (full search) to 37% (log).

For transformations 4 and 5 multiple control actions for the
same pixel were eliminated because of the data reuse resulting
in a reduction of the number of control operations from 85%
up to 99%. Transformation 4 also reduced the address
operations for the same reasons as transformations 2 and 3. So
although the total number of memory accesses increased, the
number of cycles reduced from 27% (full search) up to 37%
(log). Transformation 5 achieves optimal data reuse at the
expense of complex addressing. This fact caused an 8%-63%
increase of the address operations and combined with the
increase of total memory accesses lead to an increase of cycles
from 30% (hierarchical)-101% (full search).

It must be noted that no data caching was taken into account
during simulation. This means that the performance of the
codes (in number of cycles) is better than described above

code memory and indirectly the system’s power consumption.
This is because increase of the size of the program memory
corresponds to increase of the effective capacitance per
instruction set. A model for evaluating the power consumption
of the program memory was also included.

The research described in this paper is part of on-going
research. The aim of our research is the derivation of models
for fast and accurate evaluation of the effect of code
transformations on power and performance and the
development of a methodology for efficient application of

transformations in order to achieve the optimal power

performance balance.

Cycles Change

120,00+
100,00+
80,001
60,00
40,00+
20,00
0,004
-20,00
-40,00

mFull Search
mlog

O Phods

O Hierarchical

(%)

=

il

1 2 3 4 5 6

Transformation

especially for the cases where many accesses to the faster data Figure 7: Transformation effect on performance (# cycles).

cache occurred. Another system parameter affected by the
code transformations is the code size. Transformations usually
make the code more complex and thus increase the code size.
This implies an indirect effect on the system's power
consumption since increase of the code size leads to an
increase of the program memory. Increased size of the
program memory leads to increased effective capacitance per
accesses i.e. capacitance per instruction fetching. Since the
motion estimation codes were mapped on ARM that is a
general-purpose processor, the final code size and the number
of instructions required for the program execution (effectively
the number of times the program memory is accessed) are not
very realistic. For this reason the power related to program
memory was not evaluated. Furthermore no instruction
caching was taken into account. The presence of an instruction
cache reduces significantly the program memory related
power consumption especially in data dominated applications
where cache misses do not occur frequently. The effect of the
transformations on the code size is illustrated in figure 8.
Code size was increased for all the transformations and for all
algorithms from 7% up to 141%, due to the extra array signals
and the complexity introduced by all the transformations.

5. Conclusions

In this paper code transformations for power consumption
reduction of embedded multimedia applications were
presented. The transformations achieve power consumption
reduction by moving the main part of the background memory
accesses to small foreground memories. The code
transformations affect also the system’s performance. The
effect of transformations on the performance is described
analytically. Abstract models based on high-level code
parameters for both power and performance were also
described. These models can be used to evaluate the power
and performance effects independently of the instruction set
processor on which the code will be executed. Another system
parameter affected by the code transformations is the code
size. It was demonstrated that the code size increases after the
application of code transformations affecting the size of the

Code Size Change

160,00
140,001
120,001
100,001 =
80,00+ N
60,004 | N
40,001 B
20,00+ B
0,00

mFull Search
mLlog

O Phods

O Hierarchical

(%)

E

1 2 3 4 5 6

Transformation

Figure 8: Effect of transformations on code size.

6. References

[1] A. P. Chandrakasan, A. Burstein, R. W. Brodersen, “A
Low-Power Chipset for a Portable Multimedia 1/O
Terminal”, IEEE Journal of Solid-State Circuits, Vol. 29,
No. 12, December 1994, pp. 1415-1428.

T. H. Meng, B. M. Gordon, E. K. Tsern, A. C. Hung,

“Portable Video-on-Demand in Wireless

Communications”, Proceedings of the IEEE, Vol. 83, No.
4, April 1995.

[3] J. M. Rabaey, M. Pedram, “Low Power Design
Methodologies”, Kluwer Academic Publishers 1995.

D. B. Lidsky, J. M. Rabaey, “Low-Power Design of

Memory Intensive Functions”, 1994 IEEE Symposium
on Low Power Electronics, Digest of Technical Papers,
pp. 16-17.

M. Tartagni, A. Leone, A. Pirani, R. Guerrieri, “A Block-

Matching Module for Video Compression”, 1994 |IEEE
Symposium on Low Power Electronics, Digest of
Technical Papers, pp. 24-25.

(2]

(4]

(5]

[6] K. K. Chan, C. Y. Tsui, “Exploring the Power
Consumption of Different Motion Estimation
Architectures for Video Compression”, proc. of the 1997
IEEE Intl. Symposium on Circuits and Systems, pp.
1217-1220.

[7] L. Nachtergaele, F. Catthoor, F. Balasa, F. Franssen, E.
De Greef, H. Samsom, H. De Man, “Optimization of
memory organization and hierarchy for decreased size
and power in video and image processing systems”, IEEE
Intl. Workshop on Memory Technology, Design and
Testing, August 7-8 1995, San Jose, pp. 82-87.

[8] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man,
“Power Exploration for Data Dominated Video
Applications”, proc. of the 1996 Intl. Symposium on Low
Power Electronics and Design, Monterey, California,
pp.359-364.

[9] F. Catthoor, M. Janssen, L. Nachtergaele, H. De Man,
“System-Level Data-Flow Transormations for Power
Reduction in Image and Video Processing”, proc. of the
1996 Intl. Conference on Electronics Circuits and
Systems (ICECS'96), Rhodos, Greece, pp. 1025-1028.

[10] L. Nachtergaele, F. Catthoor, B. Kapoor, S. Janssens,
“Low power storage exploration for H.263 video
decoder”, in VLSI Signal Processing IX, IEEE Press,
pp.116-125, 1996.

[11] V. Bhaskaran, K. Konstantinides, “Image and Video
Compression Standards”, Kluwer Academic Publishers,
1994,

[12] D. Kulkarni, M. Stumm, “Loop and Data
Transformations: A tutorial”, Technical Report CSRI-
337, Computer Systems Research Institute, University of
Toronto, June 1993.

[13] J. P. Diguet, S. Wuytack, F. Catthoor, H. DeMan,
“Hierarchy Explorartion in High Level Memory
Management”, in proc. of the 1997 International
Symposium on Low Power Electronics and Design,
Monterey CA, August 18-20.

[14] P. Landman, “Low power architectural design
methodologies”, Doctoral Dissertation, U. C. Berkeley,
Aug. 1994.

Modeling Inter-Instruction Energy Effects
in a Digital Signal Processor

Ben Klass, Donald E. Thomas, Herman Schmit, David F. Nagle
Department of ECE, Carnegie Mellon University
Pittsburgh, PA 15213
benk@ece.cmu.edu, thomas@ece.cmu.edu

Abstract

This paper explores techniques for creating accurate
instruction-level energy models for digital signal processors
(DSP). Our initial results confirm previous work showing that
inter-instruction effects can become a significant component of
power consumption for many programs. To overcome limita-
tions of previous models, we develop a straightfoward method
(the NOP model) that models transitions between any two
instructions. Measurements show that our method accurately
models inter-instruction effects without a quadratic increase in
the size of energy tables. Complex instructions are handled by
treating functional units within the processor separately.

1 Introduction

Instruction-level energy models can be an effective tool for
high-level software-based optimizations [LEE97][TIWA94].
The basic technique constructs a table that records each instruc-
tion’s average energy. High-level power estimators use this
table to quickly determine each software instruction’s energy
consumption, avoiding costly circuit-level simulation (e.g.,
Spice). Because instructions are the atomic units used by code
generators, instruction-level energy models can be integrated
with power-optimizing compilers more easily than simulation-
based estimators. Further, instruction-level energy models allow
chip manufacturers to provide fine-grained power information
without having to disclose confidential design layout and imple-
mentation details—allowing software designers to quickly and
accurately estimate a program’s power consumption without
understanding the underlying implementation details.

Unfortunately, accurate instruction-level energy models
require more than simple per-instruction power estimates. Inter-
instruction effects can significantly alter the power consumed
by a given instruction, making it difficult to derive a single
power number for each architectural instruction [LEE97].
Power tables could be expanded to include every pair of instruc-
tions. Unfortunately, building such tables can be very time con-
suming and requires OENspace (where N is at least the size of
the instruction set). Grouping instructions into common classes
[Lee97] can reduce the table size, but does not scale well for

This work was supported by the Defense Advanced Research Projects
Agency under Order No. A564 and the National Science Foundation
under Grant No. MIP90408457.

DSP-type architectures with their rich addressing modes and
parallel instruction issue capabilities.

To overcome the problems of classification, we have devel-
oped a straightfoward method that requires only O(N) space
while accurately estimating program energy. Our results, simu-
lated with an implementation of a subset of the Motorola
DSP56000 (56K), produce instruction-level power tables that
predict program power within 8% percent of simulation-based
estimates. Further, by attributing each instruction’s power con-
sumption to the various functional units, we preserve accuracy
while overcoming the difficulty associated with modeling the
56K’s rich addressing modes and parallel functions.

Section 2 describes our subset of the 56K DSP and our
design methodology. Section 3 presents our approach to gener-
ating instruction-level power tables and compares our results
with previous techniques. Section 4 further evaluates these
models and describes potential limitations. Finally, in Section 5
we present our conclusions and outline future work.

2
2.1 CMU 56000 DSP

To build accurate models and to compare our results with a
real design, we designed and implemented a standard-cell based
subset of the Motorola DSP56000 instruction set [MOTO90].
Synopsys and Cascade’s Epoch synthesized our 56K Verilog
model into a standard-cell layout (see Figure 1).

We choose the 56K because instruction-level power analysis
is more complex than simple RISC cores and because the 56K’s
functionality is representative of many power-conscious archi-
tectures. The 56K is a 24-bit, fixed-point DSP that can encode
and issue one arithmetic operation and up to two “parallel” data
moves in onepackedinstruction. Our 56K core implements
most of the arithmetic and basic data movement instructions
and accounts for most of the logic that effects power consump-
tion.

Tools and Methodology

2.2 Mynoch Power Estimator

A variety of approaches have been used to characterize the
power consumption of digital systems. For physical devices,
direct-measurement of current gives the most accurate measure-
ments [TIWA94]. However, the granularity of results is limited
to device-level, multi-clock cycle measurements. Accurate,
fine-grained results can be obtained with Spice-based simula-
tors, such as Star-Sim [KRIS97], but long run-times severely
limit the number of cycles/events that can be simulated. Gate-
level power estimators improve simulation speed
[KOJI95][PURS95][XANTI7], by sacrificing accuracy to
achieve faster run-times.

The initial analysis of our 56K’s power consumption was
done using CMU’s gate level analysis tool, Mynoch [PURS95].
Mynoch estimates power by counting transitions from a Verilog

[YDa&a |
emory [Memory [[Memory
4b x 1kw [24b x 1kwfl24b x 1k

PUB ™
XDB
T oB 'E
GDB 2}
[v=]
T, OTT m e
583 || 8
~ < XMEM YMEM PMEM

Figure 1: DSP56000 architecture and layout

Major components: 1) 3 KB of SRAM; 2) data ALU, which con-
tains a 24x24-bit multiplier and 56-bit accumulator; 3) address
generation unit (AGU), which contains three sets of eight 16-
bit registers and two ALUs capable of arbitrary modulo and bit
reversed arithmetic; and 4) program control unit (PCU).

simulation and calculating the dynamic energy consumed for
each transition using:

Mynoch runs 450 times faster than Spice simulation, allowing
us to simulate thousands of cycles for each test program. Mem-
ory is not modeled with Mynoch since Epoch uses behavioral
models for memory. Spice based simulations have shown mem-
ory to be approximately 20% of the total energy.

We verified the accuracy of Mynoch by comparing
Mynoch’s power estimates against Avanti's Star-Sim, which
uses a modified Spice engine. Eighteen iterations of a 4-tap FIR
filter were simulated with both Mynoch and Star-Sim. Initially,
Mynoch’s power estimates showed significant error in contrast
to Star-Sim. To locate the source of Mynoch'’s error, we com-
pared Star-Sim’s per module power estimates with Mynoch’s
estimates. The analysis showed that Mynoch’s inability to
account for intra-gate capacitance within registers (i.e., D-flip
flops) was the primary source of error. To correct for this error,
we used Star-Sim’s power estimates to build a simple linear-
regression model that included the number of registers. The
resulting model had a very high degree of accurdcfagtor of
0.98). This model was further verified by comparing results of
Mynoch augmented by the regression model vs. Star-Sim for
120 cycles of an FFT program. The error between the two meth-

ods was less than 1% for the processor, although error on func-

tional units was higher. All of the Mynoch results reported in
this study are augmented by the regression model.

%Instr Sim
Pgm Description nstr arith cycles
fir4 4-tap FIR filter (direct form) 5 57% 1760
fir64 | 64-tap FIR filter (direct form) | 5 96% 5,000
firdu |4 tap FIR filter, unrolled once | 12 66% 1,500
FFT | 256 point FFT 24 79% 8,062
LMS | 64-tap least mean squares 13 63% 30,000
adaptive filter

Table 1: Description of workloads

The Instr column lists the number of unique instructions exe-
cuted in each workload’s main program loop. %lnstr arith
lists the percentage of instructions executed that are arith-
metic instructions. Sim cycles lists the number of cycles sim-
ulated for power analysis.

4 Clock
I ==l ——) AR08
| [JBusses
%]
g firg E F::::::::::: EMuIlipIier
g _) . [Adder
o firdu :.:.:.:.:.:. "| Other
5 | B ALu
g Ime | BEBEES s 11| B AcU
5 |
] M Pcu
fft R
: I Other
0 1 2 3 4 5 6
Average Energy per Cycle (nJ)

Figure 2: Energy consumption for workloads

This figure shows power consumption for the workloads. The
AGU and ALU are the two largest consumers of power and
almost all of the variation between programs is caused by
variation in the multiplier and AGU power. The multiplier uses
guard latches on the input and consumes less power with
programs that have proportionally fewer multiply operations.

2.3 Test Programs and Reference Energy

In contrast to general processors, a DSP is frequently used to
compute fairly simple, data intensive programs. For the work-
loads of our power analysis we chose five program kernels that
represent those found in typical signal processing applications
(see Table 1). Three of the kernels are finite-impulse response
(FIR) filters, one is a Fast Fourier Transform (FFT), and one is
an adaptive filter (LMS). Gaussian white noise was used as
input data.

Power consumption for the benchmark programs was mea-
sured using Mynoch (see Figure 2). Average energy consumed
per cycle, given in nanoJoules, provides the basic unit of mea-
sure which will be used throughout the paper. This is obtained
by dividing the total energy over the program execution by the
number of cycles. Power consumed by the pads and memory is
not included.

3 Instruction-level Models

Although circuit-level simulations provide insight into
power consumption for a given program, an instruction-level
model is more appropriate for code generators. Instruction-level
models typically use aanergy tablethat describes the energy
cost for each instruction in an instruction-set architecture (ISA).
The challenge in building such a model is balancing accuracy
and energy table size. This section presents four models with
different accuracy and table size trade-offs. The first model,
base modelproduces the smallest table size, but yields poor
energy-prediction accuracy across a program run. The second
model,pair mode| has greater accuracy, but at the cost of much
larger tables. The third mod®OP mode] provides nearly the
accuracy of the pair model with much smaller tables. The fourth
model, general model is similar to the NOP model but the
energy table generated is independent of the program being
evaluated. The general model provides reasonable accuracy and
is appropriate for use with code generators.

3.1 Base Model and Estimation

Building the Base Model's Energy Table

Creating a complete and accurate energy table for the 56K
DSP requires one to account for each instruction in the ISA,
each instruction’s different register and immediate values, and
every possible packed instructibhis can require a signifi-
cant amount of time and space. To make the base model more

DO #<50
MAC YO0,X0,a X:(r0)+,X0 Y:(r4)+,YO
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO0

;target instruction

Jtarget instruction

Figure 3: Loop used to characterize MAC from
FIR filters

This loop was used to calculate the base energy cost of the
target instruction, in this case the MAC instruction as it
occurs in the FIR filters. Two data values are read in from
memory each cycle, so both multiplier inputs change. Two
instances of the target instruction are needed to match the
semantics of the DO instruction.

tractable, we only computed the energy cost for every unique
instructiorf found in our five workloads—not for every possible
tuple of {instruction, reg/immed, instr pair}

Each instruction’s energy was estimated by constructing a
tight-loop test program that included the target instruction and a
zero-overhead branch instruction so that only the target instruc-
tion was executed in the core of the loop. Figure 3 shows the
tight-loop test program used to characterizeMA€instruction.
Each tight-loop test program was run through Mynoch to gener-
ate the base energy cost,d For measuring thREPinstruc-
tion, we were forced to useNOPinside of the loop because a
loop of REPinstructions is illegal.

Whenever possible, loops were made with the actual instruc-
tions used in the programSome instructions were modified
slightly to ensure that different operands were used on each
cycle. Data from the workload being characterized was used.

Because the test programs are based on the actual instructions

and data from our five workloads (Table 1), the results of this
approach are optimistic in their accuracy. When generalizing
this approach, parameters such as the destinations of parallel
moves would be abstracted to reduce energy table’s size.

CLR A XO0,X:(r0)+ Y:(r4)+,YO JA=0;

X0 <- X(n-1); YO <- B(0)

REP #<3 sforj=0to2

MAC Y0,X0,A X:(r0)+,X0 Y:(rd)+,Y2 | ; A+= X(n-)*B(j);

X0 <- X(n-j-1), YO<- B(j+1)
MACR Y0,X0,A (r0)- ;A += X(n-3)*B(3);
update pointer

MOVE X:(r1)+,X0 A,Y:(r5)+ ; X0 <- X(n+1); Y:(out) <- A

Figure 4: Main loop of fird

This figure shows the code used in the fir4 main loop. The
fir64 is the same, except that the MAC operation is
repeated 63 times by changing the repeat instruction to “rep
#<63." The CLR, MAC, MACR, and MOVE instructions
employ parallel moves to move data into registers immedi-
ately before the data is needed.

1. Like many DSPs, the 56K allows for packed instructions, where an
arithmetic instruction and a data-movement instruction are grouped
together in one instruction.

. Instructions are considered different if there is any difference in their
opcode, immediate values, registers, or pairings. For example, two
versions of a MAC instruction,MAC x0,y0,a vs. MAC
x1,y0,b), are considered different and will have different entries
in the base model’s energy table.

5
£ Other
2L 4

[}

3 O pcu
5 3

> AGU
o

o 2

i Bl A

firdu

Figure 5: Mynoch vs. Base Model

Simulated energy from Mynoch and estimated energy using
the base model (base) are given for major units. Both clock
and bus power are contained in “Other.” (Due to length and
complexity, LMS has not been done.)

Base Model Energy Estimates

The instruction measurements described above were used to
construct a base model energy table that was then used to esti-
mate the average energy per cycle for each of our workload pro-
grams. For example, the energy per cycle foffithe program
was calculated by:

Bz =(B cr*B rept 3B mact B macrt B move!7

Figure 5 shows the power estimates gained from the instruction
energy table. The results show a very accurate power estimate
for the fir64 . However, the estimated energy for other pro-
grams is underestimated by 17% to 25%. This error is 50%
higher than the error reported in [LEE97].

This error can be understood by consideringfitié and
fird programs (see Figure 4). The accuracy in fitd
workload is due tdir64 ’s limited number of inter-instruction
effects. Thefir64 repeats théMACinstruction 63 times, with
no intervening instructions, in a loop of 67 instructions. This
behavior is very similar to the tight-loop test programs used to
derive the instruction energy table. In tfigt , however,
energy is underestimated by 25% because inter-instruction
effects are significant. THe4 repeats thé/ACinstruction 3
times in a loop of 7 instructions, while the remaining 4 instruc-
tions are all different. Inter-instruction effects in the remaining
instructions are not represented by the base model, leading to
the observed error.

For each of the workloads, most of the inaccuracy for the
base model occurs in the DSP’s AGU (address-generation unit)
and PCU (program-control unit) functional units. For the fir4,
the energy for the AGU and PCU are underestimated by more
than 30%. The error in these units can be understood by consid-
ering the microarchitecture (Figure 1). The AGU must generate
an address by the end of pipeline stage 2, so no registers exist
between the control logic and the data path (our implementation
does this to increase performance). The PCU does not latch its
control points for similar reasons. The lack of registers allows
glitches in the control logic to propagate into the data path,
causing many false transitions as an instruction word changes.
In contrast, the ALU (data ALU functional unit) latches all of its
control points, so glitches are confined to the control logic,
making the base model more accurate.

Energy per Cycle (nJ)

Other
[Pcu
A Acu
Il AL
L = Qo S 2 = 0Qa
7 I g @ B O
S o % g 8§ o =
>
=
firdu fft

Figure 7: Different approaches to estimating inter-instruction overhead

This figure compares energy from Mynoch simulation with estimates from the base model (base), pair model (pair) and NOP model
(NOB. The pair model measures overhead for each pair of instructions that appear in the program trace. The NOP model measures

overhead for each instruction using NOP instructions

3.2 The Pair Model

The impact of inter-instruction effects on power estimation

Using Bjsy andQngy Where appropriate, the pair model
estimated the energy for each of the workloads (Figure 7). The
results, labeled gwmir , are much more accurate than the base

has been noted before and can be compensated for by assigningmodel, with error between 1% and 10% for all programs. How-

a per-instruction overhead that accounts for inter-instruction
effects [LEE97]. This overhead,;{J, is added to the base
energy cost if an instruction is not the same as the previous
instruction. For example, the energy model for the code
sequence:

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO

, target instruction

would only use Bjac for the second MAC operation, while the
energy model for the code sequence:

MOVE X:(r1)+,X0 Y:(r4)+,YO
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO

, target instruction

would use Bjac + Ovove mac because thAGnstruction is
preceded by a different instructidlOVE

Similar to the base model, we measurgglf using tight-
loop test programs. Each loop consisted of the target instruction
and the instruction that preceded it in the execution trace, giving
average energy per cycle for the logg,see Figure 6). Over-
head was calculated by:

Oprevious,target =E loop -8 previous +B target)2

DO #<50
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO

MACR Y1,X1,a (r0)- Jtarget instruction

Figure 6: Loop used to find overhead: pair model

This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MACR instruction as it occurs
in the FIR filters, under the pair model. The pair of instruc-
tions that appear in the workload programs was used and
the overhead for this pair was assigned to the trailing instruc-
tion. Different source registers were used for the MAC and
MACR instructions to ensure that both multiplier operands
change, as in the FIR programs.

ever, generalizing this technique would require characterizing
ever%/ possible pair of instructions, requiring a table of size
O(N9), where N is the number of instructions and addressing
modes. For the 49 different instructions and addressing modes
implemented in our 56K chip, a complete instruction energy
table would contain 1176 entries. To reduce the table size,
[LEE97] grouped instructions into classes and derived overhead
costs between classes. This technique works well for simple
machines, but is much more difficult to apply when dealing
with the many complex addressing modes and instruction types
found in a DSP such as the 56K.

3.3 The NOP Model

To avoid the difficulties of instruction grouping, we have
developed a new approach that requires only one overhead cost
for each instruction. This model is based on the assumption that
the overhead cost for an instruction is not strongly dependent on
the neighboring instruction, but does depend on whether the
neighboring instructions are the same or different. This observa-
tion leads to the NOP model, which allows us to account for
instruction changes without enumerating each pair of instruc-
tions.

Like the pair model, the NOP model calculates the energy
for a particular operation with either 8, or Bjgyr + Oinste
depending on the previous instruction. The NOP model differs
in that we calculated one overhead cost for each instruction,
Oinstr Using loops which alternate the target instruction with
NOPinstructions (Figure 8). This techniques allowed us to cap-
ture the energy effects of changing instructions while keeping
the size of the table to O(N). Power estimates using the NOP
model are shown in Figure 7, labeledN3P The results show

DO #<50
NOP
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO

Jtarget instruction

Figure 8: Loop used to find overhead: NOP model

This loop was used to calculate the overhead cost of the tar-
get instruction, in this case the MAC instruction as it occurs
in the FIR filters, under the NOP model. A target instruction
is paired with an NOP to calculate its overhead cost.

DO #<50

MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO ; MACxy
MAC Y0,X0,a X:(r0)+,X0 Y:(r4)+,YO | ; MACxy

DO #<50

MOVE X:(r0)+,X0 Y:(r4)+,YO ; MOVEXx+y+
MOVE X:(r0)+,X0 Y:(r4)+,Y0 : MOVEx+y+

Figure 9: Loops used for general model

These loops were used to calculate the base cost of the
MACxy and MOVEx+y+ instructions under the general
model. The MACxy refers to a MAC instruction where both
multiplier inputs change while MOVEx+y+ refers to two par-
allel moves with increment.

error between 1% and 8% on programs that previously had
much larger errors with the base model. Considering that group-
ing instructions also decreases accuracy, this should compare
favorably with any model based on instruction classes.

3.4 General Instruction Model

Having established the effectiveness of the NOP model, we
generalized this approach to build tables that could be used for
any program—a general instruction model. Unlike our previous
models, where the instruction energy tables were built to match
instructions as found in the workloads as closely as possible,
the general instruction model creates a single instruction energy

~
o

3 60]
= Other
£ 50 B
2
T 40 D PCU
[a}
D 30
o AGU
S 20 T
) B ALU
c
5 101
0- < > a e < S (=% =
£ § ¢ 8§ & § 2 2
£ : : = T :
o o = o o
c [c c
Mynoch gen

Figure 11: Implementations of a 4-tap FIR filter

This figure compares the energy to produce one datum of
output for four different software implementations of the
same 4-tap FIR filter. The fird and firdu implementa-
tions are described in Table 1. The no-rep implementation
does not use the repeat instruction or store past inputs. The
no-par implementation only uses one parallel move and
does not use packed instructions. The number of cycles per
datum for the fir4 , firdu , no-rep , and no-par pro-
grams are 7, 6, 6, and 15, respectively.

present. The AGU and “Other” were characterized by the paral-
lel move portion, ignoring arithmetic instructions. Data was

coarsely modeled in ways that would be visible to a code gener-
ator. Table entries for arithmetic operations were separated

table that can be used across all programs. Such a table could bebased on which operands changed value; move operations con-
created by processor manufacturers and then used by a codetained separate entries for the number of moves and type of

generator to optimize power.

The general instruction model is similar to the NOP model,
but extends the power analysis by accounting for packed
instructions. Packed instructions present a problem when build-
ing general tables because any combination of arithmetic and
parallel move is allowed. Our previous models used the actual
packed instructions from each workload. When generalizing,
the 23 arithmetic instructions and 24 types of parallel moves
lead to 552 possible combinations, making a complete table
fairly large. Fortunately, the two parts of a packed instruction
are largely executed by different units within the 56K. Using
this architectural knowledge, we separated the two parts of a
packed instruction, building tables for the energy consumed by
each of the functional units rather than the entire DSP.

The general instruction model consists of four tables, corre-
sponding to the four significant functional units: ALU, AGU,
PCU, and “Other.” The first three units have been described
above. “Other” refers to all remaining parts of the chip, prima-
rily the clock and bus power. The ALU and PCU were charac-
terized by the arithmetic portion of packed instructions only,
ignoring the parallel move unless no arithmetic instruction was

6

g ElOther
3 m|

[S]

5\ PCU
g AGU
>

(=2}

5 WA
c

L

Figure 10: General Instruction Model

This figure compares Mynoch simulation energy (Mynoch)
and the general instruction-level model (gen). Each compo-
nent: AGU, ALU, PCU, and Other was estimated using sep-
arate tables.

update performed on address registers.

Energy costs were generated with loops similar to those
described above (Figure 9). From each loop, the relevant energy
costs were calculated for each unit. Uniform random data was
used as input to the arithmetic unit. Under the general instruc-
tion model, the base energy cost of the instruction:

MAC Y0,X0,a X:(r0)+,XO0 Y:(r4)+,Y0
was calculated by:
BaLumacxy * B acumovexty+t B pcumacxy™ B Other MOVEX+y+

Overhead energy costs, and whether an instruction has changed,
was calculated for each unit in the same way.

Estimates based on these general instruction tables are
shown in Figure 10. By making estimation automatic, we were
able provide estimates fims as well. Considering that pro-
gram dependent information from Figure 7 has been removed,
results are remarkably similar. Accuracy on all programs is
within 10%.

4 Applications and Limitations

Section 3 developed an general instruction model that pro-
vides reasonable accuracy while limiting the table size. In this
section we analyze this model from two perspectives. The first
examines a possible use of such an energy model—evaluating
the energy of code transformations within a code generator. The
second looks into the importance of program data, which is not
considered by the instruction-level model.

4.1 Code Transformations to Save Power

Comparing different implementations of a 4-tap FIR filter
allows us to see if the energy models can recognize power sav-
ings due to code transformations (see Figure 11). While
[TIWA94] looked at instruction reordering, more aggressive
code transformations are used here. We implemented four ver-
sions of a 4-tap FIR filter which used the same coefficients and

nigues such as those proposed in [MARC96] could be used to

4.0 reduce the trace length.
3.5 L 4
5 *
2 30 ¢] e .
825 gy v ? s [2 . 5 Conclusion and Future Work
S d N
% f‘; We have presented several approaches for dealing with inter-
> 10 instruction effects when building instruction-level energy mod-
2 o5 els for a specific DSP design. The results show that DT
G 0 instructions to model transitions between any two instructions
22 % %8 &£ » 228 8 » £g give accuracy within 8% while reducing table size from almost
2 228 2 Q ¢ 2 2 2 g 9 1200 to less than 100, and eliminates possible human error from
2322 :23:22:3273°73 other simplification methods. Using separate models on major
€ g £ § 2 € € S units within the DSP avoided multiple table entries for different
combinations of arithmetic and parallel move instructions and

Figure 12: Energy per instruction of data ALU allowed us to build a general model. Such a model could allow

The average energy for each instruction, based on Mynoch code generators to recognize code transformations that reduce

simulation of the programs, is given with standard deviation the energy consumed by programs.
error bars to the left. The three instructions with the h|ghest Future Work attempt to recogrnze When data dependent vari_
standard dte‘ga“or(‘j bShOV"eld a b'rr?"d;' BTngPUIIO?H Base ation is likely to be important and include such variation within
gpaelrr%gg(()elsaf'e) "’i‘\?en t?)sﬁg :Jis&ver ead (B+O) from the gen- the model. Building models for other, non-DSP architectures
9 ght. would further validate the applicability of the ideas presented
here.

input data. Energy per datum processed is used as the metric to
compare these programs to account for the different number of
cycles required by different programs. Energy per datum is 6 Acknowledgments

given by per-cycle energy multiplied by the number of cycles
per datum. Andrew Ryan, Chris Inacio, Jonathan Ying-Fai Tong and

Figure 11 shows that Mynoch power estimation predicts that Bill Dougherty Jr. provided critical components for this study.
loop unrolling,firdu , consumes 20% less energy per datum
thanfir4 while the version without packed instructions; 7 References
par , consumes 75% more energy per datum. The difference in
energy is due to both the energy per cycle and the number of [BAJW97] R. S. Bajwa, N. Schumann, H. Kojima. Power
cycles required to process one datum. The general model is able Analysis of a 32-bit RISC Microcontroller Integrated with a 16-
to recognize the difference in power, but does not show as dra- bit DSP.Proceedings 1997 International Symposium on Low
matic an improvement fdirdu andno-rep . The lost accu- Power Electronics and Desi 137-142. 1997
racy comes from the general model underestimating the AGU’s 9pp- ’ :
per-cycle energy fair4 while overestimating the AGU’s per- [KOJI95] H. Kojima, D. Gorny, K. Nitta, and K. Sasaki. Power
cycle energy fofir4u andno-rep . While improved accuracy apajusis of a Programmable DSP for Architecture/Program
in AGU power estimation is needed, results show that a code Obtimization.|IEEE Symposium on Low Power Electronics
generator using this model would choose the implementation P : ymMposiu '
using the least power under the general model we developed, ~ Digest of Tech. Papergp. 26-27, Oct. 1995.

.. [KRIS97] Ram K. KrishnamurthyMixed Swing Techniques for

4.2 Data Dependent Variation Low Energy/Operation Datapath CircujtBh.D. Thesis, Carn-

None of the models presented consider energy effects of pro- egie Mellon University, December 1997.
gram data. However, the power consumption of many units, o) .
such as the multiplier, can be highly data-dependent. Other [LEE97] M. T.-C. Lee, V. Tiwari, S. Malik, M. Fujita. Power
research on DSP power consumption has noted the data depen-Analysis and Minimization Techniques for Embedded DSP
dent variation and analyzed the energy of individual functional SoftwarelEEE Trans. on VLSI Systenpp. 1-14, March, 1997.
units, such as the multiplier [KOJI95][LEE97]. Code transfor-)
mations that keep one operand constant or reduce the number of[MARC96] Diana Marculescu, Radu Marculescu, Massoud
“1” bits in a Booth-Encoded multiplier are ways that the com- Pedram. Stochastic Sequential Machine Synthesis Targeting
piler can change the data to reduce the multiplier’s energy. Constrained Sequence Generat®roceedings of Design Auto-
To gauge the importance of data, we used cycle accurate mation Conferengepp. 696-701, 1996.
simulation to measure the power in the ALU when each MAC
operation was active for the workloads. The average power con- [MOTO90] Motorola, Inc.DSP56000/56001 Digital Signal
sumed by each instruction, with standard deviation error bars, is Processor User's Manual 990.

shown in Figure 12 along with the energy costs for these .
instructions from the general model. Most instructions deviate [PURS96]D. J. Pursley. A gate level simulator for power con-

between 8% and 12% from the mean, while two instructions sumption analysis. M.S. Thesis, Carnegie Mellon University,
deviate by 16% and 28%. The costs from the base model are May 1996.
generally within the one standard deviation of the workloads. o))

Thefft has the largest standard deviation and has the least [TIWA94] V. Tiwari, S. Malik, A. Wolfe. Power Analysis of
accurate ALU estimates under all models (c.f. Figure 7). The Embedded Software: A First Step towards Software Power
fit showed a bimodal distribution of energy in one of its MAC ~ Minimization. 1994 ICCAD, Digest of Technical Papepp.
instructions, probably due to a large number of multiplications 384-390, 1994

by zero. Improving accuracy for this problem would require))
moving to a model based on execution traces with sample pro- [XANT97] T. Xanthopoulos, Y. Yaoi, A. Chandrakasan. Archi-

gram data. Increased accuracy of such a model would come at atectural Exploration Using Verilog-Based Power Estimation: A
cost of significantly longer simulation time, although tech- Case Study of the IDCDAC 97, pp. 415-420, 1997.

Power Issues In the
Memory Subsystem

Split Register File Architectures for Inherently Lower Power Microprocessors

V. Zyuban and P. Kogge
Computer Science & Eng. Department, University of Notre Dame, IN 46556, USA

Abstract 2 Power Complexity of Centralized Register File
Register files represent a substantial portion of the energy bud- Register files in modern superscalar CPUs are usually centered
get in modern processors, and are growing rapidly with the trend on multiported memory macros whose storage size and the num-
towards wider instruction issue. The actual access energy costsber of ports grow with increasing issue width. The silicon area
depend greatly on the register file circuitry and technology used. of a multiported memory, built using conventional approaches,
However, according to a recent study, it appears that neither grows quadratically in the number of ports [13]. Therefore, tak-
technology scaling nor circuitry techniques will prevent central- ing into account growth both in storage needs and the number
ized register files from becoming the dominant power compo- of ports, we should expect that the power portion of such multi-
nent of next-generation superscalar processors. This paper stud- ported on-chip memories will grow rapidly in the future.

ies alternative methods for inter-instruction communication as In our recent work [17] we studied the dependence of the ac-
to their energy efficiency and begins to lay out approaches at cess energy to a multiported register file upon the number of read
the architectural level that would allow inherently more energy- and write ports, and the number of registers in the register file.
efficient computations. We did a study for various circuit organizations of the RF, and
tried to find the lower bound on the access energy. The study
showed that even when the Port Priority Selection (PPS) tech-
nique [11] is applied, combined with double-ended reads and
))) . low-swing writes (which was found to be the most energy effi-
Current microprocessor design has a tendency towards wider IN-cient), still the access energy grows significantly as the number
struction issue and increasingly complex out-of-order execution. ¢ ports and the number of registers increases, Fig. 1. Here we
This leads to the growth of the on-chip hardware, and dissipated 355umed 0.95 RF read accesses and 0.6 RF write accesses per
power. Energy-delay product-4<iax L, oritsin- instruction (measured for the SPARC-V8), and for the number

oOperation
verseLECz, seem to be a reasonable metric for power effi- of portsNycaq = 2Nuwrite-
ciency of a design [8]. Smaller energy-delay values imply a
lower energy solution at the same level of performance — a more
energy-efficient design.

Reference [10] described and analyzed those portions of a
microarchitecture where complexity, and consequently power
grow with increasing instruction issue width. Among them are:
register rename logic, wakeup and selection logic, data bypass
logic, register files, caches and instruction fetch logic. The
power growth of each of these structures can be described as
Power ~ (IPC)”, whereIPC is the average number of in-
structions completed per cycle, ands some constant. Every
one of the above structures has its own power growth constant
By substituting the assumed expression for power dependence
uponIPC to the energy-delay formula we see that those struc-
tures that havey > 2 may begin to swamp the power budget Hmer o ports 12 N
as the processor issue width ahBlC' grow, and eventually lead
to a deterioration of the energy-delay metric and thus the energy Figure 1. Average access energy per instruction of a RF using
efficiency of a microprocessor. the PPS technique combined with double-ended reads and low-

In this paper, which is a part of a bigger project, we concen- swing writes (1st bar) and a conventional RF architecture (2nd
trate on one of the structures whosés greater thar?, namely bar), 0.5um technology/aqs = 3.3V
the centralized multiported Register File (RF), and consider al-

1 Introduction

operation’

2000

-
1500 —f

ray, pJ

2
5 1000 —

access

500 —

ternative methods for inter-instruction communication that are
more energy efficient. Our goal is to find one that has 2.

*This work was supported in part by the National Science Foundation under
Grant No.MIP-95-03682.

To express the RF access energy and dissipation power in
terms of the issue width (IW) of a processor, we assumed for
the number of read and write portsV,..« = 2IW, and
Nurite = IW. To estimate the number of registers we used
the results in [4], where it was found that for a four-issue and
eight-issue machines the performance saturates argaehd
128 registers, respectively. Based on this data, and assuming that
40 registers is sufficient for a single issue machine, we extrapo-
late the dependence linearly to two-issue and 16-issue machines.

The average RF access energy per instrucdigp.-q 4. Ver-
sus the microprocessor issue width is plotted in Fig. 2, both for
the conventional RF and the RF using the most energy efficient
PPS technique. The equations listed for each case are approxi-

mate curve fitsfor theregion IW = 4toIW =1 6

We see tha there is a significant enery penaly per in-
structian in supportirg large instructian level parallelisn with
a centralizel registe file. In orde to compue the overal RF
power we multiply the average enegy dissipation per instruction
Eqverage Dy the numbe of instructiors issuel per cycle (IPC'),
ard by the clocking rate f: Powe = f x IPC X Egverage -
According to Fig. 2, Eqverage ~ IW?, where 3 is between
0.96 and 1.8. Assumirg that IPC = IW*" (or inversey,
IW = IPC /%), thisyieldsPo w e = f x IPC x IPC#/* =
fxIPC'P/% ory =1 48/

If the I PC' grew linearly with the isste width (o = 1) then
the use of the PPS registe file architectue would resut in the
power dependene parametery close to a value of 2, while the
use of the conventiona registe file architectue would resut in
v = 2.8. However, sine in red machinesl PC' increase less
than linearly with the increag in the isste width (o < 1), then
even theuse of the mog energy-&icient registe fil e architecture
does nat solve the problem and leavesthe power dependenepa-
rametery well above 2. For an Amdahlslaw-like « of 0.5 [14]
the~ isbetweer8 and4.6!

2500

E=(w)18
2000

access energy, pJ
&
o
o

1000 |]
E = (1W) 096

500

o1l HI H H
1 2 4 8 16
issue width (IW)

Figure 2: Averag acces enery per instructian for a PPS (1st
ban ard a conventiond RF architectue (2nd bar) versis issue
width, 0.5 featue size,Vyq = 3.3V.

It mug also be stressd that all the resuls for the register file
power describé above assumd very aggresive eneryy manage-
mert techniquesincluding pulse word line acfivation technique
for reducirg the bit line swing to the minimum, pulse actva-
tion of the sensig circuitry, fully cutting off prechage during
readirg and writing, taking advantage of the statistics of the data
storad in RF memoy cells minimum transisto sizing wherever
possible use of equalizirg transistos to save bit line energy dur-
ing prechargeln red world CPUsthe desie for speel will often
nat permt sorme of thes techniquesmeaniry that red register
file powers are even higha. The conclusim is tha nore of the
known circuit technique solves the problem of rapid RF power
growth for machine with increasig ILP. This leads to the in-
escapatd conclusian tha the use of acentralizel registe fileas
an inter-instruction communicatio mechanim is going to be-
come prohibitively expensve. Alternafve techniqus involving
more than just circuit tricks are going to be necessa; and are a
target of thiswork.

3 Registe File Partitionin g —the Basic Idea

In this section we analy2 potentid energy savings of replacing
acentralizel RF with a collection of decentralizd registe files.

The primary advantag of accessig a collection of locd regis-
ter files rathe then a single centralizel registe fileis tha local
registe files do not neal to have many ports and the numbe of
entries in ead registe file is mud smalle, which makes them
very simple fag ard low power.

Suppos we have a superscalaprocesso capabé of issu-
ing I instructian in parallel Using the above assumptionsa
conventiona centralizel registe file would have Nyeqd, centr =
2IW, rea ports and Nyyrite,centr = IW write ports and
Nregcentr = No + 1 2< IW physicd registes [4]. |deally,
we would like to partition the centralizel registe file into m
locd registe files (m< IW) in suc a way tha every lo-
cd regista file has Nports,iocal = = Nports,centr POIts and
Nreg,local = %Nreg,centr entries.

Unde sudh ided partitioning of the registe file we would
exped the acces enery to every locd registe file to be
Biocat = =15 Eecentr, basel on the resuls for the conven-
tiond register file architecturepresentd in the previous section.
Sud a partitioning would resut in the totd registe file power
of Powe = f x IPC X Ejpcar = f X IPC' X —t5 Eeenty-
Choosimg the degree of RF partitioning to be proportion to the
processpisstewidth, m ~ I, we get for the totd register file
power Po we r~ f x IPC, with the power growth parameter
~ = 1. Thisresut isachieved withoutusing complicatel circuit
techniqus for the registe file.

However, ther are certan hurdles that make the described
ided partitioning impossible First, additiona paths neal to be
provided to pas databetwee locd registe files, resultirg in ex-
traportsto locd registe files. Secondthe ideal % partitioning
of registesamory locd registe filesisnat possiblerathe, local

registe files will need more registess than W These
effects potentially redue the energy savings.

m

4 Existing Approaches to Registe File Decen-
tralization

The problem of the growth of centralizel registe files ard the
associatd increag in acces time has been considerd by some
researchersind afew architecturewith adecentralizd register
filehave been proposedHowever, thusfar researcheshave been
primarily concernd with accestimes not energy costs.

41 Limited Connecivity VLIWs

The ided VLIW architectue would be a machire with many
functiond units connectd to a single centrd registe file [3].
This organizatim would enabék any operatiam to be carried out
on any available function unit, simplifying code generation To
avoid the degradatian in performane cause by multi-porting
asingle registe file researcherhave suggeste partitioning the
registe fil einto banks so tha ead functiond unit is connected
to a specift bark [3, 15]. Son®e kind of cros®ver provides a
limited accesto the registess from othe banks Every operation
specifies its destinatia bark at compile time.

This arrangemetnalleviates the problem with the numbe of
ports but brings abou the problam of inter-bark dafa traffic.
If value storal in one bark is required for an operation sched-
uled to a functiond unit connectd to anothe bank this value
mug be copied betwea the registe fil e banks To minimize the
additiona workload on the compiler and minimize dat traffic
betwea the differert registe files banks the partitioning of the
registe file mud be dorein avery carefu way.

Since the assignmenof an operatim to a functiond unit is
dore at compile time, VLIW compile mug carefuly choose

a cluste for every operation ard a registe file bark where the
resut will be written.

4.2 Multiscalar Architecture

The Multiscala architectue [1, 6, 7] executes code segments
identified at compile timein paralld on multiple processig ele-
menst organizel as acircular chain A decentralizd realization
of a single registe file called a Multi- Versian Registe File is
propose to provide a high bandwidh inter-instructioan commu-
nication mechanim neede for simultaneousl acive multiple
executin units Ead executian unit is provided with a different
versim of the architecturhregiste file, called a locd register
file. All registe reads and writes occurrirg in aunit are directed
only to the unit'slocd registe file. Communicatio betwea the
multiple registe filesis dore throudh unidirection4 serid links
by forwardirg the lag possibé registe instance in atak to the
subsequentasks as som as the instances are determine to be
the lag possibé ones The identificatian of the lag possibé reg-
ister instan@ is dore using acompile support.

Finding appropria¢ statc progran chunks and load balanc-
ing acros the processig elementsas well as identificatian of
the lag possibe registe instancesare sorre of the issues that
ariin this approach.

4.3 Trace Window Architecture

The partitioning of the physica registe fil ein the Trace Win-
dow architectue [16] is base& on the fact tha nat all physical
registess are live beyond the trace line tha produce them Typ-
ically, arourd half the registeis written by a smal traceline (16
or 24 instruction$ are nat live beyond the trace line. The pro-
portion of sud locd registessincreassfor large trace lines [5].

In the Trace Window architecture locally live destination
registess are rename to a physica registe file locd to the
traee line; live-onexit destinatiom registers are renamel to a
globd registe file. To identify live-onexit registers output-
dependene checkirg amory instructiors in one trae line is
dore in paralld with the true-dependerecchecking The local
RF isflushed when the correspondig tracelineisremoved from
the window.

Oredisadrantag of thisapproab isthat in orde to rename
registessinto locd ard globd registe files, all chunks of atrace
line nea to be buffered at the renane stagés outpu until the
lag churk isrenamed As aresult registe renamirg of atrace
line restrict dispatt bandwidth ard identification of live-on-
exit registes makes instructian dispatd bursty. A mechanism
for alleviating this problem is proposd which avoids full re-
namirg on trace reu by capturirg in the trace cacte renamed
tracelines obtainel from the output of the register renane stage,
rathe than raw instructions.

5 Split Registe File Architecture

Thefirst of the above techniqus makes the register fil e partition-
ing visible to the programme ard requires that all assignments
of operand to registe file banks be dore explicitly at compile
time. This approab potentially has binatly compatibility prob-
lems The two othe techniqus are basel on the time localities
of inter-instruction communication Ead bark of the register
file stores those registe instances tha are produce ard con-
sumel by instruction tha are executal close to ead othe in
time in the dynamt instruction sequence.

In our work we study an approad to the registe fil e decen-
tralization basel on anothe kind of inter-instructim communi-
cation locality. Thisapproab isbasel on ahypothess tha there

exist certan grouys of instructiorsin the dynamt instruction se-
quene sud that the inter-instructiom communicatio islikely to

be mostl locd within ead group Thes groups do nat neces-
sarily consi¢ of consecute instructiors in the dynamt instruc-
tion sequence.

If thisisthe casethen we can implemen our CPU as a col-
lection of processig unit clustes and provide ead cluste with
alocd physica registe file. At run-time instruction despatch
logic triesto stee every instructiors to the cluste wher instruc-
tions producirg its registe sour@ operang were executed The
desiral resut of sud partitioning would be that instructiors ac-
ces locd registe files mog of the time. Additiond patls are
provided for inter-cluste traffic.

Ther are additiond energy benefis we exped to get from
the describé organization First, the enery efficiency of the
bypas logic can be improved if we implemert full bypassing
within ead cluste only. Secondwe exped tha the proposed
idea shout allow us to more fully take advantag of correla-
tion betwee operam values of instructiors in the sarme group.
The averag enery dissipation of mog processig units like
ALU, shifter, etc is known to be statisticaly proportion4 to
the numbe of dat bit transitiors at the inputs in a clock cycle,
Eaverage = Econst + Nchange X Echangeu where Econst isa
constan enery independenof the daia acivity at the inputs,
Nchange istheaverage numbe of bit transitiors at the inputsin
ore clock cycle, and E¢range IS acodficient specift for every
processig unit [9, 12]. By steeriny instructiors that acces the
sare registess to the sane processig unit cluste we increase
the probability that operaml values of thes instructiors are cor-
related ard therely redue the average numbe of bit transitions
at the inputs of functiond units.

The suggeste split registe file architectue is similar to the
dependence-bagarchitectue tha was propose in [10] to sim-
plify wakeyp ard selec logic (which was found to be the most
critical in terns of the delay compkxity), ard thus allow faster
clocking In the dependence-badearchitectue the instruction
isste window is replacel with a numbe of FIFO buffers each
quete holding a chan of dependeninstructions Instructions
from multiple queus are isste in parallel The key difference
betwe@ our approab ard the dependence-badearchitecture
is tha the registe file in the dependence-baderchitectue is
not partitionad into registe files locd to clusters Also, the
dependence-bagearchitectue has not been studial for energy
efficiency in [10].

Before going any further the efficiency of the idea mug be
evaluated The primaly questiors tha determire the efficiency
of splitting theregiste fileare (i) how often we neal to pas data
betwee differert clustes (which is equvalert to how often ac-
cessetoremot registe fileswill occur, or how many additional
write ports might be neede for inter-registe file communica-
tion), (ii) how many registess in locd registe files are needed,
ard (i) wha effect sud partitioning has on correlation between
operanl values of instructiorsissuel to the sane functiond unit.

6 Early Experiments

In this sectia we ched the hypothess tha “there exist certain
groups of instructiors in the dynamt instruction sequene such
that the inter-instruction communicatio is mostly locd within
ead group” For thiswe nee to find the beg possibé partition-
ing of instructiors in the dynamtc code sequene into groups
sudh tha inter-instruction communicatio acros groyp bound-
ariesisminimized Thiswould give us atheoreticélower bound
on the inter-registe fil e traffic when instructiors from different
groups are scheduld to acces differert registe files. We are
going to use thes data to evaluat the efficiency of various reg-

ister file decentralizatio technique that we are going to study
later.

Our approad to identifying the beg possibe partitioning of
instructiors is as follows. First, we construt a graph for a dy-
namc instruction sequence In this gragh nodes represetin-
structiors in the dynamt sequenceand edges represehinter-
instruction dependencies We take into accoum dependencies
trough registers through memoy locations throuch the the con-
dition code andY” registers To take into accoun contrd depen-
dencieswe makeinstructiorsin the gragh deperl on all mispre-
dicted branche executea earlieg in the dynamt code sequence.
Correctly predicta branchs do nat introduc any contrd de-
pendenciesSpeci& car istaken to accoun for delayel instruc-
tions.

To find the beg possibé partitioning of instructiors into
grous sud tha inter-instructim communicatio acros group
boundarie is minimized we neeal to solve the problem of opti-
ma partitioning of the program gragh into subgrapk in suc a
way tha the totd numbe of crossd edges representig depen-
dencies throuch registess is minimized Unfortunatey we can-
not solve this problam for the whole gragh becaus it is known
to be NP complete We overcone this difficulty by dividing the
problem into subproblers of fixed size finding the optimd solu-
tions for thes subproblemsand thus constructirg asub-optimal
solution for the whole problem To argwe tha our suboptimal
solution is close to the optimd one we obseve the dependence
of the resut upan the size of subproblems.

The subproblers of optimd gragh partitioning are posel as
follows: Assume we have M executio unitsand NV instructions
in the analyss window (subproblen size) We nedl to sched-
uletheseN instructiors to the M executian unitsin suc away
that the totd numbe of crosse edge representig dependen-
cies through registess in the whole gragh from the beginning
of a progran to the lag instructian in this analyss window is
minimized This optimization targe is referrel to as traffic cost
minimization.

However, the traffic cod minimization contradics the con-
dition of exploiting maximd amoun of instructian level paral-
lelism, becaus the desie to minimize the numbe of crossed
edges would resut in the tendemy to schedut mog of the in-
structiors to the same execution unit, leaving the reg of the
hardwae idle. The optimum would be achieved by scheduling
all instructiors to the sarre unit, therely crossimg no edges at
all. Therefore we neal to take into accoun the performance
requirementnamel that the totd executian time from the be-
ginning of program to the lag instructian in the window mug be
minimized Becaus of this requirementindependeninstruc-
tions will tend to be scheduld to differert executian units The
performane optimization targé is further referral to as delay
cog minimization.

There is one more requiremenh tha we neal to take into
accoun when searchig for the optimd partitioning of instruc-
tions Namely, the numbe of physica registeisin every register
file needd for execution shoutd be minimized This require-
mert is equvalert to reducirg the numbe of live registes in
every groyp of instruction ard it sonmewha conflicts with the
performane requiremenby reducirg the degree of out-df order
issue Also it resuls in more even partitioning of instructions
amory executia units The targe of minimizing the numbe of
physicd registesis further referred to as storag size cog mini-
mization.

To take into accoun all thes requiremers we take the fol-
lowing approach First we fill the analyss window with incom-
ing instructions Then we conside all possibé assignmerst of
the instructiors in the analyss window to executia units, and
calculaethree cossfor evely assignmeti.e. thetraffic cost de-
lay cost ard storag size cost Then we calculae the totd cost

of evety assignmenas sone function of the three coss atove,

choo the assignmenwith the minimum totd cost ard fill the

analyss window with new instructions We can place emphasis
on any of the above requiremerg (eithe communicatio local-

ity, or performanceor storag size) by constructiig appropri-
ate cod functions The easiesway is to sun the three costs
above with appropria¢ weights At this point we assune that

all executim units are equvalent and every instruction can be

scheduld to any of the executio units Within every execution

unit instructiors are issuel in-orda, thusthere are M possible
combinations.

Resuls of applying the describé optimizatian algorithm to
afew shot integer prograns are presentd in Figures 3, ard 4 for
processa with four and eight executian units, respedtely. In
thisand othe experimens in this sectiomn we usel the bast two-
bit brand predicto which has about10% mispredictio rate on
the integer benchmarks The brand mispredictio penaly was
asaumed to be 5 cycles and the instruction and data cacte hit
rates were assumd to be 100%.

Inter register file traffic on the per instruction basis versus CPI. Number of functional units is 4.

0.25 T T T T T T T T T
-4 1 < < weight (traffic : cpi) = (2: 1)
®e * * weight (traffic : cpi) = (5: 1)
o o weight (traffic : cpi) = (10 : 1)
5 -8 *-2 = « weight (traffic : cpi) = (50 : 1)
g 021 9 ¢ product traffic x cpi 1
= 4- 10 maximum performance
=
4]
g
8 o-1
goise 8 g 4
© 10 - x fe 4
&
) o~ 2
E e 1
14
5 01f o-4 q
& a-8 O 2 g2
€ o~ 10
2
) 4
< - Onl 4
g 0.05- « max performance 4
© analysis window size = 8 _8
10 - %
0 I I I I I

I I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
CPI

Figure 3: Inter-registe fil e traffic on a per-instructio bass ver-
sus CP|, for differert optimization targes ard different sizes of
the analyss window. The numbe of executia unitsisfour.

Resuls are presentd by dots where eat dot correspondto
acertan optimization target, and analyss window size The X
axis shows CPI, ard theY” axis shows the average numbe of re-
mote registe file accesseper instruction Thus points close to
the origin of the coordinats represehbette scheduling Points
correspondig to the sane optimization targe are connected
with dotted lines We see tha bigge analyss windows result
in a bette schedulilg policy. Unfortunatey we could nat run
the simulatian for large analyss windows becaus of execution
time constraints.

We did not obseve significart saturatio of improvemert in
schedulilg with the increag in the analyss window size within
therange tha we could simulate althoudh we can see tha bene-
fit of increasiy the size of the analyss window diminishes with
the growth of the analyss window. We exped to see a more
significant saturatio of schedulig improvemen for the anal-
ysis window sizes arourd 32 instructions becaus mog of the
registe instance are consumd within 32 instructiors [5].

The resuls show tha differert optimization target resut in
quite differert traffic-delay tradedfs. By increasimg the weight
of thetraffic cos we place more emphass on minimization of the
traffic cost however, this also resuls in performane decrease
(highe CPI). The correspondig points tend to concentra in
the lower right cornes of the figures On the othe hand by in-

creasimg the weight of the delay cog we place more emphasis
on performane optimization but at the expen® of highe traffic
cost The correspondig points terd to concentrat in upper-
left cornes of the charts The verticd dottel lines on the charts
correspod to the maximun performane scheduling when the
traffic cog isignored We also obseved a significart spae for
the traffic-deley tradedfs for configuratiors with 2 and 16 func-
tiond units.

Inter register file traffic on the per instruction basis versus CPI. Number of functional units is 8.

T T T T T T

* weight (traffic : cpi) = (5: 1)

o weight (traffic : cpi) = (10 : 1)

= weight (traffic : cpi) = (50 : 1)
maximum performance

0.2 q

0.25

T
x4 2

64

@0 %

0.15- —

011 —

~ max performance, analysis window size = 6

average number of remote RF accesse per instruction

0 I
03 0.35 0.4 0.45 0.5 0.55 0.6 0.65
CPI

Figure 4: Inter-registe fil e traffic on a per-instructio bask ver-
sus CP, for differert optimization targes ard differert sizes of
the analyss window. The numbe of executian unitsis eight.

As aresut of running thee experimens we see tha even
with the existing compiler which perforns optimizatiors for per-
formane only, it is possibe to partition instructia into groups
sud tha inter-instruction communicatio tends to be mostly lo-
cd within ead group By schedulig instructiors in different
groupsto differert executian unitsit is possibé to keep theinter-
unit communicatio low, while exploiting almog all the ILP
available in the code.

We alo cheded the hypothess tha “steerirg instructions
that accesthe saneregistesto the sarme processig unit cluster
increass the probability tha operanl values of the instruc-
tions are correlated: Indeed we obseved a 9% to 10% reduc-
tion in the data switching acivity at the inputs of functiond units
for the suboptimé schedulilg algorithm describé above. The
correspondig reductia in the data switching acivity at the out-
puts of the functiond unit was from 12% to 14%. Rurs with
highe weiglht of the traffic cog resulta in more significart re-
ductiors in data switching actvity. The obseved reduction in
the switching aciivity could resut in up to 10% reductia in the
dissipaté power of the correspondig functiond units [9, 12].
The reductian in the switching acivities at the inputs and out-
puts of locd registe files was even more significant up to 17%.
This could be use to further redue the acces energy to local
registe files[17].

In the experimens describe above we analyzel properties
of code avoiding implementatio detaik as mucd as possible.
As a next step we plan to come up with certah implementation
that would allow us to take advantage of the discovered proper-
ties. We are going to analy the inter-instructian traffic in more
detal ard study how the inter-growp traffic could be handled.
We will study the use of aglobd registe file for storing register
instance tha are alive for long periods of time and extengvely
accesset by many instructions.

7 Opcode-Basd Steering

In practie various heuristis can be usel for steerimg instruc-
tions to clusters and the simples of them is the opcode-based
steering when the cluste for every instructian is chose based
on the instruction opcode To evaluat the efficiency of the
opcode-base steerilg we s& up an experiment basel on the
SPARC instruction sd simulata Shaak [2]. The methodology
of the experimen was as follows: Ead ently in the simulated
physicd registe arrey hes atag tha showsin which registe file
the dat is being stored All read accesseto regista files are
recordel in a matrix. Wherever unit ¢ reads daia from register
file j, the entry M[i][j] in the matrix isincremented The val-
uesin the matrix are divided by the totd numbe of instructions
executed so tha diagond& ard non-diagonbelemensin the ma-
trix represenlocd registe file hit and miss rates respedwely,
on a per-instructian basis The sum of all elemensin the matrix
is the average numbe of nong0 registe file accesseby one
instruction Accesssto the zero registerg0 are ignored.

In our first experimen we divided all instructiors of the
Spac architectue into four groups load/stoe instructions,
branchesALU instructions and processocontrd instructions,
including call, jmpl and return We assumd tha thereis a sep-
arae cluste for every group with alocd registe file. Note that
early CDC and Cray machine often had multiple architecturally
dedicate registe files similar to this partitioning.

In this experimen we assumd tha if a unit need to ac-
cess data from a remote RF, the data is moved from that re-
mote registe file to the RF of the unit requestig the data
(move-on-mis policy). Therefore non-diagonhentries in the
matrix show how often sud inter-registe file transfes are
neede (in terms of accesse per instruction) For example,
M[L OAD/STORE][ALU] shows how often da& needd to be
transferre from the AL U registe fil eto the LOAD/STORE reg-
ister file, on a per-instructian basis.

The first approab tha we simulatel is a "lazy” placement
policy. Every unit writes data to its locd registe file. If an-
othe unit need this datg the data is moved to the correspond-
ing registe file. The resuls of using this policy isthat too many
inter-registe file dat transfes are needed we obseved local
registe file missesin up to 30% of instructiors executed Thus,
this placemenpolicy is not suitabk for the split registe file ar-
chitecture.

The secom approab we simulatel is a”greedy placement
policy, when dat is always written to the registe file locd to
that unit which will need the datafirst (inthe dynamt instruction
sequence)lf anothe unit need this datlater, the datais moved
to the registe file locd to tha unit. The resuls for the greedy
placemenpolicy average over a se of integer bend program
are given in the Table 1.

. Numbe of accessgto the locd registe files (per instruction)
Instruction
Groups LOAD/STORE‘ BRANCH ‘ PROC.CONTR. | ALU
LD/ST 0.223 0.000 0.000 0.027
BRANCH 0.000 0.000 0.000 0.000
CONTR. 0.000 0.000 0.025 0.000
ALU 0.046 0.000 0.002 0.535

Table 1: Inter-registe fil e traffic matrix for the greed placement
policy.

The third approab we simulatel is an "optimal’ placement
policy, when dat is always written to the registe file locd to
the unit that will acces this data for the mog numbe of times.
Unlikethetwo previous placemenpolicies if anothe unit needs

to acces this datg the dat is not moved from the registe file.
The resuls for the optimd placemen policy averagel over the
sarmre s of integer bend progran are given in the Table 2.

. Numbe of accessgto the locd registe files (per instruction)
Instruction
Groups LOAD/STORE‘ BRANCH ‘ PROC. CONTR. ALU
LD/ST 0.213 0.000 0.000 0.037
BRANCH 0.000 0.000 0.000 0.000
CONTR. 0.000 0.000 0.023 0.002
ALU 0.026 0.000 0.000 0.557

Table 2: Inter-registe file traffic matrix for the optimd place-
mert policy.

Of coursg it is not always possibe for eithe hardwae or
compile to predid exactly what unit will need the dat first or
which unit will acces the dat the mog extensvely, however
the resuls show us the lower bourd on the registe file miss
rates for the opcode-bask steerig scheme The main resut of
this experimernt is that mog of the registe file accessghit lo-
cd registe files. The totd registe file miss rate is arourd 7.5
perceih on a per-instructio basis which mears tha about7.5%
of all instructiors miss their locd registe files. An interesting
obsewation istha the greed ard optimd placemenpoliciesre-
sult in approximatef the sare totd miss rate Note tha this
resut was obtainel for a code compiled with aregular optimiz-
ing compile. If we use a compile with prope optimizations,
then the resuls will be bette.

Most inter-registe-file traffic occus betwee ALU and
Load/Stoe units The< registe file misses are responsile for
about90% of the totd missrate The percentag of thes misses
is highe for an optimized code than for a non-optimizel code.
This happes becaue an optimized code uses registess more ef-
ficiently for inter-instruction communication A trivial way to
eliminate this kind of misses would be to broadcasresuls of
the instructiors in thes grouys to both registe files, however,
this might nat be enery efficient. In future experimens we will
study the energy efficiency of sud abroadcasting.

8 Conclusionsand Future Work

Future growth in performane for moden CPUs is predicated
on highe ard highe levels of instructian issue However, even
with the beg of circuit technique known the centralizel regis-
ter files needd to suppot sudr machina will rapidly become
a bottlene& in the power equation This pape has suggested
one pah towards reducirg this facta by architecturaly parti-
tioning the registe file into logically ard physicaly separate
units Early simulation resuls has indicated tha the amoun of
inter-unit traffic tha need to be handlel to allow sud partition-
ing may be quite manageald - validating tha the bast concept
may hold substantibpromise and openirg up an opportuniy to
trade performane for power by sharirg write ports insteal of
addirg ports dedicate to inter-registe fil e traffic.

Nea term work will involve in firming up the simulatian re-
sultswith more extensve benchmark and more detailed simula-
tions alorg with more complee power modek tha incorporate
more of the CPU. Longe termm work will focus on alternatve
registe partitioning schemesmore generétha those suggested
in the multi-scala ard trace window work, but agan with an
emphass on inherenty lower power organizations In addition
secoml orde effects which may be significant sud asincreased
correlation betwee@ bits processé by function units, are also
patt of the simulatian plars and will be investigatel extensvely.

The long term god for this work is thus determinatio of
architecturaitechniquesperha all the way at the instruction
sd level, tha permt inherenty low energ organizatios which
in turmn are nat significanty performane constrained.

References

(1]

(2]
(3]

[4]

5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

S. E. Breach T. N. Vijaykuma, ard G. S. Sohi “The
Anatony of the Registe Filein a Multiscala Processg’
Proc. 27th Annud Int'| Symp on Microarchitectue, pp.
181-190 Decembe 1994.

B. Cmelik, "The SHADE Simulata,” Sun-Lals Technical
Report 1993.

R. Colwell, et al., “A VLIW Architectue for a Trace
Scheduliy Compile,” IEEE Transactiors on Computers
pp. 967-979 NO. 8, Augug 1988.

K. FarkasN. Jouppj P. Chow, “Registe File Design Con-
sideratiosin Dynamically Scheduld Processors Techni-
cd Repot 95/1Q Digital Equipmen Corporatio Western
Researl Lab, Novembe 1995.

M. Frankln and G. S. Sohi “Registe Traffic Analysis
for Streamlinirg Inter-Operatien Communicatia in Fine-
Grain Parallé Processors Proc. 25th Annud Int’l Symp.
on Microarchitectue, pp. 236-245 1992.

M. Franklin and G. S. Sohi, “The Expandalg Split Win-
dow Architectue for Exploiting Fine-Gran Parallelisnj’
Proc. 19th Annud Int’'| Symposim on Compute Architec-
ture, May, 1992.

M. Franklin “The Multiscala Architecturg’ Ph.D. The-
sis, University of Wisconsin-MadisonTech Repot 1196,
Novembe 1993.

R. Gonzale ard M. Horowitz, “Energy Dissipatio in
GeneraPurpog Microprocessors IEEE Journd of Solid-
Stae Circuits Vol. 31, No. 9, Septembe1996.

H. Kojima, et al.,“Power Analysis of aProgrammatd DSP
for Architecture/Progna Optimization’ |IEEE Symposium
on Low Powe Electonics San Jose pp. 26—27 October
1995.

S. PalacharlaN. Jouppij J. Smith, “Complexity-Effective
SuperscalaProcessd’ In: Proceeding of the 24th An-
nud Internationd Symposim on Compute Architecture.
pp. 206—-218 Jure 1997.

U.S. Patem No. 5,657,291 issual Aug. 12, 1997 to A.
Podlesy, G. Kristovsky, A. Malshin “Multiport Register
File Memoly Cel Configuratio for Real Operatiorf

T. Satq et al.,“Evaluatian of Architecture-ével Power Es-
timation for CMOS RISC ProcessorsIEEE Symposium
on Low Powe Electonics San Jose pp. 44—45 October
1995.

M. Trembla, B. Joy and K. Shin “A Three Dimensional
Registe File For SuperscalaProcessors In: Proceedings
of the 28th Annud Hawai Internationd Confeena on
Systen Sciencespp. 191-201 Januay 1995.

M. Tremblay, D. Greengy ard K. Normoyle, “The Design
of the Microarchitectue of UltraSPARC TM-|,” Proceed-
ings of the IEEE. pp. 16531-1663Decembe 1995.

J. Turley and H. Hakkarainen “Tl's New 'C6x DSP
Screars at 1,60 MIPS” Microprocesso Report pp. 14—
17, Februay 17, 1997.

S. Vajapgyam and T. Miltra, “Improving Superscalaln-
structian Dispatt ard Isswe by Exploiting Dynamic Code
Sequence’ Proc. 24th Annud Int’l Symposim on Com-
pute Architectue, Jung 1997.

V. Zyuban P. Kogge “The Energy Compkexity of Register
Files” IEEE Symposim on Low Powea Electonics and
Design Montery, Augug 1998.

ENERGY EFFICIENT CACHE ORGANIZATIONS FOR SUPERSCALAR PROCESSORS *

Kanad Ghose and Milind B. Kamble
Department of Computer Science
State University of New York
Binghamton, NY 13902-6000
email: {ghose, kamble}@cs.binghamton.edu

Abstract power dissipated in on—chip caches without compromising the
performance of the caches.

Organ_izational techniques for reducing energy dissipation in The bulk of the energy dissipation in CMOS circuits comes from
on—chip processor caches as well as off—chip caches have bee

flansitions in the logic levels at gate outputs. The power

_observed to provide substantial energy savings in a technology issipated by a CMOS gate due to output transitions is given by P
independent manner. We propose and evaluate the use of block 0.5[T, [W2 T, where G is the capacitative load driven by the

buffering usingmultiple block buffers, subbanking and bit line gate, V is the voltage swing per transition and f is the transition

|fso|at|on to refjuc%tFr:S powc\e/(/dlssmatlon(;/wtth}ln ((j)n—ch.lpt CaTheslfrequency. In addition to these capacitative dissipation, circuits in
or superscalar S € use a detalled register-evel o caches (such as the sense amps) also have non—capacitative
superscalar simulator to glean transition counts that occur W'th'ndissipations that also depend on the number of transitions

various cache components 'durlng the execution of SPEC 95Several techniques have been proposed (and actually used in
benchmarks. These transition counts are fed into an energys me cases) for reducing the power dissipated by caches in

d!ssipat!on merI for a 0.8 micron cache to allow power general. These techniques can be divided into the following
dissipation within various cache components to be eSt'matedcategorieS'

accurately. We show that the use of 4 block buffers, with
subbanking and bit line isolation can reduce the energy 1) Techniques that use alternative cache organizations for
dissipation of conventional caches very significantly, often by as reducing cache power dissipation. These include the use of
much as 60-70%. subbanked caches [SuDe 95, KaGh 97a], block buffers [SuDe 95,
) KaGh 97a], their combination and multimodular external caches
1. Introduction [KBN 95]. Many techniques for organizing SRAMs for lower
power dissipation, as presented in [Itoh 96] and [EvFr 95] can also
Most high—performance microprocessors have one or two levelspe used to reduce dissipation in the tag and data arrays within a
of on chip caches to accommodate the large memory bandwidthcache.
requirements of the superscalar pipeline. A significant amount of

power is dissipated by these on—chip caches, as exemplified in the?) Circuit design techniques that focus on reducing the power
following: dissipation within the static RAM bit cells, particularly

dissipations due to bit line transitions. These include bit line
(a) The on—chip L1 and L2 caches in the DEC 21164 isolation techniques that isolate the sense amp from the bit lines
microprocessor dissipate about 25% of the total power dissipatedonce the sense amp has started making a transition, as used in the
by the entire chip [ERB+ 95]. Hitachi SH-3 embedded microprocessor [HKY+ 95], clamped bit
lines that limit bit line swings and other similar techniques.
(b) In the bipolar, multi-chip implementation of a 300-MHz.

CPU reported in [JBD+ 93], 50% of the total dissipated power is 3) Instruction scheduling techniques that schedules instructions in
due to the primary caches. a manner that reduces power dissipation in instruction caches

[SuDe 95].

(c) A recently announced low—power microprocessor targeted forNote that techniques in these three catedori I
the low power, the DEC SA-110, medium performance market . q gories are generaily
(that also leads all microprocessors available today in terms ofllr_}(]jep;endentffrtﬂ.rn each other ar:d char) thus tt’ﬁ L:Sfe(ljl In tco?rjlunfc.tlotn.
SPECmarks/watt) dissipates 27% and 16% of the total power, € Tocus ot this paper Is on techniques that fall Into the firs
respectively, in the on—chip I-cache and D-cache respectivelycategory'
[Mon 96]. In this paper we propose and evaluate the useuttiple block

o buffers, subbanking and bit line isolation to reduce the power
As yet another example, the HP PA 8500 is significantly gissipation within on—chip caches for superscalar CPUs. We
cache—rich compared to other similar high—end microprocessorsgpoyy that a suitable combination of these techniques can be
and reportedly more than 70% of its die area is occupied by thegyremely effective in reducing the energy dissipation in all
on—chip L1 caches, which are likely to be a major source of power caches across the memory hierarchy, both on—chip and off—chip.
dissipation. Several factors result in significant power power savings for off—chip caches and other techniques for
Fjissipations in on—chip caches. First, their tag and data arrays ar educing off—chip cache power are discussed in a separate paper.)
implemented as SRAMs, to allow the cache access rate match they ,r approach is to use a detailed register—level simulator for a
pipeline clock rate. Second, the cache area is more denselynerscalar processor and cache hierarchy to glean transition
packed than other areas on the die, so that the number oo nts within key cache components as the simulator executes
transistors devoted to the cache are quite a significant percentaggpgc 95 henchmarks. These transition counts are then fed into an
of the total number of transistors on the die. The above examplesynerqy dissipation model for the major cache components [KaGh
suggest that it is imperative to seek techniques that reduce th%?b, KaGh9g], with capacitative coefficients obtained from

* This work is supported in part by the National Science Foundation through [WiJo 94] for a real cache implementation, to determine the
award No. MIP-9504767 and by the IEEC at SUNY-Binghamton energy dissipations are realistically as possible.

The rest of this paper is organized as follows. In Section 2, we
describe the energy efficient architectural techniques such as
block buffering, subbanking, multiple block buffers and bit—line

isolation. These are elaborated in earlier papers [KaGh 97a,

KaGh97b, GhKa 98]. In Section 3, we elaborate on the 2.1 Set-associative cache with a single block buffer
experimental setup used for our measurements. The energy

dissipations for the proposed cache configurations, as obtainedFigure 1 depicts a two—way set—associative cache augmented with
from the simulated execution of SPEC 95 benchmarks area single block buffer (i.e., one set of tag and data latches for the
discussed in Section 4. The main conclusions are given in Sectiorvarious cache ways) that does not prolong the cache cycle time.
5. The Appendix summarizes the energy dissipation model of theThe components added to the two—way set associative cache to

set associative caches. incorporate block buffering are shown highlighted in a grey
o o background. The cache shown in Figure 1 is accessed with a
2. Organizing Caches for Energy Efficiency 2—cycle latency but at the rate of one access per cycle, exactly like

a conventional set-associative cache. These block buffer
The most common cache organization employed in modernaugmented caches exploit the spatial locality of reference
microprocessors today is the set—associative cache [Smith 82]; thexhibited by all programs in general. If the current data being
direct-mapped cache and fully associative cache organizationsaccessed is within the last cache line that was accessed, there is no
are two extremes of the set-associative organization. In a normaheed to fetch that line again from the data array of the cache. This
m-way set associative cache, theremtag and data array pairs, not only saves accesses of the data arrays but, at the same time,
each consisting of S rows, where S°=Bach data array location ~ also saves the access necessary to the tag arrays, since both the tag
is known as a cache line, which is a group of W consecutive words,and data arrays have to be read to determine if the line containing
W being a power of 2 (W =*9. A cache line is thus capable of the required data is within the cache.
holding the contents of what is called a memory block, consisting The steps for accessing the set—associative cache with a single
of W consecutive memory words. Tag and data array locations at lock b pﬁ . 5 gh lock (oh - 9
the same offset within the tag and data arrays make up what i§ ock buffer, using a 2-phase clock (phagbs)?) are:
called aset The placement rules for such a cache dictates that acycle 1:
word at an address A in the memory (RAM), if present in the
cache, can be found in any cache line within the set at offset (A divgpl: — Precharge the tag and data arrays for a read access

W) mod S. To uniquely identify the memory block that resides — Start decoding of the set address applied to the arrays
within a cache line, the tag part of the address (obtained by (This is exactly identical to what happens in normal
stripping the lower order (s+w) bits of A) are kept in the associated set—associative cache.)

tag array location. The access steps for the m—way set—associative
cache are thus as follows:

Simultaneously, compare fields in the address being
accessed with the set number of the previous access (to

Step 1 Use the middle order s bits in the address of the word to be determine if the current access is to the same set as the
accessed to read out the set that potentially contains these words previous one).
into output latches of the tag and data arrays. These latches
together make up what is calletlack buffer (akaline buffer). @2: — If the comparison succeeds (called a “block buffer hit”),

. . abort the readout of the tag and data arrays. Otherwise,
Step 2 Compare the tag part of the address being accessed in latch in the selected set into the array output latches.
parallel with the m outputs from the tag arrays (using m _ \jove the set number for the current access into the latch

independent comparators). A match with the the output of the tag that holds the set number for the last access made.
array indicates that the required data is within the output latch of

the corresponding data array. If this is the case, a situation called &£ycle 2:

cache hit, the lower order w bits of the address are used to

multiplex out the desired word from the data array output latch. If @1l: — Perform the normal tag comparison, as in a normal
no match occurs, we have a cache miss, implying that the desired set—associative cache.

data is not within the cache.))))
@2: — Perform the word multiplexing on a cache hit, as in a

In most modern caches, the two steps outlined above are normal set—associative cache.

implemented in 2 (or more) clock cycles. In the pipelined caches . .)

that we have designed in our simulator, the two steps mentionedVOte also that the cache cycle time with block buffering does not
above are naturally divided into 2 stages, thereby providing a 90 UP from that of a normal set-associative cache; all performance
theoretical throughput of one request per cache cycle (per port)_charact_erls_tlcs (access rate, pipelining, number of pipeline stages)
The tag and data arrays need to be updated when a missing line &€ maintained.

fetched or when a STORE request updates the contents of ajock buffered caches were introduced by Su and Despain in a
existing line. This update of the arrays is performed by a third slightly different form in [SuDe 94]. In their design, the block
stage of the cache pipeline. On a cache miss, some replacemeRiqqress of the current access is first compared against the block
algorithm —implemented in hardware —is used to select a victim 4qdress of the set that is currently resident in the block buffer. The
line from the set read out in step 1 and appropriate steps arggrmal access of the cache — including bit line precharging and
followed to install the memory block into the victim's line frame. o\ address decoding — is started only when a mismatch occurs.

. . . Consequently, this arrangement prolongs the cache access
For a superscalar CPU, to maximize the number of instructions toIatency, a solution unattractive in practice. Second, if the cache

be examined for dispatch in gach cycle, a facility is n_eeded toaccess is pipelined in two stages, a completely new set of tag
lt_r an?_??r:e{wlt_ly step acr:03§ tr(])e line bou][lgqry tct>ht_h¢ pthys'callydne)lztcomparators are needed (along with a comparator for the set
ine (if that line is cached). One way of doing this is to use a dec . : :

buffer mechanism (as used in the MIPS 10K) or to use odd andngtrr?tt)re]r) tto allow a b.IOCk btufferfhlt to be dleterrﬂlned |n$|c');[allel
even cache banks (with an automatic line address incrementatior\g')vI the tag comp;rltionf?hep ora glorma cac et acce t or
facility, as originally used in the IBM Risc/6000). Modern b{gg?gﬁ;g?iﬁsséch:meo €se problems are not present in our
superscalar CPUs also tend to support multiple pipelined 9 '

load/store units that can request access to the D-cache.2 Set-associative cache with multiple block buffers
simultaneously. This requirement is met by using a multiported

cache or a interleaved cache. In the power studies reported herélhe benefit of a block buffer can be further extended by using
we assume that the L1 I-cache uses odd—even cache banks, whilaultiple block buffers, in effect using the block buffers as a
the L1-D cache is multiported. miniature level 0 cache. Figure 2 depicts a set—associative cache

address to the set number latch associated with this block

E: Encoder buffer
[3 :inter-stage latch] |Tag | Data||Tag| Data

Cycle 2:

Address issued
byCPU [T 1) @l: — Perform the normal tag comparison, as in a normal
T T i L l l set—associative cache.

- [I

— | — | Latches S . .
@2: — Perform the word multiplexing on a cache hit, as in a
s Comparators normal set—associative cache.

?::dr:jtrray O The energy savings resulting in a set—associative cache with a

(= block multiple block buffers is due to reasons similar to that for a

butfer hit) set-associative cache with a single block buffer. Multiple line
w buffers simply increase the probability of aborting the tag and data
Last Set# array accesses, so that bit line dissipations during the array

Figure 1. A 2-way Set Associative Cache with One Block Buffer

“cache hit" Required word readout are avoided.

In [KGM 97], Kin et al describe the use of a small “filter cache”
that sits in front of a conventional L1 cache for reducing the power
dissipation of the cache memory system. If a hit occurs in the
smaller filter cache, data is accessed from the filter cache. The

with multiple block buffers, in this case 4. Here, some additional normal L1 cache access is started only after a miss has been
considerations are needed due to the use of multiple block buffersdetected in this filter cache. Consequently, the cache access
First, we need four latches to hold the number of the four mostlatency is increased — this can have adverse impact on
recently accessed sets. Second, four more comparators argerformance. Notice that although the multiple block buffers in
needed to compare the set number field of the current acces®ur proposal behave as a fully associative cache and serves the
against the numbers of the sets sitting in the four block buffers. same purpose as a filter cache, it does notimpact the cache latency

Third,

if no block buffer hits occur, the data from the set selected at all. This is because we probe the block buffers in parallel with

by the current address applied to the cache must be retrieved intéhe normal cache access. Also, unlike a fully associative cache,
one of the four block buffers. Consequently, on a block buffer we need only one set of tag comparat_ors and four set number
miss, a victim must be selected from one of the four block buffers. comparators to detect a block buffer hit. (In a four entry fully

The need to write back an updated block buffer’s content into the associative cache four tag comparators would be needed)
tag and data arrays, when the block buffer gets selected as a
victim, is avoided by writing through updates to the block buffer [E: Encoder L: Latches (= block buffer)

into the corresponding data array on write accesses that result in g M: Match, replacement logic, multiplexing control for block buffers
block buffer hit. Along with these, a multiplexing facility is [7 :inter-stage latch

needed to direct the outputs of the tag and data arrays into the
victim block buffer. In this case, the four block buffers effectively

make up a 4—entry fully—associative write—through cache, which . set number
is accessed in parallel with the normal cache without any Address issued latches
prolongation in the cycle time or without any impact on the by CPU
normal cache access pipeline. ST - w Tag|Data Tag Data
The access steps for a cache with multiple block buffers are as L D [
follows: abort array T,y—ﬂ T L
readout _ | | | hh [I o 1 L
Cycle 1: (= block M*ﬂ._m — 1 L
buffer hit) K L
@l: — Precharge the tag and data arrays for a read access =1] e
— Start the decoding of the set address applied to the arrays = =
(This is exactly identical to what happens in normal set number J
set—associative cache). comparators =| Word
multiplexer
— Simultaneously, compare the set selector field in the “cache hit" Required word
address being accessed with the set numbers four the four
sets stored in the four block buffers. Figure 2. A 2-way Set-Associative Cache with Four Block Buffers

— Concurrently, identify a victim block buffer in advance to
handle misses on the block buffers and start the setup of thep 3 Bit—line isolation and subbanking
multiplexor at the output of the tag and data arrays.

One of the major source of power dissipation in a cache has been
If the set number of the current access matches the set shown to due to transitions in the bit lines of the data and tag
number associated with any of the block buffers (as found arrays. Bit line dissipations occur when the bit lines are
in the set number latches), abort the readout of the tag andprecharged or discharged. Bit line isolation represents one way of
data arrays and steer the tag and data values from the reducing the energy dissipations due to bit line transitions. Here,
matching buffer into the tag comparators and the word the sense amps sensing the bit lines are disconnected from the bit
multiplexer, respectively. lines as soon as they start the transition on sensing. Consequently,

when the sense amps recover the cleaner logic levels, these logic
Otherwise, if a hit did not occur on the block buffers, latch levels are not driven on the bit lines. With this arrangement, a
in the contents of the selected set from the arrays into thesmall differential voltage on the bit lines is sufficient to trigger the
block buffer chosen as a victim in the previous clock phase, full transition on the sense amp outputs, but because the sense amp
and move the set selector bits in the currently accessed output remains disconnected from the bit lines, the bit lines

themselves do not experience the full transition made by the senséunction units are present: 2 LOAD units, 1 STORE unit, 6 integer
amp. Considerable energy savings thus results. Bit line isolationunits, 2 Integer multiply/divide (pipelined)units and 2 Floating
has been used to reduce the power dissipation in the cacheoint (pipelined) units. SCAPE accepts any statically compiled
memory of the Hitachi SH-3 embedded microprocessor [HKY+ executable runnable on a MIPS R3000 processor. We simulated
95]. the execution of the SPECInt95 and few SPECFp95 (su2cor,
mgrid, applu) benchmarks to get a good mix of CPU—intensive
To achieve further savings on the bit line energy, the data arraysand memory—intensive loads.
can be subdivided into subbanks, so that only those subbanks that
contain the desired data can be readout [SuDe 95, KaGh 97a]. AFor our base case, we assume a 32 Kbyte, direct-mapped L1
subbank consists of a number of consecutive bit columns of thel-cache and a 32 Kbyte, 4-way set—associative L1 D—cache. The
data array. A data line is thus spread across a number of subbankéne sizes for both of these caches are set to 32 bytes, a typical
The size of a subbank refers to the physical word width of eachnumber, with 16 byte subblock size. The L2-cache is assumed to
subbank. Each subbank within a data array can be activatedde a 128 Kbyte, 4-way set—associative unified (i.e., shared by
independently. By using an array of bit flags to indicate the instructions and data) on—chip cache with a line size of 64 bytes
presence/absence of subbanks in the block buffer, the array accesind 32 byte subblock size. The 64 byte line size was chosen, since
stage can determine if a subbank needs to be read out for thé2 caches must have aline size longer than that of the L1 caches to
current request. This again does not affect the cycle time nor thebe effective. The off-chip L3—cache is assumed to be a 1Mbyte,
pipeline of the cache, while at the same time preventing readout of8—way set-associative unified off-chip cache with a line size of
those subbanks from the data array which might never be needed! 28 bytes. The interconnection bus width was 32 bytes between
L2 and L3, and 16 bytes between L1 and L2 and 64 bytes between
3. Experimental Setup L3 and the main memory. All the caches had write—back policy
except L3 which was write—through with a 16 deep write back
Quffers. A buddy replacement algorithm, approximating LRU,
was used for all the set—associative caches, as well as for choosing
the victim block buffer on a block buffer miss.

We now describe the experimental setup used in our study of th
energy efficiency achieved through the use of set associative
caches with multiple block buffers, subbanking and bit line

isolation as described in Section 2. We use a detailed

register—level simulator, SCAPE, which accurately simulates at We studied a variety of cache configurations, keeping the

individual capacities of L1 I, L1 D, L2 and L3 caches constant, to
%tudy the effects of multiple block buffers and other energy

MIPS instruction set. SCAPE can be configured (Using a gicient enhancements. These configurations are as follows (see
configuration file) at run time to simulate a variety of cache Table I):

hierarchies such as 2 or 3 levels of caches, split or unified caches
etc. The primary cache organizational features such as size,
associativity, block size and cache operating frequency can be
configured individually for each cache used in the system. Apart
from these, a variety of other cache organizational features that
are important in the context of a superscalar processor can be
individually tuned for each cache, such as the number of ports,
multiple outstanding requests, writeback policy and
sub—blocking. For the results presented here, we used a 3 level
cache hierarchy, with split L1 caches, unified L2 cache and an
unified L3 cache. The L1 and L2 caches were assumed to be
on—chip and the L3 cache was assumed to be off—chip. Since L1 D-caches with associativities of 2 and 4. For each of these
superscalar CPUs need to fetch multiple instructions at atime to configurations we compared the energy saving through the
feed the instruction dispatch unit, the L1 I-cache was designedto use of simultaneously using 4-block buffers, subbanking and
supply multiple instructions per Ifetch request. To improve the bit-line isolation against a conventional cache. For these
I-cache bandwidth, the I-cache was designed to énzare—odd configurations of L1 D-cache, the parameters of the L1
directories (and banks) so that requests that spanned consecutive |-cache and L2—cache were kept the same as in the base case.
rows could still be completed in the same cycle. The presence of The L3 cache is always maintained as a conventional cache
multiple LOAD/STORE functional units in the superscalar with base case configuration.

pipeline demanded the use of multiple ports for the L1 D—cache.

All caches consisted of a 3—stage pipelined design where stage . .
performed that bit-line precharging and array access activitiesj:(.)r the purpose of this paper, we used the capacitances for the 0.8

stage 2 performed the tag compare, steer and miss handlin icron CMOS cache described in [WiJo 94].' A supply _/o_ltage of
activities and stage 3 performed the write activity into the array. * 99~ 5 Volts was assumed. The voltage swing on the bitlines was

limited to 500mV on each side ofMchargdvhich was assumed to
We assume the layout and technology parameters for the 0.8 P _prechargs
cache described in detail in [WiJo 94]. be Vyd/2. For the bit line isolation design however, the voltage

swing was assumed to be 200mV on each sidg@kMrge The

The superscalar pipeline implements the MIPS 3000 ISA. The CPU pipeline (and the caches) was (were) assumed to be clocked
out—of-order execution engine uses a register update unit (RUU)at 120 MHz. The 0j8pipelined cache used for the case study can
which maintains the program order of the instructions to retire sustain this clock rate for a wide range of cache sizes based on the
completed instructions. Data forwarding from completed but not timings reported in [WiJo 94] where the cache was not pipelined.
retired instructions in the RUU as well as from functional units is The L2 cache is operated at half this frequency.

employed to maximize instruction throughput. Multiple))

functional units are also used achieve dispatch of multiple 4. Results and Discussions

instructions in the same cycle. Many parameters of the

superscalar pipeline itself can be configured at run time, such ag-igures 3 and 4 depict how the power dissipation varies across the
size of the RUU, number of functional units, degree of superscalarSPEC 95 benchmarks for a conventionally organized L1 |I-cache
issue and number of physical registers used to implement registeand a conventionally organized L1 D—cache. Figure 5 shows how
renaming). For our studies we used a 64—entry RUU and 4the power dissipation in the conventional, unified L2 cache varies
instruction fetch and issue. We assumed that the following over the same benchmarks.

L1 I-caches with associativities of 1 and 4. For each of these
configurations we compared the energy saving through the
use of simultaneously using 4-block buffers, subbanking and
bit-line isolation against a conventional cache. For these
configurations of L1 |-cache, the parameters of the L1
D—cache and L2—cache were kept the same as in the base
case. The L3 cache is always maintained as a conventional
cache with base case configuration.

CACHE CONFIGURATIONS :

|-cache: 32Kbyte, direct-mapped, 32 byte line,16 byte subblocks; j
D-cache: 32Kbyte, 4-way, 32 byte line, 16 byte subblocks; L2-cache:

128Kbyte unified, 4-way, 64 byte line, 32 byte subblocks; L3-cache: |
1Mbyte, 8way, 128 byte line, nonsubblocked (all caches conventional) |

| I-cache: 32Kbyte, 4-way, 32 byte line, 16 byte subblocks; D-cache: |

32Kbyte, 4-way, 32 byte line, 16 byte subblocks; L2-cache: |
128Kbyte, 4-way, 64 byte line, 32 byte subblocks; L3-cache: 1Mbyte, |
8-way, 128 byte line, nonsubblocked (all caches conventional) |

|-cache: 32Kbyte, direct-mapped, 32 byte line,16 byte subblocks; '
D-cache: 32Kbyte, 2-way, 32 byte line, 16 byte subblocks; L2-cache: |

5. Conclusions

On—chip caches are a major source of power dissipation in
contemporary superscalar microprocessors. The bulk of the
energy dissipated in conventionally organized caches is in
precharging, sensing and discharging the bit lines of the tag and
data arrays. We proposed the use of alternative organizations,
such as multiple block buffering, subbanking and bit line isolation
to reduce the power dissipation in on—chip caches without
compromising the cache cycle time (and other aspects of
performance, such as the cache hit ratio and cache access rate).

i 128Kbyte unified, 4-way, 64 byte line, 32 byte subblocks; L3-cache: |

1Mbyte, 8way, 128 byte line, nonsubblocked (all caches conventional) |
same as case | except, ' We are currently investigating other organizational and circuit
I-cache: 4 blockbuffers, 16byte subbanks, D-cache: 4 blockbuffers, I enhancements to caches and on—chip memory systems for

The power saving achieved ranged from 60% to 70%.

4byte subbanks

L2-cache: 4 blockbuffers, 16 byte subbanks, L3-cache: conventional Journal of Solid-State Circuits, Vol. 30, No. 5, May 1995, pp

571-579.

[HKY+ 95] Hasegawa, A. et al, “SH3: High Code Density, Low
Power”, IEEE Micro magazine, Dec. 1995, pp. 11-19.

[ltoh 96] Itoh, K., “Low Power Memory Design”, ihow
Power Design Methodologiesd. by Rabaey, J. and Pedram, M.,

v . . o
4byte subbanks reducing power without sacrificing performance.
L2-cache: 4 blockbuffers, 16 byte subbanks, L3-cache: conventional |
| sameascasellexcept,]
v I-cache: 4 blockbuffers, 16byte subbanks, D-cache: 4 blockbuffers, |
4byte subbanks | References
L2-cache: 4 blockbuffers, 16 byte subbanks, L3-cache: conventional |
. same as case lll except, i [EVFr95] Evans, R. J. and Franzon, P. D., “Energy
Vi I-cache: 4 blockbuffers, 16byte subbanks, D-cache: 4 blockbuffers, | Consumption Modeling and Optimization for SRAM's”, in IEEE
I

Table I. Cache configurations used in the evaluation

Figure 6 shows how the average power dissipation for the L1
I-cache (over the SPEC 95 benchmgrk; studied) decreases as W&uwer Academic Pub., pp. 201-251.
move from a conventional organization (labelled a) to an

organization with 4 block buffers and subbanking (labelled b) and [KBN 95] Ko, U., Balsara, P. T. and Nanda, A K., “Energy
an organization with 4 block buffers and subbanking that Optimization of Multi-Level Processor Cache Architectures”, in
additionally uses bit line isolation (labelled c). The power Proc. of the Int'l. Sym. on Low Power Design, 1995, pp. 45-49.

reductions that result are in excess of 66%. Figure 7 shows thatKaGh 97a] Kamble, M. B. and Ghose, K., “Energy—Efficiency
better power improvements also occur for the L1 D—cache whengs v/| S| caches: A bomparative Stud{(” in Proc. IEEE 10—th.
identical enhancements are made — in this case the power savings,v|. conf. on VLSI Design, Jan. 1997, p,p. 261-267.

approach 70%.)
[KaGh 97b] Kamble, M. B. and Ghose, K., “Analytical Energy

Dissipation Models for Low Power Caches”, in Proc. 1997 Int'l
In Figures 8 and 9, we depict the power dissipations across theSymposium on Low Power Electronics and Design, Aug. 1997,
benchmarks for the two most power—efficient organizations for pp. 143-148.

the L1 I-cache and the L1 D—cache respectively. A comparison of K P :
. : aGh 98] Kamble, M. B. and Ghose, K., “Modeling Energy
Figures 3 and 8 shows that the power savings for the L1 I-cach issipation in Low Power Caches’, Technical Report

are quite consistent across the benchmarks when 4 block buffersc.g 1 _gg 02, pept. of Computer Science, SUNY-Binghamton
subbanking and bit line isolation are used. Similar conclusions 1998
are to be drawn for the L1 D—cache when Figures 4 and 9 are '
compared. [KGM 97] Kin, J., Gupta, M. and Mangione—Smith, W.H., “The
Filter Cache: An Energy—Efficient Memory Structure”, in Proc.

. 16 denicts the extent of ! . A MICRO 30, 1997, pp. 184-193.

igure epicts the extent of overall power savings when Y) Y
organizational enhancements are made to all of the on—chip[Lar.us 96] Larus', ‘]". SPIM: A MIPS 2000 Simulator”,
caches. Since the L1 I-cache has a relatively higher dissipation@Vailable form Univ. Wis., CS ftp site.
the specific organization chosen for the L1 |-cache was the one[Mon 96] Montanaro, J. etal., “A 160 MHz, 32b 0.5 W CMOS
that had the least power dissipation. The L1-Dcache and the L2RISC Microprocessor”, in IEEE ISSCC 1996 Digest of Papers,
cache configurations were then chosen to minimize the overall 1996.

power dissipation iall of the on—chip caches. [Smith 82] Smith, A. J., “Cache Memories”, ACM Computing
Surveys, Sept. 1982, pp. 473-530.

Figures 11 and 12 are useful in understanding where the powefSuDe 95] Su, C. and Despain, A., “Cache Design Tradeoffs for
savings come from. For the conventional organizations, the power and Performance Optimization: A Case Study”, in Proc. of
energy spent in precharging and discharging the bit lines the Intl. Sym. on Low Power Design, 1995, pp. 63—68.
dominate. With the use of block buffers, the number of accessestq, , W

the actual cache arrays are reduced, reducing in turn the bit lin WJo 94] Wllton, S. E., and Jouppi, .N" An Enr’]anced Access
dissipation component. ~When subbanking is additionally and Cycle Time Model for On-Chip Caches’, DEC WRL
deployed, the number of bit lines that have to be driven, Research Report 93/5, July 1994

precharged or sensed in the data array gets further reducedWaRa+ 92] Wada t., Rajan S., and Przybylski S.A., “An
Additional savings come when the capacitative loading of the bit Analytical Access Time Model for On—Chip Cache Memories”,
lines, as seen by the sense amp, is reduced through bit lindEEE Journal ofSolid—State Circuits, Vol. 27, NO. 8, Aug 1992,
isolation. pp. 1147-1156.

700
630
Power 288
(mW) 499
350

280

210

140

70

0

COMpress _
ccl lieg

erl

m8sk
su2cor

mgrid AVERAGE

applu

Figure 3. Power dissipations in the conventional L1-Icache across
the SPEC95 benchmarks for Configuration |

3000
2700
2400

Power 2100

1800
(MW) 500

1200
900
600
300

0

compress.,
ccl ljpeg

1

perl

su2cor

Hisil

mgrid
applu

\VERAGE

|

Figure 4. Power dissipations in the conventional L1-Dcache across
the SPEC95 benchmarks for Configuration |

720
640
560
480
400
320
240
160
80
0

Power
(mW)

ccl

compress

iipeg
1

perl

su2cor

m88k

mll

mgrid
AVERAGE

240
210

180
Power 150

(mW) 129
90

60

30

0

ccl

compress

su2cor

AVERAGE

applu

Figure 8. Power dissipations in the L1-lcache across the
SPEC95 benchmarks for the most energy efficient
Icache configuration (Configuration IV)

700
630
560
490
420
350
280
210
140
70
0

Power
(mW)

compress

il

ipeg

|

ﬁ"

su2cor

il

mgrid
applu

AVERAGE

Figure 9. Power dissipations in the L1-Dcache across the
SPEC95 benchmarks for the most energy efficient
Dcache configuration (Configuration VI)

2400

2100

1800

1500

Power 1200
(mW) 900
600

300

Configuration |

|

[]

Configuration IV

_n-l

Figure 5. Power dissipations in the conventional L2 cache across

L1l 11D L2 total

L1l L1D L2 total

Figure 10. Power dissipations in the on-chip caches

the SPEC95 benchmarks for Configuration |

1400 c fonal
1200 = 4-wav | & Conventiona
Power 1000 d-way b. 4 block buffers
direct mapped and subbanking
mw) ggg J c. 4 block buffers,
400 subbanking and
200 H H bitline isolation
0 [1 [
a b ¢ a b ¢

Figure 6. Power dissipation in L1-lcache across different

organizations
:ggg 4-way a. Conventional
2-way = |b. 4 block buffers
Power 1000 _ <74y and subbanking
800
W c. 4 block buffers,
(MW) g0 i
subbanking and
;gg H H bitline isolation
oL [
a b ¢ a b ¢

Figure 7. Power dissipation in L1-Dcache across different

organizations

1 Bitline
== Wordline
= Output driver
== Addr input
Comparator
mm Latches
—1 Sense Amp
4-way block buffering,
16 byte subbanked with bitline
isolation (Configuration IV)

Figure 11. Components of the power dissipation in the L1-lcache

Wi

conventional 4-way block buffering,
(Configuration I) 16 byte subbanked with bitline
isolation (Configuration V)

conventional
(Configuratoin |)

— Bitline

== Wordline

3 Output driver
mm Addr input
=1 Comparator
== Latches

—1 Sense Amp

Figure 12. Components of the power dissipation in the L1-Dcache

Power and Performance Tradeoffs using Various Cache

Configurations
Gianluca Alberd' and R. Iris Bahaf
§ Politecnico di Torino Brown University
Dip. di Automatica e Informatica Division of Engineering
Torino, ITALY 10129 Providence, Rl 02912
Abstract the design of the memory hierarchy when using buffers

. . . alongside the first level caches.
In this paper, we will propose several different data

and instruction cache configurations and analyze their

power as well as performance implications on the pro- LDlata data access
cessor. Unlike most existing work in low power micro- Cache

processor design, we explore a high performance pro- from
cessor with the latest innovations for performance. Us- Processor
ing a detailed, architectural-level simulator, we eval- %

uate full system performance using several different

power/performance sensitive cachenfigurations. We L1) _
then use the information obtained from the simulator to | Upified | == st e aaton
calculate the energy consumption of the memory hierar- ache

chy of the system. Based on the results obtained from

these simulations, we will determine the general char-

acteristics of each cache configuration. We will also %@%

make recommendations on how best to balance power

and performance tradeoffs in memory hierarchy design. .))
Figure 1: Memory hierarchy design using buffers

) alongside the Licaches. These buffers may be
1 Introduction used as victim cachesyon-temporal buffers, or
speculative buffers.

In this paper we will concentrate on reducing the energy
demands of an ultra high-performance processor, such e puffer is a small cache, between 8-16 entries,
as the Pentium Pro or the Alpha 21264, which uses su-|ocated between the first level and second level caches.
perscalar, speculative, out-of-order execution. In partic- The puffer may be used to hold specific data (e.g. non-
ular, we will investigate architectural-level solutions that temporal or speculative data), or may be used for general
achieve a power reduction in the memory subsystem of gata (e.g. “victim” data). In this paper we will analyze
the processowithoutcompromising performance. various uses of this buffer in terms of both power and

Prior research has been aimed at measuring and rec-performance. In addition, we will compare the power
ommending optimal cache configuration for power. For and performance impact of using this buffer to more tra-

instance, in [10], the authors determined that high per- gitional techniques for reducing cache conflicts such as
formance caches were also the lowest power consum-jncreasing cache size and/or associativity.

ing caches since they reduce the traffic to the lower

level of the memory system. The work by Kin [7] pro-

posed accessing a smiiler cachebefore accessingthe 2 Experimental Setup

first level cache to reduce the accesses (and energy con-

sumption) from DL1. The idea lead to a large reduc- This section presents our experimental environment.
tion in memory hierarchy energy consumption, but also First, the CPU simulator will be briefly introduced and
resulted in a substantial reduction in processor perfor- then we will describe how we obtained data about the en-
mance. While this reduction in performance may be tol- ergy consumption of the caches. Finally we will describe
erable for some applications, the high-end market will each architectural design we considered in our analysis.
not make such a sacrifice. This paper will propose mem-
ory hlerarchy configurations that reduce power while re- 2.1 Full model simulator
taining performance.

Reducing cache misses due to line conflicts has beenWe use an extension of ttf&mpleScalaf2] tool suite.
shown to be effective in improving overall system per- SimpleScalar is an execution-driven simulator that uses
formance in high-performance processors. Techniques binaries compiled to a MIPS-like target. SimpleScalar
to reduce conflicts include increasing cache associativ- can accurately model a high-performance, dynamically-
ity, use of victim caches [5], or cache bypassing with scheduled, multi-issue processor. We use an extended
and without the aid of a buffer [4, 9, 11]. Figure 1 shows version of the simulator that more accurately models

all the memory hierarchy, implementing non-blocking
caches and complete bus bandwidth and contention
modeling [3]. Other modifications were added to han-
dle precise modeling of cache fills.

Tables 1, 2, and 3 show the configuration of the pro-
cessor modeled. Note that first level caches are on-chip,
while the unified second level cache is off-chip. In addi-
tion we have a 16-entry buffer associated with each first
level cache; this buffer was implemented either as a fully
associative cache with LRU replacement, or as a direct

code. Since one of our architectures was intended by the
authors for floating point applications [9], we also ran a
subset of SPECfp95 in this case. Since we are executing
a full model on a a very detailed simulator, the bench-
marks take several hours to complete; due to time con-
straints we feed the simulator with a small set of inputs.
However we execute all programs entirely (from 80M
instructions incompress$o 550M instructions irgo).

mapped cache. Note that we chose a 8K first level cache 2.2 Power model

configuration in order to obtain a reasonable hit/miss rate
from our benchmarks [13]. In Tables 2 and 3 note that
some types of resource units (e.g., the FP Mult/Div/Sqrt
unit) may have different latency and occupancy values
depending on the type of operation being performed by
the unit.

Table 1: Machine configuration parameters.

Parameter Configuration
L1 Icache 8KB direct; 32B line; 1 cycle lat.
L1 Dcache 8KB direct; 32B line; 1 cycle lat.

L2 Unified Cache

256KB 4-way; 64B line; 12 cycles

Memory 64 bit-wide; 20 cycles on page hit,
40 cycles on page miss

Branch Pred. 2k gshare + 2k bimodal + 2k meta

BTB 1024 entry 4-way set assoc.
Return Addr. Stack 32 entry queue

ITLB 32 entry fully assoc.

DTLB 64 entry fully assoc.

Table 2: Processor resources.

Parameter Units
Fetch/lssue/Commit Width 4
Integer ALU 3
Integer Mult/Div 1
FP ALU 2
FP Mult/Div/Sqrt 1
DL1 Read Ports 2
DL1 Write Ports 1
Instruction Window Entries 64
Load/Store Queue Entries 16
Fetch Queue 16
Minimum Misprediction Latency 6

Table 3: Latency and occupancy of each resource.

Resource Latency Occupancy
Integer ALU 1 1
Integer Mult 3 1
Integer Div 20 19
FP ALU 2 1
FP Mult 4 1
FP Div 12 12
FP Sqart 24 24
Memory Ports 1 1

Our simulations are executed on SPECIint95 bench-
marks; they were compiled using a re-targeted version
of the GNUgcc compiler, with full optimization. This

Energy dissipation in CMOS technology circuits is
mainly due to charging and discharging gate capaci-
tances; on every transiton we dissipate = 3 -

C.q - VZ; Watts. To obtain the values for the equiva-
lent capacitances/.,, for the components in the mem-
ory subsystem, we follow the model given by Wilton and
Jouppi [12]. Their model assumes a @8 process; if a
different process is used, only the transistor capacitances
need to be recomputed. To obtain the number of transi-
tions that occur on each transistor, we refer to Kamble
and Ghose [6], adapting their work to our overall archi-
tecture.

An m-way set associative cache consists of three
main parts: a data array, a tag array and the necessary
control logic. The data array consistsHfows contain-
ing m lines. Each line containg bytes of data and a
tag7 which is used to uniquely identify the data. Upon
receiving a data request, the address is divided into three
parts. The first part indexes one row in the cache, the
second selects the bytes or words desired, and the last
is compared to the entry in the tag to detect a hit or a
miss. On a hit, the processor accesses the data from the
first level cache. On a miss, we use a write-back, write-
allocate policy. The latency of the accessis directly pro-
portional to the capacitance driven and to the length of
bit and word-lines. In order to maximize speed we kept
the arrays as square as possible by splitting the data and
tag array vertically and/or horizontally. Sub-arrays can
also be folded. We used the tooACTI[12] to compute
sub-arraying parameters for all our caches.

According to [6] we consider the main sources
of power to be the following three componeits;,
Ewora, Fouput. We are not considering the energy dissi-
pated in the address decoders, since we found this value
to be negligible compared to the other components. Sim-
ilar to Kin [7], we found that the energy consumption of
the decoders is about three orders of magnitude smaller
than that of the other components. The energy consump-
tion is computed as:

Ecache = Ebzt + Eword + Eoutput (1)
A brief description of each of these components follows.
Further details can be found in [1].

Energy dissipated in bit-lines

Eyi is the energy consumption in the bit-lines; it is
due to precharging lines (including driving the precharge

compiler generates 64 bit-wide instructions, but only 32 logic) and reading or writing data. Since we assume a
bits are used, leaving the others for future implemen- sub-arrayed cache, we need to precharge and discharge
tations; in order to model a typical actual machine, we only the portion directly related with the address we need
convert these instructions to 32 bits before executing the to read/write.

Table 4:Baseline results:Number of cycles, accesses and energy consumption in the base case. Energy is
given in Joules

DL1 Cache IL1 Cache UL2 Cache
Test Cycles Accesses| Eng. (Joules) Accesses| Eng. (Joules) Accesses| Eng. (Joules)
compress|| 70538278 27736186 0.092 66 095 704 0.207 3134116 0.402
go 826111517 169 860620 0.612 || 430587 086 1.499 || 60055 380 6.819
vortex 250942 324|| 93470624 0.284 || 108 663 648 0.375 || 15336216 1.796
gcc 392296 667 103 457 950 0.317 || 176 609 209 0.618 || 22959 880 2.652
li 134701 535 74 445274 0.232 || 140347 169 0.446 5 856 655 0.652
ijpeg 139376 153|| 73358576 0.214 || 135804 661 0.437 3906 431 0.451
m88ksim || 659451 084|| 130319219 0.369 || 241836872 0.882 || 34953990 3.980
perl 372034 266(90388059 0.293 || 148817944 0.531 || 24532245 2.794

Table 5: Instruction cache sizes:Percent improvement in performance and power compared to the base

case. Latency = 1 cycle.

Test 8K-2way 16K-direct 16K-2way

%Cyc | %IL1 Eng. | %Tot. Eng.|| %Cyc [%IL1 Eng. | %Tot. Eng. || %Cyc | %IL1 Eng. [%Tot. Eng.
compress 0.24 -18.39 -5.26 0.34 -20.31 -5.67 0.32 -58.63 -17.05
go 13.15 -20.59 8.98 21.17 -22.61 15.90 || 26.51 -62.84 14.04
vortex 8.30 -22.12 6.14 21.14 -23.22 18.07 || 27.61 -66.16 18.61
gcc 5.08 -18.95 2.08 || 19.29 -20.04 15.44 || 25.02 -58.33 14.60
li 7.20 -18.78 1.58 2.47 -20.11 -5.06 8.69 -59.13 -11.40
ijpeg 4.76 -18.02 -2.28 || 4.410 -19.88 -3.29 5.43 -57.51 -18.60
m88ksim 16.10 -17.24 12.89 || 27.33 -15.53 24.73 || 50.50 -55.10 42.75
perl 11.13 -18.83 7.85 19.10 -20.27 1498 || 24.71 -59.82 15.13

Note that in order to minimize the power overhead in Joules). The next sections' results will show percent-
introduced by buffers, in the fully associative config- age decreases over the base case; thus positive numbers
uration, we perform first a tag look-up and access the will mean an improvement in power or performances
data array only on a hit. If timing constraints make this and negative number will mean a worsening.
approach not feasible, direct mapped buffers should be First level caches are on-chip, so their energy con-
considered. sumption refers to the CPU level, while the off-chip sec-
ond level cache energy refers to the board level. In the
following sections we show what happens to the energy
in the overall cache architecture (L1 plus L2), and also
Fuera is the energy consumption due to assertion of clarify whether variations in power belong to the CPU or
word-lines; once the bit-lines are all precharged we se- to the board. As shown in Table 4 the dominant portion
lect one row, performing the read/write to the desired Of energy consumptionis due to the UL2, because of its
data. bigger size and high capacitance board buses. Further-
more we see that the instruction cache demands more
power than the data cache, due to a higher number of
accesses.

Energy dissipated in word-lines

Energy dissipated driving external buses

Eouput 1s the energy used to drive external buses; this

component includes both the data sent/returned and the3_2 Traditional techniques

address sentto the lower level memory on a miss request.

Traditional approaches for reducing cache missiize

bigger cache sizes and/or increased associativity. These

techniques may offer good performances but present

several drawbacks; first an area increase is required and

second it is more likely that a larger latency will result

whenever bigger caches and/or higher associativity are

In this section we will describe the base case we used; used.

all other experiments will compare to this one. Table 5 presents results obtained changing instruction
As stated before, our base case uses 8K direct mappedcache size and/or associativity. Specifically, we present

on-chip first level caches (i.e. DL1 for data and IL1 for 8K 2-way, 16K direct mapped and 16K 2-way configura-

instruction), with a unified 256K 4-way off-chip sec- tions, all of them maintaining a 1 cycle latency. Reduc-

ond level cache (UL2). Table 4 shows the execution tion in cycles, energy in IL1 and total energy are shown.

time measured in cycles and, for each cache, the num-The overall energy consumption (i.&otal Energy is

ber of accesses and the energy consumption (measuredyenerally reduced, due to a reduced activity in the sec-

3 Experimental results

3.1 Base case

Table 6:Victim cache fully associative:Percent improvement in performance and power compared to the

base case.
Swapping Non Swapping
Test Data Only Inst. Only Data & Inst. Data Only Inst. Only Data & Inst.

%Cyc. | %Eng. | %Cyc. | %Eng. | %Cyc. | %Eng. || %Cyc. | %Eng. | %Cyc. [%Eng. | %Cyc. [%Eng.
compress 2.30 6.79 -0.44 -1.51 2.83 5.97 291 6.98 -0.44 -1.50 2.77 5.65
go 3.33 10.98 4.40 3.48 7.84 14.49 4.22 12.89 6.50 4.60 10.92 18.00
vortex 3.04 12.01 5.20 4.80 7.43 12.99 3.43 12.34 5.63 4.86 9.75 17.74
gcc 1.72 6.98 3.01 2.54 4.61 8.96 2.11 7.41 4.30 3.37 6.69 11.27
li 2.88 6.62 3.06 2.04 6.26 9.11 3.82 8.96 6.11 4.90 10.69 | 15.00
ijpeg 441 11.04 1.61 -0.72 5.92 11.44 4.86 10.58 2.66 -0.24 7.54 12.16
m88ksim 0.36 3.06 9.80 9.39 10.22 12.51 0.61 441 21.07 18.14| 21.85| 23.12
perl 0.90 4.49 5.60 5.06 6.75 9.78 1.69 5.42 7.58 5.64 8.50 | 11.36

ond level cache (since we decrease the IL1 miss rate). cache). We refer to it asctim cache non-swapping
However we can also see cases in which we have anin- Table 6 shows effects using a fully associathetim
crease in power, since benchmarks ldanpresdi and cache They refer to theswappingandnon swapping
ijpeg already present a high hit rate in the base case. mechanisms. We present cycles and overall energy re-
Even if the total energy improves, we show that the duction for three different schemes; they use a buffer
on-chip power increases significantly (up to 66%) as the associated with th®ata cache, thdnstructioncache,
cache becomes bigger. As will be shown in the coming or both of them. We observed that the combined use
section, we observed that using buffers associated with of buffers for both caches offers a roughly additive im-
first level caches permit us to obtain an overall energy re- provement over the single cache case. This result gen-
duction with an on-chip increase lymost3%. We also erally applies to all uses of buffers we tried. As stated
observed that if the increase in size/associativity requires before, we show that theon swappingnechanism gen-
having a 2 cycle latency, performance improvements are erally outperforms the original algorithm presented by
no longer so dramatic and in some cases we also saw athe author. In [5], the data cache of a single issue proces-

decrease (e.g. especially for the instruction cache).

In the following sections we will presents various ar-
chitectures we have analyzed. We will start with some
literature examples such as théctim cache[5] and
non-temporal buffef9] and then we will present new

sor was considered, where a memory access occurs ap-
proximately one out of four cycles; thus the victim cache
had ample time to perform the necessary swapping. The
same cannot be said of a 4-way issue processor that has,
on average, one data memory access per cycle. In this

schemes based on the use of buffers and how to combinecase the advantages obtained by swapping are often out-
them. weighed by the extra latency introduced.

It is interesting to note that increased performance
and energy reduction usually go hand-in-hand, since a

3.3 Victim cache reduced L2 activity helps both of them.

We consider the idea of @ictim cacheoriginally pre-
sented by Jouppi in [5], with small changes. The au-
thor presented the following algorithm. On a main cache
miss, the victim cache is accessed; if the address hits the This idea has been formulated by Rivers and Davidson
victim cache, the data is returned to the CPU and at the in [9] and refers to data buffer only. They observed that
same time it is promoted to the main cache; the replaced in numerical applications data accesses may be divided
line in the main cache is moved to the victim cache, in two categoriesscalaraccesses that preseamporal
therefore performing a “swap”. If the victim cache also behavior, i.e. are accessed more than once during their

3.4 Non-temporal buffer

misses, an L2 access is performed; the incoming data lifetime in the cache, angectoraccesses that present

will fill the main cache, and the replaced line will be
moved to the victim cache. The replaced entry in the
victim cache is discarded and, if dirty, itten back to
the second level cache.

We first made a change in the algorithm, perform-
ing a parallel look-up in the main and victim cache, as
we saw that this helps performance without significant
drawbacks on power. We refer to this algorithmvics
tim cache swappingsince swapping is performed on a
victim cache hit.

We found that the time required by the processor to
perform the swapping, due to a victim hit, was detri-
mental to performance, so we also tried a variation on
the algorithm that doesn't require swapping (i.e. on a
victim cache hit, the line is not promoted to the main

non-temporabehavior, i.e. once accessed are no longer
referenced. This is true, since vectors are generally ac-
cessed sequentially and often their working-set is big-
ger than the cache itself, so that when they need to be
referenced again, they no longer reside in the cache.
The idea is to use a special buffer to contain the non-
temporal data and reduce conflicts in the main cache.
They presented a history based algorithm that tags each
line with a temporal/non-temporal bit; this information
is also saved in the second level cache, requiring addi-
tionally writebacks for replaced clean blocks.

Since this algorithm was intended for numerical ap-
plications we added a subset of SPECfp95 to this set of
runs. Experimental results show this technique not to be
effective for integer programs; performance generally is

Table 7:Speculative buffer: Percent improvement in performance and power compared to the base case.

Fully Associative Direct Mapped
Test Data Only Inst. Only Data & Inst. Data Only Inst. Only Data & Inst.

%Cyc. | %Eng. | %Cyc. | %Eng. | %Cyc. | %Eng. || %Cyc. | %Eng. | %Cyc. [%Eng. | %Cyc. [%Eng.
compress 1.90 5.37 -0.20 -1.27 2.40 4.79 0.88 1.79 -0.12 -1.83 0.65 | -0.010
go 341 10.76 6.28 4.49 9.84 15.41 2.20 8.07 5.44 3.27 7.68 11.09
vortex 2.39 7.75 5.78 5.09 8.00 12.84 1.76 6.00 5.55 4.30 7.66 10.47
gcc 1.51 5.27 452 3.59 6.15 9.13 1.07 412 4.40 2.94 5.46 7.14
li 2.44 4.99 5.94 5.66 8.75 10.84 1.88 3.48 6.32 5.46 8.28 8.94
ijpeg 3.33 8.01 1.40 -0.72 458 7.38 2.61 5.50 1.75 -0.71 4.26 5.12
m88ksim 0.29 2.20 2288 | 21.65| 23.13| 24.47 0.25 1.99 22.05| 2045| 2249 | 22.96
perl 0.66 3.25 6.60 5.65 7.38 9.15 0.79 2.99 6.26 4.79 7.10 7.98

worse by 3% to 20%, while power increases by 7% to randomly whether to put an incoming fill, either in the
58%. We also observed that only specific numeric ap- main cache or in the buffer. We tried, among other
plications benefit from this algorithm; for examseim cases, to put randomly 10% or 20% of the fills in the
improves 6.8% in performance and 46% in overall en- buffer. It is interesting to note that thendomcase
ergy consumption, but others likgosior hidro2dworsen presents, on average, good results. This demonstrates
up to 7% in power and 1% in performance. that simply adding “associativity” to the main cache, suf-
The main reason of these negative results is due fices to eliminate most of the contention misses (and also
to an increased writeback activity to the second level may indicate our benchmarks are notideal candidates for
cache required by the algorithm that saves in the L2 the speculativesorting).
temporal/non-temporal information. Given a shorter la-
tency L2 cache (e.g. on-chip L2 design), this algorithm
might present better overall results.

3.6 Penalty buffer

This model is applied to the instruction cache buffer
only. We observed that, as opposed to data cache behav-
ior, there is not a fixed correlation between variations in
The idea of a speculative buffer is based on previous instruction cache miss-rate and performance gain. This
work by the authors [1] and based on use of confidence is due to the fact that some misses are more critical
predictors presented in Manm al. [8]. In this case than others; fetch latency often may be hidden by the
we mark every cache access with a confidence level ob- Fetch/Dispatch queue as well as the Instruction Window
tained by examining the processor speculation state and(Resources Reservation Unit - RUU in SimpleScalar ter-
the current branch prediction estimate. We use the main minology) making some instruction misses noitical.
cache to accommodate misses that are most likely on theHowever, since misses sometime present a burst behav-
correct path (high confidence) and gpeculative buffer ior, these hardware structures can remain empty and all
for misses that have a high probability to be from a mis- latency is detrimental for performance.
speculated path (low confidence). This idea originates Our idea is to divide misses on a penalty basis; we
from a study in which the authors found that line fills monitor the state (number of valid entries) of the Dis-
coming from mis-speculated path misses have a lower patch Queue and RUU upon a cache miss and we mark
probability of being furtheaccessed. Rting them in the them agritical (Dispatch Queue or RUU with few valid
buffer reduces the contention misses in the main cacheentries) ornon-ciitical (Dispatch Queue or RUU with
by reducing cache pollution. many valid entries). We plageon-ciitical misses in the
Table 7 presents results using either a fully associative penalty buffeandcritical ones in the main cache. In this
or direct mappedpeculative bufferAlthough thevictim way we preserve the instructions contained in the main
cachescheme with swapping gives better results when cache that are presumed to be moréaoal.
used with the data cache only, overall the results show We tried two different schemes in deciding when to
that thespeculative buffescheme is better at reducing bypass the main cache and place fills instead in the
energy consumption and improving performances. penalty buffer. In the first scheme we compared the num-
Using these buffers not only reduces energy consump- ber of Dispatch Queue or RUU valid entries to a fixed
tion in the overall cache memory system, but it does threshold. In the second scheme, we used a history-
so without significantly increasing on-chip energy con- based method that saves in the main cache the state of the
sumption. For the results listed in Table 7 we found that hardware resources at the moment of the fill (e.g. how
the on-chip energy consumption in the data portion in- many valid instructions we have in the RUU). This num-
creases on average only by 0.7%, and in the instruction ber will be compared to the current one at the moment of
portion by 2.8% (these number are not shown in the ta- a future replacement. If the actual miss is moriéazal
ble). Even more, for some programs lige we reduce than the past one, it will fill the main cache, otherwise it
the on-chip data cache portion up to 8%. This is in con- will fill the penaltybuffer.
trast to results shown in Table 5 where on-chip power Table 8 presents results using either a fully associa-
increased by as much as 66%. tive or direct mappeg@enalty buffer We observed some
We also tried a variation on this algorithm deciding good results, but when we tried different threshold val-

3.5 Speculative buffer

Table 8:Penalty buffer: Percent improvement in performance and power compared to the base case.

Fully Associative Direct Mapped
Test Dispatch RUU Dispatch RUU

%Cycles| %Energy | %Cycles| %Energy || %Cycles| %Energy | %Cycles| %Energy
compress 0.02 -1.04 0.08 -1.22 0.10 -1.49 0.10 -1.65
go 6.02 4.26 6.37 4.60 4.35 2.65 5.27 3.28
vortex 6.52 5.40 6.29 4.28 6.25 4.22 491 2.78
gcc 4.76 3.94 4.69 3.88 4,11 3.10 4.30 3.15
li 6.25 5.70 6.35 5.88 6.11 5.04 6.12 5.17
ijpeg 2.95 1.07 2.21 -0.94 251 -0.48 2.62 -0.91
m88ksim 18.40 17.17 24.55 23.14 20.62 18.97 23.83 22.07
perl 7.05 5.95 6.56 5.29 6.32 4.83 5.69 4.00

ues or history schemes, we found great valitgbin Acknowledgments

the behavior. This variability is due to the fact that in

some cases looking separately at the Dispatch QueueWe wish to thank Bobbie Manne for her invaluable help
or the RUU doesn't give a precise model of the state and support throughout this work. We also wish to thank
of the pipeline, thus creating interference in frenalty Doug Burger for providing us with the framework for the
buffer mechanism. Nevertheless, this scheme producesSimpleScalar memory model.

better results than thepeculative buffescheme. We

are currently investigating a combined use of these two

schemes that may prove even better. Refe rences

[1] I. Bahar, G. Albera and S. Manne, “Using Confidence to
Reduce Energy Consumption in High-Performance Mi-
L. croprocessors,” to appear linternational Symposium on
37 Combmmg use of buffers Low Power Electronics and Design (ISLERDP98

[2] D.Burger,and T. M. Austin, “The SimpleScalar Tool Set,
; ; — Version 2.0,” Technical Report TR#1342, University of
So far We_pre§ente(_i two main categories _of buffer im Wisconsin, June 1997.
plementations; the first one is based onvfeim cache [3] D. Burger, and T. M. Austin, “SimpleScalar Tutorial
that is used to offer a “second chance” to data that, oth- presented aB0th International Symposium on Microar-
erwise, should be moved out from L1. In the second " -T—hlf_ec\t]urﬁ Researcrcle\;\l/aan\;/IeFF"ark, NF\?’ D?Cem:’grv 1997.
; ; . L. Johnson, an . W. Hwu, “Run-time Adaptive
cate_gory (all other cases), the algorithm demde; what to Cache Hierarchy Management via Reference Analysis,”
put in the buffer, before data has the opportunity to be ISCA-97: ACM/IEEE International Symposium on Com-
written to the L1cache. These are not mutually exclu- puter Architecturepp. 315-326, Denver, CO, June 1997.

sive, so we tried to combine them, i.e. the buffer is at [5] Eq"af,(?;‘pé’i' t“h'gF}’Arg‘éii?ignDgfg'g%%%eguﬁag‘sesoig{sg
the same time used to store specific kinds of data and Cache an{i Prefetch BufferdSCA-17: ACM%EEE Inter-

to accommodate L1 cache victims. Due to space limita- national Symposium on Computer Architectyp. 364—
tions, we will not show the results, but it is important to 373, May 1990.

. [6] M.B. Kamble and K. Ghose, “Analytical Energy Dissipa-
point out that this mechanism is generally beneficial and tion Models for Low Power CachesSCM/IEEE interna-

gives improvements over the non-combined case. How- tional Symposium on Low-Power Electronics and Design
ever most of the gain is still due to the original algorithm August, 1997.
and not to the victim scheme. [7] J.Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter

Cache: An Energy Efficient Memory Structurdf/ICRO-
97: ACM/IEEE International Symposium on Microarchi-
tecture pp. 184-193, Research Triangle Park, NC, De-
cember 1997.
4 Conclusions and future work [8] S. Manne, D. Grunwald, A. Klauser, “Pipeline Gating:
Speculation Control for Energy Reduction,” to appear in
ISCA-25: ACM/IEEE International Symposium on Com-
In this paper we presented tradeoffs between power and __ Puter ArchitectureJune 1998.) _ _
performance in cache architectures, using conventional [°! }]h éi g g)‘;’_ﬁﬂrnggg CEé C%eSst\ﬁﬂsaoq'é m%%‘:;ﬁt';_%acsc’er‘c‘;"g:_
as well as innovative techniques; we showed