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Abstract—This paper explores the application of compressive
sensing (CS) for ultra wide band (UWB) communication. Channel
estimation is an important aspect for any communication system
and especially for UWB systems in order to appropriately collect
the energy from the multipath channel. UWB generally requires a
high sampling rate since the bandwidth is large. Channel estima-
tion using CS is studied along with its impact on reducing the sam-
pling rate for an ADC to reduce power. Practical issues regarding
the effect of quantization on channel estimation are addressed and
a hardware implementation for CS based on the Walsh—-Hadamard
transform (WHT) allowing sub-Nyquist sampling is proposed. To
separate the effect of channel estimation with CS, the performance
of the sub-Nyquist ADC is studied in a noiseless and multipath free
channel and design decisions are discussed. Comparison with the
Nyquist ADC shows that using the sub-Nyquist ADC reduce power
by a factor of about 6 x. For the proposed hardware, two receiver
architectures based on matched filtering and filtering in the com-
pressed domain (so-called “smashed filtering”) are studied. It is
found that with a perfect channel smashed filtering performs better
than matched filtering. Finally the effect of channel estimation on
the proposed hardware is studied along with two different recovery
algorithms namely basis pursuit and matching pursuit.

Index Terms—Channel estimation, compressive sensing (CS),
sub-Nyquist ADC, Walsh-Hadamard transform (WHT).

I. INTRODUCTION

IRELESS communication systems and wireless
W computation are becoming as ubiquitous as micro-
electronics are today. Due to the form factor limitation, the
battery size on these portable/mobile electronics is limited
and, therefore, there is an increased interest in energy-efficient
circuit design and techniques. One way to reduce the required
transmitted energy for each bit is to employ wide-bandwidth
signals, such as ultra wide band signals (UWB). However,
wide-bandwidth signals generally require significant energy
for high rate sampling and the associated signal processing
algorithms to process the received signals. However, in certain
cases where the signals are sparse it may be possible to reduce
the sampling rate using an approach called compressed sensing.

Compressed sensing (CS) theory states that given a signal is
sparse in one domain (e.g., a pulse in the time domain); it can
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be sampled randomly in an orthogonal domain (e.g., the fre-
quency domain) at a rate less than that suggested by the Nyquist
sampling theorem. The sparse signal can then be recovered with
high probability from these “compressed” samples, but with an
error proportional to the compression rate, by using a suitable
recovery algorithm (e.g., L1 minimization).

The signal of interest here is a baseband ultra wide band
(UWB) pulse with a width on the order of a nanosecond which
is sparse in the time domain. The Nyquist sampling rate for a
UWB pulse requires ADC sampling at a frequency greater than
a GHz, which usually results in prohibitively large power con-
sumption in the ADC. This power can be a significant fraction
of the total power consumption of the entire system. In [1]-[3]
the power consumption for a 6-bit ADC with a sampling rate in
the range of 1.2—1.6 GHz is greater than 150 mW, which might
be excessive for certain applications. Sampling the UWB signal
below Nyquist rate (sub-Nyquist) may lead to a low power al-
ternative solution. Since our goal is not recovering the signal
directly but recovering the data being transmitted by the signal,
a lower sampling rate would be possible.

Channel estimation is a critical issue in a communication
system. This is especially true for a UWB system since the
transmitted signal energy, which is small to begin with, is split
into many multipath channel components. It is crucial to ac-
curately estimate the channel multipath delay spread to col-
lect and combine the energy in various multipath components.
Unfortunately, the components with low amplitude are diffi-
cult to estimate. The transmitted reference (TR) approach in
[4] reduces the sampling rate by correlating the received signal
with a template derived from the reference signal and then sam-
pled at the frame rate to determine the signal. However, TR
suffers significant performance degradation, particularly at low
signal-to-noise ratio (SNR) due to the fact that the reference
signal is noisy.

CS was introduced in [5] to address the high sampling rate
issue in multipath channel estimation. In [5], each entry of the
projection matrix is a random variable with Gaussian distribu-
tion. The receiver in [5] only performs matched filtering with
random Gaussian distributed project signals but no smashed fil-
tering to detect the information bits. Because the correlation
with random Gaussian signals is difficult to implement, we con-
sider an alternative approach which is to use Hadamard signals
instead of random signals. In addition, [5] did not consider the
important aspects of quantization of signals. Other papers have
also considered compressed sensing for channel estimation. In
[6], an overview of the application of CS to pilot-aided channel
estimation is given. In [7], a channel estimation strategy using
compressive sampling matching pursuit (CoSaMP) algorithm
is described. The algorithm combines the greedy algorithm and
convex programming. In [8], a method to estimate the channel
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using smooth LO (SL) algorithm is presented. The performance
of this algorithm is slightly better than CoSaMP. The authors in
the last two papers use different recovery algorithms from what
we consider. None of these schemes considered the effect of
quantization which is essential for circuit implementation and
energy consumption analysis.

In this paper, we apply CS theory [9], [10] for low power cir-
cuit design and its application to wireless communication. We
propose using the Hadamard transform as a measurement ma-
trix, as opposed to a Guassian matrix for CS considering also
the difficulty of implementation. We further investigate the ef-
fect of quantization of the received signal and the application of
matched filtering in the compressed domain (smashed filtering
[11]) instead of applying a matched filter in the time domain. In
this way, the same circuit structure can be used to estimate the
channel for pilot bits and detect the transmitted information bits.
We also propose a practical hardware implementation for com-
puting the Hadamard projections (HP) and provided the design
criteria for selecting the number of compressed measurement
K and the resolution of a sub-Nyquist ADC. Further, the power
saving for the sub-Nyquist ADC is evaluated as compared to
the Nyquist ADC with the proposed Walsh Hadamard Trans-
form (WHT) front-end. Finally, We evaluate the performance
of the different receivers using matching pursuit (MP) [12] and
spectral projected-gradient (SPGL1) [13] recovery algorithms
to obtain the channel template.

The rest of this paper is organized as follows. Section II
discusses channel estimation and compares it with different
receiver architectures. In Section III, keeping the practical
constraints in mind, we propose hardware for CS which is
amenable to circuit implementation. Section I'V discusses some
fundamental questions related to the proposed hardware and
Section V presents simulation results with and without channel
estimation. Section VI concludes the paper.

II. CHANNEL ESTIMATION

A. UWB Transmitted Signal

We consider a simple communication system that uses
nanosecond pulses p(t). Assume we transmit one pulse in one
frame with interval Ty between two consecutive pulses and one
bit consists of N, frames. The transmitted signal with duration
Ty, = N;Ty can be described as

Ny—1
sit) = b(k)
k

> plt— Ty — kT)
§=0
where b(k) € {—1,1} is the k-th binary bit that modulates the
amplitude and p(t) has duration T, < 7.

Q)

B. Channel Model

We consider the following multipath channel impulse re-
sponse as our model:

L-1
h,(f) = Z a/;é'(t - T/) (2)
£=0

where 4(t) is Dirac delta function, 7, and « are the path delay
and path gain of the /-th path of multipath channel, respectively.
The number of paths in the channel is denoted by L and 771 is
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Fig. 1. Transmitting pulses p(t).
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Fig. 2. Channel-impulse response /:(t) with Ty = 40 ns.

the maximum delay spread of the channel. We assume that h(t)
remains static for N, bits and assume 7y > 77,_1 + T}, so that
there is no intersymbol interference. Fig. 2 shows a realization
of a particular channel impulse response based on our model.
For this channel and a frame duration with Ty = 40 ns, there
would be no ISI.

C. Received Signal Model

The first frame of the received signal corresponding to the
k-th transmitted bit without noise can be expressed as

L—-1

ri(t) = b(k) - Y aeplt — KT} — 7).
¢=0

(€))

Since we assume Ty > 7,1 + T}, and h(#) is static within
Ny bits, the total received signal can be written as follows:

Np—1

r(t) =20 > mlt = iTp) + w(t) “

where w(t) is considered as an additive white Gaussian noise
(AWGN) process with zero-mean.

We consider two different receiver designs, rake receivers
[14] and correlator receivers [15] and compare their perfor-
mances. These two methods require channel estimation as a
template and we use a data-aided framework (or so-called
pilots) to satisfy this. We transmit V, known pilot bits to
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estimate the channel impulse response for each packet of NV,
bits. The rest of (N, — N, ) information bits are detected based
on the acquired noisy channel template. In other words, the
received pilot bits are within the interval 0 < ¢ < T,,, where
T, = N,Ty and N, = N,N and the received information
bits are during T, < t < N N;T%. In particular, considering
the received signal over the periods j7¢ < t < (j + 1)T} for
j =0,1,...,N, — 1 and assuming perfect timing synchro-
nization, the received pilot signal in one frame duration is

L-1

g0 =v(| 5 |) Zawte -1 -0 400

£=0

D. Channel Estimation

In order to have good detection of the transmitted bits, it
is essential to have accurate channel estimation so that we
are able to collect and combine the transmitted signal energy
which is spread due to the multipath channel. To be more
specific, the estimation of the channel parameters «; and
¢ for £ = 0,1,...,L — 1 are required for our receivers.
In order to capture the signal characteristic and represent
the signal in sparse components, we define the basis (or
so-called dictionary) D = {di(t),da(t),...,dz(t)}, where
d;(t) = pt — {j — DAL),j = 1,2, ..., Z with minimum step
At. The following procedure is similar to [5], [16]. First, we
project a frame-long period of the signal with a set of K wave-
forms ®(t) = [p1(t)Pa(t) - dx (¢)]T with amplitudes associ-
ated with randomly chosen rows of the Hadamard matrix. For
example, the first waveform can be ¢1(#) = 1 for0 < ¢ < T
since the first row of the Hadamard matrix is [11---1]. The
second waveform can be ¢2(t) = 1 for 0 < ¢ < Ty/2
and ¢2(t) = —1 for Ty /2 < ¢ < Ty since one row of the
Hadamard matrix is [1---1 — - -- — 1]. The projected received
signals 4 = [, et = [0 5502), K]
j = 1,2....,N, are averaged over /V,, frames to obtain y
and then we use the (1) matching pursuit (MP) algorithm [12]
and (2) spectral projected-gradient (SPGL1) [13] algorithm to
estimate the multipath channel.

Next, we outline the idea of MP. The initialization is to set
#; = Ofore = 1,2,...,Z, where §; fore = 1,2,...,72
are the estimates of amplitude of channel impulse response at
time delay ¢{A¢. Considering the projected component v, =
J®(t)de(t)dt. £ € {1,2,.... Z}, the first step for the first iter-
ation of the MP algorithm is to choose the vector which has the
largest absolute value of the correlation with the received signal
y, that is v; = argmaxy, |{y, v¢}|/||ve||. The second step is
to update the corresponding coefficient and the time delay of
the chosen vector: #; «— 6; + (y,v,}/||v;||>. Then, we sub-
tract the selected component from the received signal: y «—
y — (¥, v;)v;/|lv;|[?. The second iteration starts after the sub-
traction. The whole algorithm is terminated when the number
of iterations reaches a preset value, say Ty or the energy of the
remaining signal is below some threshold.

After MP, the sparse vector © = [,6s,...,07]7 is
obtained and then h(t) = 21‘2:1 8;d;(t) is the estimate of
h{t) * p(t). In the case that the vectors in the dictionary are
not orthogonal to one another, the number of iterations 7T
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Fig. 4. CS correlator receiver.

using MP should be larger than the number of fingers Lg so
the estimated gain #; of the previous selected vectors d;(?),
i € {indices of the previous selected vectors} can be revis-
ited and updated.

E. CS Rake Receiver

Let 6(;y fori = 1,2,..., Z be the sorted element of the set
{|01|1 |92|7 R |HZ|} and define ()(1) = Illa.X{|91|, cees |9Z|}a
e(z) = Hlil’l{|91 R |92|}, and H(il) Z g(u) for il S 1,2
Furthermore, define £(;) as the index in the sparse vector of the
i1th sorted element. The estimated path gain and path delay for

the 2th propagation path are

&i =04
7i =LAt (6)
fori = 1,2,..., L., where L. is the number of paths that are
considered. The received signal #(¢) is then correlated with a set
of correlators with elements p(t—7¢) for£ = 1,2,..., L. Then,
maximum ratio combining (MRC) is applied to form a sufficient
statistic to detect the kth transmitted bit in the jth frame:

Ty +3Tr+7c+T,

L.
ZR(k’j) = Z oZg 7‘(f)Xp(t—ka—ij—7cf)dt.

=1 kT, +A;’Tf +7¢
(7)
The detection of the & bit is done by summing the statistics

corresponding to the V¢ frames in the same bit as follows:

Ny—1

l;(k) = sgn Z zr(k, )

=0

(®)

The whole structure of the CS Rake-based detector is shown
in Fig. 3. HP refers to the Hadamard projection in Figs. 3—6.
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Fig. 6. CS rake receiver with smashed filters.

F. CS Correlator Receiver

The CS correlator receiver is similar to the CS rake receiver
with the difference that we use A(t) = >, &;p(f — 7;) as the
channel template g, (). When the number of fingers in the rake
receiver is the same as number of the nonzero path gain «;, the
performance of these two receiver are the same. The channel
template g.s is then correlated with the received information
signal to perform detection at the sampling rate of one frame.
The detection of the kth bit is summing the statistics corre-
sponding to the Ny frames of the same bit as formulated below:

f\r_[ -1 (7+1)Tf +ka

>

=0

z(k) = 7()ges(t — jTy — kTy)dt (9)

JTy+kT,
The structure of the CS correlator receiver is shown in Fig. 4.

G. CS Receivers With Smashed Filters

In [5], the estimated channel template iz(t) is used to corre-
late with the received information bit waveforms in the analog
domain, or in digital domain after being sampled at the Nyquist
rate. To reduce the sampling rate and apply the same circuit pro-
cessing to both the received pilot and information bits, we as-
sume a smashed filter in our CS correlator and rake receiver, as
shown in Figs. 5 and 6. The difference between these receiver
structures is that the received information bits are also projected
with the Hadamard transform to the compressed domain and
become y with the same circuit used for the pilot signals and
correlated with the compressed version of the channel template
S4 = 2112:1 ;v; to perform bit detection.

III. PROPOSED HARDWARE

The receiver architectures considered in Section II all re-
quired that Hadamard Projections (HP) be computed of the
incoming input signal and subsequently digitized by an ADC.
To allow the practical implementation of these receivers, in
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this section we propose a hardware architecture with practical
constraints for computing HPs. The goal is to propose an archi-
tecture that will not only allow us to take HPs [by computing
the Walsh—-Hadamard Transform (WHT)] but which is also
amenable for circuit implementation in an ASIC.

Fig. 7 shows the block diagram of a hardware system ex-
ploiting the WHT as a measurement matrix in a CS system. Our
signal of interest is a baseband UWB pulse which is sparse in
the time domain. An analog WHT is computed on the incoming
sparse signal, the output of which is sub-Nyquist sampled by
randomly choosing K WHT coefficients out of /V possible sam-
ples assuming a Nyquist grid. The compressed samples may
then be post-processed if needed (depending on the particular
receiver architecture) using a recovery algorithm (e.g., L1 min-
imization) which reconstructs the original sparse signal in the
time domain [13], [17].

As a practical architecture exploiting CS for computing
analog WHT, we propose a 64-point WHT as the measurement
matrix. The Hadamard coefficients are the inner products of
the input signal with the Walsh codes as shown in matrix
form in Fig. 8. To compute the WHT in the analog domain, a
discrete-time WHT front-end is proposed, as shown in Fig. 9.
The incoming UWB signal is correlated with the Walsh codes
using Nyquist rate sampling (typically in gigahertz range for
UWRB signal pulses) and discrete-time integration.

The detailed operation of the proposed discrete-time WHT to
compute HP is as follows. A 6-bit linear feedback shift register
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(LFSR) generates a pseudo-random number which is used by
the Walsh code generator (WG) from [18], to generate the Walsh
code of that sequency. This is equivalent to randomly selecting
a row (i.e. a Walsh sequence) in the WHT matrix. The input is
sampled at the Nyquist rate by the S/H circuits with either pos-
itive or negative polarity depending on the current value of the
Walsh sequence. The circuit operates in two phases: sampling
and integration. After the input is sampled with the appropriate
polarity, the circuit enters into the integration phase to integrate
the sampled values. At the end of the integration phase, the input
signal has been correlated with the generated 64-point Walsh
sequence. The integrator is reset and the computed Hadamard
coefficient is then digitized by the sub-Nyquist ADC. The S/H
circuit is sampling the input signal at the required Nyquist rate
while the Hadamard coefficients are being output at every 64th
sample of the input signal (since the input is correlated with a
64-point Walsh sequence).

The above process produces one Walsh coefficient. Now
there are two possibilities for a CS system which requires
computing K compressed coefficients. First, is the parallel
architecture in which the proposed hardware is repeated K
times and the K Hadamard coefficents are computed in parallel
by simultaneously correlating the input with K different Walsh
sequences. This will require replicating the sub-Nyquist ADC
by K times or increasing the sampling rate for the sub-Nyquist
ADC tobe (K /N) x the required Nyquist rate (here N = 64).
Second, is the series architecture in which the X Hadamard
coefficients are computed in series. This puts a restriction on
the input to be repetitive for K times to enable the Hadamard
computation by correlating the input with K different Walsh
sequences in series. In this case the sub-Nyquist ADC sampling
rate will be (1/N) x the required Nyquist rate for the input
(N = 64). The proposed architecture can be adapted for either
series or parallel implementation, or a combination of both.

IV. DESIGN DECISIONS

Three important questions need to be addressed regarding ar-
chitectural design decisions. First, how to choose the optimum
number of compressed measurements (K') or compression ratio
(N — K)/N. Second, how to choose the resolution of the sub-
Nyquist ADC. Third, how the proposed CS hardware with sub-
Nyquist ADC compares with using a Nyquist ADC without CS.
For this purpose a Matlab simulation was setup for the archi-
tecture shown in Fig. 7 for different random measurements (K)
and resolutions of the sub-Nyquist ADC. In order to investigate
the effect of CS only, it is assumed in this simulation that the
transmitted pulse passes through an ideal channel with no addi-
tive noise. Fig. 10 shows the mean square error (MSE) between
the input and the recovered pulse (averaged for 100 iterations)
as a function of the number of random measurements (K') for
different resolutions of the sub-Nyquist ADC. The right y-axis
marks the mean square quantization error (MSQE) for the input
pulse quantized by a Nyquist ADC without CS for comparison.

It is observed that for about X > N/3 the MSE does not
depend on K, but is limited by the resolution of the sub-Nyquist
ADC quantizing the Hadamard coefficients. Furthermore, by
comparing the recovered pulse’s MSE with the MSQE of a
Nyquist ADC, we observe that the sub-Nyquist ADC quan-
tizing a signal in the Hadamard domain saves roughly one bit
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of resolution for the same quantization error as for the Nyquist
ADC quantizing in the time domain.
An ADC figure-of-merit (FoM) is defined as

Power

(10)
where ENOB is the effective number of bits, f; is the sampling
frequency, and Powcr is the total power consumption of an
ADC. Since an ideal ADC is assumed in this paper, in that
case ENOB is equal to the resolution of the ADC. By taking
compressed samples K assuming the architecture in Fig. 9, the
sampling rate for the sub-Nyquist ADC reduces to (K/N) x fs.
Furthermore, as mentioned above a sub-Nyquist ADC quan-
tizing Hadamard coefficients can save one bit in resolution over
a Nyquist ADC quantizing time samples. Combining these
two factors, we define an Improvement Factor (IF) for the
sub-Nyquist ADC as, I F' = 2% x N/K where x is the savings
in ENOB and (V/K) is the reduction in the sampling rate. For
the same FoM, I F is the factor by the power of the sub-Nyquist
ADC is reduced relative to the Nyquist ADC. Fig. 11 shows
the simulated 7F' as a function of K for different resolutions
of the sub-Nyquist ADC. The dashed line in the plot represents
IF = 1, below which the sub-Nyquist ADC consumes more
power than the Nyquist ADC. There clearly exists an optimum
value of K = 24 for which the TF' shows a peak. At the peak
value of /F, the power of a sub-Nyquist ADC can be reduced
by a factor of 6. Fig. 12 shows the I F' for 5 bit resolution of
the sub-Nyquist ADC along with its constituent components.
As expected the (N/K) factor decreases as we take more
compressed measurements (K') and the resolution factor (2%)
saturates at about K > N/3, which explains the peaking effect
of the IF.

Now to answer the three questions relating to the architecture
implementation, the resolution of the sub-Nyquist ADC can be
chosen based on the intended application requirements for the
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MSQE. Once the resolution of the sub-Nyquist ADC is chosen,
there exists an optimum value of K for which 7F' is maximum.
At around the peak value of £ the power of the sub-Nyquist
ADC can be reduced by a factor of about 6 when compared with
the Nyquist ADC.

Fig. 13 shows the 64-point Hadamard transform for an input
pulse along with K = 26 randomly selected coefficients chosen
out of N = 64. Fig. 14 shows the recovered pulse in the time
domain using SPGL1 from [13] with a 5-bit resolution for the
sub-Nyquist ADC.

The MSE shown in Fig. 10, to first order, is a performance
metric for the proposed system. But for a communication system
we are more interested in finding how the choice of K and res-
olution of the sub-Nyquist ADC affects the BER in an additive
white Gaussian noise (AWGN) channel, which is investigated
in the next section.
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V. SIMULATION RESULTS

A. Perfect Channel Estimation

To generate the waterfall curves assuming an ideal channel
with AWGN noise, two different receiver architectures were
considered, both based on matched filtering as shown in Fig. 15.
In the first architecture, compressed samples are taken in the
Hadamard domain and the time-domain sparse signal is recov-
ered using SPGL1 which is then correlated with an ideal tem-
plate to make bit decisions. In the second architecture, the differ-
ence is that matched filtering is done directly in the Hadamard
domain using sub-Nyquist samples (also known as smashed fil-
tering in the CS literature) rather than in the time domain after
reconstruction.

Fig. 16 shows the bit error rate (BER) curves for both receiver
architectures for infinite resolution of the sub-Nyquist ADC and
compares it with an ideal BPSK curve for different values of K.
It is found that the smashed filter has better performance com-
pared to the matched filter in the time domain. One explanation
for this is that the recovery algorithm attempts to find a sparse
solution in the time domain to a given set of compressed mea-
surements K. However, a signal with low SNR cannot be con-
sidered sparse, because noise produces many nonzero values.
The recovery algorithm in the CS framework assumes a sparse
solution to the given set of compressed measurements. As a re-
sult, the algorithm attempts to reconstruct the noise with the
sparse solution. This affects the performance of the matched
filter and results in an increased probability of error (Pe¢) at a
given signal-to-noise ratio (£/Ny) for K < N. We believe
that this is a strong function of the recovery algorithm being
used and should be investigated further in future work.

Fig. 17 shows the BER curves for 5bit resolution of the sub-
Nyquist ADC quantizing Hadamard coefficients. In this case
the BER curve for K = N = 64 doesn’t overlap the ideal
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Smashed Filtering Comparision, With Res=5 bit
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Fig. 17. BER curves for Res = 5 bit.
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BPSK curve due to the quantization noise. Next we define ex-
cess Fn /Ny as the extra energy per bit required in the CS re-
ceiver in order to achieve the same BER as that of an ideal BPSK
receiver. The excess Fy, /Ny required for different values of K
at a BER of 102 is shown in Fig. 18. Both receiver architec-
tures are compared along with infinite and 5bit resolution for
the sub-Nyquist ADC. Using a smashed filter with 5-bit resolu-
tion requires an excess E;, /N,y of about 1dB. The excess £ /Ny
for the smashed filter with infinite resolution overlaps the theo-
retical predicted loss in SNR curve when K random Hadamard
coefficents out of NV samples are chosen [19]. The theoretical
loss in SNR in dB is given by

TV
Loss in SNR(dB) = 101log, <?) . (11)

This result is very important for a designer to consider when
designing a compressed sensing system. There is inherent loss in
SNR by the same factor that the compressed samples are taken
(choosing K random coefficients out of total N samples results
ina K/N loss in SNR).

B. Multipath Channel Estimation

In this section, we consider the case where the multipath
channel impulse response is estimated by the receivers. The
channel model we used is IEEE 802.15.4a standard. In the
standard, all the parameter values are specified. We would
like to point out that the BER performance of the receivers in
Figs. 19-24 are for smashed filtering and in Figs. 25 and 26
are for matched filtering. Fig. 19-22 discussed below are with
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Fig. 19. BER Performance for different number of projected measurement
K = 16, 24, 32, 48,64, no quantization, smashed filter, SPGL1. The BER
curves for CS rake and correlator are nearly identical to that of CS correlator.
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Fig. 20. BER performance for the smashed filter with different number of bit
resolution: 1,3,5,0¢, with A’ = 24, SPGLI1. The BER curves for CS rake and
correlator are nearly identical to that of CS correlator.

a fixed number of fingers L. = 50 in the CS rake receiver
and a fixed number of pilot bits IV, = 128. We first focus
on smashed filtering since with perfect channel estimation it
is found to be better than matched filtering. We evaluate the
BER performance of the receiver without quantization for
different values of K and using the smashed filter to correlate
the received signal with a noisy estimated channel template in
Fig. 19. The waterfall curves show that the BER performance
is improved when K is increased, as expected. Fig. 20 shows
the BER performance of the smashed filter for different quanti-
zation resolutions with a fixed K = 24. It is observed that there
is 2 dB gap between 1-bit and 3-bit quantization resolution
but beyond 5-bit resolution, the improvement is insignificant.
This 2 dB gap conforms to the common knowledge that the
performance of a hard decision detector is often 2 ~ 3 dB worse
than that of a soft decision detector. The receiver with 1-bit
quantization resolution is essentially a hard decision detector
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Fig. 21. BER Performance for different number of projected measurement
K = 16, 24,32, 48, 64, with quantization resolution = 3 bits, smashed
filter, SPGL1. The BER curves for CS rake and correlator are nearly identical
to that of CS correlator.
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Fig. 22. Excess E, /N required for different K in different receiver schemes.

and the receiver with 7-bit quantization is very close to an ideal
soft decision detector.

Hence, in Fig. 21, we fix the quantization resolution at 5 bits
and vary the value of K. It shows again that the BER perfor-
mance is improved through increasing the number of K, as
expected.

Next, instead of using the SPGL1 algorithm to recover the
channel output estimation, we use the MP algorithm to recover
the multipath channel template in the receiver. The performance
of MP is similar to the previous case using the SPGL1 algorithm.
The larger the K used in the receiver, the better the performance
we acquire.

The comparison between the receivers with SPGL1 and MP
algorithm is shown in Fig. 22. This figure shows the excess
E},/No needed to achieve P, = 102 versus K/N of four dif-
ferent receivers with quantization resolution of 5-bits or without
quantization and using the MP or SPGL1 algorithm. It is in-
teresting to notice the significant drop of excess Fj, /Ny from
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Fig. 23. BER Performance for different number of pilot bits I, =
1, 2. 4, 16, 128, with &' = 24, L, = 50, smashed filter, SPGL1. The BER
curves for CS rake and correlator are nearly identical to that of CS correlator.
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Fig. 24. BER Performance for different number of fingers in Rake
receiver L. = 1,2,5,10,50, N, = 128, with Kk = 24,
quantization resolution = 3 bits, smashed filter, SPGL1. The BER curves
for correlator are nearly identical to that of CS correlator.

K/N =25% (K =16) to K/N = 37.5% (K = 24). We also
observe that the 4 curves are nearly identical.

Fig. 23 shows the BER waterfall curves with different values
of N, and fixed L. = 50. It is observed that the 3 different re-
ceiver structures (CS correlator, CS rake, and correlator) have
almost the same performance for each value of N,. For sim-
plicity, we only show three different structures for N, = 1 and
for other values of IV,,, we only show the curves for the CS cor-
relator. On the other hand, Fig. 24 shows a different phenom-
enon that by increasing the number of fingers L. in the Rake
receiver, the performance improves for the Rake receiver while
the performance of the other two receivers remains the same,
as expected. We also omit the curves for the CS Correlator for
simplicity.
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Fig. 26. BER Performance for different number of fingers L. = 1, 2, 5050
in Rake receiver, with i’ = 24, quantization resolution = 5 bits, SPGLI1.

Considering a receiver with a matched filter, Figs. 26 and 25
show the BER performance with different values of V,, while
L. = 50 is fixed and various values of L. while IV,, = 128
is fixed. Notice that the performance of L. = 2 is quite close
to that of L, = 50, when N, = 128 is fixed. On the other
hand, when L. is fixed at 50, increasing the number of pilot bits
gradually improves the performance without any large jumps.

VI. CONCLUSION

In this paper, we use compressed sensing to reduce the sam-
pling rate and power consumption of the proposed hardware.
Circuit design parameters such as the number of compressed
measurements A and the effects of quantization are investigated
under the condition of perfect channel estimation. We also com-
pared the performance of receivers using a smashed filter in the

compressed domain and using a matched filter in the time do-
main with and without quantization. We found that quantizing
the signal in the Hadamard domain saves one bit in resolution as
compared to quantizing the signal in time domain for the same
MSQE. We also observed that the receiver using a smashed filter
requires 1 dB less excess Fj, /Ny than that using the time domain
matched filter under perfect channel estimation. It is found that
for CS using a smashed filter there exists a tradeoff between
the BER performance of the receiver and the power savings in
the sub-Nyquist ADC by reducing its sampling rate. CS can be
useful in situations where the signal SNR is high. In that case the
extra SNR can be traded for power savings in the sub-Nyquist
ADC to maintain a target performance. At a peak value of IF,
the power consumption of the sub-Nyquist ADC can be reduced
by a factor of about 6. Furthermore, we consider the multipath
channel circumstances and evaluate the BER performance of
the receivers with different &', quantization and recovery algo-
rithms (SPGL1 or MP) to estimate a noisy channel template. We
found that BER performance is almost the same for the recovery
algorithms SPGL1 or MP, without any or with 5-bit quantiza-
tion. The BER performance curve with K = 24 has significant
improvement over K = 16 and it is comparable to no com-
pression with K = 64. We also compared the performance of
different receiver design parameters, such as number of pilot
bits and number of fingers in the Rake receiver. For both re-
ceiver structures, matched filter and smashed filter, 4 pilot bits
is a good trade-off between BER performance and energy con-
sumption. On the other hand, while using a matched filter, the
2-finger rake receiver has almost the same performance as the
50-finger receiver. While using a smashed filter, we need to use
a 5-finger rake receiver to achieve comparable performance to
the 50-finger rake receiver.
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