A Correlation Based Pulse Detection Technique for Gamma/Neutron Detectors

Muhammad Faisal\(^1\), Randolph T. Schiffer\(^1\), Marek Flaska\(^2\), Sara A. Pozzi\(^2\), David D. Wentzloff\(^1\)

1) Department of Electrical Engineering and Computer Science
2) Department of Nuclear Engineering and Radiological Sciences

University of Michigan, Ann Arbor, Michigan 48109, USA

Wednesday May 26, 2010

Acknowledgement: This research was funded by the National Science Foundation and the Domestic Nuclear Detection Office of the Department of Homeland Security through the Academic Research Initiative Award # CMMI 0938909.

Symposium on Radiation Measurements and Applications, Ann Arbor, Michigan, USA. May 24-28, 2010
Motivation

• Shielded radioactive materials
 – Low energy radiation
 – Difficult to detect
• Signal processing to detect these pulses
• Efficient online detection required (e.g. airports)

Real-Time Detection
Current State-of-the-Art

- Analog: mostly counting pulses
- Digital: Data stored for post-processing

- Threshold must be lowered to detect lower energy pulses → false detections
This Approach

• Data is analyzed prior to storage
 – Significantly less amount of data is stored
• Improve detector sensitivity
• Real-time pre-processing
Equipment

- Commercial board
 - 250MS/s, 14 bits, 4 channels
 - Connects directly to PC (e.g. laptop)
- On-board FPGA customizable for pre-processing of data

Innovative Integration’s X5-210M

Real-time detection
Extract useful information from pulses (e.g. height, time)
Normalized Cross Correlation (1/2)

- Pre-processing in real time on an FPGA
- Measure of similarity between two signals

\[C(u) = \frac{\sum_x [f(x) - \bar{f}_u][f(x-u) - \bar{f}_u]}{\sqrt{\sum_x [f(x) - \bar{f}_u]^2 \sum_x [f(x-u) - \bar{f}_u]^2}} \]

\[-1 \leq C(u) \leq +1 \]
Normalized Cross Correlation (2/2)

Incoming Pulses

Pulse Template

Correlator Output

Amplify Signal & Attenuate Noise
Template

- Template used in the correlator to recognize pulses

- Capture pulses
 - Bin pulse data
 - Average pulses in each bin
 - Normalize

Measured Pulses

Template

Average 1500 pulses

Wireless Integrated Circuits and Systems Group

M. Faisal
Hardware Implementation (1/2)

$$C(u) = \frac{\sum_x [\text{Incoming Data}] \times [\text{Template}]}{\sqrt{\sum_x [\text{Incoming Data}]^2 \sum_x [\text{Template}]^2}}$$

- Correlator building block: Multiply and Accumulate

- Available on FPGA as hardware accelerators
Hardware Implementation (2/2)

\[V_{pk} = \frac{N}{\sqrt{D \cdot K_t}} + C(i) + C(i+1) + C(i+2) \]

FPGA

Data

Template

ROM

M&A

Detect

\(t_{arrival} \)

\(V_{pk} \)
Simulation Results (1/2)

- Pulses detected in presence of noise
- E.g. A 5 keVee pulse in 5 keVee noise

Noise Level 5 keVee

Noise Correlation $C_{th} = 0.245 \ (3-\sigma)$

Wireless Integrated Circuits and Systems Group
M. Faisal
Simulation Results (2/2)

- A 5 keVee pulse in presence of 5 keVee noise
- Probability of detection: 18% to 86%
Conclusion

• Proposing an FPGA-based approach for pulse detection
 – Real-time data processing
 – Improved sensitivity ($\approx 4x @ 5\text{keVee}$)
 – Reduced data storage
A Correlation Based Pulse Detection Technique for Gamma/Neutron Detectors

Muhammad Faisal1), Randolph T. Schiffer1), Marek Flaska2), Sara A. Pozzi2), David D. Wentzloff1)

1) Department of Electrical Engineering and Computer Science
2) Department of Nuclear Engineering and Radiological Sciences

University of Michigan, Ann Arbor, Michigan 48109, USA

\textbf{Wednesday May 26, 2010}

\textbf{Acknowledgement:} This research was funded by the National Science Foundation and the Domestic Nuclear Detection Office of the Department of Homeland Security through the Academic Research Initiative Award # CMMI 0938909.

Symposium on Radiation Measurements and Applications, Ann Arbor, Michigan, USA. May 24-28, 2010