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Abstract  —  In this paper we present a digitally assisted 

front-end that performs analog computation of the Walsh 
Hadamard Transform (WHT) for GHz ADCs using 
compressive sensing to reduce power. The circuit consumes 
11.2mW of power while sampling at 1.2GHz. The achieved 
compression rate assuming an ideal ADC is 59.4% with a 
mean square error of 0.3%. Comparison with the Nyquist 
ADC shows that using the sub-Nyquist ADC with the 
proposed WHT front-end reduces power by a factor of about 
6x. 

Index Terms  —  Compressed sensing, sub-Nyquist ADC, 
Walsh Hadamard Transform. 

I. INTRODUCTION 

Compressive Sensing (CS) theory states that given a 
signal is sparse in one domain (e.g. a pulse in the time 
domain); it can be sampled randomly in an orthogonal 
domain (e.g. the frequency domain) at a rate less than 
suggested by the Nyquist sampling theorem. The sparse 
signal can then be recovered with high probability from 
these compressed samples, but with an error proportional 
to the compression rate, by using a recovery algorithm 
(e.g. L1 minimization) [1]-[2].  

Our signal of interest is a baseband ultra-wide-band 
(UWB) pulse with a width on the order of a nanosecond 
which is sparse in the time domain. The Nyquist sampling 
rate for a UWB pulse requires ADC sampling at a 
frequency greater than 500MHz, which usually results in 
prohibitively large power consumption in the ADC. This 
power can be a significant fraction of the total power 
consumption of the entire system. In [3] [4] [5] the power 
consumption for a 6-bit ADC with GHz sampling rate is 
greater than 150mW, which might be excessive for certain 
wireless applications. Sampling the UWB signal below the 
Nyquist rate, while maintaining a certain performance, 
may lead to a low power alternative solution. 

There exist many potential orthogonal domains suitable 
for compressive sensing. In this paper, we implement the 
Walsh Hadamard Transform (WHT) as a measurement 
matrix to be used in CS. The reason for choosing the 
WHT is Walsh codes are a sequence of ±1’s that multiply 
the time signal and the inversion can be easily 
implemented in hardware. 

Fig. 1 shows the block diagram of a system exploiting 
CS and the discrete-time WHT front-end. In this work an 
Analog WHT is computed on the incoming sparse signal, 
the output of which is sub-Nyquist sampled by randomly 
choosing K samples out of N Nyquist samples. These 

compressed samples are then post processed by a recovery 
algorithm [6] which reconstructs the original sparse signal. 
Simulation was performed to compare the proposed 
system with a Nyquist ADC. An ideal WHT is computed 
on the sparse signal and the resulting Hadamard 
coefficients are quantized with finite resolution. It is found 
that for K≥N/3 random samples, the Mean Square Error 
(MSE) between the original and the recovered signal is 
limited by the finite ADC resolution rather than the 
number of sparse samples, K. Further, for the same Mean 
Square Quantization Error (MSQE) a sub-Nyquist ADC 
quantizing a sparse time signal in the Hadamard domain 
can save one bit of resolution. Combining these two 
factors, a sub-Nyquist ADC with the same Figure of Merit 
(FoM) can be made lower power by a factor of about 6. 

 

 
 

Fig. 1 Block diagram 

II. CIRCUIT DESCRIPTION 

The circuit computes a 64-point WHT. The system 
comprises custom analog and synthesized digital logic. 
The function of the latter is to provide the necessary 
control (e.g. Walsh codes) to the analog blocks.  

The Hadamard coefficients are the inner products of the 
input signal with the Walsh codes as shown in matrix form 
in Fig. 2. To compute the WHT the incoming signal is 
correlated with the Walsh codes using a GHz sampling 
rate and discrete-time integration. The speed requirement 
of the sampling and integration are met by splitting the 
correlation operation into three identical time-interleaved 
channels as shown in Fig. 1. A 6-bit LFSR generates a 
pseudo random number which is used by the on-chip 
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Fig. 2 Hadamard Transform Fig. 3 Input S/H 
 
Walsh code generator (WG) [7] to generate the Walsh 
code of that sequency.  The input is sampled with either 
positive or negative polarity depending on if it is 
multiplied with +1 or -1 in a Walsh sequence. The 
inversion is facilitated by the cross connections at the 
input sampling network as shown in Fig. 3. The sampling 
network is fully differential to mitigate charge injection 
and clock feed-through. Each channel accommodates four 
differential S/H circuits and hence the input is 
continuously sampled at the Nyquist rate by time-
interleaving the 12 S/H circuits. All switches in the 
sampling network are implemented as NMOS switches 
with boosted gates to a supply voltage of 1.4V, which is 
provided by a level converter circuit. 

Each channel has two phases, a sampling phase and an 
integration phase, controlled by state machines. Fig. 4 
shows the timing diagram and a complete cycle for 
channel 1. During the first four clock cycles, Channel 1 is 
sampling the input. In the next four clock cycles, Channel 
1 begins integrating its sampled values while Channel 2 
enters the sampling mode. Similarly in the next four clock 
cycles, Channel 2 starts integrating while Channel 3 
samples and Channel 1 completes the integration phase. 
The cycle repeats until the input signal is correlated with 
the 64-point generated Walsh sequence. The state machine 
then connects the output of the three channels to the 
summing amplifier followed by an output buffer. The 
output settling time is conservatively set to 32 clock cycles 
(26.7ns), after which the next random Hadamard 
coefficient is computed. 

The integration time for each integrator is 6 clock 
cycles, or 5ns. In order to achieve this speed an integrator 
based on ZCBC (Zero Crossing Based Comparator) [8] is 
used as shown in Fig. 5. Since there is no closed-loop 
feedback, the ZCBC response time is fast but at the cost of 
overshoot at the output which needs to be compensated. 
For this purpose a binary weighted 7-bit current DAC is 
used which is enabled only during the charge transfer 
phase of the ZCBC. 

III. MEASUREMENTS 

The chip is fabricated in a 65nm CMOS process. The 
active area is 0.1425mm2. The total power consumption is 

 
 
Fig. 4 Timing diagram 

11.2mW. The dynamic digital power at 1.2GHz is 5.4mW 
while the analog section consumes 5.8mW. The measured 
Hadamard coefficients are shown in Fig. 6, along with an 
ideal Matlab computation of the coefficients (using the 
measured input pulse shown in Fig. 7.) for comparison. In 
order to exploit CS, K=26 random Hadamard coefficients 
are selected from the total N=64 measurements as shown 
in the figure. This results in a compression rate of (N-
K)/N=59.4%. The compressed samples are then post 
processed in Matlab using a L1 minimization recovery 
algorithm and the input pulse is recovered with a mean 
square error of 0.3% as shown in Fig. 7. 

The recovered pulse with and without CS are scaled in 
Matlab to match the input pulse amplitude for better 
comparison. The measurements clearly show that the 
accuracy requirements on the computed Hadamard 
coefficients are relaxed. Fig. 8 shows the measured 
overshoot calibration by the 7-bit current DAC of the 
ZCBC based integrator. The overshoot can be calibrated 
within ±15mV (differential) which is close to expected 
from simulated results. Fig. 9 shows the die photo. 

 

 
 

Fig. 5 ZCBC based Integrator 
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Fig. 6 Measured Hadamard coefficients 

 

 
Fig. 7 Recovered pulse 

 
Fig. 8 Integrator overshoot calibration 

 
 
 
 

 
 
 
 
 
 
 

 
 
Fig. 9 Die Photo 

IV. CONCLUSION 

We have explored the application of compressed 
sensing to reduce power for GHz ADCs required for 
sampling ultra-wide-band (UWB) signals. It is found that 
the sub-Nyquist ADC with the proposed WHT front-end is 
about 6x lower power as compared to Nyquist ADC for 
the same FoM. The WHT front-end circuit consumes 
11.2mW of power while sampling at 1.2GHz. The 
achieved compression rate assuming an ideal ADC is 
59.4% with a mean square error of 0.3%. 
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