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Abstract- In this paper we introduce a wireless power transfer 

scheme using resonant inductive coupling for 3DICs to enhance 
power transfer efficiency and power transfer density with smaller 
coils.  Numerical analysis and optimal conditions are presented for 
both power transfer efficiency and density. HFSS simulation 
results are shown to verify the theoretical results. Coils for the 
power link are designed using a Chartered 0.13µm CMOS process. 
The peak power transfer efficiency is 52% and power transfer 
density is 49mW/mm2.  

 

I. INTRODUCTION 

3D integration is a promising solution for shortening 
interconnect in parallel processing in order to achieve smaller 
form-factor and higher performance. Several wired and 
wireless methods have been proposed to implement data 
communication among vertically stacked ICs in a package 
[1,2]. However, only wired methods such as wire-bonding or 
micro-bumps have been used for the power supply, even 
though wireless power delivery has unique advantages in 3DIC 
applications. It can eliminate the Known-Good-Die (KGD) 
issues to improve the yield, and some MEMS applications 
require non-contact power transfer [3], which can be realized 
by wireless power transfer. Fig. 1 illustrates two examples of 
systems requiring wireless power transfer. 

Previous work has reported wireless power transmission 
between two inductively coupled coils in stacked dies within a 
package [4]. This uses standard inductive coupling which 
results in relatively low power efficiency (<30%) and large 
coils (700x700µm) since most of flux is not linked between the 
coils. The resonance of an inductively coupled system increases 
the amount of magnetic flux linked between coils and improves 
the power transmission significantly [5]. In this paper, we will 
introduce wireless power transfer using resonant inductive 
coupling for 3DICs to increase power transfer efficiency and 
density with smaller coils. 

The paper is organized as follows; In Section II, we will 
discuss power transfer efficiency. The optimal condition and 
numerical analysis on maximum power transfer efficiency will 
be introduced. Section III discusses power transfer density. In 
IC designs, silicon area is always a major concern. Therefore, 
power density is sometimes more critical than power efficiency 
inside a package. We will discuss the optimal values for coil 
size, load resistance, and coupling coefficient k for maximum 

power transfer density. Section IV will show the coil design for 
an inductive power link and the simulation results of power 
efficiency and density. Section V concludes the paper.  

 

II. POWER TRANSFER EFFICIENCY 

A. Equivalent Circuit 
Fig. 2 shows the concept of an inductive power link and its 

equivalent circuit. The RF input signal with a power amplifier 
in the transmitter is modeled as a voltage source in the primary 
resonator. The receiver is modeled as a resister RL in the 
secondary resonator. k is the transformer coupling coefficient, 
and L1 and L2 are self-inductance in transmitter and receiver 
coils, respectively. R1 and R2 model the losses in the coils. C1 
and C2 are capacitors including parasitic and external 
capacitance to create a resonance at the transmitter and receiver 
side. Standard inductive coupling uses a frequency well below 
the self-resonant frequency of the inductors, therefore parasitic 

Fig. 1.  The applications of wireless power transfer using inductive coupling:
(a) Vertical stacking of heterogeneous processes such as logic and DRAM
(b) Information Tethered Micro Automated Rotary Stages (ITMARS).
Sensors and communication link are integrated on a rotating stage in a
substrate. 
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capacitance (C1, C2) are typically ignored in this case. Resonant 
inductive coupling, however, uses this capacitance to resonate 
with the inductors, increasing the flux linked between 
transmitter and receiver. 

B. Analysis with Equivalent Circuit 
As shown in Fig. 3 (a), the circuit with a transformer can be 

converted to the equivalent circuit with the reflected load Ze. 
Ze captures the impact of the secondary part on the primary 
part. The reflected impedance Ze can be expressed by 
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where ܳଶ
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ଶܴଶሻ.  The power 
consumed at Ze should be identical to the power transferred to 
the secondary part. Considering that the real part of (1) is the 
resistive component, we can derive the fraction of delivered 
power to secondary part at resonance. This is the power 
efficiency at the primary side, η1. 
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At the secondary equivalent circuit, shown in Fig. 3 (b), the 

parasitic resistance can be converted into an equivalent parallel 
loss across the LC tank. The power from the primary part will 
be dissipated in both R2 and RL, and the power consumed at RL 
represents the net output power available at the receiver. At 
resonance, the power efficiency at the secondary part, η2 can be 
written as 
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Combining (2) and (3), the total power efficiency of the 
inductive power link is derived as a form similar to [6-8]. 
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C. Maximum  Power Transfer Efficiency 
The power transfer efficiency can be maximized by adjusting 

conditions such as R, L, C of coils and RL value. In practice, for 
planar integrated spiral inductors it is difficult to adjust the L, C, 
and R values of the coils independently, since all the values are 
partially correlated. Therefore, RL is the best practical factor to 
adjust when optimizing the wireless link for a given coil. By 
differentiating (4) w.r.t. RL, the optimal RL can be obtained as 
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This optimal condition makes the maximum power transfer 

efficiency a function of coupling coefficient k and quality 
factor of the coils, both of which may be optimized when 
designing the coils. 
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With large values of k and Q, the power efficiency 
approaches 1 as expected. 
 

III. POWER TRANSFER DENSITY 

While high power transfer efficiency is critical for low power 
systems, area-constrained systems can require larger power 
transfer through smaller area coils at an acceptable loss in 
efficiency. With a fixed distance between two coils, larger coils 
result in larger k and higher efficiency. However, using larger 
coils requires more silicon area, and it ultimately decreases the 
power transfer density. Therefore, a parallel power transfer 
scheme can be taken into consideration in order to increase 
power density and maximize the amount of power delivery 
through the same area, as illustrated in Fig. 4. 

 
Fig. 2. (a) Concept of wireless inductive power link (b) Equivalent circuit 
  

Fig. 3. (a) Entire equivalent circuit  (b) Secondary equivalent circuit 
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Fig. 5. Equivalent circuit for power density calculation 

In order to compare the performance of single inductive 
power link to a parallel inductive power link, the power transfer 
density should be analyzed first. 

A. Output Delivered Power  
Fig. 5 shows that the transformer circuit has the equivalent 

circuit with reflected impedance and parallel resistance. The 
reflected impedance is split into the imaginary and real part, 
and the real resistive part is converted to parallel resistance 
using quality factor ܳ௣ ൌ ଵ/ሺܴଵܮ߱ ൅  .ሺܼ௘ሻሻ݁ݎ

At resonance, the input power is given by 
 

 ௜ܲ ൌ
ଵ

ଶ
൬

|௏ೄ|
మ

ொ೛
మሺோభା௥௘ሺ௓೐ሻሻ

൰ (7) 

 

and the output power can be written as 
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B. Optimal Load 
The power transfer also can be maximized by adjusting the 

RL value. By differentiating (8) w.r.t. RL at resonance, the 
optimal RL can be expressed as 
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Substituting the optimal RL into (8), we get the maximum 

power transfer amount as 
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C. Power Transfer Density 
The power transfer density is defined as the amount of 

available transferred power per the unit area. Assuming square-
shaped, planar spiral coils are used with diameter d, the power 
transfer density will be a function of d. In addition, coupling 
coefficient k is also the function of d [9]. 
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where x is the distance between coils. With (11), the power 
transfer density is given by 
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By differentiating (10) w.r.t. d, the optimal size of the coils and 
corresponding k can be found as the function of the separation 
between coils, x. For instance, when x=15μm, the optimal d is 
58μm, and k is equal to 0.41. 
 

IV. SIMULATION RESULTS 

A. Simulation Setup 
To verify this model, we designed planar spiral coils using a 

Chartered 0.13µm CMOS process. Fig. 6 shows the simulation 
setup of two identical square coils vertically stacked to 
implement the inductive power link through stacked ICs. We 
sweep the separation x, and the diameter d to test power 
efficiency and density. HFSS is used to extract the lumped-
element models for coils, and these models are imported to 
Sperctre to simulate the inductive power link. 

B. Power Transfer Efficiency 
As shown in (6), the maximum power transfer efficiency 

strongly depends on k. To show this dependency, we swept the 
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Fig. 4. Concept of parallel inductive power transfer (a) parallel power
delivery using multiple maximum-power-density coils (b) single power
delivery using one large coil 
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